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We study the spreading of initially local operators under unitary time evolution in a one-dimensional
random quantum circuit model that is constrained to conserve aUð1Þ charge and also the dipole moment of
this charge. These constraints are motivated by the quantum dynamics of fracton phases. We discover that
the charge remains localized at its initial position, providing a crisp example of a nonergodic dynamical
phase of random circuit dynamics. This localization can be understood as a consequence of the return
properties of low-dimensional random walks, through a mechanism reminiscent of weak localization, but
insensitive to dephasing. The charge dynamics is well described by a system of coupled hydrodynamic
equations, which makes several nontrivial predictions that are all in good agreement with numerics in one
dimension. Importantly, these equations also predict localization in two-dimensional fractonic random
circuits. We further find that the immobile fractonic charge emits nonconserved operators, whose spreading
is governed by exponents that are distinct from those observed in nonfractonic circuits. These nonstandard
exponents are also explained by our coupled hydrodynamic equations. Where entanglement properties are
concerned, we find that fractonic operators exhibit a short time linear growth of observable entanglement
with saturation to an area law, as well as a subthermal volume law for operator entanglement. The
entanglement spectrum is found to follow semi-Poisson statistics, similar to eigenstates of many-body
localized systems. The nonergodic phenomenology is found to persist to initial conditions containing
nonzero density of dipolar or fractonic charge, including states near the sector of maximal charge. Our work
implies that low-dimensional fracton systems should preserve forever a memory of their initial conditions
in local observables under noisy quantum dynamics, thereby constituting ideal memories. It also implies
that one- and two-dimensional fracton systems should realize true many-body localization (MBL) under
Hamiltonian dynamics, even in the absence of disorder, with the obstructions to MBL in translation-
invariant systems and in spatial dimensions greater than one being evaded by the nature of the mechanism
responsible for localization. We also suggest a possible route to new nonergodic phases in high dimensions.
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I. INTRODUCTION

The quantum dynamics of interacting many-body sys-
tems is a great open frontier for theoretical physics.
Important advances on this front over the past decade
include the development of the theories of many-body
localization (MBL) [1–4] and the eigenstate thermalization
hypothesis (ETH) [5–7], and advances in our understand-
ing of the scrambling of information in quantum chaos
[8–10]. While these advances have occurred in the context
of closed quantum systems with time translation symmetry
(either continuous or discrete), more recent advances have

also shed light on our understanding of quantum dynamics
subject to noise, i.e., without time translation symmetry,
and hence without the constraints imposed by energy
conservation. These advances stem from the exploration
of many-body dynamics in random unitary circuits, [11]
where the time evolution is generated by the application of
random gates [13–19]. (Similar work has also been done in
the context of Floquet circuits, featuring periodic time
evolution [20–25].) These explorations have provided an
unprecedentedly detailed understanding of the onset of
many-body quantum chaos. However, all random circuit
models that have been studied so far thermalize, [26] and it
remains unclear whether noisy quantum dynamics can lead
to robust nonergodic phases analogous to MBL.
Parallel to the developments in quantum dynamics,

recent years have also witnessed an explosion of interest
in fracton phases of quantum matter [28–47]—for a review,
see [48]. Fracton phases are quantum phases of matter in
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which the elementary excitations exhibit restricted mobil-
ity, being either unable to move under local Hamiltonian
dynamics or able to move only in certain directions. This
restricted mobility can be traced to the superselection
structure of the underlying theories, which in addition to
familiar constraints like charge conservation, imposes
additional “higher moment” constraints such as conserva-
tion of the dipole moment of charge. Fractons have deep
connections with numerous areas of physics, such as
elasticity [49–51], gravity [52], holography [53], quantum
Hall systems [54], and deconfined quantum criticality [55].
Fracton phases are also known to exhibit glassy dynamics.
These have been studied [28,56–59] for fracton systems in
three spatial dimensions, using techniques akin to locator
expansions. At nonzero densities and long enough times,
“locator expansion” type techniques fail to converge, likely
indicating thermalization at long times. Whether the study
of fractons can lead to the discovery of new dynamical
quantum phases remains an open question.
In this work, we combine the techniques of random

unitary circuits and ideas from the study of fractons, and
discover an entirely new dynamical phenomenon.
Specifically, we consider a circuit that conserves not only
a Uð1Þ charge (as in Refs. [18,19]), but also the dipole
moment of that charge, as an analogue of the “higher
moment” constraints that underlie the fracton phenomenon.
Insofar as energy conservation is essential to immobility of
fractons under Hamiltonian dynamics [58], and random
circuits do not conserve energy, one might have thought
that random circuits with fractonic constraints would also
thermalize, just like all other random circuit models that
have been studied thus far. Instead, we find that in such
circuits, fractonic charge fails to spread even at the longest
times—even though the circuit does contain gates that
allow such charges to hop. This unexpected immobility of
fractonic charges is traced to the inevitability of returns in
low-dimensional random walks, akin to the phenomenon of
weak localization [60] but immune to dephasing and not
limited to the noninteracting limit. A system of coupled
hydrodynamic equations is proposed to govern the charge
dynamics, and it makes several nontrivial predictions that
are found to be in good agreement with numerics.
Importantly, this system of equations predicts that the
localization we observe should also persist to two dimen-
sions, where exact numerical simulations of quantum
dynamics are unavailable. At the same time, the stationary
fractonic charge emits “nonconserved operators,” which
spread but with exponents distinct from those that have
previously been observed in random circuits [18,19],
constituting a new dynamical universality class. These
nonstandard exponents are also correctly predicted by
analysis of our hydrodynamic equations. The nonergodic
phenomenology is numerically verified to persist in settings
with a nonzero density of fractons, including in the sector
with close to maximal charge.

Thus, we establish that combining “fractonic” con-
straints with random circuit dynamics can lead to qualita-
tively new classes of dynamical behavior. At the same time,
insofar as the random circuit dynamics is a model for noisy
time evolution, our results suggest that low-dimensional
fracton systems should behave as memories, forever robust
against noise [61]. Equally remarkable, however, it offers a
pathway to breakthrough results in many-body localization.
The remarkable developments in MBL over the past

decade have largely relied, for analytical understanding, on
techniques related to locator expansions. A series of works
have established that there exist rare region “obstructions”
to many-body locator expansions [62–68] in any setting
other than strongly disordered one-dimensional spin
chains. While some of these obstructions can be circum-
vented [69–71], it does appear that systems in dimensions
greater than one cannot admit a fully convergent locator
expansion [67], nor can systems with a translation-invariant
Hamiltonian [68]. As a result, it is widely believed that
higher-dimensional systems and/or translation-invariant
systems can support, at best, asymptotic or “quasi” MBL,
in which a memory of the initial conditions survives in local
observables for times superpolynomially long in some
control parameter [67], but the system nevertheless ther-
malizes on the longest timescales. Our results provide an
explicit counterexample to this belief since they indicate
that fractonic systems in one and two dimensions preserve
forever under Hamiltonian time evolution a memory of
their initial conditions in local observables, even with
translation-invariant Hamiltonians. In other words, trans-
lation-invariant one- and two-dimensional fractonic sys-
tems undergoing Hamiltonian dynamics should exhibit true
MBL (not just asymptotic), at least in the sector of Hilbert
space with nonzero fracton charge, and this localization
should survive to nonzero energy densities and should be
robust to generic local perturbations obeying the fractonic
constraint. [72] Our result evades the “no-go” arguments of
Refs. [67,68] because it does not rely on locator expansions
for localization. As such, it provides a first example of
MBL beyond locator expansions and may open a new
chapter in the exploration of that field.
The paper is structured as follows. In Sec. II, we

introduce the basic model that will be studied. In
Sec. III, we present the results of numerical simulations
indicating the lack of spreading of fractonic charge. In
Sec. IV, we present the basic analytical understanding of
random circuit dynamics with fractonic constraints and test
it against numerical simulations. In Sec. V, we discuss the
implications of our results and give our conclusions.

