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A method is presented for constructing energy-conserving Galerkin approximations in the

vertical coordinate of the full quasigeostrophic model with active surface buoyancy. The derivation

generalizes the approach of Rocha et al. (2016) [30] to allow for general bases. Details are then

presented for a specific set of bases: Legendre polynomials for potential vorticity and a recombined

Legendre basis from Shen (1994) [32] for the streamfunction. The method is tested in the context of

linear baroclinic instability calculations, where it is compared to the standard second-order finite-

difference method and to a Chebyshev collocation method. The Galerkin scheme is quite accurate

even for a small number of degrees of freedom , and growth rates converge much more quickly with

increasing for the Galerkin scheme than for the finite-difference scheme. The Galerkin scheme is at

least as accurate as finite differences and can in some cases achieve the same accuracy as the finite

difference scheme with ten times fewer degrees of freedom. The energy-conserving Galerkin scheme

is of comparable accuracy to the Chebyshev collocation scheme in most linear stability calculations,

but not in the Eady problem where the Chebyshev scheme is significantly more accurate. Finally

the three methods are compared in the context of a simplified version of the nonlinear equations:

the two-surface model with zero potential vorticity. The Chebyshev scheme is the most accurate,

followed by the Galerkin scheme and then the finite difference scheme. All three methods conserve

energy with similar accuracy, despite not having any a priori guarantee of energy conservation

for the Chebyshev scheme. Further nonlinear tests with non-zero potential vorticity to assess the

merits of the methods will be performed in a future work.
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Chapter 1

Introduction

The well-known quasigeostrophic (QG) model describes the dynamics of extratropical oceanic

and atmospheric circulations [26, 29, 42], characterized by the dominant roles of background strat-

ification, leading to hydrostatic balance, and planetary rotation, resulting in geostrophic balance.

In the case of a fluid bounded above and below by flat rigid surfaces, where the vertical velocity

must vanish, the dynamics are governed by the evolution of three quantities: the quasigeostrophic

potential vorticity (PV) q(x, y, z, t) and the buoyancy at the top and bottom surfaces, b+(x, y, t)

and b−(x, y, t) respectively. (The superscripts + and − henceforth denote evaluation of a quantity

at the top and bottom surfaces of the domain, respectively.) The three quantities q and b± evolve

according to

∂tb
+ + u+ · ∇b+ = 0 (1.1a)

∂tq + u · ∇q + βv = 0 (1.1b)

∂tb
− + u− · ∇b− = 0. (1.1c)

The equations are set in a linear tangent plane to the sphere at latitude θ. The parameter β is

(f/R) cos(θ) where R is the radius of the Earth and f is twice the rotation rate of the Earth.

Hereafter the symbol ∇ is to be understood as horizontal only. The velocity is also horizontal,
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u · ∇ = u∂x + v∂y, and the velocity is incompressible ∇ · u = 0. The velocity is obtained from the

PV and surface buoyancies by solving the following elliptic equation for the streamfunction ψ

f0∂zψ = b+ at z = H (1.2a)

∇2ψ + ∂z (S(z)∂zψ) = q (1.2b)

f0∂zψ = b− at z = 0 (1.2c)

and then setting u = −∂yψ, v = ∂xψ. The streamfunction ψ can either be set to 0 on the side

boundaries, or they can be periodic. For periodic boundaries the spatially-constant part of the

streamfunction is not determined by (1.2), but this component of ψ has no impact on the dynamics

and can therefore be set to any desired value. The function S(z) is f2
0 /N

2(z) where f0 is the local

Coriolis parameter f0 = f sin(θ) and N(z) > 0 is the Brunt-Väisälä frequency, also known as the

buoyancy frequency.

There are two common simplifications of this system that set either q and β, or b± to zero.

Both of these simplifications are exact solutions of the full equations. Setting b± = 0 leads to

considerable simplifications in the analysis of the system and in the development of numerical

methods. For example, solutions of the system with b± = 0 are known to be regular and to

be a regular asymptotic limit of the Navier-Stokes equations [3], and standard finite-difference

approximations are known to be convergent [7].

The other simplification sets q = β = 0. The surface-QG model (sQG) is obtained by further

setting b+ = 0 and replacing the boundary condition ∂zψ = 0 at z = H with the condition ∂zψ → 0

as z →∞. Rigorous mathematical analysis of the inviscid sQG model is considerably more difficult

than the model with b± = 0. A connection of the sQG model to the three-dimensional Euler

equations was made in [9], and the study of well-posedness of the sQG model is ongoing (e.g. [8];

for related results in a model with dissipation see [25, 28]). As a result of this connection between
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the full unsimplified QG model and the sQG model global regularity of the full QG system remains

an open problem, though strong solutions are known to exist and be unique for a finite time horizon

[2].

Surface buoyancy has a significant impact on the dynamics of the upper ocean [24] and on

the atmosphere near the tropopause [41], and the simplified system with b± = 0 is unable to model

these dynamics. Surface-QG is able to model the impact of surface buoyancy on atmospheric and

oceanic dynamics, but it is only an exact solution of the full system (1.1) when β = 0. In addi-

tion, several studies have used sQG theory to infer ocean subsurface velocities using only surface

buoyancy but these studies have found that the assumption q = 0 prevents accurate reconstruction

except near the ocean surface [23, 19, 22]. To model the interplay of surface and interior dynamics

one needs the full unsimplified QG model.

The primary difficulty in constructing discretizations of the full QG model is the discretization

of the vertical coordinate z. The equations do not have a particularly unusual form and any one

of a variety of classical methods could be used, but particular attention is paid in the community

to whether a discretization is energy-conserving. This is because simulations are often used to

study the energetics of the system, e.g. the transfer of energy between horizontal and vertical scales

[34, 35, 31], using integrations over long time scales. The classical second order finite difference

discretization found in [29, 7, 42] conserves energy and is the standard method for simulations of

the full system [34, 35, 17, 21, 27, 43, 31, 33, 16]. Higher-order alternatives are therefore desirable

for the purpose of achieving equal accuracy with less cost, or higher accuracy at equal cost.

For a fully discrete system to be energy-conserving naturally depends also on the discretiza-

tion of the horizontal directions. Energy-conserving horizontal discretizations are available [1]; our

focus is on discretization of the vertical coordinate.

The main alternative to the standard second order finite difference discretization of the ver-

tical coordinate is a Galerkin approach based on [10]. The operator ∂z(S(z)∂z·) with homogeneous

Neumann boundary conditions admits a set of eigenfunctions called ‘baroclinic modes’ that form an
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orthogonal basis for L2(0, 1). A finite number of these modes can be used as a basis for an energy-

conserving Galerkin approximation of the QG equations, but the straightforward application clearly

assumes that b± = 0 since that is the boundary condition satisfied by the basis functions. It was

recently shown in [30] how the same basis could be used in a way that does not require b± = 0, and

that still conserves energy. This approach is counter-intuitive in that it generates an approximate

solution with ∂zψ = 0 at the surfaces, but with b± 6= 0; nevertheless the approximation to ψ still

converges absolutely and uniformly as the number of basis functions increases. Unfortunately these

basis functions are not practically useful except in the case where S(z) is a constant, in which case

the modes are just Fourier modes. (Precisely this Fourier baroclinic mode basis was recently used

in [37], but for the simplified QG model with b± = 0.)

