Finding All Spanning Trees of Undirected and Directed Graphs *
Harold N. Gabow

CU-CS-103-77

|

/.__——\ N\ ) ' '
—Qfﬁ University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This work was partially supported by the National Science Foundation under Grant GJ36461.



ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.



Finding A1T'Spanning Trees of
Undirected and Directed Graphs

by
Harold N. Gabow
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-103-77 January 1977

Abstract

An algorithm for finding all spanning trees (arborescences) of
a directed graph is presented. It uses backtracking and a method for
detecting bridges based on depth-first search. The time required is
O(V+E+EN) and the space is O(V+E), where V, E, and N represent the
number of vertices, edges, and spanning trees, respectively. If the
graph is undirected, the time is actually O(V+E+VN), which is optima]l
to within a constant factor. The previously best known algorithm for
undirected graphs requires time O(V+E+EN).

Key words: spanning tree, arborescence, bridge, depth-first search.

This work was partially supported by the National Science Foundation
under Grant GJ36467.



1. Introduction

The problem of'finding all spanning trees of a connected, un-
directed graph arises in the solution of electrical networks May].
Several algorithms of varying efficiency have been propsed [HG, Mac,
MayS, Mc, Mi, RT,W]. We present an algorithm that uses O(VN) time
and O(E) space, where the graph has V vertices, E edges, and N>T span-
ning trees. The previously best known algorithm of Minty-Read-Tarjan
[Mi,RT] uses O(EN) time and O(E) space. Our algorithm may be viewed
as a refinement of theirs. In terms of worst case asymptotic bounds,

our algorithm is optimal.
The algorithm also applies to directed graphs. Here it uses

O(EN) time and O(E) space. There appear to be no previous published
a1gor1thms for directed graphs.

We first review some terms for undirected graphs, and genera11ze
them to directed graphs. In a connected undirected graph G, a spanning
tree is a subgraph having a unique simple path between any two vertices
of G. A bridge is an edge e where G-e is not connected; equivalently,
e is in every spanning tree of G. In a directed graph G, a spanning
tree (rooted at r) is a subgraph having a unique path from r to any
vertex of G. If such a tree exists, G is rooted at r. A bridge (for r)
is an edge e where G-e is not rooted at r; equivalently, e is in every
spanning tree rooted at r. Other papers use the term arborescence
for spanning tree of a directed graph. There appears to be no standard
term for what we call a "bridge" of a directed graph.

2. The Algorithm
First we describe an algorithm that finds all spanning trees

rooted at r in a directed graph. Then we apply the algorithm to find
all spanning trees in directed and undirected graphs.

The basic task is to find all spanning trees that contain a
given subtree T-that is rooted at r. To do this, first choose an
edge e directed from T to a vertex not in T; find all spanning trees
containing TlJe]; then delete e from the graph. Next choose an edge
e, from T to a vertex not in T; find all spanning trees containing
TLJGZ, but not containing ey then delete e,- To continue, repeatedly




choose an edge e; from T to a vertex not in T; find all spanning trees
containing TLJei, but not containing any ej,j<i; delete e. Stop when
the edge ey that has just been processed is a bridge of the modified
graph. At this point all spanning trees containing T have been found.
For if a spanning tree does not contain ej,j<k, it must contain the
bridge e

To achieve our time bound, we need an efficient method for dis-
covering when edge e is a bridge. This can be done in a variety of
ways; set merging techniques and edge exchanges are two possibilities
[G]. Here we describe an approach based on depth-first search.

Choose edges e so T grows depth-first. Consider L, the last
spanning found that contains Tye. If e=(u,v), then in L, vertex v has
the fewest descendents possible (among all spanning trees containg
Tue). Equivalently, no edge goes from a non-descendent of v to a
proper descendent of v. So e is a bridge when no edge other than e
goes from a non-descendent of v to v. This observation gives an
efficient bridge test.

The depth-first search must be implemented with some care. The
algorithm uses F, a Tist of all edges directed from a vertex in T to
a vertex not in T. F is managed as a stack: to en1arge T, an edge e
is popped from the front of F; new edges for T ue are pushed onto the
front of F. In addition, when e is added to T, edges must be removed
from F, and when e is removed from the tree, these edges must be re-
stored in F. It is important that the remove and restore operations
leave the order of edges unchanged in F. Otherwise, the search will
not be depth-first.

Besides F, the algorithm uses 1ists F, also managed as stacks.
The algorithm is given below, in Algol-Tike notation.



procedure S;begin

procedure GROW; begin
if T has V vertices then begin L«T;output (L) end

1.
2. else begin make F an empty list, local to GROW;
3. repeat
4. tree edge: pop edge e from F; let e=(u,v), where ueT,v£T;
5. add e to T;
6. update F: push each edge (v,w),wAT, onto F;
7. remove each edge (w,v),weT, from F;
8. recurse: GROW;
9. restore F: - pop each edge (v,w),wfT, from F;
10. restore each edge (w,v),weT, in F;
11. delete e: remove e from T and from G; add e to F;
12. bridge test: if there is an edge(w,v),where wfu and w is not a
descendent of v in L then b«false else b+«true;
13. until b;
14. restore G: pop each edge e from F, push e onto F and add e to G
end GROW; |
15. initialize T to contain vertex r; initialize F to.contain
| all edges (r,s);
16. GROW;
end S;

Figure 1 shows a graph with four spanning trees rooted &t r.
Figure 2 shows a computation tree indicating how procedure S finds these
trees T1,15i54. In the computation tree, a node g represents a call to
GROW; the arcs directed out of g correspond to the edges e added to T
in this call. For example, the root node first adds edge 1, then de-
letes 1 and adds 2. Since 2 is a bridge in the modified graph, no
other edges are added.

