
Environmental Research Letters

LETTER • OPEN ACCESS

Quantifying human contributions to past and future
ocean warming and thermosteric sea level rise
To cite this article: Katarzyna B Tokarska et al 2019 Environ. Res. Lett. 14 074020

 

View the article online for updates and enhancements.

Recent citations
Forced Patterns of Sea Level Rise in the
Community Earth System Model Large
Ensemble From 1920 to 2100
John T. Fasullo et al

-

Processes Responsible for the Southern
Hemisphere Ocean Heat Uptake and
Redistribution under Anthropogenic
Warming
Kewei Lyu et al

-

Observational constraints on the effective
climate sensitivity from the historical period
Katarzyna B Tokarska et al

-

This content was downloaded from IP address 98.127.91.102 on 17/06/2020 at 18:30

https://doi.org/10.1088/1748-9326/ab23c1
http://dx.doi.org/10.1029/2019JC016030
http://dx.doi.org/10.1029/2019JC016030
http://dx.doi.org/10.1029/2019JC016030
http://dx.doi.org/10.1175/JCLI-D-19-0478.1
http://dx.doi.org/10.1175/JCLI-D-19-0478.1
http://dx.doi.org/10.1175/JCLI-D-19-0478.1
http://dx.doi.org/10.1175/JCLI-D-19-0478.1
http://iopscience.iop.org/1748-9326/15/3/034043
http://iopscience.iop.org/1748-9326/15/3/034043


Environ. Res. Lett. 14 (2019) 074020 https://doi.org/10.1088/1748-9326/ab23c1

LETTER

Quantifying human contributions to past and future ocean warming
and thermosteric sea level rise

Katarzyna BTokarska1 , Gabriele CHegerl1 , AndrewP Schurer1 , AurélienRibes2 and
JohnTFasullo3

1 School of Geosciences, University of Edinburgh, UnitedKingdom
2 CNRM-GAME,Météo France, CNRS, France
3 National Center for Atmospheric Research, Boulder, CO,United States of America

E-mail: kasia.tokarska@ed.ac.uk

Keywords: oceanwarming, thermosteric sea level, detection and attribution, climate change, Earth systemmodelling

Supplementarymaterial for this article is available online

Abstract
More than 90%of the Earth’s energy imbalance is stored by the ocean.While previous studies have
shown that changes in the oceanwarming are detectable and distinct from internal variability of the
climate system, an estimate of separate contributions by natural and individual anthropogenic
forcings (such as greenhouse gases and aerosols) remains outstanding. Herewe investigate
anthropogenic and greenhouse-gas contributions to past oceanwarming, and estimate their
contributions to future sea level rise by the year 2100. By applying detection and attribution
framework (regularized optimal fingerprinting), we show that oceanwarming in the historical period
is detectable and attributable to contributions from the aggregate anthropogenic forcing aswell as
greenhouse gas forcing alone.We also discuss the role of natural forcing on the ocean volume-
averaged temperature and examine the impact of volcanic activity from the threemain volcanoes
occurring in the historical period 1955–2012.Our results suggest that estimated anthropogenic and
greenhouse-gas contributions to oceanwarming are consistent with observations, and observation-
ally-constrained future thermosteric sea level rise projections support the central and lower part of the
multi-modelmean projection range distribution.

1. Introduction

The excess energy in the climate system resulting from
the net energy imbalance at the top of the atmosphere
is accumulated in the ocean, resulting in its warming.
The resulting thermal expansion of ocean, here
referred to as thermosteric sea level rise, is the
dominant component of the global mean sea level rise,
which is also affected by glacier mass loss and changes
in land water storage (Church et al 2013). Contribu-
tions from natural forcing alone cannot explain the
increase in ocean warming (Bindoff et al 2013, Palmer
et al 2009, Gleckler et al 2012, Pierce et al 2012, Bindoff
et al 2013), or changes in the sea level rise (Marcos and
Amores 2014, Marcos et al 2017). These and earlier
studies (e.g. Barnett et al 2001, Barnett et al 2005,
Pierce et al 2006, Gleckler et al 2016) focused on
separating natural and anthropogenic drivers of the

changes in ocean warming in the upper 0–700 m, and
are primarily based on a detection analysis (verifying
whether the natural signal alone can explain the
observed changes, and at what point in time anthro-
pogenic signal becomes significantly distinct from
natural variability of the climate system).

