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Computational design optimization provides designers with automated techniques to develop

novel and non-intuitive optimal designs. Topology optimization is a design optimization technique

that allows for the evolution of a broad variety of geometries in the optimization process. Traditional

density-based topology optimization methods often lack a sufficient resolution of the geometry and

physical response, which prevents direct use of the optimized design in manufacturing and the

accurate modeling of the physical response of boundary conditions. The goal of this thesis is to

introduce a unified topology optimization framework that uses the Level Set Method (LSM) to

describe the design geometry and the eXtended Finite Element Method (XFEM) to solve the gov-

erning equations and measure the performance of the design. The methodology is presented as an

alternative to density-based optimization approaches, and is able to accommodate a broad range

of engineering design problems. The framework presents state-of-the-art methods for immersed

boundary techniques to stabilize the systems of equations and enforce the boundary conditions,

and is studied with applications in 2D and 3D linear elastic structures, incompressible flow, and

energy and species transport problems to test the robustness and the characteristics of the method.

A comparison of the framework against density-based topology optimization approaches is studied

with regards to convergence, performance, and the capability to manufacture the designs. Further-

more, the ability to control the shape of the design to operate within manufacturing constraints

is developed and studied. The analysis capability of the framework is validated quantitatively

through comparison against previous benchmark studies, and qualitatively through its application

to topology optimization problems. The design optimization problems converge to intuitive designs

and resembled well the results from previous 2D or density-based studies.
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Chapter 1

Introduction

The goal of this thesis proposal is to introduce a unified topology optimization framework

that uses the Level Set Method (LSM) to describe the design geometry and the eXtended Finite

Element Method (XFEM) to solve the governing equations and measure the performance of the

design. The framework is referred to as the LSM-XFEM optimization method, and is presented

as an alternative to homogenization optimization approaches. Methodologies to accurately enforce

boundary conditions and to maintain stability of the system of equations are studied. The frame-

work is applied in linear elastic structures, incompressible flow, and energy and species transport

problems to examine the robustness and the characteristics of the method. The ability to control

the shape of the design to operate within manufacturing constraints and to predict relevant physical

phenomena is also considered.

1.1 Motivation

Topology optimization approaches seek the optimal material distribution of a body within

a given design domain. Originally, topology optimization methods were developed primarily to

create conceptual designs of engineering systems in the early stages of the design process [Bendsøe

and Sigmund, 2003; Rozvany, 2009]. Before the advent of Computational Fluid Dynamics (CFD)

and the Finite Element Method (FEM) in the late 1960s, the design of these systems was driven by

experimental studies. However, with the increase of computational power and the development of

improved numerical schemes, several problems in structural mechanics and fluid dynamics could be
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simulated and analyzed numerically. Consequently, in recent decades, topology optimization has

gained traction as a practical computational design technique. The method is appealing because,

unlike shape optimization, it minimizes the influence of the initial design with its ability to produce

both shape and topological changes during the optimization process.

Recent advances in additive manufacturing allow the precise placement of one or multiple

materials at micrometer resolution with essentially no restrictions on the geometric complexity

of the spatial arrangement. Complex 3D solids can be created with highly non-regular material

distributions in a near optimal fashion, enabling the fabrication of structures with enhanced per-

formance. Topology optimization has emerged as a promising approach to utilize the benefits of

additive manufacturing [Ning and Pellegrino, 2012; Meisel et al, 2013].

Traditional topology optimization methods, namely homogenization schemes [Bendsøe and

Kikuchi, 1988], aim at finding the conceptual design, but often lack a sufficient resolution of the

geometry and physical response. The lack of these two characteristics prevents direct use of the

optimized design in manufacturing, and an accurate modeling of the physical response of boundary

conditions. To overcome these limitations, this thesis studies the viability and characteristics of

the eXtended Finite Element Method in combination with the Level Set Method as a topology

optimization framework for 2D and 3D design problems.

The specific objectives of this thesis are then: (i) to develop a robust LSM-XFEM topol-

ogy optimization scheme; (ii) to compare the LSM-XFEM optimization scheme with traditional

homogenization methods, such as SIMP [Bendsøe, 1989], and study the advantages and disadvan-

tages of our formulation; and (iii) to explore the characteristics of the methodology through cases

studies in linear elasticity, incompressible flow, and energy and species transport examples. We

aim to expand and study the LSM-XFEM topology optimization framework with respect to the

following characteristics: (i) genericity: we will measure genericity by the ability of the framework

to be applicable to a broad range of 2D and 3D problems with different physical phenomena, and

to material-void and material-material problems; (ii) efficiency: we will measure efficiency by the

ability of the method to reduce the computational cost against traditional homogenization methods,
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and by the convergence of the optimized geometry with mesh refinement; and (iii) robustness:

we will measure the robustness of the method by its ability to control the shape of the design to

operate within manufacturing constraints, its ability to predict relevant physical phenomena and

to accurately enforce boundary conditions, and its application to real-life design problems.

1.2 Background

This section presents a brief overview on optimization problems and traditional density-based

topology optimization methods. The information presented in this chapter is sufficient such that

the reader can understand the work done prior to this thesis and the motivation for our study, but

it is not intended to be comprehensive. References are provided for the reader who wishes to see

more details on the topics.

1.2.1 Optimization

An optimization problem is a type of problem in which you seek to find the best solution

from the set of all feasible solutions, with respect to certain optimization criteria. The class of

optimization problems considered in this thesis involve the design of engineering systems. Therefore,

the solution to the problem is described by a set of design variables. There are two categories

of optimization problems, and their classification depends on whether the design variables are

continuous or discrete. In this work, we will focus on optimization problems with continuous

variables. An optimization problem with discrete variables is known as a combinatorial optimization

problem, and the reader is directed to Nemhauser and Wolsey [1988] for a review.

The optimization problems are formulated with respect to an objective and one or more

constraints for some desired functionality. The objective and constraints are defined in terms of

design criteria, such as drag, power dissipation, fluid volume, etc. These design criteria can depend

explicitly on the state and optimization variables (e.g. drag) or only on the optimization variables

(e.g. fluid volume). As the state variables may depend on time, the design criteria are either

evaluated over a time integral or at a given instance in time. The formulation for our optimization
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problems looks as follows:

min
s

Z =

∫ t2

t1

z (s,u (t)) dt ,

s.t.

∫ t2

t1

gi (s,u (t)) ≤ 0 i = 1 . . . Ng ,

s ∈ S =
{
RNs |sLi ≤ si ≤ sUi , i = 1 . . . Ns

}
,

u (t) ∈ U =
{
RNu |R (s,u (t)) = 0

}
,

(1.1)

where s is the vector of optimization variables, of size Ns, and u (t) is the vector of time-dependent

state variables, of size Nu. The objective function Z is the integral of the time-dependent function

z over the interval [t1, t2]. The function gi is the i-th optimization constraint, and Ng is the

number of inequality constraints. The optimization variables si are bounded by lower and upper

limits, sLi and sUi , respectively. The state variables satisfy the residual of the governing equations,

R (s,u (t)) = 0. In this thesis, the optimization problem is considered converged if the design

variables or the optimization objective only exhibit small changes over a number of optimization

iterations, and if all constrainst are satisfied.

There are a variety of optimization algorithms to solve the optimization problem in (1.1).

These algorithms range from simple formulations, like random walk and steepest descent to more

complex ones, like the Globally Convergent Method of Moving Asymptotes (GCMMA) [Svanberg,

2002]. For a reference on other optimization mathematical tools, such as the Sequential Quadratic

Programming (SQP) or the Sparse Nonlinear OPTimizer (SNOPT) [Gill et al, 2002], the reader is

referred to the work of Bendsøe and Sigmund [2003]. Optimization algorithms can also be grouped

by their use of the gradient information. Gradient-free methods neglect gradient information, and

therefore do not require continuous, differentiable objective functions. However, the computational

cost of these methods increases as the number of design variables grows larger. Sigmund [2011]

showed that these methods quickly become impractical as mesh refinement increases. On the

other hand, gradiend-based methods use the sensitivities of the objective and constraint functions

with respect to the design variables to choose a search direction and minimize the functionals

towards a local or global minima. Gradient-based methods address the scaling concerns of gradient-
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free methods, using the gradients to choose good search directions. Sigmund [2011] showed that

gradient-based methods typically require an order of magnitude less design iterations as compared to

gradient-free algorithms. In the following section, we will explore the computation of the gradients

for gradient-based optimization problems.

1.2.2 Sensitivity Analysis

The gradients of the objective functional and the design constraints with respect to the design

variables are required by gradient-based methods. In this section, we derive the sensitivities of the

objective as an example, which is a function of both the design variables and the time-dependent

state variables. The calculation of the derivatives for the constraint functions follows the exact

same approach.

The optimization functions considered in this thesis can be written in discretized form as:

Z =

N2
t∑

n=N1
t

(
z(n)

(
s,u(n) (s)

))
, (1.2)

where the time steps N1
t and N2

t correspond to the time intervals [t1, t2] introduced in (1.1). The

derivative of the objective function with respect to the optimization variable si is decomposed into

an explicit and an implicit term such that:

dZ
dsi

=
∂Z
∂si

+

N2
t∑

n=N1
t

∂z(n)

∂u(n)

ᵀ
∂u(n)

∂si
, (1.3)

where the vector of time-dependent state variables at time step n, u(n), satisfies the residual of the

weak form of the governing equations:

R(n)
(
s,u(n) (s)

)
= 0 . (1.4)

We can compute the derivative of the residual function with respect to the design variables as:

dR(n)

dsi
=
∂R(n)

∂si
+
∂R(n)

∂u(n)

∂u(n)

∂si
, (1.5)

which, assuming that the governing equations are satified, can be solved such that:

∂u(n)

∂si
= −

(
∂R(n)

∂u(n)

)−1
∂R(n)

∂si
. (1.6)
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Inserting (1.6) into (1.3), we obtain:

dZ
dsi

=
∂Z
∂si
−

Nt∑

n=1

∂z(n)

∂u(n)

ᵀ
(
∂R(n)

∂u(n)

)−1
∂R(n)

∂si
. (1.7)

This form contains an inverse matrix,
(
∂R(n)/∂u(n)

)−1, which needs to be handled carefully

to ensure efficiency. Given that these matrices may be large due to the number of state variables,

the inverse needs to be considered as a linear solve. Two methods exist to handle this problem: the

direct method and the adjoint method.

Using the direct method, we introduce a variable ξ and the implicit term in (1.3) is rewritten

as:
N2
t∑

n=N1
t

∂z(n)

∂u(n)

ᵀ

ξ(n) , (1.8)

such that: (
∂R(n)

∂u(n)

)
ξ(n) =

∂R(n)

∂si
. (1.9)

On the other hand, the implicit term in (1.3) can also be computed by the adjoint method

as follows:
N2
t∑

n=N1
t

∂z(n)

∂u(n)

ᵀ
∂u(n)

∂si
=

N2
t∑

n=0

λ(n)ᵀ∂R
(n)

∂si
, (1.10)

where λ(n) are the adjoint states at time step n. Note that the scalar product of the adjoint vector

and the derivative of the residual with respect to the design variables, si, is summed from the

initial time step at n = 0 through n = Nt. Opposite to the forward analysis, and assuming a 1-step

backward differentiation scheme in time, the adjoint state variables are computed backwards as

follows:
∂R(n)

∂u(n)

ᵀ

λ(n) = − ∂z
(n)

∂u(n)
+
∂R(n+1)

∂u̇(n+1)

∂u̇(n+1)

∂u(n+1)

ᵀ
∣∣∣∣∣
u(n+1)

λ(n+1) , (1.11)

for n = Nt . . . 0. The initial solution for the state variables, λ(Nt+1), is 0.

The direct method requires a number of linear solves that is equal to the number of design

variables, Ns, while the adjoint method requires a number of solves equal to the number of objective

and constraint functions, (1 +Ng). If the number of design variables is small relative to the number

of functions, the direct method should be used. If the number of design variables is large relative to
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the number of functions, the adjoint method should be used. In the following sections, we will delve

into the approaches available to solve the optimization problem using this gradient information.

1.2.3 Topology Optimization

Topology optimization is a type of optimization problem in which you seek the optimal

geometry and/or material layout of a body within a given design domain D. The goal is to

minimize some objective functional over the design domain with respect to the design variables

si (x).

	  P

 ?
 D

(a) Optimization problem setup. (b) Optimized material layout.

Figure 1.1: Topology optimization example. The objective is to minimize the compliance of the

mechanism.

A quick example is described in Figure 1.1. The objective is to minimize the compliance of the

mechanism, subject to a maximum 30% volume utilization of the design domain. In the example,

the optimization problem modifies the material layout of the body until it finds an optimal geometry

at a local or global minima that satifies the volume constraint.

Topology optimization provides the ability to create designs that are not always intuitive, or

to improve on existing designs. Topology optimization methods were initially developed to create
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conceptual designs in the early stage of the design process [Bendsøe and Sigmund, 2003; Rozvany,

2009]. It is interesting to note that the earliest recorded paper on topology optimization dates

back to 1904, with the work of Australian inventor Michell in the derivation of optimality criteria

for least-weight layout of trusses [Michell, 1904]. While topology optimization focused for decades

on structural design, it has recently found its application in a wide range of physical disciplines

[Bendsøe et al, 2005], including acoustics [Yoon et al, 2007], wave propagation [Sigmund and Jensen,

2003], and electromagnetics [Labbé et al, 2009; Shim et al, 2008]. For a more detailed review on

topology optimization, please refer to Bendsøe and Sigmund [2003] and Eschenauer and Olhoff

[2001].

Topology optimization problems generally require a large number of design variables (roughly

equal to the number of nodes or elements) and for nonlinear or transient analysis, the objective func-

tion can be expensive to compute. Consequently, gradient-based methods become the most suitable

choice for topology optimization problems. For topology optimization problems with non-trivial

and multiple constraints, the Method of Moving Asymptotes (MMA) [Svanberg, 1987], and its glob-

ally convergent counterpart, the Globally Convergent Method of Moving Asymptotes (GCMMA)

[Svanberg, 2002] have become the algorithms of choice. The work of this document will utilize

the GCMMA algorithm. Two concerns arise, nevertheless, which are the differentiability and the

calculation of gradients. Certain physical models can lead to a discontinuous response of the op-

timization criteria because of a topology change, which causes the objective functional to become

non-differentiable or discontinuous, and the derivative information can drive gradient-based al-

gorithms in a “bad” direction. This can become a problem and hinder the convergence of the

optimization problem.

Gradients need to be computed in an efficient time. Finite differencing the objective and

constraint functionals is an option; however, it is not computationally efficient for a large number

of design variables. As topology optimization problems typically have a large number of design vari-

ables, the sensitivities for the optimization problems presented in this document will be computed

using the adjoint method (1.10). We adopt the discrete adjoint formulation for nonlinear fluid
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and coupled systems of Kreissl and Maute [2011]. In this work, the derivative of the optimization

functions with respect to the state variables, ∂z(n)/∂u(n), is computed analytically. The partial

derivative of the residual function of the weak form of the governing equations with respect to the

design variables is computed by a central finite difference scheme.

The eXtended Finite Element Method presented in this thesis is discontinuous by nature.

This behavior can cause the partial derivative of the residual equation to become non-differentiable

or discontinuous, and the derivative information can drive the optimization algorithm in a “bad”

direction. This can hinder the convergence of the optimization problem. This issue will be discussed

later, where we develop and study a finite difference scheme to compute the partial derivatives with

respect to the design variables within the context of the LSM-XFEM optimization framework.

1.2.4 Density-based Topology Optimization

Structural topology optimization, specifically topology optimization of continuum structures,

is in its mathematical nature one of the most challenging optimization problems [Bendsøe and

Sigmund, 2003]. However, in 1988, Bendsøe and Kikuchi [1988] introduced their seminal paper

on the homogenization method. In this method, the design domain is assumed to be formed by a

material with micro-scale voids, and the topology optimization problem seeks the optimal porosity

of the porous medium in order to minimize the objective functional. Due to its effectiveness

and simplicity, homogenization-based methods found a lot of applications in structural design,

and quickly became the main approach in structural topology optimization [Bendsøe, 1989]. The

homogenization method works by transforming the structural optimization problem into a standard

nonlinear program where the design variables are coefficients of the underlying governing equations,

and therefore is capable of producing internal holes in the design domain without an a priori

knowledge of them. Among homogenization methods, the density-based formulations quickly gained

traction as effective optimization tools.

In 1989, Bendsøe [1989] and Zhou and Rozvany [1991] introduced the “Solid Isotropic Material

with Penalization” (SIMP) method. In the SIMP approach, the design variables represent the
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artificial densities, ρi (x), of a group of elements in a fixed finite element grid (our design domain

D), and their material properties are parametrized in terms of a set of material interpolation

functions such that intermediate values are penalized. The optimization problem will vary the

design variables in order to minimize the design objective, while satisfying the design constraints.

In a structural topology optimization problem, we can represent a design variable at a point i as

solid material by setting ρi = si = 1.0, and as void by setting ρi = si = 0.0. Figure 1.2 shows

the setup for a topology optimization problem where the objective is to minimize the compliance,

subject to a maximum volume fraction of 50% for the solid phase to suppress trivial solutions.

Figure 1.3 shows the changes in the design during the optimization process, where the design

variables at the elements are represented as solid (black), void (white), or in-between (grey). Grey

areas represent the boundary between the solid and void phases.

 2

 3

 P

Figure 1.2: Setup of a structural topology optimization problem. A mesh of size 3L × 2L, with

60× 40 quadrilateral bilinear elements is anchored to a wall on its left side, and subject to a point

load on its right side.

1.2.5 Smoothing Filter

An additional numerical scheme is necessary to prevent numerical instabilities in density-

based topology optimization. This is referred to as the filtering method [Guest et al, 2004]. For

example, in structural topology optimization, the smoothed density, rather than being a function
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(a) Step 0. (b) Step 5.

(c) Step 10. (d) Step 15.

(e) Step 25. (f) Step 50.

Figure 1.3: Design iterations during the optimization process. The objective is to minimize the

compliance of the structure, subject to a maximum volume fraction of 50% for the solid phase.
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of a single design variable, can instead be computed with a linear smoothing filter as follows:

ρ̃i (s) =

Nn∑
j=1

wijsj

Nn∑
j=1

wij

, (1.12)

with:

wij = max (0, rρ − ‖xi − xj‖) , (1.13)

where ρ̃i (s) is the smoothed density at a point xi, sj is equivalent to the density ρj at a point xj ,

xj is the location of the node at which the design variable j is defined, wij is the factor of point

xi with respect to the design variable j, rρ is the smoothing filter radius, and Nn is the number of

nodes in the design domain.

The filter in (1.12) prevents the formation of features smaller than rρ, and serves as a mini-

mum feature size control. However, this comes at the cost of forming intermediate densities along

the material interface. Methods for penalizing intermediate densities have been proposed by Fuchs

et al [2005], Sigmund [2007], and Stolpe and Svanberg [2001]. Guest et al [2004] proposed a density

projection method to reduce the volume occupied by material with intermediate densities. This

projection is based on a smoothed Heaviside function and is applied to the densities as follows:

ρ̂i (ρ̃i) = 1− e−βρ̃i + ρ̃ie
−β , (1.14)

where ρ̂i is the projected density, and the parameter β ≥ 0 controls the crispness of the projection.

Notice that for β = 0 we recover the original density ρ̂i = ρ̃i. As we increase β, intermediate

densities are penalized towards the value of 1.0, as shown in Figure 1.4. Note, however, that if

the objective and/or constraints of the optimization problem find the intermediate densities to be

benefitial, the optimization algorithm will ignore the effects of this projection scheme. The reader

is referred to Guest et al [2004], Guest et al [2011], Sigmund [2007], Xu et al [2010], and Wang et al

[2011] for more details on projection schemes.



13

ρ̃
0 0.2 0.4 0.6 0.8 1

ρ̂

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β = 0.0

β = 1.0

β = 2.0

β = 4.0

β = 8.0

β = ∞

Figure 1.4: The density Heaviside projection for various magnitudes of β.

1.2.6 Structural Topology Optimization

In structural topology optimization, it is important to model the relation between density

and stiffness. SIMP models the stiffness proportional to the density in the power p, where p > 1, in

order to guarantee a well-posed optimization problem [Bendsøe and Sigmund, 1999]. The structural

stiffness for a solid-void problem can then be formulated as:

E (x) = ρ̂pE(0) , (1.15)

where E(0) is the initial structural stiffness of the material. Typically, the parameter p is set to

1, and then increased as the optimization progresses [Rozvany et al, 1994]; this is the so-called

continuation method [Sigmund and Petersson, 1998]. It was shown that if one uses p > 3, we

approach a black-and-white binary-like material distribution [Bendsøe and Sigmund, 2003]. That

is why the density approach has been referred to as a pixelated geometric model.

The SIMP method can be expanded to model a multimaterial optimization problem. For

example, applying a “rule of mixture”, we can model a two-phase material in structural topology

optimization by modifying (1.15) as:

E (x) = ρ̂pE1 + (1− ρ̂p)E2 , (1.16)

where E1 represents the stiffness of the first material, and E2 represents the stiffness of the second
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material. Notice that if we model the second material phase as void, and set E2 = 0 we recover the

original equation from (1.15). This method uses a single design variable field to model up to two

different materials.

For a three-phase or more material optimization problem, we require an extended power law

interpolation with multiple design variable fields (i.e. s1, s2, etc.), as shown in Wang and Wang

[2004] and Park and Sutradhar [2015]. In general, the SIMP method requires (n− 1) design variable

fields for n distinct material phases [Wang and Wang, 2004].

1.2.7 Fluid Flow Topology Optimization

Several applications require finding the optimal geometries of systems to improve the per-

formance of internal and external flows [Maute, 2014]. Adopting the concept of density methods,

Borrvall and Petersson [2003] extended the methodology to fluid-related problems. They modeled

the influence of a wall or body in the fluid flow by representing it as a body force exerted by the

porous media:

fi = −α (x) vi . (1.17)

This methodology is referred to as the Brinkman penalization. Similar to structural topology

optimization problems, we set the design variables, si, to represent the fluid fraction at a point in

the design domain, and set si = γi = γi (x), where (0 ≤ γ ≤ 1). Typically, γi = 1 represents the

fluid domain, and γi = 0 represents the solid domain.

The coefficient α can be interpolated from the design variables as:

α (x) = αmaxγ (x) . (1.18)

The parameter αmax should be large enough such that the term fi in (1.17) sufficiently penalizes

the flow velocity to ui = 0. Kondoh et al [2012] set αmax to:

αmax =

(
1 +

1

Re

)
χ , (1.19)

where Re is the Reynolds number, and χ is set to a very large value, i.e. 10+04 [Borrvall and

Petersson, 2003].



15

This linear interpolation, however, produces large gradients in the fluid flow, which cause

numerical issues and may lead the optimization problem to converge to a local minimum. Borrvall

and Petersson [2003] introduced a convex interpolation to ameliorate this issue:

α (x) = α (γ (x)) = αmax + γ (αmin − αmax)
1 + αp
γ + αp

, (1.20)

where αp is a constant penalty factor. Figure 1.5 shows the influence of the αp term. In general,

we want to choose αp to be as low as possible, but high enough to prevent intermediate porosities

from showing up in the optimization process. In the work of Kreissl and Maute [2011], αp was

chosen to be 0.01 with favorable results. αmin is set to zero, such that at its minimum, α (x) = 0

recovers the original Navier-Stokes equations.
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Figure 1.5: Influence of the interpolation penalty αp, for αmin = 0 and αmax = 10+04.

For more details on topology optimization of Stokes and Navier-Stokes flows, the reader is

referred to Maute [2014].

1.3 Discussion

The concept of relating some artificial densities to the stiffness in structural problems can

be expanded to other physics disciplines, as discussed in Section 1.2.7. The SIMP method can be

used to describe the material properties in thermal conductivity, magnetic permeability, porosity,

etc.; and consequently, it has found its way to a wide range of applications. The method requires
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a relatively small amount of iterations in order for the optimization problem to converge to an

optimal design (at least for solid-void problems). SIMP has this capability because it operates on

the entire design domain and not only on the boundaries of the material interface. This character-

istic prevents the method from suffering of localization effects. The approach is also suitable for a

wide combination of design constraints, multiple load conditions, and extremely large (often 3D)

systems. The educational article by Sigmund [2001] detailing a 99-line SIMP code implemented in

Matlab, as well as his web-based topology optimization program [Tcherniak and Sigmund, 2001]

played an important role in the acceptance of the SIMP method in both the academic and indus-

try communities. Virtually all industrial optimization software uses the SIMP approach as their

optimization method of choice due to its ease of implementation.

The SIMP method typically describes the interface between the different material domains

either by using intermediate densities or by discrete material distributions, which may lead to

jagged boundaries. In both cases, the representation of the interface is not precise, and therefore,

the enforcement of boundary conditions at the interface is not robust. This may result in non-

physical responses, such as premature yielding [Maute et al, 1998] in structural mechanics, fluid

flow penetrating solid material in low Reynolds number flow [Kreissl et al, 2011], and scalar fields

diffusing through solid material at low Péclet number flow [Makhija et al, 2012]. This issue can

be mitigated by representing the material interface more accurately either by mesh refinement

or adaptive remeshing [Maute and Ramm, 1995, 1997]. However, the adaptive refinement of the

finite element discretization by remeshing affects the convergence of the optimization process if a

gradient-based optimization algorithm is applied [Schleupen et al, 2000]. Furthermore, for problems

that require an accurate geometrical description of the interface, such as stresses in elasticity,

boundary layer problems in fluids, and skin-depth issues in electromagnetics, SIMP (and other

material interpolation methods) will fail due to the jagged edges obscuring the physics [Erentok

and Sigmund, 2011; Yamasaki et al, 2011].

The material interpolation schemes used in the SIMP method present further disadvantages.

Interpolating the density field into a physical property, such as the Young’s modulus in structural
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mechanics (1.15), or a body force in fluid dynamics (1.17) reduces the genericity of the approach

because each different physical phenomenon requires a new interpolation formulation. Additionally,

using material interpolation to address multimaterial optimization problems is not a physics-based

technique, and has been shown to violate the Hashin-Shtrikman bounds for low values of ρi and

large values of p [Hashin and Shtrikman, 1962]. Therefore, modeling multiple material phases can

become complicated [Yin and Ananthasuresh, 2001], and lead to an inefficient slow convergence

due to the larger number of iterations required.

With regards to manufacturing the optimized designs, the SIMP approach displays additional

downsides. For example, extracting the optimal geometry from the density distribution in the design

domain is not trivial and requires additional postprocessing steps. This is counterproductive for

rapid prototyping techniques.

The disadvantages of density-based optimization methods, and homogenization methods in

general, prompted the development of this thesis, and the use of immersed boundary techniques

such as the Level Set Method and the eXtended Finite Element Method as topology optimization

tools.

1.4 The LSM-XFEM Framework

The goal of this thesis proposal is to introduce a unified topology optimization framework

that uses the Level Set Method to describe the design geometry and the eXtended Finite Element

Method to solve the governing equations and measure the performance of the design. The framework

will be referred to as the LSM-XFEM optimization method.

A computational optimization framework consists of four areas of study: the optimization

model, the design model, the analysis model, and the fabrication model, as shown in Figure 1.6. In

this thesis, we will study the optimization model with respect to the formulation of the optimization

problems; the design model with respect to the parametrization of the design geometry and the

capability to control the shape of the design using the LSM, and the definition of the design

variables; the analysis model with respect to the analysis of multiphysics problems using the XFEM;
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and the fabrication model with respect to the capacity to meet manufacturing constraints.

Optimization 
model

Design 
model

Fabrication 
model

Analysis 
model

Figure 1.6: Computational approach for an optimization framework.

We will study the capabilities and characteristics of our topology optimization framework

with 2D and 3D linear elasticity, laminar incompressible flow, species transport, and conjugate

heat transfer problems. The analysis domain is represented as material-void or material-material

problems. The geometry of the material interface is described by an explicit Level Set Method,

where the parameters of a Level Set Function (LSF) are defined as functions of the optimization

variables. The governing equations in the analysis domain are discretized in space by a Heaviside-

step generalized formulation of the eXtended Finite Element Method, which preserves the crisp

geometry definition of the LSM. A geometric preconditioner and face-oriented ghost-penalty terms

are added for stability reasons and to improve the conditioning of the system. The structural be-

havior is modeled by a linear elasticity model. The fluid behavior is modeled by the incompressible

Navier-Stokes equations, augmented with a Boussinesq approximation of the buoyancy forces to

model conjugate heat transfer. The species transport in the fluid phase is modeled by an advection-

diffusion equation. The species field in the solid phase is modeled by a linear diffusion model. The

emergence of isolated fluid regions surrounded by solid in the flow problems or free-floating solid

particles during the optimization process lead to a singular analysis problem. A novel auxiliary

indicator field is modeled to avoid the ill-conditioning of the system by weakly imposing a pressure
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constraints on these isolated regions in the flow problems, and by adding a system of soft springs

in the structural problems. The interface conditions at the material boundary are enforced weakly

via stabilized Lagrange multipliers or Nitsche’s method. The optimization problems are formulated

with a nonlinear programming method; the flexibility of this scheme allows us to define additional

design variables in addition to the parameters of the LSF to control the position, size, and shape

of the inlets and outlets in the flow problems. The sensitivities are computed using the adjoint

method. The numerical results demonstrate the applicability of the proposed method for 2D and

3D linear elasticity, and steady-state and transient coupled multiphysics laminar flow problems.

Additional regularization techniques are added to the optimization framework to control the shape

of the design and meet manufacturing constraints.

1.5 Outline

The thesis is structured as follows: Section 2 details our description of the geometry using the

design variables and the LSM. In Section 3, we present the XFEM. Section 4 describes the problem

setup, including the governing equations, the temporal discretization, the optimization criteria, and

the sensitivity analysis. Section 5 describes the stability methods used in the context of the XFEM.

Section 6 studies regularization techniques to control the shape of the designs by utilizing the level

set field and the geometry of the material interface. Numerical examples are studied in Section 7.

The conclusions drawn from this work are presented in Section 8. The contributions of this thesis

are stated in Section 9. Future work is proposed in Section 10.



Chapter 2

Level Set Method

The shortcomings of density methods have promoted the development of immersed boundary

methods for topology optimization. There are several immersed approaches in the literature (c.f.

Parvizian et al [2012] and van Dijk et al [2013]). The Level Set Method applied to topology opti-

mization arose as an immersed boundary technique capable of overcoming some of the shortcomings

of the density approach. The main advantage of the method is that it allows for the description of

complex geometries and the variation of the shape and topology of our design without introducing

intermediate materials. A level set approach is a region-based model with explicit boundaries, in

contrast to the pixelated model of the density method [Wang and Wang, 2004].

In topology optimization, the geometry of a design is defined by the vector of design variables.

In our LSM-XFEM implementation, the parameters of a discretized Level Set Function (LSF) are

defined as explicit functions of the design variables. In the following subsections, we describe the

concepts behind the LSM, and the parametrization of the LSF with respect to the design variables.

2.1 Geometry Description

The LSM can describe the geometry of a body immersed in a domain, Γ = ∂Ω, by the shape

boundary of a higher dimensional LSF, φ (x), where x denotes the vector of spatial coordinates.

This shape boundary is usually represented by the zero level set of this function such that:

Γ = {x | φ (x) = 0} . (2.1)
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Figure 2.1: LSM description of 2 circular inclusions with radii of 0.667 and 0.333, respectively,

moving towards each other.
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Then, we can divide the design domain into phase regions as:

φ (x) > 0 , ∀x ∈ Ω\∂Ω (inside the region) , (2.2)

φ (x) = 0 , ∀x ∈ ∂Ω (on the boundary) , (2.3)

φ (x) < 0 , ∀x ∈ D\Ω (outside the region) , (2.4)

where D represents the design domain, either bounded or unbounded, and contains all possible

admissible shapes of Ω, as shown in Figure 2.1. These functions can be used to describe complex

geometries; a few non-trivial examples of analytically-given shapes are taken from Burman et al

[2014], and are defined as:

• Doughnut:

φ(x, y, z) =
(
R−

√
x2 + y2

)2
+ z2 − r2 , (2.5)

• Popcorn ([Annavarapu et al, 2012; Chern and Shu, 2007; Burman et al, 2014]):

φ(x, y, z) =
√
x2 + y2 + z2 − r0 −

11∑

k=0

Ae−((x−xk)2+(y−yk)2+(z−zk)2)/σ2
, (2.6)

where:

(xk, yk, zk) =





r0√
5

(
2 cos

(
2kπ

5

)
, 2 sin

(
2kπ

5

)
, 1
)

0 ≤ k ≤ 4 ,

r0√
5

(
2 cos

(
(2(k−5)−1)π

5

)
, 2 sin

(
(2(k−5)−1)π

5

)
, 1
)

5 ≤ k ≤ 9 ,

(0, 0,+r0) k = 10 ,

(0, 0,−r0) k = 11 .

(2.7)

• Swiss cheese block:

φ(x, y, z) =
(
x2 + y2 − 4

)2
+
(
z2 − 1

)2

+
(
y2 + z2 − 4

)2
+
(
x2 − 1

)2

+
(
z2 + x2 − 4

)2
+
(
y2 − 1

)2
.

(2.8)

These shapes are illustrated in Figure 2.2.
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(a) Doughnut (b) Popcorn (c) Swiss cheese

Figure 2.2: LSFs can be used to describe complex geometries.

Each phase region may represent a different material [Allaire et al, 2002; Wang and Wang,

2004; Osher and Santosa, 2001; Sethian and Wiegmann, 2000] or a different physics [Legay et al,

2006; Gerstenberger and Wall, 2008]. The LSM was first applied extensively in the field of imaging

and computer vision [Osher and Paragios, 2003]. Eventually, the approach found its way to topology

optimization, as the technique is well suited for the task: LSFs can form holes, split into multiple

pieces, or merge with other functions [Wang and Wang, 2004; Allaire et al, 2002; Osher and Sethian,

1988].

Multiple functions can be used to model more than two phase regions. As with the LSM itself,

the use of multiple functions originated in image processing [Vese and Chan, 2002]. This so-called

“color” LSM requires m functions to model n = 2m different phase regions. For a reference on the

method, the reader is referred to Wang and Wang [2004] and Wang and Wang [2005]. The work

of this thesis is restricted, at the most, to two-material problems, and therefore, only one function

will be used at any time.

2.2 Parametrization of the Level Set Function

The LSF is typically updated in the optimization process by solving the Hamilton-Jacobi

equations [Yamasaki et al, 2010]. Methods that utilize this update scheme are denoted as implicit

methods. An alternate approach, specifically the one utilized in this work, is to define the pa-
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rameters of the discretized LSF as explicit functions of the optimization variables. The resulting

parameter optimization problem is solved by standard nonlinear programming methods [van Dijk

et al, 2013], such as the GCMMA algorithm [Svanberg, 2002].

In this thesis, we parametrize a discretized LSF to describe a combination of geometric primi-

tives and to allow for the evolution of geometries in the optimization process. These geometric prim-

itives serve as ports in the flow problems, and are described by cylinders. In both parametrization

schemes, the value of the function at a point within an element is interpolated from the nodal values

using standard trilinear finite element shape functions. In theory, the parametrization mesh may

differ from the analysis mesh; however, for simplicity, we use the same mesh for the parametriza-

tion and the analysis. Note that because our shape functions are linear, an element edge can be

intersected at most once by the fluid-solid interface, i.e. the point i at which φi (x) = 0. This

interpolation scheme restricts the geometry resolution of the LSF to the size of a finite element,

and may cause convergence issues in the optimization process if smaller features are generated.

Hierarchical mesh refinement may ameliorate this issue; however, as these features become smaller,

the required level of refinement might not be feasible for practical purposes. This issue has been

discussed in Jenkins and Maute [2015] and Coffin and Maute [2015b]. A regularization scheme to

discourage subelement-size features is presented in Section 6.2. However, as the scheme is not mesh

independent a more advanced approach is developed and studied in Section 6.3.

2.2.1 Topology Optimization

The topology of the level set field is modified by update schemes that use the sensitivities

of the design variables. Several approaches exist, such as the Hamilton-Jacobi equation [Yamasaki

et al, 2010]. Instead, this work will focus on a mathematical programming approach, where the

nodal values of the discrete level set field are defined as functions of the optimization design vari-
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ables. Like in the filtering method of density approaches (1.12), we define a linear filter:

φi (s) =

Nn∑
j=1

wijsj

Nn∑
j=1

wij

, (2.9)

with:

wij = max (0, rφ − ‖xi − xj‖) , (2.10)

where φi (s) is the level set value at a point xi, wij is the factor of point xi with respect to the

design variable j, rφ is the smoothing filter radius, and Nn is the number of nodes in the design

domain. The linear filter in (2.9) was used previously in the studies of Kreissl and Maute [2012]

and Makhija and Maute [2014a], and was shown to accelerate the convergence of the geometry in

the optimization process. The filter helps control the spatial gradients of the LSF in the vicinity of

the zero level set to avoid ill-conditioning of the optimization problem. Furthermore, the filter may

promote (but does not guarantee) smooth shapes of the phase boundaries; however, in contrast to

density or sensitivity filters used in density-based methods, the filter above is not guaranteed to

control the minimum feature size [Villanueva and Maute, 2014].

Numerical experiments have shown that filter radii in the range from 2.0 to 4.0 times the

element length scale, h, yield an effective and efficient smoothing of the nodal design variables

[Coffin and Maute, 2015b]. Larger values can actually be counterproductive, and can yield a design

that, although at the global scale looks the same as a design with a smaller radius, is actually less

smooth in the vicinity of the level set interface [Villanueva and Maute, 2014].

The reader is referred to van Dijk et al [2013] and Gain and Paulino [2013] for a more detailed

overview of the Level Set Method in the context of topology optimization.

2.2.2 Geometric Primitives

The optimization problems are formulated with a nonlinear programming method. The

flexibility of this scheme allows us to define optimization variables to describe the shape of geometric

primitives.
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In this thesis, we utilize this concept to model the ports in our flow problems as 3D cylinders.

The design variables describe the position and size of the cylinders; each cylinder is defined by

its local coordinate system, x̃, and its radius. The level set value of the j-th cylinder, φc,j (x̃), is

defined as:

φc,j (x̃) = rc,j −
√

(x̃− x̃c,j)2 + (ỹ − ỹc,j)2 , (2.11)

where x̃ and ỹ are the in-plane coordinates of the port, rc,j is the radius of the cylinder, and x̃c,j and

ỹc,j are the coordinates at its center. Note that this formulation only allows the port to move within

the plane on which it was initially placed. The level set value φi is defined by approximating the

minimum level set value among all ports using a Kreisselmeier-Steinhauser function, which ensures

the differentiability of the formulation with respect to the cylinder parameters. Furthermore, the

function (2.11) overrides the value given by (2.9) at the ports. For more details and examples, the

reader is referred to Coffin and Maute [2015a].

2.3 Mechanical Model

Several methods exist to describe how the geometry and the material distribution described

by the LSF are represented in the mechanical model. The Ersatz material method [Wang et al,

2003; Allaire et al, 2005] interpolates the physical properties of a fictitious material by either using

element-wise constant material fractions or by mapping the level set field directly to a point [Yaji

et al, 2015] (see Figure 2.3). In a fluid-solid problem, the Ersatz material approach models the solid

phase as a body force using Brinkman penalization. While the Ersatz material approach eases the

computational complexity, the method faces the same issues as density methods in regards to

enforcing boundary conditions across the material interface.

An alternative to the Ersatz interpolation is to repeatedly generate new meshes that align

with the geometry of the zero level set, as shown in Figure 2.4. However, generating an entirely

new body-fitted mesh typically suffers from robustness and efficiency, particularly for 3D problems.

