DETECTING ERRORS IN PROGRAMS

by

Lloyd D. Fosdick
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

CU-CS-149-79 February, 1979

To appear in "Proceedings of IFIP Working Conference
on Performance Evaluation of Numerical Software",
Baden, Austria, December 1978.

LS

DETECTING ERRORS [N PROGRAMS:

Lloyd D. Fosdick
Department of Computer Science
University of Colorado
Boulder, CO 80309, U.S.A.

A review of work on the occurrence and detection of errors in
computer programs is presented. This includes: experiments
to measure the frequency and distribution of errors; the use
of simulation to determine the effect of typing mistakes;
data flow analysis for static error detection; and measures
to quantify program testing.

INTRODUCT I ON

"It is natural at first to dismiss mistakes in programming

“as an inevitable but temporary evil, due to lack of

experience, and to assume that if reasonable care is taken

to prevent such mistakes occurring no other remedy is

necessary'',
Stanley Gill wrote these words over twenty-five years ago [1], pointing out
that experience refuted this position: experience still refutes it, arguments
for proving programs correct notwithstanding., We are human, and being human it

“is inevitable that we make mistakes which result in errors in computer

programs. With improved languages, with careful attention to program design
and programming style we can reduce the occurrence of errors, But we cannot
eliminate them, so we cannot ignore the problem of error detection or questions
concerning the distribution of errors, their types, and their symptoms,

This paper is concerned with the occurrence and detection of errors in
computer programs. |t is a review intended to show the nature of the research
being conducted and the state of our knowledge to those not well acquainted
with the subject. It will show that our knowledge of the occurrence of errors
in computer programs is scanty and difficult to interpret, that error detection
in practice is weaker than it needs to be, that software testing is guided
largely by intuition and is lacking a scientific foundation, and finally that
there is no shortage of interesting problems in this area.

TERMINOLOGY

The terminology used to describe errors in the literature varies in meaning,
making it difficult to interpret and compare results. For example, in one
article ''syntax error' means any error reported by a compiler, in another it
means a violation of a grammatical rule. While it might seem easy, anyone who
attempts to analyze the problem of error classification will find it very
difficult; indeed the notion of error itself is hard to characterlize. This is
confirmed by the experience of Gerhart [2] who has recently examined this issue
in connection with an unsuccessful attempt to build a taxonomy of errors.
However we must have a common understanding of the terms used here so some
brief definitions suitable for this purpose follow,

Here the word ''error'' means a construction in the program which violates a
language rule, or which may cause a computation that is not intended according
to the specification of the program: an error of the first type is called a
language error, and an error of the second type is called a specification error,

* This work was supported in part by U.S. Army Research Contract
No, DAAG29-78-G-0046.

F

-2-

Language errors are divided into two ‘types, syntax errors and semantic errors,
according to the following scheme which is similar to that used by compiler
writers [3]: the language rules are separated into two groups such that those
in one group can be represented by a context free grammar, then a language
error is called a syntax error if it is a violation of the rules of the context
free grammar, otherwise it is called a semantic error. If a program contains
no language errors it is called well-formed, and a well=formed program with no
specification errors is called correct. A construction in a well-formed
program that is extremely unusual is called an anomaly; it is often a symptom
of a specification error.

It will be convenient to use the term '"flow graph'. This is a directed
graph representing the control structure of a program, with the nodes
corresponding ‘to statements and the edges to pairs of statements executable in-
immediate succession. Thus a flow graph is an abstraction of the conventional
flow diagram. In speaking of program execution | use a loose but convenient
terminology, speaking of executing a node (i.e. a statement) or executing a
path (i.e. a sequence of statements).

Two approaches to error detection, called static and dynamic, are
distinguished. Static error detection is characterized by the use of
techniques that do not require actual execution of the program. The most
common form of static error detection occurs during parsing in the compilation
of a program. Dynamic error detection, on the other hand, uses information
gathered during actual execution of the program to detect errors. The most
common form of dynamic error detection occurs during the testing of a program.

