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Abstract— We consider a general quantitative controller
synthesis framework to synthesize controllers that not only
enforce a desired input-output behavior on the closed-loop, but
additionally minimize a certain average cost function, which
is used to assess the closed loop behavior. We follow the
usual symbolic synthesis approach, based on so-called discrete
abstractions (also known as symbolic models) and propose a
modification of the well-known system relations which enables
the reasoning about the closed loop performance across related
systems. We show how to construct symbolic models in terms
of the newly introduced system relations for sampled-data,
switched, nonlinear systems. A small numerical example is
provided, to illustrate some of the theoretical results.

I. INTRODUCTION

Quantitative objectives have been considered in the control
systems community from the very beginning of the analysis
of controller design problems [1, 2]. Value functions that
arise in the context of infinite-horizon optimal control prob-
lems, are often also Lyapunov functions. Therefore, quanti-
tative objectives naturally appear in connection with (robust)
stabilization problems [3]. The situation is different for the
classical synthesis methods of reactive systems [4–7]. Here
the objective is of qualitative nature, i.e., the synthesized
system either conforms to the specification, or violates it.

In the recent years, there has been a considerable effort
from the control systems community [8–14] as well as from
the reactive systems community [15–20], to combine the
classical approaches from the different fields and provide
synthesis methods that are able to simultaneously account for
complex specifications, e.g., formulated in linear temporal
logic (LTL) [7], and quantitative objectives, e.g., average
costs [21] (also known as mean-payoff objectives [22, 23]).

In this work, we follow this trend and consider controller
synthesis problems, in which the specification is given as
a set of desired input-output signals and a cost function,
which assesses the worst-case average costs associated with
the close loop behavior. The objective is to find a controller
that simultaneously enforces the desired input-output signals
on the plant and minimizes the given cost function. Similar
synthesis problems with average costs have been analyzed
in [8, 13, 15, 20]. This line of research concentrates on
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the development of novel algorithms, which are applicable
to the quantitative synthesis problems, and to establish the
computational complexity of the proposed algorithms. In this
paper, we extend those approaches (which are limited to
finite systems) to infinite systems via the usual abstraction
and refinement principle, which is well-known in the context
of traditional, qualitative language-containment specifica-
tions [24, 25]. In this framework, a so-called abstraction
also known as symbolic model, i.e., a finite system, is
used as a substitute in the controller design process. The
correctness of this framework is usually ensured by showing
that the behavior of the abstract closed loop majorizes (up
to a certain accuracy) the behavior of the concrete closed
loop. On a technical level, such statements are achieved by
relating the plant, i.e., the given infinite concrete system,
with the abstraction via certain system relations, e.g. (ap-
proximate) bisimulation relations [10], alternating simulation
relations [24] or feedback refinement relations [25].

In this work, similar to [26], we use valuated alternat-
ing simulation relations and valuated feedback refinement
relations, i.e., variants of the well-known system relations
for controller refinement [24, 25], as a means to establish
the majorization of the concrete closed loop by the abstract
closed loop not only in terms of behavioral inclusion, but also
in terms of the cost functions associated with the respective
controllers. Additionally, we show that the existence of a
valuated system relation from one system to another one,
implies that the value function, i.e., the best achievable
performance, associated with the first system is bounded by
the value function associated with the second system. After
the presentation of the general theory, we focus on sampled-
data, switched, nonlinear systems and “reach and stay while
avoid” specifications under average costs. We provide two
algorithms to construct, finite auxiliary synthesis problems,
whose solutions provide upper and lower bounds on the
value function of the concrete control problem. The upper
bounding control problem, whose construction is adapted
from [25], is simultaneously used to derive a controller for
the plant to enforce the given reach and stay while avoid
specification.

Abstraction and refinement procedures to solve quantita-
tive synthesis problems have previously been proposed in [9–
12, 27]. In [9–12] reachability specifications in combination
with cost functions to evaluate the transient behavior of
the system are considered. In [27], synthesis algorithms to
enforce safety specifications in combination with a reced-
ing horizon optimization scheme have been developed. In
contrast to those approaches, we consider general specifi-
cations and long-term, infinite-horizon, average costs. Here
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the long-term performance is the most crucial performance
measure and the transient behavior is of minor importance.
Our approach is particularly appealing in the context of
switched systems to enforce reach and stay specification
while minimizing the average number of switches.