II. SPIN-1 RANDOM UNITARY CIRCUIT MODEL

We consider a one-dimensional chain of L sites, each of
which has a spin-1 degree of freedom. The gates in the
random unitary circuit at each step in the time evolution are
designed to preserve the total z component of the spins
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(Stotalz ), which serves as a conserved Uð1Þ charge, as in
Refs. [18,19]. Unlike previously studied systems, however,
we consider a random unitary circuit that also conserves the
total dipole moment (P⃗total) of this effective charge. As
such, an isolated charge (i.e., a state with an Sz ¼ 1 in a
background of Sz ¼ 0) cannot propagate without creating
additional dipolar excitations—and, as such, functions as a
fractonic charge.
The time evolution is governed by a random unitary

circuit (as shown in Fig. 1) consisting of staggered layers of
three-site unitary gates. The time evolution unitary is given
by UðtÞ ¼ Q

t
t0¼1

Uðt0; t0 − 1Þ, where

Uðt0; t0 − 1Þ ¼

8>><
>>:

Q
i U3i;3iþ1;3iþ2 if t0 mod 3 ¼ 0Q
i U3i−1;3i;3iþ1 if t0 mod 3 ¼ 1Q
i U3i−2;3i−1;3i if t0 mod 3 ¼ 2.

ð1Þ

As a result of the conservation laws, each three-site unitary
gateUi;iþ1;iþ2 is a 27 × 27 block-diagonalmatrix,with block
structure as shown in Fig. 1. Each block is a Haar-random
unitary of the appropriate size and is chosen independently of
other blocks. There are four 2 × 2 blocks in the unitary
matrix, corresponding to the following charge- and dipole-
conserving qudit flips: þ −þ ↔ 0þ 0, þ − 0 ↔ 0þ −,
−þ 0 ↔ 0 −þ, −þ − ↔ 0 − 0. The remaining charge
configurations have no nontrivial qudit flips. Despite the

small number of gates, this form of time evolution is themost
generic unitary evolution consistent with conservation of the
charge anddipolemoment.As such, any other quantity that is
not conserved by design can change under the action of
the circuit, indicating that the charge and dipole moment are
the only two conserved quantities in the system. Thus, the
system is not a conventionally integrable model, which
would have an extensive number of conserved quantities.
In the Heisenberg picture, a local operator Oo evolves

under OoðtÞ ¼ U†ðtÞOoUðtÞ, and the spatial region over
which it has support grows with time. A convenient on-site
basis of operators used in the description of the time
evolution of local operators is given by nine matrices
fΣ0;1;…;8

i ¼ ½ðλ0;1;…;8
i =

ffiffiffi
2

p Þ�, i.e., the 3 × 3 identity matrix
(λ0i ) and the eight Gell-Mann matrices (λ1;…;8

i ). The on-site
basis has the following normalization: Tr½ðΣμ

i Σν
i Þ=3� ¼ δμν.

We use these matrices to form a basis of 9L generalized
Pauli strings S ¼ Q

iΣ
μi
i . The initially local operator Oo

consists only of those strings that are the identity at all sites
except a few near the site of initialization. With time,
however, there are other basis strings with nonlocal weight
in the decomposition of the time-evolved operator OðtÞ. In
the string basis, the operator OðtÞ can be expanded as

OðtÞ ¼
X
S

aSðtÞS: ð2Þ

FIG. 1. Random unitary circuit: Each site is a three-state qudit. Each gate (blue box) locally conserves Stotalz , the total z component of
the three qudits it acts upon, and P⃗total, the total dipole moment of the three qudits. It is a block-diagonal unitary of the form shown on the
right, with each block (red boxes) of each gate independently Haar random. The smaller 1 × 1 blocks do not flip the qudits, while the
larger 2 × 2 blocks produce charge- and dipole-conserving qudit flips as indicated.
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The basis strings satisfy Tr½SS0�=3L ¼ δSS0, making it
possible to obtain the coefficients as follows: aSðtÞ ¼
Tr½SOðtÞ�=3L. The initial operator Oo is normalized such
that Tr½OoOo� ¼ 3L, which implies that the total weight of
OðtÞ on all strings S is 1, which is just a statement about
unitarity in the dynamics:

X
S

jaSðtÞj2 ¼ 1: ð3Þ

In order to determine expectation values of the operator,
consider an initial density matrix

ρð0Þ ¼ ðIbackground þ cOoÞ=3L; ð4Þ

where Ibackground is the background state that is initially the
identity on the full system, and cOo is a traceless local on-
site perturbation at the origin to this initial state. At a
subsequent time, we take all expectation values with
respect to a density matrix ρðtÞ ¼ ½I þOðtÞ�=3L.

III. CHARACTERIZATION OF
OPERATOR SPREADING

In order to study the operator spreading profile of an
initially local operator Oo, we follow Ref. [19] and define
the “right weight” ρRði; tÞ as the total weight in OðtÞ of
basis strings that end at site i, meaning that they act as the
identity on all sites to the right of site i, but act as
combinations of the identity and nonidentity operators
up to i. This result gives

ρRði; tÞ ¼
X

strings Swith
rightmost nonidentity

at site i

jaSðtÞj2: ð5Þ

From Eq. (3), we see that there is a conservation law on
ρRði; tÞ, i.e.,

P
i ρRði; tÞ ¼ 1. This law gives ρRði; tÞ the

interpretation of an emergent local conserved density, the
spreading of which can then be examined.

A. Diffusive spreading of local
conserved dipole moment

As a warmup, we first consider the case where the
initial operator is a two-site conserved dipole operator, i.e.,
Oo ¼ 1

2
ð⊗o

i¼1 I ⊗ Sz ⊗L
i¼oþ2 I− ⊗o−1

i¼1 I ⊗ Sz ⊗L
i¼oþ1 IÞ,

where Sz is given by the matrix

Sz ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA: ð6Þ

The spin-1 chain (initialized with the above local dipole
operatorOo) is time evolved under the action of the random
unitary circuit. We evaluate the exact Heisenberg time

evolution of the operator by multiplying it by the appro-
priate unitary gates, a procedure that is even simpler than
exact diagonalization. A further speedup results because
the constraints on the unitary operators allow us to restrict
to a single charge and dipole sector, such that one does not
need to keep track of all 9L (where L is the system size)
coefficients at each time step. This process is repeated for
various values of t to obtain the right-weight profile as
in Fig. 2.
Since the initial condition involves a dipole operator,

which acts as a conserved Uð1Þ charge without any
conservation laws on its higher moments, this is a situation
that should map onto the analysis of Ref. [19] and serves as
a sanity check on our results. As discussed in Ref. [19], the
spatial structure of this operator shows a ballistic front, a
power-law tail behind the front, and diffusively spreading

FIG. 2. Right-weight profile (averaged over 10 runs) of the
spreading dipole operator in a system of L ¼ 21 sites with open
boundary conditions, at a range of times.

FIG. 3. Right-weight profile (averaged over 10 runs) of the
spreading fracton charge operator in a system of L ¼ 21 sites
with open boundary conditions.
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charges near the origin. This case is illustrated in Fig. 2,
which shows the right-weight profile ρdipoleR ðx; tÞ for a
system of size L ¼ 21 initialized with a single conserved
dipole. These profiles depict the following regimes: a
slowly spreading “lump” at the origin, a “front” that moves
out rapidly, and a “tail” behind the front. In subsequent
sections, we show that the front propagation is ballistic and
that the exponent governing the tail matches the analysis in
Ref. [19]. It is also apparent that in the long-time limit, the
central lump relaxes to a uniform charge distribution. These
results, consistent with Ref. [19], serve as a sanity check on
our procedure. We do not discover anything new simply by
considering an initial condition with a single conserved
dipole. To obtain new results, we must consider initial
conditions containing fractons, a task to which we turn in
the following subsection.