A recent study of Swart et al (2018) performed a
regression-based approach to detection and attribution
of temperature and salinity changes in the Southern
Ocean, using a large ensemble of the CanESM2 model
at 0–2000 m depth, separating the anthropogenic
influence on ocean warming to individual forcings
(i.e. aerosols-only, ozone-only, greenhouse-gas only).
Thermosteric sea level rise also has been attributed to
anthropogenic forcings (including individual attribu-
tion to greenhouse gas forcing and aerosol forcing),
using global mean thermosteric sea level inferred from
the observed ocean heat content interpolated datasets
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(that account for regions with missing observational
coverage), and compared with the direct global ther-
mosteric sea level output from climate models (Slangen
et al 2014). However, for a detection and attribution of
the true observed signal, comparing like for like model
output and observations is desirable which requires
masking of themodelled output according to the obser-
vational coverage. Considering spatial or depth infor-
mation beyond dimensions other than global mean can
also lead to amore accurate detection and attribution of
the signal (e.g. Schurer et al 2018), and can affect the
results (e.g. Skeie et al 2018).

Here we use a detection and attribution technique
(Allen and Stott 2003, Ribes et al 2013) applied to
ocean temperature changes on a global scale in the
0–2000 m depth layers (split into three representative
depth layers) over the 1955–2012 period. Using com-
prehensive Earth System Models (ESMs) from the
Fifth Coupled Climate Model Intercomparison Pro-
ject (CMIP5) (Taylor et al 2011) and raw (non-inter-
polated) observations (Levitus et al 2012), we separate
contributions of the aggregate anthropogenic and
individual greenhouse gas-only signals in the ocean
warming. Such analysis allows for estimating the
anthropogenic and greenhouse gas-only contribution
to future thermosteric sea level rise projections.

2.Data andmethods

2.1. Regularized optimalfingerprinting (ROF)
We make use of the ROF method in (Ribes et al 2013,
Ribes and Terray 2013), which is based on the total
least squares regression (Allen and Tett 1999, Tett et al
1999, Allen and Stott 2003). Following the notation in
(Ribes et al 2013), the vector of observations y is
expressed as a sum of the true climate response *y ,
and noise due to internal variability ey (equation (1)).
Similarly, the climate model response to each ith
external forcing is expressed as a sum of the noise-free
response *x i to that forcing i, and noise ex i, due to
internal variability and due to a finite ensemble size
(equation (2)), where the errors between ex i, are
assumed to be independent (Ribes et al 2013):

* e= + ( )y y , 1y

* e= + ( )x x . 2i i x i,

The inclusion of distinct noise estimate ex i, distin-
guishes the total least squares regression from a
simpler ordinary least squares approach (Allen and
Stott 2003).

Assuming linear additivity of the forcings (Hegerl
et al 1997, Tett et al 1999, Gillett et al 2004, Swart et al
2018), the true climate response ( *y , equation (1)) to
all forcings (l) is expressed then as a sum of modelled
responses scaled by scaling factors bi (Ribes et al 2013)
in equation (3):

* *å b=
=

( )y x . 3
i

l

i i
1

The samples of model pre-industrial control simula-
tions were split into two samples of equal size. Onewas
used to optimize the fingerprinting, and the other one
was used to calculate the 5%–95%confidence intervals
of the scaling factors and to carry out the residual
consistency test (RCT), which determines if the
residual of the regression is consistent with simulated
internal variability (Allen and Tett 1999, Ribes
et al 2013). ROF produces a full-rank estimate of the
covariancematrix (Z) of internal variability (Ribes et al
2013), which does not require EOF truncation (Ribes
et al 2013). A RCT was carried out to determine
whether the estimate of the noise (ey) is consistent
with the simulated internal variability, using a non-
parametric estimation of the null distribution through
Monte-Carlo simulations (Ribes andTerray 2013).

The 90% confidence intervals on bi are calculated
by the ROFmethod (Ribes et al 2013). A scaling factor
bi different from zero (and positive) implies that the
signal from a given forcing is detected (significantly
different from internal variability, at 5%–95% con-
fidence level), while a scaling factor consistent with
unity indicates that the observed signal is consistent
with model simulations. If a scaling factor is sig-
nificantly non-zero and consistent with unity, then
part of the observed change can be attributed to the
corresponding forcing. For a detailed description and
application of the ROF method see (Ribes et al 2013,
Ribes andTerray 2013, Kirchmeier-Young et al 2016).