It was proposed in [41] to simply augment the baroclinic mode basis with auxiliary functions

that enable satisfaction of the inhomogeneous Neumann conditions, but this method does not con-

serve energy [41, 30]. An alternative orthogonal basis was developed in [36]. This basis enables

both satisfaction of the inhomogeneous Neumann boundary conditions and conservation of energy

in a Galerkin approximation, but the basis does not enable separation of variables in the solution

of the elliptic equation and is more useful for analysis of observational data than for high-resolution

simulations of the nonlinear dynamics.

This article presents an energy-conserving Galerkin approximation scheme for the vertical

coordinate of the full QG system that generalizes the approach in [30] so that it can be used with

any appropriate basis while allowing active surface buoyancy. We immediately specialize to a global

polynomial basis based on Legendre polynomials. Legendre polynomials are a convenient basis

because energy is defined using an un-weighted L2 norm squared, and the Legendre polynomials

are orthogonal with respect to the un-weighted L2 inner product. The paper is organized as

follows. Our main result on the construction of an energy-conserving Galerkin approximation is

found in chapter 2. Implementation details and a specific choice of polynomial basis are presented

in chapter 3. The method is tested and compared to the standard finite diffence method and to a
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non-energy-conserving Chebyshev collocation method in the context of linear baroclinic instability

calculations in chapter 4. In chapter 5 the new Galerkin method is compared to the standard

finite difference method and to the Chebyshev collocation scheme in fully-nonlinear simulations of

idealized two-surface dynamics with β = q = 0. Results are discussed and conclusions are offered

in chapter 6.



Chapter 2

Energy-Conserving Galerkin Approximations

The QG equations conserve energy in the form

E =
1

2

∫
Ω
|∇ψ|2 + S(z)(∂zψ)2

where
∫

Ω represents an integral over the whole domain (x, y, z) ∈ Ω. The first term corresponds

to kinetic energy and the second to available potential energy. The proof of energy conservation

is straightforward: Equation (1.1b) is multiplied by −ψ, followed by integration over the volume.

Careful use of integration by parts together with eq. (1.2) and the surface buoyancy equations

(1.1a) and (1.1c) yield the desired result. The boundary conditions at the side boundaries can be

assumed to be either impenetrable or periodic.

Suppose that q will be represented as a linear combination of basis functions pqn(z)

qN =
N∑
n=1

q̆n(x, y, t)pqn(z). (2.1)

The notation N serves to distinguish the number of basis functions N from the Brunt-Väisälä

frequency N . The notation for the coefficients q̆n follows [30]. Similarly, suppose that ψ will be

represented as a linear combination of basis functions pψn(z), which can be different from the basis

used for q:

ψN =
N∑
n=1

ψ̆n(x, y, t)pψn(z). (2.2)
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The approximation to ψ is used to evolve surface buoyancy as follows

∂tb
± + u±N · ∇b

± = 0.

There are now two approximation problems. The first is related to PV inversion: given qN

and b±, how does one obtain coefficients ψ̆n for ψN ? The second is related to PV evolution: given

qN and ψN , how does one obtain the tendencies ∂tq̆n? The way that these questions are answered

determines the kind of approximation being made, as well as whether the scheme conserves energy.

However these questions are answered one can always define residuals rq and rt related to

the two approximations, along with residuals r±b related to the boundary conditions

rq = qN −∇2ψN − ∂z (S(z)∂zψN ) (2.3a)

rt = ∂tqN + uN · ∇qN + βvN (2.3b)

r±b = b± − f0∂zψ
±
N . (2.3c)

It is important to note that in the above equations qN and ψN are not Galerkin coefficients (which

are denoted q̆n and ψ̆n); they are instead the full Galerkin approximations to q and ψ given by

(2.1) and (2.2). If the boundary conditions on the PV inversion are exactly satisfied then r±b = 0.

The approximate potential vorticity qN is not materially conserved unless rt = 0 and β = 0; this

is true regardless of the basis functions chosen, including finite elements or the baroclinic modes of

[30]. A Galerkin approximation to the PV inversion would choose the coefficients ψ̆n according to

the condition that the residual rq be orthogonal to the span of the basis functions pψn .

An energy-conserving discretization should conserve energy in the following form

EN =
1

2

∫
Ω
|∇ψN |2 + S(z)(∂zψN )2.
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One can obtain an exact evolution equation for EN by, for example, multiplying eq. (2.3b) by

−ψN and integrating over the volume. One eliminates qN using eq. (2.3a), and then performs

integrations by parts using boundary conditions eq. (2.3c). The result is

dEN
dt

= −
∫
x

[
S(H)ψ+

N∂tr
+
b − S(0)ψ−N∂tr

−
b

]
+

∫
Ω
ψN (∂trq − rt). (2.4)

The first integral on the right hand side of this equation is taken over the horizontal upper and

lower surfaces; this has been indicated by the subscript x on the integral:
∫
x.

Energy conservation can evidently be achieved quite simply as follows. First apply the usual

Galerkin condition to the PV inversion by requiring rq to be L2-orthogonal to the basis functions

pψn(z); this eliminates the term
∫

Ω ψN∂trq in eq. (2.4). Next, satisfy the boundary conditions

exactly so that r±b = 0, eliminating the first term on the right hand side of eq. (2.4). Finally, apply

a Petrov-Galerkin condition to determine the evolution ∂tqN by requiring rt to be L2-orthogonal

to the span of pψn , eliminating the last term on the right hand side of eq. (2.4). (This latter is a

Petrov-Galerkin condition because the residual is made orthogonal to a different subspace than the

one in which the approximation is sought. If pqn = pψn then this is just another Galerkin condition.)

The problem is that there are only 2N degrees of freedom — one each for ψ̆n and q̆n —

while the above recipe yields 2N + 2 conditions. This difficulty was avoided in [30] by making use

of a clever reformulation of the PV inversion proposed by Bretherton [4]. The solution to the PV

inversion eq. (1.2) is the same as the solution to the following reformulated problem [4]

∂zψ = 0 at z = H (2.5a)

∇2ψ + ∂z (S(z)∂zψ) = q − f0

N2(z)
b+δ(z −H) +

f0

N2(z)
b−δ(z) (2.5b)

∂zψ = 0 at z = 0. (2.5c)

The equivalence of these two formulations can be obtained through the Green’s function formulation
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of the solution, as shown in C. There is a new residual associated with this reformulation of the

inversion, defined to be

rBq = qN −
f0

N2(z)
b+δ(z −H) +

f0

N2(z)
b−δ(z)−∇2ψN − ∂z (S(z)∂zψN ) . (2.6)

The superscript B in rBq stands for ‘Bretherton.’ Using this reformulated problem to derive an

evolution equation for the discretized energy yields a deceptively similar equation:

dEN
dt

= −
∫
x

[
S(H)ψ+

N∂tr
+
b − S(0)ψ−N∂tr

−
b

]
+

∫
Ω
ψN (∂tr

B
q − rt). (2.7)

Further simplifications are possible though, since the basis functions can now be assumed to satisfy

homogeneous Neumann boundary conditions ∂zp
ψ
n = 0, consistent with the boundary conditions of

the reformulated PV inversion. These boundary conditions imply that

r±b = b± ⇒ ∂tr
±
b = −u±N · ∇b

±. (2.8)

This implies that the first integral on the right hand side of the energy budget eq. (2.7) is zero since∫
x ψNuN · ∇b = 0. As a consequence the energy budget takes the form

dEN
dt

=

∫
Ω
ψN (∂tr

B
q − rt). (2.9)

Energy conservation can now be achieved through the use of a Galerkin condition on the refor-

mulated PV inversion (rBq L2-orthogonal to pψn), and a Petrov-Galerkin condition on the evolution

tendency (rt L
2-orthogonal to pψn). This is essentially a re-derivation of the result in [30] using

an arbitrary basis instead of the baroclinic mode basis. This derivation enables the use of practi-

cal algorithms based on finite element bases, spline bases, or polynomial bases in cases where the

baroclinic mode basis of [30] is unavailable or unwieldy.