B. Spreading of conserved fracton charge:
Memory of initial conditions

We now consider the case where the initial operator
is a conserved fractonic charge, i.e., Oo ¼⊗o−1

i¼1 I ⊗
Sz ⊗L

i¼oþ1 I. Now the situation is unlike Ref. [19] since
not only is the monopole moment of the initial operator
conserved but also its dipole moment. The resulting
behavior is strikingly altered, as is illustrated in Fig. 3.
Unlike the dipole right-weight profile, the spatial structure
of this operator shows an extremely prominent peak where
the operator was initially localized; i.e., the system has
memory of its initial conditions in a local observable at all
times accessible in our simulations. Additionally, there is a
“propagating front”with a lagging tail, and, as we show in a
subsequent section, the power law governing this lagging
tail is distinct from the power law observed in Ref. [19] and

Fig. 2. It is thus clear that the evolution of an initial fracton
operator lies in a different universality class.
An important point to note is that circuit-to-circuit

fluctuations in the right-weight profiles of both dipole
and fracton charge operators are negligible. We show this in
Fig. 4 for the case of the fracton charge operator by plotting
the absolute value of the difference in the right weights for
six typical runs relative to one of the runs. We also show in
the Appendix that these results hold true for a spin-S
(S ≠ 1) chain.

FIG. 4. Fluctuations in the right weights of the fracton charge operator. (a) Circuit to circuit fluctuations in the right-weights of the
fracton charge operator for six different runs computed at late times. i in ρiR labels typical runs. (b) Right-weight profile of the fracton
operator averaged over different number of disorder realizations. The right-weight profile for sites 4 through 21 is shown in the plot and
that for sites 1-3 is shown in an inset. This demonstrates that averaging over O ð10Þ configurations is sufficient.

TABLE I. Gates implementing flips used in constructing non-
trivial blocks of three- and four-site unitaries. The remaining
gates for net charge 0 are obtained by þ ↔ − in only the 2 × 2
blocks, and the remaining negative net charge gates are obtained
by þ ↔ − in all blocks of the corresponding positive charge
gates. The blocks forming the five-site unitary matrix are
obtained in a similar fashion.

Net charge Three-qudit gates Four-qudit gates

þ2 þ00þ ↔ 0þþ0
0þ 0þ ↔ þ −þþ
þ0þ 0 ↔ þþ −þ

þ1 þ −þ ↔ 0þ 0 0þ 00 ↔ þ −þ0 ↔ þ0 −þ
00þ 0 ↔ þ − 0þ ↔ 0þ −þ

þ000 ↔ 0þþ−
000þ ↔ −þþ0
−þ 0þ ↔ 0 −þþ
þþ −0 ↔ þ0þ −

0 −þ 0 ↔ 0 −þ 0000 ↔ þ − −þ ↔ −þþ−
−þ 00 ↔ 0 −þ0 ↔ 00 −þ
þ − 00 ↔ 0þ −0 ↔ 00þ −

þ0 − 0 ↔ 0þ 0−
þ00− ↔ þ −þ−
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The persistent memory of the initial condition is remark-
able since the circuit does contain gates that allow a fracton
to move (by creating dipole excitations)—see Table I. One
might worry that this is an artifact of our choice to limit the
circuit to three-qudit gates, which block diagonalize into at
most 2 × 2 blocks. To test for this possibility, we look at
what happens to the fracton operator peak if we use gates of
different sizes, which allow many more transitions. We
consider the cases involving four- and five-qudit gates (see
Table I), and in Fig. 5, we see that the fracton peak still
remains. While a larger gate size results in a broader peak
at large t, the integrated area under the fracton peak
with respect to the background value at large t, i.e.,

ωpeakðtÞ − ωpeakð∞Þ, is independent of gate size and
approaches its asymptotic value as t−3=2, as shown in
Fig. 6. We explain this exponent in Sec. IV B.
As an additional check on the robustness of this

localization, we also plot (Fig. 7) the constant background
of the right-weight profile (seen at large t) and the
integrated weight under the fracton peak as a function of
system size. As can be seen from the plot, the weight under
the fracton peak persists in the thermodynamic limit,
making it safe to attribute this behavior to the fractonic
constraints in the system.
Thus far, we have considered the “emergent” hydro-

dynamics of unitary operator spreading (translated into
constraints on right-weight profiles). To confirm that the

FIG. 5. Right-weight profile (averaged over 10 runs) of the spreading fracton charge operator in a system of L ¼ 21 sites with gates of
different sizes (with open boundary conditions). (a) L ¼ 21 spin chain with four-qudit gates. (b) L ¼ 21 spin chain with five-qudit gates.

FIG. 6. Log-log plot of the integrated area under the fracton
peak in the right-weight plots (ωpeak) as a function of time for
three different gate sizes (averaged over 10 runs). On the y axis,
we plot the logarithm of the area under the central peak at time t
minus the area under the central peak at t → ∞.

FIG. 7. Integrated weight of fracton peak in the right weight as a
function of system size at large tð¼ 200Þ (averaged over 10 runs).
The uncertainties in the fitting parameters are given below
the plot.
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memory of initial conditions is manifest in the dynamics of
the physical components of the system, we look at what the
charges themselves are doing and not just the right weights.
We examine what happens to hSzi as a function of position.
The “fracton peak” still remains, and this is largely
independent of time and system size, as can be seen from
the plots in Fig. 8. A plot of the integrated area under the
hSzi peak as a function of system size at large t (Fig. 9)
shows that there is considerable operator weight that
remains at the original location; i.e., the system acts as a
memory that is robust against random noise. Note the
absence of any spreading front in this plot: Fractonic charge
does not spread under the action of the random circuit, even

though there are gates that apparently allow the charge
to move.
Importantly, the peaked late-time hSzi profile seen in

Fig. 8 is demonstrably different from the thermal state with
the same charge and dipole moment. The thermal state
should simply be the state of maximal entropy. To
determine what hSzi looks like for the maximal entropy
state, we consider a classical three-state model on a length
L chain, where every site has charge q ¼ þ1, 0, or −1. We
then consider the set of all classical states that satisfy the
constraints on the charge and dipole moment, i.e.,

P
i Qi ¼

Q and
P

j jQj ¼ P. We then construct ρ, the uniform
weight superposition of all density matrices in this set. If
we look at trðρQrÞ, we see that it is spatially uniform (see
Fig. 10) in any sector ðQ;P; LÞ (Q ¼ total charge, P ¼
total dipole moment, L ¼ system size). [73] While the
maximum entropy state has a flat hSzi distribution, the state
that we obtain from our random circuit model has a
prominent peak in the hSzi profile (Fig. 8). Therefore,
the system at late times is indeed nonthermal.

IV. OPERATOR GROWTH IN
THE FRACTONIC CIRCUIT

We now develop a basic analytic understanding of the
various features uncovered in the previous sections, which
we test against numerics. In the case with only local charge
conservation (and no dipole conservation) [19], the charge
executes a random walk under the action of a random
unitary circuit. In our model, likewise, the dipoles execute
random walks under the action of a random unitary circuit.
When we consider a system having fractons, however,
the dipole conservation constraint means that these can
only move by absorbing or emitting a dipole (e.g.,
þ −þ ↔ 0þ 0). At first glance, one might think that
since gates exist that move fractons (at the cost of creating

FIG. 8. The Sz expectation values (averaged over 10 runs) in the spin-1 random unitary circuit model, initialized with a single fracton.
(a) hSzi vs position for different values of tin an L ¼ 18 spin chain. (b) hSzi vs position for different system sizes at large tð¼ 200Þ.

