A Scanner-Parser Project
(Preliminary Report)

Michael Main

CU-CS-CTo001-97

jUnive:sity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

A Scanner-Parser Project

(Preliminary Report)

Michael Main-
(main@cs.colorado.edu)
Computer Science Department
University of Colorado at Boulder

Research Reports on Curriculum and Teaching
CU-CS-CT001-97
December 27, 1997

Abstract. This report describes a scanner-parser project that is appropriate for about two
weeks of an undergraduate class in principles of programming languages. The project
builds a complete program verifier for a small programming language that controls a dog in
a finite-state world. The report will be expanded later this year to include the results of my
Spring 1998 class.

A Scanner-Parser Project
(Preliminary Report)

Argus is a dog who lives in the small
world shown here. He is the 3/4 circle in the
inner rectangle. The open part of the circle is
his mouth, which is always open because he
is always happy. In the picture shown here,
he is facing east, and he is inside his small
house. There are a few other things in his
world: a bone (which is the grey oval in the
top right corner) and a door (which is the
double vertical lines at the west end of
Argus's house).

Argus is based on Richard Pattis’s Karel the Robot. The motivation for his
design is to provide a small programming language which can be used in an under-
graduate programming languages class as the basis of a scanner-parser project.
This report describes the Argus Programming Language and suggests three
projects that can be carried out by undergraduate students. Further details on these
projects will be given in a follow-up project in 1998. This report it currently avail-
able at http://www.cs.colorado.edu/~main/proglang/argus.html. When the
expanded report is completed, it will be available at the same location.

Supplement for Programming Languages
by Michael Main

2 A Scanner-Parser Project

Argus Commands

Argus can obey five commands:

1. turn (which makes Argus turn 90 degrees, clockwise)

2. forward (which makes Argus move forward one spot--but don't do this if
there's a wall or closed door in front of him!)

3. bark (which can only be done if the door is directly in front of Argus, and
Argus is not holding his bone; barking changes the door from open-to-shut
or from shut-to-open)

4. pickup (which makes Argus pickup his bone; this can only be done if
Argus is on top of the bone and not holding it already)

5. drop (which makes Argus drop his bone; this can only be done if he is
holding his bone)

If you try to do anything illegal, then Argus will crash and a big red X appears in
his world.

The Argus Environment

. T have written a small programming environment to let you control Argus. When
you run the environment, you can control Argus directly by pushing buttons for
turn, forward, bark, pickup and drop. If you crash the system, then you can press
reset to get things going again.

You can also write a program to control Argus, using the Argus Programming
Language described below. You can save Argus Programs to a disk file with the
save button, or you can load a file from the disk with the load button. To run a
program, click the run button. While a program is running, you can make it run
faster or slower with the speed bar. You can also pause the execution or stop the
execution with two other buttons. If you want to allow recursion in your programs,
then the "Allow Recursion" box must be checked on.

To run the Argus Environment on the undergrad machines at the University of
Colorado: ~main/bin/argus (After starting the environment, you may need to grab
a corner and resize it so that everything is visible.)

To run the Argus Environment on your home machine (which must have
jdk1.1 or higher installed):

e Download the file
ftp://ftp.cs.colorado.edu/pub/techreports/main/java/Argus.java
to any directory on your machine

* Change to the directory where you downloaded Argus.java and compile it
with: javac Argus.java

* From this same directory, execute Argus with the command: java Argus

A Scanner-Parser Project

The Argus Programming Language

Here is a description of the Argus Programming Language. Keywords and sym-
bols are written in boldface. Programs may also contain comments that start with
/1 and continue to the end of a line.

procedure
An Argus Program is a series of one or more procedures. One of the proce-
dures must be called "main" and this procedure will be executed when the
program is run. The format of a procedure is:

procedure name

{
}

a sequence of statements

The "name" may be any non-keyword starting with a letter and followed by
a sequence of letters and digits.

statement

A statement may be an assert-statement, an if-statement, an if-else-statement,
a while-statement, a procedure-call, a block-statement, or one of these five
basic statements:

turn;

forward;

bark;

pickup;

drop;

assert-statement
An assert-statement has the form:
assert(boolean-expression);

if-statement
An if-statement has this form, where the statement may be a block-statement
if you like:
if (boolean-expression) statement

if-else-statement
An if-else-statement has this form, where each statements may be a block-
statement if you like:
if (boolean-expression) statement else statement

3

4 A Scanner-Parser Project

while-statement
A while-statement has this form, where the statement may be a block-state-
ment if you like: ‘
while (boolean-expression) statement

procedure-call
A procedure-call is the name of one of your procedures followed by a semi-

colon.

block-statement
A block-statement is an opening curly bracket, followed by a sequence of

zero or more statements, followed by a closing curly bracket.

boolean-expression

A boolean-expression is the same as a C++ boolean expression, formed from
the operations &&(and), | | (or), !(not) and any of these basic predicates:

atBone

atDoor

atXl

atx2

atx3

atx4

atYl

aty?2

atyY3

hasBone

true

false

facingNorth

facingEast

facingSouth

facingWest

isInside

isClear
Most of these names are self-explanatory, except perhaps isClear. The
isClear predicate is true if Argus can move forward without running into a
wall or door.

A Scanner-Parser Project

PROJECTS FOR PROGRAMMING LANGUAGES CLASSES

Scanner Project

Use lex or flex to write a lexical analyzer for the Argus language. The scanner
should ignore separators and comments. The list of token numbers is available in
http://www.cs.colorado.edu/~main/proglang/argus.tab.h

Simple Parser Project

Use yacc or bison to write a parser for the Argus language. The parser should use
the lexical analyzer from the previous project to read an Argus program. The
parser prints a message indicating whether the input is a legal Argus program or
whether a parse error is found.

More Interesting Parser Project

This is the project that my students will be doing in Spring 1998.

Use yacc or bison to write a parser for the Argus language. As the program is
parsed, each statement and each procedure has a state transition matrix attached
to it. For the matrixes, you may use the ArgusMatrix class argusmat.h and
argusmat.cxx (in http://www.cs.colorado.edu/~main/proglang). Whenever a pro-
cedure is parsed, the corresponding transition matrix should be stored in a symbol
table, indexed by the procedure’s name. You may use the SymbolTable class from
symtab.h and symtab.cxx (in the same location on the web).

After you have parsed an entire program, you should check to see that there is
a procedure called “main”. If a main procedure exists, then verify that its transi-
tion matrix does not have any rows with all false vatues. (Such a row indicates that
when the program starts in that state, then the program will crash or go into an infi-
nite loop).

In effect, you are building a complete program verifier for Argus programs.
The same technique can be used to verify that a program is correct for any pro-
gramming language that controls a small finite-state device (up to several thou-
sand states).

5