Unfortunately language rules and specifications are often incomplete or
ambiguous, so the application of these definitions runs into difficulty;
therefore in practice the distinction between syntax error and semantic error
is often fuzzy, as is the distinction between well-formed programs, and correct
and incorrect programs. FORTRAN programs present a particularly difficult
problem in this respect. Furthermore the notion of a correct program is
idealistic for most practical purposes, especially so when it comes to
numerical software, since we lack the mechanisms required for insuring that a
program meets its specifications unless the specifications are exceptionally
simple. Thus these definitions must be taken as a statement of intent,
recognizing that in practice theyywi1}‘be applied imperfectly.

OCCURRENCE OF ERRORS

Our concern here is with the frequency of errors in program text and with
the types of errors that result from simple mistakes made in the preparation of
program text. Data on errors has been obtained by examination of a collection
of arbitrary and naturally occurring program text, such as that submitted to a
computing facility within a particular period of time [4,5]; by examination of
error reports in controlled programming environments [6,7]; and by experiments
using deliberately chosen problems, and a controlled group of programmers
[8,9,10]. Because it involves human subjects gathering this information is
difficult; often students are used as subjects, casting doubt on the generality
of the results.

The difficulties of dealing with human subjects can be removed, or at least
isolated, by using simulation; an approach which conveniently divides the study
of the occurrence of errors into two distinct components which can be studied
separately == the frequency and kinds of mistakes that humans make in the
construction of programs, and the effect of these mistakes on program text.

The second component can be studied with simulation, thus it can be precisely
controlled and large amounts of data can be obtained at low cost.

3.1 Errors produced by humans. For programs in the stage of development
when the first compilations are being made, the frequency of errors found in the
text ranges from about fifty errors per thousand statements to over one
hundred errors per thousand statements.

-3-

In discussing their work on DITRAN, a FORTRAN compiler, Moulton and Muller
[8] reported on the errors detected in students' programs using it. For errors
detected during compilation, which would include all syntax errors and most
semantic errors, their data indicate an error frequency of more than forty
errors per thousand statements. For errors detected during execution time
which would include semantic errors not caught in compilation, their data
indicated at least eight errors per thousand statements. Since this data does
not appear to include specification errors it seems reasonable to conclude that
the frequency of errors in these programs was in excess of fifty errors per
thousand statements. These numbers are reasonable but crude because of
problems in interpreting the data. They counted diagnostics and one error can
cause more than one diagnostic, but they do not distinguish two compilations of
the same program from compilation of two different programs. | have assumed
one error per diagnostic in estimating frequencies which will tend to make the
frequency too high, but failure to distinguish multiple compilations of the
same program tends to reduce the frequency.

Youngs [9] has made a careful study of errors in programs and his results are
consistent with the error frequencies indicated by the Moulton and Muller data.
In Youngs' study the languages ALGOL, BASIC, COBOL, FORTRAN, and PL/1 were
used, and programs written by ''professionals'’ and novices were considered. Most
of the programs were simple numerical routines of less than eighty statements
in length. His data indicates a frequency of more than seventy errors per
thousand statements. Moulton's and Muller's data applies largely to beginners,
as does part of Youngs' data and one might guess that this would bias the error
frequency to be high; however Youngs says ''... on first runs of all programs
both beginners and advanced programmers had an average of 5.6 errors in their
programs ...'', and he said that beginners committed 19.4 errors per program
compared with 15,1 errors per program for advanced programmers. (There is an
inconsistency in these figures that | have not been able to resolve). The
significant difference that Youngs did observe between the two groups was in
the type of errors committed: for the beginners the error distribution
according to type was 12% syntax,41% semantic, 35% ''logic" (specification),

5% ''clerical!' (syntax or semantic),and 12% other; for advanced programmers it
was 17% syntax,21% semantic, 51% '"logic' (specification), 4% ''clerical" (syntax
or semantic),and 11% other. o

Gannon [10] made a careful study of the occurrence of errors in programs in
connection with an investigation of the effect of language design decisions on
programming errors. In this study two systems programming languages, TOPPS and
TOPPS ||, were used. The programmers did not have prior experience with either
language but were '‘reasonably experienced programmers''. His data indicated a
frequency of 164 errors per thousand statements, including errors made after
the first submission to the compiler, ’