II. NOTATION

R, R+, Z and Z+ denote the sets of real numbers, non-
negative real numbers, integers and non-negative integers,
respectively, and N = Z+ r {0}. We adopt the convention
that ±∞ + x = ±∞ for any x ∈ R and inf ∅ = ∞. We
denote by [a, b], ]a, b[, [a, b[, and ]a, b] closed, open and
half-open, respectively, intervals with end points a and b.
The notations [a; b], ]a; b[, [a; b[, and ]a; b] stand for discrete
intervals, e.g. [a; b] = [a, b]∩Z, [1; 4[ = {1, 2, 3}, and [0; 0[ =
∅. For a, b ∈ (R ∪ {∞,−∞})n, the closed hyper-interval
Ja, bK is defined by Ja, bK = Rn ∩ ([a1, b1]× · · · × [an, bn]).
In Rn, the relations <, ≤, ≥, > are defined component-wise,
i.e., a < b iff ai < bi for all i ∈ [1;n]. Similarly, for x ∈ Rn
we use |x| ∈ Rn+ to denote the component-wise norm of x,
i.e., the ith component of |x| is given by the absolute value
of xi.

We denote by f : A ⇒ B a set-valued map of A into B,
whereas f : A→ B denotes an ordinary map; see [28]. If f
is set-valued, then f is strict and single-valued if f(a) 6= ∅
and f(a) is a singleton, respectively, for every a. Throughout
the text, we denote the identity map X → X : x 7→ x by id.
The domain of definition X will always be clear from the
context.

We identify set-valued maps f : A ⇒ B with binary
relations on A× B, i.e., (a, b) ∈ f iff b ∈ f(a). We denote
by f ◦ g the composition of f and g, (f ◦ g)(x) = f(g(x)).
Moreover, if f is single-valued, it is identified with an
ordinary map f : A→ B. The set of maps A→ B is denoted
by BA, and the set of all signals β : [0;T [→ B is denoted by
B[0;T [. We set B∞ :=

⋃
T∈Z+∪{∞}B

[0;T [ and for β ∈ B∞,
use domβ to denote the interval on which β is defined.

III. CONTROL PROBLEMS WITH AVERAGE COSTS

In this work we consider plants, which are given as
discrete-time, non-deterministic systems of the form

ξ(t+ 1) ∈ F (ξ(t), α(t)) (1)

where ξ(t) ∈ X and α(t) ∈ A are the state, respectively,
input signals and F : X ×A⇒ X is the transition function.
The plant is a particular instance of a more general notation
of system [25] that provides a unified definition for plants,
controllers and quantizers.

Definition 1. A system is a septuple

S = (X,X0, A,B,Z, F,H), (2)

where X , X0, A, B and Z denote the state, initial state,
input, internal input and output alphabet, respectively. The
sets X , X0, A, B and Z are assumed to be nonempty, X0 ⊆
X , H : X ×A⇒ Z ×B is strict, and F : X ×B ⇒ X .
A quadruple (α, β, ξ, ζ) ∈ A[0;T [ ×B[0;T [ ×X [0;T [ ×Z [0;T [

S1

C

α
c
=
ξ 1

ζ c
=
α
1

S Q1α ζ ζ′

Q2 S
α′ α ζ

Fig. 1. Left: feedback composed system C×S1. Right: Serial composed
systems Q1 ◦ S and S ◦Q2.

is a solution of the system (2) (on [0;T [, starting at ξ(0)) if
T ∈ Z+ ∪ {∞}, ξ(0) ∈ X0 and

∀t∈[0;T−1[ : ξ(t+ 1) ∈ F (ξ(t), β(t))

∀t∈[0;T [ : (ζ(t), β(t)) ∈ H(ξ(t), α(t)).

A system is basically a Mealy-type transition system with
non-deterministic output and transition functions, see [25]
for more details.

Given a system S1 = (X1, X1,0, A1, B1, Z1, F1, H1) that
satisfies X1,0 = X1 = Z1, A1 = B1 and H1 = id, we
recover the notion of the plant in (1). Such a system is termed
a simple system and denoted by S1 = (X1, A1, F1).

Definition 2. A system C = (Xc, Xc,0, Ac, Bc, Zc, Fc, Hc)
is a controller for S1 = (X1, A1, F1) if it satisfies

Zc ⊆ A1 ∧X1 ⊆ Ac and

(a1, bc) ∈ Hc(xc, x1) ∧ F1(x1, a1) = ∅⇒ Fc(xc, bc) = ∅.

The first condition ensures that the inputs and outputs of
the controller and the plant are compatible in a feedback
composition. The second condition is required in the con-
troller transfer across related systems, see [25].

The closed loop C × S1, resulting from the feedback
composition of a controller C and a simple system S1 is
a system that is obtained by connecting the output ζc of C
with the input α1 of S1 and vice versa, see Fig. 1 and [25,
Def. III.3].