2.2.Models used and data preparation
We make use of seven comprehensive ESMs from
CMIP5 (Taylor et al 2011) that had sea water potential
temperature (‘thetao’ CMIP5 variable name) data
available for fully-forced (ALL), and individual-for-
cing simulations (NAT-only, GHG-only) during the
historical period until the year 2012 (see the online
supplementary table S1, available at stacks.iop.org/
NANO/14/074020/mmedia). All model data were
interpolated onto the common observational grid
(180×360) and 26-vertical depth levels. For a like-
with-like comparison, the model data were masked
according to replicate the observational coverage for
each time step, and at each depth level, and anomalies
were calculated in the same way as observations
(Levitus et al 2012, Boyer 2013). The observational
time-series considered here are raw (not in-filled) and
provide annual data for 0–700 m depth, and pent-
annual data (five year means) for 700–2000 m, for the
period 1955–2012.

The detection and attribution (ROF analysis) was
carried out simultaneously on the global mean time-
series calculated individually for three depth layers:
0–300 m, 300–700 m, and 700–2000 m. The volume
mean temperature was calculated for each of the time-
series separately, prior to merging. Following input
requirements of the ROFmethod, all globalmean time
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series input was centered (with the mean removed)
and segmented into five year non-overlapping means.
Both themodel output and the observations were pro-
cessed in the sameway.

For model output, we use the ensemble mean of
the available simulations for historical (ALL-forcing),
natural-only (NAT), and greenhouse-gas only forcing
(GHG) simulations until the year 2012. Since the his-
torical (ALL-forcing simulations) run only until the
year 2006, either historical extension simulations were
used (where available), or RCP 4.5 simulations, to
extend the time-series to the year 2012. (Either RCP
8.5 or RCP 4.5 scenario could be used for the extension
from the year 2006 until the year 2012, as the differ-
ence in radiative forcing becomes noticeable only at a
later time, supplementary figure S7). Since data from
other-anthropogenic forcing (OANT) and anthro-
pogenic-only forcing (ANT) only simulations were
not available for all the models considered here, under
the assumption of linear additivity of forcings (Hegerl
et al 1997, Tett et al 1999, Gillett et al 2004, Swart et al
2018), the time-series for OANT, and ANT were cal-
culated as the difference between ALL and NAT
time-series (in case of the ANT time series), and as a
difference between ANT and NAT time series (in case
ofOANT).

Pre-industrial control simulations were processed
in the same way as historical model output, masked
according to observational coverage for each time step
and at each depth level, averaged into 5 year non-over-
lapping means. All pre-industrial control run simula-
tions were considered only after the branch year (when
the historical simulation was started) for different
models to minimize the influence of the drift soon
after the spin-up. A small drift occurs in the bottom
layer 700–2000 m, which is to be expected, and
becomes lower after thefirst 20 years of each time slice.
However, to keep the noise estimates consistent with
the actual model variability, we did not de-trend the
simulations. (Using de-trended pre-industrial control
simulations produced over-confident scaling factors
which may underestimate the multi-decadal varia-
bility). The covariance matrix representing internal
variability was composed of pre-industrial control
runs from all models (divided into 58 year chunks
masked by observational coverage, centered (with the
mean removed), and calculated from 5 year non-
overlappingmeans).

We carried out several sets of analysis, resulting in
different scaling factors (table 1). First, we carried out
analyses based on the following two time-series (sig-
nals), which we refer to as a two-signal analysis: ALL-
forcing and natural-only forcing (NAT-only). This
allowed us to derive scaling factors bANT and bNAT

(case A1, table 1). To quantify the contribution due to
greenhouse gases alone (and the respective scaling fac-
tor bGHG), we performed an analysis based on two
time-series (signals): anthropogenic-only forcing
(ANT) time-series, and GHG-forcing only time-series

(cases B1–B4). In cases B1 and B2, the influence of nat-
ural forcings is neglected. To prevent any confounding
effect, particularly by volcanism, this analysis was
replicated in cases B3 and B4, but with NAT time-ser-
ies subtracted from the observations OBS (table 1). To
account for the possibility that internal variability in
the models may be lower than that in observations, we
performed several sensitivity analyses by inflating the
variance from pre-industrial control runs by a factor
of 2, in cases A2, B2 and B4 (table 1), as in Schurer et al
(2018). A three-signal analysis (not shown) produced
degenerate results (with scaling factors or their uncer-
tainty ranges below zero).