Boies and Gould [5] have measured the frequency of errors which prevent a
program from compiling or assembling. The languages used were FORTRAN, PL/1
and assembly language (IBM). All jobs submitted through the IBM TSS/360
computer system at an IBM research center during a 5 day interval were
considered. They found that one in five programs contained one or more errors
which prevented compilation or assembly. Moulton and Muller in the study
mentioned earlier found one in three programs contained such errors. The
difference might be due to the fact that the programmers in the Moulton and
Muller study were less experienced, but data reported by James and Partridge
[4] on errors observed in programs, which included ones written by experienced
programmers, also shows that one in three programs would have been rejected by
a conventional computing system'', On the other hand results provided by
Kulsrud [6] with experienced programmers is somewhat at variance with these
results. Kulsrud's results indicate that only about one in eight programs have
errors preventing compilation, (I have inferred this from his data, but he did
not claim it.) His data also suggests that half of the discovered errors were
language errors, and the other half were specification errors. Other data that

-4

seems inconsistent appears in the paper by James and Partridge [4] in which
they say they observed three errors per thousand statements. (lt is likely
they are referring to simple typing mistakes only).

The frequency of residual errors in programs, errors which remain after the
program is put into regular service, is difficult to estimate, Reports of
incorrect results from programs which have been used successfully over a period
of years are not uncommon but they may not reflect program errors: they may be
due to changes in use or environment not accounted for in the specifications.
But data which is available suggest that a residual error frequency of five
errors per thousand statements would not be unusual. In Youngs' study it was
found that 27 errors out of an original 383 errors remained in the collection
of programs after they had been compiled and corrected ten times; there were
about 3500 statements altogether, implying a residual error frequency of about
eight errors per thousand statements. In Gannon's study twenty four errors in
about 4800 statements were never found implying a residual error frequency of
about 0.5 errors per thousand statements. |t has been reported [11] that
IBM=TSS in its twentieth revision had ''12,000 distinct new bugs' implying a
residual error frequency of more than four errors per thousand statements.
Finally, in a recent study [12] in which a program for the simulation of radar
reports was carefully examined, after this program had been used for three
years, an average of ten errors per thousand statements was found.

3.2 Errors produced by simulated mistakes. As noted earlier there are
advantages in the use of simulation for the study of the nature of errors in
program text. The basic idea is to simulate certain types of mistakes made by
programmers and then to observe the nature of the errors caused by these
mistakes. In experiments of this type we can measure the influence of language
design and programming style on the nature of errors caused by human mistakes
in programming.

Surprisingly there is almost no work of this type reported in the literature.
Some years ago Weinberg and Gressett [13] made a study of the effectiveness of
a FORTRAN compiler in detecting errors caused by simulated typing mistakes.
However the scope of their experiment was very limited and there was no
analysis of errors according to type. :

Recently | have conducted experiments to measure the dlstrlbutson of the
kinds of errors caused by simulated typing mistakes in FORTRAN programs [1L4],
The simulated typing mistakes were: substitution (e.g. DIG instead of DOG);
deletion (e.g. OIL instead of FOIL); insertion (e.g. FRIEND instead of FIEND);
transposition (e.g. SILT instead of SLIT). Two kinds of substitution mistakes
were simulated: nearest-neighbor, in which the substituted character is a
nearest-neighbor of the correct character on the keyboard; and random, in
which the substituted character is any character. In all cases the only
characters considered were the characters in the FORTRAN alphabet. Four
algorithms published in the ACM Transactions on Mathematical Software were used
as subjects: Algorithm 495, Algorithm 498, Algorithm 505, and Algorithm 513.
One thousand samples, each an algorithm with a single simulated typing mistake,
were created. This ensemble had the following composition: for each algorithm
fifty samples with each kind of mistake, thus 50 x 5 samples of an algorithm
were created. For each sample the place where the mistake occured was selected
at random, ignoring blanks and comments. Analysis of the one thousand samples
yielded the distribution displayed in Fig.1.

A 495

A 498

A 505

A 513

SR
DE

IN
TR

SN
SR
DE

IN
TR

SN
SR
DE

IN
TR

SN
SR
DE

IN
TR

-5

26 50 75 100%

|

|

]

|

4
Vaterete s
BEAN |

"

ataraln’otutats
e
SRRy

» 7!
290S
otateds

Figure 1. Distribution of errors caused by typing mistakes.