Definition 3. The behavior B(C × S1) is the set of input-
output sequences (α1, ξ1) ∈ (A1 × X1)[0;T [, [0;T [ ⊆ Z+

for which there exist signals (βc, ξc) so that (α1, α1, ξ1, ξ1)
and (ξ1, βc, ξc, α1) are a solution of S and C, respectively.
In case that T ∈ Z+, then F1(ξ1(T − 1), α1(T − 1)) = ∅
or Fc(ξc(T − 1), βc(T − 1)) = ∅ must hold. The behavior
associated with a particular state x ∈ X1 is given by

Bx(C × S1) = {(α, ξ) ∈ Bx(C × S1) | ξ(0) = x}.

A specification for S1 = (X1, A1, F1) is simply given
as a set Σ1 ⊆ (A1 × X1)∞ with which we describe the
desired closed loop behavior. The system S1 together with
specification Σ1 constitute a control problem (S1,Σ1). We
say that a system C solves the control problem (S1,Σ1) if
C is a controller for S1 and the following inclusion holds

B(C × S1) ⊆ Σ1.

The set of all controllers C that solve a control problem
(S1,Σ1) is denoted by C(S1,Σ1).
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Additionally to the requirement that a controller C solves
the control problem (S1,Σ1) we would like that C minimizes
a certain average cost function. To this end, we assume we
are given a running cost function for S1 = (X1, A1, F1) by

G1 : (A1 ×X1)2 → R ∪ {±∞}

and consider the cost function J1 : X1 → R ∪ {±∞}
associated with a controller C ∈ C(S1,Σ1) defined by

J1(x) =∞ (3a)

if there exists (α, ξ) ∈ Bx(C×S1) with dom(α, ξ) 6= [0;∞[
and otherwise by

J1(x) = sup
(α,ξ)∈Bx(C×S1)

lim sup
t→∞

1

t+ 1
L1(t, α, ξ) (4a)

with L1 : Z+ × (A1 ×X1)[0;∞[ → R ∪ {±∞} given by

L1(t, α, ξ) =

t∑
t′=0

G1(α(t′), ξ(t′), α(t′ + 1), ξ(t′ + 1)).(5)

The best achievable performance is given by the value
function V1 : X1 → R∪{±∞} associated with (S1, G1,Σ1)
by

V1(x) = inf
C∈C(S1,Σ1)

J1(x). (6)

Definition 4. A control problem (S1,Σ1) together with a
running cost function G1 for S1 constitute a valuated control
problem (S1, G1,Σ1).

It is well-known that even if the plant is finite, i.e., the
input and state alphabet of the plant are finite sets, depending
on the particular specification, the optimal controller poten-
tially requires infinite memory, see e.g. [20]. However, for the
particularly appealing class of reach and stay specifications,
which we envision in this work and which are often used in
the context of asymptotic stabilization of a control systems
around a desired set point [29], it is known that memoryless
or static optimal controller exist, i.e., the controller state
alphabet is a singelton, see [15, Thm. 5].

Before we conclude this section, we shortly define the
serial composition of a strict map Q1 : Z ⇒ Z ′ and a
system S of the form (2), as a system Q1 ◦ S which is
given by (X,X0, A,B,Z

′, F,H ′) with the output function
H ′(x, a) = {(z′, b′) | ∃(z,b)∈H(x,a)z

′ ∈ Q1(z) ∧ b = b′}.
Similarly, given a strict map Q2 : A′ ⇒ A, we use S ◦Q2 to
denote the system (X,X0, A

′, B, Z, F,H ′) with the output
function H ′(x, a′) = H(x,Q2(a′)) for all x ∈ X , a′ ∈ A′.
Both compositions are illustrated in Fig. 1.

IV. VALUATED SYSTEM RELATIONS

We introduce valuated system relations as a means to relate
the cost functions and the value functions across related
systems. We consider alternating simulation relations [24]
as well as feedback refinement relations [25], in order
to facilitate the performance comparison with respect to
average, infinite-horizon cost criteria. In [26], we introduced

valuated system relations in the context of optimal stopping
problems.

Subsequently, we need a notion of admissible inputs.
Given a simple system S = (X,A, F ), we define the set
of admissible inputs at the state x ∈ X by

AS(x) = {a ∈ A | F (x, a) 6= ∅}.

Definition 5. Consider two simple systems with running cost
functions

Si = (Xi, Ai, Fi), i ∈ {1, 2},
Gi : (Ai ×Xi)

2 → R.