3. Results

3.1.Quantifying signals in the oceanwarming
Comparing observed changes (1955–2012) in the zonal
mean (global) climatology of potential ocean temper-
ature and CMIP5 model responses to individual
forcings (such as GHG-only, NAT-only, ANT-only,
and OANT-only) illustrated in figure 1, suggests that
themulti-modelmean responses to ALL forcingmay be
slightly overestimated. The simulated change in
response to natural forcing (NAT-only simulations)
seems to be very small. The deepest penetration of the
warming signal in GHG-only simulations occurs in the
North Atlantic Ocean (figure S1), whereas the ALL-
forcing response shows warming in that region to a
smaller extent. These results are generally consistent
with the recent studyofLembo et al (2018), who showed
that the Northern Hemisphere warms more than the
Southern Hemisphere in GHG-only simulations, while
in ALL-forcing simulations the hemispheres warm
similarly (Lembo et al 2018, Irving et al 2019). In all

Table 1.Detection and attribution (ROF) inputs and outputs,
illustrated infigure 2. Time series were calculated separately for
0–300m, 300–700m, and 700–2000mexpressed as anomalies to
the entire periodmean (until the year 2012), and the input was
centered (with the ensemblemean removed) prior to ROF analysis.
Sensitivity to the starting year (varying from 1955 to 1980) is shown
infigure S4. ANT time-series were calculated as the difference
betweenALL andNAT.

Case name ROF Inputs (time-series) Output (scaling factors)

A1 ALL,NAT b ,ANT bNAT

A2 AsA1 butwith double

variance

b ,ANT bNAT

B1 ANT,GHG b b,GHG OANT

B2 AsB1 butwith double

variance

b b,GHG OANT

B3 ANT,GHG,with

(OBS -NAT)a
b b,GHG OANT

B4 AsB3 butwith double

variance

b b,GHG OANT

a Note: In case B3 (and B4), the natural-only signal (including the
response to volcanic eruptions) was removed from observations by

subtracting the NAT annual mean from the observed time-series

(section 2.2).
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three basins (Atlantic, Pacific and Indian Ocean), the
greenhouse-gas only response is stronger than the
historical all-forcing response, which is also stronger
than the observations (figures S1–S3, respectively). The
observed change pattern correlates best (0.70) with the
greenhouse gas response, and only slightly less with the
historically forced simulations (0.63), possibly due to a
slightly smaller,more noisy response in the latter.

To quantify the individual contributions from dif-
ferent forcings which explain the observed changes in
the ocean heat content, we carried out an ROF detec-
tion and attribution analysis using multiple combina-
tions of fingerprints (sections 2.1 and 2.2). We make
use of volume-averaged temperature, and all model
responses were masked according to observational
coverage at each depth level and at each time step
(section 2.2). Since the dimension of the analysis is
limited by the length of pre-industrial control samples
needed for the detection and attribution analysis, we
make use of global mean time-series calculated for the
three representative depth layers instead of zonal
mean plots (this is because zonal mean plots would
have a much larger spatio-temporal dimension, there-
fore, requiring a much larger sample of control simu-
lations to provide sufficient estimates of noise from
internal variability; Ribes et al 2013).

First, we consider different combinations of inputs
for analyses described in table 1. In case B1, (table 1),
from an ensemble mean of ALL-forcing simulations
and NAT-only simulations, we derive scaling factors
b b,ANT NAT (figure 2(a)), to estimate the respective
contribution of the response to anthropogenic and
naturally forced responses to observed ocean warm-
ing. The anthropogenic signal in ocean warming is
confidently detected and attributed (consistent with
unity) at the 5%–95% level. The natural signal is not
detected, and the confidence interval on bNAT scaling

factors is wide, due to difficulties in distinguishing it
from internal variability in the climate system. How-
ever, the contribution by natural forcing to observed
ocean temperatures is estimated to be small. Next, we
regressed observations ontoGHG-only andANT-only
time series (case B1; figure 2(b)), to estimate contribu-
tions from greenhouse gases alone (GHG) and other
anthropogenic forcings (OANT), such as aerosols and
ozone, assuming linear additivity of the forcings
(figure S7) and neglecting the small natural response.