In this figure the bars are labeled SN for nearest-neighbor substitution
mistakes, SR for random substitution mistakes, DE for deletion mistakes, IN for
insertion mistakes, and TR for transposition mistakes, The bars of the figure
are divided into segments corresponding to the different kinds of errors: the
first |s for syntax errors; the second is for semantic errors; the third is for
simple anomalies, such as an identifier only occuring once; and the fourth,
shaded, is for errors which are impossible or very difficult to detect at
compile time. With these results as a basis for comparison we could, by -
performing similar experiments on programs written in other languages, determine
whether the use of these other languages increases the likelihood that typing
mistakes could be detected at compile time. It is evident that similar
experiments in which other kinds of mistakes are simulated. could be conducted
in order to measure the influence of language design and programman style on
the ease of error detection,

DETECTION OF ERRORS

This subject has been divided into static and dynamic error detection, A
further distinction should be drawn between detecting an error and detecting
the error, where the latter implies detection of an error and knowledge of what
The construction should be. Detecting the error implies human interaction as
normally takes place in proofreading text xt but this topic is not included here
except for the short digression which follows.

Experienced programmers assume too much about the error detecting capability
of the systems they use and are inclined to be careless in proofreading the
text of their programs. The evidence presented in the last section supports
this conjecture. Unformatted program text makes careful proofreading difficult
and so an elementary but important tool for error detection is a simple text
formatter such as POLISH [15]. One aspect of formatting peculiar to numerical
software which is often ignored is the appearance of numerical constants. The
designers of mathematical tables have long recognized that digits should be
grouped and separated as in

1.32404 74631 77167

1.56663 65641 30231
to avoid transcription errors. This formatting should also be used for
constants in computer programs for the very same reason. This point is worth
emphasising because the placement of blanks or other separators, such as an
underline, within constants is not permitted in all languages and represents a
simple language design consideration which can have an important effect on
numerical software reliability.

4.1 Static error detection. Compilers normally detect all syntax errors but
are weak in detecting semantic errors expecially for programs written in

.

FORTRAN. Scowen [16] has constructed a small set of erroneous ALGOL and
FORTRAN programs and attempted to compile them on various systems. Out of
eleven examples in which a semantic error should have been found during
compilation the IBM FORTRAN-G compiler did not detect an error in five of the
examples.

In the experiment on typing mistakes [14] mentioned earlier, the mutilated
programs were submitted to various compilers. All of the compilers considered
(MNF, 1BM FORTRAN-H, CDC FTN, WATFIV) were weak: MNF missed as many as 20% of
the easily detectable errors; FORTRAN-H, FTN, and WATFIV missed as many as
40% of the easily detectable errors. MNF did detect almost all semantic errors
but was weak in detecting simple anomalies which clearly signaled the presence
of an error; FTN, FORTRAN-H, and WATFIV missed semantic errors and anomalies.
Because of the recognized weaknesses of many compilers, and to reduce errors in
moving FORTRAN programs from one system to another, a software tool called the
PFORT verifier [17] was developed by a group at Bell Telephone Laboratories.
It is widely used for static error detection; it is especially useful for
detecting errors in the communication between subprograms and for the
information it supplies on the utilization of identifiers.

Almost all static error detection systems, including the PFORT verifier,
ignore path dependent anomalies or errors such as the statement sequence

X=1,0
X=2.,0 :
or a statement sequence in which a reference is made to an uninitialized
variable as in
SUBROUTINE XAMPL (X,Y)
K=1
LF(X LT, Y) J=J+1

The detection of these requires the recognition of certain combinations of
events, or their absence, on a path in the flow graph., Many anomalies and
errors in this category can be detected statically without excessive cost, The
problem is similar to that faced in global optimisation and, like it, can be
treated by data flow analysis [18]. Osterweil and | have built a prototype
system called DAVE [19] which uses data flow analysis to detect anomalies and
errors in FORTRAN programs. In DAVE a program is represented by its flow graph
and each node is labelled with information describing the actions taking place
on variables at the node. Three actions, reference, define, and undefine, are
recognized: '"reference' means a value for the variable must be used, as for