A relation Re ⊆ X1 ×X2 ×A1 ×A2 whose projection onto
X1 × X2, i.e., R := {(x1, x2) | ∃ai∈Ai : (x1, x2, a1, a2) ∈
Re} is strict, is a valuated alternating simulation relation
from1 (S1, G1) to (S2, G2), if

∀(x1,x2)∈R∀a2∈A2
∃a1∈A1

: (x1, x2, a1, a2) ∈ Re
∀(x1,x2,a1,a2)∈Re

: a2 ∈ AS2
(x2) =⇒ a1 ∈ AS1

(x1)
(7a)

∀(x1,x2,a1,a2)∈Re
∀x′1∈F1(x1,a1)∃x′2∈F2(x2,a2) : (x′1, x

′
2) ∈ R

(7b)
∀(x1,x2,a1,a2),(x′1,x

′
2,a
′
1,a
′
2)∈Re

G1(a1, x1, a
′
1, x
′
1) ≤ G2(a2, x2, a

′
2, x
′
2).

(7c)

A valuated alternating simulation relation Re from (S1, G1)
to (S2, G2) is called valuated feedback refinement relation
from (S1, G1) to (S2, G2) if A2 ⊆ A1 and

(x1, x2, a1, a2) ∈ Re =⇒ a1 = a2 (8a)
(x1, x2, a1, a2) ∈ Re =⇒ R(F1(x1, a1)) ⊆ F2(x2, a2) (8b)

The requirements (7a) and (7b) are the usual conditions for
alternating simulation relations [24, Def. 4.19], while (7c) is
new. Note that the main objective of those system relations
is to enable the controller transfer also known as controller
refinement from system S2 to the system S1. In this context,
S2 assumes the role of the abstraction, while S1 corresponds
to the plant. Consider two related states (x1, x2) ∈ R and
suppose on the abstract closed loop an admissible input
a2 ∈ A2(x2) is applied to S2. Then (7a) ensures that there
exist an admissible input a1 ∈ A1(x1) (in the relation Re)
that can be applied to S1. Subsequently, (7b) guarantees
that any successor x′1 ∈ F1(x1, a1) can be matched by a
successor x′2 ∈ F2(x2, a2) so that the successor states are
related (x′1, x

′
2) ∈ R and the process can be repeated. With

(7c) in place, it is guaranteed that the running costs G1 are
upper bounded by G2.

Feedback refinement relations have been introduced
in [25] to address certain shortcomings of the controller
refinement mechanism based on alternating simulation re-
lations, see [25, Sec. IV]. Specifically, feedback refinement
relations enable a straightforward controller refinement, i.e.,
given a controller C for an abstraction S2, the controller for
the plant S1 is simply given by C ◦R, see [25, Thm. VI.3].

1With this definition we follow the notions in [25, 30] as apposed to [24,
Def. 4.19] in which the conditions (7a) and (7b) correspond to an alternating
simulation relation from S2 to S1.
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We extend the notion of alternating simulation relations to
valuated control problems.

Definition 6. Consider two valuated control problems i ∈
{1, 2}, (Si, Gi,Σi) with Si = (Xi, Ai, Fi). A valuated al-
ternating simulation relation Re from (S1, G1) to (S2, G2)
is called a valuated alternating simulation relation from
(S1, G1,Σ1) to (S2, G2,Σ2) if for all T ∈ Z+ ∪ {∞}

(ξ1, ξ2, α1, α2) ∈ R[0;T [
e ∧ (α2, ξ2) ∈ Σ2

=⇒ (α1, ξ1) ∈ Σ1.
(9)

The fact that Re and Qe are valuated alternating simula-
tion, respectively, valuated feedback refinement relation from
(S1, G1,Σ1) to (S2, G2,Σ2) is denoted by

(S1, G1,Σ1) �Re
(S2, G2,Σ2)

(S1, G1,Σ1) 4Qe
(S2, G2,Σ2).

Valuated system relations enable the following theorem.

Theorem 1. Let (Si, Gi,Σi), i ∈ {1, 2} be two valuated
control problems and let Re be a valuated alternating
simulation relation from (S1, G1,Σ1) to (S2, G2,Σ2). If
C2 solves (S2,Σ2) then there exists a controller C1 that
solves (S1,Σ1) and the cost functions Ji associated with
Ci ∈ C(Si,Σi) satisfy

∀x1∈X1
∃x2∈R(x1) : J1(x1) ≤ J2(x2). (10)

If Re is a valuated feedback refinement relation form
(S1,Σ1) to (S2,Σ2) then C1 = C2 ◦R.

Theorem is based on the following lemma.

Lemma 1. Consider the context of Theorem 1 and let Si =
(Xi, Ai, Fi). If C2 is a controller for S2, then there exists a
controller C1 for S1 so that for any (α1, ξ1) ∈ B(C1 × S1)
defined on [0;T [ ⊆ Z+, there exists (α2, ξ2) ∈ B(C2 × S2)

defined on [0;T [ so that (ξ1, ξ2, α1, α2) ∈ R[0;T [
e .