Energy conservation in eq. (2.9) requires orthogonality in the standard, un-weighted L2 inner

product. It is convenient to use Legendre polynomials because they are orthogonal with respect

to this inner product, and a method based on Legendre polynomials is developed in chapter 3.
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Chebyshev polynomials are not orthogonal with respect to the standard L2 inner product; they

are instead orthogonal with respect to a weighted L2 inner product with weight function w(z) =

1/
√
z(H − z) for z ∈ [0, H]. They are therefore less convenient than Legendre polynomials in this

setting.

We note as a brief aside that the Galerkin condition on the PV inversion is equivalent to

choosing ψN to minimize a semi-norm of the error. To wit, let ψ∗ be the true solution to the

reformulated PV inversion with q = qN and note that in general ψ∗ cannot be exactly described

by an approximation of the form eq. (2.2); then the ψN that minimizes the following semi-norm of

the error

‖ψ∗ − ψN ‖2q =

∫
|∇(ψ∗ − ψN )|2 + S(z) (∂z(ψ∗ − ψN ))2 (2.10)

is the same as the ψN that sets the residual rBq L2-orthogonal to the span of the basis functions

pψn . This was not precisely clear in [30] where the discussion could be misconstrued to suggest that

the Galerkin condition is equivalent to minimizing the L2 norm of the error.

Energy is not the only sign-definite quadratic quantity conserved by the full quasigeostrophic

system (1.1); it also conserves enstrophy when β = 0. Enstrophy is half the volume integral of the

square of the potential vorticity; in the approximation (2.1) it is

ZN =
1

2

∫
Ω
q2
N .

Its evolution in the approximate system is derived by multiplying eq. (2.3b) by qN and integrating

over the volume. The result, assuming β = 0, is

dZN
dt

=

∫
Ω
qN rt. (2.11)

The energy-conserving method proposed above imposes the condition that rt be L2-orthogonal to

the span of the basis functions pψn . The above expression indicates that approximate enstrophy
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will not be conserved in the energy-conserving scheme unless the same basis functions are used for

both ψ and q, i.e. pψn = pqn. The energy-conserving method requires ∂zp
ψ
n = 0 at the boundaries,

but there is no a priori reason to impose the boundary condition ∂zq = 0 by using pψn = pqn.

One is therefore faced with the choice of using pψn = pqn, which leads to an enstrophy-conserving

method but potentially degrades the approximation of q, or using pψn 6= pqn, which will not conserve

enstrophy but may allow a more accurate approximation of q. In the following section we continue

the analysis under the more general assumption that pψn is not necessarily equal to pqn, leaving open

the option to choose pψn = pqn if desired.



Chapter 3

A Legendre basis

This section begins with general considerations associated with implementation using an

arbitrary basis, and continues to consideration of a specific basis using Legendre polynomials.

There are two problems to deal with: (i) computing ψN from qN and b±, and (ii) computing ∂tqN .

First consider the implementation of the Galerkin condition on the reformulated PV inversion

eq. (2.5). Assume that the basis pψn(z) satisfies homogeneous Neumann conditions. The condition

that the residual in eq. (2.6) be L2-orthogonal to the basis functions pψn leads to an N ×N linear

system of the following form

∇2Mψ − Lψ = Bq− f0

N2(H)
b+p+ +

f0

N2(0)
b−p− (3.1)

where the vectors ψ and q contain the Galerkin coefficients ψ̆n and q̆n, the vectors p+ and p−

have elements

p+
n = pψn(H) p−n = pψn(0), (3.2)

and the matrices have the following elements

Mi,j =

∫ H

0
pψi (z)pψj (z)dz, (3.3a)

Li,j =

∫ H

0
S(z)(∂zp

ψ
i (z))(∂zp

ψ
j (z))dz, (3.3b)
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Bi,j =

∫ H

0
pψi (z)pqj(z)dz. (3.3c)

The discrete PV inversion system eq. (3.1) can be diagonalized by a change of basis. The

mass matrix M is symmetric positive definite and has a Cholesky factorization

M = GGT .

The matrix G−1LG−T is symmetric positive semi-definite, and has an orthogonal eigenvalue de-

composition

G−1LG−T = QΣQT

where Q is real orthogonal and Σ is diagonal. With these matrix decompositions the discrete PV

inversion can be diagonalized as follows

∇2Mψ − Lψ = GQ(∇2I−Σ)QTGTψ. (3.4)

The PV inversion has to be solved repeatedly during a time integration of the PV equations. An

efficient implementation first computes the matrices G, Q, and Σ, then uses the diagonalization

above to split the PV inversion into a set of independent two-dimensional elliptic inversions. Once

the matrix factorizations have been computed, the cost to invert the PV is O(N 2) (plus N times

the cost of each two-dimensional elliptic inversion). This approach, of decomposing the three-

dimensional PV inversion into a series of independent two-dimensional PV inversions, is employed

by several widely-used codes including [34, 17, 21, 13, 16]. The grid sizes in common current use

are small enough that several two-dimensional PV inversions fit within local memory in a single

node of a distributed-memory machine, which means that cross-node communication is limited

to the change of vertical coordinate. Furthermore, there are often between several hundred and

one thousand degrees of freedom in each horizontal direction, while N is usually less than 100

and only occasionally in the low hundreds for codes that use the standard second-order finite
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difference approximation. The Galerkin method developed here should require smaller N than the

finite difference approximation, so in practice N should be expected to be relatively small and the

O(N 2) cost to convert the three-dimensional inversion to a set of two-dimensional inversions should

be significantly smaller than the cost of a single two-dimensional inversion. Nevertheless, it may be

true in some cases that a full multigrid approach applied directly to eq. (3.1) will be more efficient

than the diagonalization described above (cf. [31]).

Each column of the matrix G−TQ contains coefficients of a function in the basis pψn . These

functions together form a basis that diagonalizes the discrete PV inversion operator. These basis

functions that diagonalize the discrete PV operator are approximations to the baroclinic modes of

[30] that diagonalize the continuous PV operator.

Next consider the problem of computing ∂tqN via the Petrov-Galerkin condition that rt in

eq. (2.3b) be L2-orthogonal to the pψn basis. This condition yields a system of the form

B (∂tq) = q̇ (3.5)

where the elements of the right hand side are

(q̇)n = −
∫ H

0
pψn(uN · ∇qN + βvN )dz. (3.6)

Fortunately, for basis functions consisting of polynomials or piecewise polynomials these integrals

can be computed exactly, either analytically or via appropriate quadratures. Since this system

needs to be solved repeatedly during a time integration, an LU decomposition of the matrix B

can be computed once before starting the integration. In the specific basis developed in the next

section, the matrix B has nonzero entries only on the diagonal and on the second super-diagonal.

