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The configuration model is a standard tool for generating random graphs with a specified

degree sequence, and is often used as a null model to evaluate how much of an observed network’s

struc- ture is explained by the node degrees alone. A Markov chain Monte Carlo (MCMC) algo-

rithm, based on a degree-preserving double-edge swap, provides an asymptotic solution to sample

from the configuration model. However, accurately and efficiently detecting this Markov chain’s

convergence on its stationary distribution remains an unsolved problem. Here, we provide a solu-

tion to detect convergence and sample from the configuration model. We develop an algorithm,

based on the assortativity of the sampled graphs, for estimating the gap between effectively in-

dependent MCMC states, and a computationally efficient gap-estimation heuristic derived from

analyzing a corpus of 509 empirical networks. We provide a convergence detection method based

on the Dickey-Fuller Generalized Least Squares test, which we show is more accurate and efficient

than three alternative Markov chain convergence tests.
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Chapter 1

Introduction

In the analysis and modeling of networks, random graph models are widely used as both

a substrate for numerical experiments and as a null model or reference distribution to evaluate

whether some network statistic is typical or unusual. Given a sequence of non-negative integers

{k} whose sum is even, the configuration model aims at generating uniform random graphs with

the degree sequence {k}. Thus, the configuration model is a special kind of random graph model,

conditioned on a specified degree sequence, that allows researchers to assess the structural conse-

quences of a network’s degree structure [60, 59, 71, 64]. It is among the most widely used random

graph models in network science [56, 55, 85, 94, 87], and it provides the basis for many theoretical

results [19, 58, 83, 17].

The configuration model for networks with self-loops and multi-edges is the most well known [63].

There are, in fact, eight different configuration models, depending on whether the random graph to

be generated is vertex-labeled or stub-labeled—that is, whether or not it matters which “stub” on

a vertex i a “stub” from vertex j attaches to—and whether it is allowed to have self-loops and/or

multi-edges (Fig. 1.1). The distinction between these different flavors of the configuration model

has practical significance: Fosdick et al. [32] showed that the distribution of network statistics

in different graph spaces can differ so much that an incorrect choice of graph space can lead to

spurious or even opposite conclusions about the significance of some empirical networks’ observed

characteristics.

Sampling a graph from the configuration model is straightforward if the graph space is stub-
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labeled and allows the networks to have both self-loops and multi-edges. In this case, a simple

stub matching algorithm suffices [63], which chooses a uniform random matching of all the edge

stubs of the network, and can be run in O(m) time, where m is the number of edges. For all other

graph spaces, it is common to instead generate a network using the stub matching algorithm, and

then simply remove the self-loops or collapse the multi-edges in the generated network. As the

graph grows, such self-loops and multi-edges are a vanishing fraction of all edges when the graph is

sparse, as is usually desired. However, these modifications change the resulting network in highly

non-random ways, because high-degree nodes are more likely to participate in both self-loops and

multi-edges than are low-degree nodes. Hence, using the stub matching algorithm in this common

way violates the underlying assumptions of the configuration model, and produces non-uniform

draws from the target graph space. In other words: the stub-matching algorithm can only be

applied safely to stub-labeled graph spaces where multi-edges and self-loops are allowed.
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Figure 1.1: A small network in each of eight distinct configuration model graph spaces, correspond-
ing to all combinations of allowing (c-d, g-h) or not allowing (a-b, e-f) multi-edges, and allowing
(e-f, g-h) or not allowing (a-b, c-d) self-loops, in either a vertex-labeled space (1st and 3rd columns)
or a stub-labeled space (2nd and 4th columns).
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An alternative solution for drawing from the other seven graph spaces, including simple

graphs, is to sample them using a Markov chain Monte Carlo (MCMC) algorithm based on double-

edge swaps. Although a number of such algorithms have been defined, the Fosdick et al. MCMC [32]

is known to asymptotically converge on the target uniform distribution for each of the eight graph

spaces (with rare exceptions in graph spaces that allow self-loops but not multi-edges [65]). How-

ever, practical guidance on the time required for convergence with finite-sized networks remains

unknown.

Here, we develop an efficient and accurate convergence detection method specifically for the

Fosdick et al. double-edge swap MCMC [32] for sampling from the configuration model. This

method requires only an input degree sequence and a choice of graph space. First, we develop an

algorithm for estimating a sampling gap between MCMC states so that the sampled states are effec-

tively independent. We then apply this algorithm to a corpus of 509 real-world and semi-synthetic

networks spanning all eight graph spaces, and distill the experimental results into a simple set

of decision rules, based on empirical scaling laws, for selecting the sampling gap automatically.

We then specify a test for detecting MCMC convergence based on applying a Dickey-Fuller Gen-

eralized Least Squares (DFGLS) test to the degree assortativity values of the networks sampled

by the MCMC, and show through a series of experiments that this test is effective at detecting

convergence.

We then compare this method to several generic MCMC convergence detection methods and

show that the DFGLS method is both more accurate and more efficient when applied to real-world

networks. We also show that at the point the DFGLS method detects convergence of the sampled

graphs’ assortativity statistics, other widely-used network statistics, including clustering coefficient,

average path length, and the number of triangles and squares, have also converged.



Chapter 2

Related Work

2.1 Theoretical results for sampling from the configuration model:

The problem of sampling uniform random graphs with fixed degree sequence has been well

studied. The earliest methods for generating uniform random networks with given degrees were

based on the pairing model [7, 9] (see [97] for a brief history), which starts with a network where

no stubs are connected, and then repeatedly chooses uniformly random pairs of stubs to connect

forming an edge. If a simple graph is desired, the pairing algorithm is simply repeated until a

simple graph is obtained. This method is impractical for generating simple networks because the

probability of never choosing a stub-match that induces a multi-edge or a self-loop is vanishingly

small as the size of the graph increases. For instance, this method would require about 1010 trials

in expectation to produce one k-regular simple graph when k = 10 and the number of nodes in the

network n→∞ [7]. Algorithms for generating random graphs with specified properties, including

degree sequence, have also been studied [90, 89], along with those based on the pairing model

for sampling k-regular graphs in polynomial time when k is bounded. These include sampling

from an exactly uniform distribution when k = O(
√
log n) [96], and from asymptotically uniform

distributions when k = O(n1/3) [79], o(n1/5) [33], o(n1/11(log n)−3/11) [84], and o(n1/3) [52]. In

these algorithms, the output distribution becomes closer to uniform as n gets larger, but there is

no parameter for controlling how far the distribution is from uniform.

A significant advancement on exactly uniform generation of simple graphs with more flexible

degrees was made using a switch-based algorithm [57], which allowed sampling of exactly uniform
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random graphs in O(m+ (
∑

i k
2
i )

2) average running time, when the maximum degree kmax satisfies

the conditions k3max = O(m2/
∑

i k
2
i ) and k3max = o(m +

∑
i k

2
i ). Here m is the number of edges

in the graph and ki is the degree of node i. For k-regular graphs, this algorithm runs in O(n2k4)

average running time when k = O(n1/3). The algorithm generates random pairings from the pairing

model resulting in both self-loops and multi-edges, and then uses random switchings to remove and

add pairs of edges, reaching a simple graph in the end. Later, this algorithm was improved for

generating exactly uniform k-regular simple graphs in running time O(nk3)[34] and O(nk+ k4) [3]

for the more relaxed bound of k = o(
√
n). This method was subsequently adapted to uniformly

sample random graphs with power-law degree sequences with exponent γ ≥ 2.88 in O(n4.081) [35]

and O(n)[3] time.

More direct solutions for faster sampling of simple graphs with arbitrary degree sequence

were proposed using sequential importance sampling with a O(mkmax) running time for kmax =

O(m1/4) [6], thus improving the previous best known running time of O(m2k2max) [57]. Later, ap-

proaches for sampling general graphs were developed with a worst case running time of O(n2m) [8].

Similar methods for producing biased non-uniform samples, which are then re-weighted to compute

unbiased estimates and probabilities of the desired uniform distribution have also been proposed,

with a running time of O(nm) for simple undirected [24] and directed [51] graphs. However, there

are no practical bounds on the number of samples required to achieve any particular desired accu-

racy against the target uniform distribution [32, 103], and deriving adequate bounds on the variance

for importance sampling algorithms remains an open question [8, 5].

The first MCMC approach for sampling graphs with a given degree sequence was developed

for approximate uniform sampling of any k-regular degree sequences [47]. The Markov chain was

proved to be rapidly mixing [2, 80], taking time polynomial in n. However, because of the high

order of the polynomial, the method had limited practical significance [97]. This algorithm was

extended to certain non-regular degree sequences [47] for which the Markov chain’s mixing time

is polynomial only if the degree sequence is P-stable (see [46, 47] for details on the conditions of

P-stability). Intuitively, a degree sequence {k} is P-stable if the number of possible graphs with the
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degree sequence {k} does not change drastically when {k} is slightly perturbed [47]. Markov-chain

based methods have also been proposed to sample from almost uniform distributions, which has

been conjectured to be rapidly mixing for arbitrary degree sequence (KTV conjecture) [49] but

proved so only for the regular [49] and half-regular [30] bipartite case. Even though these Markov

chains’ mixing times are bounded by a polynomial in n, the exact asymptotic bounds are not known

and it has not been proved that the chains mix rapidly in general.

Improved Monte Carlo algorithms based on importance sampling were proposed for sampling

simple graphs with arbitrary degree sequences [82], and are especially useful in the fields of social

networks [93, 61, 43] and ecology [21, 86, 95]. These algorithms allow the use of reference models

to assess the degree to which an observed connectivity pattern would be expected, if associations

between species or individuals occurred at random. Switching-based MCMC algorithms were also

proposed for generating random (0,1)-matrices with prescribed row and column sums [70, 76]. How-

ever, these methods either do not sample from exact uniform distributions or are computationally

expensive even for small networks, e.g., n = 100 [82, 70, 76].

More recent advancements in MCMC approaches offer theoretical upper bounds on mixing

times for sampling graphs with specific types of degree distributions. For example, the mixing time

of one Markov chain for sampling k-regular graphs is polynomially bounded as O(k16n9 log(kn)) for

undirected [22], and O(k26n10 log(kn)) for directed graphs [39]. These results were then extended to

the non-regular case when 3 ≤ kmax ≤ 1/4
√
2m, with a mixing time of O(k14max(2m)10 log(2m)) [40].

In practice, this algorithm works for degree sequences that are not too far from regular. Even

though these Markov chains could almost be made to sample from an exactly uniform distribution

by running the chain sufficiently long, the proven bounds on their mixing times are too high for

any practical use. Additionally, none of these results cover the case of generic degree sequences and

hence do not apply universally.
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2.2 Practical approaches for assessing MCMC convergence:

Since the convergence rates of different MCMC algorithms on their target distributions differ

considerably, analytically estimating the mixing times for arbitrary MCMCs is not possible [88, 75,

15]. Instead, convergence can be detected in an online fashion by examining the local statistics

of the sequence of states the MCMC visits [74, 23, 14]. Such convergence tests have a common

structure: (1) a statistic calculated from each state the MCMC visits, (2) a choice of how often to

sample from the MCMC, referred to here as the sampling gap η, and (3) a statistical test to assess

when the calculated statistic has converged to its steady state, i.e., asymptotic distribution. Many

such tests have been developed for general MCMCs [36, 26, 48, 41, 54, 62, 72, 73, 100, 99, 101],

and several are included in popular Python and R packages [37, 69, 38]. However, these methods

are not designed specifically for the configuration model and, as we will show, they do not perform

well when applied to it. Detailed comparative analysis of several MCMC convergence detection

techniques have highlighted their limitations with respect to their theoretical biases and practical

implementations [13, 77, 15, 28, 81]. Relatedly, Cowles and Carlin [23] study 13 different general

convergence diagnostics and find that every method can fail to detect the type of convergence they

were designed to identify.