X in¥Y = X+1.0; "define' means a value is assigned to the variable, as for

Y in Y = X+1.0; and "'undefine'" means a value for the variable becomes not
known, as is the case for the loop control variable upon satisfying a D0 loop
in FORTRAN and all local variables upon entry to a subprogram. Error detection
then depends on recognizing paths in the graph, including those which cross
“subprogram boundaries, which contain erroneous or anomalous sequences of
actions. For example a path in which an ''undefine' is followed by a
"reference'' without an intervening '"define' is erroneous, and a path in which a
"define'' is followed by another ''define'' without an intervening ''reference'’ is
anomalous.,

The critical part of data flow analysis is the search technique which is
used to detect combinations of events on paths in the flow graph, DAVE uses
depth=first search [20]. This has two advantages: the path containing the
detected anomaly or error is obtained without extra work as a byproduct of
the search and often the search can be terminated before the entire graph has
been examined; it has the disadvantage that a separate search is required for
each variable. The time for depth-first search is bounded by K|V| (JE|+|N]|)
where K is a constant, |V| is the number of variables, |E| is the number of
edges in the flow graph, and |[N| is the number of nodes in the flow graph. A
different search algorithm described by Hecht and Ullman [21] which is
iterative has the advantage that all variables can be treated simultaneously

-8-

and, assuming bit-parallel operations take one time unit, "has a time bound
KD([E]+|N]) where D, the number of iterations, is close to unity: this scheme
is not favored with the two advantages just mentioned for depth-first search
but it seems likely that this scheme will give a faster system in practice than
one based on depth-first search because usually |V|>>D. DAVE executes about

50 times slower than the FTN compiler on a CYBER 175. This is too slow for
general use. We are now building a new version, designed for efficiency, which
uses the Hecht and Ullman algorithm and are hoping for a factor of ten
improvement in speed.

There are several problems, some of which may prove intractable, that limit
the effectiveness of data flow analysis. The address of the variable subjected
to an action may depend on the computation as with A(J) in the statement
A(J) = C. In some cases it may be possible, at least in principle, to determine
the value of J from the program itself but in many cases J will depend on data
supplied at the time of the computation: we can try to deal with this problem
by looking for the possibility of an erroneous sequence of actions for some J
but this approach produces false alarms. The practical solution in this case
seems to be to issue an alarm if the error or anomaly will arise for every
value of J. Another problem concerns flow of information across subprogram
boundaries. In FORTRAN, because it does not use recursion, the tracing of
data across subprogram boundaries is not too difficult, but in a language
supporting recursion tracing data actions across these boundaries is quite
difficult and no practical system in which this problem is treated exists.
Recent theoretical work on this problem has been done by Barth [22]. A third
problem is concerned with the fact that errors or anomalies on paths which are
unexecutable cause false alarms unless the unexecutability of the path can be
recognized. It should be noted that data flow analysis ignores the predicates
associated with nodes in the flow graph and along some paths the predicates
may be contradictory (e.g. X = 0 and X < 0) which would mean that the path
would never be traversed in any execution of the program. A technique known
as symbolic execution has been explored by Clarke [23] to treat this problem;
Howden [24], Cheatham, Holloway, and Townley [25] and others have also been
exploring this technique. ' ’

The essential idea of symbolic execution is to derive symbolic expressions
to denote the values of program variables; for instance, from the statement
sequence X = 1.0, Y = X+A the expression A+1.0 can be derived to denote the
value of Y. Loops and branches cause obvious problems. In some applications
the path is specified and these problems can then be avoided; this is the case,
for example, in determining whether a particular path is executable. The
difficulties of doing symbol manipulation and algebraic reduction on a machine
are intrinsic problems of this approach and necessarily cause it to be
expensive, but the possibility of being able to make inferences about a large
set of computations makes this technique worthy of further study and
development.

4.2 Dynamic error detection. In this approach, which takes place during
program testing, errors are detected by examination of the results produced
from executions of the program assuming an oracle exists for verifying the
correctness of these results. An essential difficulty for this approach is
that it is restricted to considering the results of a small number of
executions because of cost considerations (note that static analysis
implicitly takes into consideration many, if not all, executions but the
results are less detailed) so it is important to choose the executions
carefully in order that any errors which are present are likely to be exposed.
Hence work in this area is concerned with measures of effectiveness of
executions with respect to the probability of error detection, and with the
mechanics of selecting input data sets associated with these measures.