The cost to solve eq. (3.5) in this case is 3N − 4 floating point operations.
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3.1 A Legendre basis

The foregoing analysis applies to any set of basis functions pqn and pψn with the assumption

∂zp
ψ
n = 0 at the boundaries. Note that as in [30] this does not imply that b± = 0. This section

considers a specific choice of the two basis sets. First, since orthogonality is of necessity defined

using the L2 inner product, it is convenient to let pqn(z) = Ln−1(z) where Lk(z) is the kth order

Legendre polynomial, rescaled to the interval z ∈ [0, H].

Legendre polynomials do not satisfy ∂zLk(z) = 0 at the boundaries, and therefore cannot be

used for pψn . Shen [32] constructs the following functions

φk(z) = Lk(z)−
k(k + 1)

(k + 2)(k + 3)
Lk+2(z). (3.7)

These functions form a basis for polynomials with homogeneous Neumann conditions, and we set

pψn(z) = φk−1(z).

With this choice of pqn and pψn the B matrix is upper triangular with upper bandwidth 2.

The mass matrix M is pentadiagonal; in fact, an even-odd permutation converts the M matrix to

a block-diagonal matrix with tridiagonal blocks. The elements of the matrices M and B are known

analytically. The two-norm condition number of M is plotted in fig. 3.1 for N from 100 to 1000.

The condition number is just under 107 for N = 1000; a condition number of 107 is moderate

for a banded symmetric positive definite matrix in double precision arithmetic, and N = 1000 is

much larger than would be used in most applications. For example, the maximum N used in the

finite-difference simulations of [27, 31] was 128.

The structure of the L matrix depends on the stratification S(z) and is in general dense. (For

a finite element basis the L matrix would be sparse.) The elements of L can in general be computed

using quadrature. In the computations described in chapter 4 the elements of L are computed using

Gauss-Legendre quadrature.

With N Legendre basis functions qN is a polynomial in z of degree ≤ N − 1, while ψN (and
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Figure 3.1: The two-norm condition number of the mass matrix M for N from 100 to 1000.

hence uN ) is a polynomial in z of degree ≤ N + 1. The elements of the vector q̇ are therefore

integrals of polynomials of degree at most 3N + 1. These can be evaluated exactly (up to roundoff

error) using Gauss-Legendre quadrature with 1.5N + 1 nodes.



Chapter 4

Linear Baroclinic Instability

This section makes a preliminary assessment of the accuracy of the energy-conserving Legen-

dre Galerkin scheme described in the preceding section by applying it to the linear quasigeostrophic

baroclinic instability problem. Any configuration of the form

ψ̄ = −yū(z), q̄(z) = −y d

dz

(
S(z)

dū

dz

)
, b̄+ = −yf0

dū

dz

∣∣∣∣
z=H

, b̄− = −yf0
dū

dz

∣∣∣∣
z=0

is an exact solution of the fully nonlinear QG equations eq. (1.1). The linearization of the QG

equations about an equilibrium of this form is

∂tb
+ + ū+∂xb

+ −
(
f0

dū

dz

)
z=H

v+ = 0 (4.1a)

∂tq + ū∂xq + (∂y q̄ + β)v = 0 (4.1b)

∂tb
− + ū−∂xb

− −
(
f0

dū

dz

)
z=0

v− = 0. (4.1c)

Linear instability about an equilibrium of this form is called ‘baroclinic instability.’ The linear

equations vary only in z, so it is convenient to Fourier transform in the horizontal direction, and

to assume exponential growth in time with the form e−ikxct where kx is the wavenumber in the x
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direction and c is the wave phase speed. Also replacing f0dū/dz by −∂y b̄ on the boundaries leads

to equations of the form

ū+b̂+ + (∂y b̄
+)ψ̂+ = cb̂+ (4.2a)

ūq̂ + (∂y q̄ + β)ψ̂ = cq̂ (4.2b)

ū−b̂− + (∂y b̄
−)ψ̂− = cb̂− (4.2c)

where q̂ is the Fourier transform of q and b̂± is the Fourier transform of b±. The standard energy-

conserving second-order finite difference discretization of the linear stability problem is described

in B. We also use a standard, non-energy-conserving Chebyshev collocation method to discretize

the linear stability problem; Chebyshev collocation methods for linear problems are described in a

variety of places including [38, 6].

4.1 Galerkin Discrete Linear Baroclinic Instability

To discretize this system (eq. (4.2)) according to the methods described in the previous sec-

tion, one makes Galerkin approximations to both the equilibrium state and the perturbations, then

one imposes Galerkin and Petrov-Galerkin conditions on the residuals. First consider how to con-

struct the appropriate Galerkin approximation to the equilibrium state. Although the equilibrium

can be completely described by ū(z), the correct approach within the method described in the

foregoing section is to first produce a Galerkin approximation to ∂y q̄ and then invert to find ū. The

expansion coefficients in the approximation of ∂y q̄ are arranged into the vector q̄y, whose entries

are

(q̄y)n =

∫ H
0 pqn(z)(∂y q̄)dz∫ H

0 (pqn(z))2dz
.
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(This expression assumes that the basis functions pqn(z) are L2-orthogonal, which is true for the

Legendre basis considered here. For a non-orthogonal basis one would have to solve a linear system

to find q̄y.) Once this vector is available, the coefficients in the Galerkin approximation of ū are

obtained by solving the following system

Lū = −Bq̄y +
f0

N2(H)
(∂y b̄

+)p+ − f0

N2(0)
(∂y b̄

−)p−. (4.3)

The vectors p± are defined in eq. (3.2).

Unfortunately the matrix L is singular: its first row and column are zero because pψ1 (z) = 1

and ∂zp
ψ
1 = 0. Fortunately the right hand side is always compatible: the first entry of the right

hand side is always zero as well. This statement is substantiated in A. The first entry of ū is not

constrained by the linear system above; it corresponds to the depth-independent component of

ū(z). The first Galerkin coefficient of ū can simply be set to

ū1 =

∫ H
0 pψ1 (z)ūdz∫ H

0 (pψ1 (z))2dz
.

The remaining entries of ū are obtained by solving the lower-right N −1×N −1 block of eq. (4.3).

Next consider how to construct an appropriate Galerkin approximation to the perturbations

about the equilibrium. The Galerkin approximations to the perturbations q̂ and ψ̂ will have co-

efficients stored in the vectors q and ψ, respectively. These coefficients are related through the

Fourier transform of eq. (3.1), which is

−(k2
x + k2

y)Mψ − Lψ = Bq− f0

N2(H)
b+p+ +

f0

N2(0)
b−p−. (4.4)

With Galerkin approximations to the equilibrium and perturbations in hand, one next inserts

these approximations into eq. (4.2b) and requires the residual to be orthogonal to pψn . One also
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inserts ūN in place of ū in eq. (4.2a) and eq. (4.2c), yielding the following linear system

ū+
N b̂

+ + (∂y b̄
+)ψ̂+

N = cb̂+ (4.5a)

Uq + (Qy + βM)ψ = cBq (4.5b)

ū−N b̂
− + (∂y b̄

−)ψ̂−N = cb̂−. (4.5c)

Note that ψ̂±N = ψ ·p±, where the vectors p± are defined in eq. (3.2). With this notation the linear

system eq. (4.5) can be written

ū+
N b̂

+ + (∂y b̄
+)p+ ·ψ = cb̂+ (4.6a)

Uq + (Qy + βM)ψ = cBq (4.6b)

ū−N b̂
− + (∂y b̄

−)p− ·ψ = cb̂−. (4.6c)

The matrices U and Qy have the following entries

Uij =

∫ H

0
pψi (z)pqj(z)ūN (z)dz (4.7)

(
Qy

)
ij

=

∫ H

0
pψi (z)pψj (z)(∂y q̄N (z))dz. (4.8)

To obtain an eigenvalue problem, the vector ψ can be eliminated using eq. (4.4)

ψ = −
(
(k2
x + k2

y)M + L
)−1

Bq +
f0

N2(H)
b+ψ+ − f0

N2(0)
b−ψ−. (4.9)
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For notational convenience the following vectors have been defined

ψ± =
(
(k2
x + k2

y)M + L
)−1

p±. (4.10)

The matrix (k2
x + k2

y)M+ L is invertible as long as k2
x + k2

y 6= 0 since M is positive definite and L is

positive semi-definite.