If Re is a valuated feedback refinement relation form
(S1,Σ1) to (S2,Σ2) then C1 = C2 ◦R.

Subsequently, we term the controller C1 that is referred to
in Lemma 1 as the refined controller from C2, S2, S1 and
Re.

For feedback refinement relations, Lemma 1 follows di-
rectly from [25, Thm. V.4(iii)]. For alternating simulations
relations the lemma is close to [24, Prop. 8.7].

Theorem 2. Let (Si, Gi,Σi), i ∈ {1, 2} be two valuated con-
trol problems and Vi be the associated value functions (6).
Suppose there exists a relation Re so that (S1, G1,Σ1) �Re

(S2, G2,Σ2). Then

∀(x1,x2)∈R : V1(x1) ≤ V2(x2). (11)

Theorem 2 utilizes the following lemma.

Lemma 2. Consider the context of Theorem 2. Let C2 solve
(S2,Σ2) and fix (x1, x2) ∈ R. There exists a controller C1

that solves (S1,Σ1) and for any (α1, ξ1) ∈ Bx1(C1 × S1)
defined on [0;T [ ⊆ Z+, there exists (α2, ξ2) ∈ Bx2

(C2×S2)

defined on [0;T [ so that (ξ1, ξ2, α1, α2) ∈ R[0;T [
e .

In the next section, we analyze valuated control problems
(S1, G1,Σ1) for sampled-data switched systems and reach
and stay while avoid specifications. We show how to con-
struct two auxiliary valuated control problems (Ŝ2, Ĝ2, Σ̂2)
and (Š2, Ǧ2, Σ̌2) so that there exist relations Qe and Re such
that

(Š2, Ǧ2, Σ̌2) �Re (S1, G1,Σ1) 4Qe (Ŝ2, Ĝ2, Σ̂2).

From Theorem 2 we obtain the inequalities

∀x1∈X1
∀x̌2∈R−1(x1)∀x2∈Q(x1) : V̌2(x̌2) ≤ V1(x1) ≤ V̂2(x̂2).

Moreover, by solving the control problem (Ŝ2, Ĝ2, Σ̂2) we
obtain a controller C that we refine to C ◦Q, which solves
(S1, G1,Σ1). An upper bound on the performance (cost
function) of C ◦Q follows from Theorem 1 by

J1(x1) ≤ sup
x2∈Q(x1)

J2(x2).

V. APPLICATION TO SWITCHED SYSTEMS

A. The Valuated Control Problem

We consider switched non-linear systems given by differ-
ential equations of the form

ξ̇(t) = f(ξ(t), u) (12)

where f : Rn × U → Rn and U ⊆ Rm. We assume that U
is non-empty, finite and that f(·, u) is continuously differ-
entiable for all u ∈ U . We use ϕ to denote the general
solution of (12) for constant inputs, i.e., if x ∈ Rn, u ∈ U ,
then ϕ(·, x, u) is the unique non-continuable solution of the
initial value problem ξ̇ = f(ξ, u), ξ(0) = x [31].

We are interested in designing controllers that are imple-
mentable in a sample-and-hold technique [31, Sec. 1.3]. To
this end, we represent the sample behavior of (12) as system.
Let τ > 0, then the sampled system associated with (12)
(and the sampling time τ ) is given by the simple system
S1 = (X1, A1, F1) with X1 = Rn, A1 = U and for all
x ∈ X1, a ∈ A1 we have F1(x, a) := {ϕ(τ, x, a)}.

A reach and stay while avoid specification for a sampled
system (X1, A1, F1) associated with (12) is parametrized by
the initial state set I1 ⊆ X1, the obstacles O1 ⊆ X1 and the
target set Z1 ⊆ X1. In particular, we would like that every
element (α, ξ) of the closed behavior with initial state ξ(0) ∈
I1 should always avoid the obstacles O1 and eventually reach
the target Z1 and thereafter stay in Z1 forever onwards. We
express this by the specification

Σ1 :=
{

(α, ξ) ∈ (A1 ×X1)[0;T [ | ξ(0) ∈ I1 =⇒
T =∞∧ ∀t∈Z+ξ(t) 6∈ O1 ∧ ∃t∈Z+∀t′∈[t;∞[ξ(t

′) ∈ Z1

}
(13)

which we term Σ1 reach and stay while avoid specification
associated with (I1, O1, Z1).

Given a sampled system (X1, A1, F1) associated with (12)
and sampling time τ , we consider a running cost function
given by a combination of a function

g : Rn × U → R (14)
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with g(·, u) being continuously differentiable for all u ∈ U
and costs induced by updating the controller

δ(a1, a
′
1) :=

{
1 if a1 6= a′1
0 if a1 = a′1.