Although numerous papers, e.g. [26,27,28,29], have appeared in recent years
discussing measures of test effectiveness, the state of our knowledge of this
subject is very unsatisfactory. There has been no significant work done to

-9-

relate any proposed measure to a probability of error detection; the argument

for accepting a measure is completely intuitive. The simplest measure is the
fraction, Fy, of nodes in the flow graph executed, This seems like a
reasonable measure since errors at nodes not executed in testing will not be

found; therefore we might expect that a higher F; would correspond to a lower
chance of an undetected error. However this presupposes each node is equally
likely to contain an error, and while this might serve as a convenient first
approximation to the truth it is certainly of questionable validity. Another
measure which has been proposed, and discussed in some detail by Huang [27],
the fraction, F,, of edges in the flow graph which are executed, It is
evident that F,=1 implies Fi=1 but the converse is not true, so F; can be
regarded as a stronger measure than Fi. Again the Issue raised above about the
relative importance of nodes applies to F,. It is evident that one can build
still stronger measures; for example, Woodward, Hedley, and Hennell [30] have
suggested a hierarchy of such measures.

It is an interesting fact that these measures are not used in practice as
one might expect. There are at least two situations in which substantial
amounts of software are produced, software which is supposed to be reliable,
where the value of F; at the end of testing is not known. In one situation
human life depends on the reliability of the software. The developers of this
software rely on their knowledge of the problem handled by the software, the
special cases involved, and their experience, to create data for testing the
software. In short the reliability provided by a guarantee that Fi=1 seems to
be not worth the effort. It is easy to dismiss this attitude as foolish, but
it would be wiser to examine carefully the reasons for it. Some of these
reasons are: confidence based on intimate knowledge of the software that all
nodes will be executed; the difficuity of finding test data to achieve Fi=1;
the difficulty of testing after changes are made to the software to repair
errors discovered in testing. Particularly important is the fact that a high
level of trust is associated with correct results produced by the software on
test problems. It would be worthwhile investigating how well placed this trust
is. In a small example studied by Di Millo, Lipton, and Sayward [31] it was
found that 8% of the errors deliberately inserted in a short (31 statement)

FORTRAN program did not cause erroneous results on tests proposed by
experienced programmers.

Two approaches to finding test data to achseve some level of testing, say
F,=1, have been discussed in the literature, As might be expected, one of
these is based on random selection of test data [32,33]. For large programs
this seems impractical unless some carefully designed stratified sampling is
used and even then the costs may be too high. The other approach is based on
symbolic execution [23,24]. From a theoretical viewpoint this is the more
attractive but, as presently proposed, is too expensive to use in practice.

Mills, Gilb, Weinberg and others [11] have discussed seeding programs with
known errors and then using the number of errors . discovered in testing as a
measure of the effectiveness of a test. This is a well-known practice
followed by naturalists in studying wild-life populations but no one yet has
provided convincing evidence that errors in programs obey the same statistical
behaviour as fish in a pond. This approach may be effective but far more needs
to be known about the nature of the distribution of errors in programs before
it can be applied in a scientific manner. Recently Di Millo, Lipton and
Sayward [31] have described a method of test data selection which is related to
the error seeding idea. They measure the effectiveness of test data selection
by the proportion of errors detected out of a group that has been deliberately
inserted in the program.

Another technique advocated [34] for dynamic error detection is the
instrumentation of the program with predicates at carefully chosen points in
the program. Typically these predicates describe expected values for
variables at these points. Like other techniques described here it does not
appear to be widely used in practice though forms of this technique have been

-10-

used since the earliest days of computing to identify the location of a
suspected error by tracing or monitoring an execution,

Finally, it should be mentioned that some efforts have been made to answer
the question of whether the correctness of a program can be inferred from a
finite set of tests [35,36]. Recently Howden [37] presented a result showing
that for a particular class of Lindenmayer grammars it was possible to obtain
an interesting correctness result based on a finite number of tests. Work of
this kind, while not having any direct application to practice, should deepen
our understanding of the testing problem and provide us with information on its
limits.,

CONCLUSION

We must assume that scientific and technological advances will lead to far
more powerful computing machines than we have today and therefore that there
will be a demand for larger and more complex programs, |f this demand is to
be met it will be necessary to improve our techniques for developing and
maintaining large programs. Error detection is an important part of this and
if we are to improve our error detection techniques, then we must know about
the distribution of errors and how the distribution is affected by programming
language, style, and human psychological factors; we must understand how to
analyze programs and to measure their reliability.