Note the importance of restoring edges in correct order (1ine
10). When edge 4 is added to get Tl’ edges 5 and 2 are removed from F.
If they are restored in opposite order (2,5), T3 is found before T,,
edge 1 is mistakenly declared a bridge, and T4 is not found.



Lemma 1: Procedure S finds all spanning trees of a directed graph
rooted at r.

Proof: It suffices to prove this inductive assertion: If GROW is
called with T a tree, and F a list of the edges of G from T to V-T,
then GROW finds all spanning trees in G that contain T.

To prove the assertion, let F contain edges e1,131. Define

7?={R1R is a spanning tree rooted at r and Tu eiCIRc:G—{ej]j<1}}.

Using the inductive assertion, it is easy to see GROW finds the trees in

k
T}, where e is the first edge for which b is true. Sets 7} are

i=]
disjoint, by definition. Assuming ey is a bridge, any spanning tree .
contains some ei,isk; so GROW finds all desired spanning trees.

Thus we need only prove bridges are discovered correctly in line
12. It suffices to show there are no edges (x,y), where y is a descend-
ant of v in L, x is not, and y#v. For in this case, the existence of a
path to v avoiding e is equivalent to the existence of the edge tested
for in Tine 12. Thus e is a non-bridge exactly when b is false.

So suppose there is an edge (x,Y), as described above. We derive
a contradiction, as follows. Let f be the edge in L directed into y.
Since edges are added depth-first to T, f is added after e. So the
bridge test for f is executed before that for e. For f, b is false,
because of edge {x,y). This implies L is not the Tast spanning tree
found containing Tu e, since GROW removes f and finds more spanning
trees. This contradiction proves (x,y) does not exist. O

Lemma 2: Procedure S uses O(EN) time and O(E) space on a directed

graph rooted at r.

Proof: First we give some implementation details for F and for the
bridge test. F is a doubly Tinked 1ist of edges. Line 7 traverses the
list of edges directed to v, from beginning to end. Each edge directed
from T is removed from F; however, the values of its Tinks are not
destroyed. Line 10 traverses the 1ist of edges directed to v in the
reverse direction, from end to beginning. Each edge directed from T is
inserted in F, at the position given by its link values. This way,

each edge is restored in-its original position.



Now consider the bridge test. We need an efficient way to detect
descendents. Suppose the vertices of L are numbered in preorder. For
a vertex v, P{v) is its preorder number; H{v) is the highest number as-
signed to a descendent of v. Then w is a descendent of v if and only
if P(v)sP(w)<H(v); this test is used #n line 12. In line 1, when L is
formed, the values P(v) and H(v) are computed and stored.

Now we derive the time bound. One execution of the body of the
repeat Toop (Tines 4-12), excluding the recursive call (1ine 8), takes
time proportional to the number of edgés directed to and from v. Here
v is the vertex added to the tree. In the process of genérating one
spanhing tree, v ranges over all vertices except r. So the total time
in the loop body for one tree is O(E). This dominates the run time of
S, which is O(EN).

Next consider the space. The graph G is stored as a collection
of doubly Tinked 1ists of edges directed to and from each vertex. This
uses O(E) space. At any point in the computation, an edge e may be on
the F 1ist, or on at most one F 1ist. So F and F use O(E) space. In addi-
tion, 0(V) space is needed for T, P, and H. So the total space is

0(E). a

Now consider the problem of finding all spanning trees of a
directed graph. The possible root vertices r form a strongly connected
component that precedes all others. An efficient strong connectivity
algorithm [T] can be used to find these roots in time O(V+E). Then
procedure S can be applied to each root. So we have the following
result.

Theorem 1: A1l spanning trees of a directed graph can be found in
time O(V+E+EN) and space O(V+E).

Next suppose the graph is Undirected. Make it directed by giving
dach edge both directions. Choose r arbitrarily. Now procedure S finds
all spanning trees. The time bound for S can be imprdved, as follows.

Theorem 2: A1l spanning trees of an undirected graph can be found in
time O(V+E+VN) and space O(V+E).



Proof: We need only prove the time bound. Let C be the computation
tree for S, as illustrated in Fig. 2. Each node in C represents a call
to GROW. An arc labelled e in C corresponds to an execution of the
repeat loop body where edge e is added to T. We make implicit use of
this correspondence when we refer to arcs e and edges e.