The running cost function for S1 = (X1, A1, F1), for some
w ∈ R+ results in

G1(a1, x1, a
′
1, x
′
1) :=

1

τ

∫ τ

0

g(ϕ(s, x1, a1), a1)ds+ wδ(a1, a
′
1).

(15)

For technical reasons we introduce the modified transition
function, which does not alter the control problem, given by

F1(x1, a1) :=

{
{ϕ(τ, x1, a1)} if x1 6∈ O1

∅ otherwise.
(16)

We summarize the control problem as follows.

Definition 7. A valuated reach and stay (while avoid) control
problem associated with (12), (14), τ > 0 and I1, O1, Z1 ⊆
Rn is a valuated control problem (S1, G1,Σ1) with S1 =
(X1, A1, F1), where X1 := Rn, A1 := U and F1 is given
by (16). G1 is given by (15) and Σ1 is defined in (13).

To construct auxiliary valuated control problems for
(S1, G1,Σ1), we employ a notion of growth bound, which
we introduced in [25], and we adapt the definition [25,
Def. VIII.2] to account for the cost function g.

Definition 8. Consider (12), (14), K ⊆ Rn and τ > 0. A
pair of maps ρ : Rn+ × U → Rn+, γ : Rn+ × U → R+ is a
growth bound on [0, τ ], K for (12) and (14) if ρ(r, u) ≥
ρ(r′, u), γ(r, u) ≥ γ(r′, u) whenever r ≥ r′ and u ∈ U , and
for every x, x′ ∈ K and u ∈ U we have

|ϕ(τ, x′, u)− ϕ(τ, x, u)| ≤ ρ(|x′ − x|, u)

|
∫ τ

0

g(ϕ(s, x′, u), u)− g(ϕ(s, x, u), u)ds| ≤ γ(|x′ − x|, u).

A method to compute growth bounds for (12) and (14) is
given in [25] by applying [25, Thm. VIII.5] to the control
system (ẋ, ẏ) = (f(x, u), g(y, u)).

B. Auxiliary Valuated Control Problems

The state alphabet X2 of the auxiliary valuated control
problems is given by a cover2 of the state alphabet of the
sampled system associated with (12), where the elements of
the cover are non-empty, closed hyper-intervals, subsequently
referred to as cells. We work with a subset X̄2 of elements
of X2. We interpret those elements as the “real” quantizer
symbols and the remaining elements as overflow symbols,
see [32, Sect III.A]. We assume that X̄2 consists of congruent
cells that are uniformly aligned on a grid

ηZn = {c ∈ Rn | ∃k∈Zn∀i∈[1;n] ci = kiηi} (17)

with grid parameter η ∈ (R+ r {0})n, i.e.,

x2 ∈ X̄2 =⇒ ∃c∈ηZn x2 = c+ J−η/2, η/2K. (18)
2A cover of a set X is a set of subsets of X whose union equals X .

1) Upper Bounding Control Problem: In the construction
of the auxiliary control problem (Ŝ2, Ĝ2, Σ̂2) we follow
closely the approach in [25], which we extend in this paper
to account for the cost function G1 and the specification Σ1.

The algorithm to compute Ŝ2 = (X2, A1, F̂2) is given in
Alg. 1. The main loop iterates over every element in x2 ∈
X2 and a ∈ A1. If x2 is not a real quantizer symbol, the
transition function is set to the empty set in line 3. Otherwise,
by using the growth-bound ρ, an over-approximation D of
the attainable set of (12) with respect to the cell x2 = c +
J−r, rK ⊆ Rn is computed in line 7. Depending whether D
is a subset of the real quantizer symbols, F̂2 equals D or is
defined to be the empty set, see lines 8-11. The function ĝ2

is used to define the running cost function, which results in

Ĝ2(x2, a2, x
′
2, a
′
2) := 1

τ ĝ2(x2, a2) + wδ(a2, a
′
2). (19)

Algorithm 1 Computation of F̂2 and ĝ2

Require: X2, A1, ρ, ϕ, g, r = η/2, τ
1: for all x2 ∈ X2 and a ∈ A1 do
2: if x2 6∈ X̄2 then
3: F̂2(x2, a) := ∅, ĝ2(x2, a) :=∞
4: else let c+ J−r, rK = x2

5: r′ := ρ(r, a)
6: c′ := ϕ(τ, c, a)
7: D := {x′2 ∈ X2 | (c′ + J−r′, r′K) ∩ x′2 6= ∅}
8: if D ⊆ X̄2 then
9: F̂2(x2, a) := D

10: else
11: F̂2(x2, a) := ∅
12: ĝ2(x2, a) :=

∫ τ
0
g(ϕ(s, c, a), a)ds+ γ(r, a)