Eliminating ψ leads to a generalized eigenvalue problem of the form


a11 aT12 a13

a21 A22 a23

a31 aT32 a33




b̂+

q

b̂−

 = c


1 0T 0

0 B 0

0 0T 0




b̂+

q

b̂−

 (4.11)

where the matrix on the left hand side has the following entries

a11 = ū+
N +

f0

N2(H)
(∂y b̄

+)p+ ·ψ+ (4.12a)

a12 = − f0

N2(H)
(∂y b̄

+)BT
(
(k2
x + k2

y)M + L
)−1

p+ (4.12b)

a13 = − f0

N2(H)
(∂y b̄

+)p+ ·ψ− (4.12c)

a21 = (Qy + βM)ψ+ (4.12d)

A22 = U− (Qy + βM)
(
(k2
x + k2

y)M + L
)−1

B (4.12e)

a23 = −(Qy + βM)ψ− (4.12f)

a31 =
f0

N2(0)
(∂y b̄

−)p− ·ψ+ (4.12g)
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a32 = − f0

N2(0)
(∂y b̄

−)BT
(
(k2
x + k2

y)M + L
)−1

p− (4.12h)

a33 = ū−N −
f0

N2(0)
(∂y b̄

−)p− ·ψ−. (4.12i)

To solve a specific linear baroclinic instability problem, one chooses external parameters f0, β, and

N2(z), and an equilibrium state ū(z). Then one computes eigenvalues of the generalized eigenvalue

problem, typically over some range of values of kx and ky; eigenvalues c with positive imaginary

part are associated with linearly unstable solutions. Code to set up and solve the Galerkin and

finite-difference linear stability problems is available in [45].

4.2 The Eady Problem

The classical Eady problem is defined by constant N2(z), linear velocity ū(z), and β = 0. In

this case the baroclinic modes of [30] are simply Fourier modes and are tractable analytically and

computationally. The exact linear perturbation equations eq. (4.2) are also analytically solvable in

the Eady problem (see, e.g. [42, Chapter 6]), which makes for a good test problem. This section

sets N2(z) = f2
0 = 1, H = 1, and ū = z. The most unstable solutions are found along the axis

ky = 0, so the generalized eigenvalue problem is solved for a range of kx.

Figure 4.1 shows the results of the linear Eady problem with N = 7, compared to the

analytical results from [42, Chapter 6]. The growth rates (upper left) and wave speeds (lower left)

as a function of kx are extremely well reproduced with only N = 7 basis functions, to the point

where the plots are indistinguishable. (Note that the streamfunction of the most unstable mode,

kx ≈ 1.6, is approximated with a polynomial of degree 9.) The amplitude (upper right) and phase

(lower right) of the eigenfunction corresponding to the most unstable mode are also very accurate

using only N = 7. The approximate eigenfunction has ∂zψ̂ = 0 on the boundaries, while the

exact does not; nevertheless, the approximate eigenfunction still converges pointwise to the true

eigenfunction with increasing N (not shown).
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Figure 4.1: Comparing Galerkin (blue) and Chebyshev (green) with N = 7 to exact results (black)
in the Eady Problem with ky = 0. Upper left: Growth rates as a function of kx. Lower left: Wave
speeds (real part of the eigenvalue c) as a function of kx. Upper right: Complex phase as a function
of z for the eigenfunction associated with the fastest-growing mode. Lower right: Amplitude as a
function of z for the eigenfunction associated with the fastest-growing mode, normalized to 1 at
z = 0. The Galerkin and Chebyshev methods are so accurate that the results are indistinguishable
from exact in the above plots, except for the Galerkin method in the lower-right panel.

Figure 4.2 shows the absolute value of the error in the growth rate of the most unstable

mode as a function of N for the Galerkin approximation, the finite-difference discretization (see

B), and the Chebyshev discretization. Note that in the finite-difference approximation there are

N degrees of freedom, while in the Galerkin approximation there are N + 2 degrees of freedom:

one for each Galerkin coefficient and one for each surface buoyancy. The error in the Galerkin

approximation decreases as O(N−3), while the error in the finite difference approximation decreases
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Figure 4.2: Error in the growth rate of the fastest growing mode as a function of N for the
Galerkin (blue), Chebyshev (green), and finite-difference (orange) methods.

only quadratically. The Chebyshev method exhibits spectral accuracy as expected, with far greater

accuracy than the other two methods; accuracy reaches a plateau with increasing N , which may

be a result of the ill-conditioning of Chebyshev differentiation matrices [11, 38, 6]. Problems of this

sort are avoided by the Chebyshev Galerkin methods of [20].

Convergence of spectral methods can be limited by lack of smoothness in the functions being

approximated, but the eigenfunctions of the Eady problem are entire functions expressible as a sum

of hyperbolic sine and cosine functions [42]. The fact that the Galerkin method converges alge-

braically rather than exponentially is therefore presumably due to the mismatch between the homo-

geneous boundary conditions satisfied by the basis functions pψn and the inhomogeneous boundary

conditions satisfied by the true eigenfunctions. Since this mismatch only occurs in the value of the

derivative on the boundary the approximate eigenfunctions still converge to the true eigenfunctions

with increasing N (as in [30]), though the rate of convergence is slower than it would be if the

boundary conditions matched.



25

4.3 The Phillips Problem

The instability in the Eady problem is driven by interacting edge waves, and is therefore of

a type not often seen in the atmosphere or ocean. Another classical linear baroclinic instability

problem that, unlike the Eady problem, is observed in the oceans occurs when the potential vorticity

gradient dq̄/dy changes sign in the interior of the fluid. The canonical representation of this kind

of instability is the ‘Phillips’ problem which is distinguished by an equilibrium velocity that has

zero shear at the top and bottom surface, and a single sign change in the potential vorticity in the

interior. We construct a ‘Phillips’ problem of this type as follows

f0 = N(z) = H = 1, β = 3.1, ū = −π−1 cos(πz), q̄ = π cos(πz)y. (4.13)

The total potential vorticity gradient is 3.1 + π cos(πz). The negative potential vorticity gradient

near the top boundary has small amplitude, and as a result the equilibrium is only slightly above

the threshold for instability. There is only a small range of wavenumbers near kx = 3 that are

unstable, as shown in the left panel of fig. 4.3.