FIG. 9. Area under the hSzi peak as a function of system size at
large tð¼ 200Þ (data averaged over 10 runs). The peak is defined
as the region bounded by the central site �2. The uncertainty in
the fitting parameter is given in the legend.
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or annihilating dipoles), the fractons should also execute a
random walk under the action of the random circuit.
However, there is a crucial distinction: The fracton remains
displaced only if the dipole stays absorbed or emitted. If a
fracton moves by emitting a dipole, then a subsequent
reabsorption of that dipole will return the fracton to its
initial position.
The dipoles undergo a random walk. It is well known

that random walks in spatial dimension d ≤ 2 always return
to the origin. This can be understood in terms of the
diffusion propagator, Gðx; tÞ ¼ ð4πDtÞ−d=2e−x2=Dt, where
D is a diffusion constant of the dipoles, and d is the spatial
dimension. In order to determine the return probability of
the dipole to its starting point, we consider the following
integral:

Z
dtGð0; tÞ ¼

Z
dt

�
1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
�

d
: ð7Þ

In d ¼ 1, this integral diverges (∼
ffiffi
t

p
). Therefore, the

probability that the dipole returns to its initial position is
1; i.e., the dipole always diffuses back to its starting point.
When the dipole returns, this causes the fracton to return to
its initial position. Thus, although the fracton can tempo-
rarily hop at any given time step, the dipole always
eventually diffuses back, returning the fracton to its original
position. This result explains the persistent peak that we see
in the right weight and hSzi profiles even as t → ∞.
This simple argument suggests that even though frac-

tonic circuits contain gates that move fractons, nevertheless
fractons should be immobile under random circuit dynam-
ics not only in d ¼ 1 (which we have studied numerically)
but also in d ¼ 2 (which is beyond the reach of our

numerical techniques). In d ¼ 3, however, the behavior
will qualitatively change since three-dimensional random
walks do not inevitably return to the origin, and dipoles can
actually escape to infinity. So in d ¼ 3, fractons should be
able to execute a true random walk via permanent emission
of dipoles. This idea suggests that the behavior of fractonic
circuits in d ¼ 3 is very different from that in d ¼ 1, 2.
Namely, in d ¼ 3, a single fracton evolving under a random
unitary circuit should be able to diffuse but not in d ¼ 1, 2.
These arguments suggest that the fractonic circuit should

be well modeled by a picture of a conserved dipole density
coupled to a mobile source or sink (the fracton). The
hydrodynamic equations that model the system should then
take the form

dR⃗
dt

¼ −η⃗þ A⃗ðtÞ;
dη⃗
dt

¼ D∇2η⃗þ dR⃗
dt

δðx⃗ − R⃗Þ; ð8Þ

where η⃗ is the local dipole charge density at the location of
the fracton, D is the dipole diffusion constant, A⃗ðtÞ is a
stochastic force (taken to be delta-correlated white noise),
and R⃗ is the position of the fracton (i.e., the location of the
single isolated Sz ¼ 1 state). In one spatial dimension, the
quantities R⃗, η⃗, and A⃗ are all scalars. In higher spatial
dimensions, they will be vector quantities. We have written
the equations in terms of vector quantities for maximum
generality. These equations are expected to describe
equally well the system in any spatial dimension, but (as
we show), the character of the solutions is highly sensitive
to spatial dimension. We now explore the predictions of this

FIG. 10. The hSzi in the numerically obtained thermal or maximal entropy state of a classical 3-state model with fixed charge Q and
dipole moment P. The above plot is for periodic boundary conditions, with the dipole moment defined mod L (the choice of origin is
arbitrary, and the anticlockwise direction is taken to be positive). The results for open boundary conditions are similar: There is no
localization of charge in the “classical” maximum entropy state. (a) Q ¼ 1, P ¼ 2, L ¼ 8. (b) Q ¼ 2, P ¼ 2, L ¼ 8.

PAI, PRETKO, and NANDKISHORE PHYS. REV. X 9, 021003 (2019)

021003-8



simple picture and test it against numerics in one spatial
dimension.

A. Fracton localization and sensitivity to dimensionality

We now solve the system of equations introduced above
and show that they imply fracton localization in one and
two spatial dimensions (but not in three dimensions). We
initialize the problem with a single fracton at position zero
and zero dipole charge. The total dipole charge ˜η⃗ is related
to the position of the fracton R⃗ðtÞ via

˜η⃗ðtÞ ¼ R⃗ðtÞ: ð9Þ

However, what enters into Eq. (8) is not the total dipole
charge but rather the dipole charge density at the position of
the fracton. To estimate this value, we need to estimate how
much the dipole density spreads out. We can do this as
follows. First, we estimate a typical “return time” (i.e., the
typical time that a dipole wanders freely before it returns to
the fracton to get reabsorbed). This value can be estimated
from the equation

R
t
1 Gð0; t0Þdt0 ¼ C, where C is some

arbitrary large but finite constant, and Gðx; tÞ is the
diffusion propagator. We obtain

treturn ¼ πDC2 d ¼ 1

¼ expð4πDCÞ d ¼ 2

¼ ∞ d > 2; ð10Þ

whereD is the dipole diffusion constant. The length scale ξ
over which the dipole charge density is spread out can then
be estimated as ξ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtreturn

p
(being cut off in d > 2 by the

scale of the system size L). The density at the fracton
position can then be estimated as ˜η⃗=ξd. Substitution into
Eq. (8) then gives an equation of motion for the fracton of
the form

dR⃗
dt

¼ −
1

γ
R⃗þ AðtÞ; ð11Þ

where

γ ≈
ffiffiffi
π

p
DC d ¼ 1

≈D expð4πDCÞ d ¼ 2

≈ Ld d > 2: ð12Þ
Now, Eq. (11) can just be recognized as a Langevin
equation, which has the well-known solution

PðR⃗Þ ∼ exp

�
−

R2

2γT

�
; ð13Þ

where PðRÞ is the probability distribution for the fracton
position, and T is the strength of the stochastic kick,

hAðtÞAðt0Þi ¼ 2Tδðt − t0Þ. Now, in d ¼ 1, 2, the coefficient
γ is finite and independent of system size, so this predicts
exponential localization of the fractons in spatial dimen-
sions d ¼ 1, 2. Meanwhile, in d ¼ 3, γ ∼ Ld, so the
“localization length” is greater than the system size, and
thus the fracton is effectively spread over the whole system
in the steady state.
Thus, solving the system of hydrodynamic equations

yields the prediction that fracton charge should be localized
in one and two dimensions but not in three dimensions.
Note also that the localization length in two dimensions is
considerably larger than in one dimension (exponentially
large in the diffusion constant of the dipoles, instead of
power-law large).
We now compare the predictions of this analysis to direct

numerical simulation in one dimension. Figure 11 shows a
semilog plot of the tails of hSzi as a function of site position at
large t, and the exponential behavior seen is consistent with
the above analysis, although we are not able to distinguish
between expð−xÞ and expð−x2Þ behavior numerically.
A nontrivial prediction coming from our analysis of the

hydrodynamic equations is that the localization length for
the fractonic charge should be sensitive to the diffusion
constant of the dipoles. This sensitivity is particularly
strong in d ¼ 2, where the localization length is exponen-
tial in the dipole constant, but even in d ¼ 1, we predict that
the localization length for the charge should scale as
ξfracton ∼

ffiffiffiffiffiffiffi
DT

p
. We now test this prediction directly against

numerics.
We remind the reader that our model of quantum

dynamics is minimally structured; i.e., we consider a
random circuit, made out of gates of a particular size
satisfying the charge and dipole moment constraint. Once