As this brief review shows, our knowledge of the occurrence of errors is
very limited. The experiments with human subjects are mainly limited to
students and so it is questionable whether or not the results could apply to a
laboratory or company producing software on a regular basis. Intuition
suggests that modular or structured programming will reduce the occurrence of
errors and improve our chances of detecting those that do occur. On the other
hand there is evidence to indicate a strong correlation between the number of
errors in a program and the number of bits required to specify it: this
result comes from a theory called ''software science'' which has not been
discussed here but has been reviewed recently by Fitzsimmons and Love [38].
Thus it appears that we still do not fully understand the factors which
influence the occurrence of errors in programs.

There is now available a good set of algorithms for performing data flow
analysis for non-recursive languages and it seems unlikely that there will be
much more improvement in the basic algorithms., Here the work that is necessary
for analysis of programs written in these languages is concerned with the
implementation of these algorithms, and we need to understand how language
features can affect the implementation. There remains a need for theoretical
work on the analysis of recursive programs. '

It is evident that the quantification of program testing is in a very
primitive state. The measures which have been proposed have not been related

" to the probability of error. Furthermore, in practice the proposed measures

are ignored and subjective evaluations are used in their place. There
appears to be much room for theoretical and applied work in this area.

ACKNOWLEDGEMENT

This paper was written during a visit with the Numerical Algorithms Group
Limited in Oxford, England. | thank them for their kind hospitality and I
thank Eleanor Capanni of their staff for assistance in preparing the
manuscript.

-11~

References

13.
14,

15.

16,

20.
21.
22.
23.
24,

25.

26.

Gill, S.: The diagnosis of mistakes in programmes on the EDSAC,

Proc. Roy. Soc. London 206A (1951), 538-554,

Gerhart, S.L.: Development of a methodology for classifying software
errors. Final Technical Report (2 July 1976) Computer Science Department,
Duke University, Durham NC 27706, U.S.A,

Horning, J.J.: What the compiler should tell the user. Lecture Notes in
Computer Science, Goos, G. and Hartmamis, J. eds, Vol 21, Ch.,5 (197L4)
Springer-Verlag.

James, E.B. and Partridge, D.P.: Tolerance to inaccuracy in computer
programs. Comp. J. 19,3 (Aug 1976) 207-212,

Boies, S.J. and Gould, J.D. Syntactlc errors in computer programming.
Human Factors 16 (197&) 253 257,

Kulsrud, H.E.: Some statistics on the reasons for compiler use.

Software P.E. &‘(197h) 241-249,

Thayer, T.A.; Lipow, M.; and Nelson, E.C.: Software reliability study.
TRW=5S=-76-03 (March 1976) TRW, Redondo Beach, CA 90278, U,S.A.

Moulton, P.G. and Muller, M.E.: DITRAN -~ A compiler emphasizing
diagnostics. Comm. ACM 10,1 (Jan.,1967), 45-52,

Youngs, E.A.: Human errors in programming. International Journal of
Man-Machine Studies 6,3 (May 1974), 361-376.

Gannon, J.D.: Language design to enhance programming reliability.

Ph.D Thesis, Tech. Rept. CSRG-47, U. of Toronto (Jan.1975).

Gilb, T.: Software Metrics. Winthrop Publishers, Inc. (1977).

Benson, J.P. and Saib, S.H.: A Software Quality Assurance Experiment.
Talk presented at NASA Workshop for Embedded Computing Systems Software,
Hampton VA (Nov.1978). v

Weinberg, G.M. and Gressett, G.L.: An experiment in automatic
verification of programs., Comm. ACM 6,10 (Oct.1963), 610-613.

Fosdick, L.D.: The effect of typing blunders in FORTRAN programs.

Tech. Rept. CU-CS-146-79 (Jan.1979) U. of Colo., Boulder, Colo.
Dorrenbacker, J.; Paddock, D.; Wisneski, D; and Fosdick, L.D.:

POL ISH, A FORTRAN program to edit FORTRAN programs, Tech. Rept.
CU~CS=050~74 (July 1974) U. of Colorado, Boulder, CO 80309.