It was also shown by Schleupen et al [2000] and Wilke et al [2006] that this method affects the
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Figure 2.3: In an Ersatz material interpolation approach, the material properties of each finite

element are interpolated proportional to the volumes of the phase regions.
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convergence of the optimization process.

Figure 2.4: Remeshing the design domain such that elements align with the zero level set is an

alternative to the Ersatz material interpolation approach.

In this work, we utilize the XFEM to describe the material distribution in the mechanical

model. The XFEM is an immersed boundary technique that does not require a mesh that conforms

to the phase boundary. The XFEM decomposes the elements cut by the zero level set into subdo-

mains and interfaces to integrate the weak form of the governing equations. This approach avoids

the need to interpolate the material properties such as in density methods because each subdomain

has a distinct phase. We study the XFEM in more detail in Section 3.

2.4 Discussion

There are key challenges for the LSM in the context of topology optimization, such as: (i) con-

trolling the spatial gradients of the LSF in the vicinity of the zero level set to avoid ill-conditioning

of the optimization problem, (ii) controlling local feature sizes, (iii) accelerating the convergence of

the geometry in the optimization process, and (iv) the robust and efficient analysis of the geome-

tries described by the LSF. Solutions to (i) and (iii) are drawn from the literature, and utilize the

smoothing filter introduced in (2.9). Approaches to handle (ii) and (iv) are developed and studied

in this thesis.

In constrast to the smoothing filter in density-based optimization (1.12), LSM-based topology
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optimization requires regularization to control the size of geometric features. These techniques, such

as a minimum feature size measure and shape smoothers, are studied in Section 6.



Chapter 3

eXtended Finite Element Method

The XFEM is an immersed boundary technique that does not require a mesh that conforms

to the phase boundary. The method was built upon the concept of partition of unity developed by

Babuška and Melenk [1997], and it was originally used to model crack propagation [Belytschko and

Black, 1999]. The XFEM augments the standard finite element interpolation space with additional

enrichment functions, denoted “enriched degrees-of-freedom”, to capture discontinuities in either the

state variables or their spatial gradients within an element. The XFEM decomposes the elements

cut by the zero level set isosurfaces into subdomains and interfaces to integrate the weak form of

the governing equations. This approach avoids the need to interpolate the material properties such

as in density methods because each subdomain has a distinct phase. Boundary conditions on the

interface are imposed weakly via stabilized Lagrange multipliers [Gerstenberger and Wall, 2008],

or via Nitsche’s method [Bazilevs and Hughes, 2007]. In the context of fluid flow problems, the

enforcement of no-slip boundary conditions along the phase boundaries via the XFEM and a stabi-

lized Lagrange multiplier method was adopted by Kreissl and Maute [2012]; the Lattice Boltzmann

Method was employed in combination with a level set-based geometric interface representation for

generalized topology optimization of fluids by Makhija and Maute [2014a], among others. For a

general overview of the method, refer to Fries and Belytschko [2010].
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3.1 Mechanical Model

The XFEM decomposes the elements cut by the zero level set isocontours (in 2D) or isosur-

faces (in 3D) into subdomains and interfaces to integrate the weak form of the governing equations.

This approach avoids the need to approximate material properties such as in density methods be-

cause each subdomain has a distinct phase. For 2D problems and using a bilinear interpolation

of the level set field within an element, there are only 8 intersection configurations which can be

tabulated (see Figure 3.1). In 3D, there are 127 intersection configurations. To handle this com-

plexity, we compute the intersection points of the zero level set with the element edges and use a

Delaunay triangulation to subdivide the element into triangles in 2D and tetrahedra in 3D. These

intersection points are denoted as xΓ
i . In numerical experiments, this approach has proven robust

and computationally inexpensive. Figure 3.2 shows the decomposition of a 2D short cantilever

structural beam using our triangulation approach. For more details on the implementation, the

reader is referred to Appendix A.
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Figure 3.1: A 2D finite element has eight possible decompositions based on the nodal level set

values.
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Figure 3.2: In the XFEM, the elements cut by the zero level set are divided into subdomains and

interfaces for integration. Circles represent the integration points for the subdomains, while crosses

represent the integration points for the interface.
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3.2 Solution Enrichment

The governing equations are discretized in space by the XFEM. Different enrichment strate-

gies are available in the literature depending on the type of discontinuity [Fries and Belytschko,

2010]. This study adopts a generalized enrichment strategy based on the Heavisde-step enrichment

of Hansbo and Hansbo [2004], which interpolates consistently the solution fields in the presence of

small features, and does not suffer from the artificial coupling of disconnected phases. This par-

ticular approach has been used by Makhija and Maute [2014b] and Villanueva and Maute [2014],

Kreissl and Maute [2012], Lang et al [2014], and Makhija and Maute [2014a], who considered

linear elasticity, incompressible Navier-Stokes, linear diffusion, and advection-diffusion problems,

respectively.

The XFEM is used to approximate a state variable field in only a single phase or in both

phases. Here, we present the most general case where the state variables are modeled in both phases.

The approximation for a solution field u within an element is denoted as ũ, and is discretized by a

Heaviside-step enrichment strategy:

u (x) ≈ ũ (x) =

Nl∑

l=1

(
H(−φ(x))

Nn∑

i=1

vi(x)δi,flk u
f
i,l +H(+φ(x))

Nn∑

i=1

vi(x)δi,sln u
s
i,l

)
, (3.1)

where l is the enrichment level, Nl is the maximum number of enrichment levels used for each

phase, vi(x) are the nodal basis functions, ufi,l and usi,l are the degrees-of-freedom of enrichment

level l at node i in the fluid and solid phases, respectively, φ is the level set value, and H denotes

the Heaviside function, which turns on and off the interpolation for the phase m, and is defined as:

H(ζ) =





1 ζ > 0 ,

0 ζ < 0 .

(3.2)

The Kronecker delta, δi,mab , selects the degrees-of-freedom for the material phase m. The indices k

and n denote the active degrees-of-freedom at node i in the fluid and solid phases, respectively. At

any given point, only one degree-of-freedom per node is used to interpolate the solution, ensuring

that the partition of unity is satisfied.
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Figure 3.3: Physical model for the enrichment example. The analysis domain contains multiple

level set inclusions.
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Figure 3.4: Discretized model for the enrichment example. 2D mesh with 4 bilinear elements.

Black areas: material phase 1, negative level set values at the nodes; white areas: material phase

2, positive level set values at the nodes.
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Figure 3.5: The center node, denoted by the color blue, uses different degrees-of-freedom to describe

the disconnected phase regions. The subscripts denote the l enrichment level. The maximum

number of enrichment levels used for each phase is Nl = 5. A value of 0 denotes the original finite

element degrees-of-freedom, while other numbers indicate additional “enriched degrees-of-freedom”.
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For each phase, multiple enrichment levels, i.e. sets of shape functions, may be necessary to

interpolate the state variables in multiple, physically disconnected regions of the same phase, c.f.

[Terada et al, 2003], [Tran et al, 2011], and [Makhija and Maute, 2014b]. When interpolating the

level set field by element-wise linear functions in a structured grid, a maximum of 9 enrichment

levels is needed in 2D problems, and 14 enrichment levels in 3D [Villanueva and Maute, 2014].

To illustrate this process with a quick example, consider a physical model that contains multiple

inclusions described by a level set field, as shown in Figure 3.3. The corresponding discretized model

consists of a 2D mesh with 4 bilinear intersected elements, as shown in Figure 3.4. The boundary

conditions are not relevant at this stage. The node at the center of the mesh in Figure 3.4 will use

different degrees-of-freedom to interpolate the different subdomains and avoid artificially coupling

the disconnected phase regions; this is shown in Figure 3.5.

The Heaviside-step enrichment formulation (3.2) has a singularity for cases in which the

material interface lies exactly on a node, i.e. the level set value φi at node i equals 0. To avoid

this issue, we adopt the level set perturbation approach outlined in Choi et al [2012] and Lang

et al [2014]. If the magnitude of the level set value at a node is smaller than some critical value,

φΓ
c , the level set value is modified to a shift value, φΓ

s . The different options for shifting the

material interface include: (i) a −ve shift, such that upon shifting the interface, the previously

intersected node lies in the negative phase, (ii) a +ve shift, such that upon shifting the interface,

the previously intersected node lies in the positive phase, and (iii) a signed shift, wherein upon

shifting the interface, the node retains its phase. In the scenario where the material interface lies

exactly on a node, we resort to a −ve shift. This perturbation results in the material interface

moving away from the node, solving the singularity issue. Unless otherwise stated, we adopt the

−ve shift and the values of φΓ
c = φΓ

s = 10−06 × h.

Numerical studies have shown that the influence of this perturbation is negligible for the

problems considered here [Coffin and Maute, 2015a]. The effect on the sensitivities of the objectives

and constraints with respect to the level set field is addressed in Section 4.6.

For material-void problems, elements entirely in the void phase are omitted in the element
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assembly process and the degrees-of-freedom that interpolate the void phase are eliminated from

the system of equations. These techniques reduce the computational cost of solving the XFEM

problem.

The reader is referred to Makhija and Maute [2014b] and to Appendix C for more details on

the particular XFEM implementation used in this work.

3.3 Implementation Details

For more details on the enrichment strategy and the algorithmic implementation of Figure

3.5, the reader is referred to Appendix A. For convenience, a summary is provided here. The reader

may skip this section, as it only focuses on the algorithmic implementation of the framework and

most of its content is intended for software developers.

The internal document in Appendix A was written as both a user and a theory manuals for

future software developers who wish to study and implement the LSM-XFEM framework. The

report offers all the computational algorithms involved in building a minimum viable product that

utilitizes both methods to perform topology optimization.

The first part of the report focuses on the algorithms used to describe the geometry of the

design in the analysis mesh. The intersection points of the zero level set are computed on the

elemental edges by interpolating the nodal level set values at the nodes of the edge. Then, we

use this information to perform a Delaunay triangulation [Lee and Schachter, 1980] and divide the

analysis domain into subdomains to perform numerical integration. This process was illustrated in

Figures 3.1 and 3.2.

The second part of the report focuses on the approximation of the solution. Previous studies

on topology optimization for 3D problems with the XFEM [Li et al, 2012] have employed a simplified

enrichment scheme which is limited to “material-void” problems, and may suffer from the artificial

coupling of disconnected material. Our work overcomes these issues by adopting a generalized

enrichment scheme (3.1). The key challenge of this scheme is to identify the enrichment levels

needed to consistently interpolate the solution field in elemental subdomains with the same phase.
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To this end, the subdomains in all elements connected to a node need to be considered. This

naturally leads to an algorithm which loops over all nodes and, in an inner loop, loops over all

elements connected to the current node. As this approach processes an element repeatedly, the

following simple and efficient two-step novel scheme is introduced:

(1) A temporary, local enrichment level is assigned to the subdomains in each element. Recall

that the enrichment level defines the set of degrees-of-freedom used to interpolate the

solution field in an elemental subdomain. Because this assignment is done individually for

each element, the continuity of the interpolation across elements is not guaranteed.

(2) The nodal enrichment levels are constructed using a topology-flipping algorithm. This

process ensures that the solution field is interpolated continuously across elements, and by

a different set of shape functions for each disconnected elemental subdomain of the same

phase. To this end, the cluster of elements connected to a node is considered, and the

elemental enrichment levels assigned in Step 1 are adjusted to satisfy the continuity and

consistency conditions.

This algorithm is illustrated in Figure 3.6. Figure 3.6a shows the triangulation and local

enrichment levels for a 4-element nodal cluster in 3D. The node of interest is the one located at

the center of the element cluster. In Step 1, each subdomain within each phase is assigned a

local enrichment level. Applying these local enrichment levels to the degrees-of-freedom would

incorrectly approximate the solution field. Analyzing the element cluster around the center nodes

shows that these subdomains are disconnected and individual enrichment levels are assigned, as

shown in Figure 3.6b.

For more details on the algorithmic implementation, the reader is referred to Appendix A.

3.4 Boundary Conditions

In the context of topology optimization, an immersed boundary technique such as the XFEM

is attractive because the method does not require a fixed domain of integration. This characteristic
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Figure 3.6: Enrichment levels for a cluster of elements around a center node (blue). Superscripts

denote the material phase, and subscripts denote the enrichment level. The node must recognize

the enrichment levels needed to consistently interpolate the solutions in the subdomains, and to

avoid the artificial coupling of disconnected material.
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presents the capability to vary the shape and/or position of the surfaces on which the boundary

conditions are applied during the course of the optimization process. The Heaviside enrichment in

(3.1) bypasses the issues of kink enrichments, and can represent more general jump discontinuities

that are common in, for example, displacements across cracks and temperature fields at small

scales across material interfaces [Makhija and Maute, 2014b]. However, the approximation allows

for discontinuities of the solution fields along the phase boundaries. Therefore, the continuity is

enforced weakly either by the stabilized Lagrange multiplier method [Burman and Hansbo, 2010]

or by Nitsche’s method [Burman and Hansbo, 2012].

We study stabilized Lagrange multipliers in the context of linear elastic structures, and

Nitsche’s method for all the other governing equations in Section 4.2.

3.5 Stability

One challenge of the XFEM is that an ill-conditioned system of equations results when the

ratio of the phases volumes in an element cut by the zero level set is very small or very large. Such

interface configurations are often unavoidable when using fixed meshes in topology optimization.

In general, the ill-conditioning impedes the convergence of solvers for nonlinear problems and

reduces the performance of iterative linear solvers. Several approaches have been proposed to avoid

this ill-conditioning issue, such as the geometric preconditioner of Lang et al [2014], the Jacobi

preconditioner of Sauerland and Fries [2013], the preconditioners of Béchet et al [2005] and Menk

and Bordas [2011] based on a Cholesky decomposition, and face-oriented ghost-penalty methods

[Burman et al, 2006]. The geometric preconditioner of Lang et al [2014] has been studied in the

context of linear diffusion [Lang et al, 2014]. Face-oriented ghost-penalty methods have been studied

in the context of fluid flow problems, where discontinuties in the spatial gradients of the velocities

and the pressure are penalized across the common facets of intersected elements [Schott et al, 2014].

Here, we explore the influence and the performance of the ghost-penalty methods in the context of

flow topology optimization (Section 5.2), and the characteristics of the geometric preconditioner in

linear diffusion and linear elasticity problems (Section 5.1).
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Figure 3.7: Geometry description of the fluid and solid domains with a LSF. Blue region represents

the fluid channels. Isolated fluid regions surrounded by solid are denoted in red. White regions

represent the solid domain.

A second challenge of the XFEM is that isolated regions may emerge during the optimization

process. In the context of flow topology optimization, isolated fluid regions surrounded by solid, as

shown in Figure 3.7, produce a singular analysis system because the absolute value of the pressure

field is not governed. In the context of linear elasticity topology optimization, isolated free-floating

solid particles may emerge and produce rigid body motion. This issue does not exist in an Ersatz

material approach because the phase surrounding the isolated regions is modeled via a soft material.

A similar approach can be applied to the XFEM to suppress the singularities, and the phase can be

modeled via a soft material [Wei et al, 2010]. However, this approach requires accounting for the

interface contributions and integrating the governing equations over an additional domain, which

increases the computational cost. Here, we augment our fluid model with a penalty formulation

to enforce a constraint on the average pressure, and we augment our linear elasticity model with

a system of soft springs. However, unlike Villanueva and Maute [2014], where the penalty was

applied to the entire domain, we model an auxiliary indicator field to detect these isolated regions

and only apply the penalty there (Section 4.2.4).



Chapter 4

Analysis

The main challenge in optimizing the topology of linear elastic structures, incompressible

fluid flow, heat transfer, or species transport problems is the modeling and numerical prediction

of the displacement, flow, temperature, and species fields. This section introduces the weak form

of the governing equations, outlines the temporal discretization schemes, the linear and nonlinear

solvers, the sensitivity analysis, and the design criteria.

4.1 Analysis Domain

As described in Section 2, the analysis domain, Ω, is subdivided into a negative and a positive

phases, Ω+ and Ω−, respectively, as shown in Figure 4.1b. The set of all elements in the domain Ω

is denoted as Ωe. In order to define the boundary conditions, as well as to enforce the continuity

of the solution field at the material interface, we define the surfaces ∂Ω− and ∂Ω+ as the whole

domain boundaries of the negative and positive phases, respectively (see Figures 4.1d and 4.1e).

Furthermore, each of these domain boundaries are subdivided into external and internal surfaces,

∂Ωm
ext and ∂Ωm

int, respectively, where m = {−,+} represents the negative or positive domains (see

Figures 4.1f and 4.1g). Notice that the internal surfaces are equivalent to the material interface,

and therefore, we will favor the use of the term Γ0 to refer to them from here on out. Similarly, for

simplicity, we relabel the external boundaries as simply Γm. The Dirichlet boundary conditions on

the external surfaces and the material interface are then defined as ΓmD and Γ0
D, respectively, and

the Neumann boundary conditions are defined as ΓmN and Γ0
N. These boundaries will be used to
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define the governing equations in the following sections.

4.2 Governing Equations

In this work, we consider the analysis of linear elastic structures, laminar incompressible

flow, and energy and species transport problems. The structural problems are modeled assuming

assuming infinitesimal strains, a linear elastic material behavior, and static conditions.

We model the flow by the incompressible Navier-Stokes equations, which describe the trans-

port of momentum and the conservation of mass. To model heat transfer dominated by natural

convection, the Navier-Stokes equations are augmented by a Boussinesq approximation of the buoy-

ancy forces. Energy and species transport is described by coupling an advection-diffusion equation

to our flow model. For convenience, we relabel the analysis domain such that the fluid domain, Ωf ,

is defined by the negative phase, Ω−; the solid domain, Ωs, is defined by the positive phase; and

the fluid-solid interface, Γfs is defined by the material interface, Γ0. Note that we enforce no-slip

boundary conditions at the fluid-solid interface; therefore, the fluid behavior is only modeled in the

Ωf domain. A schematic of the setup for the flow problems is shown in Figure 3.7.

For the flow problems, an indicator field is introduced in the fluid domain to identify iso-

lated fluid regions where a constraint on the average fluid pressure is enforced. For the structural

problems, the indicator field identifies free-floating solid particles where a system of soft springs is

placed. The governing equations in the fluid and solid phases are summarized subsequently.

4.2.1 Linear Elastic Structural Mechanics

In this work, we consider the topology optimization of structures using the LSM and the

XFEM to predict the structural response, assuming infinitesimal strains, a linear elastic material

behavior, and static conditions. We model solid-void and solid-solid problems. From Figure 4.1, ΓmN

denotes the surface where traction forces are applied, ΓmD is the surface with prescribed displace-

ments, and Γ0
D constitutes the material interface where the continuity of the solution is applied.
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Figure 4.1: Geometry description of the negative and positive domains with a level set function.
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The strong form of the governing equations is defined as follows:

−∇ · σij (um) = f̂mi , ∀x ∈ Ωm , (4.1)

where um is the displacement vector, f̂mi is the prescribed body force, and σij (um) is the stress

tensor defined using the following constitutive model:

σij (um) = Dm
ijnpεnp (um) , (4.2)

where Dm
ijnp is the fourth order constitutive tensor for the isotropic material of phase m, and

εnp (um) is the infinitesimal strain tensor defined as:

εnp (um) =
1

2

(
∂umn
∂xp

+
∂ump
∂xn

)
. (4.3)

Dirichlet and Neumann boundary conditions are imposed on the material interface, Γ0, and

on the external boundaries, Γm, as:

umi = ûm , ∀x ∈ ΓmD , (4.4)

σij (um) · nmi = t̂mi , ∀x ∈ ΓmN , (4.5)

u−i = u+
i , ∀x ∈ Γ0

D , (4.6)

σij
(
u−
)
· nΓ

i = σij
(
u+
)
· nΓ

i , ∀x ∈ Γ0
D , (4.7)

where nΓ
i is the normal at the material interface pointing from the negative phase into the positive

phase.

After the integration by parts of (4.1), the residual of the weak form of the linear elastic

constitutive equations, denoted as ru, is decomposed into volumetric and surface contributions:

ru = rΩ
u + rΩ

u,ψ + rD
u + r0

u + rN
u + rGP

u , (4.8)

where rΩ
u is the residual of the volumetric contributions. The term rΩ

u,ψ is used to model a system of

soft springs in free-floating solid particles surrounded by void. The terms rD
u and r0

u represent the

residuals of the Dirichlet boundary conditions on the external surfaces, and at the material interface,



46

respectively, and rN
u is the residual of the Neumann conditions on the external boundaries. The

ghost-penalty term, rGP
u , depends on the face-oriented ghost-penalty formulation, and is defined in

Section 5.2.

The non-stabilized volumetric contribution is defined as:

rΩ
u =

∑

m∈{−,+}

∫

Ωm
εij (vm)σij (um) + vmi f̂

m
i dΩ , (4.9)

where vm is an admissible test function.

The displacement continuity along phase boundaries for solid-solid problems is imposed via

the stabilized Lagrange multiplier method from Makhija and Maute [2014b]:

rD,0
u = rD,0,λ

u + rD,0,u
u , (4.10)

where:

rD,0,λ
u =

∫

Γ0

γL,uδλiJuK + δλi
(
λi −

{
σij (u) · nΓ

j

})
dΓ , (4.11)

where
{
σij (u) · nΓ

j

}
is computed using:

{
Ji
(
ζ−, ζ+

)}
= γ−J Ji

(
ζ−
)

+ γ+
J Ji

(
ζ+
)
, (4.12)

with γ−J = γ+
J = 0.5, γL,u is a constant scaling factor, and:

rD,0,u
u = −

∫

Γ0

JvKλi dΓ . (4.13)

The unknown field λ operates on the traction. In this work, this field is discretized locally, that

is, the field is not continuous across elements. We can either assume a constant value for the field

in the element, or a bilinear or trilinear field to interpolate it using the nodal shape functions.

The higher the factor γL,u, the better the interface condition is satisfied, at the cost of numerical

stability.

Alternatively, the boundary conditions can be imposed using Nitsche’s method as:

rD,0
u =

∫

Γ0

−JvK
{
σij (u) · nΓ

j

}
+
{
σij (v) · nΓ

j

}
JuK + γN,uJvKJuK dΓ , (4.14)
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where γN,u is a constant scaling factor. The first, second, and third terms correspond to the

consistency, adjoint consistency, and penalty terms of the Nitsche formulation. In this thesis, we

use the symmetric formulation for the adjoint consistency term, and its sign is opposite to the first

term.

The formulations to impose Dirichlet conditions on external surfaces can be derived from

(4.10) and (4.14) by neglecting the second material phase.

The residual contribution from external Neumann boundary conditions is defined as:

rN
u =

∑

m∈{−,+}

∑

Ωe∈Ω

∫

Ωe∩ΓmN

vmi t̂
m
i dΓ . (4.15)

Imposing boundary conditions weakly via the stabilized Lagrange multiplier method requires

a linear solve per finite element for each Newton iteration. Conversely, the additional terms in

Nitsche’s method are incorporated naturally into the linear solve of the global system. However,

Nitsche’s method may require additional stability terms to ensure the convergence of the solver.

We will study this in more detail in Section 5.2.

In solid-void topology optimization problems, free-floating solid particles surrounded by void

material may emerge, leading to a rigid body mode. We extend the approach of Makhija and Maute

[2014b] onto 3D problems and assume that the solid phase is supported by weak fictitious springs.

The residual, rΩ
u,ψ, is defined as:

rΩ
u,ψ =

∫

Ωs
vsi k

s
uψ̄

susi dΩ , (4.16)

where ksu denotes the stiffness of the distributed system of springs, and ψ̄f is the indicator field.

However, unlike Makhija and Maute [2014b], where the penalty was applied to the entire domain,

the auxiliary indicator field has a value of 1 in the free-floating regions and zero everywhere else;

the equations to model the field will be defined in Section 4.2.4.

4.2.2 Incompressible Navier-Stokes Equations

The flow behavior in the fluid phase is modeled by the transient incompressible Navier-

Stokes equations. The heat transfer is dominated by natural convection, and the buoyancy forces
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are modeled by the Boussinesq approximation. The strong form of the equations is described as

follows:

ρf
(
∂ufi
∂t

+ ufj
∂ufi
∂xj

)
+
∂pf

∂xj
δij − 2µf

∂

∂xj

(
εij

(
uf
))

+ρfgi

(
1− hfT

(
T f − T f∞

))
= 0 , ∀x ∈ Ωf ,

∂ufi
∂xi

= 0 , ∀x ∈ Ωf ,

(4.17)

where ufi is the velocity vector, pf is the pressure, T f is the temperature field, ρf is the density, µf is

the dynamic viscosity, gi denotes the gravity acceleration vector, hfT is the fluid thermal expansion

coefficient, T f∞ is the reference temperature value, and εij
(
uf
)
is the strain rate tensor given by:

εij

(
uf
)

=
1

2

(
∂ufi
∂xj

+
∂ufj
∂xi

)
. (4.18)

In this form, the reference temperature drives the magnitude of the buoyancy forces through the

fluid domain.

The fluid domain is decomposed into the fluid-solid interface, and the Dirichlet and Neumann

external boundaries, ΓfD and ΓfN, respectively. The boundary conditions are then given as:

ufi = ûfsi , ∀x ∈ Γfs , (4.19)

ufi = ûfi , ∀x ∈ ΓfD , (4.20)

σij

(
uf , pf

)
nfj = t̂fi , ∀x ∈ ΓfN , (4.21)

where ûfsi and ûfi are the prescribed velocities, t̂fi is the traction, nfj is the normal on the surface

pointing outwards, and σij
(
uf , pf

)
is the Cauchy stress tensor for Newtonian fluids:

σij

(
uf , pf

)
= −pfδij + 2µf εij

(
uf
)
. (4.22)

After the integration by parts of (4.17), the residual of the weak form of the incompressible

Navier-Stokes equations, denoted as ru,p, is decomposed into volumetric and surface contributions:

ru,p = rΩ
u,p + rΩ̂

u,p + rΩ
p,ψ + rD

u,p + rfsu,p + rN
u,p + rGP

u,p , (4.23)
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where rΩ
u,p and rΩ̂

u,p are the residuals of the volumetric contributions, non-stabilized and stabilized,

respectively. The term rΩ
p,ψ is used to enforce a constraint on the average pressure in isolated fluid

regions surrounded by solid. The terms rD
u,p and rfsu,p enforce the Dirichlet boundary conditions

on the external surfaces, and at the fluid-solid interface, respectively, and rN
u,p is the residual of

the Neumann conditions on the external boundaries. The stabilization term, rΩ̂
u,p, depends on the

discretization scheme, and the ghost-penalty term, rGP
u,p , depends on the face-oriented ghost-penalty

formulation. Both are defined in Sections 4.3 and 5.2, respectively.

The non-stabilized volumetric contribution is formulated as:

rΩ
u,p =

∫

Ωf

(
vfi ρ

f

(
∂ufi
∂t

+ ufj
∂ufi
∂xj

)
+ εij

(
vf
)
σij

(
uf , pf

))
dΩ

+

∫

Ωf

(
vfi ρ

fgi − vfi ρfgih
f
T

(
T f − T f∞

))
dΩ

+

∫

Ωf

(
qf
∂ufi
∂xi

)
dΩ .

(4.24)

The first integral describes the momentum equations, with admissible test functions vfi ; the second

integral models the buoyancy forces; and the third integral describes the incompressibility condition,

with admissible test function qf .

Dirichlet boundary conditions are enforced weakly on the fluid-solid interface, and on the

external surfaces via Nitsche’s method [Nitsche, 1975]. The formulation adopted here is the one

described in Schott et al [2014]. The surface residual of the external Dirichlet boundaries is defined

as:

rD
u,p =

∫

ΓfD

(
vfi p

fδijn
f
j − v

f
i 2µf εij

(
uf
)
nfj

)
dΓ

+

∫

ΓfD

(
βpq

fδijn
f
j u

f
i − βµ2µf εij

(
vf
)
nfj u

f
i

)
dΓ

+

∫

ΓfD

(
γN,uv

f
i

(
ufi − û

f
i

))
dΓ ,

(4.25)

where γN,u is a penalty parameter. The first integral of (4.25) is incorporated naturally through

the integration by parts of the momentum equations; its two terms are denoted as the pressure and

viscous standard consistency terms, respectively. The second integral is the addition of pressure
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and viscous adjoint consistency terms, analogous to the consistency terms of the first integral.

The third integral introduces an additional penalty term that ensures coercivity of the viscous part

of the formulation, and balances the lack of coercivity that is introduced by the viscous standard

and adjoint consistency terms [Schott et al, 2014]. The terms βp and βµ determine whether the

adjoint consistency terms use a symmetric formulation (βp = +1, βµ = +1), or a skew-symmetric

formulation (βp = −1, βµ = −1). In this work, we use the symmetric variant for the viscous adjoint

consistency term because it leads to smaller errors compared to the skew-symmetric variant, as

reported by Burman [2012]. For the pressure adjoint consistency term, we use the skew-symmetric

variation because it consistently controls the mass conservation, ufi n
f
i = 0 [Bazilevs et al, 2010;

Schott et al, 2014]. A similar treatment is applied on the fluid-solid interface for the term rfsu,p by

using ûfsi instead of ûfi in (4.25).

The penalty parameter γN,u is taken from Schott et al [2014] and defined as:

γN,u = αN,u

(
µf

h
+
ρf
∥∥uf

∥∥
∞

6

)
, (4.26)

and its terms account for viscous-dominated and convective-dominated flows, respectively. The

term αN,u is a constant problem-dependent penalty term, and the term
∥∥uf

∥∥
∞ is the infinity norm

evaluated at each integration point and differentiated at its maximum value. The influence of this

penalty term will be studied later in this paper.

The residual contribution from external Neumann boundary conditions is defined as:

rN
u,p =

∫

ΓfN

vfi t̂
f
i dΓ . (4.27)

An auxiliary indicator field is developed in order to identify isolated fluid regions surrounded

by the solid domain. These “puddles” lead to an ill-conditioned system of equations because the

absolute value of the pressure is not governed. In order to stabilize the system, we add a penalty

formulation to enforce an average pressure. This penalty is defined as:

rΩ
p,ψ =

∫

Ωf
qfkfp ψ̄

fpf dΩ , (4.28)
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Figure 4.2: Modeling of the auxiliary indicator field. Isolated fluid regions surrounded by solid are

denoted in red.

where kfp is a scaling factor. The field ψ̄f serves as a binary indicator with a value of 1 in isolated

fluid regions and zero everywhere else, as shown in Figure 4.2; the equations to model the field will

be defined in Section 4.2.4. As the term (4.28) is introduced in the conservation of mass equation,

we will study its effects on the conservation of mass later in this paper.

4.2.3 Advection-Diffusion Equation

The energy and species transport are modeled by an advection-diffusion equation:

ρmcmp

(
∂Tm

∂t
+ umi

∂Tm

∂xi

)
− ∂

∂xi

(
Ji (Tm)

)
− q̂mΩ = 0 , ∀x ∈ Ωl , (4.29)

where ρm and cmp denote the density and the specific heat capacity, respectively, Tm is the temper-

ature field, umi is the vector of fluid velocities, q̂Ω is the volumetric heat source, and Ji (Tm) is the

diffusive heat flux defined as:

Ji (Tm) = kmδij
∂Tm

∂xj
, (4.30)

where km is the isotropic thermal conductivity. In contrast to our flow formulation in (4.24), the

subscript m (4.29) indicates that we model energy and species transport in both the fluid and

solid phases; however, because we apply no-slip boundary conditions at the fluid-solid interface,
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the residual in (4.36) reduces to a linear diffusion model in the solid region. The residual (4.36) can

be used to model species transport by treating the temperature field as a species concentration.

Dirichlet and Neumann boundary conditions are imposed on the fluid-solid interface, Γfs,

and on the external boundaries, Γl, as:

Tm = T̂m , ∀x ∈ ΓmD , (4.31)

Tm = T̂ fs , ∀x ∈ ΓfsD , (4.32)

Ji (Tm)nmi = q̂mΓ , ∀x ∈ ΓmN , (4.33)

Ji (Tm)nfsi = q̂fsΓ , ∀x ∈ ΓfsN , (4.34)

where nfsi is the normal vector on the fluid-solid interface pointing towards the solid phase, ĉm and

ĉfs are prescribed temperature concentrations, and q̂mΓ and q̂fsΓ are prescribed flux values.

Similar to the Navier-Stokes equations (4.24), we denote the weak form as ru,T , and decom-

pose it into volumetric and surface parts:

ru,T = rΩ
u,T + rΩ̂

u,T + rD
u,T + rD,fs

u,T + rN
u,T + rN,fs

u,T + rGP
u,T , (4.35)

where rΩ
u,T and rΩ̂

u,T are the residuals of the volumetric contributions, non-stabilized and stabilized,

respectively; the terms rD
u,T and rD,fs

u,T represent the residual of the Dirichlet boundary conditions

at the external boundaries and at the fluid-solid interface, respectively; the terms rN
u,T and rN,fs

u,T

describe the residual of the Neumann boundary conditions; and the term rGP
u,T models the ghost-

penalty formulation. Similar to (4.23), the residual rΩ̂
u,T is defined in Section 4.3, and the residual

rGP
u,T is defined in Section 5.2.

The non-stabilized volumetric residual contribution, rΩ
u,T , is defined as:

rΩ
u,T =

∑

m∈{f,s}

∫

Ωm

(
dmρmcmp

(
∂Tm

∂t
+ umi

∂Tm

∂xi

)
+
∂dm

∂xi

(
Ji (Tm)

)
− dmq̂mΩ

)
dΩ , (4.36)

where dm is an admissible test function.

The weak enforcement of Dirichlet boundary conditions is modeled using Nitsche’s method

[Nitsche, 1975]. The residual contribution of the Dirichlet conditions at the fluid-solid interface



53

follows the formulation of Dolbow and Harari [2009], and is defined as:

rD,fs
u,T =

∫

Γfs

(
− JdK

{
Ji

(
T f , T s

)}
nfsi +

{
Ji

(
df , ds

)}
nfsi JT K + γN,T JdKJT K

)
dΓ , (4.37)

where the jump operators are defined as:

JζK = ζf − ζs , (4.38)

and:
{
Ji

(
ζf , ζs

)}
= γfJJi

(
ζf
)

+ γsJJi (ζs) , (4.39)

where γmJ is a weighting factor defined as:

γmJ =

(∫
Ωm dΩ

)
/km(∫

Ωf dΩ
)
/kf +

(∫
Ωs dΩ

)
/ks

, (4.40)

and γN,T is a penalty term defined as:

γN,T =
2αN,c

∫
Γfs dΓ(∫

Ωf dΩ
)
/kf +

(∫
Ωs dΩ

)
/ks

, (4.41)

with αN,T being a constant. The first, second, and third terms of (4.37) correspond to the standard

consistency term, the adjoint consistency term, and the penalty term of the Nitsche formulation,

respectively.

The residual contribution from the Dirichlet boundary conditions on the external surfaces is

derived from (4.37) by enforcing the condition on each phase individually, and is defined as:

rD
u,T =

∑

m∈{f,s}

∫

ΓmD

(
− dmJi (Tm)nmi + Ji (dm)nmi T

m + αN,ch
−1dm

(
Tm − T̂m

))
dΓ . (4.42)

The Neumann contribution at the fluid-solid interface is defined as:

rN,fs
u,T =

∫

ΓfsN

df q̂fsΓ dΓ , (4.43)

while the contribution at the external boundaries is defined as:

rN
u,T =

∑

m∈{f,s}

∫

ΓmN

dmq̂mΓ dΓ . (4.44)

If the fluid-solid interface is adiabatic, the prescribed surface flux, q̂fsΓ , is set to 0.
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4.2.4 Auxiliary Indicator Field

A drawback of the XFEM is that, as an immersed boundary technique, isolated regions may

emerge during the optimization process. Fluid particles immersed in a solid domain, or structural

particles immersed in a void domain cause the system of equations to become ill-conditioned due

to a singular analysis problem. Here, we introduce an auxiliary indicator field to identify these

isolated regions. The auxiliary field is modeled as a linear diffusion problem in the material phase

of interest, m:
∂

∂xi

(
Ji (ψm)

)
= hmψ (ψm − ψm∞) , (4.45)

where ψm is the indicator field, hmψ is the heat transfer coefficient, and ψm∞ is the reference indicator

value. The field is not modeled in the other phase domain. The residual of the weak form is defined

as:

rψ = rΩ
ψ + rD

ψ + rGP
ψ , (4.46)

where the residual of the Dirichlet boundary conditions, rD
ψ , is formulated in the same way as in

(4.42). Dirichlet boundary conditions are imposed on all inlets and outlets, by setting ψ̂f to 0

and the Nitsche penalty parameter, αN,ψ, to 1. Adiabatic boundary conditions are imposed on the

material interface.

The volumetric residual contribution, rΩ
ψ is defined as:

rΩ
ψ =

∫

Ωm

(
∂δψm

∂xi
Ji (ψm)− δψmhmψ (ψm − ψm∞)

)
dΩ , (4.47)

where δψm is an admissible test function. The parameters hmψ and ψm∞ are set to 0.01 and 1,

respectively, so that regions connected to the main domain will have an indicator field value close

to 0, while the isolated areas will have a value close to 1.

A smooth-Heaviside projection scheme is then applied to the indicator field to map the values

of the solution either to 0 or to 1, and is defined as:

ψ̄m =
1

2
+

1

2
tanh (kmw (ψm − kmt ψm∞)) , (4.48)

where a larger kmw corresponds to a sharper transition at ψm = kmt ψ
m
∞.
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We adopt the values of kmw = 1000 and kmt = 0.99 to effectively turn the ψ̄f term into a

binary switch, where a value of 0 corresponds to a regions connected to the main domain, and a

value of 1 corresponds to the isolated regions.

4.3 Subgrid Stabilization

The convective terms in the incompressible Navier-Stokes and advection-diffusion equations

may cause spurious node-to-node velocity oscillations. Furthermore, the equal-order approxima-

tions used for ufi and pf may cause spurious pressure oscillations. To prevent these numerical

instabilities, we augment the incompressible Navier-Stokes equations with the Streamline Upwind

Petrov-Galerkin (SUPG) and the Pressure Stabilized Petrov-Galerkin (PSPG) stabilization formu-

lations introduced by Tezduyar et al [1992]. The stabilized volumetric residual contribution of

(4.23), rΩ̂
u,p, is defined as:

rΩ̂
u,p =

∑

Ωe∈Ω

∫

Ωe∩Ωf

((
τSUPG,u

(
ufj
∂vfi
∂xj

)
+ τPSPG

(
1

ρf
∂qf

∂xi

))
·

(
ρf

(
∂ufi
∂t

+ ufj
∂ufi
∂xj

)
+
∂pf

∂xj
δij − 2µf

∂

∂xj

(
εij

(
uf
))

+ ρfgi

(
1− hT

(
T f − T f∞

))))
dΩ ,

(4.49)

where Ωe denotes the set of all elements in the domain Ω, and the stabilization terms τSUPG,u and

τPSPG are taken from Tezduyar et al [1992] and defined as:

τSUPG,u =
hτ

2
∥∥∥ufgp

∥∥∥
ζ (Reu) , (4.50)

τPSPG =
h#
τ

2 ‖U f‖ζ
(
Re#

U

)
, (4.51)

where ufgp is the local velocity evaluated at every integration point, and
∥∥U f

∥∥ is the norm of

the “global scaling velocity” [Tezduyar et al, 1992], which is set to the value of the characteristic

velocity of the fluid, ufc . Based on these velocities, the elemental Reynolds numbers Reu and Re#
U
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are defined as:

Reu =

∥∥∥ufgp

∥∥∥hτ
2νf

, (4.52)

Re#
U =

∥∥U f
∥∥h#

τ

2νf
, (4.53)

where νf describes the kinematic viscosity of the fluid, and the “element lengths”, hτ and h#
τ , are

computed as:

hτ = 2




Nn
e∑

i=1

∣∣∣∣∣∣
ufi∥∥∥ufi
∥∥∥
· ∇vi

∣∣∣∣∣∣



−1

, (4.54)

h#
τ = 2

√
Ve
π
, (4.55)

where vi is the shape function associated with node i, Nn
e is the number of nodes in the element,

and Ve is the volume of the element. The function ζ (Re) is computed as:

ζ (Re) =





Re/3 if 0 ≤ Re ≤ 3 .