FIG. 11. The fracton charge probability distribution function is
given by the Boltzmann distribution: The tails of hSzi have been
plotted on a semilog scale for different system sizes (L) as a
function of position at large t (averaged over 10 runs).
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the gate size is fixed, the parametersD and T are fixed also.
The only way to change these parameters is to change the
gate size. The gate size translates directly into the “step
size” for the dipoles and fractons, and we therefore expect
that D ∼ ðgate sizeÞ2 and also T ∼ ðgate sizeÞ2 (remember
T is just the correlator of the stochastic steps taken by
the fractons). This expectation can be straightforwardly
checked in numerics by varying the gate size and looking at
the spreading of the dipole charge in an initial condition
containing a dipole only (see Fig. 12), and indeed we find
the expected behavior. We therefore predict that the charge
localization length ξfracton ∼

ffiffiffiffiffiffiffi
DT

p
∼ ðgate sizeÞ2, where the

charge localization length could be extracted simply as the
half width at half maximum on a plot of hSzi as a function
of position. This is a prediction that can be directly tested
against numerical simulations, and we find excellent agree-
ment with our prediction (see Fig. 13).
Finally, the analysis can be straightforwardly adapted to

initial conditions containing a nonzero dipole charge ˜η⃗0. We
can think of this initial condition as having “descended”
from an initial condition with no dipoles, where the fracton
started at position − ˜η⃗0. The steady state can then be
obtained simply by shifting Eq. (13), and it takes the form

PðR⃗Þ ∼ exp

�
−
jR⃗þ ˜η⃗0j2

2γT

�
; ð14Þ

i.e., in the steady state, the fracton shifts position by − ˜η⃗0,
thereby absorbing the excess dipole density, but it remains
localized about this shifted position. This prediction can
also be tested numerically. For simplicity, we work with

periodic boundary conditions, such that there is only a
single dipole charge characterizing the system. (Here, the
left and right are defined with respect to an arbitrary choice
of origin, with the anticlockwise direction being “right,”
and the dipole moment is defined mod L). Our solution of
the governing hydrodynamic equations (14) predicts that
for an initial condition with a fracton and dipole charge η0,
at late times, the fracton peak will be shifted left by η0; i.e.,
the fracton ends up absorbing all the dipoles. This basic
picture is confirmed by direct numerical simulations,
Fig. 14. Note that, in configurations such as Fig. 14, the
identification of which charges make up dipoles versus
individual fractons is inherently ambiguous. However,
there is no ambiguity in the location of the final peak.
We thus conclude that our analysis of the coupled

hydrodynamic equations [Eq. (8)] makes a number of
nontrivial predictions that are all in agreement with
numerics in d ¼ 1, where high-quality numerical tests
are possible. As we show, these equations also accurately
describe the universal dynamics of the spreading non-
conserved part of the operator (next subsection). This
excellent agreement between analytics and numerics gives
us high confidence in our analysis, even in two dimensions,
where direct numerical simulation is not possible. We recall
that our analysis predicts localization in two dimensions
(but not in higher dimensions).

B. Propagating fronts and power-law tails

For either an initially localized fracton or dipole, the
operator spreading profile contains a ballistically propa-
gating front. The front itself behaves in the same way in the

FIG. 12. Plot showing how the diffusion constant of dipoles
scales with gate size. The diffusion constant is extracted by
preparing an initial condition with a single dipole, tracking how
dipole charge density at the origin decays as a function of time
and fitting to 1=

ffiffiffiffiffiffi
Dt

p
. We obtain a behavior D ∼ ðgate sizeÞ2,

consistent with our expectations.

FIG. 13. Plot showing how the charge localization length ξfracton
scales with gate size. The localization length is obtained by
looking at hSzðrÞi in the long-time steady state and is defined
simply as the half width at half maximum of the Sz peak. We find
a scaling ξfracton ∼ ðgate sizeÞ2, consistent with the predictions of
our analysis.
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fracton and dipole cases; i.e., it propagates ballistically with
a similar velocity, featuring front broadening that shows a
power-law exponent of 1=2 when plotted against time t.
This result is due to the fact that the front consists of
nonconserved operators emitted at the earliest times, and it
is not influenced by what happens near the origin at late
times. This behavior is numerically verified in the plots in
Figs. 15 and 16.
In addition to the ballistic front in the operator spreading

profile, there is important information contained in the
structure of the tail behind the front, which behaves
differently in the cases of dipole and fracton charge
operators (see Fig. 17). We observe that the diffusive tails
show power-law behavior in both cases and extract the
exponents. In the case of the dipole operator, the tails show

power-law behavior of the following form: ðvBt − xÞ−3=2,
where vB is the velocity of the ballistic front. This is
consistent with the discussion in Ref. [19] and can be
understood analogously; i.e., the nonconserved parts of the
operator are sourced by the diffusing charge, with strength
∼dρc=dt, where ρc is the weight in the conserved charge
sector. But this weight goes as ρc ∼ 1=

ffiffi
t

p
in one dimension,

so this naturally gives the tails due to the nonconserved
parts emitted at later times the form dρc=dt ∼ t−3=2. For the
case of an initially localized fracton operator, the tails
satisfy power-law behavior too but with exponent −5=2;
i.e., the tails have the form ðvBt − xÞ−5=2. This exponent
can also be naturally explained in terms of emission of
nonconserved operators from the dipole sector, which in

FIG. 14. A fracton initialized at site 10 in an L ¼ 21 system (under periodic boundary conditions) with a strength−4 dipole on its right
and a þ2 dipole on its left shifts to the right by two sites, i.e., η̃0 ¼ −2 in this case (data from a typical run).

FIG. 15. Position of the propagating front as a function of time
in the spin-1 model for the fracton and dipole operators (L ¼ 21)
for a typical run.

FIG. 16. Front broadening in the right-weight profiles (aver-
aged over 10 runs) of the fracton and dipole operators (L ¼ 21).
The uncertainties in the fitting parameters are given in the legend.
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turn is stochastically sourced or sinked by the fracton. In
other words, fracton motion will generate dipole density,
which will then be governed by diffusion close to a sink
(the fracton itself, which can reabsorb the dipole). The
problem of diffusion close to a sink has been studied
previously [74], and it is known that, close to the sink, the
resulting diffusion propagator is given by a spatial deriva-
tive of the free-space diffusion propagator:

Gðx; tÞ ∼ d
dx

ðt−d=2e−x2=DtÞ ∼ x

t1þðd=2Þ e
−x2=Dt; ð15Þ

which gives the amplitude of a dipole to be at a specific
time and place. The total weight in the central peak is then
given by

ρc ¼
Z

∞

0

dxjGðx; tÞj2 ∼ t−ð2dþ1Þ=2: ð16Þ

We see that the weight in the conserved sector decays faster,
as ρc ∼ t−3=2 (consistent with our prior observation in
Fig. 6), and thus, by an argument analogous to
Ref. [19], it produces tails that go like dρc=dt ∼ t−5=2 [75].

C. Entanglement diagnostics

A question closely related to operator hydrodynamics is
the problem of entanglement growth. An initial product
state develops spatial entanglement as it evolves with time.
In systems without quenched disorder, the entanglement
entropy is expected to grow linearly in time, with a growth
rate characterized by the “entanglement velocity” vE. This

entanglement growth generically continues until the system
has reached a maximally entangled thermal state. Here, we
investigate entanglement growth in the fractonic circuit
using three different entanglement metrics—the observable
entanglement entropy, the operator entanglement, and the
entanglement spectrum. We note that the conventional von
Neumann entropy is not a suitable measure because it is
identically zero for a pure state, nor is the conventional
entanglement entropy (von Neumann entropy of a biparti-
tion) because, according to this measure, the initial con-
dition we consider is close to maximal entanglement.