The specification Σ̂2 for Ŝ2 follows as reach avoid
while stay specification associated with the sets (Î2, Ô2, Ẑ2)
given by

Ẑ2 := {x2 ∈ X2 | x2 ⊆ Z1}, Î2 := {x2 ∈ X2 | x2 ∩ I1 6= ∅}
Ô2 := {x2 ∈ X2 | x2 ∩O1 6= ∅}. (20)

Theorem 3. Let (S1, G1,Σ1) with S1 = (X1, A1, F1)
be a valuated reach and stay control problem associated
with (12), (14), τ > 0 and I1, O1, Z1 ⊆ Rn. Let X2 be a
cover of X1 by non-empty, closed hyper-intervals. Consider
a subset X̄2 ⊆ X2 that satisfies (18) and let ρ,γ be a growth
bound on [0, τ ] and ∪x2∈X̄2

x2 associated with (12) and (14)
(cf. Definition 8). Consider Ŝ2 = (X2, A1, F̂2) with F̂2 given
according to Alg. 1 and Ĝ2 according to (19). Let Σ̂2 be the
reach avoid while stay specification associated with the sets
(Î2, Ô2, Ẑ2) that are defined in (20). Then we have

(S1, G1,Σ1) 4Qe
(Ŝ2, Ĝ2, Σ̂2)

where Qe := {(x1, x2, a1, a2) | x1 ∈ x2 ∧ a1 = a2}.
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2) Lower Bounding Control Problem: The construction
of the auxiliary problem (Š2, Ǧ2, Σ̌2) to obtain a lower
bound on the value function of (S1, G1,Σ1) follows along
the lines of the previous section. The state alphabet of the
system Š2 = (X2, A1 × X2, F̌2) is again given by X2.
However, compared to the construction of F̂2, in which we
treated the non-determinism as adversarial, we treat the non-
determinism as controllable, i.e., the input alphabet is given
by A1 ×X2 and the controller can pick the successor state
in the over-approximation of the attainable set, see Alg. 2,
lines 8-9. The definition of Ǧ2 follows from the function
ǧ2 which is computed in line 3 and 10. The running cost
function follows

Ǧ2(x2, (a2, x̄2), x′2, (a
′
2, x̄
′
2)) := 1

τ ǧ2(x2, a2) + wδ(a2, a
′
2).

(21)

Algorithm 2 Computation of F̌2 and ǧ2

Require: X2, A1, ρ, ϕ, g, r = η/2, τ
1: for all x2 ∈ X2 and a ∈ A1 do
2: if x2 6∈ X̄2 then
3: F̌2(x2, a) := ∅, ǧ2(x2, a) := −∞
4: else let c+ J−r, rK = x2

5: r′ := ρ(r, a)
6: c′ := ϕ(τ, c, a)
7: D := {x′2 ∈ X2 | (c′ + J−r′, r′K) ∩ x′2 6= ∅}
8: for all x′2 ∈ D do
9: F̌2(x2, (a, x

′
2)) := {x′2}

10: ǧ2(x2, a) :=
∫ τ

0
g(ϕ(s, c, a), a)ds− γ(r, a)

The specification Σ̌2 for Š2 is a reach avoid while stay
specification associated with the sets (Ǐ2, Ǒ2, Ž2) given by

Ǐ2 := {x2 ∈ X2 | x2 ⊆ I1}, Ǒ2 := {x2 ∈ X2 | x2 ⊆ O1},
Ž2 := {x2 ∈ X2 | x2 ∩ Z1 6= ∅}. (22)

The following theorem parallels Theorem 3, where we ad-
ditionally have to assume that the real quantizer symbols
X̄2 (exclusively) cover the domain of the control problem
Oc1 := Rn rO1. We express this by

x1 ∈ Oc1 ∧ x1 ∈ x2 ∈ X2 =⇒ x2 ∈ X̄2. (23)

Theorem 4. Let (S1, G1,Σ1) with S1 = (X1, A1, F1)
be a valuated reach and stay control problem associated
with (12), (14), τ > 0 and I1, O1, Z1 ⊆ Rn. Let X2 be a
cover of X1 by non-empty, closed hyper-intervals. Consider
a subset X̄2 ⊆ X2 that satisfies (18) and (23). Let ρ,γ be a
growth bound on [0, τ ] and ∪x2∈X̄2

x2 associated with (12)
and (14). Consider Š2 = (X2, (A1, X2), F̌2) with F̌2 given
according to Alg. 2 and Ǧ2 according to (21). Let Σ̌2 be the
reach avoid while stay specification associated with the sets
(Ǐ2, Ǒ2, Ž2) that are defined in (22). Then we have

(Š2, Ǧ2, Σ̌2) �Re
(S1, G1,Σ1)

where Re := {(x2, x1, (a2, x
′
2), a1) | x1 ∈ x2 ∧ a1 = a2}.