To evaluate the sensitivity of results to explicit
consideration of natural forcing, we separated the nat-
ural influence from the anthropogenic forcings (case
B3), and performed a similar regression (ANT and
GHG-only), but with the NAT-only ensemble mean
signal removed from the observational time series
(figures 2(b) and (d); case B4). Such treatment
removes the volcanic signal from observations, to
make sure that the scaling factors are not affected by
volcanoes. This resulted in similar scaling factors as in
the previous case where the natural signal was not
removed prior to analysis (figures 2(b); S4), suggesting
that not accounting for natural forcings does not bias
our detection and attribution results. Given that the
amplitude of natural signals is estimated to be likely
between a scaling factor of 0 and 1 (figure 2(a)), the
similarity of these two cases suggests that there is little
influence of natural forcing on long trends; further
supported by results estimating bANT and bNAT

(figure 2(a)). The uncertainties on bGHG and bOANT

are relatively large compared to bANT (figure 2), how-
ever, bGHG is still constrained and of similar magni-
tude to bANT (figure 2(b)). This provides us with more
confidence in using these results for constraining
future projections (section 3.2), as results support the
model-simulated response to each forcing separating
(with scaling factors close to unity).

Figure 1.Multi-model zonalmean (global) ocean temperature change, shown as the difference between 2012–2006mean and
1955–1980mean for simulationswith different forcings, as labelled: (a) historical ALL-forcing; (b) greenhouse gas-only forcing; (c)
natural-only forcing; (d) observed changes (Levitus et al 2012); (e) anthropogenic forcing; (f) other anthropogenic forcing (e.g.
aerosols). The numbers in brackets (denoted as ‘corr’) for eachmodel simulation panel indicates the pattern correlationwith the
observations, omittingmissing values. (Seefigures S1–S3 for the zonalmean of individual basins).
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Sensitivity analysis with inflating the variance
from pre-industrial control runs by a factor of 2,
accounts for the possibility that internal variability in
the models may be lower than in the real world, resul-
ted in a widening of the 5%–95% range uncertainty
range in the scaling factors (figure 2, cases A2, B2, B4),
but does not affect ourmain conclusions.

We also carried out a sensitivity analysis to the
time-period chosen, by making the start years differ
from the year 1955–1980, in five-year intervals. The
scaling factors show some sensitivity to the start year of
the time-series (figure S4). For starting years of 1975 or
later, the scaling factors have much wider uncertainty
ranges, because the period 1975 (or later) to 2012 is

Figure 2.Detection and attribution results (scaling factors) for a two-signal analysis: (a) cases A1, A2 (as in table 1), (b) cases B1–B4,
and the corresponding reconstructed time series of globalmean responses (c), (d) using scaling factors from case A1 (c), and using
scaling factors from case B3 (d). The time series in (c), (d) are based onCMIP5multi-model 5 year non-overlappingmeans, scaled
using the attribution results (a), (b). Shaded areas show the uncertainty in themagnitude of the response (spread of scaling factors) for
different depth intervals, as labelled. Left panel shows a two-signal analysis resulting inANT andNAT contributions, the right panel
shows results from a two-signal analysis estimating results from a two-signal analysis resulting inGHGandOANTcontributions (case
B3). The scaling factors are based on analysis of the time-series for 0–300m, 300–700m, and 700–2000, regressed simultaneously and
masked according to the observational coverage.Note different vertical scales on the two bottom panels. (See table 1 and section 2.2 for
how the time-series were constructed and scaling factors derived. See supplementarymaterial for sensitivity analysis and supplementary
table S2 for the values plotted in (a), (b).)
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shorter, and hence, it is more difficult to seperate the
signal from climate variability, even though the
anthropogenic signal is stronger then. Estimates of
scaling factors are expected to depend on the con-
sidered period because the longer the period the better
the signal to noise ratio (Hegerl et al 1996, Ribes et al
2017). Since start years between 1955 and 1980 makes
little difference to the calculated scaling factors, we
focus our main analysis on the scaling factors calcu-
lated for the longest period available of 1955–2012.

3.2. Anthropogenic contributions to future
thermosteric sea level
Thermosteric sea level rise increases in proportion to
the increase in the ocean heat uptake (Kuhlbrodt and
Gregory 2012, Trenberth et al 2016). In the top
0–700 m of ocean depths sea level rise is estimated to
be 1 mm/year in response to 0.31–0.47Wm−2 ocean
heat uptake, and 1 mm/year in response to
0.68Wm−2 heat uptake below 700 m depth,
because thermosteric expansion differs with depth
(Trenberth et al 2009, Trenberth et al 2016). However,
the scaling factors for volume-averaged temperatures
are not substantially different when derived from a
two-depth analysis (0–300 m and 300–700 m, conca-
tenated), or a three-depth analysis that also includes
the bottom ocean 700–2000 m. Therefore, we use the
three-depth analysis (as in figure 2, but calculated only
for models that had sea level rise data), to estimate
future thermosteric sea level rise projections due to
anthropogenic forcing.