1 if Re > 3 .

(4.56)

For more details on our formulation, the reader is referred to Kreissl and Maute [2011].

The stabilized volumetric residual contribution of (4.35), rΩ̂
u,T , uses the SUPG method, and

is defined as:

rΩ̂
u,T =

∑

Ωe∈Ω

∫

Ωe∩Ωf

(
τSUPG,T ·

(
1

ρfcfp
ufi
∂df

∂xi

)
·
(
ρfcfp

(
∂cf

∂t
+ ufi

∂cf

∂xi

)
− ∂

∂xi

(
Ji

(
cf
))))

dΩ ,

(4.57)

where the stabilization terms τSUPG,T is defined in Franca et al [1992].

4.4 Temporal Discretization

In this thesis, the time integration is performed by a 2-step backward differentiation scheme.

The spatial discretization yields a semi-discrete form of the residual equations:

R(n)
(
u(n), u̇(n)

)
= 0 , (4.58)
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where u is the vector of state variables at time step n, and the vector u̇(n) denotes the derivative

of u(n) with respect to time.

At time iteration n = 0, the initial conditions, u0, are satified for all the state variables such

that:

R(0) = u(0) − u0 . (4.59)

At time iteration n = 1, the derivative is computed using a 1-step backward differentiation

scheme:

u̇(1) =
u(1) − u(0)

∆t(1)
, (4.60)

where ∆t(n) is the time step.

For all time steps n > 1, the derivative is computed using a 2-step backward differentiation

scheme:

u̇(n) =
3
2u

(n) − 2u(n−1) + 1
2u

(n−2)

∆t(n)
, n = 2 . . . Nt , (4.61)

where n is the time iteration, and Nt is the number of time iterations.

We utilize a homotopy approach for the steady-state flow problems in the numerical examples.

That is, we initially choose a time step ∆t that is sufficiently small to achieve stability of the

solution, and then we gradually increase it until we achieve a steady-state flow. The final, large

time step, and its corresponding solution are used in the subsequent optimization iteration as the

initial conditions of the forward analysis. If the solution fails to converge, we repeat the process

and we gradually increase the time step again.

4.5 Nonlinear and Linear Solvers

For all time steps n > 0, the equilibrium at the time step (n) is satisfied by solving the

nonlinear system R(n) via Newton’s Method. The system is linearized at u(n) using (4.58) as:

dR(n)

du(n)
=
∂R(n)

∂u(n)

∣∣∣∣∣
u(n)

+
∂R(n)

∂u̇(n)

∂u̇(n)

∂u(n)

∣∣∣∣∣
u(n)

, (4.62)

where the term ∂u̇(n)/∂u(n) is computed analytically using (4.60) and (4.61).
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The linear problem is solved with either a direct or an iterative linear solver. The linear

solvers are used as provided by the Trilinos software package [Heroux et al, 2003]. Among the direct

solvers provided are: (i) Amesos UMFPACK, a direct linear solver for sequential computations;

(ii) Amesos MUMPS, a direct linear solver for parallel computations and (iii) Aztec GMRES, an

iterative solver that implements the Generalized Minimal RESidual (GMRES) iterative method

[Saad and Schultz, 1986]. Iterative linear solvers can be used in conjunction with preconditioners,

such as the Incomplete LU factorization with dual Threshold (ILUT) method [Saad, 1994]. The

reader is referred to Heroux et al [2003] for a complete list of solvers available in the Trilinos software

package.

4.6 Sensitivity Analysis

The optimization functions considered in this work can be written in discretized form as:

Z =

Nt∑

n=1

(
z(n)

(
s,u(n)

))
, (4.63)

where Z represents either the objective or the constraints. The optimization problem (1.1) uses a

gradient-based algorithm, and is solved by nonlinear programming methods. The gradients of the

objective and constraint functions with respect to the design variables, s, are computed via the

adjoint method. In this work, we adopt the discrete adjoint formulation for nonlinear fluid and

coupled systems of Kreissl and Maute [2011] and Golmon et al [2012].

The derivative of the objective function with respect to the optimization variable si is de-

composed into an explicit and an implicit terms such that:

dZ
dsi

=
∂Z
∂si

+

Nt∑

n=1

∂z(n)

∂u(n)

ᵀ
∂u(n)

∂si
. (4.64)

From (2.9), we can expand the explicit term as:

∂Z
∂si

=
∂Z
∂xΓ

k

∂xΓ
k

∂φj

∂φj
∂si

. (4.65)

The first term describes the change of the optimization function with respect to the position of

the interface, defined by the intersection point coordinates, xΓ
k , on the element edges (c.f. Section
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3.3). The second term represents the dependence of xΓ
k with respect to the nodal level value, φj .

The last term captures the explicit dependence of φj on the design variables, which is computed

analytically by using (2.9).

The implicit term in (4.64) is computed by the adjoint method (1.10). In this work, the

derivative of the optimization function with respect to the state variables, ∂z(n)/∂u(n), is computed

analytically.

As stated in Section 3.2, the derivative of the residual function with respect to the design

variables deserves particular attention. In this work, we decompose the derivative of an elemental

residual, R(n)
e , at time step n, as follows:

∂R
(n)
e

∂si
=

Ne
n∑

j=1

NΓ
n∑

k=1

∂R
(n)
e

∂xΓ
k

∂xΓ
k

∂φj

∂φj
∂si

, (4.66)

where N e
n is the number of nodes per element, and NΓ

n is the number of intersection points per

element. The first term in the double sum of (4.66) describes the change of the elemental residual

with respect to the position of the interface, and the second and third terms are equivalent to

their counterparts in (4.65). The decomposition in (4.66) illustrates that the proposed topology

optimization framework utilizes shape derivatives to update the design in the optimization process.

The first two terms of (4.65) and (4.66) are computed by a central finite difference scheme.

The perturbation size, ∆φFD, is set to φΓ
c /2, in order for the lower and upper perturbed level set

values to always be larger than 0. Note that the level set perturbation scheme introduced in Section

3.2 is not applied during the finite difference. This finite difference approach does not change the

sign of the level set value φj . Because of this scheme, a non-cut element will not be suddenly

cut by the perturbed level set functions during the sensitivity analysis. Therefore, for efficiency

purposes, only the derivatives of elements cut by the level set function need to be computed. The

derivatives of non-cut elements vanish. In the absence of a smoothing filter (2.9), the derivative

∂φj/∂si = 1; and for a level set field defined using a perfect signed distance function, the movement

of the interface represents exactly the change in the level set field, i.e. ∂xΓ
k/∂φj = 1. Numerical

tests in Section 7 rendered this finite differencing approach as being accurate and computationally
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efficient.

4.7 Measures and Design Criteria

Here, we detail the common measures and design criteria used to study the analysis capabili-

ties of our framework, and to formulate the objectives and constraints in the optimization problems

of Section 7. These include:

4.7.1 Strain Energy

This criteria measures the compliance of a mechanism.

U =
∑

m∈{−,+}

∫

Ωm

(
σij (um) εij (um)

)
dΩ , (4.67)

where σij (um) is the elastic stress, and εij (um) is the elastic strain.

4.7.2 Drag Coefficient

The drag coefficient is used to qualify the forces of laminar flow on a surface, and is defined

as:

cD = −2e

(
ρf |ufc |

2
Lc

)−1(∫

Γf
σij

(
uf , pf

)
nfj dΓ

)
, (4.68)

where e is a unit vector pointing in the direction of the inflow velocity, and Lc is the characteristic

length.

4.7.3 Mass Flow Rate

The mass flow rate criterion computes the mass of the fluid that passes through a surface per

unit of time, and is defined as:

ṁ =

∫

Γf

(
ρfufi n

f
i

)
dΓ . (4.69)
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4.7.4 Total Pressure

The total pressure criterion measures the sum of the static and dynamic pressures over a

surface:

T =

∫

Γf

(
pf +

ρf |uf |2
2

)
dΓ . (4.70)

4.7.5 Volume

The volumes of the negative and positive domains are computed as:

V− =

∫

Ω−
dΩ , (4.71)

V+ =

∫

Ω+

dΩ . (4.72)

4.7.6 Surface Area

The surface area criterion is computed at the material interface, and is defined as:

S =

∫

Γ0

dΓ . (4.73)

Reducing the value of this measure, either with a penalty in the objective functional or

with a constraint, discourages the emergence of small geometric features and oscillatory shapes in

the optimization problem. While a surface area penalty does not allow explicitly controlling the

local shape and the feature size [Villanueva and Maute, 2014], it has been reported effective in

regularizing flow optimization problems [van Dijk et al, 2013; Makhija and Maute, 2014a].

4.7.7 Target Scalar Value

To measure the maximum difference between a current species concentration and a target

species concentration, T fref , over the fluid phase, we use the Kreisselmeier-Steinhauser function

[Kreisselmeier and Steinhauser, 1979]:

K =
1

βK
ln

∫

Γf

(
e
βK

(
T f−T fref

)2
)

dΓ , (4.74)
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where T f is a species concentration modeled by (4.36). A larger value of βK increases the en-

forcement of the function, but may result in large sensitivities that affect the convergence of the

optimization problem.

4.7.8 Thermal Compliance

The thermal compliance criterion measures the rate of heat transfer, and is defined as:

Qm =

∫

Ωm

(
q̂mΩ T

m

)
dΩ , (4.75)

where Tm and q̂mΩ are a temperature field and the volumetric heat flux modeled by (4.36).

4.7.9 Stresses

In traditional finite elements approaches, the gradients of the state variables are often ex-

trapolated from the integration points to the nodes. In immersed boundary methods, this is no

longer feasible, as the finite element has been divided into multiple integration domains. Here, we

develop an averaging approach to measure the gradients across all integration domains within a

finite element, and then project that information to the nodes. Our average gradient, denoted as

σ̃ij (uml ), is defined as follows:

σ̃ij (um) =

(∫

Ωm
(vmi )ᵀvmi dΩ

)−1 ∫

Ωm
vᵀi σij (um) dΩ , (4.76)

where vmi is an admissible test function, and σij (um) is a gradient formulation, such as the stress

tensor defined in (4.22).



Chapter 5

Stability

One challenge of the XFEM is that an ill-conditioned system of equations results when an

element cut by the zero level set has a small ratio of volumes bisected by the interface; this process

is illustrated in Figure 5.1. Such interface configurations are often unavoidable when using fixed

meshes in topology optimization and lead to an ill-conditioning of the system, which manifests

itself through an increase in the condition number of the linearized system, and may slow down

or prevent the convergence of the nonlinear problems. Several approaches have been proposed to

avoid this ill-conditioning issue, such as the geometric preconditioner of Lang et al [2014], and

face-oriented ghost-penalty methods [Burman et al, 2006], among others. The former option was

previously applied to linear diffusion problems in Lang et al [2014], and the latter was studied in

linear diffusion problems [Burman and Hansbo, 2012], Stokes flows [Burman and Hansbo, 2014],

and incompressible Navier-Stokes flows [Schott and Wall, 2014]. Prior to this dissertation, neither

of these options had been applied and studied in the context of 3D topology optimization. We

explore both options in Section 7. The preconditioner is studied in the context of linear elasticity,

while face-oriented ghost-penalty methods are used for laminar incompressible flow problems.

5.1 Geometric Preconditioner

As described in Section 3.2, the degrees-of-freedom umi,l interpolate the solution field in topo-

logically connected subdomains, where u is the state variable, and m is the material phase of the

elements connected to node i. As the total volume of these subdomains vanishes, the discretized
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𝑢𝑥,1+

𝑢𝑦,1+

	  𝑢𝑥,0+

	  𝑢𝑦,0+

	  𝑢𝑥,0)

	  𝑢𝑦,0)

Figure 5.1: Example of a decreasingly smaller intersection area for degrees-of-freedom u+
x,1 and u+

y,1.
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model becomes increasingly ill-conditioned; i.e. the condition number of the stiffness matrix rapidly

increases. This phenomenon is more pronounced in 3D problems than in 2D ones.

To mitigate this ill-conditioning issue, we expand the geometric preconditioning scheme of

Lang et al [2014], which was introduced and studied for 2D heat conduction and flow problems,

onto 3D problems for different physical phenomena. The goal of this preconditioning scheme is to

balance the influence of all degrees-of-freedom in the system as the volumes in which the subset of

these degrees-of-freedoms interpolates the solution approach zero. To this end, we introduce the

following projection:

ũ = Tu , (5.1)

where u is the vector of state variables, T is a transformation matrix, and ũ is the solution vector

in the transformed space. The residual, R̃, and the stiffness matrix, K̃, in the transformed space

are defined as:

R̃ = T ᵀR ,

K̃ = T ᵀKT ,

(5.2)

where the residual, R, and the stiffness matrix, K, result from integrating the weak form of the

governing equations using the XFEM approximation (3.1).

The preconditioner T is a diagonal matrix built by integrating the spatial derivatives of the

shape functions over the nodal support of nodes connected to an intersected element. The diagonal

components of the matrix are defined as:

Tmi,l =

(
max

Ωe∈Ωce

∫
Ωe∩Ωml

∇vi(x) · ∇vi(x) dΩ
∫

Ωe∩Ωm ∇vi(x) · ∇vi(x) dΩ

)−1/2

, (5.3)

where Tmi,l corresponds to the degree-of-freedom umi,l of node i, m = {−,+} is the material phase, l

is the enrichment level, Ωc
e is the set of elements connected to node i, Ωm

l is the domain of phase m

that is integrated with enrichment level l with respect to node i, vi(x) is the set of admissible test

functions. The components of the matrix increase as the region of influence of a degree-of-freedom

decreases. The entries Tmi,l of node i that are not connected to at least one intersected element are

set to one. The integration domains are illustrated in Figure 5.2.
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Ω1
+

Ω2
+ Ω3

+

Ω4
+

 Ω0
−  Ω0

−

 Ω0
− Ω0

−

Ω0
+

Ω0
+ Ω0

+
Ω0

+

 e=2  e=3

 e=1  e=4

Figure 5.2: Integration subdomains for the spatial derivatives of the shape functions used in the

geometric preconditioner. The center node, denoted by the color blue, denotes the node i. The

superscript denotes the material phase m, and the subscript denotes the enrichment level l.
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To avoid numerical issues due to large values for the components of T , the degrees-of-freedom

associated with the diagonal entry Tmi,l are constrained to zero if the following condition is satisfied:

Tmi,l ≥ Ttol , (5.4)

where Ttol is a specified tolerance. As studies by Lang et al [2014] have shown, the above precon-

ditioning scheme is rather insensitive to the value of Ttol, and the value is typically set larger than

10+08. For more details on this formulation, the reader is referred to the paper by Lang et al [2014].

5.2 Face-oriented Ghost-penalty Methods

Face-oriented ghost-penalty stabilization terms are used in the vicinity of the zero level set

interface, c.f. [Burman et al, 2006], to penalize discontinuties in the spatial gradients of the solution

fields across the common facets of intersected elements. In this section, we describe the formulations

for all the physical phenomena we model in this thesis.

5.2.1 Displacement Field

To maintain stability of the system, and ensure accuracy in the prediction of stresses for

linear elastic problems, we utilize face-oriented ghost-penalty methods to penalize the jump of the

gradients of the displacement as follows:

rGP
u =

∑

m∈{−,+}

∑

F∈Ξm

∫

F

αGP

E
h

s
∂vmi
∂xj

{
nmj

s
∂umi
∂xk

{
nmk dΓ , (5.5)

where αGP is a constant scaling factor, and E is the isotropic Young’s modulus.

The jump operator is defined as:

JζK = ζ|Ω1
e
− ζ|Ω2

e
, (5.6)

and is evaluated at the facet between two adjacent elements, Ω1
e and Ω2

e. This formulation overcomes

the issue of having a small ratio of volumes on elements bisected by the interface because the domain

of integration is the entire edge, regardless of the intersection configuration. As illustrated in Figure
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5.3, the set Ξ− belonging to the domain Ω− contains all facets F in the immediate vicinity of the

material interface, for which at least one of the two adjacent elements is cut by the interface. The

set Ξ+ for the domain Ω+ is defined analogously.

Ωf

(a) Faces Ξ− in domain Ω−.

Ωs

Ωs

(b) Faces Ξ+ in domain Ω+.

Figure 5.3: Integration domains for the face-oriented ghost-penalty method.

5.2.2 Velocity and Pressure Fields

The ghost-penalty terms for the residual contribution of the incompressible Navier-Stokes

equations are defined as:

rGP
u,p = rGP,µ

u,p + rGP,p
u,p + rGP,u

u,p , (5.7)

where rGP,µ
u,p , rGP,p

u,p , and rGP,u
u,p are the viscous, pressure, and convective ghost-penalty formulations,

respectively.

To overcome stability issues related to the weak enforcement of boundary conditions via

Nitsche’s method, we apply the viscous face-oriented ghost-penalty formulation as proposed by

Burman and Hansbo [2014]:

rGP,µ
u,p =

∑

F∈Ξf

∫

F

(
γGP,µ

t
∂vfi
∂xj

|

nfj

t
∂ufi
∂xk

|

nfk

)
dΓ , (5.8)
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where γGP,µ is a penalty parameter defined as:

γGP,µ = αGP,µµ
fh , (5.9)

and αGP,µ is a constant scaling factor.

To control pressure instabilities due to a violated inf-sup condition for equal-order approx-

imations used for ufi and pf [Schott et al, 2014], a pressure ghost-penalty stabilization term is

applied:

rGP,p
u,p =

∑

F∈Ξf

∫

F

(
γGP,p

s
∂qf

∂xj

{
nfj

s
∂pf

∂xk

{
nfk

)
dΓ , (5.10)

where γGP,p is a penalty parameter defined as:

γGP,p = αGP,p

(
µf

h
+
ρf
∥∥uf

∥∥
∞

6

)−1

h2 , (5.11)

and accounts for the viscous and convective flow regimes, c.f. [Burman et al, 2006]. The term αGP,p

is a constant scaling parameter.

For high Reynolds number flows, [Schott and Wall, 2014] proposed a convective ghost-penalty

formulation to have sufficient control over the convective derivative, ufi∇u
f
i , of the incompressible

Navier-Stokes equations. This formulation is defined as:

rGP,u
u,p =

∑

F∈Ξf

∫

F

(
γGP,u

t
∂vfi
∂xj

|

nfj

t
∂ufi
∂xk

|

nfk

)
dΓ , (5.12)

where the parameter γGP,u is a penalty factor defined as:

γGP,u = αGP,uρ
f
∥∥∥ufi n

f
i

∥∥∥h2 , (5.13)

and αGP,u is a constant scaling parameter.

Additional ghost-penalty measures have been proposed in the literature, for example, to

control instabilities arising from the incompressibility constraint. However, these additional formu-

lations are not considered in our numerical examples because previous studies have not revealed

any further improvement for the laminar flow situations analyzed here, as stated by Schott et al

[2014].
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5.2.3 Temperature Field

To stabilize the temperature field (4.36), we use the formulation from Burman and Hansbo

[2012]:

rGP
u,T =

∑

m∈{f,s}

∑

F∈Ξm

∫

F

(
γGP,T

s
∂dm

∂xi

{
nfi JJj (Tm)Knfj

)
dΓ , (5.14)

where γGP,T is a penalty parameter defined as:

γGP,T = αGP,Th , (5.15)

and αGP,T is a scaling constant.

The ghost-penalty formulation for the auxiliary indicator field is identical to (5.14), except

that it operates on a different admissible test function, δψm, a different set of degrees-of-freedom,

ψm, and a different scaling factor, αGP,ψ.

5.2.4 Parameters

The values for αGP, αGP,µ, αGP,p, αGP,u, and αGP,T are set on a per-problem basis. The

value of αGP,ψ is set to 0.05 for all numerical examples, in accordance to the parameter used by

Burman and Hansbo [2012] for a linear diffusion field.



Chapter 6

Regularization

In recent decades, topology optimization has become an important tool in the design of

engineering parts. Industrial manufacturing processes often impose constraints on the design of

the part [Schmitt and Steinmann, 2015] that must be considered during the optimization process

to ensure that the part can be built. Using postprocessing techniques to alter the optimized

geometry and satisfy the side conditions given by the manufacturing process might lead to a loss

of quality of the part. Therefore, manufacturing constraints have to be incorporated directly

into the optimization problem in order to ensure that the optimized design is at the same time

manufacturable. Furthermore, controlling the shape of the geometry ensures that we can accurately

predict the physical response of its features. In LSM-based topology optimization, the formulation

of the optimization problem (1.1) is often augmented by additional regularization measures to

control the local or the global shape of the design geometry. In this section, we introduce several

novel regularization techniques that operate on the discretized material interface as provided by

the XFEM (2.1).

6.1 Shape Smoothers

Manufacturing constraints considered in shape and topology optimization are often expressed

in terms of the curvature value on the surface of the optimized material layout. This work introduces

shape smoothers to increase the smoothness, and therefore, decrease the curvature of discretized

surfaces. This is of interest when the optimized part is fabricated using 3D printing technology,
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as the maximum resolution size is limited and the printing technique may not be able to properly

represent sharp corners. These shape smoothers will be applied on boundaries defined by an

immersed boundary technique; here, we utilize the XFEM (see Section 3). Rather than maximizing

the smoothness of the surface using postprocessing methods, the curvature minimization is inserted

directly into the optimization problem.

6.1.1 Curvature and Mean Curvature

Curvature is a mathematical concept that describes how sharply a curve bends; that is,

curvature measures how much a geometric object deviates from being flat. For example, the

curvature of a straight line is identically zero, curves that bend very little have small curvature,

and curves that bend sharply have large curvature.

The concept of curvature dates back to the Greek when Euclid provided a definition of the

straight line as one which lies evenly with the points on itself; however, it was not until Newton

that the concept of curvature was defined [Newton and Colson, 1736]. As stated above, the basic

idea is that some curves are straight, while some are curved. Among the different concepts behind

curvature, they all agree that a circle has the same curvature at all the points of its circumference.

Given that the smaller the radius, the greater the curvature, we can say that curvature is a quantity

inversely proportional to the radius of the circle. Then, we can measure the curvature of any curve

by measuring the curvature of the circle lying nearest to it [Coolidge, 1952].

A more formal definition of curvature states that if we move along a curve, the direction of

the tangent vector will not change as long as the curve is flat. However, its direction will change if

the curve bends. The more the curve bends, the more the direction of the tangent vector changes.

Therefore, to study curvature we must study how the tangent vector changes as we move along

a curve. But because we are only interested in the direction of the tangent vector, and not its

magnitude, we will consider the unit tangent vector.

Let C be a smooth curve with position vector r(s) where s is the arc length parameter. The
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curvature κ of C is defined to be:

κ = κt =

∥∥∥∥
dt

ds

∥∥∥∥ , (6.1)

where t is the unit tangent vector.

Assuming the unit normal vector, n, is orthonormal to the unit tangent vector, we can

redefine curvature as:

κ = κn =

∥∥∥∥
dn

ds

∥∥∥∥ . (6.2)

Other definitions of curvature as a function of the normal unit vector can be found in Wang and

Wang [2005], Wang and Wang [2004], and Luo et al [2008a], where the mean curvature measure

was used:

H = ‖∇ · n‖ . (6.3)

6.1.2 Comparison of Curvature and Mean Curvature in R2

Mathematically, (6.2) and (6.3) are equivalent for geometrical objects in R2. We will show

this by computing the curvature and mean curvature of a circle in the examples below.

6.1.2.1 Curvature of a Circle

In this example, we will compute the curvature of a circle with radius a to use it as an

analytical solution to our curvature measures of Section 7.10.1. We can parametrize the curve of

the circle as a function of the arclength, s, as:

r (s) =
{
a cos

s

a
, a sin

s

a

}
. (6.4)

Then, the unit normal vector, n, is defined as:

n (s) =
dr

ds

(∥∥∥∥
dr

ds

∥∥∥∥
)−1

, (6.5)

where dr/ds is computed as:

dr

ds
=

{
a

(
−1

a
sin

s

a

)
, a

(
1

a
cos

s

a

)}
,

=
{
− sin

s

a
, cos

s

a

}
.

(6.6)
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Thus, the unit normal vector, n, is:

n (s) =
{
− sin

s

a
, cos

s

a

}
, (6.7)

and its derivative with respect to the arclength is:

dn

ds
=

{
−1

a
cos

s

a
,−1

a
sin

s

a

}
. (6.8)

Finally, the curvature κn is:

κn =

∥∥∥∥
dn

ds

∥∥∥∥ =
1

a
. (6.9)

We can conclude that the curvature of the circle is the inverse of its radius.

6.1.2.2 Mean Curvature of a Circle

Following the circle parametrization of (6.4), we can compute the mean curvature (6.3) of a

circle as follows:

H =

∥∥∥∥
∂nx
∂x

+
∂ny
∂y

∥∥∥∥ ,

=

∥∥∥∥
∂nx
∂s

∂s

∂x
+
∂ny
∂s

∂s

∂y

∥∥∥∥ .

(6.10)

From (6.4), we parametrize x as a cos (s/a) and y as a sin (s/a). Therefore:

∂s

∂x
=

x√
x2 + y2

= a
cos (s/a)

a
,

∂s

∂y
=

y√
x2 + y2

= a
sin (s/a)

a
.

(6.11)

From (6.6), the derivative of the normal unit vector with respect to the arclength s is:

∂nx
∂s

= −1

a
cos

s

a
,

∂ny
∂s

= −1

a
sin

s

a
.

(6.12)

Finally, the mean curvature is

H =

∥∥∥∥−
1

a
cos

s

a

(
a

cos sa
a

)
− 1

a
sin

s

a

(
a

sin s
a

a

)∥∥∥∥ =
1

a
. (6.13)

We can conclude that the curvature in (6.2) and the mean curvature in (6.3) formulations are the

same for a geometrical object in R2. Note, however, that this assertion is not applicable to 3D

objects.
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6.1.2.3 Curvature of a Sinusoidal Wave

This same methodology can be applied to compute the curvature of a sinusoidal wave:

r (s) = {s,A sinπs} , (6.14)

where A is the amplitude of the sinusoidal wave. The curvature is then given by:

κn = π2

(
A2(1 + cos (πs)2) sin (πs)2

(1 +Aπ cos (πs)2)3

)2

. (6.15)

The results obtained in the numerical examples will be compared to these analytical formu-

lations to attest the accuracy of our curvature measure.

6.1.3 Curvature Squared

Dyn et al [2001] and Olsson and Boykov [2012] used the square power of the curvature κn

as their measurement formulation. Because the shape of interest is the zero level set isocontour,

we will measure the curvature in our design domain by integrating κ2
n over the material interface

(2.1).

κΓ =

∫

Γ0

κ2
n dΓ =

∫

Γ0

∥∥∥∥
dn

ds

∥∥∥∥
2

dΓ . (6.16)

Given that curvature and mean curvature are equivalent in R2, we will focus on the curvature

formulation of (6.2) to measure the smoothness of our designs.

6.1.4 Curvature of the Level Set Interface

As shown in Section 6.1.1, we need to define the normal vector of the level set field in order

to measure the curvature along the Γ0 isocontour. By definition of (2.2), we define the normal of

the level set field as:

nφ =
∇φ
‖∇φ‖ . (6.17)

The normal will be interpolated at the interface Γ0 from the nodally defined level set field, using

bilinear or trilinear shape functions. Note that this formulation does not guarantee continuity of

the level set normals at the nodes. For example, Figure 6.1 shows an inclusion embedded within 4
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Figure 6.1: Discontinuities for a cuboid-like inclusion in the nφ field at a node, denoted by the

circle at the center.

finite elements. The value of nφ at a node is interpolated differently from each one of its 4 adjacent

elements. We will denote this formulation as κΓ
φ.

In our second formulation, we denote the level set normal as nu, and enforce (6.17) weakly

as:
∫

Ω
δnu (nu ‖∇φ‖ − ∇φ) dΩ = 0 , (6.18)

where δnu is an admissible test function. Our solution is computed using the XFEM to allow

us to interpolate the state variables on the zero level set interface. Therefore, we need to ensure

continuity of the nu degrees-of-freedom at the interface. We will impose a penalty formulation for

the normal unit vector such that n+
u = n−u at Γ0:

γκ

∫

Γ+

δn+
u

(
+n+

u − n−u
)

dΓ+ = 0 ,

γκ

∫

Γ−
δn−u

(
−n+

u + n−u
)

dΓ− = 0 ,

(6.19)

where Γ+ is the material interface, Γ0, facing the positive phase, Γ− is the one facing the negative

phase, and γκ is a scaling factor. (6.17) is computed locally at the element level and does not

ensure a continuous normal unit vector field at the nodes, as shown in Figure 6.1. This alternate
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formulation, 6.18, seeks to study the effect of using a continuous field on the curvature measure.

We will denote this formulation as κΓ
n.

6.1.5 Spline Curvature

This formulation will consider the interface of the cut elements as geometrical objects, and

compute the normal unit vector from the coordinates of these objects. This approach will not be

used with (6.1.3), but rather with an equivalent formulation by measuring strain energy.

The square power of the curvature is an equivalent measure to strain energy. This concept is

derived from the theory of spline curves [Zhang et al, 2001]. This allows us to model the discretized

interface, Γ0, as a set of linear elastic structural beam elements. Then, we can solve a finite element

problem and compute the strain energy of the interface. We denote this formulation as the spline

curvature, and define it as:

κΓ
u =

1

2

∫

Γ0

σ : ε dΓ . (6.20)

To illustrate the application of this approach, consider a level set function that describes a sinusoidal

 3

 2

Figure 6.2: Sinusoidal wave with an amplitude of 0.50. The mesh discretization is 45×30 elements.

The red dot indicates one of the points, xΓ
i , at which the level set function intersects an element.

The red dotted line indicates all cut elements that lie on the same interface as the red dot within

a search radius rκ = 0.4.

wave (7.41) with an amplitude As of 0.50, as shown in Figure 6.2. The red dot in the figure indicates
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one of the many points, xΓ
i , at which the level set function intersects an element. To compute the

strain energy at this location, we define a search radius rκ, and look for all the cut elements that

share the same interface and that are within distance of this radius, as shown in Figure 6.3. From

these elements, we extract the interfaces and build a set of structural linear beam elements, as shown

in Figure 6.4. The beam elements are assumed to be at rest; therefore, the initial displacements

for ux and uy are equal to zero. For all internal nodes, we define two rotational degrees-of-freedom,

one for each element connected to a node. End nodes have a single rotational degree-of-freedom,

as shown in Figure 6.4. We assume the rotations at the internal nodes are continuous, such that:

Figure 6.3: Zoomed image for the cut elements within the search radius rκ = 0.4. Blue elements

represent the cut elements that are on the same interface.

θLz − θRz = αCR , (6.21)

where θLz is the rotation of the left adjacent element around the z axis, θRz is the rotation of the

right one, and αCR is computed for every node as a function of the geometrical normal, ng, of its

adjacent elements as:

nCg =
nLg + nRg

2
,

nLCg = nLg × nCg ,

nCRg = nCg × nRg ,

αCR =
nLCg z√

1− nLCg z

2
+

nCRg z√
1− nCRg z

2
.

(6.22)
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This computation is illustrated in Figure 6.5. The condition in (6.21) is imposed by Lagrange

multipliers.

Initial computations showed that the strain energy of the system is highly sensitive to the

discretization of the boundary. If the projection of an intersection point from the level set function

onto the mesh is off by a small amount due to discretization errors, it leads to large changes in the

computed curvature when compared to its analytical value. To ameliorate this issue, we introduce

a field of artificial springs with stiffness coefficient kκ to allow the points to move to what their

correct location should be given the enforcement of the rotations, as shown in Figure 6.4. Unless

otherwise stated, the value for kκ is set to 10−02, and the value for rκ is set set 2.4 h, where h is

the element length scale of the background mesh.

The finite element problem solves for the displacement and the rotational degrees-of-freedom,

and for the Lagrange multipliers. Despite the fact that the finite element problem consists of

multiple elements, the strain energy of the point of interest is only computed on the adjacent

elements as:

UC =
1

2

(
UL + UR

)
, (6.23)

where U denotes the strain energy, and UC is the strain energy of the intersection point. The

reason for this approach is that a larger number of elements yield a more accurate description of

the rotations at the point of interest; however, once we get the solution, we are only interested in

the strain energy of the adjacent elements because we will perform this procedure for all intersection

points in the domain.

Additionally, if the length of an element is small, i.e.
∥∥ΩΓ

e

∥∥ << 10−06, where ΩΓ
e is an element

on the discretized boundary, the element is merged with one of its adjacent elements to avoid the

ill-conditioning of the system. This merging requires special attention such that the current node

over which we are computing the curvature does not disappear. This process is illustrated in Figure

6.6. Furthermore, (6.23) is modified such that the strain energy is only added over the elements

that were not merged.
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Figure 6.4: Discretization of the structural linear beam elements. Inner nodes have two separate

rotational degrees-of-freedom, left and right, one for each adjacent element. Nodes at the end of the

boundary have a single rotational degree-of-freedom. All nodes rest on a field of artificial springs.

Strain energy is computed over the elements displayed in blue.

 

 

 

   

Figure 6.5: Computation of αCR. αCR is a function of the geometrical normal unit vectors of the

adjacent elements.
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ΩeΓ <10-6

(a) If the length of an element is small,

the element is merged with one of its ad-

jacent elements.

(b) The node of interest is not merged.

The strain energy is only computed over

the elements that were not merged, de-

noted in blue.

Figure 6.6: Merging process when an element on the boundary is small (<< 10−06).
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We will revisit these formulations in the numerical examples of Section 7.

6.2 Level Set Gradient Measure

LSM-based topology optimization requires regularization to control the size of geometric

features. The smallest feature possible is limited to the size of an element if the magnitude of the

gradient of the level set field at the interface is 1 and if the range of level set values in the design

domain equals the size of the element. In this work, we utilize the measure of the LSF spatial

gradients introduced in Coffin and Maute [2015b] to penalize the occurrence of features with a size

smaller than the element size h, which is defined as:

G =

∫
e−αφ

2
(|∇φ| − 1)2dΩ , (6.24)

with:

αφ = ep
φ

∆φ
, (6.25)

where ep is the penalization parameter, and ∆φ is the range of level set values in the design domain

defined as:

∆φ = φmax − φmin . (6.26)

The first term vanishes away from the zero level set, but conversely, becomes unity in its

vicinity. The second term promotes a signed distance-like level set field (i.e. |∇φ| = 1). The

combination of these two terms penalizes the level set gradients that do not match the desired

value of 1, but only in the locality of the fluid-solid interface. The measure is used in combination

with a restriction on the lower and upper bounds of the optimization variables to half the element

size, sLi = −h/2 and sUi = h/2, which by (6.26) defines ∆φ as h. Using our example from Figure

4.1, we illustrate this process in Figure 6.7. Features smaller than the element size violate the

prescribed gradient and are penalized by the measure. In accordance to the parameters used by

Coffin and Maute [2015a], the value of ep is set to 10. Note that the feature size control introduced

in this section is bounded to the interpolation of the LSF within neighboring elements; therefore,
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it cannot be applied to control arbitrary feature sizes. For more details on the formulation, refer

to Coffin and Maute [2015b].

6.3 Minimum Feature Size

In this thesis, we introduce a novel measure to control the minimum feature size of a design

geometry in topology optimization problems. Controlling the minimum feature size of an optimized

material layout is paramount to ensure that the governing equations can accurately model the

physical response of the feature, and that the design can be manufactured. Our feature size control

method relies on the explicit LSM (2.9) and on the XFEM (3.1), which preserves the crisp geometry

definition of the LSM (including sharp corners). Several feature size control techniques for LSM-

based topology optimization rely on preserving a signed distance field in the LSF; however, this

requires a refined mesh to accurately represent the geometry. In constrast with an implicit LSM,

an explicit LSM does not retain the signed distance behavior of the LSF, and would require a

reconstruction of the field to recover it, which is computationally expensive. An example of a feature

size control technique which does not depend on a signed distance field is the quadratic energy

method of Chen et al [2008], which compares the tangent vectors on the interface at different points.

Nevertheless, this approach is not effective when computing the measure on discretized surfaces.

The feature size control measure developed here identifies violations of a minimum feature size,

and does not require a signed distance field because it operates on the discretized polygon mesh

of the level set interface, as provided by the XFEM. Single-material and two-material problems

are considered, and the minimum feature size is prescribed either in a single phase or in both

phases. The measure is incorporated either as a penalty on the objective or as a constraint in the

optimization problem, and is able to deter the formation of features smaller than the prescribed

size. The measure is demonstrated on structural and convective heat transfer topology optimization

problems in Section 7. The influence of the parameters in our feature size formulation is also studied.

A comparison of our formulation against the one from Chen et al [2008] is also provided.
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Figure 6.7: Level set field for the LSF of Figure 4.1. The field was plotted in a mesh with an h

value of 0.001. The lower and upper limits are then set to ∓0.0005, respectively. Any level set

value smaller or larger than the limits is cut from the function. Note that the values in the vicinity

of the material interface (solid black line) are not modified.
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6.3.1 Background

In recent decades, topology optimization has gained traction as a practical computational

design technique. The method is appealing because, unlike shape optimization, it minimizes the

influence of the initial design with its ability to produce both shape and topological changes in the

optimization process. The control of the “feature size” or the “length scale” of the design is impor-

tant to ensure its manufacturability and the accurate analysis of its functionality. Manufacturing

methods have limitations on the length scales that they can accurately construct. Given these

limitations, it may be necessary to incorporate controls on the feature size to ensure that designs

are not overly difficult or costly to build. Furthermore, given a particular mesh, it may be neces-

sary to control the feature size to ensure that the physical response can still be properly modeled.

That is, the mesh used for the discretization must be sufficiently fine to accurately represent the

physical response of the feature size in a given geometry. Adaptive mesh refinement methods are

an alternative approach; however, as the feature size approaches zero, these techniques becomes

impractical as well.

Feature size control techniques have been studied in both density-based and LSM-based

topology optimization methods. Density-based topology optimization studied the limitations of

manufacturing processes [Zhou et al, 2014], and used, for example, projection schemes [Guest

et al, 2004], local density variations [Poulsen, 2003], robust design formulations [Schevenels et al,

2011], medial surface reconstruction [Zhang et al, 2014], and three-field-schemes [Zhou et al, 2015].

Multiple approaches have been proposed for feature size identification and control in LSM-based

topology optimization. The approaches vary in the way the information is used, and may take

advantage of the existing signed distance or near-signed distance behavior of the LSF to identify

geometrical features. For example, Allaire et al [2014], Guo et al [2014] and Xia and Shi [2015]

utilized the signed distance field to identify the skeleton of the geometry by computing the curvature

of the function. The feature size measures are then incorporated into the optimization problem as

either contributions in the objective function or as constraints. It is worth noting, however, that the
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maintenance and/or construction of a signed distance field increases the computational cost of these

methods. Alternatively, the discretized phase interface itself can also be used to identify features.