Chapter 3

Materials and Methods

The Markov chain Monte Carlo algorithm described by Fosdick et al. guarantees that the

resulting stationary distribution of the MCMC is uniform over graphs with the specified degree

sequence and graph space (except for a rare subset of loopy graphs without multi-edges [65]). A

graph space is chosen by specifying (1) whether self-loops are allowed or not, (2) whether multi-

edges are allowed or not, and (3) whether the graph is vertex- or stub-labeled (Fig. 1.1). In a

vertex-labeled graph, the vertices have distinct labels, while the stubs do not; whereas in a stub-

labeled graph, each stub has a distinct label and hence each vertex can be identified by the unique

set of stubs attached to it. For example, stub-labeled graph with the exact same stub-connections

as in Fig. 1.1h, except where stub p is attached to stub r, and q to s, would be distinguishable

from the stub-labeled graph in Fig. 1.1h; but they would not be distinct in a vertex-labeled space

as both would be the same graph shown in Fig. 1.1g.

A co-authorship network can be viewed as a vertex-labeled multigraph. If authors A and

B have co-authored two papers, it would be nonsensical to match author A’s first collaboration

stub with author B’s second collaboration stub or vice versa. In contrast, a network depicting an

inter-school chess tournament is best viewed as stub-labeled with each node representing a school

and stubs representing students in each school. Two students will be connected if they play a

game against each other. Hence, every possible matching of stubs represents a distinct set of games

among students, and such a network would be stub-labeled. See [32] for additional examples of

vertex-labeled and stub-labeled networks.
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Figure 3.1: (a) The degree-preserving double-edge swaps on a pair of edges {(x, y), (w, z)} results
in either {(x, y), (w, z)} → {(x, z), (w, y)} or {(x, y), (w, z)} → {(x,w), (y, z)} as shown. (b) If the
vertices x, y, w, z are not distinct, double edge swap {(x, y), (w, x)} → {(x, x), (w, y)} can introduce
a self-loop, (c) Similarly, if a third edge already exists among the vertices x, y, w, z, a double edge
swap {(x, y), (w, z)} → {(x,w), (y, z)} can introduce a multi-edge.

In the MCMC we study here for sampling from the configuration model, each step of the

chain is a degree-preserving double edge swap (Fig. 3.1a), which transitions from one graph Gt

to another graph Gt+1. At each step in the chain, we choose two edges {(x, y), (w, z)} uniformly

at random and replace them with either {(x, z), (w, y)} or {(x,w), (y, z)} with equal probability.

Hence, a double-edge swap rewires exactly two edges, while preserving the degrees of all nodes in

the graph.

In order to sample correctly from the target distribution, the space of graphs we choose

imposes restrictions on which double-edge swaps are permitted. If the graph proposed by a par-

ticular swap is outside the specified graph space, e.g., it has a self-loop (Fig. 3.1b) or a multi-edge

(Fig. 3.1c) when such connections are forbidden, or if certain other technical conditions are satisfied

(see Appendix C), then the proposed change is rejected and the current graph Gt is re-sampled,

i.e., Gt+1 = Gt. Because the Markov chain traverses a sequence of graphs where graph Gt differs

from Gt+1 by at most one double edge swap, graphs close to each other in the sequence are highly

serially correlated. Additionally, if graphs are re-sampled very often, the serial correlation in the

Markov chain is even higher. This correlation naturally decays between more distantly sampled
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points in the chain, but the distance required for the level of correlation to fall to a particular level

must grow with the size of the network, because each double-edge swap changes at most a constant

number of edges (two).

The Fosdick et al. MCMC algorithm is guaranteed to sample graphs with a given degree

sequence uniformly at random only after it has converged to its stationary distribution. Fosdick et

al. provide a proof that this convergence is achieved in the asymptotic limit of t→∞. However, in

practice, there exists some finite time t∗ at which the MCMC has effectively reached this asymptotic

state. Our goal is to detect the earliest time at which this is true.

Here, we develop a complete solution to the practical task of sampling from the configuration

model. Our solution divides this problem into three parts.

(1) We select a network-level summary statistic that quantifies a sufficiently non-trivial aspect

of a network’s structure, so that we may transform a sequence of graphs Gt, Gt+1, Gt+2,

. . . from the MCMC into a standard scalar time series xt, xt+1, xt+2,. . . .

(2) We develop an algorithm for choosing a “sampling gap” η0 for the given network such that

the values xt and xt+η0 in the MCMC are statistically independent.

(3) Using a test of stationarity on {xt}, we assess the convergence of the MCMC on its sta-

tionary distribution.

Throughout our analysis, we make extensive use of a corpus of real-world and semi-synthetic

networks drawn from social, biological, technological domains [1]. We use these networks both to

evaluate the methods we describe, and to develop a set of computationally lightweight, emperically

grounded heuristics for automatically parameterizing our solution. These networks include 103

simple graphs, 154 loopy graphs, 142 multigraphs and 110 loopy multigraphs, and range in size

from n = 16 to 30,269 nodes with a variety of edge densities and degree distributions. Real networks

with self-loops but no multi-edges and networks with multi-edges but no self-loops are relatively

rare compared to those with both or neither of them. To obtain a sufficient number of such networks
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for our numerical experiments, we add or delete self-loops from empirical networks in our corpus

to obtain semi-synthetic networks (see Sections 4.2.2 and 4.2.4).

Finally, to make the methods described here more accessible to the community, we provide

our own implementations in a Python package, which can be found here.

https://upasanadutta98.github.io/ConfigModel_MCMC/


Chapter 4

Results

4.1 Choosing the network statistic

To characterize the progression of the MCMC through a graph space, we select the degree

assortativity r of a network as the cognizant network summary statistic xt = f(Gt) . The degree

assortativity quantifies the tendency of nodes with similar degrees to be connected, and ranges over

the interval [−1, 1]. Mathematically, r is calculated as the normalized covariance of the degrees

across all the edges of the network, given by,

r =

∑
xy(Axy − kxky/2m)kxky∑

xy(kxδ(x, y)− kxky/2m)kxky
, (4.1)

where Axy is the adjacency matrix entry for nodes x and y, kx is the degree of node x, m is the

number of edges in the network, and δ(x, y) = 1 if x = y and 0 otherwise.

The degree assortativity takes the value r = 1 if the graph is composed of only cliques,

because in that case, the degree of every node is the same as that of its neighbors. An exception to

this is when all the cliques in the network are of the same order, resulting in a k-regular network,

for which the degree assortativity is undefined. The degree assortativity takes the value r = −1 if

the graph is composed only of equal-sized stars, i.e., trees with exactly one internal node and ℓ ≥ 2

leaves. In that case, the highest degree nodes of the network connect only to nodes with the lowest

degree. While it is common to expect that r = 0 in a random graph, for many graph spaces this is

not the case [32].

There are, of course, many alternative network-level summary statistics that could be used
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instead of degree assortativity, including the clustering coefficient, mean geodesic path length,

mean betweenness centrality, and many more. However, many such statistics are computationally

expensive to calculate repeatedly, for each step of the MCMC, which would limit the scalability of

a sampling algorithm. The degree assortativity admits a computationally efficient update equation

such that it can be calculated quickly after every double-edge swap of the Markov chain, allowing

an algorithm to sample longer chains and larger networks.

Suppose that a double-edge swap {(x, y), (w, z)} → {(x,w), (y, z)} is performed (Fig. 3.1a).

Using the definition of degree assortativity, its change from this swap can be written as

∆r =
(kxkw + kykz − kxky − kwkz)× 4m

(
∑

x kx ×
∑

x k
3
x)− (

∑
x k

2
x)

2
, (4.2)

(see Appendix A for derivation).

Given a fixed degree sequence, the denominator in Eq. (4.2) is a constant, and hence can

be calculated once at a cost of O(m) when the MCMC is first initialized, and stored for reference

later. The numerator only requires the degrees kx, ky, kw, kz of the four vertices involved in the

swap, and the number of edges m. Hence it takes only constant time O(1) to update r, given the

assortativity of the current graph Gt and the degrees of the nodes chosen for the double-edge swap.

Calculating the initial assortativity r0 is more expensive, but is done only once with a cost that

amortizes over the length of the chain. It can be calculated as,

r0 =
S1Sℓ − S2

2

S1S3 − S2
2

, (4.3)

where S1 =
∑

x kx, S2 =
∑

x k
2
x, S3 =

∑
x k

3
x and Sℓ =

∑
xy Axykxky = 2

∑
(x,y)∈E kxky. The

expression in Eq. (4.3) contains only O(n+m) terms and hence is substantially more efficient than

Eq. (4.1), which contains O(n2) terms [63]. Only in the case of dense networks, where m = Θ(n2),

are the two calculations equally inefficient.

The only caveat of choosing degree assortativity as the network statistic for monitoring the

progression of the MCMC over time is that it is undefined for k-regular networks. For these

networks, an alternative network statistic must be used, such as any of the ones mentioned above,

with their corresponding higher computational cost.
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initial value

stationary value

Figure 4.1: Network degree assortativity r as a function of the number of double-edge swaps s
performed in the Markov chain, for a vertex-labeled simple graph with n = 16, 062 nodes and
m = 25, 593 edges. The degree assortativity moves away from the initial value r0 = −0.098 as the
Markov chain progresses, and then converges towards a value, displaying non-trivial fluctuations
around it.

To illustrate the evolution of the degree assortativity r over the course of a Markov chain,

we apply the Fosdick et al. MCMC to a modest sized vertex-labeled simple graph with n = 16, 062

nodes and m = 25, 593 edges (Fig. 4.1). In the early part of the Markov chain, the degree assor-

tativity quickly moves away from the initial value r0 as the double-edge swaps initially randomize

the empirical correlations in the network’s structure. In general, as a Markov chain progresses, the

degree assortativity converges on some particular value, and then fluctuates around it. The key

problem that convergence detection seeks to solve is deciding when statistical excursions are suffi-

ciently random that we may declare the Markov chain to have reached its stationary distribution.

In making this decision, we note that it is better to detect convergence too late rather than too

early: a late decision merely wastes time in the form of extra steps in the Markov chain, while an

early decision results in sampling from the wrong distribution of graphs.

4.2 Choosing the sampling gap η0

By construction, the graphs that the Markov chain visits are serially correlated, as each

double-edge swap changes at most four adjacencies. The magnitude of this serial correlation must

therefore increase with the number of edges m, because it takes more steps in the Markov chain to
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randomize more edges. As the task of detecting convergence is one of deciding when the fluctuations

in the structure of the Markov chain’s states are indicative of a stationary distribution, large serial

correlations pose a significant problem by creating the appearance of non-random structure in the

chain. To generate uniform random graphs from the configuration model, the sampled states from

the MCMC must be sufficiently well separated so that they are effectively independent. To identify

the spacing between states that yields a suitable sample, we develop an algorithm based on the

autocorrelation function and statistical sampling theory, which can be applied to any network for

obtaining an appropriate sampling gap η0 between states. Given a choice of η0, a sequence of

sample states Xη0 = (xt, xt+η0 , xt+2η0 , ..., xt+(T−1)η0) would then behave as a set of T independent

draws from the MCMC’s stationary distribution.

The autocorrelation function of a time series measures the pairwise correlation of values xt

and xt+τ as a function of the lag τ that separates them (see Appendix B). We can use a test for

independence based on the autocorrelation function to determine whether a sample Xη, within

which consecutive values are η swaps apart in the Markov chain, can be considered to be composed

of independent and identically distributed (iid) draws from a stationary distribution.
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Algorithm 1 GetSamplingGap: Choosing the sampling gap η0 for a network

Input: G0 (network), C (the number of independent MCMC chains), ST (list of degree assortativ-

ity values of size T), α (significance level for each test), u (lower bound on number of MCMC

chains that have significant lag-1 autocorrelation to reject independence)

Output: The sampling gap η0 for graph G0

1: Let m be the number of edges in G0

2: Run the MCMC for 1000m swaps (burn-in)

3: Let x1 be the first degree assortativity value after the burn-in

4: η = 0

5: dη = C

6: while dη > u do

7: η = η + ⌊0.05m⌋

8: dη = 0

9: for c ∈ [1, 2, . . . , C] do

10: Construct ST s.t. for 1 ≤ i ≤ T , si= xη×(i−1)+1

11: dc = CheckAutocorrLag1(ST , α)

12: dη = dη + dc

13: return η0 = η
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Algorithm 2 CheckAutocorrLag1: Test for significant lag-1 autocorrelation

Input: ST (time series of length T), α (significance level)

Output: 1, if lag-1 autocorrelation is statistically significant, and 0 otherwise

1: Let τ be the lag at which the sample autocorrelation is calculated

2: a = Autocorrelation(ST , τ = 1)

3: µ = − 1

T
[Eq. (4.4), with τ = 1]

4: σ2 =
T 4 − 4T 3 + 3T 2 + 4T − 4

(T + 1)T 2(T − 1)2
[Eq. (4.5), with τ = 1]

5: A =
a− µ

σ

6: z = (1− α)th quantile of N(0, 1).