Using such a scaling approach to constrain the
future projections is based on the assumption that if a
model overestimates a magnitude of historical climate
change, the future climate change will be over-
estimated in a proportional amount (Stott and
Kettleborough 2002,Mueller et al 2016, Shiogama et al
2016, Li et al 2017). This approach can be applied to
both global mean changes as well as spatio-temporal
changes (Shiogama et al 2016) under scenarios where
radiative forcing is increasing over time, and the rela-
tive contribution of the anthropogenic forcing
remains constant over time, which is not the case in all
RCP scenarios (Li et al 2017). We applied this
approach to the Representative Concentration Path-
way (RCP) 8.5 scenario (Vuuren et al 2011), which
entails high levels of greenhouse-gas radiative forcings
that continually increase over time, and RCP 4.5 sce-
nario, where greenhouse-gas radiative forcings
increase at a lower rate and start to stabilize before the
year 2100 (figure S7). The present-day aerosol forcing
is stronger than future aerosol forcing projections (as
in RCP 8.5 or RCP 4.5 scenarios), but the greenhouse-
gas forcing is the dominant component of anthro-
pogenic forcing in the future RCP 4.5 and RCP 8.5 sce-
narios. Since the individual-forcing simulations are
not available beyond the year 2012, we use bGHG to
scale future projections (as in Li et al 2017), which are

dominated by the greenhouse gas forcing. The
assumption that the true underlying scaling factors are
assumed to be constant is part of the key assumptions
behind regression models. Therefore our treatment
applied in section 3.1 (using bGHG for the longest per-
iod considered) is consistent with standard detection
and attribution assumptions that a model can under
or overestimate the magnitude of the response to
GHG, but is (assumed) correct in simulating the
response pattern over time and with depth, which is to
a large part governed by climate physics.

Specifically, to estimate contributions to the future
thermosteric sea level rise due to greenhouse gases
(figure 3(b)), we make use of the bGHG scaling factors
derived as above for the two-signal analysis
(figure 2(b); case B3 and B4). Making use of bGHG scal-
ing factor avoids confounding effects from aerosols
(which are also part of the anthropogenic (ANT) for-
cing). Aerosol emissions decline and get close to zero
in RCP 4.5 and 8.5 scenarios (resulting in an increase
radiative forcing; figure S7). This scaling factor (b ;GHG

cases B3 and B4) had the natural signal subtracted
from observations in order to remove influences of
volcanic activity (see the next section 3.3). Such treat-
ment avoids the situation where the omitted natural
forcing signal confounds the estimated signal magni-
tudes and with its scaling factors. For comparison, we
also show the thermosteric sea level results scaled by
bANT (figure 3(c)), which did not have the natural (vol-
canic) influence removed. Note that in the near term,
decreases in aerosol forcing may lead to a further
regional sea level trend (see discussion in conclusion
section). However, there are not sufficient future aero-
sol-only simulations available to fully explore this.

Since fewer models had global mean thermosteric
sea level rise available, we calculated bGHG for the set of
models (table S1) that is used for thermosteric sea level
projections in RCP 8.5 and RCP 4.5 scenarios. The
scaling factors derived in a two-signal analysis show
little sensitivity to the set of models chosen (figure S5).
Such analysis provides estimates of the increase in
thermosteric sea level rise due to greenhouse-gas for-
cing (figure 3).

An earlier study by Slangen et al (2014) derived the
anthropogenic scaling factor bANT of 1.08±0.13
(±2σ) by inferring sea level rise from interpolated (full
coverage) observations of the ocean heat content prior
to detection and attribution analysis performed
directly on the sea level time-series. This is broadly
consistent with our bANT estimates 0.86 (5%–95%
range of [0.69, 1.05]; figure S5; supplementary table
S2) and similar to our values of bGHG of 0.91 (5%–95%
range of [0.67, 1.17]), since GHG forcing is the domi-
nant component of the anthropogenic forcing (ANT).
In contrary to the Slangen et al (2014) study, we
obtained the scaling factors by first regressing the raw
(non-infilled) observations of the ocean warming on
the volume-averaged temperature in CMIP5 models
masked by the observational coverage. We then apply
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these scaling factors to the past and future thermos-
teric sea level rise (figure 3).