1. Growth of local observable entanglement entropy

We first work with “observable” entanglement entropy
[19], arising from the conserved piece of the initially
localized operator. We compute the difference between
the typical value of the local observable entropy between
two sides of a spatial entanglement cut in our system at time
t and the value of local observable entanglement entropy at
t ¼ 0, and extract the entanglement velocity from it by
looking at how the growth of observable entropy of the
spin-1 system scales with time. To define the observable
entropy more explicitly, consider the density matrix
ρðtÞ ¼ ½I þOðtÞ�=3L. The von Neumann entropy of this
state is independent of time by unitarity. Now, if we
consider the conserved part of this state, i.e., ρcðtÞ ¼
½I þOcðtÞ�=3L, then the observable entropy of this state
is ScðtÞ ¼ −Tr½ρcðtÞ log ρcðtÞ�. We note that while the
growth of local observable entanglement entropy scales
linearly with t at intermediate times, it saturates at large t.
We determine the growth of the local observable entangle-
ment entropy as a function of time for four cuts at location x
with x ¼ 5, 7, 10, 15 in an L ¼ 21 spin-1 chain (Fig. 18),

FIG. 17. Power-law behavior of diffusive tails behind propa-
gating fronts (L ¼ 21). The right-weight profiles (averaged over
10 runs) have been rescaled before fitting. The dipole operator
has a power-law exponent −3=2, while the fracton operator has
an anomalous exponent of −5=2. Fitting parameter uncertainties
are specified in the plot.

FIG. 18. Local observable entanglement entropy ScxðtÞ (aver-
aged over 10 runs) as a function of time in the spin-1 system
(L ¼ 18) with dipole conservation (solid lines) and without
(dashed lines).
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and we see that while the initial scaling of the growth of
local observable entanglement entropy is the same in all
three cases, the entanglement velocity (∼0.16) does not
match the front velocity (∼0.4) (Fig. 15). This result is
normal and well understood—see, e.g., Ref. [18].
Our numerical results also show a distinct difference in

the late-time growth of local observable entanglement
entropy of the fractonic system versus a system of ordinary
conserved charges. For ordinary charge conservation, the
final saturation value of the growth of local observable
entanglement entropy scales linearly with the size of the
partition, indicating a volume law for growth of entangle-
ment, as expected for a thermalizing state. Specifically, the
saturation value is very close to maximal observable
entanglement. In contrast, the growth of local observable
entanglement entropy in a fracton system stops well short
of its maximal value, and the saturation value is largely
independent of partition size, indicating an area law for the
growth of entanglement. Such an area law for the growth of
local observable entanglement entropy is consistent with
the fact that a low-dimensional fracton system fails to
thermalize under random unitary dynamics.

2. Athermal operator entanglement

We now investigate a different metric for the production
of operator entanglement within the framework of spread-
ing operators in the fractonic circuit, which does not
separate out the conserved piece of operators. It had been
suggested that, according to such a metric, a generic
operator rapidly becomes maximally entangled within
the region where it is present [76], but we find that this
is not the case for fracton operators: Both the dipole and
fracton charge spreading operators are volume-law
entangled, but the late-time entanglement entropy of the
fracton charge operator is well below that of a maximally
entangled operator.
Our system has three states per site: jSz ¼ 0;�1i.

Following the discussion in Ref. [77], we may view an
operator as a state in a doubled system with nine states per
site. In order to see this mapping between operators and
states, we consider a single-site operator Oabjaihbj, with a,
b labeling the three states at each site. The corresponding
state is kO⟫ ¼ Oabjai ⊗ jbi. The notation k…⟫ indicates
that this state lives in the doubled system. We can now
construct two complete basis sets fÂig and fB̂ig, which are
orthonormal and consist only of operators with a support on
the subsystems A and B, respectively (taken to be the two
halves of the spin chain in this case). For any linear operator
O in the full tensor product Hilbert space of the two
operator spaces spanned by fÂig and fB̂ig, we have a
unique decomposition for O as follows:

O ¼
X
i;j

OijjÂii ⊗ jB̂ji; ð17Þ

where Oij ¼ ðÂi ⊗ B̂j; OÞ is given by the inner product on
the operator space.
For a unitary time evolution operator UðtÞ (like in each

time step of our random unitary circuit), we have Uij ¼
½Âi ⊗ B̂j; UðtÞ�. From this result, we construct the operator
reduced density matrix

ρA;opij ¼
X
k

UikðU†Þkj: ð18Þ

We use this to define the operator entanglement entropy
[78] Sop ¼ −TrðρA;op ln ρA;opÞ.
We note that while the operator entanglement for the

fracton charge operator shows volume-law growth as a
function of partition size, its late-time value is demon-
strably less (see Fig. 19) than the operator entanglement of
the thermal state (a flat distribution over all Sz product
states with given charge and dipole moment). This entan-
glement metric thereby serves as yet another independent
confirmation that a system initialized with a single fracton
fails to reach thermal equilibrium.
We note that the volume-law operator entanglement of

the late-time configuration is in sharp contrast with the case
of Anderson localization (or many-body localization), for
which operator entanglement will remain in an area law at
arbitrarily late times. Furthermore, conventional localized
phases would not have a ballistically propagating front
since there is no analogue of the emission of nonconserved
operators. Rather, conventional localized phases have a

FIG. 19. Operator entanglement (averaged over 10 runs) for the
fracton charge operator in a spin chain with L ¼ 9. The late-time
operator entanglement of the corresponding thermal state and for
the state evolved without the dipole constraint are also plotted,
and these are well above the corresponding value for the fracton
charge operator. The “thermal” state here is the equal-weight
superposition over all Sz product states with a given charge and
dipole moment.
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logarithmically growing light cone [3], resulting in a much
slower spread of quantum information.

3. Entanglement spectrum

Another important question within a localized phase is
the level statistics of the entanglement spectrum, i.e., of the
entanglement Hamiltonian H̃ defined by ρ ¼ e−H̃, where ρ
is the reduced density matrix for part of the system. We
explore the entanglement spectrum by physically biparti-
tioning our system into a “left” and a “right” half,

constructing the reduced density matrix for the left half,
and then obtaining the spectrum of the entanglement
Hamiltonian. In Fig. 20, we plot the level spacings of
the late-time state for a configuration initialized with a
single fracton. In a thermal spectrum, these level spacings
would be expected to follow random matrix theory,
whereas in a conventional integrable system, they would
be expected to be Poisson. We find a behavior that is neither
random matrix nor Poisson but rather follows the semi-
Poisson distribution, just like in many-body localized
systems [79]. The entanglement-spectrum level statistics
provide further evidence that this system is not thermalized,
nor is it conventionally integrable.

D. Nonzero fracton density

We now turn to configurations having multiple fracton
charge operators localized at different sites in the system.
Now, dipoles emitted during fracton motion do not have to
return: They can be absorbed by the other fracton instead.
In consequence, the fracton operators can now permanently
change their position. For a system with multiple fractons,
the diffusion constant for the fractons could be estimated as
follows: In order for fractons a distance l apart to move,
they need to exchange dipoles. The diffusion time for
dipoles is Dl2. Thus, the fractons move an amount of the
order 1 in a time of orderDl2. Thus, the diffusion constant of
the fractonswould be lower than the diffusion constant of the
dipoles by a factor of l2, where l is the initial separation
between fractons. This identification is supported by the
numerical results in Fig. 21(a).
This basic picture has an interesting corollary: The closer

together the fractons are, the more mobile they will be. The

FIG. 20. The level spacings of the entanglement Hamiltonian
for the late-time state obey semi-Poisson statistics, in contrast
with an integrable Anderson-like phase, which would obey
Poisson statistics.