The center and right panels of fig. 4.3 show the absolute value of the error in the growth rate

at kx = 3 as a function of N for the Galerkin (center), Chebyshev (center), and finite-difference

(right) methods. The center panel uses a logarithmic scale on the growth rate axis and a linear

scale on the N axis to show that the Galerkin and Chebyshev methods are converging exponentially

rather than algebraically. Although both methods converge exponentially, the Galerkin method is

more accurate than the Chebyshev method. The right panel uses a logarithmic scaling on both

axes to show that the finite-difference method is converging quadratically, as usual. Exponential

convergence is expected for the Galerkin method in this case, since the eigenfunctions are smooth

and have the same homogeneous Neumann boundary conditions as the basis functions pψn . Note

that the accuracy of the finite difference scheme with N = 256 can be achieved by the Galerkin

scheme with ten times fewer degrees of freedom.
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Figure 4.3: Growth rates in the Phillips problem. Left: Growth rates versus kx for the Galerkin
method with N = 256. Center: Error in the growth rate at kx = 3 as a function of N for the
Galerkin (blue) and Chebyshev (green) methods. Right: Error in the growth rate at kx = 3 as a
function of N for the finite-difference method.

4.4 A Charney-Type Problem

Another common type of baroclinic instability in the ocean is driven by the interaction of

an edge wave with a Rossby wave in the interior of the fluid [39]. A canonical problem describing

this kind of instability is the Charney problem, but the canonical Charney problem is posed in a

semi-infinite domain with no upper surface. A Charney-type problem more relevant to the ocean

is defined by having a nonzero shear dū/dz at the top surface, zero shear at the bottom surface,

and a constant potential vorticity gradient dq̄/dy in the interior. We construct such a Charney-

type problem with exponential rather than constant stratification to demonstrate the ability of the

Galerkin method to handle non-constant stratification. The equilibrium state is defined as follows

f0 = β = H = 1, N2(z) = e6z−6, ū =
1

54

(
3e6z−6(6z − 1)− 2− e−6

)
, q̄ = −2y. (4.14)

Both the stratification and the velocity are surface-intensified (the velocity ū(z) is shown in the lower

right panel of fig. 4.4), which leads to surface-intensification of the unstable linear eigenfunctions.

Figure 4.4 shows the results of the linear Charney-type problem. The upper left panel of

fig. 4.4 shows the growth rate as a function of kx for N = 32 and 256 using the Galerkin method;

the finite difference and Chebyshev methods are extremely similar (not shown). The upper right

panel of fig. 4.4 shows the absolute value of the error in the growth rate of the most unstable mode
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Figure 4.4: Growth rates in the Charney-type problem. Upper left: Growth rates versus kx for the
Galerkin (blue) and Chebyshev (green) methods with N = 32 (pale) and N = 256 (dark). Upper
right: Error in the growth rate of the fastest-growing mode as a function of N for the Galerkin
(blue), Chebyshev (green), and finite-difference (orange) methods. Lower left: Background velocity
ū(z) (blue) and Galerkin approximations ūN (z) for N = 4, 8, 16, and 32. Lower right: Amplitude
of the eigenfunction |q̂(z)| at kx = 5 (blue) and 8 (orange) using N = 256.

as a function of N for Galerkin, Chebyshev, and finite-difference methods. The growth rate in the

Galerkin and Chebyshev methods converge approximately quintically (O(N−5)) while the finite-

difference method converges approximately quadratically. Unlike the Eady problem, the Galerkin

approximation is more accurate than both the Chebyshev and the finite difference approximations

for the entire range of N . The accuracy of the finite difference scheme with N = 256 can be

achieved with the Galerkin scheme with ten times fewer degrees of freedom.

A distinctive feature of the Charney-type problem is the presence of weak instability at
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small scales (large kx), as shown in the upper left panel of fig. 4.4. Representation of the small-

scale instabilities clearly requires large N ; this is true in both the Galerkin and finite-difference

methods, which behave similarly for large kx (not shown). These small-scale unstable modes result

from the interaction of a Rossby wave in a thin layer near the upper surface with an edge wave

propagating along the surface. The lower-right panel of fig. 4.4 shows the eigenfunction structure

|q̂N (z)| at both kx = 5 and kx = 8, both computed using N = 256; the near-surface layer is evident

in the eigenfunction at kx = 8. (See also fig. 7 of [30].) Even at N = 256 these modes are clearly

poorly resolved. As a result of the near-surface nature of the instability, the instability is especially

sensitive to the representation of the equilibrium background velocity ū(z) near the boundary. The

lower left panel of fig. 4.4 shows the background velocity ū along with the Galerkin approximations

ūN (z) for N = 4, 8, 16, and 32. Convergence of ūN (z) to ū(z) is slow near the upper boundary

because the basis functions satisfy ∂zp
ψ
n = 0 at the boundary, while the equilibrium background

profile ū(z) has ∂zū 6= 0 at the boundary. This slow convergence of ūN (z) near the boundary

is ultimately why the small-scale (high kx) instability shown in the upper left panel of fig. 4.4

converges slowly.



Chapter 5

Nonlinear Simulations

This section makes a preliminary assessment of the accuracy of the energy-conserving Galerkin

scheme described in chapter 3 by using it in fully-nonlinear simulations. Assessment of the method

in comparison with other competing methods using simulations of the full system eq. (1.1) will

be postponed to a future work; this section uses a simplified exact solution of the full system

with q = β = 0. We further specify f0 = N = H = 1, which leads to the following system of

two-dimensional partial differential equations

∂tb
+ + u+ · ∇b+ = 0, ∂zψ = b+ at z = 1 (5.1a)

(
∇2 + ∂2

z

)
ψ = 0 (5.1b)

∂tb
− + u− · ∇b− = 0, ∂zψ = b− at z = 0. (5.1c)

This system is very close to the nonlinear Eady model [40] except that it lacks both a mean shear

and dissipation terms. This simplified version of the nonlinear Eady model is used here because

it conserves energy exactly, unlike the full nonlinear Eady model where interaction with the mean

shear generates energy, and is therefore an apt test case for comparing our energy-conserving
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Figure 5.1: The state of b+ (left) and b− (right) used to both estimate inversion accuracy and to
initialize simulations tracking energy changes.

method. The inversion from b± to ψ± can be solved analytically by means of a Fourier transform

 ψ̂+

ψ̂−

 =
1

k

 coth(k) −csch(k)

csch(k) −coth(k)


 b̂+

b̂−

 (5.2)

where k2 = k2
x + k2

y. The three methods used in the preceding section are also used here to solve

for ψ±. The Galerkin method uses eq. (3.1), the finite difference method is described in B, and the

Chebyshev collocation method is described in several places including [38, 6].

The domain is a periodic square of width 8π, and the advection terms in eq. (5.1a) and

eq. (5.1c) are discretized using a dealiased Fourier spectral method with 1024 points in each di-

rection; this method is energy-conserving provided that the vertical discretization is also energy-

conserving. Time integration is achieved via a fourth-order semi-implicit method as described in

[15]. This time integration method is not energy-conserving. Energy conservation typically requires

an implicit method, but energy non-conservation due to time integration errors is usually small,

and is small in our simulations described below. For a wide class of systems energy conservation

is required in the spatial discretization but not in the temporal discretization in order to achieve

time-asymptotic accuracy in the representation of a system’s ergodic invariant measure [12, 44].
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The code used here is a slight adaptation of the publicly-available code [14].

We begin by spinning up the system from random initial conditions using the exact analytical

inversion. The simulation was stopped when b+ and b− reached realistic values shown in fig. 5.1.