VI. A NUMERICAL EXAMPLE

We provide a small numerical example. We synthesize a
controller to regulate the temperature in a room. The control
system is given by the scalar differential equation

ξ̇(t) = 1
200 (te − ξ(t)) + 1

100 (th − ξ(t))a, a ∈ {0, 1} (24)

where te = 10◦ and th = 50◦ is the outside temperature,
respectively, the heater temperature in Celsius. The control
input equals a = 1 if the heater is on and a = 0 if the
heater is off. The sampling time is fixed to τ = 5 sec.
The parameters are taken from [33]. The aim is to design a
controller such that the temperature evolves in the range of
Z1 := [18, 22]

◦ Celsius. We fix the domain of the problem
to Oc1 := [15, 25]

◦ so that the obstacles result in O1 :=
R r Oc1 and the set of the initial states is defined by I1 :=
[15.5, 24.5]. We use h(x) := 2

100

(
log(1+e100x)−log(2)

)
−x

as a smooth approximation of the absolute value. Then we
consider the running costs given by (15) with

g(x, u) := (1−w)
20 h(21− ϕ(t, x, u))

with which we penalize the deviation of the temperature from
the desired set point of 21◦. We apply [25, Thm. VIII.5] and
obtain a growth bound (valid on any [0, τ ] and K ⊆ R) by

ρ(r, u) := e−
3

200 τr and γ(r, u) := (1 − w)10/3r. Here we
used the fact that the absolute value of the derivative of h is
bounded, i.e., |h′(x)| ≤ 1 for all x ∈ R.

We construct a valuated control problem (Ŝ2, Ĝ2, Σ̂2)
according to Theorem 3. We fix the grid parameter to
η = 0.01 and define the real quantizer symbols by X̄2 :=
{c+[−η/2, η/2] | c ∈ ηZ, c+[η/2, η/2]∩Oc1 6= ∅}. A cover
of R results by X2 := X̄2∪O1. We approach the solution of
the control problem (Ŝ2, Σ̂2) in two steps. First, we focus on
the target region Ẑ2 and synthesize a controller to enforce
the safety specification

Σ̂s :=
{

(α̂, ξ̂) ∈ (A1 × X̂2)[0;T [ | ξ̂(0) ∈ νẐ2 =⇒
T =∞∧ ∀t∈Z+ ξ̂(t) ∈ Ẑ2}.

Here νẐ2 is the maximal controller invariant set contained
in Ẑ2, which we obtain in the synthesis process. We fix a
value K̂2 ∈ R and follow the approach in [20] to synthesize
a controller Ĉs that solves (Ŝ2, Σ̂s) and whose associate cost
function Ĵ2 is bounded by K̂2 for all x̂2 ∈ νẐ2. In the second
step, we follow the approach in [25, Sec. IX] and synthesize
a controller Ĉr to enforce the reach avoid specification{

(α̂, ξ̂) ∈ (A1 × X̂2)∞ | ξ̂(0) ∈ Î2 =⇒
∀t∈dom ξ̂ ξ̂(t) ∈ Ô2 ∧ ∃t∈dom ξ̂ ξ̂(t) ∈ νẐ2}.

Given Ĉs, νẐ2 and Ĉr it is straightforward to construct a
controller Ĉ2 which solves (Ŝ2, Σ̂2). Moreover, the associ-
ated cost function is bounded by K̂2. We apply Theorem 1
and see that Ĉ2◦Q solves (S1,Σ1) and K̂2 provides an upper
bound on the associated cost function J1. We synthesize two
controllers, one for running costs with weight w = 0 and one
for w = 1. For w = 0 and w = 1 we were able to obtain
a bound on the cost function by K̂ = 0.04, respectively,
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K̂ = 0.2. Two closed loop signals, each from a different
controller, together with the cumulative costs L1(t, α, ξ), are
illustrated in Fig. 2.
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Fig. 2. Left: Two closed loop signals with initial state x1 = 15.5◦ resulting
from two controllers synthesized with running cost weight w = 0 (upper
subplot) and w = 1 (lower subplot). Right: Cumulative costs L1(t, α, ξ) for
w = 1 (red) and w = 0 (blue). The dark black lines depict the theoretical
bound K̂2.

We conducted the experiments on a Intel 1.3GHz CPU
with 8GB memory. We used SCOTS [34] to compute the
symbolic models and algorithms in [20] to solve the syn-
thesis problem with average cost objectives. None of the
computations took more than two seconds.
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