FIG. 21. Fracton diffusion in the random circuit system initialized with multiple fracton peaks (averaged over 10 runs). (a) Diusion
constant of fractons in a two-fracton system is lower than that of the dipoles by a factor of 1=l2 where l is the initial separation between
the fractons. The uncertainties in the fitting parameters are given in the legend. (b) Right-weight profile in a system with a finite density
of fractons (we look at the superposition of the following strings: I everywhere except at site 2, I everywhere except at site 5, I
everywhere except at site 13, I everywhere except at site 16). Note that the fractons end up agglomerating at their center of mass.
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random circuit should thus generate an effective “attrac-
tion” between fractons (analogous to the discussion in
Ref. [52]). In the long-time limit, therefore, the fractons
should agglomerate at their center of mass. This idea is
confirmed by Fig. 21(b). We further note an interesting
“coarsening” dynamics to the system, in which nearby
fracton peaks first coalesce together, before all peaks
eventually join together at the center of mass of the system.
We expect such a coarsening process to lead to an infinite
hierarchy of timescales for relaxation, for a finite density
system in the thermodynamic limit. We also note that the
state to which the system relaxes is one where the fractons
all agglomerate near their center of charge, and this is very
different from the classical thermal state (i.e., an equal-
weight superposition of all Sz product states with a given
charge and dipole moment; see Fig. 10). Thus, the system
does not relax to an ergodic state, at least according to the
intuitive definition of ergodicity.
The agglomeration of fractons at their center of charge

also resolves a conceptual puzzle that may have worried the
skeptical reader. Namely, random circuit dynamics allows
for the creation from vacuum of dipole-antidipole pairs, and
their subsequent dissociation into fractonic charges. Why,
then, can fractons notmoveby exchanging dipoleswith such
“spontaneously generated” fractons? The resolution is
simple: Even while fractonic charges can be created from
vacuum, these creation processes cannot affect the total
fracton charge or dipolemoment and hence cannot affect the
center of charge. Since a fracton charge ends up agglom-
erating at the center of charge, and the center of charge is a
conserved quantity, such spontaneous pair production can-
not affect the long-time steady states of the system.
Wenowpropose a possiblemechanism for the interfracton

attraction.While the analogy to the “gravitational” attraction
between fractons discussed in Ref. [52] is appealing, a
precise connection is difficult since the discussion in
Ref. [52] relies on the existence of a conserved energy.
Instead, we propose that this attraction may be of entropic
origin and may be driven by the spreading of the non-
conserved part of the operator. The appeal to an entropic
mechanism may be surprising since, of course, the charge
sector does not thermalize, but the “nonconserved” parts of
the operator do spread and presumably tend towards their
maximumentropy configuration for a given “charge” profile;
wepropose that having the charge agglomerate at its center of
mass increases the entropy of the nonconserved part of the
operator, even though it doesnot correspond to themaximum
entropy in the charge sector [80].
If we take the total weight (of late-time operator right

weights) held in two well-separated fracton peaks (≈1; see
Fig. 3), consider the situation where the two fractons come
together [Fig. 21(b)], and look at the total weight in the
operator right-weight peak (≈0.4), we see that the total
weight in the resulting peak is reduced when the two
fractons come together. This result suggests that when

fractons come together, the system can “emit” more right
weight and thus have higher entropy in the nonconserved
part of the operator. To further support our claim that
clustering at finite fracton density occurs for entropic
reasons, we compare late-time operator entanglement
values for the different states in question in Table II, and
we see that the state where the fractons agglomerate at their
center of mass has higher operator entanglement than twice
the operator entanglement of a single fracton but less than
that of the corresponding thermal state (consistent with lack
of thermalization in the charge sector). A complete under-
standing of the interfracton attraction and its consequences,
however, is beyond the scope of this work.
Finally, we have numerically verified that the fracton

localization persists at finite fracton density. In Fig. 22, we
plot the evolution of hSzðrÞi starting from an initial
condition that is close to maximal charge (i.e., packed full
of fractons). We still observe localization of fracton charge
at late times, despite the fact that this initial condition is
most certainly at nonzero fracton density. Similarly, in
Fig. 23, we consider an initial condition that is packed full
of dipoles, and again, we observe localization of fractonic
charge at long times. We thus conclude that the localization

TABLE II. Comparison of the late-time operator entanglement
value of the agglomerate state at finite fracton density with those
of the corresponding thermal state and of two well-separated
fractons.

Center-of-
mass

agglomerate

Thermal state in
the charge-
2 sector

Two well-
separated

fracton peaks

Late-time
operator
entanglement

6.53 7.48 5.12

FIG. 22. The hSzðtÞi close to the maximal charge sector. The
late-time profile shows a peak, indicating localization even at
finite fracton density.
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phenomenon we have discovered here persists to systems at
nonzero density, with the long-time limit of such systems
being a state where charge is localized near the center of
charge.

V. DISCUSSION AND CONCLUSIONS

We investigated the operator spreading dynamics of a
one-dimensional random unitary circuit with fracton con-
servation laws, wherein we had not only a conserved Uð1Þ
charge but also the conservation of the local dipole
moment. We find that even though the circuit contains
gates that can move fractonic charge, fractonic charge
nevertheless does not move under random circuit dynam-
ics. This remarkable “localization” of fractonic charge
under random circuit evolution can be traced to the
inevitable returns of low-dimensional random walks. In
this sense, the mechanism is akin to weak localization,
except that it is not based on quantum interference and is
therefore insensitive to dephasing. There is also some
family resemblance to the diffusive returns governing the
Altshuler-Aronov correction to conductivity in weakly
disordered metals [81]. We note, however, that our system
has neither a conserved energy nor any meaningful notion
of density of states, so there is no direct parallel to, e.g.,
Refs. [81,82]. We have proposed a set of coupled hydro-
dynamic equations to describe the dynamics of our prob-
lem. The solution of these hydrodynamic equations
predicts localization of charge in one and two spatial
dimensions but not in higher dimensions. It also makes
a number of nontrivial predictions regarding the steady-
state distribution of charge for various initial conditions and
its dependence on the range of the gates. These predictions
are in excellent agreement with numerical simulations in
d ¼ 1, where high-quality numerics is available, and we

therefore have high confidence in our predictions for higher
dimensions, where direct simulation of the quantum
dynamics is infeasible.
Even while fractonic charge fails to spread under random

circuit dynamics, the nonspreading fractonic charge emits a
ballistically propagating front of nonconserved operators,
similar to the case of nonfractonic circuits [19]. The
ballistically propagating front broadens as

ffiffi
t

p
, again much

as in nonfractonic circuits. However, the tail behind the
front is characterized by a different power law from the case
of nonfractonic circuits and hence falls into a different
universality class. These nonstandard exponents are also
correctly predicted by our hydrodynamic equations and can
be understood as a consequence of the unusual hydro-
dynamics governing the fractonic circuit, in which con-
served “dipolar” charges are coupled to “fractonic” charges
that acts as sources and sinks for dipole charge.
We have considered the entanglement spreading in

fractonic circuits. Since the initial conditions we consider
are close to maximal entanglement according to the
conventional entanglement entropy measure, we have to
use different entanglement measures. We have considered
three different entanglement measures: observable entan-
glement entropy, operator entanglement, and entanglement
spectrum. By looking at observable entanglement entropy,
we have found that while observable entanglement grows
ballistically, the entanglement velocity is much smaller than
the front propagation velocity. Additionally, a system
initialized with fracton charge appears to saturate to an
“area-law” observable entanglement entropy independent
of system size, consistent with the lack of thermalization.
Meanwhile, the operator entanglement is volume law but
subthermal, whereas the entanglement spectrum exhibits
level statistics that follow a semi-Poisson distribution,
similar to many-body localized eigenstates [79] but distinct
from either thermalizing or conventionally integrable sys-
tems. Finally, we have considered initial conditions that
contain multiple fractons. If the initial condition contains
multiple fractons, then the system evolves to a localized
configuration where all fractons agglomerate at their center
of charge, and the rate of evolution to this configuration is
determined by the initial separation of the fractonic
charges. We have conjectured that this fracton agglomer-
ation may be a consequence of feedback from the non-
conserved operator to the conserved operator sector.
Regardless of the origin of this attraction, however, the
long-time steady state attained is nonergodic, even at
nonzero fracton density; i.e., it is not equivalent to a
thermal state (defined as an equal-weight superposition
of all Sz product states with a given charge and dipole
moment). Such a thermal state does not exhibit charge
localization and has markedly different entanglement
properties. This nonergodic behavior constitutes the first
example that we know of in which unitary time evolution
with no time translation symmetry at all leads to
localization.