We used this configuration of surface buoyancy to compare the inversion accuracy of the three

approximate methods: Galerkin, Chebyshev, and finite-difference. We computed the value of ψ+

and u+ using the exact inversion and the three approximate methods, and then computed the

Fourier transform of the error in u+. The one-dimensional spectrum of the velocity error, i.e. the

error kinetic energy spectrum, for each method is shown in fig. 5.2 for different values of N ; for

comparison, the true kinetic energy spectrum is also shown. The Galerkin method (center panel)

is clearly more accurate than the finite-difference method (left panel) for a fixed value of N ; the

error also decreases faster with increasing N for the Galerkin method than for the finite difference

method. On the other hand, the Chebyshev method is so much more accurate than the other

two methods that there is essentially no comparison. This echoes the results from the Eady linear

stability problem, which also has constant stratification S(z) = 1. In the linear stability problem

with non-constant stratification the Chebyshev method was slightly less accurate than the Galerkin

method, so the extreme accuracy of the Chebyshev method in fig. 5.2 may not be indicative of its

performance generally. All three methods have small relative errors at large horizontal scales,

because these horizontal scales are associated with nearly depth-independent vertical structures.

In all three methods the relative errors are largest at small horizontal scales, where the vertical

structure is strongly surface-intensified.

We next assessed the impact of energy conservation by running four simulations from the

initial condition shown in fig. 5.1: one with the exact inversion and one with each of the three

approximate inversions. These simulations were run for 50 time units (which corresponds to about

40 eddy turnover times), and the total energy was tracked. The finite difference simulation used 128

levels, the Galerkin simulation used N = 16, and Chebyshev simulations were run with N = 4, 8,

and 16. In all simulations the energy changed by less than 1% over the course of the simulation,
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Figure 5.2: Error kinetic energy spectra at the top surface for the three methods: finite difference
(left), Galerkin (center), and Chebyshev (right). Note (i) that the vertical axis scaling is different
in each panel, and (ii) that the values of N for the Chebyshev method are smaller than for the
other two methods. The kinetic energy spectrum is shown in black in each panel for comparison.

excepting the Chebyshev simulation with N = 4, which only changed by 1.3%. The degree of

energy conservation for all three methods was thus near perfect, despite the Chebyshev method

not being guaranteed to conserve energy; the observed changes in energy are attributable to the

fact that the time integration scheme does not conserve energy. Further fully nonlinear simulations

with non-constant stratification and q 6= 0 are needed to fully assess the relative merits of the three

methods. These are left for future work.



Chapter 6

Conclusions

This article presents an energy-conserving Galerkin approximation scheme for the vertical

direction of the full QG system with active surface buoyancy. The scheme generalizes the Galerkin

scheme of [30]. The method in [30] uses Sturm-Liouville eigenfunctions as a basis to approximate

both the potential vorticity q and the streamfunction ψ, but these functions are in most cases

computationally intractable. The scheme presented here generalizes the method of [30] to allow

an arbitrary basis for q and any basis for ψ that satisfies homogeneous Neumann boundary condi-

tions at the top and bottom surfaces. Attention is then focused on a Legendre basis for q, and a

recombined Legendre basis from [32] for ψ. Energy is defined using an unweighted L2 norm, based

on an unweighted L2 inner product; Legendre polynomials were used because their orthogonality

with respect to the unweighted L2 inner product make them particularly convenient. Chebyshev

polynomials are used more commonly than Legendre polynomials in spectral methods partly be-

cause of the existence of a fast transform for Chebyshev polynomials, but Chebyshev polynomials

are orthogonal with respect to a weighted L2 inner product and are therefore less convenient than

Legendre polynomials in the current setting.

The method was tested and compared to the standard energy-conserving second-order finite-

difference method and to a Chebyshev collocation method in the context of linear stability calcula-

tions. In these calculations the Galerkin scheme converged much faster with respect to increasing

N (vertical resolution) than the finite difference scheme. The eigenvalues computed with the finite

difference scheme converged quadratically, while those computed with the Galerkin scheme con-
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verged either at fifth order (in cases with nonzero surface buoyancy) or exponentially (with zero

surface buoyancy). In some cases the Galerkin scheme was able to achieve comparable accuracy to

the finite difference method using ten times fewer grid points. In one case the Chebyshev scheme

was very significantly more accurate than the Galerkin scheme, but in two other cases the Galerkin

scheme was similar to and slightly more accurate than the Chebyshev method.

The method was then compared to the finite-difference and Chebyshev methods in the context

of fully-nonlinear simulations in the simplified setting of q = β = 0, and with constant stratification.

In this simplified setting the only dependent variables are surface buoyancies making the dynamics

two-dimensional, though the surface buoyancies are still coupled by a three-dimensional elliptic

inversion. All three methods conserved energy to extremely high accuracy, despite the fact that

the Chebyshev scheme is not guaranteed to do so a priori. The Galerkin method was significantly

more accurate than the finite difference method, but was not nearly as accurate as the Chebyshev

method.

The scheme presented here is ultimately intended for use in a fully nonlinear, fully three-

dimensional setting with nonzero potential vorticity q. The linear stability computations and

simplified nonlinear simulations presented here only give limited insight into the accuracy of the

scheme for the intended application. The scheme presented here will be tested in a fully nonlinear

and three-dimensional setting in future work. Finite element bases rather than a global polynomial

basis could also be explored as a means of enhancing sparsity in future work.
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Appendix A

Compatibility of the system eq. (4.3)

The first entry of the right hand side of eq. (4.3) is a sum of three components, and this

appendix demonstrates that the sum of these three components is zero. The proof relies on the

fact that pψ1 (z) = 1, pqj(z) = Lj−1(z), and pq1(z) = 1.

The first component of the right hand side of eq. (4.3) is the first entry of the vector −Bq̄y.

The first row of the matrix B has elements

∫ H

0
pψ1 (z)pqj(z)dz =

∫ H

0
pqj(z)dz = Hδ1j

where δij is the Kronecker delta. The first entry of −Bq̄y is thus simply the first entry of q̄y

multiplied by −H.

The first entry of q̄y is

∫ H
0 pq1(z)∂y q̄(z)dz∫ H

0 (pq1(z))2dz
= − 1

H

∫ H

0

d

dz

(
S(z)

dū

dz

)
dz

=
1

H

[
S(0)

dū

dz

∣∣∣∣
z=0

− S(H)
dū

dz

∣∣∣∣
z=H

]
=

1

H

[
f0

N2(H)
∂y b̄

+ − f0

N2(0)
∂y b̄
−
]
.

Multiplying this by −H results in an expression that exactly cancels the remaining two components

on the right hand side of eq. (4.3).
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Finite Difference Discretization

This section recalls the standard finite-difference discretization of the QG equations, which

can be found in, e.g., [29] and [42]. A derivation with careful treatment of surface buoyancy and

unequal spacing can be found in [16].