A quadratic energy function, which was defined as a double integral over the phase interface, was

computed by Chen et al [2008] and Luo et al [2008b]. A fictitious interface energy derived from the

phase field method was studied by Yamada et al [2010] We will study the formulation from Chen

et al [2008] in more detail, and compare it against our own feature size measure in Section 7.

Here, we utilize the XFEM to represent the material distribution, and to discretize the

governing equations in space (see Section 3). The XFEM has been shown to preserve the crispness

of the phase interface as described by the LSF (2.2). The XFEM decomposes the elements cut

by the zero level set into subdomains and interfaces that it uses to integrate the weak form of the

governing equations. The decomposition of the element into triangular (in 2D) or tetrahedral (in

3D) subdomains yields a polygon mesh that describes the phase interface via triangle edges (in 2D)

or tetrahedron faces (in 3D). The polygon mesh allows us to compute geometrical quantities along

the phase interface, such as the feature size measure introduced in this document.

In this thesis, we develop a minimum feature size measure that directly utilizes the XFEM

polygon mesh of the level set interface and its geometrical data. This approach bypasses the need for

a signed distance field of the LSF to compute the geometrical quantities, or to enforce a minimum

feature size. Additionally, the XFEM polygon mesh allows the measure to directly identify the

geometry of the phase interface as it is incorporated into the analysis of the governing equations.

The measure is constructed to identify violations of a prescribed minimum feature size, and is

incorporated in the optimization problem as an inequality constraint. The use of the feature size

measure as part of the optimization formulation gives the optimization algorithm the most freedom

to find the optimal material layout, as compared against methods that incorporate the measure as

part of the parameterization of the geometry [Coffin and Maute, 2015b].



87

6.3.2 Feature Size Measure

In this work, we develop a novel minimum feature size measure for topology optimization

problems. The measure is computed over the polygon mesh generated by the XFEM discretization

of the level set interface. We seek to compute a scalar value that identifies whether or not a

minimum feature size is violated. Using the geometry of our polygon mesh will ensure consistency

between the XFEM analysis of the governing equations and the computation of the feature size

measure. Our goal is to identify small features with a simple and clear formulation. The approach

detailed here is closely related to the work of Chen et al [2008], who used a quadratic energy

approach to identify small features in the material layout. We will provide a detailed comparison

of both methods in Section 7.

Similar to Chen et al [2008], the feature size measure, denoted as M0, is a double integral

over the level set interface, and the integrand is a product of two Heaviside functions, written as:

M0 =

∫

Γ0
2

∫

Γ0
1

Ĥtx (φtx (s)) · Ĥx (φx (s)) dΓdΓ , (6.27)

where:

φx (s) = rx −
∣∣xΓ

12 (s)
∣∣ , (6.28)

φtx (s) =
∣∣tΓ12 (s)

∣∣ /
∣∣xΓ

12 (s)
∣∣− rtx , (6.29)

and where Γ0
1 and Γ0

2 are the first and second integrals over the level set interface, respectively,

xΓ
12 (s) represents the Euclidean path between intersection points xΓ

1 and xΓ
2 , and is defined as:

xΓ
12 (s) = xΓ

1 (s)− xΓ
2 (s) , (6.30)

and tΓ12 (s) is the topological or geodesic path between points xΓ
1 and xΓ

2 along the level set interface.

Both distances are functions of the vector of design variables, s. A graphical representation of these

quantities is illustrated in Figure 6.8.

The Heaviside function, Ĥζ (a), is modeled as a smooth Heaviside to ensure the differentia-
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bility of the measure with respect to the position of the interface points, and is defined as:

Ĥζ(a) =





a ≤ −wζ 0 ,

−wζ < a < +wζ
1
2 + a

wζ

(
15
16 − a2

w2
ζ

(
5
8 − 3

16
a2

w2
ζ

))
,

+wζ ≤ a 1 .

(6.31)

The wζ parameters are chosen as functions of the feature size, and the value for wx is set to rx/2.

The optimization problem requires that we compute the sensitivities of the feature size mea-

sure with respect to the coordinates of the points at which the level set interface cuts the design

domain (see Coffin and Maute [2015a]). Computing the sensitivities of the first Heaviside function

is rather complex and involved due to the formulation of the geodesic distance, which is dependent

on different coordinates across the design domain. To circumvent this issue, we choose a small value

for wtx, and set the parameter equal to rx/10. This approach effectively turns the derivative into

a binary on-off switch due to the nature of the Heaviside projection, and eases the computational

complexity.

x1
Γ

x2
Γ

t12
Γ

 x12
Γ

n1
Γ

Γ0

Figure 6.8: Description of the Euclidean and geodesic paths used in the feature size measure.

The first Heaviside identifies points that are far in geodesic distance. The parameter rtx is

initially chosen to be:

rtx =
√

2 . (6.32)

This value is the relative distance of opposite equidistant points around a 90◦ corner, as shown

in Figure 6.9. The impact of this parameter will be discussed and studied later in the numerical
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examples. The second Heaviside function identifies points that are close in Euclidean distance,

violating the minimum feature size rx.

45°

x1
Γ

x2
Γ	  t12

Γ

x12
Γ t12

Γ

x12
Γ = 2

Figure 6.9: Initial estimate for an appropriate rtx value with points equidistant about a right-angle

corner.

The feature size measure in (6.27) does not distinguish between features of different phases.

To allow the measure to identify features formed by a particular phase, we extend the measure with

a third Heaviside function and denote it as Mm, where m = {−,+} and represents the material

phase. The new measure is then defined as:

Mm =

∫

Γ0
2

∫

Γ0
1

Ĥtx (φtx (s)) · Ĥx (φx (s)) · Ĥn (φn (s)) dΓdΓ , (6.33)

where:

φn (s) = sign(m) ·
(
xΓ

12 (s) · nΓ
1 (s)

)
. (6.34)

The additional Heaviside function, Ĥn, allows the measure to identify features that are formed

by a phase. This identification is performed by comparing the Euclidean path between the two

points to the interface normal at the first point. The normal is constructed such that it points

from the negative phase into the positive one. If the dot product of the normal nΓ
1 and the vector

xΓ
12 is positive, then the feature is identified as being formed by the positive phase. If the value is

negative, the feature is formed by the negative phase. The parameter ws, as described in (6.31), is

chosen in the same manner as wtx, and the value is set to rx/10.
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Additional Heaviside functions are introduced to study the relationship and influence of the

different parameters. Here, an additional Heaviside is introduced to study the relationship between

the geodesic path (6.29) and the rx parameter, and to smooth the response of the minimum feature

size measure. This formulation,Mm
a , extends (6.33) as:

Mm
a =

∫

Γ0
2

∫

Γ0
1

Ĥtx (φtx (s)) · Ĥx (φx (s)) · Ĥa (φa (s)) · Ĥn (φn (s)) |φx (s)|2 dΓdΓ , (6.35)

where:

φa (s) =
∣∣tΓ12 (s)

∣∣− ra · rx , (6.36)

where ra is a scaling factor.

The measure in (6.33) is modified to study the effect of the Heaviside in (6.28), and is defined

as:

Mm
x =

∫

Γ0
2

∫

Γ0
1

Ĥtx (φtx (s)) · Ĥx (φx (s)) · Ĥn (φn (s)) |φx (s)|2 dΓdΓ , (6.37)

where the values for wx, wtx, and wn are chosen to be 0.001.

The term φtx in (6.37) is modified to study the influence of this parameter, and the new

measure is defined as:

Mm
tx =

∫

Γ0
2

∫

Γ0
1

Ĥtx (φtxx (s)) · Ĥx (φx (s)) · Ĥn (φn (s)) |φx (s)|2 dΓdΓ , (6.38)

where φtxx is defined as:

φtxx (s) =
∣∣tΓ12 (s)

∣∣ / rx − rtx . (6.39)

In order to identify points that are in separate surfaces, but not penalize curvature, (6.37) is

modified as:

Mm
w =

∫

Γ0
2

∫

Γ0
1

Ĥtx (φw (s)) · Ĥx (φx (s)) · Ĥn (φn (s)) |φx (s)|2 dΓdΓ , (6.40)

where φw is defined as:

φw (s) =
∣∣tΓ12 (s)

∣∣− rx · rtx + wtx . (6.41)
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The measures in (6.27) and (6.33) will be incorporated into the optimization problem as an

inequality constraint. We will study two variations of the constraint, one where the feature size

measure is normalized by the perimeter and one where the measure is included directly. The feature

size measure,M, will either be computed over both phases (6.27), or over the negative phase (6.33).

The normalized constraint, gmM̄, is defined as:

gmM̄ =
Mm

S2
− cM̄ ≤ 0 , (6.42)

where the feature size measure, M, is normalized with the square of the perimeter (in 2D) or

surface area (in 3D) of the level set interface, denoted as S, and bound by some small value, cM̄.

The smaller cM̄, the more strongly the constraint is enforced. This form is most useful in problems

where the perimeter is constrained. However, this approach may lead to geometric features that

only act to increase the design’s perimeter. The increase in perimeter allows for larger feature size

violations in the normalized form of the constraint (6.42). In such cases, the unnormalized form of

the constraint might be more benefitial in order to bypass this difficulty. The constraint is written

as:

gmM =Mm/cM − 1 ≤ 0 , (6.43)

where cM is an allowable violation. We will study both constraints in the numerical examples of

Section 7.

6.3.3 Implementation Details

In a parallel computation, each processor possesses a partition of the computational mesh,

i.e. the analysis domain. To compute certain measures, such as the curvature of the level set field

or the integral introduced in (6.27), we require information about the level set interface across the

entire computational domain, not the partition alone. This information is mainly comprised of the

coordinates of the points that form the level set interface, and their connectivity. The following

steps are performed in the femdoc code to gather this information:
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(1) Extract the level set interface topology and intersection points. Each processor performs

this task locally. The interface topology is computed by looping over all elements cut by

the zero level set isosurface. The intersection points are copied from the Mesh class. We

will refer to this set of data as the XFEM surface mesh.

(2) Communicate the interface topology and intersection points to the root processor. In this

case, the root processor is the processor with rank 0. All other (lower-ranked) processors

send their local surface mesh information to processor 0.

(3) The root processor sorts over the information and removes duplicate intersection points.

Given that the partitioning of the original computational domain is element-based, there

should not be duplicate interface topologies. The interface topologies of each processor are

assembled one after the other into a single matrix.

(4) The root processor returns the sorted and assembled information to all processors. At this

point, each processor has a copy of the entire surface mesh.

(5) All processors proceed to compute the measure of interest and its partial derivative with

respect to the intersection points. However, if there is a loop over the surface elements, the

processors only compute the information over the elements that they originally owned.

(6) All processors compute the derivative of the intersection points with respect to the design

variables, and these values get post-multiplied by the sensitivities of the measure of interest.

In a previous implementation, all processors would send the surface mesh information to the

root processor, and the root processor would proceed to compute the measure by itself. This proved

to be extremely computationally expensive in 3D. By having each processor possess a copy of the

surface mesh, the computation time of the measure scaled by the number of processors. However,

note that this is a trade-off between memory and speed. In this situation, we chose to sacrifice

memory by creating multiple copies of the same surface mesh across the processors, in order to

gain speed and decrease the computational time.
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Also note that the processors only communicate with the root processor, and viceversa. The

processors do not communicate with one another. This reduces the cost of the communications

from O
(
n2
)
to O (n), where n is the number of processors.

The geodesic distance is computed using the Surface Mesh Shortest Path module introduced

in CGAL 4.7 [CGAL, 2009]. For a tutorial on how to use the module, see Appendix B.

The XFEM surface mesh is represented in CGAL through the Polyhedron_3 class. This

class has exhibited a lack of robustness when the level set value at a node is small and leads to a

small intersection area. The class fails to recognize the surface mesh as a valid polyhedron, which

means we cannot proceed to compute the geodesic distances. Using larger level set critical and shift

values, φΓ
c and φΓ

s , respectively, has shown to ameliorate this issue (see Section 4.6). However, the

effect that using larger values for φΓ
c and φΓ

s has on the sensitivities needs to be studied further.

The issue was lastly resolved by removing very small elements from the CGAL surface mesh with

a clause that was added to the class from Appendix B. If CGAL fails to add a surface element to

the surface mesh, we assume it is because the element is poorly scaled due to the level set value at

a node being near zero. In such a case, we ignore the element and it is not added to the CGAL

polyhedron mesh.



Chapter 7

Numerical Examples

In the following, we study the characteristics of the proposed LSM-XFEM topology optimiza-

tion framework for 2D and 3D, linear diffusion, linear elasticity, steady-state and transient laminar

incompressible flow, and energy and species transport problems. We apply topology optimization

to several problems in order to study the characteristics of the framework with respect to different

physical phenomena. The 2D and 3D analysis domains are discretized in space by bilinear quadri-

lateral elements and trilinear hexahedral elements, respectively. Unless otherwise stated, geometric

and material parameters are given in non-dimensional and self-consistent units.

The optimization problems are solved via the Globally Convergent Method of Moving Asymp-

totes (GCMMA) of Svanberg [1995]. The GCMMA parameters are given in Table 7.1. The opti-

mization problem is considered converged if: (i) the change of the objective function relative to the

initial objective value is less than 10−06, and (ii) all constraints are satisfied.

7.1 Sensitivity Analysis

In this section, we present 4 numerical examples to study the characteristics and accuracy of

the shape sensitivities of the Heaviside-enriched XFEM framework. Examples 7.1.1, 7.1.2, and 7.1.3

use a 2D steady-state linear diffusion model (4.29) to study the behavior of the shape sensitivities

for various types of evolving shapes. Example 7.1.4 studies an incompressible fluid flow (4.17), and

showcases the applicability of the proposed framework to a nonlinear system in 3D. We show that

the smoothness of the shape sensitivities is primarily driven by the error in the discretization of
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Value

Relative step size 0.04

Minimum asymptote adaptivity 0.5

Initial asymptote adaptivity 0.7

Maximum adaptivity 1.43

Constraint penalty 100

Table 7.1: GCMMA parameters for the topology optimization problems.

the interface geometry and not by the approach in computing the shape sensitivities. As a result,

smoother shape sensitivities are obtained with mesh refinement.

Boundary conditions are imposed weakly using Nitsche’s method. Unless mentioned other-

wise, an interface constraint penalty of αN,T = 1.0 is used to enforce continuity in the temperature

field across the material interface in all the steady-state linear diffusion examples. For the incom-

pressible fluid flow problem, we set the interface constraint penalty to αN,u = 1000 to enforce a

no-slip condition at the fluid-solid interface. To mitigate issues with ill-conditioning caused by an

extremely small (or large) ratio of phase volumes within an element cut by the zero level set, we

use the geometric preconditioning scheme of Lang et al [2014]. The linear problems of both the

forward and the sensitivity analyses are solved using a direct solver.

7.1.1 Bar with a Strip Inclusion

This example is divided into three subsections. The first subsection establishes the accuracy

of the proposed semi-analytical approach (4.66) by comparing it against finite differenced shape

sensitivities computed using a body-fitted mesh. The second subsection discusses the influence of

shifting the interface (c.f. Section 3.2) on the semi-analytically computed shape sensitivities (4.66),

and a comparison is provided against finite differencing dZ/dsi with a perturbation size of ∆φFD.

The third subsection presents the shape sensitivities corresponding to a response function evaluated
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Figure 7.1: Problem setup for the linear diffusion example with a strip inclusion.

at a region that changes its material phase.

We consider the two-phase problem setup shown in Figure 7.1. A strip inclusion of con-

ductivity k2 = 10, is inclined at an angle θ to the vertical axis. This inclusion is embedded into

a rectangular matrix of conductivity k1 = 1. The strip is centered along x = 15. A Neumann

boundary condition of q̂Γ = 1 is applied along the left edge. A Dirichlet boundary condition of

T̂ = 1 is applied to the right edge. The top, right, and bottom edges are assumed to be adiabatic.

The design variable, s, is half the width of the strip inclusion, measured parallel to the horizontal

axis.

7.1.1.1 Accuracy comparison of shape sensitivities

Here we study the accuracy of the shape sensitivities using the proposed semi-analytical

approach with respect to the shape sensitivities obtained using a body-fitted mesh. We use the

problem setup of Figure 7.1 with θ = 30◦. For the body-fitted approach, a standard finite element

mesh, of 120 by 24 elements, is body-fitted with respect to the strip inclusion for every s and

the corresponding design geometry perturbations due to ∆φFD. The former is used to compute

the response function while the latter is used to compute the finite differenced body-fitted shape

sensitivities. Figure 7.2 presents the response function and the shape sensitivities as a function of

the design variable. Even though the response plots match closely, the shape sensitivities using

the XFEM are not as smooth as those obtained using the body-fitted mesh. Mesh refinement

leads to convergence of the sensitivities computed using the XFEM. It is also noted that the

interface constraint penalty (4.37) influences the accuracy of the sensitivities. Table 7.2 presents the
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Figure 7.2: Comparison with body-fitted mesh, θ = 300.

difference in shape sensitivities using the XFEM with respect to the body-fitted shape sensitivities.

This relative difference is averaged over the number of designs corresponding to the different values

of the design variable s. Also presented in Table 7.2 is the interface constraint error averaged over

the number of different designs. Note that a higher interface constraint penalty does not guarantee

a more accurate behavior of shape sensitivities.

7.1.1.2 Influence of interface shift on semi-analytical shape sensitivites

In this subsection, we discuss the influence of the material interface shift described on the

computation of the semi-analytical shape sensitivities. As described in Section 3.2, the material

interface is not allowed to intersect the node, and we shift the interface if it comes within a critical

distance of a node. Assuming a signed distance field (i.e. ∂xΓ
k/∂φj = 1), the critical shift region is

defined as xΓ
c = φΓ

c = 10−06h, where a change in the level set field results in an identical change

in the coordinates of the intersection points. Using a mesh of size h = 1, and setting θ = 0◦, the

design variable is varied in increments of ∆s = 0.15xΓ
c . The response function, Z, is the temperature

measured at the node located at x = (0, 0). This setup allows us to study the behavior of the shape

sensitivities within the critical region as the material interface crosses a node. Figure 7.3 plots



98

Table 7.2: Influence of interface constraint penalty.

h αN,T Avg. difference w.r.t. FEM Avg. interface constraint error

0.25 1.0 0.69% 1.00× 10−02

0.25 10.0 0.40% 4.26× 10−03

0.25 100.0 0.65% 2.56× 10−03

0.05 1.0 0.23% 3.57× 10−03

the response function for each of the shift options listed in Section 3.2. Note that the interface

intersects a node at s = 2. The interface shift is performed such that the new position of the

material interface is assumed at a distance xΓ
c from the node in concern. This results in a distinct

discontinuity in the response function within the critical shift region.

Figure 7.4 presents a comparison of shape sensitivities computed using the proposed semi-

analytical approach against central, forward, and backward finite differenced shape sensitivities with

θ = 0◦. A perturbation size of ∆φFD = 2xΓ
c was used. The analytical solution establishes that

the shape sensitivities must remain constant with the varying thickness of a vertical strip inclusion

because the temperature response is linear. However, as can be noticed in Figure 7.4, inaccurate

shape sensitivities are obtained for certain values of the design variable s. The inaccuracy in the

semi-analytical and finite difference plots is a result of performing an interface shift during the

finite differencing of ∂Re/∂x
Γ
k and ∂Z/∂s respectively. In contrast, when the interface position is

not shifted during the sensitivity computation, accurate sensitivities are obtained using the semi-

analytical approach as shown in Figure 7.5. The finite differenced sensitivities are still inaccurate in

the vicinity of the critical shift region. This is because they are obtained by finite differencing the

response function, and the interface shift is always performed within the critical shift region during

its computation. When computing shape sensitivities via the semi-analytical approach, design

perturbations were performed about the interface configuration used to compute the response.

While finite differencing ∂Re/∂x
Γ
k , design perturbations may result in the material interface
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Figure 7.3: Influence of shifting the interface on the response function.

crossing over to a neighboring element. In such a scenario, a forward or backward finite differencing

of ∂Re/∂x
Γ
k is performed depending on the interface configuration. To avoid running into such

issues, the finite difference perturbation size, ∆φFD, is chosen to be less than the size of the critical

shift region. Such a choice allows for central finite differencing at all times regardless of the interface

position. For all results presented from hereon, the −ve shift approach with a critical shift region

of xΓ
c = 10−06h was used alongside a finite difference perturbation size of ∆φFD = 5× 10−07h.

7.1.1.3 Heaviside-induced strong discontinuity in shape sensitivities

In this subsection, we present shape sensitivities corresponding to a response function eval-

uated at a node which changes material phase with change in design. We use the problem setup

of Figure 7.1 with θ = 300. Shape sensitivities are recorded for every configuration as the design

variable is varied in constant increments of ∆s = 0.02. The response function, Z, is the tempera-

ture measured at the node located at x = (14.5, 3). Figure 7.6 presents the response function and

the corresponding shape sensitivities as a function of the design variable. There is a kink in the

variation of the response function leading to a strong discontinuity in the shape sensitivities. This

discontinuity corresponds to the the design configuration when the node changes material phases

from 1 to 2.
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Figure 7.7: Problem setup for the linear diffusion example with a circular inclusion.

7.1.2 Bar with a Circular Inclusion

The goal of this example is to investigate the dependency of the shape sensitivities on the

discretization of the design geometry by evaluating the perimeter of the discretized inclusion. We

consider the two-phase problem setup shown in Figure 7.7. A circular inclusion of conductivity

k2 = 10, is embedded into a rectangular matrix of conductivity k1 = 1. The circular inclusion is

centered at x = (15, 3). A Neumann boundary condition of q̂Γ = 1 is applied to the left edge. A

Dirichlet boundary condition of T̂ = 1 is applied to the right edge. The top, right, and bottom

edges are assumed to be adiabatic. The design variable, s, is the radius of the circular inclusion. To

compute the shape sensitivities, the design variable is varied in constant increments of ∆s = 0.02.

The response function, Z, is the temperature measured at the node located at x = (0, 0). Alongside

the sensitivities of the response function, we also focus on the sensitivities of the perimeter of the

inclusion. The circular inclusion has a perimeter of 2πs, and consequently, the sensitivity of the

perimeter is expected to be 2π.

The response function and the corresponding shape sensitivities for a mesh size of h = 0.25

are plotted in Figure 7.8. A visibly smooth, but not linear, response function is obtained. However,

the shape sensitivities obtained are not smooth. Plotted alongside the sensitivities for the response

function are the sensitivities of the perimeter of the circular inclusion. A strong correlation can

be observed in the behavior of the two plots, implying the influence of the discretization of the

design geometry on the computation of the shape sensitivities. Consequently, a comparison with

a finer mesh is drawn in Figure 7.9. With spatial refinement, the sensitivities for the inclusion
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Figure 7.10: Problem setup for the linear diffusion example with two circular inclusions.

interface perimeter approach the constant value of 2π indicating a much smoother discretization

of the interface geometry. This smooth discretization of the interface geometry in turn leads to a

smoother behavior of the shape sensitivities.

7.1.3 Bar with Two Moving Circular Inclusions

This example investigates the evolution of the response function and the corresponding shape

sensitivities for a scenario which simulates the merging of shapes in topology optimization. As a

result, we consider a two inclusion problem setup as shown in Figure 7.10. Two circular inclusions of

conductivity k2 = 10, are embedded into a rectangular matrix of conductivity k1 = 1. The circular

inclusions have a radius of 2. The left and right inclusions are initially centered at x = (12, 3) and

x = (18, 3) respectively. A Neumann boundary condition of q̂Γ = 1 is applied to the left edge. A

Dirichlet boundary condition of T̂ = 1 is applied to the right edge. The top, right, and bottom

edges are assumed to be adiabatic. The design variable, s, is the distance between the centers

of the two circular inclusions. To compute the shape sensitivities, the design variable is varied in

constant increments of ∆s = −0.025. The response function, Z, is the temperature measured at

the node located at x = (0, 0).

The response function and the corresponding shape sensitivities for mesh sizes of h = 0.25

and h = 0.05 are plotted in Figure 7.11. Because ∆φFD < φΓ
c , the inclusions never merge during

the shape sensitivity analysis. The same occurs during a traditional topology optimization problem.

Therefore, from the perspective of shape sensitivity analysis, we actually do not take into account

the effect of the topological change. Moreover, the merging of topological features is not a continu-
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Figure 7.11: Response function and shape sensitivities for merging topologies.

ous phenomenon as can be observed by the evolution of the response function in Figure 7.12. The

jump in the response function leads to a spike in the shape sensitivities when the two inclusions

merge. Figure 7.12 shows the convergence of the response function and the corresponding shape

sensitivities with spatial mesh refinement, in the region where the inclusions merge.

7.1.4 Steady-state Laminar Flow Around a Sphere

In contrast to the previous examples, the current problem setup is governed by a nonlinear

set of equations in 3D for modeling incompressible fluid flow (4.17). The goal here is to show the

applicability of the numerical framework discussed in the current study to nonlinear problems in

3D. We consider a solid spherical inclusion surrounded by an incompressible fluid in a rectangular

box as depicted in Figure 7.13. A flow of with Reynolds number Re = 10 is considered. The

fluid density and viscosity are assumed to be 1. The inclusion has an initial radius of 0.5, and is

centered at x = (2, 2, 2). No-slip conditions are enforced along the fluid-solid interface. A parabolic

laminar flow is developed at the inlet. Due to the uniform cross sections of the inlet and outlet,

the pressure loss inside the channel depends solely on the geometry of the inclusion. Consequently,

shape sensitivities are computed for the response function, Z, defined as the difference in total

pressure measured between the inlet and outlet, with the design variable, s, being the radius of

the spherical inclusion. The radius is varied in constant increments of ∆s = 0.01. The response

function and the corresponding shape sensitivities for h = 0.1 are plotted in Figure 7.14. Smooth
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Figure 7.12: Convergence of the solution with spatial mesh refinement.
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Figure 7.13: Incompressible fluid flow with void spherical inclusion.
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Figure 7.14: Response function and shape sensitivities for problem setup in Figure 7.13.

behavior of semi-analytical shape sensitivities is observed. Plotted alongside the semi-analytical

sensitivities are the finite differenced shape sensitivities. As reported in Section 7.1.1.2, the semi-

analytical sensitivities are in agreement with the finite differenced sensitivities except for when the

material interface lies within the critical shift region.

7.2 Geometric Preconditioner

In this chapter, we study and validate our geometric preconditioner formulation with a 2D

linear diffusion problem. The validatity of our approach will be measure in terms of the accuracy

of the solution. For such as task, we will compare the solution obtained using the XFEM and the

preconditioner against a refined body-fitted solution. Furthermore, we will measure the error in the

XFEM solution by measuring the jump of the solution fields across the interface. Finally, we will

measure the condition number, κ, and show that the preconditioner reduces the ill-conditioning of

the system.

These examples were computed as part of a set of validation tests for the XFEM framework

in the Fall of 2012. The results are included in the internal report in Appendix A. This version of

the framework did not include Nitsche’s method as a way to impose boundary conditions weakly.
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Therefore, the problems utilize an early version of our stabilized Lagrange multipliers formulation

4.11. That is, the Lagrange multipliers were solved on an interface-per-interface basis. At the

time of the writing of this thesis, this formulation has changed, and we now mostly compute the

Lagrange multipliers by grouping interfaces with the same enrichment level into a single prob-

lem. Nevertheless, the problems studied here still provide insight into the characteristics of the

framework.

7.2.1 Methodology

Two formulations are used to corroborate the results of the geometric preconditioner (5.3).

The first measure, denoted as Serror, computes the difference in solutions at the material interface,

and is defined as:

Serror =

((∫

Γ0

∥∥u+ − u−
∥∥2

dΓ

)
·
(∫

Γ0

dΓ

)−1) 1
2

. (7.1)

This equation computes the jump in the solution fields across the interface in the analysis domain,

and scales the value with the perimeter (in 2D) or the surface area (in 3D) of the interface. Since

the model we have implemented is based on inclusions and not on crack propagation, the interface

error should approach zero as we refine the mesh.

The second measure, denoted as L2
error, compares the relative difference between the XFEM

solution and the refined body-fitted solution, and is defined as:

L2
error =

((∫
ũ− ûFE dΩ

)
·
(∫

ûFE dΩ

)−1) 1
2

, (7.2)

where ũ is defined in (3.1), and ûFE represents the solution of the body-fitted problem.

The problem setup is shown in Figure 7.15. We model a two-material 2D linear diffusion

problem. The analysis domain has a width of 20 units and a height of 20 units. Dirichlet boundary

conditions are imposed on the sides. Because the level set interface never touches the boundaries,

the Dirichlet conditions are applied in the strong form. The species field is prescribed to 0 on the

left side, and 100 on the right side. The circular inclusion at the center of the model represents the

positive material phase. We modify the radius of the circular inclusion from 1 units to 3 units in



108

500 steps. We measure the effects of applying mesh refinement, and using different conductivity

ratios for both phases. The body-fitted analysis was computed using the same setup of Figure 7.15,

and the mesh was refined until the solution reached convergence.

 20

 20

r=1

r=3

Figure 7.15: Problem setup for the 2D linear diffusion example of Section 7.2.

7.2.2 Mesh Refinement Sweep

In this test, we vary the element length scale, h, while the conductivity ratio between the

two materials, k+/k−, remains fixed at 10. No preconditioner scaling is applied. The value for

the interface penalty parameter, αN,c, is 10. The different mesh sizes used are h = 1.00 × 10+00,

h = 6.67× 10−01, h = 5.00× 10−01, and h = 4.00× 10−01.

Figure 7.16a shows the convergence of the XFEM solution with mesh refinement. As the

mesh is refined, the interface error drops and approaches zero. Additionally, Figure 7.16b shows

that as the mesh is refined, the difference of the XFEM solution with respect to the refined body-

fitted one decreases. The peaks in the plot can be attributed to the discretization used to compute

the L2 error.

To compute the L2 error, the XFEM and the body-fitted solutions are mapped to a separate

discretized mesh with h = 2.0 × 10−01, where the difference in values between them is measured.

This process was performed in ParaView [Squillacote and Ahrens, 2007]. The L2
error measure proved

to be sensitivite to the level of refinement of the discretized domain used to compute the differences,
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Figure 7.16: Interface and L2 errors for the mesh refinement sweep. The oscillatory behavior

matches the results from Lang et al [2014]. Peaks in the L2
error measure are a product of the

discretization used to compute the error.



110

especifically when the nodes of the original meshes aligned with the nodes of the mapped domain.

Further examples utilize an h value of 1.94175 × 10−01 to decrease the likelihood of the nodes

aligning with one another.

The average condition number of the matrices was in the order of 10+15, which indicates that

the system became ill-conditioned as the radius increased and the intersection patterns changed.

However, the high condition number does not seem to affect the convergence of the solution. This

behavior can be attributed to the fact that this is not a complex problem in terms of the physics nor

in terms of the discretized interface configuration. We will study the effects of the preconditioner

on the condition number next.

7.2.3 Condition Number

In this sweep, we measure the condition number of the system for a problem with an h value

of 6.67× 10−01, a conductivity ratio of 10, and an interface penalty parameter of 10. We compute

the solution with and without using the preconditioner scaling formulation (5.3).
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Figure 7.17: Condition numbers sweep, with and without the preconditioner scaling. κ̄ represents

the average condition number across the sweep.

The plots in Figure 7.17 show that the preconditioner effectively reduces the condition number

of the system in the presence of vanishing zones-of-influence. The oscillations in the plots of Figures
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7.16 and 7.17 show that as the radius of the inclusion increases, the intersection patterns more or

less repeat, leading to similar discretization errors at the interface.

7.2.4 Conductivity Ratio Sweep

In this sweep, we test five different conductivity ratios, k+/k− = {0.1, 1, 10, 100, 1000}. The

mesh size, h, has a value of 6.67× 10−01, and the interface penalty parameter is 10.
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Figure 7.18: Conductivity ratio sweep. The results show that the interface error increases as the

ratio of conductivities becomes larger.

Figure 7.18 shows the interface error of the conductivity ratio sweep. The plot displays the

same oscillatory behavior seen in the previous examples. The results show that when the material

conductivity is the same for both materials (i.e. a “quasi-FEM” problem), the interface error is in

the order of O(ε). Contrarily, the interface error increases as the ratio of conductivities becomes

larger for the other values.

7.2.5 Discussion

The results presented in these examples showed that the differences in solutions between the

XFEM and a classical finite element body-fitted problem for a 2D linear diffusion model are small.

The XFEM produced a system of equations with a higher condition number due to the degrees-of-

freedom interpolation the solution in small intersection areas; however the geometric preconditioner
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scheme of Lang et al [2014] was able to resolve this shortcoming of the method. The XFEM showed

that it is prone to errors with respect to the mesh refinement and the material properties of the

different phase regions. However, we showed convergence of the solution with mesh refinement.

The influence of the interface penalty parameter to enforce the continuity of the solution at the

interface will be studied in later examples.

7.3 Linear Elasticity

We study the features of the proposed LSM-XFEM topology optimization approach with

numerical examples for linear elastic structures. The LSM-XFEM results of solid-void and solid-

solid problems are compared against the ones of the SIMP approach outlined in Section 1.2.4. In

all examples, we seek to minimize the strain energy (4.67) subject to a constraint on the volume of

the stiff phase (4.71). This problem formulation is chosen because it is well studied in the literature

and the numerical experiments can be easily repeated. The following numerical studies will provide

insight into (a) the convergence of the geometry and the structural response as the meshes are

refined and (b) the influence of regularization techniques on the optimized results, such as the filter

radii in (1.12) and (2.9), and perimeter constraints (4.73).

The linear systems of the forward and adjoint problems are solved by a parallel implemen-

tation of the GMRES method [Heroux et al, 2003]. The problems are preconditioned by an ILU

factorization with a fill of 2.0 and an overlap of 1.0. The convergence tolerances for both, the

GCMMA and the GMRES solver, are chosen sufficiently low such that the optimization results

do not depend on the tolerance values. In the SIMP problems, the parameters p and β are kept

constant in the optimization process, i.e. no continuation approach is used. In the LSM-XFEM

examples, the spring stiffness value, ksu, is 10−06.

While the LSM-XFEM results can be directly used to fabricate the structure, for example

by 3D printing, the SIMP results need to be postprocessed. From a practitioner perspective, only

the postprocessed SIMP results should be compared against the LSM-XFEM results. To this

end, we postprocess the SIMP results with a lumping method that uses the isocontours of the
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density distribution. To obtain a strict “0-1” density distribution with smooth phase boundaries,

we construct isovolumes for different threshold values, ρT, from the nodal density values, ρ̂i; see

Section 1.2.4. The volume enclosed by the isocontour with ρ̂ ≥ ρT is considered solid; the remaining

volume is considered “void”. We select the threshold value that results in the smallest strain energy

and for which the volume constraint is satisfied. The structural response of the design for different

ρT values is analyzed conveniently with the XFEM. We refer to this postprocessing approach as

isovolume density lumping (IDL).

To gain further insight into the crispness of the SIMP results and the influence of the post-

processing methods above on their performance, we measure the volume fraction, ρ̄, occupied by

elemental densities with 0 < ρ̂ < 1 as follows:

ρ̄ =

∫
ρ̂ (1− ρ̂) dΩ

(∫
dΩ

)−1

. (7.3)

For more details on the examples studied here, the reader is referred to Villanueva and Maute

[2014].

7.3.1 Design of a 2D Short Cantilever Beam

In this example, we study a short cantilever beam in 2D. The optimized material layout will

serve as a reference solution, and will be compared against designs in subsequent examples that

utilize additional regularization techniques (see Section 6). The problem setup is shown in Figure

7.19. We model a solid-void problem with an auxiliary indicator field over the solid domain to

detect free-floating particles. The objective is stated as follows:

Z =
Us∥∥Us(0)

∥∥ + wS
S∥∥S(0)
∥∥ , (7.4)

where Us represents the strain energy (4.67) of the solid phase, and the superscript (0) denotes the

value of the initial design. We impose a maximum volume fraction of the solid domain of 50%. The

remaining problem parameters are shown in Table 7.3. Symmetry of the design variables is imposed

along the y-axis. The elements entirely in the “void” phase are omitted in the element assembly
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Figure 7.19: Problem setup for the 2D short cantilever beam example.

process and the degrees-of-freedom that interpolate the “void” phase are eliminated from the system

of equations; both techniques reduce the computational cost of solving the XFEM problem.

The initial design, shown in Figure 7.20a, consists of a solid box with 8 × 6 circular void

inclusions of radius 0.125L. A void area with a thickness of 0.02L is modeled around the design

domain to guarantee that all the boundaries of the design are part of the material interface. The

converged optimized material layout after 400 iterations is shown in Figure 7.20b. The objective

and volume constraints plots are shown in Figure 7.21. The truss-like design matches well the

results from the literature. The problem does not suffer from numerical artifacts or “checkerboard”-

like patterns as seen by Makhija and Maute [2014b]. The strain energy varies from 2.393 × 10−01

to 1.364×10−01; this occurs because the optimization problem first satisfies the volume constraint,

and then minimizes the objective until a feasible minimum is found, as shown in Figure 7.21. We

will revisit this example in subsequent sections.

7.3.2 Design of a 2D MBB Beam

In this example, we study the well-known MBB beam design problem. The exact parameter

set is taken from Sigmund [2009], and the problem setup is shown in Figure 7.22. The objective

is to minimize the strain energy of a beam by arranging a limited amount of solid material in a

domain. The solid domain is denoted by the negative phase of the LSF. The lower and upper limits,

sLi and sUi , of the design variables are set to ∓h/2, respectively. Similar to the example in Section
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Value

Element length scale h = 5.0× 10−02L

Young’s modulus Es = 1.0

Poisson’s ratio νs = 10−01

Preconditioner tolerance Ttol = 10+06

Nitsche displacement penalty γN,u = 10+02

Nitsche species penalty αN,c = 10+01

Aux. pressure penalty ksp = 10−06

Surface area penalty wS = 10−01

Maximum volume constraint 50%

Smoothing filter radius rφ = 2.4 h

Table 7.3: Problem parameters for the 2D short cantilever and MBB beams examples.

(a) Initial design. (b) Optimized design.

Figure 7.20: Material layouts for the 2D short cantilever beam example.
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Figure 7.21: Objective and volume constraint plots for the 2D short cantilever beam example.

7.3.1, additional padding regions are included in the mesh around the design domain. In these

regions, the design variables are fixed to the upper limit, sUi , to guarantee that they remain a void

domain. These additional regions are used to ensure that all the boundaries of the design geometry

are part of the XFEM interface (rather than part of an external surface). The problem parameters

are the same as in Table 7.3, with the exception of the element size, which is set to h = 6.7×10−03.

The initial design is shown in Figure 7.23a. The design domain is initialized with 27 × 9 cuboid

inclusions of radii 2h. The design variables contained within a radius of 10h of the anchor and

load regions are prescribed to the upper limit sUi . The converged optimized material layout after

400 iterations is shown in Figure 7.23b. The objective and volume constraint plots are shown in

Figure 7.24. Optimal designs typically have many thin truss-like structures (see Michell [1904]),

which match well the results computed in this study. The strain energy varies from 8.564× 10−02

to 5.452×10−01. The objective plot displays oscillatory behavior for certain design geometries; this

is attributed to the lack of a measure to control the thickness of these trusses when they become

smaller than the element size.

7.3.3 Design of a 3D Cube with a Center Load

We consider the solid-void optimization problem depicted in Fig. 7.25. With this example we

will illustrate the basic features of the LSM-XFEM approach for 3D problems and show that the
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Figure 7.22: Problem setup for the 2D MBB beam example.

(a) Initial design. (b) Optimized design.