7: if A > z then

8: return 1

9: else

10: return 0

The goal is then to find the smallest value η0 for which the sampled values in Xη will behave

like iid draws from a stationary distribution. In a sample of T iid values, the autocorrelation values

aτ for any lag τ > 0 follow a normal distribution with mean

µ(aτ ) = −
(T − τ)

T (T − 1)
, (4.4)

and variance

σ2(aτ ) =
T 4 − (τ + 3)T 3 + 3τT 2 + 2τ(τ + 1)T − 4τ2

(T + 1)T 2(T − 1)2
, (4.5)

for 1 ≤ τ ≤ T − 1 [27]. Hence, to assess if Xη comprises uniform random draws from a station-

ary distribution (null hypothesis), we apply a hypothesis test that assesses the normality of the

autocorrelation value of Xη at τ = 1. We are particularly interested in the autocorrelation at lag

τ = 1 because each state in the MCMC is likely to be most correlated with the state immediately

prior to it. For a sampling gap η, if the τ = 1 autocorrelation of the sample Xη is not statistically
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significant, the consecutive degree assortativity values in Xη are effectively independent, and a

sampling gap of η is sufficient for drawing statistically uncorrelated states from the Markov chain.

The hypothesis test in this case is one-sided (upper-tailed) since a state in the MCMC will always

be positively correlated with the state exactly prior to it (except in pathological cases). The critical

values for testing the statistical significance of the lag-1 autocorrelation is obtained from the mean

and variance provided in Eq. (4.4) and Eq. (4.5) respectively (Algorithm 2).

To initialise the algorithm (Algorithm 1), the MCMC is first run for 1000m swaps. This

“burn-in” period ensures that in expectation, every edge has been proposed for a swap 2000 times,

which we take as a reasonable degree of randomization before samples are taken for any experiment.

After the burn-in period, for each choice of sampling gap η, the algorithm creates C sequences from

C independent Markov chains. Each sequence is a list of the form ST = [s1, s2, s3, . . . , sT ], where

si = xη(i−1)+1 for 1 ≤ i ≤ T . We perform hypothesis tests on C independent chains because a single

Markov chain’s trajectory may not be representative of the structure of the entire graph space.

The number of chains dη for which a statistically significant τ = 1 autocorrelation is detected

will tend to decrease with increasing sampling gap η. To account for multiple testing, we reject

the null hypothesis of independence for the given sampling gap η if u or more of the tests are

statistically significant, where u is selected to control the family-wise error rate. The first value of

η at which dη ≤ u is returned as the effective choice of sampling gap η0 for the network. The upper

bound u is chosen based on the number of Markov chains C, the significance level α of each test,

and the desired family-wise Type-I error. In our experiments, to obtain a family-wise Type-I error

rate of about 5% (5.8%), we choose C = 10, T = 500, α = 0.04, and u = 1. This allows our method

to detect a τ = 1 autocorrelation of 0.1 with 99.9% power (see power-analysis in Appendix B).

Although for above sampling gap estimation algorithm can be applied to choose an appro-

priate value for η0, the procedure itself is computationally expensive. To avoid this cost, we now

develop a set of efficient heuristics and decision criteria using our corpus of empirical networks by

which to automatically choose η0 for a network, given the fixed degree sequence and the choice of

the graph space.
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Figure 4.2: Space specific estimated sampling gap of networks for stub-labelled (a) simple graphs,
(b) loopy graphs, (c) loopy multigraphs, (d) multigraphs, and vertex-labeled (e) simple graphs, (f)
loopy graphs, (g) loopy multigraphs, and (h) multigraphs. The sampling gap η0 of the networks
that satisfy the density criterion (ρ < 0.134) in simple (a,e) and loopy (b,f) graph spaces, and
the maximum degree criterion (maxi k

2
i ≤ 2m/3) in the vertex-labeled loopy multigraph (g) and

multigraph (h) spaces are shown as red circles, while the ones that do not satisfy these criteria,
respectively, are shown in gray. Two networks in (a-b, e-f), 11 in (g) and 16 in (h) are not shown
since they fall far above our proposed upper bound and are off the plot.

4.2.1 Simple graphs

For simple networks, the Markov chain’s transition probabilities are the same for both stub-

labeled and vertex-labeled spaces (see Appendix C.1). Hence, the sampling gaps that Algorithm 1

estimates for a simple network will be the same, in either the vertex-labeled and the stub-labeled

spaces.

We begin by running the sampling gap algorithm on each of the 103 simple networks in our

corpus. The estimated sampling gap η0 of the majority (86.4%) of the networks satisfy an upper

bound η0 = 2m (Fig. 4.2a,e). For the remaining networks (13.6%), the estimated sampling gap η0

(gray circles in Fig. 4.2a,e) is much larger than what this simple heuristic upper bound predicts.

The reason the MCMC produces these unusually large η0 estimates stems from the networks’ high

density and the Markov chain’s boundary enforcement criterion for simple graphs: if the Markov

chain proposes a double-edge swap that would create a self-loop or a multi-edge, thereby exiting the

specified graph space, the algorithm rejects this change and re-samples its current state. Repeated

re-sampling extends the time needed for the serial correlation to decay.
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Let ρ be the network density (for simple graphs ρ = ⟨k⟩/n−1 and for loopy graphs ρ = ⟨k⟩/n,

where ⟨k⟩ is the mean degree). Suppose two edges (x, y) and (w, z) are chosen uniformly at random

for a double-edge swap. We define two edges in a network to be adjacent to each other if they

have exactly one common endpoint, implying that only 3 of the 4 vertices they are incident on are

distinct. The probability q that two edges chosen uniformly at random from a network are not

adjacent to each other is given by

q = 1− Σik
2
i − 2m

m2 −m
. (4.6)

Next, the two kinds of edge swaps (Fig. 3.1a) that can take place occur with equal probability. In

both the cases, the probability of rejecting the swap due to the creation of a multi-edge is governed

by the likelihood that an edge already exists where the swap proposes to place one.

Thus, the probability of rejecting a proposed swap due to the creation of a multi-edge is given

by

Pr
(
rejection due to multi-edge

)
= q ×

[
1

2
Pr

(
multi-edge

∣∣{(x, y), (w, z)} → {(x, z), (w, y)})
+

1

2
Pr

(
multi-edge

∣∣{(x, y), (w, z)} → {(x,w), (y, z)})]

= q ×
[
1

2
Pr

(
at least one of (x, z) and (w, y) exists

)
+

1

2
Pr

(
at least one of (x,w) and (y, z) exists

)]

≈ q

2

(
1− (1− ρ)2

)
+

q

2

(
1− (1− ρ)2

)
≈ q × (2ρ− ρ2)

≈ 2ρ− ρ2 , (4.7)

where the probability of an edge existing between two randomly chosen nodes is approximated

as the edge density of the network, ρ. For all 103 simple networks in our corpus we find q ≈ 1

(see Appendix D Fig. D.1a), meaning that the probability that two randomly chosen edges are
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non-adjacent to each other is approximately 1. This fact implies that the probability of rejecting

a double-edge swap because it would introduce a multi-edge is approximately 2ρ − ρ2. We refer

to the simplified expression of 2ρ − ρ2 = ω as the “density factor” of a network, which gives a

simple density-based estimate of Pr(rejection due to multi-edge) in a graph space that does not

allow multi-edges. A more precise estimate would exploit the moment structure of the degree

distribution, but such a formula is not necessary for our purposes.

It can also be shown that the probability of rejecting a swap because it would introduce a

self-loop (see Appendix D) is (1 − q)/2 ≈ 0, because q ≈ 1. This fact implies that, the sampling

behaviour of the Markov chain is governed more strongly by the rejection rate due to forming

multi-edges than from forming self-loops (see Appendix D Fig. D.1b), and this rate is governed by

the network’s density.

In our corpus of 103 simple networks, the vast majority (86.4%) have a density factor ω < 0.25,

six (5.8%) have 0.25 ≤ ω ≤ 0.5, five (4.9%) have 0.5 < ω ≤ 0.75 and the remaining four (3.9%)

have ω > 0.75. These frequencies reflect the fact that real-world networks with very high density

typically occur only rarely [12], unless the network is especially small. Across our simple network

corpus, we find that networks with a density factor ω < 0.25 yield sampling gap estimates that scale

linearly with the number of edges m, while networks with a higher density are more likely to yield

anomalously high sampling gaps. We use this observation to divide networks into two categories,

based on their calculated densities ρ. If a network’s density ρ ≥ 0.134, the sampling gap should be

estimated via the algorithm described above (Algorithm 1); otherwise, a reasonable sampling gap

is simply η0 = 2m. Note that this provides an upper bound on the estimated gaps of nearly all the

empirical networks (Fig. 4.2 a,e). There are four networks (4.5%) that satisfy the network density

criterion (ρ < 0.134) and yet their estimated sampling gap is on average 1.09 and 1.12 times our

recommended upper upper bound η0 = 2m in the stub and vertex-labeled spaces, respectively.
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4.2.2 Loopy graphs

Real-world “loopy” networks, meaning networks with self-loops but no multi-edges, are un-

common. We construct a reasonable empirical corpus of 154 loopy graphs by obtaining 51 such

networks from public repositories [1] and generating an additional 103 loopy graphs by adding self-

loops to our previous corpus of simple networks. To convert a simple network into a loopy network,

we first measured the fraction of nodes with a self-loop in both our corpus of 110 real-world loopy

multigraphs and the 51 real-world loopy graphs to obtain an empirical distribution of loopiness.

We note that this loopiness distribution is strongly bimodal: 44% have at most 5% of nodes with

self-loops, while 39.1% have at least 95% of nodes with self-loops. For each simple graph in our

corpus, we then chose a random fraction from this empirical loopiness distribution and added a

self-loop to each node with the corresponding probability.

Although the MCMC algorithm proposed by Fosdick et al. correctly samples graphs with

fixed degree sequence post convergence, there are certain technical conditions [65] that the degree

sequence must satisfy for this to hold true in a loopy graph space in order for the double-edge swap

algorithm to be able to reach every valid loopy graph with the given degree sequence. Only a rare

set of loopy graphs fail to satisfy the required conditions, and in our corpus of loopy graphs, all the

154 networks’ degree sequences met them. If a network fails to meet the required conditions, the

Nishimura MCMC must instead be used [65], which augments double-edge swaps with triangle-loop

swaps, rather than the Fosdick et al. MCMC used here.

For our loopy network corpus, we repeat our analysis by first running the sampling gap

algorithm on each network in our loopy corpus. We note that because multi-edges are not permitted

in the loopy space, the density criterion ρ < 0.134 has the same relevance here as it does with simple

graphs. In our loopy corpus of 154 networks, 140 (90.9%) networks have a density ρ < 0.134, and

the same scaling law of η0 = 2m is an upper bound in both stub- and vertex-labeled spaces (see

Appendix C.2) on nearly all estimated sampling gap values for these networks (Fig. 4.2b,f). Of

the 140 loopy networks that have ρ < 0.134, there are three (2.1%) and six (4.2%) in the stub and
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vertex-labeled spaces for which the estimated sampling gaps are on average 1.06 and 1.08 times our

proposed upper bound η0 = 2m, respectively.

4.2.3 Loopy multigraphs

For stub-labeled loopy multigraphs, it is common to directly construct networks with a fixed

degree sequence by choosing a uniformly random matching on the set of edge “stubs” given by

that sequence [63, 8]. This algorithm is computationally cheap, running in O(m) time, compared

to an MCMC approach. However, stub matching cannot be used to correctly sample from the

vertex-labeled loopy multigraph space. In that case, we instead use the Fosdick et al. MCMC. For

completeness, we analyze the MCMC’s behavior in both the stub-labeled and vertex-labeled loopy

multigraph settings.