The time in the leaves of C is O0(VN), since each leaf uses time
0(¥) to do a preorder traversal of the tree and to output it (line 1).
The remaining time is in the interior nodes of C:. Now we apportion
this time to the arcs e of C, so e is charged 0(1) if edge e is a bridge,
and 0(V) otherwise.

An execution of the repeat loop body (1lines 4-12) that adds edge
e to T takes time proportional to the number of edges incident to v, or
0(V). (We ignore the recursive call, Tine 8). If edge e is a non-
bridge, we charge this 0(V) to arc e. Otherwise e is a bridge. Every
edge f incident to v is in some spanning tree containing T. So an arc
f appears below e in C. We charge 0(1), the time spent on edge f, to
this arc f. (Note this charge to f is made only once, when v enters the
tree.) This apportions the time to the arcs of C, as desired.

Now we show the total of all arc charges is O(VN). The number
of bridges is at most the number of arcs of C; since C has height V-1,
this is at most (V-1)N. So the charge to bridges is O(VN). The number
of non-bridges is exactly the number of arcs minus the number of inte-
rior nodes (recall an interior node processes edges until it finds a
bridge). Since C is a tree, this quantity is N-1. So the charge to
non-bridges is 0(VN). O

Procedure S can be sped up in a number of ways. The preorder
Tabelling of trees can be done as trees are grown. Several trees can
be grown at once. (e.g., each edge (w,v) in 1ine 7 gives -a span-
ning tree). However, if each tree is output as a 1ist of arcs, O(VN)
time is required for the output step. So the algorithm is optimal, to

within a constant factor.
Procedure S and other spanning tree algorithms are currently

being programmed. Preliminary indications are that in practice, S is
simpler and faster than the previously best known algorithm of
Minty-Read-Tarjan [Mi,RT].



3. Open Problems
We briefly discuss two problems related to this work. The first

is, can we improve the O(EN) time bound for all spanning trees of a
directed graph? To illustrate the difficulty here, take any graph
that is "dense", but has a unique spanning tree (e.g., a directed
path, plus all back edges except those entering the start vertex).
Let r be the root. Add a new root r, several new vertices v, and new
edges (r',v),(v,r). The algorithm of Theorem 1 uses O(EN) time on
such graphs. The time spent repeatedly scanning back edges 1is

“wasted". ,
Another problem is, can the computation tree be represented in

less than O(VN) space? Note that for procedure S, some computation
trees have O(VN) nodes, e.g., the tree for an undirected cycle has

V(V-1)/2=0(VN) nodes. There are two reasons a more compact form is
desirable.

First, our time optimality argument for undirected graphs is
based on a lower bound for outputting the spanning trees. If a com-
putation tree is acceptable output, it may be possible to Tower this
bound and speed up the algorithm.

Second, consider the problem of listing all spanning trees in
order of increasing weight in a weighted undirected graph. (In a weighted .
graph, each edge has a numerical weight; .a tree's weight Ts the
sum of all its edge weights). One approach is to find all spanning
trees, and then sort them. The sort takes time O(N log N), which
is O(min(V log V,E)N), since Nsmin(ZE,VV'z), This dominates the run
time of the algorithm. The space is O(VN), since the spanning trees
must be saved until the sort is done. A previous algorithm [G] uses
0(EN) time and O(E+N) space. So our approach is no slower, some-
times faster, but uses more space. . Thus a "reduced" computation tree

is destrable.

Acknowledgments
The author thanks Eugene Meyers for providing the initial
stimulus for this work and for programming several versions of

the algorithm.



Fig. 1
Example graph

Fig. 2
Computation tree



References

[G] Gabow, H. N., "Two algorithms for generating weighted spanning
trees in order", SIAM J. Computing 6 (1977), to appear.

[HG] Hakimi, S. L. and D. G. Green, "Generation and realization of
trees and k-trees", IEEE Trans. on Circuit Theory, Vol. CT-11
(1964), pp. 247-255.

[Mac] MacWilliams, F. J., "Topological network analysis as a computer
program", IRE Trans., Vol. CT-5 (1958), pp. 228-229.

[MayS] Mayeda, W. and S. Sehu, "Generation of trees without duplica-
tions", IEEE Trans. on Cirucit Theory, Vol. CT-12 (1965),
pp. 181-185.

[May] Mayeda, W., Graph Theory, John Wiley and Sons, N.Y., 1972.

- [Mc] McITroy, M. D., "Generation of spanning trees (Algovrithm 354)",
Comm. ACM 12 (1969), p. 511.

[Mi] Minty, G. J., "A simple algorithm for Tisting all the trees of
a graph", IEEE Trans. on Circuit Theory, Vol. CT-12 (1965),
p. 120.

[RT] Read, R. C. and R. E. Tarjan, "Bounds on backtrack algorithms
for Tisting cycles, paths, and spanning trees", Networks 5,
pp. 237-252.

[T] Tarjan, R. E., "Depth-first search and linear graph algorithms",
SIAM J. Computing 1 (1972), pp. 146-160.

[W] Watanabe, H., "A computational method for network topology",
IRE Trans., Vol. CT-7 (1960), pp. 296-392.