An estimate of thermosteric sea level rise due to
greenhouse gas contributions (i.e. thermosteric sea
level rise scaled by bGHG) results in a lower upper
bound on sea level rise in both RCP scenarios and a
lower mean (by approximately 15%), but a wider
uncertainty spread between lower and upper bounds of
(5%–95% CI; figures 3; S5). The wider range of the
future sea level spread scaled by bGHG and bANT is due
to the fact that we use themean value (and the 5%–95%
lower and upper bounds, figures 3; S5) to scale the
ensemble mean sea level rise to all forcings (as in RCP
8.5 or RCP 4.5, respectively). Our results suggest that
estimated anthropogenic contributions to future sea
level rise projections support the multi-model mean
projection range, with stronger support for the central
and lower part of the distribution. These findings are
consistent with earlier studies which suggested that sea
level rise projections from CMIP5 models are con-
sistent with observations albeit may be biased high
(Church et al 2013,Nerem et al2018).

3.3. The role of volcanic activity
Applying the scaling factors obtained from the histor-
ical period to scale future thermosteric sea level rise
projections is subject to assumptions that solar and
volcanic activity has not shown a strong influence on
long-term sea level rise over the analysis period. To
evaluate the sensitivity of our results to natural forcing
(that is dominated by volcanic activity), we have
removed the model-simulated natural influence from
observations, and performed a similar regression as
cases B1 and B2 (ANT andGHG-only; figures 2(b) and
(d); cases B3 and B4). Since results were found to be

not sensitive to this removal of the solar and volcanic
signal from observations, this suggests that scaling
factors are not much affected by natural forcing, at
least, if themodel simulated time-depth response to it.
This response is further evaluated in this section.

Natural forcing in the models, and probably also in
observations (Schurer et al 2013), is dominated by the
response to volcanic eruptions. In order to evaluate the
model simulated time-depth pattern of the volcanic
response, we analysed the response of ocean warming
to volcanic eruptions in an epoch analysis (figure 4) ,
similar to Iles and Hegerl (2014). It is based on the
ocean temperature response to three main volcanic
eruptions (Agung, El Chichon, and Pinatubo), occur-
ring in years 1963, 1982, and 1991, respectively. Aver-
aging across the model response in ocean warming to
volcanic eruptions reduces internal variability (Iles and
Hegerl 2014), and allows for investigation of how deep
the volcanic signal penetrates the ocean depths, and
how long it extends. In the epoch analysis, time series of
the ocean response are identified from 8 years prior to
each eruption, to 14 years after the eruption, and aver-
aged across all three eruptions, centered on the eruption
year as year ‘0’ (figure 4). Observations were de-trended
by removing a linear trend fitted to the whole period
(1955–2012), to remove an estimate of the anthro-
pogenic trend. Similarly, for each model, ALL-forcing
simulations were masked according to the observa-
tional coverage and de-trended in the same way as the
observations. Then, an epoch analysis from the three
eruptions was conducted. A multi-model mean and
range of each individual model simulation’s analysis
was then taken. The model response is generally con-
sistent with the observed response to natural forcing
(estimated by the de-trended observations) (figure 4).

Figure 3. (a)Time series of globalmean thermosteric sea level rise changes based onRCP 8.5 (red), andRCP 4.5 (orange) scenarios.
Shaded areas show the spread of the fourCMIP5models considered that had sea level data available (table S1), de-trended based on
the respective pre-industrial control runs; (b)The vertical bars show the uncertainty spread in the year 2050, and the year 2100, as
labelled, with the diamonds and circles indicating themean value. Lines with circles show thermosteric sea level contributions due to
greenhouse gas forcing and anthropogenic forcing (based on theCMIP5mean in (a)), scaled by bGHG factors (5%–95%CI andmean
value) derived from a two-signal analysis, for cases B3 andB4, as labelled; (c) same as (b) but scaled by bANT instead. In each group in
(b), (c), thefirst linewith a diamond indicates theCMIP5 originalmodel spread (with no scaling), as in (a).Note: The scaling factors
were derived for the set of fourmodels used in this plot (table S1) and are similar to those shown infigure 2(b). Anomalies are calculated with
respect to the 1955–2012 period (to be consistent with the way the scaling factors were derived). Therefore, these results are not directly
comparable with IPCCAR5 SPM.9 figure, due to different base periods and a possibly different set of models used. Sea level rise time-series
were de-trended by removing linear trends fitted to pre-industrial control simulations.
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The main influence of volcanic activity is noticeable in
the top 0–300 m of the ocean depth layer, with the
model mean response occurring slightly earlier and
recovering later than the observations (figure 4). The
response decays within about a decade (note that the
temperature drop towards the end may be due to the
eruption of Mount Pinatubo within the analysis period
for Agung). Results show that model-simulated and
observed responses appear broadly consistent, support-
ing the removal of the model simulated natural forcing
response. Our volcanic analysis further shows that if a
volcanic eruptions was to occur in the future, the
observed time-depth response would probably be rea-
sonably simulated by the models, and could be super-
imposed on the anthropogenic forced trend.