In the loopy multigraph space, the Markov chain’s transition probabilities in the stub-labeled

and vertex-labeled spaces are different. In the stub-labeled case, the Markov chain never re-samples

a state, while in the vertex-labeled space, some transitions are forbidden meaning the Markov chain

may re-sample some states often (see Appendix C.3). As a result, the sampling gap in the vertex-

labeled space is typically greater than in the stub-labeled space.

We investigate these differences by running the sampling gap algorithm on our corpus of

110 real-world loppy multigraphs (Fig. 4.2c,g). We find that the estimated sampling gap tends

to be marginally higher for vertex-labeled graphs. However, for 42 of 110 vertex-labeled loopy

multigraphs, the estimated sampling gap (gray circles in Fig. 4.2g) is much higher than the simple

heuristic η0 = 2.3m that fits the majority of empirical networks in this graph space. This behaviour

for these networks can be understood by considering how the edge multiplicities of a network and

its degree distribution influence the MCMC’s dynamics.

In the vertex-labeled space, the likelihood of a swap being rejected is directly proportional

to the multiplicity of the edges chosen for the swap (Appendix C.3). If some nodes of the network

have very high degrees, the networks in the Markov chain can develop high edge-multiplicities over

time, which increases the probability that a swap is rejected, leading to a ∆r = 0 swap. A second
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issue arises when two edges of the network (x, y) and (w, z) share exactly one common endpoint. If

a double edge swap proposes the change {(x, y), (w, z)} → {(x,w), (y, z)}, then in expectation half

the time the degree assortativity will remain unchanged after the swap, i.e., ∆r = 0. Because these

edges are chosen uniformly at random, the higher the degree of a node, the greater the probability

of that node appearing twice in the group (x, y, w, z). Regardless of the source, the more ∆r = 0

steps that occur, the greater the serial correlation in the chain, and the greater the sampling gap

required to obtain independent samples from the Markov chain.

To construct a heuristic that can efficiently decide when a graph is likely to produce such

undesirable effects in the Markov chain, we draw on a related insight from Chung-Lu random

graphs, which are a vertex-labeled model of simple graphs that constraints the network’s maximum

degree. For Chung-Lu graphs, this constraint limits the likelihood of producing a network with

multi-edges, and has a form maxi k
2
i ≤ 2m [20]. In our setting, it provides the basis for a simple

heuristic to decide whether a degree distribution is sufficiently right-skewed that it would generate

overly correlated states in the Markov chain in the vertex-labeled space. We find that every loopy

multigraph in our corpus that exceeds a maximum degree criterion of maxi k
2
i ≤ 2m/3 does indeed

require an unusually large sampling gap in the vertex-labeled space (gray circles in Fig. 4.2g).

In contrast, networks that fall below this threshold produce sampling gaps that exhibit the same

linear relationship with m observed in all graph spaces, and a scaling law of η0 = 2.3m produces a

conservative upper bound (Fig. 4.2g). In general, if a network exceeds a maximum degree criterion

of maxi k
2
i ≤ 2m/3, the sampling gap η0 in the vertex-labeled space should be estimated using the

sampling gap algorithm (Algorithm 1).

In the stub-labeled case, the corresponding scaling law obtained from all the 110 loopy multi-

graphs is η0 = 2m (Fig. 4.2c). None of the networks in the stub-labeled space have η0 higher than

this proposed upper bound.
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4.2.4 Multigraphs

Real world networks with multi-edges but no self-loops are also uncommon. We construct

an empirical corpus of 142 such networks by obtaining 32 of them from public repositories and

generating 110 multigraph networks by removing the self-loops of our loopy multigraphs.

As with loopy multigraphs, the network’s degree distribution and whether the space is stub-

labeled or vertex-labeled govern the choice of sampling gap η0 (see Appendix C.4). Repeating

our analysis on this corpus of 142 multigraphs, we find that the estimated sampling gaps of the

networks in the stub- and vertex-labeled spaces (Fig. 4.2d,h) exhibit similar patterns to the loopy

multigraph spaces. These results corroborate the fact that the probability of a double-edge swap

rejection due to self-loops (Eq. (4.6)) in negligible, as reflected by the similarity of the Markov

chain’s behaviour in the multigraph and the loopy multigraph spaces. The scaling laws of η0 = 2m

for loopy multigraphs in the stub-labeled space, and of η0 = 2.3m for loopy multigraphs in the

vertex-labeled space that satisfy the maximum degree criterion maxi k
2
i ≤ 2m/3 provide good

upper bound on the estimated sampling gaps. Only one network (0.7%) in the stub-labeled space

has an estimated sampling gap 1.02 times our upper bound of η0 = 2m, and two in the vertex-

labeled space that satisfy the maximum degree criterion (2.5%) have an estimated sampling gap

1.07 our upper bound of η0 = 2.3m.

4.3 Choosing the sampling gap efficiently

Although a suitable sampling gap η0 can be estimated using Algorithm 1 for any graph space

and degree sequence, our numerical experiments show that in many cases, a sufficient gap may be

chosen more efficiently using a simple scaling law in the number of edges in the network (Fig. 4.2).

There are some conditions on applying these scaling laws in practice, depending on the particular

graph space and certain structural properties of the network. In some cases, it is still be necessary

to choose η0 via Algorithm 1.

The decision tree in Fig. 4.3 organizes the insights, conditions, and scaling laws obtained from



26

Graph space No

Yes

Run Sampling gap 
algorithm

Stub-labeled?

Yes

No

Yes

No No

Yes
Run Sampling gap 

algorithm

Allow
multi-edges?

Network 
density

Maximum 
degree

Run
stub-matching 

algorithm

Allow
self-loops?

Yes

No

Stub-labeled?
No

Yes

 

G

<latexit sha1_base64="QKW2a93YTNU1Az5hEjEhKJIHWew=">AAAB8XicbVDLSgMxFM3UV62vqks3wSK4KjNFUHcFF7qSCvaB7VAy6W0bmskMyR2xDP0LNy4UcevfuPNvTNtZaOuBwOGce8i9J4ilMOi6305uZXVtfSO/Wdja3tndK+4fNEyUaA51HslItwJmQAoFdRQooRVrYGEgoRmMrqZ+8xG0EZG6x3EMfsgGSvQFZ2ilhw7Ck02l15NuseSW3RnoMvEyUiIZat3iV6cX8SQEhVwyY9qeG6OfMo2CS5gUOomBmPERG0DbUsVCMH4623hCT6zSo/1I26eQztTfiZSFxozDwE6GDIdm0ZuK/3ntBPsXfipUnCAoPv+on0iKEZ2eT3tCA0c5toRxLeyulA+ZZhxtSQVbgrd48jJpVMreWfnyrlKq3mZ15MkROSanxCPnpEpuSI3UCSeKPJNX8uYY58V5dz7mozknyxySP3A+fwADXZEx</latexit>

⇢ � 0.134?

<latexit sha1_base64="9agbbldBPVcY6l+v4Al/4XfgpRo=">AAAB+3icbVDLSsNAFJ34rPUV69LNYCu4CkktqCsLblxJBfuAJpTJdNIOnczEmYlYQn/FjQtF3Poj7vwbp20W2nrgwuGce7n3njBhVGnX/bZWVtfWNzYLW8Xtnd29ffug1FIilZg0sWBCdkKkCKOcNDXVjHQSSVAcMtIOR9dTv/1IpKKC3+txQoIYDTiNKEbaSD27VPHlUEB/QB6g63hntatKzy67jjsDXCZeTsogR6Nnf/l9gdOYcI0ZUqrruYkOMiQ1xYxMin6qSILwCA1I11COYqKCbHb7BJ4YpQ8jIU1xDWfq74kMxUqN49B0xkgP1aI3Ff/zuqmOLoKM8iTVhOP5oihlUAs4DQL2qSRYs7EhCEtqboV4iCTC2sRVNCF4iy8vk1bV8WrO5V21XL/N4yiAI3AMToEHzkEd3IAGaAIMnsAzeAVv1sR6sd6tj3nripXPHII/sD5/AOAbknA=</latexit>

maxi k2
i >

2m

3
?

<latexit sha1_base64="/ZjYCQMbtZLBq6XgoNoU2lBLdQQ=">AAACE3icbVDLSsNAFJ34rPUVdelmsBXERUmqoG604MaVVLAPaGKYTCft0JkkzEzEEPoPbvwVNy4UcevGnX/jtM1CWw9cOJxzL/fe48eMSmVZ38bc/MLi0nJhpbi6tr6xaW5tN2WUCEwaOGKRaPtIEkZD0lBUMdKOBUHcZ6TlDy5HfuueCEmj8FalMXE56oU0oBgpLXnmYdnh6MGjA4/eVeE5dLpUxgylUqWMOIFAOKvyYXY0LF94ZsmqWGPAWWLnpARy1D3zy+lGOOEkVJghKTu2FSs3Q0JRzMiw6CSSxAgPUI90NA0RJ9LNxj8N4b5WujCIhK5QwbH6eyJDXMqU+7qTI9WX095I/M/rJCo4dTMaxokiIZ4sChIGVQRHAcEuFQQrlmqCsKD6Voj7SAehdIxFHYI9/fIsaVYr9nHl7KZaql3ncRTALtgDB8AGJ6AGrkAdNAAGj+AZvII348l4Md6Nj0nrnJHP7IA/MD5/AD72ndQ=</latexit>

(max degree
is too high)

Allow 
self-loops?

No

Yes

Satisfies 
Nishimura 
criterion?

Yes

No

Run 
Nishimura
 MCMC

(graph density
is too high)

Sampling gap

Sampling gap

⌘0 = 2.3m

<latexit sha1_base64="5E+YbtVOT7iEnXETUWnqp8i3eZk=">AAAB+HicbVBNS8NAEN34WetHox69LLaCp5BUQT0IBS+epIL9gDaEzXbTLt1swu5EqKW/xIsHRbz6U7z5b9y2OWjrg4HHezPMzAtTwTW47re1srq2vrFZ2Cpu7+zulez9g6ZOMkVZgyYiUe2QaCa4ZA3gIFg7VYzEoWCtcHgz9VuPTGmeyAcYpcyPSV/yiFMCRgrsUqXLgAQuvsZV5yyuBHbZddwZ8DLxclJGOeqB/dXtJTSLmQQqiNYdz03BHxMFnAo2KXYzzVJCh6TPOoZKEjPtj2eHT/CJUXo4SpQpCXim/p4Yk1jrURyazpjAQC96U/E/r5NBdOmPuUwzYJLOF0WZwJDgaQq4xxWjIEaGEKq4uRXTAVGEgsmqaELwFl9eJs2q4507V/fVcu0uj6OAjtAxOkUeukA1dIvqqIEoytAzekVv1pP1Yr1bH/PWFSufOUR/YH3+AMFIkUE=</latexit>

⌘0 = 2m

<latexit sha1_base64="oY5A4LCHLIt0qFcNc4+v9O61AYg=">AAAB9HicbVBNSwMxEM3Wr1q/qh69BFvBU9ktgnoQCl48SQX7Ae1SsulsG5pk1yRbKEt/hxcPinj1x3jz35i2e9DWBwOP92aYmRfEnGnjut9Obm19Y3Mrv13Y2d3bPygeHjV1lCgKDRrxSLUDooEzCQ3DDId2rICIgEMrGN3O/NYYlGaRfDSTGHxBBpKFjBJjJb/cBUN6Lr7BVVHuFUtuxZ0DrxIvIyWUod4rfnX7EU0ESEM50brjubHxU6IMoxymhW6iISZ0RAbQsVQSAdpP50dP8ZlV+jiMlC1p8Fz9PZESofVEBLZTEDPUy95M/M/rJCa88lMm48SApItFYcKxifAsAdxnCqjhE0sIVczeiumQKEKNzalgQ/CWX14lzWrFu6hcP1RLtfssjjw6QafoHHnoEtXQHaqjBqLoCT2jV/TmjJ0X5935WLTmnGzmGP2B8/kDZaaQmw==</latexit>

Figure 4.3: Decision tree of the space specific sampling gaps given by our heuristic, depending on
the satisfiability of various constraints (see text). In the loopy graph space, when the Nishimura
criterion [65] is not satisfied, the Nishimura MCMC should be used instead of the Fosdick et al.
MCMC. Similarly, for stub-labeled loopy multigraphs the stub-matching algorithm should be used.

our numerical experiments into a simple and efficient heuristic for choosing the sampling gap η0,

depending on the network’s properties and specified graph space. In cases where a network satisfies

the constraints for which a scaling law can be used, we can choose η0 directly. For instance, for each

of the 89 networks in our simple network corpus that satisfy the density criterion (ρ < 0.134), we

can immediately choose their sampling gap as η0 = 2m, rather than running Algorithm 1, saving

substantial substantial computational time, ranging from a few seconds (n = 64,m = 243) to about

30 minutes (n = 16, 840,m = 48, 232) for the largest network in the corpus.