Figure 7.23: Material layouts for the 2D MBB beam example.
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Figure 7.24: Objective and volume constraint plots for the 2D MBB beam example.

	  L

	  L

	  L

 y

x

z  f"y

Figure 7.25: Problem setup for the cube with a center load example.

proposed LSM-XFEM approach and the SIMP formulation may exhibit comparable convergence

behaviors as the mesh is refined.

The L × L × L cubical design domain is pinned at its four bottom corners in the vertical

direction and a unit force is applied at the center of the bottom face. The Young’s modulus of the

stiff phase is set to 1 and the Poisson’s ratio to 0.3. The maximum volume of the stiff phase is 10%.

We compare LSM-XFEM and SIMP results for two mesh sizes: 24× 24× 24 and 65× 65× 65. The

problem is solved by analyzing the entire design domain, i.e. we do not restrict the solution to a

symmetric design.
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First, we apply the SIMP approach with a penalization factor of p = 3. The Young’s modulus

of the void phase is set to E+ = 10−09. The size of the smoothing radius is mesh dependent, and is

set to rρ = 3.2 for the coarse mesh and rρ = 1.182 for the fine mesh; the projection parameter is set

to β = 0. Note that the smoothing radius is intentionally set relative to the element size (1.6 h).

While this approach does not ensure mesh-independent optimization results, it still prevents the

formation of checker-board patterns and provides insight into the dependency of the geometry

resolution of SIMP as the mesh is refined.

The design domain is initialized with a uniform material distribution of ρ̂i = 0.1. The

optimized material distributions are shown in Figure 7.26 where material with a density lower than

ρ̂i < 0.75 is considered void. The strain energies are reported in Table 7.4. For both meshes,

the volume constraint is active in the converged designs. As expected, the optimized geometry is

smoother and the strain energy is lower for the refined mesh.

The SIMP results for the coarse and fine mesh are postprocessed with the IDL approach

described above. The strain energies for varying threshold values, ρT, are plotted in Figure 7.27.

The volume constraint is met for ρT = 0.78 for the coarse mesh and ρT = 0.44 for the fine mesh.

The value of ρT is higher for the coarse mesh because it cannot converge to a design with void

inclusions. For these threshold values, the strain energies of SIMP-IDL designs are 4.8939% and

12.1625% lower than the ones of the raw SIMP results for the coarse and fine meshes, respectively.

The volume fractions of intermediate densities (7.3) are 0.2850 and 0.0189 for the coarse and fine

mesh, respectively. The postprocessed designs have lower strain energies because the postprocessing

counteracts the effect of the density filter (1.12).

The same optimization problem is solved with the proposed LSM-XFEM approach. The

smoothing radius is set to rφ = 3.2 for the coarse mesh and rφ = 1.182 for the fine mesh. No

perimeter constraint is imposed. We seed the initial design with two different configurations of

void inclusions to study the influence of the initial layout on the optimization results. For both

configurations, we start from an equally spaced array of square-shaped holes with rounded corners
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(a) 24× 24× 24 mesh. (b) 65× 65× 65 mesh.

Figure 7.26: SIMP results for the cube with a center load problem; clockwise: bottom, side, top,

and clipped views.
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Figure 7.27: IDL postprocessing of SIMP results for the cube with a center load problem.
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(a) 3× 3× 3 holes. (b) 7× 7× 7 holes.

Figure 7.28: Initial level set configurations for the cube with a center load problem.

Mesh size Strain energy

SIMP 24× 24× 24 9.1456× 10−01

65× 65× 65 3.5244× 10−02

XFEM 24× 24× 24 1.0082× 10+00

65× 65× 65 3.5519× 10−02

Table 7.4: Comparison of strain energies of SIMP and LSM-XFEM results for the cube with a

center load problem; the corresponding designs are shown in Figures 7.26 and 7.29.
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(a) 24× 24× 24 mesh. (b) 65× 65× 65 mesh.

Figure 7.29: LSM-XFEM results for cube with center load problem; clockwise: bottom, side, top,

and clipped views.
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Figure 7.30: Evolution of strain energies in the optimization process for SIMP and LSM-XFEM
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defined as:

si = (xi − xc)10 + (yi − yc)10 + (zi − zc)10 − r10 , (7.5)

and then compute φi by using (2.9). One configuration has 3 × 3 × 3 equally spaced holes with

radii of 5.5, the other has 7× 7× 7 holes with radii of 2.0, as shown in Figure 7.28. In both cases,

the volume constraint is not satisfied with the initial design. Note that no inclusions are placed at

the four bottom corners where the boundary conditions are applied.

Both level set configurations converge to nearly indistinguishable designs and strain energy

values, for both the coarse and fine meshes. The optimized designs are shown in Figure 7.29. The

strain energies of the optimized designs are given in Table 7.4. The convergence history for the

coarse meshes in SIMP and LSM-XFEM is shown in Figure 7.30.

For the example considered here, the SIMP and LSM-XFEM results match well in regards

to the geometry. The LSM-XFEM approach shows a faster convergence as the mesh is refined.

Comparing the optimized geometries, the SIMP results contain more structural features for both

mesh resolutions. For example, considering the fine mesh, the SIMP method generates two small

holes in the webs connecting the supports to the load point, while the LSM-XFEM approach leads

to only one larger hole, independent of the initial design configuration. However, these small

differences have only a minor impact on the structural performance, i.e. the strain energy, of the

optimized designs.

Considering the conceptual structural layout, both, the SIMP and the LSM-XFEM approach,

display only minor mesh dependencies for the problem studied here. The optimized geometries

obtained with the coarse and fine meshes differ insignificantly for the SIMP and LSM-XFEM

approach. The following example will demonstrate a less benign convergence and identify more

pronounced differences between the SIMP and LSM-XFEM methods.

7.3.4 Design of a 3D Cuboid Under Torsion

The second solid-void example is taken from Nguyen et al [2012] and reveals differences in the

SIMP and the LSM-XFEM approaches. We will show that, without imposing a mesh-independent
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minimum feature size constraint, the proposed LSM-XFEM approach may converge to a design

with a significantly lower strain energy than the SIMP method employed in this paper. However,

we will also illustrate that our LSM-XFEM approach suffers from a lack of a robust and intuitive

shape control technique.

The design domain is a cuboid of size 4L × 1L × 1L, as shown in Figure 7.31. A torque

moment is generated via 4 unit loads acting at the centers of the edges of the top face. The design

domain is clamped at the bottom face. The Young’s modulus is set to 1.0 and the Poisson’s ratio

to 0.3. The volume of the stiff phase is constrained to 10% of the total volume. The problem is

solved on the full mesh.

7.3.4.1 Mesh convergence study

The optimization problem is solved with the SIMP approach for four different mesh sizes:

40 × 10 × 10, 60 × 15 × 15, 80 × 20 × 20, and 120 × 30 × 30. The Young’s modulus of the void

phase is set to E+ = 10−09. The design domain is initialized with a uniform material distribution

of ρ̂i = 0.1. The penalization factor is p = 3. First, we consider a projection parameter of β = 0

and scale the smoothing radius with the element size: rρ = 1.6 h.

The optimized material distributions are shown in Figure 7.32 where material with a density

lower than ρ̂i < 0.35 is considered void. The strain energies are reported in Table 7.5 and display

the expected decrease in strain energy as the mesh is refined. For all meshes the volume constraint

is active in the converged designs.

As the mesh is refined, the evolution of the SIMP results shows an interesting discontinuity

which is typically not observed for 2D problems. The optimized material layout switches abruptly

from a grid-type structure, which conceptually agrees with the results of Nguyen et al [2012], to

a hollow square prism design. In contrast to 2D structures, where refining the mesh with a mesh-

dependent filter radius leads to an ever increasing number of holes, in this example the opposite is

the case. As the filter radius drops below a threshold, it is more advantageous to form a continuous

thin outer wall rather than a grid-type structure. This behavior is a direct consequence of the
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Figure 7.31: Problem setup for the cuboid under torsion example.

Mesh size Strain energy

SIMP 40× 10× 10 7.5195× 10+03

60× 15× 15 4.2076× 10+03

80× 20× 20 4.0298× 10+03

120× 30× 30 2.6555× 10+03

Table 7.5: Strain energies of SIMP results for cuboid under torsion problem; SIMP parameters:

p = 3, rρ = 1.6 h, and β = 0; the corresponding designs are shown in Figure 7.32.
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(a) 40× 10× 10. (b) 60× 15× 15. (c) 80× 20× 20. (d) 120× 30× 30.

Figure 7.32: SIMP results of cuboid under torsion problem for different levels of mesh refinement;

SIMP parameters: p = 3, rρ = 1.6 h, β = 0.
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(a) 40× 10× 10 (b) 120× 30× 30

Figure 7.33: LSM-XFEM results of cuboid under torsion problem for two levels for mesh refinement;

LSM-XFEM parameters: rφ = 1.6 h, no perimeter constraint.

combination of SIMP penalization and density smoothing. We will revisit this issue again later.

The LSM-XFEM results for a smoothing radius of rφ = 1.6 h are shown in Figure 7.33. No

perimeter constraint is applied to this problem. Here only the results for the coarsest and the

finest meshes of the SIMP study above are shown. Note that in contrast to the SIMP results, the

LSM-XFEM approach leads to conceptually equivalent designs on both meshes. Refining the mesh

only improves some local details. This feature is due to the ability of the LSM to represent thin

structural features on coarse meshes. The thicknesses of the walls at half the height of the design

domain are 0.0288 for the coarse mesh and 0.0276 for the fine mesh.

The strain energies of the LSM-XFEM results are given in Table 7.6. The strain energy for

the fine mesh is slightly larger than the one of the coarse mesh. This effect is due to the tendency

of coarse finite element discretization overpredicting the stiffness.

The differences between the SIMP and LSM-XFEM results are significant. Although the

discrepancy in strain energy decreases as the mesh is refined, the difference is large even for the two

finer meshes where the SIMP and LSM-XFEM designs are similar. As the following investigation

will show, the poorer performance of the SIMP results is primarily caused by the density filter,
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Mesh size Strain energy

LSM-XFEM 40× 10× 10 8.7551× 10+02

120× 30× 30 9.8262× 10+02

Table 7.6: Strain energies of LSM-XFEM results for cuboid under torsion problem; LSM-XFEM

parameters: rφ = 1.6 h, no perimeter constraint; the corresponding designs are shown in Figure

7.33.

which prevents the material distribution to converge to a “0-1” result.

First, we study the influence of the projection scheme (1.14) on the SIMP results for the most

refined mesh. The optimized material distributions for β = 4.0 and β = 8.0 are shown in Figure

7.34, where material with a density lower than ρ̂i < 0.35 is considered void. For convenience the

result for β = 0.0 is shown again. Table 7.7 reports on the strain energies and the volume fractions

of intermediate densities, ρ̄, as the projection parameter, β, is increased. The higher β, the lower

ρ̄ and the lower the strain energy, approaching the one of the LSM-XFEM result. Note that as β

increases, the more holes emerge. The thickness of the walls for β = 8 is 0.0434, which is smaller

than the value for β = 0.0, 0.0447, and closer to the LSM-XFEM value.

Instead of enforcing a better convergence toward a “0-1” solution by increasing the projection

parameter β, we postprocess the SIMP results for β = 0.0 by the IDL postprocessing method.

Figure 7.35 shows the strain energy of the postprocessed design over the threshold density, ρT,

for the coarsest and the finest mesh. The volume constraint is satisfied for a threshold value of

ρT = 0.4634 for the coarse mesh, and ρT = 0.5174 for the fine mesh. For these threshold values,

the strain energies of the SIMP-IDL designs are 70.6564% and 62.8167% lower than the ones of the

raw SIMP results for the coarse and fine meshes, respectively. The associated strain energies are

given in Table 7.8.

The strain energy of the postprocessed results of the fine mesh is rather similar to the result

obtained for SIMP with β = 8.0 in Table 7.7 and the LSM-XFEM results in Table 7.6. For the
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(a) β = 0 (b) β = 4
(c) β = 8

Figure 7.34: SIMP results for different projection parameters β = [0.0, 4.0, 8.0]; mesh size: 120 ×

30× 30.

β projection Strain energy ρ̄ utilization

SIMP 0 2.6555× 10+03 4.0688× 10−02

4 2.0264× 10+03 2.5131× 10−02

8 1.9039× 10+03 1.9509× 10−02

Table 7.7: Strain energies of SIMP results for different projection parameters β = [0.0, 4.0, 8.0]; the

corresponding designs are shown in Fig. 7.34.

Mesh ρT Strain energy

SIMP 40× 10× 10 0.4634 1.5601× 10+03

120× 30× 30 0.5174 1.1530× 10+03

Table 7.8: Strain energies of the SIMP-IDL designs of cuboid under torsion problem; the corre-

sponding designs are shown in Fig. 7.32.
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Figure 7.35: IDL postprocessing of SIMP results for cuboid under torsion problem; the vertical

lines mark the threshold values at which the volume constraint is satisfied.
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coarse mesh, the strain energy is well below the raw SIMP results from Table 7.5 but still above

the results for the LSM-XFEM approach in Table 7.6. As we will see below, this is because of the

larger smoothing radius which prevents the formation of smaller features and thinner walls.

7.3.4.2 Feature size control

The mesh refinement study above suggests that the results of the LSM-XFEM approach are

less sensitive to mesh refinement than the SIMP method without mesh-independent filtering. Geo-

metric features, such as the thin walls, can be represented on coarse and fine meshes, independent

of their size. This observation is in agreement with studies for two-dimensional problems, see for

example Kreissl and Maute [2012], but the phenomena is more pronounced and of greater impor-

tance for three dimensional problems. The lesser mesh sensitivity of the LSM-XFEM approach is

in general a desired feature. In addition, however, the ability to control the minimum feature size

is of importance for many applications, for example to account for manufacturing constraints and

costs. The following study will show that the proposed LSM-XFEM approach currently lacks the

ability to efficiently and intuitively control the local feature size.

We first show that applying the same absolute filter radius in the SIMP formulation efficiently

controls the feature size. Figure 7.36a shows the SIMP results on the 120 × 30 × 30 mesh for a

projection parameter β = 0, a penalization factor of p = 3, and a smoothing radius of rρ = 0.16

which is the same radius applied earlier for the coarsest mesh in Figure 7.32a. Comparing the

SIMP results in Figure 7.36a and Figure 7.32a confirms the finding of numerous studies [Bendsøe

and Sigmund, 2003] that the SIMP approach leads to the same conceptual layout independent of

the mesh refinement level if a mesh-independent filter is used. The strain energy of the design in

Figure 7.36a is given in Table 7.9.

A similar effect is not observed in the LSM-XFEM approach when we apply the same filter

radius, rφ, used earlier for the coarse mesh to the fine mesh. Figure 7.36b shows the outcome of

this procedure. The overall design is unchanged, and increasing the smoothing radius results in a

less smooth design. The strain energy of this design is reported in Table 7.9.
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Mesh size Strain energy

SIMP 120× 30× 30 6.5772× 10+03

LSM-XFEM 120× 30× 30 8.2077× 10+02

Table 7.9: Strain energies of SIMP and LSM-XFEM results for cuboid under torsion problem using

a mesh-independent filter; the corresponding designs are shown in Fig. 7.36.

(a) SIMP (b) LSM-XFEM

Figure 7.36: SIMP and LSM-XFEM results for larger smoothing radius; mesh size: 120× 30× 30.

(a) Restarted from

Figure 7.36a.

(b) Restarted from

Figure 7.33b.

Figure 7.37: LSM-XFEM results for cuboid under torsion problem using a perimeter constraint;

mesh size: 120× 30× 30.
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To control the overall structural complexity in the LSM, the formulation of the optimiza-

tion problem (1.1) is often augmented by a perimeter constraint [van Dijk et al, 2013]. While

this approach does not directly control the minimum feature size, reducing the maximum feasible

perimeter often removes small features which do not alter much the structural performance. To

study the influence of a perimeter constraint on the torsion problem, we perform the following two

numerical experiments on the 120 × 30 × 30 mesh using the LSM-XFEM approach. We measure

the perimeter of the SIMP result shown in Figure 7.36a and impose this value as an upper bound

on the perimeter. One problem uses the SIMP result in Figure 7.36a as the initial design, and the

other one uses the LSM-XFEM result in Figure 7.33b. The results are shown in Figure 7.37 and

the strain energies are given in Table 7.10.

Depending on the initial designs, the LSM-XFEM problems converge to different designs.

While the design in Figure7.37b displays a truss-like design in the bottom half of the design domain,

the perimeter constraint does not prevent the formation of thin walls in the upper half. The

thickness of the walls in the upper half of the design is 0.0188. Thus, the perimeter constraint does

not control the local feature size. The design in Figure 7.37a resembles closely the SIMP result

from which it was restarted. However, considering the strain energy in Table 7.10, this design has

a larger strain energy than the one in Figure 7.37b.

The study above has shown that neither smoothing the level set field nor imposing a perimeter

constraint allows controlling the minimum feature size. Further, the effect of a perimeter constraint

is non-intuitive as the result in Figure 7.37b shows. The design has more structural features than

the design without perimeter constraint in Figure 7.33b.

7.3.5 Design of a 3D Two-phase Cantilevered Beam Design

The examples in the two previous subsections were concerned with solid-void problems. Here

we study a solid-solid problem to demonstrate the applicability of the proposed LSM-XFEM ap-

proach to this class of problems. Note that the simplified XFEM formulation discussed in Section

3 is not applicable to such problems. The generalized enrichment strategy in (3.1) is required and
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Initial design Strain energy

LSM-XFEM SIMP 1.3321× 10+03

LSM-XFEM 1.3185× 10+03

Table 7.10: Strain energies of LSM-XFEM results for cuboid under torsion problem using a perime-

ter constraint and different initial designs; the corresponding final designs are shown in Figure 7.37.
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Figure 7.38: Initial setup for two-phase cantilever beam problem.
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Figure 7.39: SIMP and LSM-XFEM results for different stiffness ratios: (from left to right) E+ =

0.5E−, E+ = 0.1E−, E+ = 0.01E−, E+ is void; SIMP results (top row); LSM-XFEM results

(bottom row).

the interface conditions of (4.10) need to be satisfied.

We study the optimal two-phase layout of a 4L × 1L × 1L cantilevered beam subject to a

tip load; see Figure 7.38. The stiff negative phase has Young’s modulus of E− = 1.0; three values

of Young’s moduli for the soft phase are considered: E+ = {0.5, 0.1, 0.01}. Both phases have a

Poisson’s ratio of 0.3. The maximum volume of the stiff phase is limited to 30% of the total volume.

The design domain is discretized by 120×30×30 elements. Because of the symmetry condition, only

one half of the cuboid is numerically analyzed. We compare the SIMP and LSM-XFEM results.

The optimization problem is solved by a SIMP approach with a penalization factor of p = 3, a

smoothing radius of rρ = 0.05333 (1.6 h) and the projection parameter of β = 0. The design domain

is initialized with a uniform material distribution of ρ̂i = 0.3. The optimized material distributions

are shown in Figure 7.39 where material with a density lower than ρ̂i < 0.25 is transparent. The

strain energies are reported in Table 7.11.

The LSM-XFEM results for a smoothing radius of rφ = 0.05333 (1.6 h) are shown in Figure

7.39 and the strain energies are given in Table 7.11. Considering the full design domain, the level

set field is initialized with a 16 × 4 × 4 array of equally spaced holes with radius of 0.1050. The

initial design satisfies the volume constraint for the stiff phase. Note that the interface condition

is enforced via the stabilized Lagrange multiplier method with an element wise constant Lagrange
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Figure 7.40: LSM-XFEM optimized two-phase design for E+ = 0.1E− realized by 3D printing.

multiplier (4.10), and a consistency factor of γL,u = 10 (E− + E+).

Comparing the SIMP and LSM-XFEM results, the same trends can be observed for this

solid-solid problem as for the solid-void ones studied earlier. The LSM-XFEM approach leads

to 3D structures with thinner walls and higher stiffness. In contrast, the SIMP method generates

truss-type structures, in particular if the discretization is too coarse and the optimum wall thickness

is less than the size of an element.

For illustration purposes only, we show a realization of the LSM-XFEM optimized design

for E+ = 0.1E− in Figure 7.40. The structure was fabricated with a polyjet 3D printing process

on a Connex Objet 260 printer. White material represents the negative phase, black represents

the positive phase. The left and center pieces show the individual phases printed separately, the

printed two-phase design is shown on the right.

7.4 Face-oriented Ghost-penalty Methods

In this section, we study and validate the face-oriented ghost-penalty formulation introduced

in Section 5.2. We compare the accuracy and convergence of the proposed framework against a

body-fitted problem taken from the literature.
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Stiffness ratio Strain energy

SIMP E+ = 0.50E− 4.4081× 10−05

E+ = 0.10E− 6.2862× 10−05

E+ = 0.01E− 7.8627× 10−05

E+ is void 7.6721× 10−05

LSM-XFEM E+ = 0.50E− 4.3221× 10−05

E+ = 0.10E− 5.9192× 10−05

E+ = 0.01E− 6.4448× 10−05

E+ is void 6.6283× 10−05

Table 7.11: Strain energies of SIMP and LSM-XFEM results for different stiffness ratios; the

corresponding designs are shown in Figure 7.39.
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Figure 7.41: Problem setup for the flow around a cylinder example. Blue dashed lines denote the

symmetry plane.
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7.4.1 Verification of the LSM-XFEM Analysis for Laminar Flow Problems

In this example, we seek to verify the analysis capabilities of our LSM-XFEM optimization

framework. The validity of our approach will be measured in terms of the accuracy of the flow

solutions with respect to solutions from the literature, and in terms of the convergence of the

flow solutions with respect to different levels of mesh refinement. We use the 3D-1Z problem from

Schäfer et al [1996], which considers a 3D laminar steady-state flow around a cylinder. No indicator

fields are modeled in this example because the geometry does not change during the analysis. The

problem setup is shown in Figure 7.41. The inflow condition is:

ûfx (0, y, z) = 16ufmyz ·
(

(0.41− y) (0.41− z)
0.414

)
, ûfy = ûfz = 0 , (7.6)

where ufm = 0.45. A traction-free boundary condition is imposed on the outlet. No-slip boundary

conditions are imposed on the surface of the cylinder and on all other planes. The characteristic

velocity is a function of ûfx in (7.6), and is defined as:

ufc =
4

9
ûfx

(
0,

0.41

2
,
0.41

2

)
. (7.7)

The characteristic length, Lc, is defined as the diameter of the cylinder, 0.1, which yields a Reynolds

number of 20. The following quantities are computed: the drag coefficient (4.68) around the

cylinder, cD, and the total pressure difference (4.70) between the inlet and the outlet planes,

Tin − Tout. The numerical solutions provided in the study by Schäfer et al [1996] give the values of

6.05 and 6.25 as the lower and upper bounds for the drag, respectively. These bounds were computed

from the numerical results provided by several research groups through different numerical schemes,

such as Finite Difference, Finite Volume, and Finite Element Methods, among others, and mesh

convergence studies. No reference solution is provided for the total pressure difference; however,

given that this measure is used as the objective of the optimization problems in several numerical

examples ahead, it is important to study its convergence.

The mesh for the body-fitted problem utilizes a boundary layer around the cylinder, with

128 elements on the surface and 64 layers. The width of the first layer is 1.0832 × 10−09, and



139

the exponential growth factor of each subsequent layer is 1.2. The number of elements on the

inlet and outlet surfaces is 40 × 40 and 20 × 20, respectively. No symmetry boundary conditions

are imposed. All boundary conditions are imposed in the strong form, and no face-oriented ghost-

penalty formulation is applied. The total number of degrees-of-freedom is 3, 337, 257. The remaining

parameters used for the problem are shown in Table 7.12.

In our LSM-XFEM approach, we use a fixed background mesh and perform a mesh refinement

study to evaluate the accuracy of the framework. The mesh for the problem is constructed using

a local hierarchical mesh refinement. We do not consider adaptive mesh refinement nor boundary

layer meshes in this example, nor in our topology optimization examples below, as we do not have

the means to do so as the design changes during the optimization process. The hierarchical mesh

refinement utilized here does not provide the same resolution as the boundary layer meshing scheme

above. However, we use it to study the characteristics of our analysis with respect to certain levels

of refinement; this information will be useful to select an appropiate element size for the meshes

we will use in our optimization problems. The cylinder is modeled using a level set function:

φi (x) = rc −
(

(xi − xc)2 + (yi − yc)2
) 1

2
, (7.8)

where the radius of the cylinder is set to rc = 0.05, and the coordinates at the center of the cylinder

are set to xc = 0.5 and yc = 0.2.

Our first level of mesh refinement has an element size of h = 1.14×10−02 for elements located

at x < 1 and h = 3.41667 × 10−02 for all other elements. Subsequently, we only refine elements

that are intersected by the zero level set isosurface of (7.8); we perform this process thrice. In

consequence, we end up with 4 refinement levels, as shown in Figure 7.42. We also measure the

influence of the Nitsche penalty parameter, αN,u, for 4 different values: 10, 102, 103, and 104. The

list of parameters is shown in Table 7.13.

The hierarchical mesh refinement scheme leads to a larger number of elements compared to

the boundary layer approach. To reduce the computational cost, we model half of the domain

by setting the z = 0.205 plane as the symmetry axis, and impose symmetry boundary conditions
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Value

Characteristic velocity ufc = 0.2

Characteristic length Lc = 0.1

Dynamic viscosity µf = 0.001

Density ρf = 1

Nitsche velocity penalty αN,u = 0

Viscous ghost-penalty αGP,µ = 0

Pressure ghost-penalty αGP,p = 0

Convective ghost-penalty αGP,u = 0

Pressure constraint parameter kfp = 0

Table 7.12: Problem parameters for the flow around a cylinder example (body-fitted).
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by setting ûfz = 0 along this plane. The inflow and outflow conditions are the same as in the

body-fitted problem setup. All boundary conditions are enforced weakly. The total number of

degrees-of-freedom for the finest mesh is 8, 019, 736. The face-oriented ghost-penalty methods

increase the bandwidth of the sparse matrix of the system, which may increase the linear solve

time. This additional computational cost requires special attention when solving these problems.

The results for the body-fitted and the LSM-XFEM problems are shown in Figure 7.43.

The drag coefficient for the body-fitted problem is 6.169, well within the lower and upper bounds

established in the study by Schäfer et al [1996]. The total pressure difference is 0.0213. For our

LSM-XFEM analysis, we can observe in Figure 7.43a that the drag coefficient solutions are not

fully converged, but that the values for the finest mesh are within the lower and upper bounds. It

is not clear if we would still remain within the bounds in a fully converged configuration. This can

be attributed to the lack of a boundary layer mesh. In contrast, the total pressure difference in

Figure 7.43b displays a higher convergence rate than the drag coefficient because it characterizes

the global flow solution, while the drag is a local measure along the cylinder surface that depends

on the spatial gradients. The total pressure difference reaches the same solution as its body-fitted

counterpart. For both solutions, we observe that as the mesh is refined, the influence of the Nitsche

velocity parameter in (4.26) vanishes. The relative maximum difference between the body-fitted

problem and the LSM-XFEM solutions at the finest mesh is 0.4% for the drag coefficient and 0.03%

for the total pressure drop. The analysis of our LSM-XFEM framework is sufficiently accurate. Our

discretization scheme may suffer from inaccuracies only in local quantities that strongly depend

on the resolution of the boundary layer phenomena. In this case, the predicted performance of

the final optimization result should be verified using a body-fitted mesh with a resolved boundary

layer.

7.5 Verification of the Average Pressure Constraint

In this example, we seek to verify the penalty formulation in (4.28) with respect to the

accuracy to which the mass conservation is satisfied. We will model steady-state flow through a
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Value

Element size h =
{

1.14× 10−02, 3.79× 10−03, 1.27× 10−03, 4.22× 10−04
}

Characteristic velocity ufc = 0.2

Characteristic length Lc = 0.1

Dynamic viscosity µf = 0.001

Density ρf = 1

Nitsche velocity penalty αN,u =
{

10, 102, 103, 104
}

Viscous ghost-penalty αGP,µ = 0.05

Pressure ghost-penalty αGP,p = 0.005

Convective ghost-penalty αGP,u = 0.05

Pressure constraint parameter kfp = 0

Table 7.13: Problem parameters for the flow around a cylinder example (LSM-XFEM).

y

x
z

(a) Cross-section of the original structured mesh, along the (x, y, 0.205) symmetry plane.

The red lines denote the zooming area for the figures below.

(b) h = 1.14× 10−02 (c) h = 3.79× 10−03 (d) h = 1.27× 10−03 (e) h = 4.22× 10−04

Figure 7.42: Mesh refinement levels using a local hierarchical mesh refinement for validation of the

LSM-XFEM framework. The h values represent the minimum element sizes in the mesh.
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Figure 7.43: Comparison of the body-fitted and LSM-XFEM solutions for the flow around a cylinder

example.
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bent pipe, and measure the relative mass flow rate difference between the inlet and the outlet,

for different values of the pressure penalty parameter, kfp , and with and without an isolated fluid

region.

The problem setup is shown in Figure 7.44. The mesh uses a structured grid, and the level

set method is used to describe the pipe and sphere fluid domains. The level set functions to outline

these geometries are defined in Burman et al [2014]. The sphere produces a singular analysis

problem because the absolute value of the pressure is not governed within it, which results in

pressure oscillations. We only model half of the domain, and apply symmetry boundary conditions

along the z = 2.5L plane. We study the pressure penalty formulation in (4.28) and, for illustration

purposes, a formulation in which the pressure penalty is applied over the entire fluid domain rather

than on the isolated “puddles” exclusively. The problem parameters are shown in Table 7.14.

The inflow condition is:

ûfx (0, y, z) = ufc ·
((
− 4

L2
c

)
·
(

(y − yc)2 + (z − zc)2
)

+ 1

)
, ûfy = ûfz = 0 , (7.9)

where yc and zc are the coordinates at the center of the inflow, as defined in Figure 7.44. The

characteristic velocity is ufc = 200, and the characteristic length is defined as the diameter of the

pipe, lc = 1, for a Reynolds number of 200. A traction-free boundary condition is imposed on the

outlet. No-slip boundary conditions are imposed on the surfaces of the pipe and of the sphere.

The relative error between the inlet and outlet mass flow rates is shown in Figure 7.45. The

flow without the sphere and without the constraint on the pressure results in relative error of 0.03%.

Applying the formulation over the entire domain, similar to the approach used by Villanueva and

Maute [2014] for linear elasticity problems, can cause a significant error in the mass conservation if

a sufficiently large value of kfp is chosen. Conversely, if we apply the formulation exclusively to the

isolated fluid regions through the use of the indicator field in (4.46), we do not have an accuracy

issue, and we eliminate the singular analysis problem. The penalty parameter will be set to kfp = 1

for all numerical examples below.
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Figure 7.44: Problem setup for the bent pipe example. Blue dashed lines denote the symmetry

plane.

Value

Mesh size 120× 120× 50 (half domain)

Element size h = 0.05L

Characteristic velocity ufc = 200

Characteristic length Lc = 1

Dynamic viscosity µf = 1

Density ρf = 1

Nitsche velocity penalty αN,u = 100

Viscous ghost-penalty αGP,µ = 0.5

Pressure ghost-penalty αGP,p = 0.05

Convective ghost-penalty αGP,u = 0.5

Pressure constraint parameter kfp =
{

10−08, 10−06, 10−04, 10−02, 1
}

Table 7.14: Problem parameters for the bent pipe example.
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7.6 Incompressible Flow

In the following, we study the characteristics of the proposed LSM-XFEM topology optimiza-

tion framework for steady-state and transient laminar incompressible flow problems in 3D.

7.6.1 Design of a Manifold with Multiple Outlets

In this example, we consider the design of a steady-state flow bend, with multiple inlets

and outlets, where the objective is to minimize the total pressure drop between the inlets and the

outlets at steady-state, in order to study the behavior and capabilities of our LSM-XFEM topology

optimization framework. The example is the 3D analog to the 2D problem found in Pingen et al

[2010]. The problem setup is shown in Figure 7.46. The design domain has 2 inlets (on the left and

right), and 4 outlets (on all other planes). The inflow condition is formulated in the same way as

(7.9), and the characteristic velocity is ufc = 200. Traction-free boundary conditions are imposed

on the outlets. No-slip boundary conditions are imposed on the fluid-solid interface. We only

model an eighth of the domain, and symmetry boundary conditions are imposed on the x = 3.5L,

y = 3.5L, and z = 3.5L planes.

In addition to minimizing the total pressure drop, we minimize the surface area of the fluid-

solid interface, and the objective is defined as:

Z =

2∑
i=1
Tin,i −

4∑
i=1
Tout,i

∥∥∥∥
2∑
i=1
T 0

in,i −
4∑
i=1
T 0

out,i

∥∥∥∥
+ wS

S
‖S0‖ , (7.10)

where the superscript “0” denotes the values of the initial design, the subscript i denotes the i-th

inlet or outlet, and wS is a constant scaling factor. The use of the surface area as a contribution

to the objective function has been applied previously to species transport topology optimization

by Makhija and Maute [2014a] to improve the smoothness of the final design, and to regularize the

optimization problem.

The design is subject to a 5% volume constraint of the fluid domain to suppress trivial
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Figure 7.47: Initial design for the multiple outlets example.

solutions, and to promote the formation of distinct fluid channels:

g1 =
Vf

0.05 (Vf + Vs) − 1 . (7.11)

Further, we wish to impose a constraint such that the amount of mass flow exiting through each

outlet is the same. Given that the GCMMA algorithm does not allow equality constraints, we

recourse to imposing inequality constraints with lower and upper limits on the mass flow rates.

The upper and lower bounds are set to 25% ± 1.25%, respectively, where the tolerance value of

±1.25% was chosen in order to not overconstrain the optimization problem. The constraints are

defined as follows:

gi+1 = 1− ṁout,i

(23.75%) (ṁin,1 + ṁin,2)
, i = 1 . . . Nout , (7.12)

gi+5 =
ṁout,i

(26.25%) (ṁin,1 + ṁin,2)
− 1 , i = 1 . . . Nout , (7.13)

where ṁin,i and ṁout,i are the mass flow rates at the i-th inlet and i-th outlet, respectively, and

Nout is the number of outlets.

The remaining parameters are given in Table 7.15. The design domain is initialized with

5 × 5 × 5 spherical solid inclusions of radii 0.5L, as shown in Figure 7.47. In our experience, the

flow topology optimization problems studied here are rather insensitive to the initial design as long
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Value

Mesh size 56× 56× 56 (quarter domain)

Element size h = 0.0625L

Characteristic velocity ufc = 200

Characteristic length Lc = 1

Dynamic viscosity µf = 1

Density ρf = 1

Nitsche velocity penalty αN,u = 100

Viscous ghost-penalty αGP,µ = 0.5

Pressure ghost-penalty αGP,p = 0.05

Convective ghost-penalty αGP,u = 0.5

Pressure constraint parameter kfp = 1

Surface area scaling weight wS = 0.01

Volume constraint 5%

Number of design variables 132, 651 (quarter domain)

Design variables bounds sLi = −0.03125L, sUi = +0.03125L

Smoothing filter radius rφ = 2.4h

Table 7.15: Problem parameters for the multiple outlets example.
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as the number of inclusions is sufficiently large. Additional mechanisms for seeding solid inclusions

could be added to the proposed LSM-XFEM framework, such as topological derivatives [Sá et al,

2016]; however, they are outside the scope of this study.

The converged optimized design after 100 iterations is shown in Figure 7.48, which we can

observe resembles well the results from Pingen et al [2010]. Figure 7.49a shows the convergence

plots of the objective and the volume constraint. The initialization process described above leads

to an initial design that violates the volume constraint. Initially, the objective is increased while

lowering the volume constraint value. Once the constraint is satisfied, the objective is reduced until

a feasible minimum is found. The objective changes from a normalized value of 1.1, where the

mass constraint was violated, to 1.56. Figures 7.49b and 7.49c show the convergence plots for the

lower and upper bounds of the mass inequality constraints. We can observe that the mass flow rate

constraints are also satisfied, and the amount of fluid flow exiting through each outlet is virtually

the same. The mass flow rate at the inlets is 6.24, while the rates at each of the outlets is 1.56.

7.6.2 Design of a Manifold with Variable Outlets

In the context of flow topology optimization, our LSM-XFEM framework allows us to impose

boundary conditions on inflow and outflow surfaces that may vary in position, shape, and/or

size during the optimization process. Because we solve our optimization problem via nonlinear

programming methods, we can introduce these variables as parameters in our optimization problem

in addition to the level set parameters. In this example, we study a fluid flow problem with one

inlet and multiple outlets, similar to the one from Example 7.6.1, with the caveat that the outlets

are allowed to vary in position and size by using the level set parametrization of (2.11). The outlets

are described as cylinders.

The problem setup is shown in Figure 7.50. Fluid flows into the domain through the top

inlet, and exits through the 2 outlets on the left and right, and the 2 outlets on the bottom. The

problem parameters, the inflow, outflow, and interface boundary conditions, and the objective are

the same as in Example 7.6.1. We model a quarter of the domain, and impose symmetry boundary
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Figure 7.48: Velocity magnitude, with streamlines, of the optimized material layout for the multiple

outlets example. A section of the design was removed for visualization purposes.
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Figure 7.49: Convergence plots of the objective and constraints for the multiple outlets example.
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conditons along the x = 6L and the z = 3.5L planes. The design domain is initialized with 3×6×1

spherical solid inclusions of radii 0.625L. The volume constraint (7.11) is set to 20%.

The optimization problem has 3 additional design variables per outlet. These design variables

control the in-plane coordinates at the center of the outlets and their radii; the lower and upper

bounds are given in Table 7.16. The rest of the domain is parametrized by (2.9), and the lower

and upper bounds of the design variables are the same as in Table 7.15. We impose constraints on

the mass flow rates such that the left and right outlets have 33.333% each, and the bottom outlets

have 16.667% each, of the fluid flow entering through the inlet. Similar to (7.12), we formulate

these limits as inequality constraints and initially set the lower and upper tolerances, ṁL and ṁU ,

to ∓1.667% and ∓0.833%, respectively, to not overconstrain the problem in the initial stages of the

optimization process. After the optimization process converges, we use a continuation approach:

we increase/decrease the tolerances every 50 iterations first to ∓0.833% and ∓0.417%, respectively,

and then to ∓0.333% and ∓0.167%, to increase the accuracy to which the limits are satisfied. This

new formulation is defined as:

g2 = 1− ṁout,1

(33.333%− ṁL) ṁin
, g6 =

ṁout,1

(33.333% + ṁU ) ṁin
− 1 ,

g3 = 1− ṁout,2

(33.333%− ṁL) ṁin
, g7 =

ṁout,2

(33.333% + ṁU ) ṁin
− 1 ,

g4 = 1− ṁout,3

(16.667%− ṁL) ṁin
, g8 =

ṁout,3

(16.667% + ṁU ) ṁin
− 1 ,

g5 = 1− ṁout,4

(16.667%− ṁL) ṁin
, g9 =

ṁout,4

(16.667% + ṁU ) ṁin
− 1 .

(7.14)

The converged optimized material layout after 350 iterations is shown in Figure 7.51. The

mass flow through each outlet, and the radii and coordinates of the outlets are shown in Table 7.17.