Scowen, R.S.: The diagnostic facilities in ALGOL and FORTRAN compilers.
Tech. Rept. NAC 81 (July 1977), National Physical Laboratory, Teddington,
Middlesex, England.

Ryder, B.T.: The PFORT verifier. Software P.E. 4 (1974), 359-378,
Fosdick, L.D. and Osterweil, L.J.: Data flow anaTysis in software
reliability. ACM Comp. Surveys 8,3 (Sept.1976), 305-330.

Osterweil, L.J. and Fosdick, L.D.: DAVE - a validation, error detection
and documentation system for FORTRAN programs. Software P.E. 6 (1976),
L73-486.

Tarjan, R.E.: Depth-first search and Itnear graph algorithms., SIAM J.
Computing (Sept 1972), 1L46-160,

Hecht, M.S. and Ullman, J.D.: A simple algorithm for global data flow
analysis problems. SIAM J. Computing 4 (Dec.1975), 519-532.

Barth, J.M.: A practical interprocedural data-flow analysis algorithm.
Comm. ACM 21,9 (Sept.1978), 724-735.

Clarke, L.: A system to generate test data and symbolically execute
programs. IEEE Trans. on Software Engineering 2,3 (1976), 215-222,
Howden, W.E.: DISSECT = A symbolic evaluation and program testing system.
[EEE Trans. on Software Engineering 4,1 (Jan.1978), 70-73.

Cheatham, T.E. Jr.; Holloway, G.H.; and Town?ey, J.A.: Symbolic evaluation
and the analysis of programs. Tech. Rept. TR=19-78 (Nov.1978),

Harvard U., Cambridge MA,

Hennell, M.A.; Woodward, M.R.; and Hedley, D.: On program analysis.
Information Proc. Letters 5,5 (1976), 136-140.

27.
28.

29.
30,
31.
32.
33.
34,
35.
36.

37,
38.

-12-

Huang, J.C.: An approach to program testing. ACM Comp. Surveys 7,3
(Sept.1975), 113-128, T
Pimont, S. and Rault, J.C.: A software reliability assessment based on

a structural and behavioral analysis of programs. Proc. 2nd Int, Conf.
on Software Engineering (Oct.1976) 486-491. San Francisco CA. IEEE
Cat. No. 76CH1125-4C,

Brown, J.R.: Practical applications of automated software tools

Tech. Rept. TRW-SS=72-05 (1972), TRW, Redondo Beach, CA 90278.

Woodward, M.R.; Hedley, D.; and Hennell, M.: Observations and experience
of path analysis and testing of programs., Tech. Rept. (1978),

U. of Liverpool, Liverpool, England.

Di Millo, R.A.; Lipton, R.J.; and Sayward, F.G.: Hints on test data
selection: help for the practicing programmer. Computer 11,4

(April 1978), 34=41,

Ramamoorthy, C.V, and Ho, S.F.: On the automated generation of program
test data. Proc. 2nd Int., Conf. on Software Engineering (Oct.1976),
Supplement 95-102. San Francisco, CA.

Hennell, M.A.; Woodward, M.R.; and Hedley, D.: Towards more advanced
testing techniques. Tech. Rept. (1978), U. of Liverpool, Liverpool,
England.

Stucki, L.G. and Foshee, G.L.: New assertion concepts for self-metric
software validation. Proc. Int. Conf. on Reliable Software (April 1975),
59-71, Los Angeles CA, U.S.A. IEEE Cat. No. 75CH0940-7CSR,

Goodenough, J.B. and Gerhart, S.L.: Towards a theory of test data
selection. Proc. Int. Conf. on Reliable Software (April 1975), 493-510,
Los Angeles CA, U.S.A. IEEE Cat. No. 75CH0940-7CSR.

Howden, W.E.: Elementary algebraic program testing techniques.

CSTR 13 (Sept.1976), Dept. Applied Physics and Information Science, UCSD,
San Diego, CA. :

Howden, W.E.: Lindenmayer grammars and symbolic testing. Information
Processing Letters 7,1 (Jan.1978), 36-39.

Fitzsimuons, Ann and Love, Tom. A review and evatuatxon of software
science. ACM Comp. Surveys 10,1 (March 1978), 2-18,