4.4 Convergence detection

In probability theory, the mixing time of a Markov chain is the number of steps the chain

needs to run before its distance from stationarity is small [53]. For practical purposes, the mixing

time of a Markov chain often determines the run-time of the process that uses the Markov chain for

sampling purposes. Detecting convergence is the practical task of deciding when a Markov chain
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has run sufficiently long to be well mixed.

4.4.1 Designing the convergence method

We now specify a convergence test for the Fosdick et al. MCMC. This test uses the Dickey

Fuller-Generalised Least Squares (DFGLS) test [29] to assesses whether a sequence of states from

the MCMC, represented as a sequence of degree assortativity values, possesses a unit root, against

the alternative of stationarity. A time-series is called stationary when the statistical properties of

the series, such as the mean, variance and the covariance, are independent of time. The DFGLS

test first transforms the time-series via a generalised least square regression and then performs the

Augmented Dickey Fuller (ADF) test [25] to test for stationarity. The DFGLS test has been shown

to have greater statistical power than the ADF test [29]. We use the presence of stationarity in the

Markov chain as an evidence that the Markov chain has converged on its equilibrium.

To perform this test of convergence, we first populate a list of degree assortativity values for

a sequence of graphs sampled by the Markov chain, starting with the original network. We then

perform the DFGLS test on the sampled list. The test determines whether the properties of the

process generating the degree assortativities is changing over time. If the test does not reject the

null-hypothesis of non-stationarity, we discard the contents of the list and “slide” it forward, sample

new degree assortativity values from the Markov chain to populate the list afresh, and then test

again. We repeat this process of slide, repopulate, and test, until the DFGLS test rejects the null

hypothesis of non-stationarity, which we interpret as an indicator that the MCMC has converged to

its stationary distribution. We choose the length of this list, which we denote as the window-size,

to be the sampling gap of the network. We choose the window-size to equal the sampling gap of

the network because the sampling gap is proportional to the rate at which the MCMC states are

re-sampled in the chain. The higher the number of swaps rejected in the MCMC, the larger the

sampling gap of the network. For networks with a high rate of re-sampling, and hence a low rate

of change of network structure over time, assessing only a narrow window of degree assortativity

values might result in an incorrect test outcome. Hence, using the sampling gap of the network
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Figure 4.4: Network degree assortativity r as a function of the number of double-edge swaps, s
performed in the Markov chain, for (a) a stub-labeled simple graph with n = 2642 nodes and
m = 3303 edges, and (b) a vertex-labeled loopy multigraph graph with n = 2837 nodes and
m = 11, 407 edges. The vertical red line indicates the point at which our diagnostic detects
convergence.

as the window size of the DFGLS test ensures that the number of states used to assess whether

convergence has been reached is specific to both the structure of the network and the sampling

behaviour of the MCMC in the relevant graph space. Once convergence is detected by the DFGLS

test, every η0 steps beyond the point of convergence provides an iid draw from the configuration

model.

To illustrate this procedure, Fig. 4.4 shows the convergence detected by our test for a simple

network in the stub-labeled space with n = 2642 nodes and m = 3303 edges, and for a loopy

multigraph in the vertex-labeled space with n = 2837 nodes and m = 11, 407 edges. For these two

networks, the method described here takes about 30 seconds and about three minutes, respectively,

to generate 1000 samples from the configuration model on a modern laptop.
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Figure 4.5: Null distributions obtained after increasing numbers of double edge swaps are applied to
a simple network with n = 1589 nodes and m = 2742 edges in the vertex-labeled space, validating
the correctness of our convergence detection method. We find similar results for the other graph
spaces.

4.4.2 Validating our method

If this convergence detection method works as desired, the distribution of assortativity values

after convergence is detected should be stationary, meaning that running the Markov chain longer

should not alter the sampled assortativity distribution (Fig. 4.5). To assess this behavior, we

tabulate the assortativity distributions of 500 states sampled after m/8, after m/4, and after

m/2 steps, and then again at convergence and after 1000m steps, a point sufficiently deep in the

chain that we assume it represents the converged distribution. The 1000m distribution provides a

comparison against distributions sampled earlier in the Markov chain.

As a first test, we apply this assessment to a simple vertex-labeled network with n = 1589

nodes and m = 2742 edges. Fig. 4.5 shows these five sampled distributions, along with the assor-

tativity coefficient for the original empirical network, which is the initial condition of the Markov

chain. In the pre-convergence phase, as the MCMC walk lengthens from m/8, to m/4, and then to

m/2 steps, the assortativity distribution for the sampled networks moves progressively further away

from the empirical value of the initial network. This non-stationary behaviour indicates a steady
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decorrelation of the Markov chain relative to its initial state, as double-edge swaps progressively

randomize the network’s structure. Once convergence is detected, this non-stationary behavior is

no longer present. Instead the difference between the assortativity distribution at convergence,

and well beyond it, is negligible, suggesting the test of convergence correctly detected the Markov

chain’s convergence on the target uniform distribution.

To formally quantify the correctness of this convergence test in detecting the convergence of

the MCMC on its stationary distribution, we measure its accuracy on all 509 networks across all

the eight graph spaces. For each network in a given graph space, we first obtain a distribution of

degree assortativity values at the time of convergence detection by detecting convergence on 200

independent runs of the MCMC, taking one sample from each chain at the point of convergence.

We also obtain a distribution of 200 degree assortativity values from 200 independent chains after

each chain has been run for 1000m swaps (well beyond convergence). We then perform a standard

two-sample Kolmogorov-Smirnov (KS) test, with a significance level of α = 0.05, between the

assortativity distribution at the time of convergence and after 1000m swaps.

If there are D networks in a given graph space, we reject the null hypothesis of no early

convergence detection by our method in the given graph space if more than u of the D KS tests

are statistically significant. The family-wise Type-I error rate for D KS tests is given by

αf = 1− FD,α(u) , (4.8)

where FD,α is the cumulative distribution function of the binomial distribution Bi(D,α). Since D =

103, 154, 110, and 142, for the simple, loopy, loopy multigraph and multigraph spaces, respectively,

we choose u = 8, 12, 9, 11 such that the family-wise Type-I error for D KS tests is about 5%; this

choice yields rates of 7.3%, 4.6%, 4.9%, and 5.3%, respectively.

Fig. 4.6 shows the proportion of networks in each graph space for which the null-hypothesis

of the KS test is rejected, as well as the critical threshold computed as (u + 1)/D for each graph

space. Any rejection rate below the critical threshold indicates that our method did not detect

convergence too early. Because we obtain rejection rates below the critical threshold in each of
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Figure 4.6: Proportion of networks in each graph space for which the KS-test between the distri-
bution of degree assortativity values when convergence is detected and that after 1000m swaps is
statistically significant. The critical threshold of this proportion is chosen such that the family-wise
Type-I error is 7.3%, 4.6%, 4.9%, and 5.3% in the simple, loopy, loopy multigraph, and multigraph
space, respectively.

the eight graph spaces (Fig. 4.6), we conclude that our convergence detection method accurately

detects when the MCMC has reached its stationary distribution in each of the eight graph spaces.

4.4.3 Comparing convergence tests

Detecting convergence in a Markov chain Monte Carlo algorithm is a common and non-

trivial statistical problem, especially for scalar time series. Many techniques exist. Although the

underlying states in the double-edge swap Markov chain are networks, our approach for detecting

convergence converts this graph sequence into a sequence of scalar values. Here, we compare the

method described above with three commonly used scalar time series convergence tests: (i) the

Geweke diagnostic [38], (ii) the Gelman-Rubin diagnostic [37] and (iii) the Raftery-Lewis diagnos-

tic [69] (each of these methods is available via libraries in Python [31] and R [68]).

A crucial consideration when selecting a convergence test is whether the Markov chain in
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question satisfies the particular test’s underlying requirements and assumptions [23]. Each of these

three alternative tests make assumptions that may not hold for the configuration model. For

instance, the Geweke diagnostic assumes that the Geweke statistic derived from the sampled states

will be distributed as a standard normal variable in the asymptotic limit (see Appendix E.1).

The Gelman-Rubin diagnostic assumes that the MCMC’s stationary distribution of the scalar

is normally distributed, and it requires more than one Markov chain to be initialized at highly

dispersed initial states in the sample space (see Appendix E.2). And finally, the Raftery-Lewis

diagnostic depends on a quantile; in some cases, the estimated convergence rate may fall far below

the rate required of the full Markov chain [16] (see Appendix E.3).

We evaluate the performance of the four convergence tests according to their accuracy and

efficiency. First, we say that a test is accurate if the degree assortativity values at the time that

the test detects convergence and the corresponding values at 1000m steps into the Markov chain

are from the same distribution (i.e., a two-sample KS test is not statistically significant). Second,

we say that a test is more efficient than other tests if it detects convergence with fewer double-edge

swaps compared to the others. An ideal convergence test will perform well on both accuracy and

efficiency measures. An efficient but inaccurate test would allow relatively fewer double-edge swaps,

but would tend to declare convergence too early, producing a distribution of assortativity values

that differs substantially from the target distribution. In contrast, an inefficient but accurate test

would run a very long Markov chain and declare convergence long after the stationary distribution

had been reached. In practice, if an ideal test is not available, the latter deviation is preferable to

the former.

We apply the four tests to each network in our corpus using a window size equal to the

sampling gap of the network. As before, we measure a test’s accuracy by performing a KS test,

with α = 0.05, and record whether the proportion of networks for which the KS test is statistically

significant is within the critical threshold or not. To measure a test’s efficiency, we record the

number of steps in the Markov chain (averaged over 200 independent MCMC runs) before each

test detects convergence.
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(b)

(a)

Figure 4.7: (a) The rate of early convergence (inversely proportional to accuracy), and (b) the
average number of swaps applied before convergence is detected (inversely proportional to efficiency)
by the four convergence diagnostics across all eight graph spaces.

Fig. 4.7 shows the rate of early convergence (inversely proportional to accuracy) and the

average double-edge swaps s̄ applied before convergence is detected (inversely proportional to effi-

ciency) across all networks in the corpus, in all eight graph spaces. In terms of accuracy (Fig. 4.7a),

the DFGLS test performs well along with the Geweke diagnostic: both tests have rates of early

convergence less than the critical bounds across all spaces. In contrast, the Gelman-Rubin diag-

nostic exhibits a rate of early convergence greater than or equal to the critical threshold in two of

the eight graph spaces (stub-labeled simple and vertex-labeled multigraph spaces), indicating that

in these spaces, it detects convergence before the MCMC has entered its stationary distribution.
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The Raftery-Lewis diagnostic performs poorly in general (> 90% rate of early convergence).

In terms of efficiency (Fig. 4.7b), the Geweke test is substantially less efficient than the other

tests. In fact, in the vertex-labeled multigraph and loopy multigraph spaces, the Geweke test uses

on average more than twice as many swaps than the DFGLS test to detect convergence.

Across both experiments, the DFGLS test exhibits high accuracy and high efficiency, while

other techniques tend to perform either slightly or dramatically worse on one or both dimensions.

Of the three, the Geweke diagnostic performs most similarly, exhibiting equivalent accuracy, but

with far less efficiency (Fig. 4.7b).

4.4.4 Mixing time across graph spaces

To estimate the mixing time of the Fosdick et al. MCMC [32], we record the number of steps

the MCMC runs on average before convergence is detected by our method for each network in our

corpus, across the eight graph spaces (Fig. 4.8).