In the optimized material layout, the left and right outlets increase their radii and move up in the

y-direction. The bottom outlets merge and form a single outlet; however, the numbers in Table

7.17 reveal that they do not fully overlap one another, and that they have moved away from the

x = 6L and z = 3.5L planes of symmetry. The relative difference between their final positions and

the axes of symmetry is small nonetheless, in the order of 0.1%. This value got increasingly closer

to 0 as we varied the mass flow rate tolerances of (7.14). The mass flow exiting through each of
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xLc xUc yLc yUc zLc zUc rLc rUc

Outlet 1 N/A N/A L 6L L 6L 0 2.5L

Outlet 2 N/A N/A L 6L L 6L 0 2.5L

Outlet 3 L 11L N/A N/A L 6L 0 2.5L

Outlet 4 L 11L N/A N/A L 6L 0 2.5L

Table 7.16: Lower and upper bounds of the design variables that control the position and size of

the ports in the example with variables outlets.

y

z

x

Velocity Magnitude

0 200100

Figure 7.51: Velocity magnitude, with streamlines, of the optimized material layout for the variable

outlets example. A section of the design was removed for visualization purposes.
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Figure 7.52: Problem setup for the transient pump example. Blue dashed lines denote the symmetry

plane.

the left and right outlets is 33.2% of the mass flow entering through the inlet, and the mass flow

exiting through each of the bottom outlets is 16.8%; these value are within the lower and upper

bounds of the mass flow limits.

7.6.3 Design of a Transient Pump

In this example, we study the applicability of the LSM-XFEM framework to problems with

transient behavior. We consider the problem of optimizing a simplified fluid pump. The example

is the 3D analog to the 2D problem found in Nørgaard et al [2016]. The problem setup is shown in

Figure 7.52. The design domain has an inlet (on the left), and 2 ports (on the top and bottom) at

which traction-free boundary conditions are applied. The basic idea is to prescribe a harmonically

oscillating inflow velocity, and optimize the design domain to maximize the amount of fluid that is

transported through the port at the top. The port at the bottom effectively represents a reservoir

from which additional fluid can enter the domain. The inflow condition is defined as:

ûfx (0, y, z, t) = ufc · sin
(
πt

v

)
·
((
− 4

L2
c

)
·
(

(y − yc)2 + (z − zc)2
)

+ 1

)
, ûfy = ûfz = 0 , (7.15)
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ṁ Fraction Radius x y z

Inlet 3.135 100% 0.500L 6L 7L 3.5L

Outlet 1 1.040 33.2% 0.855L 12L 4.485L 3.557L

Outlet 2 1.040 33.2% 0.855L 0L 4.485L 3.557L

Outlet 3 0.528 16.8% 0.741L 6.024L 0L 3.546L

Outlet 4 0.528 16.8% 0.741L 5.976L 0L 3.546L

Table 7.17: Mass flow rate, fraction of the mass flow entering through the inlet, radii, and coordi-

nates of the outlets in the variable outlets example.
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Figure 7.53: Optimized material layout for the transient pump example.

where v is some frequency. No-slip boundary conditions are imposed on the fluid-solid interface. We

only model a half of the domain, and symmetry boundary conditions are imposed on the z = 3.5L

plane.

We model a single pumping cycle with 8 time iterations. Numerical experiments showed that

this number is sufficient to model the harmonic behavior of the flow. The objective is to maximize

the mass flow through the top outlet, and to minimize the surface area of the fluid-solid interface:

Z = −
1
Nt

Nt∑
n=0

ṁout,1 (tn)

∥∥∥∥ 1
Nt

Nt∑
n=0

ṁ0
out,1 (tn)

∥∥∥∥
+ wS

S
‖S0‖ , (7.16)

where Nt is the total number of time iterations. The design domain is subject to a volume constraint

(7.11) of 15% to suppress trivial solutions and to promote the formation of smooth fluid channels.

The remaining problem parameters are given in Table 7.18. The design is initialized with the same

layout as in Example 7.6.1.

The converged optimized layout after 225 iterations is shown in Figure 7.53. Similar to the

results from Nørgaard et al [2016], the design exhibits a narrowing of the inflow channel, and

the formation of a central reservoir from which fluid flows towards the pumping outlet during

the outflow cycle. During the inflow cycle, fluid flows from the left towards the pumping outlet,
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Value

Mesh size 72× 84× 30 (half domain)

Element size h = 0.08333L

Characteristic velocity ufc = 200

Characteristic length Lc = 1

Dynamic viscosity µf = 1

Density ρf = 1

Inlet velocity frequency v = 4

Time step ∆t = 1

Number of time iterations Nt = 8

Nitsche velocity penalty αN,u = 100

Viscous ghost-penalty αGP,µ = 0.05

Pressure ghost-penalty αGP,p = 0.005

Convective ghost-penalty αGP,u = 0.05

Pressure constraint parameter kfp = 1

Surface area objective weight wS = 0.1

Volume constraint 15%

Number of design variables 226, 981 (half domain)

Design variables bounds sLi = −0.041667L, sUi = +0.041667L

Smoothing filter radius 2.4h

Table 7.18: Problem parameters for the transient pump example.
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while additional fluid is pulled from the bottom reservoir (bottom open boundary) towards the

central reservoir. An area of recirculation then forms around the central reservoir. During the

outflow phase, fluid flows from the central reservoir towards the pumping outlet, while fluid from

the bottom reservoir flows in a vortex like path around the left inlet; this fluid is then transported

towards the pumping outlet during the next inflow phase. The process by which this is achieved is

shown by streamlines in Figure 7.54. The flow does not exit through the bottom outlet at any of

the cycles; the average mass flow rate at the final design is +0.328, with the positive sign indicating

that the flow is entering the domain. Contrarily, the average mass flow rate at the pumping outlet

is −0.328. In contrast to the results shown by Nørgaard et al [2016], our pump design does not

suffer from numerical artifacts in the optimized material layout, such as isolated regions of fluid

flow.

7.7 Species Transport

In this section, we study the characteristics of our framework in the context of species trans-

port problems. The species field is modeled using the energy and species transport equations in

(4.29).

7.7.1 Design of a Micromixer

In this example, we apply the framework to the modeling and optimizing of a micromixer at a

low Reynolds number for steady-state conditions. The example is the 3D analog to the 2D problem

found in Makhija and Maute [2014a], and is similar to the micromixer studies with flow topology

optimization found in Łaniewski-Wołłk and Rokicki [2015] and Liu et al [2013]. The problem setup

is shown in Figure 7.55. A “red” fluid and a “blue” fluid enter the design domain through the left

inlet and exit it through the lower right side. We assume that the fluids are ideally miscible and

have identical flow properties. The “red” fluid is represented by a species concentration value of

T̂ f = 1, and the “blue” fluid by T̂ f = 0. We do not consider diffusion of the species field through

the solid phase. The inflow condition is formulated using the same approach as in Example 7.5.
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Figure 7.54: Velocity streamlines for half the domain of the transient pump example.
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Figure 7.55: Problem setup for the micromixer example. Blue dashed lines denote the symmetry

plane.

No-slip boundary conditions are applied at the fluid-solid interface, and a traction-free boundary

condition is imposed on the outlet. We only model a half of the domain, and symmetry boundary

conditions are imposed on the z = 3.5L plane. An adiabatic condition is imposed on the fluid-solid

interface for the species field.

The objective uses the target scalar value formulation from (4.74) at steady-state, and is

defined as:

Z =
Kout∥∥K0

out

∥∥ + wS
S
‖S0‖ , (7.17)

with βK = 400, and T fref = 0.5. A small surface area penalty is applied to regularize the optimization

problem. The design is subject to a volume constraint (7.11) of 35% to supress trivial solutions,

and to promote the formation of distinct fluid channels. Similar to Makhija and Maute [2014a], a

constraint is imposed on the maximum pressure drop to prevent the formation of small geometric

features:

g2 =
Tin − Tout

∆pfref

− 1 . (7.18)

The problem is initialized with 15 × 5 × 5 spherical solid inclusions of radii 0.5L, similar to the

previous examples. The remaining parameters are given in Table 7.19.
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Value

Mesh size 226× 40× 20 (half domain)

Element size h = 0.125L

Characteristic velocity ufc = 1

Characteristic length Lc = 1

Dynamic viscosity µf = 1

Density ρf = 1

Specific heat capacity cfp = 1

Thermal conductivity kf = 0.001

Nitsche velocity penalty αN,u = 100

Nitsche species penalty αN,c = 1

Viscous ghost-penalty αGP,µ = 0.05

Pressure ghost-penalty αGP,p = 0.005

Convective ghost-penalty αGP,u = 0.05

Species ghost-penalty αGP,c = 0.05

Pressure constraint parameter kfp = 1

Pressure constraint reference ∆pfref = 30

Surface area objective weight wS = 0.001

Volume constraint 35%

Number of design variables 160, 000 (half domain)

Design variables bounds sLi = −0.0625L, sUi = +0.0625L

Smoothing filter radius 2.4h

Table 7.19: Problem parameters for the micromixer example.
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Figure 7.56: Optimized material layout for the micromixer example.
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The optimized material layout, along with the species field and the velocity magnitude, is

shown in Figure 7.56. The average species concentration at the outlet is 0.46. Analogous to the

2D results from Makhija and Maute [2014a], the length of the channel layout increases by creating

an intricate wavy design, thereby increasing the path traveled by the fluids. This lengthening

mechanism is the key to enhance the mixing of the fluids in 3D laminar flows. The number of

iterations is rather large: 1, 500 iterations are required to form the channel layout and fine-tune its

shape. This behavior has also been seen by Makhija and Maute [2014a], who attributes this to the

interplay of localized sensitivities along the fluid-solid interface and the volume constraint on the

fluid phase. In contrast to the density approach of Makhija et al [2012], we do not obtain numerical

artifacts in the optimized design.

7.7.2 Design of a Species Separator

In this example, we apply the framework to the modeling and optimizing of a species separator

at a low Reynolds number for steady-state conditions. The problem setup is shown in Figure 7.57.

A “red” fluid and a “blue” fluid enter the design domain through the left inlets and exit it through

the right outlets. The objective is find a channel layout that prevents the mixing of the species

fields, such that the “red” fluid exits through the bottom outlet, and the “blue” fluid exits through

the top one. We assume that the fluids are ideally miscible and have identical flow properties. The

“red” fluid is represented by a species concentration value of T̂ f = 1, and the “blue” fluid by T̂ f = 0.

We do not consider diffusion of the species field through the solid phase. The inflow conditions are

formulated using the same approach as in Example 7.5. No-slip boundary conditions are applied

at the fluid-solid interface, and a traction-free boundary condition is imposed on the outlets. We

model the full domain, and no symmetry boundary conditions are imposed. An adiabatic condition

is imposed on the fluid-solid interface for the species field.

The objective formulation requires that we minimize the largest temperature difference be-

tween each pair of inlet and outlet for both the “red” and “blue” fluids. To achieve this, we utilize
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the min-max objective formulation proposed by Svanberg [2007], and the objective is defined as:

Z = βD , (7.19)

where βD is a design variable in addition to the parameters of the LSF. The constraints are formu-

lated as:

g1 = αDD1 − βD , (7.20)

g2 = αDD2 − βD , (7.21)

where αD is a constant parameter. In our experience, this parameter must be chosen large enough

such that the constraints remain violated for the duration of the optimization process, but not

too large in order to have a well-posed optimization problem. Here, we use αD = 100. No other

constraints are applied in the problem. The term Di is defined as:

Di =

∫

Γi

(
T f − T fref

)2

dΓ , (7.22)

with the subscript i representing the i-th outlet. The problem is initialized with 5× 5× 5 spherical

solid inclusions of radii 0.5L, similar to Example 7.6.1. The remaining parameters are given in

Table 7.20.

The converged optimized material layout after 100 iterations is shown in Figure 7.58. The

geometry reaches an intuitive design, and the optimizer forms individual channels the separate and

route the species concentrations to their respective outlets. Numerical experiments showed that

utilizing an objective formulation similar to the one used in previous examples did not succeed in

separating the species fields.

7.8 Natural Convection

In this section, we study the characteristics of our framework in the context of heat transfer

problems dominated by natural convection.
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Value

Mesh size 28× 28× 28

Element size h = 0.25L

Characteristic velocity ufc = 1

Characteristic length Lc = 1

Dynamic viscosity µf = 1

Density ρf = 1

Specific heat capacity cfp = 1

Thermal conductivity kf = 0.001

Nitsche velocity penalty αN,u = 100

Nitsche species penalty αN,T = 1

Viscous ghost-penalty αGP,µ = 0.05

Pressure ghost-penalty αGP,p = 0.005

Convective ghost-penalty αGP,u = 0.05

Species ghost-penalty αGP,T = 0.05

Pressure constraint parameter kfp = 1

Number of design variables 9, 261

Design variables bounds sLi = −0.125L, sUi = +0.125L

Smoothing filter radius 2.4h

Table 7.20: Problem parameters for the species separator example.
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Figure 7.58: Optimized material layout for the species separator example.
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7.8.1 Design of a Passive Cooler

This example studies the design of passive coolers where the energy transport in the fluid is

dominated by natural convection. The objective of this example is to find the geometry of a cooler

such that the temperature of a given solid material, which is subject to an internal heat source, is

minimized. The problem setup is the level set-based equivalent to Alexandersen [2015] where the

design problem is solved by a density approach.

The problem setup is shown in Figure 7.59. The heat source is modeled as a solid slab

of aluminium with a uniform volumetric heat flux of q̂sΩ = 1W. The design domain is defined

by a cubic box of length 100mm placed on top of the heat source. The source and the cooler are

modeled as being suspended in free space, and traction-free boundary conditions are imposed on all

boundaries with the exception of the bottom-most boundary, where a no-slip boundary condition

is applied. A quarter domain symmetry is imposed along the x = 2.5L and z = 2.5L planes.

The temperature field is imposed to be equal to the reference room temperature at all boundaries,

except at the top-most boundary, which is adiabatic. The reference temperature is set to 25 ◦C, and

properties of air and aluminium at this reference temperature are used. The heat flux is modeled

in both the fluid and the solid domains. We utilize a hierarchical mesh refinement, and set the

resolution of the design domain to an element size of 0.002777m, and of the rest of the domain to

0.025m. The problem parameters are shown in Table 7.21. For an explanation on the choice of the

problem parameters and the domain setup, refer to Alexandersen [2015].

The objective of the optimization problem is to maximize the thermal compliance (4.75) at

steady-state of the solid phase, Qs, and is defined as:

Z = −Qs . (7.23)

Constraints are imposed on the maximum volume of the solid and surface values, to half

the total box volume and thrice the total surface area of the design domain, respectively, and are

defined as:

g1 =
Vs

1.0308× 10−04
− 1 , g2 =

S
3.6717× 10−02

− 1 . (7.24)
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Figure 7.59: Problem setup for the passive cooler example. Blue dashed lines denote the symmetry

plane. The grey cubic box denotes the design domain. L = 100mm.
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Value

Element size h = 0.002777m (in design domain)

Characteristic length Lc = 100mm

Dynamic viscosity µf = 1.511× 10−05 kg
m·s

Density
ρf = 1.205

kg

m3

ρs = 2.700× 103 kg

m3

Specific heat capacity
cfp = 1.005× 103 J

kg ·K

csp = 0.910× 103 J

kg ·K

Thermal conductivity
kf = 257× 10−04 W

m ·K
ks = 237

W

m ·K
Gravitational vector g = {0,−9.81, 0} m

s2

Thermal expansion coefficient hfT = 3.43× 10−03 1
K

Reference temperature field T f∞ = 25 ◦C

Nitsche velocity penalty αN,u = 100

Nitsche temperature penalty αN,T = 10

Viscous ghost-penalty αGP,µ = 0.005

Pressure ghost-penalty αGP,p = 0.0005

Convective ghost-penalty αGP,u = 0.005

Temperature ghost-penalty αGP,T = 0.005

Pressure constraint parameter kfp = 1

Maximum volume constraint 1.0308× 10−04m3

Maximum surface area constraint 3.6717× 10−02m2

Number of design variables 11, 340 (quarter domain)

Design variables bounds sLi = −h/2, sUi = +h/2

Smoothing filter radius 2.4h

Table 7.21: Problem parameters for the passive cooler example.
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The initial design consists of a semisphere of radius 25mm placed on top of the solid slab.

Numerical experiments studied in Coffin and Maute [2015b] showed that this class of con-

jugate heat transfer problems lead to designs that form very thin features, which affects the con-

vergence of the optimization problem. To prevent the formation of subelement-size features, we

utilize the gradient measure in (6.24) to regularize the optimization problem. However, imposing

strict limits on the gradient measure may prevent the occurrence of changes in the topology of the

design during the optimization process [Coffin and Maute, 2015b]. To mitigate this issue, we adopt

a continuation approach, where we start with a large constraint limit, and successively lower the

limit in the course of the optimization process. Our gradient measure constraint is then formulated

as follows:

g3 =
G
cG
− 1 . (7.25)

Initially, no constraint is imposed and the value of cG is set to ∞. As the design evolves during the

optimization process, and the minimum feature size drops below the length of an element (after

100 design iterations), the value of cG is modified to 1.5× 10−04.

The converged material layout of the cooler after 275 iterations is shown in Figure 7.60. The

thermal compliance, Qs, increases from 0.56 to 2.89. The Grashof number of the fluid measured at

the top edge of the design domain is 3.75 × 104. The optimized design exhibits tree-like branches

extending out from the center of the design domain, which conduct the heat away from the heat

source and transfer it to the flowing air by allowing the flow to move between the branches. Figure

7.60b shows the fluid flowing through the branches in a zig-zag fashion in the vertical direction.

Figure 7.61 shows the velocity and temperature fields for the optimized material layout. The

highest velocity is found some distance above the cooler, which agrees well with the results from

Alexandersen [2015]. The air moves slowly away from the lamp, but accelerates above it, when it

has been drawn in from the surroundings. The temperature field shows the ambient temperature

in the entire computational domain, except near the lamp, on which a funnel-like shape is formed.

The converged design is conceptually similar to the solution from Alexandersen [2015]. The
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(a) Final design of the passive cooler.

Temperature Field
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(b) Sectioning of the fluid temperature field, with

streamlines.

Figure 7.60: Optimized material layout for the passive cooler example.

difference in designs can be attributed to the lack of constraining the minimum feature size to values

above an element length in our level-set based optimization framework. In constrast, density-based

topology optimization problems utilize smoothing filters and projection schemes to discourage the

formation of features smaller than a prescribed size, which can be set to any value larger than

the size of an element. More flexible methods for constraining feature sizes in level set-based

optimization have been proposed by Chen et al [2008] and Guo et al [2014], but not yet integrated

into our optimization framework.

7.9 Minimum Feature Size

In this section, we examine the application of this measure to different design problems.

It is important to note that to strictly enforce the feature size measure in both phases prevents

changes in the topology of the designs. In our LSM-XFEM framework, the creation, merging and/or

removal of holes requires the formation of small features. If these small features are not allowed,

then changes in topology cannot happen, and the variation of the designs is severely limited. This

consideration will be discussed in this section. We will use a continuation approach, and gradually

impose the feature size constraint in a more strict manner, but in a way that does not prevent
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Figure 7.61: Slice of the optimized material layout, with the velocity magnitude and the temperature

field.
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topological changes.

First, we compare our approach against the quadratic energy function of Chen et al [2008].

Then, we validate our feature size measure using shape optimization on a 3D sphere. Subsequently,

we apply the feature size measure to the well-known MBB beam design problem. This solid me-

chanics problem leads to the development of many thin, truss-like structures [Michell, 1904]. The

MBB problem will be studied to illustrate the differences between applying the measure to one or

both phases. We also study the enforcement of the measure considering different minimum feature

sizes.

Then, we apply the feature size measure to the force inverter design problem of Bendsøe and

Sigmund [2003]. In the context of our LSM-XFEM framework, this problem is particularly difficult

to solve with a solid-void configuration because the optimizer drives the connection towards a thin

hinge. This hinge can cause some features to disconnect, leading towards a discontinuous response

of the performance with respect to the design variables.

Subsequently, a convective design problem is studied. In this example, the objective is to

minimize the temperature at a point where heat is applied by arranging a limited amount of diffusive

material. This class of problems also leads to thin geometric features, in an effort to maximize the

surface area of the interface. The complex, wavy surface that is produced by this problem provides

a clear demonstration of the influence of varying the geodesic parameter rtx in (6.29).

Finally, we study the analog versions of the MBB beam and the convective design problems

in 3D.

7.9.1 Comparison with Chen et al [2008]

Chen et al [2008] utilized a so-called quadratic energy function to control the minimum feature

size. This function is a double integral over the phase interface and provided inspiration for the

measure defined here. The quadratic energy function of Chen et al [2008] is computed as:

Eq = −
∫

Γ0
2

∫

Γ0
1

T (xΓ
1 ) · T (xΓ

2 ) ψx(|xΓ
1 − xΓ

2 |) dΓdΓ , (7.26)
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where T
(
xΓ
i

)
is the tangent vector on the interface, xΓ

i is the position vector of intersection point

i, and ψx (a) is computed as:

ψx (a) =





a < rx − wx 1.0 ,

rx − wx ≥ a ≥ rx + wx
1
2

[
1− a−rx

wx
− 1

πsin
(
π a−rxwx

)]
,

a > rx + wx 0.0 .

(7.27)

Here, ψx (a) has the same purpose as the second Heaviside in (6.27) and (6.33), and identifies

points that are closer than the minimum feature size. In (7.26), the dot product of the interface

tangent vectors, T (xΓ
1 ) · T (xΓ

2 ), is used to identify points that fall on different portions of the

interface. This construction leads to complexity when considering the discretized form of curved

surfaces. We will demonstrate the differences between the measures using a series of different shapes

in the following.

(a) Feature Thickness: 0.1 (b) Feature Thickness: 1.0 (c) Feature Thickness: 2.0

Figure 7.62: Test geometries for comparing the feature size measures in closed surfaces.

First, we study the feature size measures with closed surfaces. The surfaces are modeled as

ellipsoids, and their thickness is varied from 0.1 to 3.0, as shown in Figure 7.62. We compare our

measure in (6.27) against the quadratic energy function in (7.26). The value of rx in (6.28) is chosen

as 0.5. Figure 7.63a depicts the response of both measures with respect to an increasing feature

thickness. We can observe that both measures increase in value as the thickness gets smaller,

which implies that both formulations correctly identify when the minimum feature size is being

violated. Notice, however, than the effective value of the minimum feature size in our measure is
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not the desired value of 0.5, but rather approximately 0.75, which is equivalent to 1.5 × rx. This

behavior is attributed to the wx parameter of the second Heaviside function in (6.27), which is

set to rx/2. Furthermore, as the feature size becomes larger than 1.5× rx, the measures display a

significantly different behavior. Our measure displays a more intuitive response, and simply turns

off with the value ofM0 dropping to 0. On the other hand, Chen’s formulation becomes a linear

function of the perimeter, that is, as the perimeter of the shape increases, so does the value of

the quadratic energy function. The dependence of Chen’s formulation on the perimeter is further

demonstrated in Figure 7.63b, which displays the measures normalized by the perimeter. Again,

while our formulation turns off for a feature size larger than 1.5× rx, Chen’s formulation remains

constant with a value greater than 0.
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(a) Feature size measure.
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(b) Feature size measure normalized by the perimeter.

Figure 7.63: Comparison of the feature size measures for the closed surfaces depicted in Figure

7.62.

Next, we study the feature size measures using shapes with an open surface, as shown in

Figure 7.64. We vary the feature thickness of a protrusion from 0.1 to 3.0. Notice that due to the

open surface geometry and the shape of the protrusion, the perimeter remains roughly constant

as the feature thickness varies. The response of the measures is shown in Figure 7.65. Here,

the response of the quadratic energy function is more complicated, with the minimum measure
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(a) Feature Thickness: 0.1 (b) Feature Thickness: 1.0 (c) Feature Thickness: 2.0

Figure 7.64: Test geometries for comparing the feature size measures in open surfaces.

occurring at some intermediate feature thickness value. Accounting for changes in perimeter, as

shown in Figure 7.63b, does not alleviate this issue. Our measure, on the other hand, presents

again a more intuitive response that easily identifies the violation of the feature size.

7.9.2 Verification using a Spherical Shape

To validate the minimum feature size framework, we formulate a shape optimization problem

in which we minimize the volume of the negative level set domain subject to a minimum feature

size measure constraint. We model a two-material linear diffusion problem; however, note that the

overall setup of the physics does not matter in this scenario because the optimization problem is

formulated with respect to geometric properties.

The initial material layout is given by a sphere with a radius of 0.25. The objective, Z, is

given as:

Z = V− , (7.28)

where V− is defined in (4.71), and the only constraint, g1, is given by:

g1 =
M0

S2
− wM , (7.29)

where M0 is defined in (6.27), S is defined in (4.73), and the term wM is a small bound set to

10−04.
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(b) Feature size measure normalized by the perimeter.

Figure 7.65: Comparison of the feature size measures for the open surfaces depicted in Figure 7.64.
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(a) rx = 2.4h.
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(b) rx = 4.8h.

Figure 7.66: Minimum feature size validation examples. The grey surfaces denote the initial spheres.

The blue spheres denote the optimized material layout. The red solid lines denote a cubic box with

dimension rx. The blue solid lines denote a cubic box with dimension 1.5× rx.
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Figure 7.67: Objective and constraint plots for the minimum feature size validation examples.

A single design variable is used to control the radius of the sphere. The expected behavior

would be that the radius is reduced in order to minimize the volume until the minimum feature

size constraint is activated. We test two different feature size values, rx = 2.4h and rx = 4.8h. The

optimized material layouts are shown in Figure 7.66, the objective and constraint plots are shown

in Figure 7.67, and the sensitivities are shown in Figure 7.68.

Note that the results reflect a minimum feature size closer to 1.5 × rx; this behavior is

attributed to the smoothed Heaviside added to the prescribed feature size, wx = rx/2.

If it is benefitial to the optimization problem to further minimize the objective, at the cost

of violating the constraint, the problem might get stuck and prevent topological changes from

occurring. Furthermore, the objective will display wiggliness in the convergence plot of the objective

function. For example, an additional problem was run where rx was set to 12h. The objective

function is shown in Figure 7.69, and it displays this wiggliness behavior. The optimization problem

reduces the volume of the sphere, which violates the constraint. The constraint in turn causes the

design to increase in size. Then, the optimization problem sees this change and reduces the volume

again, violating the constraint, and the cycle repeats. Reducing the optimization step size or

increasing the resolution of the mesh might help ameliorate this issue.
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Figure 7.68: Objective and constraint sensitivity plots for the minimum feature size validation

examples.
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Figure 7.69: Objective and constraint sensitivity plots for the minimum feature size validation

example with rx = 12h.
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7.9.3 Verification with 2 Inclusions

In this example, we study the influence of the rx parameter in (6.28) by maximizing the

surface area of two 2D circular inclusions of radii 0.16L, subject to a design constraint on the

minimum feature size. The problem setup is shown in Figure 7.70. We utilize the M− measure

from (6.33), and set rM = 3× rx. The objective is defined as:

Z = V− , (7.30)

g0 =M−/cM − 1.0 , (7.31)

where cM = 0.01. The problem parameters are shown in Table 7.22.

 L

 L

x

	  y

x

Figure 7.70: Problem setup for the minimum feature size example with 2 circular inclusions. The

blue domains represent the positive material phase. The exact location of the inclusions is not

relevant for this problem.

The optimized designs are shown in Figure 7.71. We can observe that a small value of rtx

prevents the formation of any features, and does not allow the circular inclusions to change in

size or in shape. The designs for rtx =
√

2 +
√

6 display a more wavy pattern and a less tick

strip than the geometries for rtx =
√

2π/4 and rtx =
√

2. This behavior is attributed to the fact

that, in this example, rtx is larger than the factor 3 used in rM. The results for rtx =
√

2π/4

and rtx =
√

2 display a single vertical strip, which matches the analytical optimal design for this
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Value

Element edge length h = 6.667× 10−03L

Minimum Feature Size rx = {6h, 12h, 24h}

Geodesic to Euclidean distance ratio rtx =
{

1,
√

2π/4,
√

2,
√

2 +
√

6
}

Maximum search radius rM = 3× rx

Minimum feat. size smooth Heaviside width wx = 0.5

Geodesic smooth Heaviside width wtx = 0.01

Phase domain smooth Heaviside width wn = 0.01

Constraint weight cM = 0.01

Table 7.22: Problem parameters for the minimum feature size validation examples of Section 7.9.3.



185

problem. Additionally, both results do not display a wavy pattern on the material interface. It

is not clear from these results if a larger value of rtx is the cause of the wavy design, because the

value of rM was chosen to be too small. We can observe the effects of the wx parameter used on

φx in (6.28), as the width of the strip for rtx =
√

2π/4 and rtx =
√

2 is closer to 1.5× rx.

7.9.4 Verification with 4 Inclusions

This example uses the same problem setup as in Example 7.9.3. The initial design has 4

circular inclusions of radii 0.16L, as shown in Figure 7.72. We study the influence of the rtx

parameter in (6.29) on penalizing sharp corners. We utilize theM−x measure from (6.37), and set

rM = rx × rtx. The value of cM is set to 10−06 to account for the smaller value of the feature size

measure utilized here.

 L

 L
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	  y

x

Figure 7.72: Problem setup for the minimum feature size example with 4 circular inclusions. The

blue domains represent the positive material phase. The exact location of the inclusions is not

relevant for this problem.

The optimized designs are shown in Figure 7.73. We observe that for all examples, the

minimum feature size is enforced well. We can also observe that as the geodesic parameter, rtx, is

increased, the interface of the design becomes more oscillatory. It is not clear from these results

whether this behavior is a consequence of the geodesic parameter or of the feature size measure.

To study the influence of the feature size measure, we take the setup from Figure 7.73i, and use
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(a) rx = 6h, rtx = 1 (b) rx = 12h, rtx = 1 (c) rx = 24h, rtx = 1

(d) rx = 6h, rtx =
√

2π/4 (e) rx = 12h, rtx =
√

2π/4 (f) rx = 24h, rtx =
√

2π/4

(g) rx = 6h, rtx =
√

2 (h) rx = 12h, rtx =
√

2 (i) rx = 24h, rtx =
√

2

(j) rx = 6h, rtx =
√

2 +
√

6 (k) rx = 12h, rtx =
√

2 +
√

6 (l) rx = 24h, rtx =
√

2 +
√

6

Figure 7.71: Zoomed display of the optimized material layouts for the minimum feature size vali-

dation examples of Section 7.9.3. The white domains represent the negative material phase.
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(a) rx = 4h, rtx =
√

2π/4 (b) rx = 8h, rtx =
√

2π/4 (c) rx = 16h, rtx =
√

2π/4

(d) rx = 4h, rtx =
√

2 (e) rx = 8h, rtx =
√

2 (f) rx = 16h, rtx =
√

2

(g) rx = 4h, rtx =
√

2 +
√

6 (h) rx = 8h, rtx =
√

2 +
√

6 (i) rx = 16h, rtx =
√

2 +
√

6

Figure 7.73: Optimized material layouts for the minimum feature size validation examples of Section

7.9.4. The black regions denote the negative material phase.
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it to compare it against the different feature size formulations introduced in Section 6.3.2 and against

the constraint parameter, cM. We utilize the minimum feature size measures in (6.33), (6.37),

(6.38), and (6.40) for a feature size value of rx = 16h, and a geodesic parameter of rtx =
√

2 +
√

6.

Unless otherwise stated, the values for all wζ parameters are set to 0.001, effectively turning off the

smoothing of the Heaviside functions. The parameters wx and cM are set on a per-problem basis.

The optimized designs are shown in Figure 7.74. We can observe that the minimum feature

size is well imposed in all of the examples. The measureM− in (6.33) yields more wavy designs,

when compared to the other formulations and used in combination with a smaller cM parameter.

The remaining formulations do not display any significant difference among them, although the

designs that utilize the smaller cM parameter shown slightly straighter lines. It is clear from these

examples that the formulations in (6.37), (6.38), and (6.40) are equivalent for this class of problems,

and that they yield smoother designs that theM− formulation.

7.9.5 Verification with 5 Inclusions

This example uses the same problem setup as in Example 7.9.3. The initial design has 5

circular inclusions of radii 0.16L, as shown in Figure 7.75. We study the influence of the rx and

the rtx parameters, in (6.29), in theM−x measure from (6.37), and set rM = rx× rtx. The value of

cM is set to 10−06.
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(a) M−, wx = rx/2, cM =

10−02.

(b) M−x , wx = rx/100,

cM = 10−05.

(c) M−tx, wx = rx/100,

cM = 10−05.

(d) M−w , wx = rx/100,

cM = 10−05.

(e) M−, wx = rx/2, cM =

10−06.

(f) M−x , wx = rx/100,

cM = 10−06.

(g) M−tx, wx = rx/100,

cM = 10−06.

(h) M−w , wx = rx/100,

cM = 10−06.

Figure 7.74: Optimized material layouts for the minimum feature size validation examples of Section

7.9.4, with rx = 16h, and rtx =
√

2 +
√

6. The black regions denote the negative material phase.
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Figure 7.75: Problem setup for the minimum feature size example with 5 circular inclusions. The

blue domains represent the positive material phase. The exact location of the inclusions is not

relevant for this problem.

The optimized designs are shown in Figure 7.76. We observe that for all examples, the

minimum feature size is enforced well. The problems that utilize a feature size value of rx = 4h

and rx = 8h display similar designs. The designs for the largest feature size display significant

differences, which seem to be related to the influence of rtx. A value of rtx =
√

2π/4 yields a more

wavy design, while the other two showcase a more doughnut-like pattern. It is not clear from these

results why the geodesic parameter causes this behavior, although we can infer that it is related to

the smootheness of the designs.

7.9.6 Analysis Sweeps

In this section, we will study the minimum feature size measures in (6.33) and (6.35) with

respect to different shapes and parameters.

7.9.6.1 Sweep over the Minimum Feature Size Parameter

Our problem setup for this example is shown in Figure 7.77. The analysis domain is a 3L×2L

mesh with 150× 100 quadrilateral bilinear elements, for an h value of 0.02L. The domain contains

an inclusion in the form of a strip, with a thickness value of hgap. The inclusion is represented by
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(a) rx = 4h, rtx =
√

2π/4 (b) rx = 8h, rtx =
√

2π/4 (c) rx = 16h, rtx =
√

2π/4

(d) rx = 4h, rtx =
√

2 (e) rx = 8h, rtx =
√

2 (f) rx = 16h, rtx =
√

2

(g) rx = 4h, rtx =
√

2 +
√

6 (h) rx = 8h, rtx =
√

2 +
√

6 (i) rx = 16h, rtx =
√

2 +
√

6

Figure 7.76: Optimized material layouts for the minimum feature size validation examples of Section

7.9.5. The black regions denote the negative material phase.
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the negative phase in (2.2). We modify the value of rx in (6.33) from 0.1 to 0.3, and set hgap to a

constant value of 0.2. We measure the feature size formulation in (6.33). The problem parameters

are shown in Table 7.23. The values for all wζ parameters are set to 0.001, effectively turning off

the smoothing of the Heaviside functions.

 2L

 3L

x

	  y

x

hgap

Figure 7.77: Problem setup for the sweep over the strip with thickness hgap.

The results for the minimum feature size measure in (6.33) over the negative phase, the

formulations in (6.28), (6.29), (6.34), and (6.36), and their corresponding smoothed Heaviside

functions are shown in Figure 7.78. We can observe that the integral for φtx in Figure 7.78d increases

as rx is varied. This is counterintuitive since φtx in (6.29) does not depend on rx. However, this

behavior is attributed to the behavior of the double integral over the perimeter in Figure 7.78b.

Our minimum feature size implementation integrates over all connected elements to the intersection

point of interest, xΓ
i , within a search radius of rM. In this example, rM is a function of rx, and

therefore, as rx increases, so do the integration area and the integral for φtx. The jagged behavior

seen in the measures of M− and φx can also be attributed to the value of rM, as a small value

can lead to discretization errors in the measure. We will show the influence of rM in subsequent

sweeps.
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Value

Thickness gap hgap = 0.2

Minimum Feature Size rx = {0.1 : 0.005 : 0.3}

Geodesic to Euclidean distance ratio rtx = 1.2

Maximum search radius rM = 3× rx

Minimum feat. size smooth Heaviside width wx = 0.001

Geodesic smooth Heaviside width wtx = 0.001

Phase domain smooth Heaviside width wn = 0.001

Table 7.23: Problem parameters for the sweep over the strip with thickness hgap.
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Figure 7.78: Minimum feature size results for the strip inclusion sweep of Section 7.9.6.1.

In the following sweep, we set rM to a constant value of 5h. We also study the effects of

keeping rx constant and instead modifying hgap in the same range as rx was modified previously.

The results are shown in Figure 7.79. We observe that with a constant value for rM, the integral of

φtx remains constant for the sweep over rx. The value does change for the sweep over hgap; however,

this is expected as φtx depends on the Euclidean distance xΓ
12, which is modified as the gap varies.

The measures of M− and φx still display a jagged behavior. This again can be attributed to

discretization errors produced by a small rM. In a subsequent sweep, we will set rM =∞.
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Figure 7.79: Minimum feature size results for the strip inclusion sweep of Section 7.9.6.1, with

constant rM = 5h.

In the following sweep, we set the value of rM to ∞, and sweep over hgap. The results

are shown in Figure 7.80. While φx and φtx display a smooth behavior, the minimum feature

size measure M− is still not smooth. This is attributed to the Heaviside projection used by the

formulation in (6.33). We will study the characteristics of (6.35) in a subsequent sweep to allow

for a smoother response of the feature size measure.
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Figure 7.80: Minimum feature size results for the strip inclusion sweep of Section 7.9.6.1, with

rM =∞.
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Remark 1 Note that the integral for φtx increases considerably in value in Figure 7.80c. This is

because of the value
∣∣tΓ12 (s)

∣∣ is assigned if two points, xΓ
1 and xΓ

2 are within an Euclidean distance
∣∣xΓ

12 (s)
∣∣ < rx, but on topologically disconnected surfaces. In such a scenario, the geodesic distance

is set to rM.

In this sweep, we utilize the M−a formulation, and sweep over rx and hgap. The results

are shown in Figure 7.81. We can observe than modifying the formulation results in a smoother

response for the minimum feature size measure.

hgap

0.1 0.15 0.2 0.25 0.3

M
− a

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(a)

rx

0.1 0.15 0.2 0.25 0.3

M
− a

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(b)

Figure 7.81: Minimum feature size results for the strip inclusion sweep of Section 7.9.6.1, using the

M−a formulation.

We can conclude from these sweeps that the search radius, rM, must be set to a large value

in order to avoid discretization errors, and that utilizing the formulations that include the square

power of (6.28) results in a smoother response of the measure, which is preferrable when computing

the sensitivities.

7.9.6.2 Sweep over the p-Norm of an Inclusion

In this study, we sweep over the p-norm of a circular inclusion. We modify the norm from 1,

which gives us a diamond shape, to 10, which gives us a cuboid-shape with rounded corners. We

seek to study the effects of the rx, rtx and ra parameters in (6.35).

First, we study the influence of the rx and the rtx parameters. We choose two values to

analyze for rtx, 1.2 and
√

2, and three values for rx, 0.25, 0.50, and 0.75. ra is set to a constant
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Figure 7.82: Problem setup for the sweep over the p-norm of an inclusion.

value of 0.5. The results are shown in Figure 7.83. We can observe that the parameter rx scales

the value ofM−a , but that the parameter rtx has no influence in this formulation. We will see later

that this issue is related to the fact that ra < rtx.
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Figure 7.83: Minimum feature size results for the p-norm sweep of Section 7.9.6.2, with rM = ∞

and ra = 0.5.
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For this sweep, we focus on the characteristics of the ra parameter. We keep rx constant to

0.5, and rtx constant to
√

2. We observe that the parameter ra has virtually no influence on the

feature size measure. However, the function φa does change with a varying ra.
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Figure 7.84: Minimum feature size results for the p-norm sweep of Section 7.9.6.2, with rM = ∞

and rx = 0.50.