Let ∆z = 1/N be the grid spacing where N is the number of vertical levels. Both ψ and q

are tracked at N points starting at z1 = ∆z/2 and ending at zN = 1−∆z/2. The finite difference

approximation to ∇2ψ + ∂z(S(z)∂zψ) at an interior point zk (k 6= 1,N ) is

(
∇2ψ + ∂z(S(z)∂zψ)

)
|z=zk ≈ ∇

2ψk +
1

∆z

[
Sk
ψk+1 − ψk

∆z
− Sk−1

ψk − ψk−1

∆z

]
= qk (B.1)

where Sk = S(k∆z). At the boundaries we have the following approximations

(
∇2ψ + ∂z(S(z)∂zψ)

)
|z=z1 ≈ ∇2ψ1 +

1

∆z

[
S1
ψ2 − ψ1

∆z
− f0

N2(0)
b−
]

= q1 (B.2)

(
∇2ψ + ∂z(S(z)∂zψ)

)
|z=zN ≈ ∇

2ψN +
1

∆z

[
f0

N2(H)
b+ − SN−1

ψN − ψN−1

∆z

]
= qN . (B.3)

As discussed in [16], if one defines

Q1 = q1 +
f0

∆zN2(0)
b− = ∇2ψ1 +

1

∆z

[
S1
ψ2 − ψ1

∆z

]
, (B.4a)

QN = qN −
f0

∆zN2(H)
b+ = ∇2ψN −

1

∆z

[
SN−1

ψN − ψN−1

∆z

]
(B.4b)
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Then the fully nonlinear system dynamics are controlled entirely by the following system

∂tQ1 + J[ψ1, Q1] + β∂xψ1 = 0 (B.5a)

∂tqk + J[ψk, Qk] + β∂xψk = 0, k = 2, . . . ,N − 1 (B.5b)

∂tQN + J[ψN , QN ] + β∂xψN = 0. (B.5c)

The only caveat is that by evolving this system one knows Q1 and QN but not b± or q1 and qN ,

but the dynamics of ψk are completely controlled by the above system: eq. (B.5) for the dynamics

and eq. (B.1) and eq. (B.4) for the PV inversion.

The discrete version of the linear stability problem is straightforward in the finite difference

approximation. One can start with eq. (4.2) and then discretize as described above. The discrete

finite difference problem takes the form of the following generalized eigenvalue problem

[
UFD

(
(k2
x + k2

y)I + LFD
)
−
(
Qy,FD + βI

)]
ψ = c

[
(k2
x + k2

y)I + LFD
]
ψ.

The matrix UFD is diagonal with diagonal elements ū(zk). The matrix LFD is tridiagonal

with the form

LFD =
1

∆2
z



S1 −S1 0 · · · 0

−S1 S1 + S2 −S2
...

...
. . .

. . .
. . .

...

−Sk−1 Sk−1 + Sk −Sk
...

. . .
. . .

. . .
...

0 · · · 0 −SN−1 SN−1
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The matrix Qy,FD is also diagonal. If one defines a vector ū whose elements are ū(zk),

the diagonal elements of Qy,FD are the elements of the vector LFDū. It is interesting to note

that in the Galerkin method the approximate velocity profile ūN (z) is derived from the potential

vorticity gradient and the surface bouyancy gradients, while in the finite-difference approximation

the potential vorticity gradient is derived from the velocity profile.



Appendix C

Bretherton’s Formulation

This section formally demonstrates the equivalence of the original PV inversion problem

eq. (1.2) with Bretherton’s [4] reformulation eq. (2.6). The goal is to show that despite having

imposed homogeneous Neumann boundary conditions on the streamfunction in Bretherton’s for-

mulation, the presence of Dirac delta distributions on the right hand side ensures that the actual

solution satisfies the same inhomogeneous boundary conditions as the original problem. In the

context of the discretized problem, the approximate solution will satisfy homogeneous Neumann

boundary conditions on both boundaries for any N . The discrete approximation is nevertheless

still expected to converge pointwise to the true solution as N →∞.

We begin by giving the Fourier transform of the Bretherton problem eq. (2.6)

−k2ψ̂ + ∂z

(
S(z)∂zψ̂

)
= q̂ − f0b̂

+

N2(z)
δ(z −H) +

f0b̂
−

N2(z)
δ(z), ∂zψ̂ = 0 at z = 0, H. (C.1)

Away from the boundaries the above equation is exactly the same as the original formulation, so the

question of equivalence of the two formulations centers on the behavior of ∂zψ̂ on the boundaries.

The Green’s function formulation of the solution is

ψ̂(z; k) =

∫ H

0
g(z, s; k)

(
q̂(s)− f0b̂

+

N2(s)
δ(s−H) +

f0b̂
−

N2(s)
δ(s)

)
ds

=

∫ H

0
g(z, s; k)q̂(s)ds− f0b̂

+

N2(H)
g(z,H; k) +

f0b̂
−

N2(0)
g(z, 0; k) (C.2)
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where g(z, s; k) the the Green’s function. The derivative of ψ̂ with respect to z is formally

∂zψ̂(z; k) =

∫ H

0
∂zg(z, s; k)q̂(s)ds− f0b̂

+

N2(H)
∂zg(z,H; k) +

f0b̂
−

N2(0)
∂zg(z, 0; k). (C.3)

The Green’s function can be written in the form [18, Chapter 10]

g(z, s; k) =
1

S(s)(w1(s)w′2(s)− w′1(s)w2(s))

 w1(z)w2(s) 0 ≤ z ≤ s

w1(s)w2(z) s ≤ z ≤ 1

(C.4)

where w1 and w2 are functions satisfying

−k2wi(z) + ∂z (S(z)∂zwi(z)) = 0 for i = 1, 2 (C.5a)

w′1(0) = 0, w′1(H) = 1 (C.5b)

w′2(0) = 1, w′2(H) = 0 (C.5c)

and the notation w′1 denotes the derivative of w1. Consider ∂zg(z, s; k) at z = 0 for any s 6= 0

[∂zg(z, s; k)]z=0 =
w′1(0)w2(s)

S(s)(w1(s)w′2(s)− w′1(s)w2(s))
= 0. (C.6)

A similar manipulation shows that ∂zg(z, s; k) = 0 at z = H for any s 6= H. This shows that the

contribution to ∂zψ̂ from the integral in eq. (C.3) is zero on the boundaries z = 0, H. Now consider

∂zg(z, 0; k). At s = 0 the Green’s function is

g(z, 0; k) =
w2(z)

S(0)
(C.7)

and the derivative is

∂zg(z, 0; k) =
w′2(z)

S(0)
. (C.8)
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At z = 0 we have ∂zg(z, 0; k) = S(0)−1 = N2(0)/f2
0 , while at z = H we have ∂zg(z, 0; k) = 0.

A similar argument shows that at z = H ∂zg(z,H; k) = −S(H)−1 = −N2(H)/f2
0 while at z = 0

∂zg(z,H; k) = 0. Plugging these expressions into eq. (C.3) and evaluating at z = 0, H yields

∂zψ̂|z=0 = f0b
− and ∂zψ̂|z=H = f0b

+. (C.9)

(The foregoing argument is a more general version of the proof carried out in appendix A of [40]

for constant N2(z).) This seems to contradict the homogeneous Neumann boundary conditions

imposed at the beginning of this section. The paradox is explained by realizing that the presence of

Dirac delta distributions on the right hand side of the reformulated problem implies that eq. (C.1)

can only be understood in a weak sense, i.e. if you multiply eq. (C.1) by any sufficiently smooth

test function and integrate from z = 0 to H the result should be true. The homogeneous boundary

conditions that appear in eq. (C.1) are used in the construction of the Green’s function, and

guarantee that the solution will satisfy homogeneous Neumann boundary conditions whenever

b± = 0.
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