We note that the convergence times of the networks that fail to satisfy the density criterion

(ρ < 0.134) in the simple and the loopy graph spaces are much larger than the ones that meet

the criterion (Fig. 4.8 a, b, e, f). Similarly, in the vertex-labeled multigraph and loopy multigraph

spaces, the convergence times of the networks that fail to satisfy the maximum degree criterion

(maxi k
2
i ≤ 2m/3) are also much larger than the ones that meet it (Fig. 4.8 g, h). This pattern

is consistent with the pattern we observed for sampling gaps, where networks that did not satisfy

the density criterion in the simple and loopy graph spaces or the maximum degree criterion in the

vertex-labeled multigraph and loopy multigraph spaces have higher sampling gaps than those that

did. This similarity in behavior corroborates our suggestion that particular aspects of the network’s

structure determines the likelihood of re-sampling in the Markov chain, which drives the MCMC’s

behavior.

In Fig. 4.8, we overlay a straight line s̄ = 20m in all eight graph spaces to provide a simple low

dimensional approximation of the central tendency of the mixing times of the networks across both

the stub- and vertex-labeled simple and loopy graph spaces and the stub-labeled loopy multigraph
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Figure 4.8: Number of swaps run in the Fosdick et al. MCMC (averaged over 200 chains) before
our method detects convergence. The networks that do not satisfy the maximum density criterion
in the simple and loopy graph spaces, and the maximum degree criterion in the vertex-labeled
multigraph and loopy multigraph spaces are shown separately (see legend). The red dashed line
is a hand-fit line showing an approximation of the central tendency of the mixing times of the
networks in all graph spaces except the vertex-labeled loopy multigraph and multigraph spaces
(g-h), in which case it captures the central tendency for the networks that satisfy the maximum
degree criterion, and serves as a lower bound for the ones that do not.

and multigraph spaces. For the remaining two spaces, i.e., the vertex-labeled loopy multigraph and

multigraphs, the s̄ = 20m line offers an approximation of mixing times for the networks that satisfy

the maximum degree criterion, and a lower bound for those that do not. The linear trend between

the average swaps to convergence and the size of the networks in our results lead us to conjecture

that the convergence time of the Fosdick et al. MCMC [32] is Θ(m) except in pathological cases.

These results may represent a useful insight for theoreticians interested in mathematical bounds

on the mixing time of the Fosdick et al. MCMC.

4.4.5 Extending convergence to other network statistics

We now consider whether detecting convergence using the degree assortativity implies con-

vergence in other network statistics. For a particular network statistic, we compare its distribution
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at the point of convergence according to degree assortativity, and a distribution of the sane statistic

after 1000m swaps have been applied. As before, we repeat this for each network across all eight

graph spaces. The additional network statistics we explore are:

• Clustering coefficient: The clustering coefficient of a network is the tendency of the nodes

in the network to cluster together in triangles. For simple and loopy graphs, it is defined as

the ratio between the number of closed triples and the number of connected triples (both

open and closed). Since there is no standard definition of clustering coefficient for graphs

with multi-edges, we convert the parallel edges of the multigraphs and loopy multigraphs

to integer-weighted simple edges where edge weights are the sum of multiplicities of the

edges between every pair of nodes, and then we use the definition of clustering coefficient for

weighted networks. One can define the clustering coefficient of weighted networks in several

ways [4, 102, 66, 42, 78]. Which definition works best for a given scenario depends on the

research question being explored. The definition we employ here defines the “intensity of

a triangle” as the normalised geometric mean of the weights of the edges involved in each

triangle, and defines the weighted clustering coefficient of each node i of the network as

C̃i =
2

ki(ki − 1)

∑
j,k ̸=i

(w̃ijw̃jkw̃ki)
1/3 , (4.9)

where ki is the number of neighbours of node i in the weighted version of the network and

the edge weights are scaled by the largest weight in the network, w̃ij = wij/max(wij) [66].

The weighted clustering coefficient is then averaged over all nodes of the network to obtain

the global weighted clustering coefficient. This definition of weighted clustering coefficient

ranges between 0 and 1, i.e., C̃i ∈ [0, 1], which ensures that C̃i equates to the unweighted

clustering coefficient when weights are binary, and is invariant to permutation of the weights

within a single triangle [78].

• Diameter: The diameter of a network is the length of the longest of the geodesic path

that exists between any pair of nodes in. This definition of the diameter produces the same

answer regardless of the graph space.
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Figure 4.9: Proportion of networks in each graph space for which the test of distribution (either
KS-test or the Chi-square test) between the distribution of the network statistic (legend) at the
point where convergence is detected and that after 1000m swaps have been applied on the network
is statistically significant at 0.05 level of significance.

• Average path length: The average path length of a network is the mean of all non-

infinite geodesic path lengths among all pairs of nodes in the network. As in case of the

diameter, average path length is defined similarly for networks with or without self-loops

and multi-edges.

• Number of triangles: We count the number of triangles in a simple and loopy network

by counting the number of occurrences of cliques of three distinct nodes. For networks

with multi-edges, we convert the network to its weighted version as with the clustering

coefficient, and sum the triangle intensities of each triangle, defined similar to Eq. (4.9) as

the geometric mean of the weights of the triangle, where each weight is normalised by the

maximum weight in the network.
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• Number of squares: For simple and loopy networks, we count the number of occurrences

of groups of four distinct nodes connected in a closed path. For multigraphs and loopy

multigraphs, we take the sum of geometric means of the normalised weights of all the

squares in a network.

• Edge connectivity: The edge connectivity of a network is defined as the minimum num-

ber of edges that need to be removed from the network so that the network becomes

disconnected. In networks with multi-edges, the multiplicity of the edges is taken into

account.

• Radius: The radius of a network is the smallest of all the node eccentricities of a network,

where eccentricity of a node v is defined as the the maximum length of all the shortest paths

between the node v and any other node that is reachable from v. The same definition of

radius is used for networks with and without multi-edges.

See Appendix F for an example on how these network statistics change as swaps are applied.

For comparing the distributions at the point of convergence and after 1000m swaps, we again use a

KS test with α = 0.05. If the network statistic has a discrete distribution with less than 10 unique

values, we instead apply a chi-square test of independence. Fig. 4.9 summarizes the proportion of

networks in the corpus for which the tests are rejected across the eight network statistics (including

degree assortativity). Across each of the eight graph spaces, we find that the distributions of

all eight of the network statistics have converged on their asymptotic forms when convergence

is detected according to degree assortavitiy, suggesting that degree assortativity converges more

slowly than these alternative statistics and hence represents a conservative choice for a convergence

test.



Chapter 5

Applications

In this section we use two real-world examples to demonstrate the application of our method

on empirical networks to evaluate whether an empirically observed network characteristic can be

explained as a consequence of the degree sequence alone.

5.1 The centrality of the Medici

In the 15th century, the Medici family rose to become one of the most prominent and powerful

families in Florence. Their support of art and humanism in Florence is believed to have led to the

early Renaissance in Europe. The network-based explanation that past studies [67] have provided

for the Medici’s rise in power is that they established themselves as the most central family among

other elite families in Florence, occupying the most important position structurally, which they

leveraged in terms of information flow, business settlements, and political planning [45]. Fig. 5.1a

shows the network of marriage ties among 16 key elite Florentine families (n = 16,m = 20) [1] whose

support or opposition towards the Medicis has been established [11] (note: a broader network of

contemporary Florentine families contains 116 nodes [50]). This network is a simple vertex-labeled

network where each vertex represents a key Florentine family and two families are connected by an

edge if there is any marriage tie between them. It is evident that the Medici had more connections

than any other family, including their key competitors the Albizzi and the Strozzi. To quantify

how well connected each Florentine family was to the others, we compute the harmonic centrality



40
(a) (b)

Figure 5.1: (a) The Medici family marriage network, from Padgett and Ansell (1993). The network
has n = 16 nodes and m = 20 edges. (b) Table showing degree of each family and the family’s
harmonic centrality hi in the Florentine network.

of each family i (Fig. 5.1b), defined as

hi =
1

n− 1

n∑
j=1;j ̸=i

1

ℓij
. (5.1)

Under this measure, the Medici family is indeed the most important node in the network

(hi = 0.633).

Now, we examine whether the highly central position of the Medici family can be explained

by the degree structure of the Florentine network alone. To answer this question, we generate

an ensemble of 1000 random networks with the same degree sequence as the Florentine network,

and compute the distribution of harmonic centralities for each family in the network. We sample

the random networks from the simple vertex-labeled graph space, because in the given setting,

marriage ties cannot exist within the same family (i.e., no self-loops), families are connected if their

members ever married with each other (i.e., no multi-edges), and stubs do not have distinct labels

(i.e., vertex-labeled).
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(a)

(b)

Figure 5.2: Boxplots illustrating the distribution of difference between the harmonic centrality of
each family in the observed Florentine network and its harmonic centrality in the reference ensemble
generated (a) from the simple vertex-labeled graph space using our method, and (b) from the stub-
labeled loopy multigraph space using the random stub-matching algorithm. The whiskers show the
5th and 95th percentiles and the boxes show the 25th and 75th percentiles with the median value
indicated by solid lines; outliers are not shown.

Fig. 5.2a shows the difference between the observed harmonic centrality of each family in

the Florentine network and its expected value the corresponding null model ensemble. Notably,

the difference between the observed and expected harmonic centrality of the Medici family in the

observed network is negligible, indicating that in the network of the elite Florentine families, the

centrality of the Medici can be fully explained by the number of marriage ties each Florentine
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family had in the network.

To illustrate how a conclusion about the explanatory power of the network’s degree sequence

alone depends on the correct choice of reference distribution, we repeat the analysis, but now gen-

erate the reference networks using the commonly used random stub-matching algorithm, followed

by collapsing multi-edges and removing self-loops. This process of “simplifying” the sampled loopy

multigraphs ultimately changes the null model’s degree sequence by introducing a bias, partic-

ularly among high degree nodes, as the probability of participating in a self-loop or multi-edge

increases with degree. Additionally, the random stub-matching algorithm samples networks from

the stub-labeled loopy multigraph space, which is an incorrect graph space to sample the reference

distribution from in this context. Fig. 5.2b shows the difference between the observed and expected

harmonic centralities of each Florentine family, using this alternative approach, showing substan-

tially different results compared to using the correct graph space in Fig. 5.2a. In fact, the results

of Fig. 5.2b would lead one to incorrectly conclude that the harmonic centrality of the Medici in

the observed network cannot be explained by the network’s degree structure alone, while Fig. 5.2a

shows clearly that it can be. This exercise illustrates the importance of using the correct method

for generating a reference distribution for such evaluations. Using the wrong method to generate

the reference distribution can lead to conflicting or erroneous conclusions without providing any

indication to the researcher of the error.

5.2 Gender assortativity in Dutch high school emotional support network

Attribute assortativity or homophily in a network is the tendency of nodes to be connected

to others with similar attributes. This form of assortative mixing can be quantified in much the

same way that we measure degree assortativity in Eq. 4.1, except that we use a node attribute ax

as the variable of interest rather than the degree:

r =

∑
xy(Axy − kxky/2m)axay∑

xy(kxδ(x, y)− kxky/2m)axay
, (5.2)

where ax denotes the scalar node attribute for node x.
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(a)

(b)

Girl
Boy

Figure 5.3: (a) The emotional support network (n = 73, m = 51) [92] of students of a Dutch high
school (school no. 23). The gender assortativity coefficient of this network is 0.74. (b) The grey-
shaded curve depicts the distribution of gender assortativity coefficient of the networks generated
from the simple vertex-labeled graph space of the configuration model, while the dashed-line of
the right shows the gender assortativity of the observed network (p < 0.0001). We find evidence
that the sharing of emotional support among the students in this Dutch high school is significantly
positively correlated with gender.

In this example, we consider a survey of fourth grade students in a Dutch urban high school

(school no. 23) that participated in the Dutch Social Behavior Study 1994-1996 [44]. In this

network (Fig. 5.3a), nodes are fourth grade students and two students are connected by an edge
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if both students have indicated that they give and/or receive emotional support from each other

(n = 73,m = 51). Students in this network appear to exhibit a strongly gendered preference when

giving and receiving emotional support, with a gender assortativity coefficient r = 0.74.