FIG. 23. The hSzðtÞi for an initial condition in the single charge
sector but packed with dipoles. The late-time profile shows a peak
indicating localization even in this limit.
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We comment now on the implications of our results.
First, our work conclusively establishes that random circuit
dynamics can lead to nonergodic dynamical phases. This
idea has obvious implications for quantum information
processing. Particularly important is our prediction that
localization in quantum circuits can persist to two dimen-
sions since actual information-processing architectures
cannot be purely one dimensional; thus, our work opens
up the possibility of harnessing localization for future
scalable quantum circuits. Insofar as random circuit
dynamics is a minimally structured model for time evolu-
tion, we expect the results to be robust and applicable to any
generic model with Uð1Þ charge conservation and dipole
conservation, and no other constraints.
Our work also has intriguing implications for the

Hamiltonian dynamics of fracton systems. In particular,
since Hamiltonian dynamics is more constrained than
random circuit dynamics (because Hamiltonian dynamics
must conserve energy), the immobility of fractons under
random circuit dynamics in d ¼ 1, 2 strongly suggests that
fractonic systems in d ¼ 1, 2 should also fail to thermalize
under Hamiltonian dynamics. In other words, fractonic
systems in d ¼ 1, 2, prepared in a sector with nonzero
fracton charge but zero fracton charge density, should have
strictly immobile fractons, preserving forever a memory of
their initial conditions in local observables—the very
definition of MBL [3]. Moreover, this localization should
survive to nonzero energy densities (unlike Ref. [56]) since
while initializing the system with a nonzero density of
dipoles will “break” the locator expansion style arguments
of Ref. [56], it will not affect the mechanism underlying the
immobility of fractons in our analysis. The localization of
fractonic charges will also be robust to arbitrary local
perturbations—after all, it is robust to application of a
random circuit. In other words, low-dimensional fracton
systems can realize MBL even in the absence of disorder in
the Hamiltonian, and even in d ¼ 2. The obstructions to
MBL in higher dimensions and in translation-invariant
Hamiltonians [67,68] do not apply since these are essen-
tially obstructions to the construction of a convergent
locator expansion, and our argument for fracton localiza-
tion does not rely on locator expansions. Thus, by liberat-
ing the study of MBL from reliance on the crutch of locator
expansions, our work may also open a new chapter in this
field. Moreover, the localization in low-dimensional frac-
tonic systems should be even more robust than traditional
MBL since the localization mechanism we have discovered
herein is insensitive to noise whereas conventional MBL
does not survive noise [83,84].
Our work also opens up new possibilities for noisy fracton

dynamics in three spatial dimensions (where fracton physics
is best understood). Previous explorations of fracton dynam-
ics in three dimensions (e.g., Refs. [57,58]) have essentially
demonstrated the lack of convergence of “locator expansion”
type approaches to fracton dynamics at nonzero energy

densities. This lack of convergence has been interpreted in
terms of thermalization and the diffusion constant inferred
from the breakdown of the locator expansion. However, in
the present work, we have identified a new mechanism for
ergodicity breaking, which does not rely on locator expan-
sions. This mechanism reopens the possibility of a non-
ergodic long-time limit for three-dimensional fracton
systems. Prima facie, our analysis does not apply to three-
dimensional systems since our analysis relies on the return
probabilities of low-dimensional randomwalks, and in three
dimensions, random walks need not return to the origin.
However, the “dipolar” excitations in fractonic models can
frequently be “subdimensional” [33], being restricted to
move in a space of lower dimensionality. The localization of
fractonic charge is tied to the return probability of dipoles,
and the subdimensional character of dipoles in certain three-
dimensional fractonmodelsmayopen the door to nonergodic
long-time states for three-dimensional fractons. This idea,
too, is an interesting topic for future exploration.
Finally, it isworth critically examining the role of quantum

mechanics in the localization of fractons. Throughout, we
have made heavy use of the machinery of quantummechan-
ics, such as quantum states and operators. Indeed, our results
have several intrinsically quantum-mechanical features, such
as operator spreading dynamics and unusual entanglement
behavior. We have also invoked feedback between the
conserved and nonconserved operator sectors, which does
not have an obvious classical analogue. However, our
primary argument for localization, in terms of the guaranteed
return of low-dimensional random walks, may well hold at
the classical level as well. It is therefore plausible that there
may be an analogous classical phase featuring localized
charge dynamics. This phase would open the door to a new
type of purely classical localization phenomenon, in contrast
with the quantum-mechanical origin of standard MBL
phases. We leave this question as a topic for future
investigation.
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APPENDIX: LARGE S LIMIT

Here, we look at what happens to the nonergodic
phenomenon discussed in the main text for a spin-S
(S ≠ 1) chain of length L in one dimension. To extend
the above model to large S, we use generalized Gell-Mann

matrices of dimension 2Sþ 1, i.e., ðΣ1;…;ð2Sþ1Þ2−1
i Þ, along

with the ð2Sþ 1Þ × ð2Sþ 1Þ identity matrix ðΣ0
i Þ as

the ð2Sþ 1Þ2 elements of the on-site operator basis.
The on-site basis has the following normalization:
Tr½ðΣμ†

i Σν
i Þ=ð2Sþ 1Þ� ¼ δμν. We use these matrices to form

a basis of ð2Sþ 1Þ2L generalized Pauli strings S̃ ¼ Q
iΣ

μi
i .

The initially local operatorOo consists only of those strings

that are the identity at all sites except a few near the site of
initialization. With time, however, there are other basis
strings with nonlocal weight in the decomposition of the
time-evolved operator OðtÞ.
We include numerical results for S ¼ 10 and S ¼ 100

spin chains subject to random unitary evolution via three-
qudit gates. Figure 24 shows the fracton peak in the right-
weight profiles for S ¼ 10 and S ¼ 100. In Fig. 25, we
show the power-law behavior of the tails lagging behind the
front and provide numerical evidence for the −5=2 expo-
nent appearing even at large S. Finally, we plot the
integrated weight under the fracton peak as a function of
system size and see that it saturates to a finite value in the
thermodynamic limit in both cases (see Fig. 26).
Altogether, we conclude that our basic results survive as
we take the limit of large S.

FIG. 24. Right-weight profile (for a typical run) of the spreading fracton charge operator in a large S system with open boundary
conditions. (a) L ¼ 18 spin-10 chain. (b) L ¼ 15 spin-100 chain.

FIG. 25. Power-law behavior of tails lagging behind propagat-
ing fronts (for a typical run) in a large S (S ¼ 10, L ¼ 18) system
with open boundary conditions. Uncertainties in fitting param-
eters are given in the plot.

FIG. 26. Integrated weight in the fracton peak in the right-
weight profile for large S at late times (t ∼ 200).
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