This behavior can be attributed to the relationship between rtx and ra. For (6.29) to be

positive, we must have:
∣∣tΓ12

∣∣ > rtx
∣∣tΓ12

∣∣ . (7.32)

For (6.28), we must have:

rx >
∣∣xΓ

12

∣∣ . (7.33)

And for (6.36), we must have:
∣∣tΓ12

∣∣ > ra · rtx . (7.34)

Inserting (7.33) into (7.34) gives us:

∣∣tΓ12

∣∣ > ra ·
∣∣xΓ

12

∣∣ . (7.35)
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Figure 7.85: Problem setup for the sweep over different angles example.

This indicates that the factor ra has the same effect as rtx, and that if ra ≤ rtx, the first Heaviside

in (6.35) has no effect. Also, we can conclude that as long as rM ≤ rtx · rx, the first Heaviside will

not vanish.

7.9.6.3 Sweep over the Angle of an Inclusion

In this example, we seek to study the relationship between the geodesic parameter, rtx, and

the sharp corners (i.e. the smoothness) of the design. Our problem setup consists of a sharp corner

inclusion, as shown in Figure 7.85, where the angle θ is varied from 0◦ to 89◦. We utilize the feature

size measure of (6.37) over the negative phase. The value of rx is set to 0.5, and the search radius

rM is set to ∞.

The plots for the feature size measure and its components are shown in Figure 7.86. As

the angle θ increases, so does the sharpness of the corners, which increases the curvature of the

problem. Analogous to this behavior, the feature size measure also increases with an increasing

value of θ; however, the angle at which it activates is dependent on the geodesic parameter rtx. We

can conclude that the parameter rtx is a function of the secant of θ, where θ, through the Heaviside

function, controls which sharp corners are accounted for in the measure. Therefore, utilizing a small

value for rtx will result in all curvatures being penalized in order to obtain a smoother geometries,

whereas a large value will discourage smooth designs.
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Figure 7.86: Minimum feature size results for the angle sweep of Section 7.9.6.3, with rM =∞ and

rx = 0.50.

7.9.7 Design of a 2D MBB Beam

In this example, we study the characteristics of the minimum feature size measures in (6.33),

(6.37), (6.38), and (6.40) on the optimized MBB beam design of Example 7.3.2. An additional

constraint is imposed on the problem to control the minimum feature size over both phases as:

g1 =M0
ζ/cM − 1.0 , (7.36)
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where ζ determines the specific measure used and cM is the constraint weight. The problem

parameters are shown in Table 7.24.

The optimized material layouts are shown in Figure 7.87. We can observe that the thin

features of the MBB beam design in Example 7.3.2 grow in size; however, the material interface

loses smoothness, and small wavy patterns emerge as seen in previous examples. We can attribute

this to the fact that once this patterns emerge, the minimum feature size measure will not do

anything to smooth them out, and that the perimeter penalty is not strong enough to eliminate

them. Additional surface smoothers measures are necessary to get rid of these oscillatory patterns

on the interface. Furthermore, we see that the oscillatory behavior increases with a decreasing

constraint parameter cM. This can be attributed to the interplay of localized sensitivities along

the material interface and the volume constraint on the solid phase.

(a)M0, cM = 10−02 (b)M0
x, cM = 10−05 (c)M0

tx, cM = 10−05 (d)M0
w, cM = 10−05

(e)M0
x, cM = 10−06 (f)M0

tx, cM = 10−06 (g)M0
w, cM = 10−06

Figure 7.87: Optimized material layouts for the 2D MBB beams with a minimum feature size

constraint of of rx = 6h.

We utilize the design from Figure 7.87b to restart the optimization process with a larger

feature size value, rx = 9h, and measure the feature size over the negative phase, M−x . The full

design is shown in Figure 7.88. We can observe that the feature size is well-imposed, and that the

design does not display large wavy patterns on the interface.
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Value

Element edge length h = 6.667× 10−03L

Minimum Feature Size rx = 6h

Geodesic to Euclidean distance ratio rtx =
√

2 +
√

6

Maximum search radius rM = rtx × rx

Minimum feat. size smooth Heaviside width wx = 0.5 for (6.33), 0.01 for all others

Geodesic smooth Heaviside width wtx = 0.01

Phase domain smooth Heaviside width wn = 0.01

Perimeter penalty wS = 0.1

Smoothing filter radius rφ = 2.4h

Table 7.24: Problem parameters for the minimum feature size validation examples of Section 7.9.3.

Figure 7.88: Optimized material layout for the 2D MBB beams with a minimum feature size

constraint of rx = 9h.



203

rd

b

y

x

L

L L

q!b
s

𝑇#

	  	  𝑇#
𝑇#

Figure 7.89: Convective design problem setup.

7.9.8 Design of a 2D Convective Design

In this example, we study the application of the feature size measure on a different physical

model. We take the heat conduction problem with edge convection of Coffin and Maute [2015b].

The objective of this problem is to minimize the temperature at a point where heat is applied by

arranging a limited amount of diffusive material. The in-plane boundaries of the diffusive material

are subject to a simplified convection boundary condition. This class of problems leads to very thin

solid and void features that can hamper the convergence of the design.

In a classical Newton’s Law of Cooling formulation, a single diffusive material would be

used, and the temperature in the fluid (or void) domain would be prescribed to be the far-field

temperature. To deter the formation of disconnected fluid inclusions, we utilize two diffusive

materials, one for the solid and one for a fictitious fluid. The solid domain is represented by

the negative phase, and denoted as Ωs, and the fluid domain is represented by the positive phase,

and denoted as Ωf . The problem setup is shown in Figure 7.89. A heat flux, q̂sb , is applied at point

b, and the temperature is fixed as T s = T∞ at the top, left, and right walls. The conductivity in

the fictitious fluid is set to be large relative to the solid, i.e. κf >> κs, such that on the fluid-solid

interface the temperature is nearly the far-field value T f ≈ T∞. The objective Z is written as:

Z (s,u (s)) = T sb , (7.37)

where T sb is the temperature of the solid at point b.
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Table 7.25: 2D convective design problem parameters.

Property Value

Element length scale h = 0.02L

Applied heat q̂sb = 1.0

Solid diffusivity κs = 1.0

Fluid diffusivity κf = 5.0

Convection coefficient h = 0.1

Characteristic length Lc = 1.0

Far field temperature T∞ = 0.0

Reference temperature Tref = 0.0

Filter Radius rφ = 0.048

Outer design radius rd = 0.8

Maximum search radius rM = rtx × rx

Minimum feat. size smooth Heaviside width wx = 0.01 for (6.33), 0.01 for all others

Geodesic smooth Heaviside width wtx = 0.01

Phase domain smooth Heaviside width wn = 0.01

Smoothing filter radius rφ = 2.4h
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Figure 7.90: Initial design for the convective design problem.

In this problem, the design is prescribed to be symmetric, that is, the design variables are

only defined on the nodes in the left half of the mesh. Level set values at nodes on the right half of

the mesh are set equal to those on the left. The lower and upper limits, sLi and sUi , of the design

variables are set to ∓h/2, respectively. An outer design radius is also specified, rd, beyond which

the design variables are set equal to the upper bound. The problem parameters are described in

Table 7.25.

To simplify the initial design of the convective problem, we choose a semi-circle with radius

r = 0.5, as shown in Figure 7.90. As observed in previous studies [Coffin and Maute, 2015b], the

design is expected to grow branches out from the initial circle. While the geometry changes are

radical, there is little change in topology. This particular evolution of geometry in the design process

ensures that for all values of minimum feature size less than the initial circle radius, there will be no

initial violation of the feature size constraint. With no continuation approach, the constraint can

be enforced strongly, with cM = 10−06, and studying the different formulations of Section 6.3.2.

Figure 7.91 shows the result of not enforcing any minimum feature size. This optimization

does not yield a converged design. Branches are formed from the circular base, but their connection

to the base grows thin, and eventually they disconnect and are removed from the design. After

the branches disconnect from the base, new branches form. Without additional regularization, this

behavior leads to a continuous morphing of the geometry. More details on this issue and the need

for regularization are provided in Coffin and Maute [2015b].

Controlling the mininum feature size for rx = 4h and rtx =
√

2 using the formulations in

(6.37), (6.38), and (6.40) yields a series of complicated geometrical structures, as shown in Figure
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Figure 7.91: Convective design resulting from no feature size enforcement (cM =∞).

7.92. The nature of the design problem, which is strongly non-convex, leads to these complicated

shapes. Conceptually, all three formulations produce a similar design, with branches growing out

from the initial circle. All formulations display a wavy material interface, which is attributed to

the lack of smoothing applied on the designs. The formulations in Figures 7.92a and 7.92c display

a smaller objective than the remaining formulation. It is not clear from these examples if any of

the formulations is significantly better than the other ones in terms of minimizing the objective

and satisfying the feature size.

Utilizing the feature size measure in (6.37), we optimize for different minimum feature sizes,

as shown in Figure 7.93. All designs yield conceptually similar geometries, where branches grow out

of the initial circle. We can observe that for all designs, the minimum feature size is well imposed.

As the feature size parameter increases, the number of branches decreases, which yields a higher

objective value.

The optimization problem drives the design to increase the surface area, and to form wavy

(a)M0
x = 1.9× 10−05, Z = 1.47 (b)M0

tx = 4.5× 10−06, Z = 1.51 (c)M0
w = 2.3× 10−06, Z = 1.47

Figure 7.92: Optimized convective designs for different minimum feature size formulations.
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(a)M0
x = 10−05, rx = 2h, Z = 1.49 (b)M0

x = 1.9× 10−05, rx = 4h, Z = 1.47

(c)M0
x = 3.6× 10−04, rx = 6h, Z = 1.69 (d)M0

x = 5.3× 10−04, rx = 12h, Z = 1.95

Figure 7.93: Optimized convective designs for different minimum feature size values after 1,000

iterations. Red circle indicates the desired minimum feature size.
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boundaries (Figure 7.93). This behavior makes the problem a good candidate for demonstrating

the influence of the rtx parameter. The parameter rtx is an important scaling factor in (6.37). It

identifies regions of nearby points that are excluded as their geodesic distance is small relative to

their Euclidean distance. In a previous example in Section 7.9.6.3, the parameter rtx was related to

the secant function of an angle θ, where θ determines the smoothness and/or sharpness of a corner.

Selecting the configuration of Figure 7.93b, the scaling rtx is varied and the resulting designs are

shown in Figure 7.94. Note that Figure 7.93b and 7.94d are the same problem. For small values of

scaling, rtx ≤ sec(15◦) =
√

6−
√

2, little feature development occurs because the measure identifies

nearly all curvatures as violations. As the value of the scaling increases, more features and wavy

patterns are allowed. The choice of rtx = sec(45◦) =
√

2 (Figure 7.94d) displays a visually appealing

degree of feature development, while rtx = sec(30◦) = 2
√

3/3 (Figure 7.94c) may be a good choice

to promote smooth designs.

7.9.9 Design of a 3D MBB Beam

Here we study the capabilities of the feature size measure on 3D problems that have an initial

design with multiple void inclusions. The example is the 3D analog the problem studied in Section

7.9.7. We study two configurations: one where no feature size constraint is imposed, and another

where the feature size (6.37) is imposed as an objective penalty and computed over the negative

phase. The penalty is imposed from the initial design, and no continuation approach is used. The

feature size measure is enforced as a penalty on the objective, rather than as a constraint, to prevent

the optimization algorithm from not merging holes and preventing changes in the topology of the

design. The objective is then defined as:

Z =
U∥∥U (0)
∥∥ + wS

S∥∥S(0)
∥∥ + wMM−x . (7.38)

The weights of the penalties, wS and wM, are set to 10−01 and 10+04, respectively. The feature size

measure is not normalized in the objective function because its value at the initial design is 0 due

to the minimum size being satisfied. The problem setup for both configurations is shown in Figure
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(a)M0
x = 5.1× 10−04, rtx = sec(0◦), Z = 4.07 (b)M0

x = 1.5× 10−04, rtx = sec(15◦), Z = 3.64

(c)M0
x = 3.0× 10−04, rtx = sec(30◦), Z = 2.22 (d)M0

x = 1.9× 10−05, rtx = sec(45◦), Z = 1.47

(e)M0
x = 2.7× 10−05, rtx = sec(75◦), Z = 1.45

Figure 7.94: Optimized convective designs with varying rtx parameter after 1,000 iterations.
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Figure 7.95: Problem setup for the 3D MBB beam example. Blue dashed lines denote the symmetry

planes of the analysis domain.

7.95. The problem parameters are shown in Table 7.26. The initial design is shown in Figure 7.96.

The minimum feature size is set to six times the element length scale 6h.

The optimized material layouts after 1,000 iterations are shown in Figure 7.97, and the

objective and volume constraint plots are shown in Figure 7.98. Similar to the problem studied in

Example 7.3.4, the optimized material layout for the design without a feature size constraint (i.e.

cM = ∞) displays thin-wall features. The cross-sectional area of the design with the feature size

measure shows that the feature size measure is well-imposed. The lack of smoothness on certain

surface areas of the design and the wiggliness in the objective plot are attributed to the gradients of

the geodesic Heaviside (6.29) not being computed in the sensitivity analysis. Imposing the feature

size measure as a constraint may prevent changes in the topology of the design. Enforcing the

measure as a penalty on the objective encourages design changes while satisfying the minimum

feature size. The development of robust continuation approaches is necessary to prevent reaching

local minima when using the measure as a constraint.

7.9.10 Design of a 3D Convective Design

This example is the 3D analog to the problem studied in Section 7.9.8. The problem setup is

shown in Figure 7.99. We will a convective problem with feature size constraints (6.33) of 2h and
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 y

 z
x

Figure 7.96: Initial design for the 3D MBB beam example. The domain is initialized with 13×3×3

void inclusions of radii 0.16L.

Value

Element length scale h = 8.0× 10−02L

Density ρ = 1.0

Young’s modulus E = 1.0

Poisson’s ratio ν = 3.0× 10−01

Volume ratio constraint cV = 3.0× 10−01

Minimum feature size rx = 6h

Geodesic to Euclidean distance ratio rtx =
√

2 +
√

6

Maximum search radius rM = rtx × rx

Minimum feat. size smooth Heaviside width wx = 0.01

Geodesic smooth Heaviside width wtx = 0.01

Phase domain smooth Heaviside width wn = 0.01

Smoothing filter radius rφ = 1.6h

Table 7.26: Problem parameters for the 3D MBB beam example.
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(a) rx = 0, U = 0.145

 y

 z
x

(b) rx = 6h, U = 0.154

Figure 7.97: Optimized material layout for the 3D MBB beam examples, with and without a feature

size constraint.
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Figure 7.98: Objective and volume constraint plots for the 3D MBB beam example.

6h, applied over both phases from the beginning of the optimization process, without a continuation

approach. The constraint parameter cM is set to 10−04. Both problems are computed for a total

of 2, 000 designs iterations.

The optimized material layouts are shown in Figure 7.100. The cross-sectional areas show

that the feature size constraint is well-imposed. Imposing the minimum feature size on this class

of problems is simpler due to the initial design, and they do not require a continuation approach.

As shown in previous examples, there is a trade-off between performance and enforcement of the

minimum feature size; this is shown in Table 7.27.

7.10 Shape Smoothers

Manufacturing constraints considered in shape and topology optimization are often expressed

in terms of the curvature value on the surface of the optimized material layout. In this section, we

study the application of shape smoothers to increase the smoothness, and therefore, decrease the

curvature of discretized surfaces. The discretized surface is represented by the level set interface

(2.2) and modeled as a polygon mesh using the XFEM.
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Figure 7.99: Problem setup for the 3D simplified convection example. Blue dashed lines denote the

symmetry planes of the analysis domain.

Temperature at point B

Figure 7.100a 3.559e+01

Figure 7.100c 3.558e+01

Table 7.27: Temperature values for the 3D convective design examples.
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(a) rx = 2h
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(b) Cross-sectional area of Figure 7.100a.
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(c) rx = 6h
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(d) Cross-sectional area of Figure 7.100c.

Figure 7.100: Optimized material layouts for the 3D convective design examples.
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7.10.1 Curvature Sweeps

The squared curvature of two geometrical objects, a circle and a sinusoidal wave, will be

studied. The objective of this study is to find the accuracy of our curvature measure by comparing

the results to the analytical solutions we obtained in Section 6.1.2. We will use the results of this

example to select the most promising approaches and later minimize the curvature of the material

boundaries.

7.10.1.1 Sweep Setup

For our circle sweep, we will model the level set field with the following equation:

φi = rc −
√
x2
i + y2

i , (7.39)

where φi represents a level set value at a node, and xi and yi are the spatial coordinates. We will

vary the radius of the circle rc from a value of 0.25 to 0.95 in 100 steps , as shown in Figure 7.101.

From (6.9) and (6.16), the analytical curvature is equal to:
∫

Γ0

κ2
n dΓ =

2π

rc
. (7.40)

 2

 3

𝑟 = 0.25

𝑟 = 0.95

Figure 7.101: Setup for sweeping over the radius of a circle from 0.25 to 0.95.
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The sinusoidal wave will be modeled by the following equation:

φi = yi −As sinπxi , (7.41)

where we will sweep over the amplitude of the sinusoidal wave, As, from 0.25 to 0.75, as shown in

Figure 7.102.

 3

As = 0.25

As = 0.75

As = 0.50
 2

Figure 7.102: Setup for sweeping over the amplitude of a sinusoidal wave ranging from 0.25 to 0.75.

The mesh has spatial dimensions of 3L× 2L, and will be divided into 45× 30 elements. The

finer version of the mesh will have 180× 120 elements.

7.10.1.2 κΓ
φ Results

The results for the circular sweep with the κΓ
φ formulation and mesh 45 × 30 are shown in

Figure 7.103. The finer mesh results are shown in Figure 7.104.

7.10.1.3 κΓ
n Results

Using the κΓ
n formulation, we get the results displayed in Figures 7.105 and 7.106 for a circle

and sinusoidal wave, respectively. The mesh size is 45× 30. The scaling factor, γκ, is 10+02.
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Figure 7.103: Squared curvature and absolute error for the circular sweep using the κΓ
φ formulation,

with mesh 45× 30.
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Figure 7.104: Squared curvature and absolute error for the circular sweep using the κΓ
φ formulation,

with mesh 180× 120.
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Figure 7.105: Squared curvature and absolute error for the circular sweep using the nu formulation,

with mesh 45× 30.
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Figure 7.106: Squared curvature for the sinusoidal wave sweep using the nu formulation, with mesh

45× 30. This formulation does not have an analytical solution to compare against.
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7.10.1.4 Discussion

Figures 7.103 and 7.104 show that using κΓ
φ causes oscillations in the measurement if the mesh

is not fine enough. Using a projection scheme in the κΓ
n formulations yields a smoother curvature

measure and decreases the error.

7.10.2 Projected Normal Curvature as an Objective Penalty

In this section, we impose our κΓ
n curvature formulation as a penalty on the objective. We

utilize the problem setup from Section 7.3.1, without the additional padding domain. The initial

design is shown in Figure 7.107. Our goal is to increase the smoothness of the design, and to reduce

the sharpness of the internal corners. The objective formulation is given by:

Z =
Us∥∥Us(0)

∥∥ + wκ
κΓ
n∥∥∥κΓ(0)
n

∥∥∥
, (7.42)

where the superscript (0) denotes the value at the beginning of the optimization process.

Figure 7.107: Initial design for the κΓ
n curvature optimization problems.

The optimized material layouts are shown in Figures 7.108a and 7.108b. We can observe

that while the formulation smooths certain sections, it also generates sharp corners on other areas.

This is attributed to the fact that the measure is dependent on the level set function, and does not

operate directly on the discretized surface, Γ0.
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(a) wκ = 0.1 (b) wκ = 1.0

Figure 7.108: Optimized geometry for computing curvature using the κΓ
n formulation.

7.10.3 Spline Curvature as an Objective Penalty

In this section, we impose our spline curvature formulation as a penalty on the objective.

This formulation operates directly on the discretized material interface. We utilize the problem

setup from Section 7.3.1. The initial design is given by the optimized material layout of Figure

7.20b. Our goal is to increase the smoothness of the design, and to reduce the sharpness of the

internal corners. The objective formulation is given by:

Z =
Us∥∥Us(0)

∥∥ + wκ
κΓ
u∥∥∥κΓ(0)
u

∥∥∥
, (7.43)

where wκ = 10−01, and the superscript (0) denotes the value at the beginning of the optimization

process. Additionally, we study the effects of lower and upper bounds on the perimeter of the level

set interface. We utilize the perimeter of Figure 7.20b and impose a ±5% variation on this value

as:

g2 = S/
(

1.05 · Ŝ
)
− 1.0 ,

g3 = 1.0− S/
(

0.95 · Ŝ
)
,

(7.44)

where Ŝ is the prescribed perimeter with a value of 2.108× 10+01. The optimized material layouts

are shown in Figure 7.109. The computed results are shown in Table 7.28. Without the perimeter

constraints (Figure 7.109a), the curvature formulation smooths the interface and reduces the size

of the holes at the cost of increasing the strain energy. Given a large amount of optimization
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(a) No perimeter constraints. (b) Lower and upper bounds are imposed

on the perimeter.

Figure 7.109: Optimized material layout for the 2D short cantilever beam example, with a curvature

penalty weight of wκ = 10−01.

iterations, the curvature will form circular shapes out of all the inclusions. On the other hand,

imposing constraints in the optimization problem (Figure 7.109b) smooths the design but preserves

the original shape of the design.

7.10.4 Spline Curvature Density

In this section, we compute the spline curvature density for a shape with a sharp corner in

the middle, as shown in Figure 7.110. The spline curvature density is defined as the ratio of the

spline curvature value (6.20) and the length of the zero level set interface (4.73). The sharpness

of the corner is modified by increasing the angle at the edges that form the corner. We set the

curvature search radius as rκ =∞, and the curvature springs stifness as kκ = 10−02.

The curvature density results are shown in Figure 7.111. We can observe that the curvature

density is directly proportional to the angle at the corner. We will use this information to penalize

intermediate curvature values using a smooth Heaviside projection.



223

Strain Energy Perimeter Curvature

Original 1.363× 10−01 2.108× 10+01 N/A

Figure 7.109a 1.402× 10−01 1.886× 10+01 3.693× 10−05

Figure 7.109b 1.384× 10−01 1.986× 10+01 1.004× 10−04

Table 7.28: Strain energy, perimeter, and curvature for the 2D short cantilever beam example of

Section 7.10.3.
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Figure 7.110: Problem setup for the sweep over different angles example.
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Figure 7.111: Curvature density distribution for different angles.
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(a) 30 degrees. (b) 45 degrees.

θ<60°

(c) 60 degrees.

Figure 7.112: Optimized material layout for the 2D short cantilever beam example, with a penalty

weight of wκ = 10−01 applied over intermediate curvature values.

7.10.5 Penalizing Intermediate Spline Curvature Values

In this example, we utilize the curvature density information from Section 7.10.4 to only

penalize curvature values above a certain threshold. We penalize curvature for density values

above 30, 45, and 60 degrees. We utilize the same problem setup as in Section 7.10.3, but we

impose a ±10% variation on the perimeter (7.44).

The optimized material layouts are shown in Figure 7.112. The strain energy, perimeter, and

curvature are shown in Table 7.29. We can observe that using a curvature density threshold to

penalize the curvature of the interface leads to different geometries. The layout in Figure 7.112c

displays a kink in one of the inclusions; however, this is expected, as the formulation only penalizes

curvature with a degree larger than 60◦ on the outside of the shape.
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Strain Energy Perimeter Projected curvature

Original 1.363× 10−01 2.108× 10+01 N/A

Figure 7.112a 1.385× 10−01 1.984× 10+01 9.820× 10−05

Figure 7.112b 1.397× 10−01 1.984× 10+01 6.566× 10−05

Figure 7.112c 1.415× 10−01 1.879× 10+01 9.978× 10−05

Table 7.29: Strain energy, perimeter, and curvature for the 2D short cantilever beam example of

Section 7.10.5.



Chapter 8

Conclusions

In this thesis, we presented a topology optimization framework combining an explicit Level

Set Method (LSM) for describing the geometry and an eXtended Finite Element Method (XFEM)

for predicting the physical response. The framework builds upon previous optimization studies that

utilized the LSM and the XFEM. The framework presents state-of-the-art stabilization methods

for immersed boundary techniques, such as the face-oriented ghost-penalty methods, and state-of-

the-art methods for the weak enforcement of boundary conditions.

The framework can be divided into 4 areas: the optimization model, the design model, the

analysis model, and the fabrication model. The conclusions with respect to each area of study are

summarized subsequently.

8.1 Analysis model

Departing from simplified and potentially inaccurate enrichment strategies frequently used

in topology optimization, we have presented a generalized Heaviside-step enrichment strategy that

consistently interpolates the state variables for complex geometries without the need to adaptively

refine the mesh. The XFEM formulation presented in this paper is robust and efficient in analyzing

configurations with complex geometries, which often emerge in topology optimization. Heaviside-

step enrichment functions provide great flexibility in handling a broad class of physical problems,

but may require enforcing additional continuity conditions across the phase boundaries. The pro-

posed optimization scheme was applied to two-phase material-void and material-material problems
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in 2D and 3D, with steady-state and transient behavior, in linear elastic structures and laminar

incompressible Navier-Stokes flow problems, coupled with energy and species transport models. For

material-void problems, elements entirely in the void phase were omitted in the element assembly

process and the degrees-of-freedom that interpolate the void phase were eliminated from the system

of equations; both techniques reduced the computational cost of solving the XFEM problem. The

boundary conditions for the material interface and on the external surfaces were enforced weakly

using either a stabilized Lagrange multiplier method or Nitsche’s method.

We studied the geometric preconditioner for Heaviside-enriched XFEM problems of Lang

et al [2014] and face-oriented ghost-penalty methods to stabilize the system of equations for cases

where the degrees-of-freedom interpolate the solution in small intersection areas. The geometric

preconditioner is constructed from both the nodal basis functions and the interface configuration,

and can be computed prior to constructing the system matrices, making it well-suited for nonlinear

problems. The scheme was extended to 3D, and studied in the context of linear elasticity. The

face-oriented ghost-penalty formulation was extended to work with a generalized Heaviside-step

enrichment strategy, and studied in the context of laminar incompressible flow problems. By

implementing either of the proposed stabilization schemes, the ill-conditioning due to small element

intersections is eliminated. Furthermore, the condition number of the XFEM problem is comparable

to that of a body-fitted mesh using the traditional FEM.

A novel auxiliary indicator field was modeled in order to identify isolated fluid regions sur-

rounded by solid in the flow problems, and free-floating solid particles surrounded by void in the

linear elasticity problems. For the flow problems, we weakly enforced a pressure constraint on these

regions to prevent a singular analysis problem. For the linear elasticity problems, we added soft

springs to the computational model to bypass the ill-conditioning issues due to the free-floating

material.

The analysis capability of the framework was validated quantitatively through comparison

against previous benchmark studies, and qualitatively through its application to topology optimiza-

tion problems. The design optimization problems converged to intuitive designs and resembled well
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the results from previous 2D studies. As demonstrated by the numerical studies presented in this

thesis, our LSM-XFEM approach is accurate, robust, and applicable to a broad range of design

problems for different physical phenomena. However, the computational costs can be significant, in

particular if accurate flow solutions are required. This is in parts due to the enlarged bandwidth of

the linear systems caused by the face-oriented ghost-penalty formulation, but more importantly due

to the lack of an adaptive mesh refinement strategy. Future research may focus on integrating mesh

refinement strategies into the LSM-XFEM framework such that the boundary layer phenomena are

captured accurately and efficiently.

8.2 Design model

The numerical studies suggest that the LSM-XFEM method features an improved conver-

gence as the mesh is refined and is able to represent thin-walled structures on coarse meshes. We

applied a perimeter constraint to suppress small geometric features in the optimized design. The

SIMP approach may require a strong projection to achieve clear binary “0-1” results with com-

parable physical response. While density filtering is an efficient and intuitive method to control

the local feature size, neither level set smoothing nor imposing a perimeter constraint achieves a

similar effect on LSM-XFEM results. These observations are in agreement with the findings of

van Dijk et al [2013] and Sigmund and Maute [2013] for level set methods using Ersatz material

and emphasize the need for regularization techniques with local shape control in level set topology

optimization.

8.3 Optimization model

The optimization problems used a gradient-based algorithm, and were solved using a non-

linear programming method; the flexibility of this scheme allowed us to define additional design

variables in addition to the parameters of the LSF. For example, additional design variables were

used to control the position and size of the outlets in the flow problems.

Shape sensitivities in the context of Heaviside-enriched XFEMwere studied. Using the adjoint
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method, shape sensitivities were shown to be a function of the sensitivities of the residual of the

governing equations, ∂R/∂si. Computing the semi-analytical shape sensitivities involved finite

differencing the term ∂Re/∂x
Γ
k in (4.66); this was shown to be an effective and easy to implement

alternative to analytical approaches. The corresponding shape sensitivities were observed to be

almost insensitive to the perturbation sizes.

In accordance with the adopted generalized enrichment strategy for the XFEM, the interface

is not allowed to intersect a node. Consequently, the material interface is shifted if it gets too close

to a node. It was observed that performing this shift in the interface position during the finite

difference perturbations resulted in an inaccurate computation of shape sensitivities.

Several material-material examples were studied. The accuracy of the semi-analytical shape

sensitivities was established via comparisons against finite differenced shape sensitivities. A nu-

merical comparison with shape sensitivities obtained using a body-fitted mesh was performed.

Although, the latter framework resulted in smoother sensitivities, an average relative difference

of only 0.69% was observed when using the XFEM. This difference further reduced by 36% after

two levels of mesh refinement. One disadvantage of the Heaviside-enriched XFEM is the need for

interface conditions to enforce continuity in the solution across the material interface. These in-

terface conditions have influence over the behavior of the sensitivities. Using a circular inclusion,

we showed that the smoothness of the shape sensitivities is heavily affected by the discretization

of the design geometry. As a result, it is possible to obtain smoother sensitivities through mesh

refinement. A two-inclusion problem was studied to demonstrate the effect of merging topologies

on shape sensitivities. The merging of topologies, not being a continous phenomenon, resulted

in a distinct spike in the shape sensitivities. Application to an incompressible fluid flow example

demonstrated the suitability of the Heaviside-enriched XFEM framework for the computation of

shape sensitivities in 3D nonlinear problems.
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8.4 Fabrication model

A level set gradient measure was applied to prevent the formation of features smaller than an

element size. Although the gradient penalty measure prevented the formation of very thin branches

in the conjugate heat transfer problem, the optimized design was different from the original study

(c.f. Alexandersen [2015]) due to the lack of a feature size control for arbitrary sizes.

We presented a novel measure to identify and control the minimum feature size in LSM-

XFEM topology optimization. The scalar measure identified features using the discretized surface

geometry of the XFEM model. This differentiates it from existing methods that directly utilize the

LSF. The measure differs from the quadratic energy approach of Chen et al [2008] in that it does

not use surface tangent information. This allows it to permit sharp corners found on a discretized

surface.

The measure was demonstrated via numerical experiments using two design problems: the

MBB beam and a heat transfer device with edge convection. The measure can be incorporated

into the optimization problem as a constraint or as a penalty on the objective. In cases where the

feature size could be enforced strictly the constraint was used. In cases where a strict enforcement

overly restricted design changes the measure was enforced with the penalty.

The measure was shown to be effective in identifying and enforcing a minimum feature size,

and it was enforced in either a single material phase or both. The construction makes deterring

the formation of small features convenient. Removing existing small features requires more care.

Incorporating the measure as an inequality constraint allows for an strict enforcement, but is

a difficult approach when initial designs violate the constraint. Furthermore, when used as a

constraint, it can be problematic to enforce a minimum feature size much larger than the current

geometry, and it is necessary to use a continuation approach. The application of the measure to the

convective design problem was shown to be simpler due to the initial design. The use of a simple

initial design also ensured that the constraint was satisfied from the beginning. Future work is

necessary to develop robust continuation schemes or formulations to balance feature development
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and minimum feature size constraint.

The feature size measure allows some control over the surface roughness or curvature via its

geodesic parameter rtx. The parameter was shown to be related to the secant function of an angle

θ, and to be able to prevent the formation of curvatures associated with this angle.

Manufacturing constraints in milling processes can be expressed in terms of the smoothness

of the optimized design. We have developed several smoothing techniques to control and maximize

the smoothness of our geometries. Numerical studies showed that our methods were effective in

maximizing the smoothness of the designs.



Chapter 9

Contributions

This section builds upon the issues, challenges, research topics, and results introduced in

previous sections, and summarizes the contributions of this thesis. These are outlined as follows:

(1) Development of an efficient algorithm to identify disconnected topologies. The

Heaviside-enriched XFEM described in this work augments the interpolation space of the

solution field within a fixed background mesh. In the context of topology optimization, this

approach meant that for some design iteration, the geometry would be described by discon-

nected pieces of material, as shown in Figure 3.5. In order to avoid the artificial coupling

of these pieces, the XFEM needed to properly identify such regions as disconnected and

apply the correct enrichment function (3.1). This problem is in its core a computer vision

issue. We developed a topology-flipping algorithm, which was used in combination with a

flood-fill algorithm, to correctly identify both the connected and disconnected topologies

in the analysis domain. This algorithm constitutes the foundation of the XFEM approach

utilized in this document. Numerical experiments performed during the course of this dis-

sertation showed that the algorithm could accurately identify the topology of an analysis

domain with millions of finite elements in milliseconds. The algorithmic implementation of

the method is described in the internal document in Appendix A, and in the publication

in Appendix C.

(2) Study of the correctness and accuracy of the shape sensitivities of the opti-
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mization criteria. In this dissertation, we used a gradient-based optimization algorithm

as part of our optimization framework. The algorithm required that we provide the sensi-

tivities of the objective function and the inequality constraints of the optimization problem.

These sensitivities were computed with respect to the design variables (1.3), which in turn

were used as the parameters of a discretized Level Set Function (2.9). During the compu-

tation of the shape sensitivities, it was necessary to compute the gradient of the residual

function of the governing equations with respect to the coordinates of the points at which

the zero level set of the Level Set Function intersected the finite elements (4.66). The gra-

dient of the residual could be computed analytically or by finite difference. The analytical

route was complex and computationally expensive because the nodal basis functions were

defined as functions of the design variables. The finite difference approach was easier to

implement, but could present issues in terms of the accuracy of the computation. Fur-

thermore, the Heaviside function was discontinuous by construction. This quality of the

enrichment function presented advantages as well as challenges in the computation of the

shape sensitivities. We studied the shape sensitivity analysis using backward, forward, and

central finite differences approaches. We developed a methodology to select an epsilon value

for the perturbations such that the sensitivities are well-posed. We compared the results

against analytical shape sensitivities, and showed that our method is accurate, and that

finite differencing the residual sensitivities is an effective and easy to implement alternative.

(3) Application of a geometric preconditioner for the Heaviside-enriched XFEM in

3D problems. As the geometry of the design evolves during the optimization process,

the interface of the embedded body may lead to intersection configurations where certain

degrees-of-freedom interpolate in small intersection areas, as shown in Figure 5.1. This

produces an ill-conditioning of the nonlinear problem, which manifests itself through an

increase in the condition number of the linearized system. This phenomenon is more pro-

nounced in 3D problems than in 2D ones. To guarantee stability, as well as to improve
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the conditioning of the system, we expanded the geometric preconditioning scheme of Lang

et al [2014], which was introduced and studied for 2D heat conduction and flow problems,

onto 3D problems in structural mechanics. The preconditioner scheme builds a scaling

matrix to balance the influence of all degrees-of-freedom in the system. Numerical exper-

iments showed that the preconditioner successfully decreased the condition number of the

system. The method is generic in that it was built based on the design geometry, which in

turn depends on the Level Set Function. This meant that the approach can be applied to

multiple physical phenomena without any modifications to the scaling matrix. The study

of the preconditioner is shown in Appendix C. This work constitutes the first use of the

preconditioner in topology optimization problems.

(4) Development of an auxiliary indicator field to efficiently recognize isolated re-

gions arising during the optimization process. A novel auxiliary indicator field is

developed in order to identify isolated regions of a specific phase surrounded by the domain

of the opposite phase. For example, fluid flow “puddles” surrounded by the solid domain,

or free-floating structural particles surrounded by the void domain. These isolated regions

lead to an ill-conditioned system of equations because the absolute value of the pressure

is not governed in the flow problems, or because they produce a rigid body mode in the

linear elasticity problems. In order to stabilize the system, we added a penalty formulation

to weakly enforce a pressure constraint in the flow problems, and modeled an artificial

system of soft springs to the linear elasticity equations in the structural problems. This

penalty is only applied to the domains identified by the auxiliary indicator field as isolated

regions. The auxiliary field is modeled as a linear diffusion problem in the phase region of

interest. The diffusion model is not applied in the other phase. The auxiliary field serves as

a binary indicator that is active inside the isolated regions. Numerical experiments showed

that applying the penalty only over the isolated regions does not affect the optimization

process nor the accuracy of the physical response of the system. Similar approaches in
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the literature apply the penalty over the entire domain; in our study, we showed that this

approach can cause the solution to violate the incompressibility condition in incompressible

flow problems.

(5) Comparison of the LSM-XFEM framework against traditional density-based

topology optimization methods. The first application of both the Level Set Method

and the Heaviside-enriched eXtended Finite Element Method as a topology optimization

framework for problems in 3D was performed as part of this dissertation. The application

was studied in the context of 3D linear elastic structures. The study compared the frame-

work against traditional density-based topology optimization methods, such as SIMP. The

study revealed several differences between the two approaches; for example, it showed that

the XFEM may provide a faster convergence of the optimization algorithm, especially for

multimaterial problems. The LSM-XFEM framework also provides a better description

of the geometry and material distribution than density methods, and therefore requires

coarser meshes which leads to faster computations. However, the study proved that, in

contrast to density methods and its smoothing filter (1.12), the LSM-XFEM framework is

not capable of controlling the minimum feature size of the design without additional regu-

larization techniques. The minimum feature size is relevant in order to accurately represent

the physics and to meet manufacturing constraints; for example, it is not desirable for the

design to have a small feature that the manufacturing process cannot represent. Further-

more, we showed that the LSM-XFEM framework provides a more accurate response of

the system because of the crisp definition of the boundaries. The method can accurately

describe the physics at the material interface without extensive mesh refinement with the

use of stabilized Lagrange multipliers or Nitsche’s method. The framework does not require

any postprocessing to extract the optimized material layout. The latter proved significantly

advantageous for the use of the framework in rapid prototyping. The study is provided in

Appendix C.
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(6) Extension of face-oriented ghost-penalty methods for use in Heaviside-enriched

XFEM and application in topology optimization. Small intersection areas in incom-

pressible flow problems may cause an ill-conditioning of the system, which manifests itself

through oscillations in the stresses. Convective flows require special treatment and addi-

tional stability terms. To properly model incompressible Navier-Stokes flow, and energy

and species transport in the context of topology optimization, we extended the face-oriented

ghost-penalty formulations of Burman and Hansbo [2012], Burman and Hansbo [2014], and

Schott and Wall [2014] onto Heaviside-enriched XFEM. The formulation adds additional

terms to the incompressible Navier-Stokes and advection-diffusion equations to penalize dis-

continuties in the spatial gradients of the velocity, pressure, and temperature fields across

the common facets of intersected elements. These terms accounted for viscous-dominated

and convection-dominated flow regimes. The accuracy of the method was validated quan-

titatively through comparison against benchmark examples, and qualitatively through their

application to 3D laminar flow topology optimization problems. The topology optimization

problems were modeled after density-based examples found in the literature. This work

constitutes the first validation and application of face-oriented ghost-penalty methods in

topology optimization.