To assess whether this gender assortativity is merely a consequence of the degree sequence

of the network, we generate a reference distribution of r using 1000 networks with the same de-

grees. We set the graph space to be simple vertex-labeled graphs, because in the study, a student

cannot receive support from themselves (i.e., no self-loops), students are connected if they ever

took/received emotional support (i.e., no multi-edges), and stubs are indistinguishable (i.e., vertex-

labeled). Fig. 5.3b shows the resulting null distribution of gender assortativity coefficients for these

reference networks, which indicates that the observed gender assortativity is statistically significant

(one-sided p < 10−4). Thus, we conclude that the sharing of emotional support among the students

cannot be explained merely by the underlying degree structure and distribution of node attributes

in this social network, indicating the presence of other social mechanisms. Repeating this analysis

on the other schools in the Dutch Social Behavior Study yields a consistent pattern of gendered

emotional support exchanges.



Chapter 6

Discussion

The configuration model is among the most widely used models of random graphs in network

science. The lack of accurate and efficient methods for generating graphs from the configuration

model has discouraged researchers from using it as a null model in empirical research, and has

encouraged them to rely on a fast random stub-matching algorithm, that is correct only for gen-

erating stub-labeled loopy multigraphs. Heuristics for converting random loopy multigraphs into

other types, e.g., simple graphs, introduce structural artifacts that can contaminate empirical con-

clusions [32]. The methods described here provide a solution to sampling from the configuration

model using the Fosdick et al. MCMC [32] in eight graph spaces, defined by whether the target

graph is stub-labeled or vertex-labeled, and whether it allows self-loops or not, and multi-edges or

not.

Our approach transforms the sequence of graphs sampled by the Markov chain into a scalar-

valued sequence of degree assortativity values (Fig. 4.1). We develop a novel algorithm for esti-

mating a sampling gap η0 (Algorithm 1) by which to obtain effectively uncorrelated draws from

the Markov chain. This algorithm is based on a standard autocorrelation test to determine how

far apart two sampled states must be in order to be statistically independent. Applying this gap

estimation algorithm to a large corpus of 509 real-world and semi-synthetic networks, we identified

and organized a set of simple decision rules based on the empirical scaling behavior of estimated

gaps η0 with the number of edges m (Fig. 4.3). These rules allow researchers to automatically select

an appropriate sampling gap for a given network usually without having to run the sampling gap
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estimation algorithm itself. We use the Dickey-Fuller Generalised Least Squares (DFGLS) test to

assess stationarity in this Markov chain and show that the test accurately and efficiently detects its

convergence in all eight graph spaces (Fig. 4.6). The dependence of both the mixing time and the

sampling gap on the re-sampling rate of states in the Markov chain suggests that the sampling gap

offers a one-parameter summary of the underlying geometry of the space of random graphs that

the Markov chain samples from for a particular network. Our results support a conjecture that the

mixing time of the Markov chain in all eight graph spaces is Θ(m) (Fig. 4.8).

Even though degree assortativity r is more computationally efficient to calculate on a poten-

tially long sequence of networks than many alternative network statistics, networks with very low

variance in degrees do exist (e.g., a k-regular network), and for these the degree assortativity is

either undefined, or changes negligibly as the Markov chain progresses. In these cases, a different

network statistic should be used to summarize the sequence of sampled graphs, e.g., the clustering

coefficient, albeit at a greater computational cost. The methods developed here are only applicable

to the classic configuration model on dyadic networks, i.e., networks where edges are defined as

pairs of nodes. As such, different methods may be needed for correctly sampling from the hyper-

graph configuration model [18], in which edges are polyadic, the configuration models for simplicial

complexes [98], or networks where edge weights cannot be interpreted as multi-edges. Finally, the

Fosdick et al. MCMC cannot be applied to the loopy networks that do not satisfy the necessary

conditions for the loopy graph space to be connected [65]. Such loopy networks are extremely rare.

Our analysis of the estimated sampling gaps reveals several interesting patterns, along with

useful insights on space-specific conditions under which the double-edge swap MCMC tends to

re-sample states frequently. We leave an exploration of different choices for quantifying the de-

gree of autocorrelation between two sampled states, and whether that may yield more efficient gap

estimation algorithms, for future work. Exploring whether a more efficient test than ours could

be constructed without compromising its accuracy is another direction for future work. The ap-

pearance of scaling laws in the estimated sampling gaps, and the consistency of their form across

different graph spaces is intriguing. This pattern may reflect a currently unknown but common
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underlying topology both within and across these different graph spaces. Investigating the origins

of this common pattern may yield deeper theoretical insights on guarantees for MCMC convergence

for sampling random graphs. Our study may also provide insights on developing convergence de-

tection methods for other Markov chain algorithms for networks [65], and other variations of the

configuration model, e.g., on graphs of fixed core-value sequence [91].
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Appendix A

Updating degree assortativity in O(1) time

Here, we provide the derivation for Eq. (4.2) using Eq. (4.1). As per Eq. (4.1),

r =

∑
xy Axykxky −

∑
xy(kxky)

2/2m∑
xy kxkxkyδ(x, y)−

∑
xy(kxky)

2/2m
(A.1)

Recall that

Sℓ =
∑
xy

Axykxky

S1 =
∑
x

kx = 2m

S2 =
∑
x

k2x, S3 =
∑
x

k3x

Now multiplying both numerator and denominator of Eq. (A.1) with 2m, we get

r =
S1Sℓ −

∑
xy(kxky)

2

S1
∑

xy kxkxkyδ(x, y)−
∑

xy(kxky)
2

(A.2)

Since δ(x, y) = 1 if x = y, and 0 otherwise, it can be derived that

∑
xy

kxkxkyδ(x, y) = k31 + k32 + k33 + · · ·+ k3n =
∑
x

k3x = S3

∑
xy

(kxky)
2 =

∑
x

(k2i )
2 = S2

2

Therefore,

r =
S1Sℓ − S2

2

S1S3 − S2
2

(A.3)
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Hence Eq. (4.1) can be re-written in the form of Eq. (4.3) which is a substantially faster way to

calculate the degree assortativity of a network. Now we show the derivation for Eq. (4.2), which is

the fast O(1) update formula.

Note that in Eq. (4.1), the summation in the numerator is over all possible node pairs x

and y (n2 terms). Let us now suppose that a swap {(x, y), (w, z)} → {(x, z), (w, y)} takes place as

shown in Fig. 3.1. This swap results into the addition of the edges (x, z) and (w, y) as well as the

non-edges (x, y) and (w, z), and the removal of the edges (x, y) and (w, z) as well as the non-edges

(x, z) and (w, y) for the calculation of r, where a non-edge (i, j) means Aij = 0, Aji = 0 and an

edge means Aij = 1, Aji = 1. Hence, using Eq. (4.1), the change in the numerator of r,

∆r′ = 2

[
kxkz + kwky − kxky − kwkz

]

Here the leading factor of 2 appears because the network is undirected. Our earlier derivation

shows that when the denominator of r in Eq. (4.1) is multiplied by 2m, we obtain (
∑

i ki×
∑

i k
3
i )−

(
∑

i k
2
i )

2. Hence,

D =
∑
xy

(kxδ(x, y)− kxky/2m)kxky

=
(
∑

i ki ×
∑

i k
3
i )− (

∑
i k

2
i )

2

2m

and ∆r can be calculated using ∆r′ as

∆r =
(kxkw + kykz − kxky − kwkz)× 4m

(
∑

i ki ×
∑

i k
3
i )− (

∑
i k

2
i )

2
(A.4)



Appendix B

The autocorrelation function

The autocorrelation function of a sequence measures the degree to which its values are serially

correlated, so that the greater the serial correlation, the larger the value of the autocorrelation

function [10]. Mathematically, the autocorrelation Rh quantifies the average correlation between a

pair of values xt and xt+h in the sequence, separated by a lag of h, and ranges from −1 ≤ Rh ≤ 1.

It is defined as Rh =
Ch

C0
, where

Ch =
1

T

T−h∑
t=1

(xt − x)(xt+h − x)

C0 =

T∑
t=1

(xt − x)2

T

Hence, the autocorrelation Rh is the covariance of the sample, and itself, at a lag of h,

normalized by the variance of the sample. Here T is the maximum separation over which we

consider the autocorrelation of the pairs of states.

Power-analysis: Consider a list Xη comprised of degree assortativity values in which con-

secutive values are the degree assortativities of graphs sampled η swaps apart in the Markov chain.

Let the size of Xη be T . If the values in Xη are iid, the lag-1 autocorrelation of Xη will follow a

normal distribution with mean and variance given by

µ(a1) = −
1

T
, (B.1)
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σ2(a1) =
T 4 − 4T 3 + 3T 2 + 4T − 4

(T + 1)T 2(T − 1)2
, (B.2)

using τ = 1 in Eq. (4.4) and (4.5), respectively [27]. Hence, to assess if the values in Xη are

effectively independent (iid), we need to test the lag-1 autocorrelation of Xη for normality. Since

each state in the Fosdick et al. MCMC is expected to be positively correlated with the next state

(except in pathological cases), the lag-1 autocorrelation tests are upper-tailed.

In estimating a network’s sampling gap, we test for independence using C different lists each

of the form Xη, obtained from C independent Markov chains because a single Markov chain may

not be representative of the entire graph space. If each normality test is done at a Type-I error

rate α, the number of tests rejected when the null hypothesis of normality is true would follow a

binomial distribution Bi(C,α). Suppose we reject the null hypothesis that Xη consists of iid values

if for more than u lists normality is rejected. Then the family-wise Type-I error of C tests is given

by

αf = 1− FC,α(u) (B.3)

where FC,α is the cumulative distribution function of a random variable following a binomial dis-

tribution Bi(C,α).

Each normality test with sample-size T and Type-I error rate α detects a lag-1 autocorrelation

w with a power P given by,

P = 1− Φ
(µ(a1)− w

σ(a1)
−Qα

)
, (B.4)

where Φ is the cumulative distribution function of the standard normal distribution, Qα is the

αth quantile of the standard normal distribution, and µ(a1) and σ(a1) are given by Eq. (B.1) and

Eq. (B.2) respectively. The family-wise power Pf for C normality tests is then given by

Pf = 1− FC,P (u). (B.5)

In the sampling gap algorithm (Algorithm 1), we choose C = 10, u = 1, α = 4%, T = 500, and w =

0.1 so that we get a family-wise Type-I error rate αf = 5.8% and family-wise power Pf = 99.9%.



Appendix C

Dependence of sampling gap on the MCMC transition probabilities

For reference, we have presented the stub-labeled and the vertex-labeled double-edge swap

MCMC algorithm in Algorithms 3 and 4 adapted from Fosdick et. al [32]. In this appendix, we

provide a discussion of how the MCMC’s transition probabilities in different graph spaces govern

the respective sampling gaps we obtain using Algorithm 1.

Algorithm 3 stub-labeled MCMC

Input: initial graph G0, graph space (simple, multigraph, or loopy multigraph)
Output: sequence of graphs Gi

1: for i < number of graphs to sample do
2: choose two edges at random
3: randomly choose one of the two possible swaps
4: if edge swap would leave graph space then
5: re-sample current graph: Gi ← Gi−1

6: else
7: swap the chosen edges, producing Gi
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Algorithm 4 vertex-labeled MCMC

Input: initial graph G0, graph space (simple graph, multigraph, or loopy multigraph)
Output: sequence of graphs Gi

1: for i < number of graphs to sample do
2: choose two distinct edges (u, v) and (x, y) uniformly at random
3: if Unif(0, 1) < 0.5 then
4: u, v ← v, u

5: if edge swap would leave the graph space then
6: re-sample current graph: Gi ← Gi−1

7: if ∃ 4 distinct vertices in u, v, x, y then
8: A← wuvwxy

9: B ← (wux + 1)(wvy + 1)
10: else if ∃ 3 distinct vertices in u, v, x, y then
11: if u = v or x = y then
12: A← 2wuvwxy

13: B ← (wux + 1)(wvy + 1)
14: else
15: A← wuvwxy

16: B ← 2(wux + 1)(wvy + 1)

17: else if ∃ 2 distinct vertices in u, v, x, y then
18: if only one of (u, v) or (x, y) is a self-loop then
19: Gi ← Gi−1

20: continue
21: else if both (u, v) and (x, y) are self-loops then
22: A← 2wuuwxx

23: B ← 1
2(wux + 2)(wux + 1)

24: else
25: A← 1

2wuv(wuv − 1)
26: B ← 2(wuu + 1)(wvv + 1)

27: else
28: Gi ← Gi−1

29: continue

30: P ← min
(
1,

B

A

)
31: if Unif(0, 1) < P then
32: swap (u, v), (x, y)⇝ (u, x), (v, y) to produce Gi

33: else
34: Gi ← Gi−1

C.1 Simple graphs

In the stub-labeled space, if a double-edge swap would cause the Markov chain to leave the

graph space, e.g., by creating a self-loop or a multi-edge, the swap is rejected and the current graph

Gt−1 is re-sampled by the MCMC (Algorithm 3). Otherwise, the swap is accepted, producing the
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new graph Gt.