3.4. Uncertainties and limitations
TheCMIP5models used in this analysis do not include
ice sheets, therefore actual sea level rise would be
higher than the thermosteric sea level rise presented
here. Thermal expansion contributes to 30%–50% of
the total sea level rise projections (Church et al 2013).
Also, our estimates of the anthropogenic and green-
house-gas attributable components of future thermos-
teric sea level rise are subject to the assumption that
the scaling factors derived from the historical and
present-day period can be applied to the future
projections (see discussion in section 3.2).

Using multi-model ensemble means, instead of
individual model results in detection and attribution
framework was shown to generate over-confident
scaling factors (Schurer et al 2018). However, due to
limited ensemble sizes for the models that had data
available (table S1), we resort to using multi-model
means to ensure the sample sizes are suitable for the
ROF method chosen here. Our sensitivity analysis
(figure S4) with inflated variance may at least partly
account for that, and shows larger uncertainty rages
(5%–95%) on the scaling factors.

We use only one observational dataset Levitus et al
(2012), as results from other detection and attribution
studies shown to be relatively insensitive to the use of
other observational data sets (Gleckler et al 2012,
Bilbao et al 2019, Slangen et al 2014). The Levitus et al
(2012) dataset provides a raw (non-interpolated)
three-dimensional ocean temperature data set, which
is needed for detection and attribution analysis pre-
sented here (figure S6). Alternative datasets (e.g.
Cheng et al 2017) are available, however, in their map-
pingmethod (to infill missing data regions in 0–700 m
layer), they make use of spatial covariance of CMIP
model outputs (Cheng et al 2017). Such products are
generally avoided in detection and attribution ana-
lyses, because if the observed product was already
informed by CMIP model output, then scaling factors
that show the amplitude ofmodel fingerprint in obser-
vations would no longer be driven by observations
only, making the analysis slightly circular (e.g. Hegerl
andZwiers 2011).

4. Conclusions

Previous detection and attribution studies primarily
focused on separating natural signal and the forced
responses due to all anthropogenic forcings. Here, we
advance on previous work by attributing changes in
the ocean warming to greenhouse gases alone. The
bANT estimates 0.86 (5%–95% range of [0.69, 1.05]) is
similar to the values of bGHG of 0.91 (5%–95% range
of [0.67, 1.17]), since GHG forcing is the dominant
component of the anthropogenic forcing (ANT). We
find that volcanic cooling was found to be consistent
with observations, primarily affecting the top 0–300m
of the ocean. We also use multiple ways of estimating

Figure 4.Epoch analysis for the ocean response to three
volcanic eruptions. The response is calculated fromde-
trended observations (black) andmodel responses (de-
trended, to remove anthropogenic contribution, processed in
the sameway as the observations), for different depth levels,
as indicated. Shaded areas show 5%–95% ensemble envelope
average of the epoch analysis.
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the anthropogenic and greenhouse gas-only signals, to
derive scaling factors, which we then use to estimate
anthropogenic contributions to the future thermos-
teric sea level projections. Our results suggest that the
mean thermosteric sea level rise in CMIP5 models in
response to RCP 8.5 and RCP 4.5 scenarios may be
biased high. The estimated greenhouse-gas contrib-
ution of the future thermosteric sea level rise supports
themulti-model mean projection range, with stronger
support for the central and lower part of the distribu-
tion. Since the aerosol forcing declines in bothRCP 8.5
and RCP 4.5 scenarios, it seems more relevant to scale
the future projections by b ,GHG which does not
include aerosol forcing. However, if, in reality, bOANT

is at the upper end of the range that is consistent with
the observations, this could lead to faster sea level rise
than in our estimates. Especially in case of future
reductions of aerosol emissions (which we neglect for
the future in this scaling approach), could lead to a
more positive forcing and thus, a more rapid sea level
rise in the near-term.
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