In the vertex-labeled space, if a double-edge swap would cause the Markov chain to leave the

graph space, the current graph Gt−1 is also re-sampled (Algorithm 4). Otherwise, the algorithm

checks the number of distinct vertices and self-loops in the chosen double edges. In simple graphs,

the number of distinct vertices among u, v, x and y would either be 3 or 4, and the multiplicity

wab of any edge (a, b) would be 1, because multi-edges are forbidden in the simple graph space.

Hence, in Algorithm 4, the variable B/A will be greater than or equal to 1, and the variable P in

the algorithm will always be 1. As a result, if a double-edge swap does not cause the Markov chain

to leave the vertex-labeled graph space, it will always be accepted, producing the new graph Gt.

Hence, for simple graphs, the transition probabilities are the same for both the stub-labeled

and the vertex-labeled space, and thus so are the induced null distributions too.

C.2 Loopy graphs

In the stub-labeled space, if a double-edge swap introduces a multi-edge in the graph (which

is forbidden), the current graph Gt−1 is re-sampled. Otherwise, the swap is accepted, producing

the new graph Gt.

In the vertex-labeled space, if a double-edge swap would cause the Markov chain to leave the

graph space, Gt−1 is re-sampled, otherwise, Algorithm 4 performs the following check. If none of

the edges chosen for the swap are self-loops, then P = 1 and the swap is accepted. But, if either

of the chosen edges is a self-loop, then in Algorithm 4, we set A = 2 and B ∈ 1, 2, 4. When B = 1,

then P = 1/2, and the swap will be rejected half the time. For all other values of B, we have P = 1,

and hence the swap is accepted.

In our corpus of 161 multigraphs and loopy multigraphs, 86 (53%) of these networks have less

than 5% of edges as self-loops, and 129 (80%) of them have less than 20% of edges as self-loops. In

fact, in any loopy network with n nodes and m edges, there can be a maximum of n edges that are

self-loop and a minimum of m−n edges that are not. Since for most networks m >> n, a randomly

chosen edge in a loopy network is more likely to not be a self-loop than be one. Therefore, if a
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proposed double-edge swap does not move the Markov chain out of the graph space, P assumes

the value 1 with high probability in Algorithm 4. Hence, the Markov chain behaves very similarly

in the stub-labeled and vertex-labeled spaces for loopy graphs.

C.3 Loopy multigraphs

In the stub-labeled space, every double-edge swap is allowed. Hence, swaps are never rejected

and the graph Gt−1 is never re-sampled.

However, in the vertex-labeled space, whether the proposed double-edge swap is accepted

or rejected depends wholly on the multiplicity of the edges and the number of distinct vertices

chosen for the double-edge swap. In Algorithm 4, there can be several ways in which the value of

the variable P is far below 1 and hence the graph Gt−1 will be re-sampled. For this reason, the

MCMCs for stub-labeled and vertex-labeled loopy multigraphs behave differently, with a substantial

number of re-samplings occuring in the vertex-labeled space, and none in the stub-labeled space.

C.4 Multigraphs

In both the stub-labeled and the vertex-labeled spaces, a graph is re-sampled only if a double-

edge swap would introduce a self-loop in the network. However, in the vertex-labeled space, re-

sampling can occur for an additional reason (Algorithm 4), depending on the multiplicity of the

edges chosen for the double edge swap. In this case, the Markov chain in the stub-labeled and the

vertex-labeled spaces have different transition probabilities, which leads to different sampling gaps

between the two spaces.



Appendix D

Probability of rejection due to multi-edges and self-loops

We derived the probability that a double-edge swap is rejected because it introduces a multi-

edge in a network that is forbidden by the graph space is approximately q × (2ρ− ρ2) (Eq. (4.7)),

where q is the probability of two randomly chosen edges being non-adjacent to each other (Eq. (4.6))

and the probability of an edge existing between two randomly chosen edges is approximately the

edge density ρ of the network. Fig. D.1 shows the value of q for all 103 simple networks in our

corpus. It is evident that q ≈ 1 for almost all these networks. Hence, we can approximate the

probability that a double-edge swap is rejected due to the introduction of a multi-edge as (2ρ−ρ2).

Next, we calculate the probability that a double-edge swap is rejected due to the introduction

of a self-loop when the graph space forbids them. When two edges chosen for a swap are adjacent

to each other (Fig. 3.1b), one of the two possible swaps introduces a self-loop (probability = 0.5),

while the other one does not. Therefore, Pr
(
rejection due to self-loop

)
= (1 − q)/2, where q is

the probability that the two chosen edges are non-adjacent (Eq. (4.6)). Since q ≈ 1 (Fig. D.1a),

Pr
(
rejection due to self-loop

)
≈ 0. Thus, even if a graph space forbids self-loops, the probability

of a swap being rejected due to the introduction of one is negligible.

To test the relative rejection rates due to multi-edges and self-loops, for each of the 103

simple networks in our corpus we let the MCMC run for a burn-in period of 1000m swaps and we

then let it run for another 1000m swaps recording what fraction of those swaps are rejection due

to a multi-edge (e) or a self-loop (f) (Fig. D.1b). Rejection due to multi-edges is 5-2500 times

more than the rate due to self-loops. The increase in the ratio e/f with increasing edge density
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(a)

(b)

Figure D.1: (a) Probability q that two edges chosen uniformly at random for a double-edge swap
are non-adjacent, calculated for all 103 simple networks in our corpus using Eq. (4.6). q ≈ 1 (b)
Ratio e/f , where e is the rate at which a swap is rejected due to the introduction of a multi-edge
and f is that due to a self-loop. Rejection due to multi-edges is 5-2500 times more than that due
to self-loops, and this ratio increases as a network’s density grows.

is expected since the higher the density of the network, the higher the probability that an edge

already exists between nodes selected for a double-edge swap.



Appendix E

Commonly known MCMC convergence tests

PyMC [31] is a Python package for Bayesian statistical modeling and advanced MCMC algo-

rithms, and it provides implementations of three common convergence tests for generic MCMCs: the

Geweke diagnostic [38], the Gelman-Rubin diagnostic [37], and the Raftery-Lewis diagnostic [69].

E.1 The Geweke diagnostic

The Geweke convergence diagnostic [38] compares the mean and the variance of samples from

the beginning and the end of a single chain of a MCMC walk. Geweke [38] takes the beginning

section to be the first 10% of the chain and the ending section to be the last 50%. The test uses

the Geweke statistic, defined as the difference between the means of the two samples divided by

the standard error. These statistics are estimated using the spectral densities of the two samples

evaluated at zero, which takes into account the autocorrelations in the samples. The method uses

the departure of the Geweke statistic from the standard normal assumption as an indicator of

convergence failure. However, the test statistic is calculated under the assumption that when the

MCMC reaches its stationary distribution, the two chain samples will be distributed according to

a standard normal, in the asymptotic limit. The test also assumes that the spectral density of the

time series has no discontinuities at frequency zero [23]. Whether these assumptions are satisfied

depends on the process that produces the time series. The Geweke diagnostic is known to be very

sensitive to the chosen spectral window [23]. Hence, the behavior of the Geweke test may depend

on the degree to which properties of the stationary distribution of the particular MCMC are known.
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E.2 The Gelman-Rubin diagnostic

The Gelman-Rubin diagnostic [37] compares the within-sequence variability and between-

sequence variability of multiple sequences (at least two) obtained from MCMCs with starting points

sampled from an overdispersed distribution. This test is based on the idea that when an MCMC

has not yet converged, the variance within each chain is much less than that between the chains,

because prior to convergence, the MCMC samples states non-uniformly. If θ denotes the sequence

of an MCMC chain, then first, an estimate of the marginal posterior of Var(θ) is calculated as a

function of the within-sequence variance (W ) and between-sequence variance (B) of the multiple

sequences. If the MCMC walks have not yet converged, B would overestimate Var(θ) because the

walks’ starting values were chosen to be overdispersed, whereas W would underestimate Var(θ)

because the MCMC walks have not yet saturated the states in the stationary distribution.

The Gelman-Rubin statistic is then given by the square root of the ratio of Var(θ) and

W . In the stationary distribution of the MCMC, both Var(θ) and W should approach the true

variance of the MCMC chain, and hence values of the Gelman-Rubin statistic close to 1 indicate

convergence. In general, practitioners often use a cutoff of 1.1 as an indicator of convergence. This

convergence test assumes that the stationary distribution of the MCMC is normal. Cowles and

Carlin [23] suggest that both the assumption of a normal approximation of the target distribution,

and the requirement of multiple MCMC chains with highly dispersed initial conditions, may not

be reasonable in most practical situations.

E.3 The Raftery-Lewis diagnostic

The Raftery-Lewis diagnostic [69] is based on two-state Markov chain theory and standard

sample size formulae for binomial variance. In particular, it calculates the burn-in period of the

Markov chain and the total number of subsequent iterations required to accurately estimate u, a

q-quantile of the MCMC’s posterior distribution. The value of q, the margin of error r, and the

probability s of obtaining the estimate in the interval (q− r, q+ r), are all user-defined parameters,
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although the default value of s is 95%. The method also calculates a thinning interval k, which is

the number of iterations that should be skipped to produce a chain of independent samples from

the Markov chain (analogous to η0 in our method).

From the Markov chain {θt}, the Raftery-Lewis method first constructs a 0-1 binary chain

{Zt}, and then chooses the thinning interval k to be the smallest natural number for which a first-

order Markov chain model of the thinned out chain is statistically preferred over the second-order

Markov chain model. For convergence detection purposes, we are interested only in the burn-in

period’s value, which provides an estimate of the number of steps needed before the MCMC reaches

its stationary distribution [15]. A detailed analysis of the Raftery-Lewis method by Brooks and

Roberts [16] shows that the method depends strongly on the quantile of interest q and it does not

provide information about the chain as a whole [16]. Furthemore, in certain cases, the convergence

rate estimated by this method is far below the convergence rate of the full chain [16]. As a general

rule, they find that the routine value of q = 0.025 commonly used in the literature should not

be used, as it tends to underestimate the true convergence time. Instead, they suggest that for

practical purposes, the diagnostic could be applied to several different q values and then choose the

quantile that estimates the largest burning length.



Appendix F

Other commonly used network statistics

In this section, we provide an example showing how the network statistics beyond the degree

assortativity, i.e., the clustering coefficient, diameter, average path length, number of triangles,

number of squares, edge connectivity and radius, change as double-edge swaps are applied on

a vertex-labeled network with 1015 nodes and 9988 edges (Fig. F.1). Since some of the network

statistics are computationally expensive to compute and the network size is fairly large, we calculate

the statistics once after every 100 double-edge swaps. Each network statistic’s value moves away

from the initial value as more double-edge swaps are applied. After sufficient swaps are applied, the

network statistic converges towards a value, after which it displays non-trivial fluctuations around

it.
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Figure F.1: [

Eight network statistics as a function of the number of double-edge swaps]Eight different network
statistics as a function of the number of double-edge swaps performed for a vertex-labeled loopy

multigraph n = 1015 nodes and m = 9988 edges. The red line denotes the point where our
method detects convergence based on degree assortativity.
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