(7) Study the accurate and robust application of boundary conditions in the context

of topology optimization. Boundary conditions on the level set interface are enforced

weakly. Enforcing the boundary conditions in an accurate and robust manner is important

to properly model the physical response of the system, and to compute the sensitivities

needed for the optimization problem. Two methods were studied to weakly enforce bound-

ary conditions: stabilized Lagrange multipliers and Nitsche’s method. We applied stabilized

Lagrange multipliers to 3D linear elasticity problems, and utilized Nitsche’s method in 3D

incompressible laminar flow. We show that to ensure robustness, we needed additional

terms in the formulations to account for the nonlinearity of the problems, as shown in
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Schott and Wall [2014]. We validated the enforcement of boundary conditions quantita-

tively through benchmark examples in the literature.

(8) Application of the framework to a real-life design problem. In Section 7.8.1, we

studied the design of passive coolers. The engineering design problem was modeled after the

setup provided by Alexandersen [2015] for a light-emitting diode (LED) lamp. LED lamps

have a lifespan and electrical efficiency that is several times better than incandescent and

fluorescent lamps. However, unless adequately cooled, their lifespan is reduced because 70%

of the energy supplied to them is converted to heat. The objective of the example was to

minimize the temperature of the LED package, which is subject to heat transfer dominated

by natural convection. To the authors knowledge, this work is the first to treat a real-life

application, using the LSM and the XFEM to model a correct and coupled physical model.

The optimized design showed interesting features that are currently being incorporated into

industrial designs of passive coolers. The design exhibited tree-like branches extending out

from the center of the design domain, which conduct the heat away from the LED package

and transfer it to the flowing air by allowing the flow to move between the branches.

(9) Application of a minimum feature size control measure in 3D problems. Con-

trolling the minimum feature size of an optimized material layout is paramount to ensure

that the governing equations can accurately model the physical response of the feature,

and that the design can be manufactured. In this thesis, we introduced a novel measure

to control the minimum feature size of a design geometry in 3D topology optimization

problems. Our feature size control method relied on the explicit Level Set Method (2.9)

and on the eXtended Finite Element Method (3.1). Several feature size control techniques

for LSM-based topology optimization rely on preserving a signed distance field in the LSF;

however, this requires a refined mesh to accurately represent the geometry. An example

of a feature size control technique which does not depend on a signed distance field is the

quadratic energy method of Chen et al [2008], which compares the tangent vectors on the
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interface at different points. Nevertheless, this approach is not effective when computing

the measure on discretized surfaces. The feature size control measure developed here iden-

tifies violations of a minimum feature size, and does not require a signed distance field

because it operates on the discretized polygon mesh of the level set interface, as provided

by the XFEM. A comparison of our formulation against the one from Chen et al [2008] is

also provided. The measure was demonstrated on structural and convective heat transfer

topology optimization problems.

(10) Development of shape smoothers to control the shape of the design geometry

and meet manufacturing constraints. The minimum feature size measure may not

be sufficient to meet manufacturing constraints. Sharp edges also present issues in 3D

printing and milling processes, due to the minimum resolution of the machines. In this

thesis, we studied several novel measures to control and improve the smoothness of the

material interface in the context of topology optimization.



Chapter 10

Future Work

This thesis has introduced a topology optimization framework that utilizes the Level Set

Method to describe the design geometry and the eXtended Finite Element Method to solve the

governing equations and measure the performance of the design. There are a number of short term

(shown first) and long term questions and avenues for further research, summarized here:

(1) Extend shape smoothers to 3D. Natural convection problems in 2D and 3D lead to

designs that form several thin branches, and may require additional smoothing to meet

manufacturing constraints. The shape smoothers introduced here need to be implemented

and studied for 3D problems.

(2) Study the feature size measure with topological derivatives to reduce influence

of the initial design. In our framework, the initial design is usually set as an agglom-

eration of multiple inclusions that later merge or change shapes during the optimization

process. The minimum feature size measure studied here may prevent the merging of these

inclusions, and therefore, prevent changes in the design. Alternate methods that do not

require us to feed a “swiss cheese”-like initial design need to be studied, such as topological

derivatives [Sá et al, 2016].

(3) Study adaptive mesh refinement to perform topology optimization with bound-

ary layer meshes. We currently do not have the capability to adaptively refine the mesh

nor to generate boundary layer meshes at the material interface for design changes during
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the optimization process. This is important for optimization problems that require the

computation of the spatial gradients of the solution at the material interface with high

accuracy.



Bibliography

Alexandersen J (2015) Topology optimisation of passive coolers for light-emitting diode lamps. In:
11th World Congress of Structural and Multidisciplinary Optimisation

Allaire G, Jouve F, Toader A (2002) A level-set method for shape optimization. Comptes Rendus
Mathematique 334(12):1125–1130

Allaire G, Gournay Fd, Jouve F, Toader AM (2005) Structural optimization using topological and
shape sensitivity via a level set method. Control and Cybernetics 34(1):59–80

Allaire G, Jouve F, Michailidis G (2014) Thickness control in structural optimization via a level
set method, URL https://hal.archives-ouvertes.fr/hal-00985000

Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust nitsche’s formulation for interface
problems. Computer Methods in Applied Mechanics and Engineering 225:44–54

Babuška I, Melenk JM (1997) The partition of unity method. International Journal for Numerical
Methods in Engineering 40(4):727–758

Bazilevs Y, Hughes TJ (2007) Weak imposition of dirichlet boundary conditions in fluid mechanics.
Computers & Fluids 36(1):12–26

Bazilevs Y, Michler C, Calo V, Hughes T (2010) Isogeometric variational multiscale modeling of
wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes.
Computer Methods in Applied Mechanics and Engineering 199(13):780–790

Béchet É, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study
of the x-fem for stress analysis around cracks. International Journal for Numerical Methods in
Engineering 64(8):1033–1056

Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing.
International Journal for Numerical Methods in Engineering 45

Bendsøe M (1989) Optimal shape design as a material distribution problem. Structural and Mul-
tidisciplinary Optimization 1(4):193–202

Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homoge-
nization method. Computer Methods in Applied Mechanics and Engineering 71(2):197–224

Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Archive
of Applied Mechanics 69(9-10):635–654

https://hal.archives-ouvertes.fr/hal-00985000


242

Bendsøe M, Lund E, Olhoff N, Sigmund O (2005) Topology optimization-broadening the areas of
application. Control and Cybernetics 34(1):7

Bendsøe MP, Sigmund O (2003) Topology Optimization: Theory, Methods and Applications.
Springer

Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. International Journal
for Numerical Methods in Fluids 41(1):77–107

Burman E (2012) A penalty-free nonsymmetric nitsche-type method for the weak imposition of
boundary conditions. SIAM Journal on Numerical Analysis 50(4):1959–1981

Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: I. a
stabilized lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering
199(41):2680–2686

Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: Ii. a
stabilized Nitsche method. Applied Numerical Mathematics 62(4):328–341

Burman E, Hansbo P (2014) Fictitious domain methods using cut elements: Iii. a stabilized
nitsche method for stokes’ problem. ESAIM: Mathematical Modelling and Numerical Analysis
48(03):859–874

Burman E, Fernández MA, Hansbo P (2006) Continuous interior penalty finite element method for
oseen’s equations. SIAM journal on numerical analysis 44(3):1248–1274

Burman E, Claus S, Hansbo P, Larson MG, Massing A (2014) Cutfem: discretizing geometry and
partial differential equations. International Journal for Numerical Methods in Engineering

CGAL (2009) Computational Geometry Algorithms Library. http://www.cgal.org

Chen S, Wang M, Liu A (2008) Shape feature control in structural topology optimization.
Computer-Aided Design 40(9):951–962

Chern IL, Shu YC (2007) A coupling interface method for elliptic interface problems. Journal of
Computational Physics 225(2):2138–2174

Choi YJ, Hulsen MA, Meijer HE (2012) Simulation of the flow of a viscoelastic fluid around a
stationary cylinder using an extended finite element method. Computers & Fluids 57:183–194

Coffin P, Maute K (2015a) A level-set method for steady-state and transient natural convection
problems. Structural and Multidisciplinary Optimization pp 1–21

Coffin P, Maute K (2015b) Level set topology optimization of cooling and heating devices using a
simplified convection model. Structural and Multidisciplinary Optimization

Coolidge J (1952) The unsatisfactory story of curvature. American Mathematical Monthly pp 375–
379

van Dijk N, Maute K, Langelaar M, Keulen F (2013) Level-set methods for structural topology
optimization: a review. Structural and Multidisciplinary Optimization 48(3):437–472



243

Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int
J Numer Meth Engng 78:229–252

Dyn N, Hormann K, Kim SJ, Levin D (2001) Optimizing 3d triangulations using discrete curvature
analysis. In: Lyche T, Schumaker LL (eds) Mathematical Methods for Curves and Surfaces,
Vanderbilt University, chap Optimizing 3D Triangulations Using Discrete Curvature Analysis,
pp 135–146

Erentok A, Sigmund O (2011) Topology optimization of sub-wavelength antennas. Antennas and
Propagation, IEEE Transactions on 59(1):58–69

Eschenauer H, Olhoff N (2001) Topology optimization of continuum structures: a review. Applied
Mechanics Reviews 54:331

Franca LP, Frey SL, Hughes TJ (1992) Stabilized finite element methods: I. application to the
advective-diffusive model. Computer Methods in Applied Mechanics and Engineering 95(2):253–
276

Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of
the method and its applications. International Journal for Numerical Methods in Engineering
84(3):253–304

Fuchs M, Jiny S, Peleg N (2005) The srv constraint for 0/1 topological design. Structural and
Multidisciplinary Optimization 30(4):320–326

Gain AL, Paulino GH (2013) A critical comparative assessment of differential equation-driven
methods for structural topology optimization. Structural and Multidisciplinary Optimization
48(4):685–710

Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based
approach for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineer-
ing 197:1699–1714

Gill PE, Murray W, Saunders MA (2002) Snopt: An sqp algorithm for large-scale constrained
optimization. SIAM Journal on Optimization 12(4):979–1006

Golmon S, Maute K, Dunn ML (2012) Multiscale design optimization of lithium ion batteries
using adjoint sensitivity analysis. International Journal for Numerical Methods in Engineering
92(5):475–494

Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimiza-
tion using nodal design variables and projection functions. International Journal for Numerical
Methods in Engineering 61(2):238–254

Guest J, Asadpoure A, Ha SH (2011) Eliminating beta-continuation from heaviside projection and
density filter algorithms. Structural and Multidisciplinary Optimization 44(4):443–453

Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via
level set method. Computer Methods in Applied Mechanics and Engineering 272:354–378

Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discon-
tinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33-
35):3523 – 3540



244

Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous
elasticity. Journal of the Mechanics and Physics of Solids 10(4):335 – 342

Heroux M, Bartlett R, Hoekstra VHR, Hu J, Kolda T, Lehoucq R, Long K, Pawlowski R, Phipps
E, Salinger A, Thornquist H, Tuminaro R, Willenbring J, Williams A (2003) An Overview of
Trilinos. Tech. Rep. SAND2003-2927, Sandia National Laboratories

Jenkins N, Maute K (2015) Level set topology optimization of stationary fluid-structure interaction
problems. Structural and Multidisciplinary Optimization 52(1):179–195

Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization and lift maximization in laminar
flows via topology optimization employing simple objective function expressions based on body
force integration. Structural and Multidisciplinary Optimization 45(5):693–701

Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance
index. In: International Federation of Active Contrals Symposium on Computer Aided Design of
Control Systems, Zurich, Switzerland

Kreissl S, Maute K (2011) Topology optimization for unsteady flow. International Journal for
Numerical Methods in Engineering 87:1229–1253

Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite
element method. Structural and Multidisciplinary Optimization 46(3):311–326

Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimiza-
tion of fluids with the lattice boltzmann method. International Journal for Numerical Methods
in Fluids 65(5):496–519

Labbé T, Glineur F, Dehez B (2009) Topology optimization method applied to the design of elec-
tromagnetic devices: focus on convexity issues. In: 8th International Symposium on Advanced
Electromechanical Motion Systems and Electric Drives Joint Symposium, ELECTROMOTION
2009

Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning scheme for
heaviside enriched xfem. Computational Mechanics 54(5):1357–1374

Łaniewski-Wołłk Ł, Rokicki J (2015) Adjoint lattice boltzmann for topology optimization on multi-
gpu architecture. arXiv preprint arXiv:150104741

Lee DT, Schachter BJ (1980) Two algorithms for constructing a delaunay triangulation. Interna-
tional Journal of Computer & Information Sciences 9(3):219–242, j2: International Journal of
Computer and Information Sciences

Legay A, Chessa J, Belytschko T (2006) An eulerian–lagrangian method for fluid–structure interac-
tion based on level sets. Computer Methods in Applied Mechanics and Engineering 195(17):2070–
2087

Li L, Wang M, Wei P (2012) Xfem schemes for level set based structural optimization. Frontiers of
Mechanical Engineering 7(4):335–356

Liu Y, Deng Y, Zhang P, Liu Z, Wu Y (2013) Experimental investigation of passive micromix-
ers conceptual design using the layout optimization method. Journal of Micromechanics and
Microengineering 23(7):075,002



245

Luo J, Luo Z, Chen L, Tong L, Wang M (2008a) A semi-implicit level set method for structural
shape and topology optimization. Journal of Computational Physics 227(11):5561–5581

Luo J, Luo Z, Chen S, Tong L, Wang M (2008b) A new level set method for systematic design
of hinge-free compliant mechanisms. Computer Methods in Applied Mechanics and Engineering
198(2):318–331

Makhija D, Maute K (2014a) Level set topology optimization of scalar transport problems. Struc-
tural and Multidisciplinary Optimization

Makhija D, Maute K (2014b) Numerical instabilities in level set topology optimization with the
extended finite element method. Structural and Multidisciplinary Optimization 49(2):185–197

Makhija D, Pingen G, Yang R, Maute K (2012) Topology optimization of multi-component flows
using a multi-relaxation time lattice boltzmann method. Computers & Fluids 67(0):104 – 114

Maute K (2014) Topology optimization of diffusive transport problems. In: Rozvany G, Lewiński
T (eds) Topology Optimization in Structural and Continuum Mechanics, CISM International
Centre for Mechanical Sciences, vol 549, Springer Vienna, pp 389–407

Maute K, Ramm E (1995) Adaptive topology optimization. Structural and Multidisciplinary Op-
timization 10(2):100–112

Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA Journal
35(11):1767–1773

Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures.
Structural and Multidisciplinary Optimization 15(2):81–91

Meisel N, Gaynor A, Williams C, Guest J (2013) Multiple-material topology optimization of com-
pliant mechanisms created via polyjet 3d printing. In: Twenty Forth Annual International Solid
Freeform Fabrication Symposium ‚Äì An Additive Manufacturing Conference, August 12-14,
2013, Austin, TX

Menk A, Bordas S (2011) A robust preconditioning technique for the extended finite element
method. International Journal for Numerical Methods in Engineering 85(13):1609–1632

Michell AGM (1904) The limits of economy of material in frame-structures. Philos Magazine S6
8(47):589–597

Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization, vol 18. Wiley New York

Newton I, Colson J (1736) The Method of Fluxions and Infinite Series; with Its Application to the
Geometry of Curve-lines... Translated from the Author’s Latin Original Not Yet Made Publick.
To which is Subjoin’d a Perpetual Comment Upon the Whole Work... by J. Colson

Nguyen T, Paulino G, Song J, Le C (2012) Improving multiresolution topology optimization via
multiple discretizations. International Journal for Numerical Methods in Engineering 92(6):507–
530

Ning X, Pellegrino S (2012) Design of lightweight structural components for direct digital manufac-
turing. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference



246

Nitsche J (1975) Uber ein Variationsprinzip zur Loesung von Dirichlet-Problemen bei Verwendung
von Teilraeumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Math-
ematischen Seminar der Universitaet Hamburg 36:9–15

Nørgaard S, Sigmund O, Lazarov B (2016) Topology optimization of unsteady flow problems using
the lattice boltzmann method. Journal of Computational Physics 307:291–307

Olsson C, Boykov Y (2012) Curvature-based regularization for surface approximation. In: Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, pp 1576–1583

Osher S, Paragios N (2003) Geometric level set methods in imaging, vision, and graphics. Springer-
Verlag New York Inc

Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and
constraints: I. frequencies of a two-density inhomogeneous drum. Journal of Computational
Physics 171(1):272 – 288

Osher SJ, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based
on Hamilton-Jacobi formulations. Journal of Computational Physics 79:12—49

Park J, Sutradhar A (2015) A multi-resolution method for 3d multi-material topology optimization.
Computer Methods in Applied Mechanics and Engineering 285:571–586

Parvizian J, Düster A, Rank E (2012) Topology optimization using the finite cell method. Opti-
mization and Engineering 13(1):57–78

Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology
optimization of flow domains. Structural and Multidisciplinary Optimization 41(1):117–131

Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization.
International Journal for Numerical Methods in Engineering 57(6):741–760

Rozvany G (2009) A critical review of established methods of structural topology optimization.
Structural and Multidisciplinary Optimization 37(3):217–237

Rozvany G, Zhou M, Sigmund O (1994) Optimization of topology. Advances in design optimization
Chapman & Hall, London pp 340–399

Sá L, Amigo R, Novotny A, Silva E (2016) Topological derivatives applied to fluid flow channel
design optimization problems. Structural and Multidisciplinary Optimization pp 1–16

Saad Y (1994) Ilut: A dual threshold incomplete lu factorization. Numerical Linear Algebra with
Applications 1(4):387–402

Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM Journal on Scientific and Statistical Computing 7(3):856–869

Sauerland H, Fries TP (2013) The stable xfem for two-phase flows. Computers & Fluids 87:41–49

Schäfer M, Turek S, Durst F, Krause E, Rannacher R (1996) Benchmark computations of laminar
flow around a cylinder. Springer



247

Schevenels M, Lazarov BS, Sigmund O (2011) Robust topology optimization accounting for spa-
tially varying manufacturing errors. Computer Methods in Applied Mechanics and Engineering
200(49):3613–3627

Schleupen A, Maute K, Ramm E (2000) Adaptive fe-procedures in shape optimization. Structural
and Multidisciplinary Optimization 19:282–302

Schmitt O, Steinmann P (2015) On curvature control in node–based shape optimization. PAMM
15(1):579–580

Schott B, Wall W (2014) A new face-oriented stabilized xfem approach for 2d and 3d incompressible
navier–stokes equations. Computer Methods in Applied Mechanics and Engineering 276:233–265

Schott B, Rasthofer U, Gravemeier V, Wall W (2014) A face-oriented stabilized Nitsche-type ex-
tended variational multiscale method for incompressible two-phase flow. International Journal
for Numerical Methods in Engineering URL http://dx.doi.org/10.1002/nme.4789

Sethian J, Wiegmann A (2000) Structural boundary design via level set and immersed interface
methods. Journal of Computational Physics 163(2):489–528

Shim H, Ho V, Wang S, Tortorelli D (2008) Topological shape optimization of electromagnetic prob-
lems using level set method and radial basis function. CMES: Computer Modeling in Engineering
& Sciences 37(2):175–202

Sigmund O (2001) A 99 line topology optimization code written in matlab. Structural and Multi-
disciplinary Optimization 21(2):120–127

Sigmund O (2007) Morphology-based black and white filters for topology optimization. Structural
and Multidisciplinary Optimization 33(4-5):401–424

Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mechanica Sinica/Lixue
Xuebao 25(2):227–239

Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struc-
tural and Multidisciplinary Optimization 43(5):589–596

Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by
topology optimization. Philosophical Transactions of the Royal Society A 361(1806):1001–1019

Sigmund O, Maute K (2013) Topology optimization approaches: A comparative review. Structural
and Multidisciplinary Optimization 48(6):1031–1055

Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: A survey on
procedures dealing with checkerboards, mesh-dependencies and local minima. Structural and
Multidisciplinary Optimization 16(1):168–75

Squillacote AH, Ahrens J (2007) The paraview guide, vol 366. Kitware

Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology
optimization. Structural and Multidisciplinary Optimization 22(2):116–124

Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization.
International Journal for Numerical Methods in Engineering 24(2):359–373

http://dx.doi.org/10.1002/nme.4789


248

Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Proceedings of
the First World Congress of Structural and Multidisciplinary Optimization, 28 May - 2 June
1995, Goslar, Germany, pp 9–16

Svanberg K (2002) A class of globally convergent optimization methods based on conservative
convex separable approximations. SIAM J on Optimization 12(2):555–573

Svanberg K (2007) Mma and gcmma-two methods for nonlinear optimization. Tech. rep., Technical
report

Tcherniak D, Sigmund O (2001) A web-based topology optimization program. Structural and Mul-
tidisciplinary Optimization 22(3):179–187

Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of
heterogeneous solids. International Journal for Numerical Methods in Engineering 58(9):1321–
1346

Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized
bilinear and linear equal-order-interpolation velocity-pressure elements. Computer Methods in
Applied Mechanics and Engineering 95:221–242

Tran TQN, Lee HP, Lim SP (2011) Modelling porous structures by penalty approach in the extended
finite element method. Computer Methods in Biomechanics and Biomedical Engineering ahead-
of-p:1–11

Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the
mumford and shah model. International journal of computer vision 50(3):271–293

Villanueva CH, Maute K (2014) Density and level set-xfem schemes for topology optimization of
3-d structures. arXiv preprint arXiv:14016475

Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formula-
tions in topology optimization. Structural and Multidisciplinary Optimization 43(6):767–784

Wang M, Wang X (2004) “Color” level sets: a multi-phase method for structural topology op-
timization with multiple materials. Computer Methods in Applied Mechanics and Engineering
193(6-8):469–496

Wang M, Wang X (2005) A level-set based variational method for design and optimization of
heterogeneous objects. Computer-Aided Design 37(3):321–337

Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Com-
puter Methods in Applied Mechanics and Engineering 192(1-2):227–246

Wei P, Wang M, Xing X (2010) A study on X-FEM in continuum structural optimization using a
level set model. Computer-Aided Design 42(8):708–719

Wilke DN, Kok S, Groenwold AA (2006) A quadratically convergent unstructured remeshing strat-
egy for shape optimization. International journal for numerical methods in engineering 65(1):1–17

Xia Q, Shi T (2015) Constraints of distance from boundary to skeleton: For the control of length
scale in level set based structural topology optimization. Computer Methods in Applied Mechan-
ics and Engineering 295:525–542



249

Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside func-
tions. Structural and Multidisciplinary Optimization 41(4):495–505

Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a
coupled thermal–fluid problem using level set boundary expressions. International Journal of
Heat and Mass Transfer 81:878–888

Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on
the level set method incorporating a fictitious interface energy. Computer Methods in Applied
Mechanics and Engineering 199(45):2876–2891

Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010) A structural optimization method
based on the level set method using a new geometry-based re-initialization scheme. International
Journal for Numerical Methods in Engineering 83(12):1580–1624

Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology
optimization method targeting metallic waveguide design problems. International Journal for
Numerical Methods in Engineering 87(9):844–868

Yin L, Ananthasuresh G (2001) Topology optimization of compliant mechanisms with multiple
materials using a peak function material interpolation scheme. Structural and Multidisciplinary
Optimization 23(1):49–62

Yoon G, Jensen JS, Sigmund O (2007) Topology optimization of acoustic-structure interaction
problems using a mixed finite element formulation. International Journal for Numerical Methods
in Engineering 70(9):1049–1075

Zhang C, Zhang P, Cheng FF (2001) Fairing spline curves and surfaces by minimizing energy.
Computer-Aided Design 33(13):913–923

Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in simp-based topology
optimization. Computer Methods in Applied Mechanics and Engineering 282:71 – 86

Zhou M, Rozvany GIN (1991) The COC algorithm, part II: Topological, geometrical and generalized
shape optimization. Computer Methods in Applied Mechanics and Engineering 89(1-3):309–336

Zhou M, Lazarov BS, Sigmund O (2014) Topology optimization for optical projection lithography
with manufacturing uncertainties. Appl Opt 53(12):2720–2729

Zhou M, Lazarov BS, Wang F, Sigmund O (2015) Minimum length scale in topology optimization
by geometric constraints. Computer Methods in Applied Mechanics and Engineering 293:266–282



Appendix A

Internal I1: A Complete Methodology for the Implementation of XFEM

Inclusive Models



A Complete Methodology for the Implementation of

XFEM Inclusive Models

Hernan Villanueva

Fall 2012

This document was written in 2012 as an internal implementation manual for future

developers of our code, the Finite Element Multi-Disciplinary Optimization Code (femdoc).

This report offers a background into the eXtended Finite Element Method as a tool to

solve the shortcomings of the classical Finite Element Method. An example of such is the

numerical solution to problems with different material topologies (i.e. discontinuities). The

XFEM uses level set functions to track the location of these discontinuities. The report

also provides algorithms for locating these discontinuities and subsequently dividing the

domain into sub-domains capable of integration. This report ultimately expounds upon how

to effectively apply the local enrichment functions that the XFEM standard approximation

requires at the nodes where the discontinuities occur.

The reader may skip this section, as it focuses on the algorithmic implementation of the

framework and most of its content is intended for software developers.
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1 Introduction

1.1 Finite element method

The Finite Element Method (FEM) is a numerical technique used for finding solutions to

partial differential equations as well as to integral equations. Traditional finite element meth-

ods (FEM) requires meshing techniques that generate discrete representation of potentially

complex geometry. Difficulties arise when using the traditional FEM for analyzing fracture

mechanics: under traditional FEM, introducing a discontinuity in the mesh, changing the

material topology or drastically changing the shape of the material requires a new mesh to

ensure that the element edges align with the discontinuity (Abdelaziz and Hamouine, 2008).

The process is laborious and difficult (Zienkiewicz et al, 2005). The eXtended Finite Element

Method (XFEM) arose as a solution to this impediment by applying enrichment functions

at the position of the material interface or topology discontinuity instead of re-meshing the

entire structure.

1.2 Discontinuity

A discontinuity can be defined as a rapid change in a field variable over a length negligible in

size compared to the entire domain analyzed (Abdelaziz and Hamouine, 2008). For example,

in solid mechanics, strain and stress fields are discontinuous across material interfaces and

displacements are discontinuous at cracks; in fluid dynamics, velocity and pressure fields

are discontinuous at the boundary layer between two fluids. A discontinuity is classified as

“weak” or “strong”. Weak discontinuities happen when a field variable (stress field, strain

rate, etc.) has a kink, meaning the derivative has a jump. This can happen at boundary

layers, or at a material or fluid interface. Strong discontinuities happen when the field

quantity has a jump; this could include, for example, a crack in the structure (Hansbo and

Hansbo, 2004).
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1.3 eXtended Finite Element Method

The XFEM arose as a numerical technique capable of providing local enrichment functions at

the position of the material interface, avoiding the need to re-mesh the entire structure while

finding solutions for the discontinuous functions (Fries and Belytschko, 2010). By doing this,

XFEM appears to solve the shortcomings of the FEM by providing accurate solutions for

complex problems in engineering that would be impossible to solve otherwise (Abdelaziz and

Hamouine, 2008).

1.4 Level set method

Level set functions are used to model the motion of these discontinuities in the elements. A

level set function is a numerical scheme where the discontinuity of interest is represented as

the zero level set function. Basically, a level set function has a value of zero at the boundary

of its closed curve and opposite signs on the interior and the exterior (Figure 1).

φ (x) > 0 ∀x ∈ Ω\∂Ω (inside the region)

φ (x) = 0 ∀x ∈ ∂Ω (on the boundary)

φ (x) < 0 ∀x ∈ D\Ω (outside the region)

(1)

The XFEM uses this method by placing the discontinuity at the boundary layer and giving

the interface caused by the division positive and negative values. Since the zero level is

interpreted as the discontinuity, new nodes (called pseudo-nodes) are created at this position

and the enrichment of the FEM is produced at this location. This creates an advantage

because instead of re-meshing the entire structure, a fixed Cartesian grid is used to divide

the structure and the discontinuity into domains capable of integration. Once this mesh is

settled, the XFEM will subsequently use either branched or Heaviside functions to enrich

the nodes and solve for the problem.
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Figure 1: The zero level set isolevel of the level set function, ∂Ω = Γφ=0, in 1a divides the
fixed mesh grid into different phase regions in 1b, where each phase may represent a different
material or a different physics.

The Level Set Method (LSM) and the XFEM have a sort of natural coupling to solve

problems with discontinuities. While the LSM is used to model the discontinuity and update

its motion at each calculation, the XFEM is used to solve the problem and determine the

direction of the discontinuity (Stolarska et al, 2001).

1.5 Delaunay triangulation

In order to apply the LSM and the XFEM to solve a problem, a framework for dividing

arbitrarily complex geometries into integrable domains must be developed. The Delaunay

triangulation is a critical step in this process. The Delaunay triangulation is the subdivision

of a geometric object into triangles for 2D geometry and tetrahedra for 3D (Figure 2).

This particular triangulation has the property that the circumcircle of any triangle in the

triangulation does not contain the vertices of other triangles or its own in its interior (Figure

3) (Lee and Schachter, 1980). Because triangle and tetrahedra are integrable elements, the

XFEM method can then be applied.

For an inclusion-based XFEM model (inclusion meaning the zero level function is always
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Figure 2: The Delaunay formulation triangulates QUAD4 finite elements cut by the level
set zero isolevel from Figure 1b into TRI3 elements.

Figure 3: Delaunay circumcircles - A set of points can be uniquely triangulated in a way
that the points form circumcircles.
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a closed curve), there are only 8 triangulation configurations in 2D, while 127 different ones

in 3D. Due to the low number of cases in 2D, a tabulation of the triangulation is performed

instead of using the Delaunay triangulation. Figure 4 shows the different cases for 2D, while

Figure 5 shows the triangulation of a 3D element with four different discontinuities.

< 0 > 0 > 0 > 0 > 0 < 0 > 0 < 0 

< 0 > 0 > 0 < 0 < 0 < 0 > 0 < 0 

> 0 > 0 > 0 > 0 > 0 < 0 < 0 > 0 

> 0 > 0 > 0 > 0 < 0 > 0 > 0 < 0 

Figure 4: There are only 8 different triangulation configurations for an inclusion-based XFEM
model.

2 Implementation

2.1 Summary

This document outlines the procedure for building an XFEM model for a given distribution

of the level-set function. The XFEM model consists of:

• Intersection points along elemental edges.

• XFEM elements sub-divided into cells for integrating the weak form of the governing

equations within the individual sub-domains belonging to a particular material phase.
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(a) Phase “A”. (b) Phase “B”. (c) Both phase regions.

Figure 5: Triangulation in 3D is more complex and we use the Delaunay triangulation
algorithm to perform the computation. This element with 4 discontinuities has 4 pseudo-
elements from material phase 1 and 20 from material phase 2.

• Enrichment tables that define the nodal enriched degrees of freedom used to interpolate

the solution within a cell.

• Parallel implementation of building XFEM model.

2.2 Glossary

computational mesh – standard FE mesh that defines the nodal degrees of freedom.

model – physical entity, contains information about the XFEM elements and the level-set

functions.

main phase (phase) – phase indicating a particular material phase.

sub-phase – the domain of a main phase can be decomposed into multiple sub-phases.

intersection point – intersection created by the zero level-set curve cutting through an

edge.

point – geometrical entity with information about coordinates, connected cells and edges.

cell – geometrical entity, a collection of points, owns a list of edges too.

edge – geometrical entity with information about the points on its ends and its connected

cells.

Delaunay triangulation – triangulation of our elements using their corner nodes and in-
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tersection points.

pseudo-element – cells created by the triangulation of the regular element.

nodal cluster – set of elements (and their nodes) connected to a node consistency nodes

nodes shared by multiple elements within nodal cluster.

2.3 Procedure overview

The main steps are:

1. Build point-to-cells connectivity list (list of cells connected to a point) by looping over

all cells; needs to be built only once.

2. Build edge table in mesh (list of the cell edges that stores connectivity to points and

cells) by looping over all cells; needs to be built only once.

3. Build table of nodes belonging to a nodal cluster (first-order neighbors of a node;

defined as all nodes belonging to elements connected to a node) by looping over all

elements for a node using point-to-cell table; needs to be built only once.

4. Build edge intersection points by looping over all edges; points are stored in mesh;

however, the coordinates of the intersections are copied to the XFEM element; needs

to be built for each instance of a level-set distribution.

5. Delaunay triangulation of each cell based on edge intersection; needs to be built for

each instance of a level-set distribution.

6. Build table of phases and sub-phases for each triangle/tetrahedron (pseudo-cells) for

each triangulated element; needs to be performed for each instance of level set distri-

bution.

7. Build enrichment table that defines which nodal degrees of freedom are used to inter-

polate a field within a pseudo-element.
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8. Determine which degrees of freedom are used in the model.

2.4 Implementation algorithms

Consider the following XFEM model which consists of a 4-element mesh in 2D; the nodes on

the left are clamped and the right edge is subject to a constant pressure load. The level-set

distribution in Figure 6 leads to the intersection pattern shown in Figure 7. The mesh in

Figure 8 shows the indices of the nodes and the cells.

3 

 

 

 

 

 

 

 

2 
= 1 

Figure 6: Structural problem setup. The domain contains multiple level set inclusions.

2.4.1 Point-to-cells connectivity table

To build a point-to-cell table for each point in our computational mesh we loop over all base

cells in the computational mesh (base cells are all cells that are not side-set cells). For each

base cell we loop over all points and store the current cell index with point index. This leads

to the point-to-cell connectivity table (see Table 1):
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Figure 7: 4-element 2D mesh. Black areas: material phase 1, negative level-set value at the
nodes; white areas: material phase 2, positive level-set value.
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Figure 8: 4-element 2D mesh. Red numbers represent the global element identifiers, blue
numbers represent the global node identifiers.
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Point Id Number of cells connected Cell Ids
1 1 1
2 2 1,2
3 4 1,2,3,4
4 2 1,4
5 1 2
6 2 2,3
7 1 3
8 2 3,4
9 1 4

Table 1: Point ID to cell IDs connectivity table

2.4.2 Edge table

To generate an edge table in our computational mesh we initially loop over all base cells.

For each cell, we determine the number of edges and loop over all edges in the cell. For each

edge, we check with the current element whether the edge has been created. In case the edge

does not exist yet, we store the following edge information:

• Ids of end point of edge.

• Ids of cells to which element is connected.

We determine the cells which are connected to an edge via the intersection of cells con-

nected to the end points of the edge, using the point-to-cell table. The following edge table

is stored with the computational mesh.

At this point, each global edge knows the point Ids on its ends and the cell Ids of the

elements it is connected to. We can use this information to create a map that links the

global edge to the local edge index per element. Each element has an internal edge order list

pre-built that indicates the order in which its edges are organized. For example, a QUAD4

element will have the following internal edge order list: 0 1, 1 2, 2 3, 3 0. The element

also knows the point Ids that it owns (if not directly, point Ids can be obtained through the

nodes). Using these two lists, we can compute which point Ids lay in each of the element’s
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internal edges. By matching the point Ids of the global edge to the point Ids of the internal

element edges, we can make a map that tells us which internal edge in an element corresponds

to a global edge. This list is stored with the edge in the same manner that cell Ids are stored.

Cell Ids and internal edge numbers should have a one to one correspondence.

For example, for the 4-element cluster above we would obtain 12 global edges (see Table

2).

Global Edge Id Point Ids Cell Ids Local Edge Num
1 1, 4 1 0
2 3, 4 1 4 1, 3
3 2, 3 1 2 2, 0
4 1, 2 1 3
5 4, 9 4 0
6 8, 9 4 1
7 3, 8 3 4 0, 2
8 2, 5 2 3
9 5, 6 2 2
10 3, 6 2 3 1, 3
11 6, 7 3 2
12 7, 8 3 1

Table 2: Edge to points IDs and cells IDs connectivity table

The table shows, for example, that the global edge 2 is defined by the point Ids 3 and 4

and is connected to cells with Ids 1 and 4. For cell id 1, it is the local edge 1 (counting from

zero CCW starting at the bottom) and for cell id 4 it is local edge 3 (Figure 9).

2.4.3 Nodal clusters

To determine the enrichment level used to interpolate fields within the XFEM elements we

need to determine the first-order nodal neighbors of a node. This is the set of nodes that

belong to the elements connected to a node. In addition, we need to identify the nodes that

belong to two or more elements; we refer to these nodes as consistency nodes. Consistency

nodes are simply the nodes in a nodal cluster (nodes of the connected elements of a main

node) that are shared by more than one element in the nodal cluster. This information can
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Node 8 

Cell 4 

Node 3 

Node 9 Node 4 

Edge 3 

Edge 1 

Edge 2 Edge 4 

Figure 9: Edge representation in a QUAD4 element. Green edges represent the local edge
index at the element.

be obtained by looping over the connected elements of a node, and obtaining the node list

for each element.

2.4.4 Determine intersection points

The intersection points are defined by the zero level-set values. We loop over all edges defined

in the edge table created in Step 2 and compute the intersection points along the edge using

the nodal level-set information of the edge endpoints. The coordinates of the intersection

points are then sent to all elements connected to the edge and stored in the corresponding

XFEM element. (see Figure 10). NOTE: Since edges only know of the cells connected to

it, we use a cell-to-element map in order to be able to send this information to the XFEM

elements. This is owned by the model.

2.4.5 Delaunay triangulation and assignment of main and sub-phases to pseudo-

elements

We loop over all elements in the model and, if intersected, we perform a Delaunay triangu-

lation, using the corner nodes and the edge intersection points stored with the elements in
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Cell 1 Cell 4 

> 0 > 0 

< 0 < 0 > 0 

< 0 

Figure 10: Mapping of the intersection points to the elements. An edge contains two nodes
that have level set values of opposite sign. The location of the intersection point is labeled
with an “X” in the figure. The information of the intersection point is sent to all the
neighboring elements of the edge.

Step 3. The Delaunay triangulation requires only the coordinates of the element corner and

edge intersection points. The Delaunay triangulation will return a list of triangles for 2D or

tetrahedrons for 3D problems.

2.4.6 Main phase and sub-phase

We assign a main and sub-phase to each triangle/tetrahedron. The main phase is determined

based on the average main-phase value of the pseudo-element. In case the average is zero,

we apply an exception rule (TBD). The sub-phase information is based on the connectivity

of pseudo-elements which belong to the same main phase and is computed via a flood-fill

algorithm. To this end we collect the pseudo-elements into a pseudo-mesh; each triangulated

XFEM element has its own pseudo-mesh which consists of the points and the connectivity

of the pseudo-elements. The main steps (Figure 11) of the flood-fill algorithm used are:

• Build edge table for pseudo-elements of current XFEM element, analogue to Step 2.4.2.

• Loop over all elements that have not been assigned a sub-phase:
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– Find unprocessed element; recursively find neighbors with same main-phase; as-

sign lowest unassigned sub-phase to elements found in search process.

0 

(a) Start with the first subphase
value of the first main phase. Do so
by selecting the first cell in the tri-
angulation list without a value as-
signed.

0 

0 

(b) Look for connected cells
through edges. If two cells share
the same main phase and are
connected, then they have the
same subphase.

0 

0 

0 

0 

(c) Move on to the next cell in
the list that shares the same main
phase value, and continue checking
the connectivity.

0 

0 

0 

0 

(d) Once the connectivity for the
specific subphase of the main phase
is achieved, check if additional cells
have the same main phase but dif-
ferent subphase. If there are not
any cells with the same main phase,
move on the next main phase.

0 

0 

0 

0 
14 

(e) Select the first subphase of the
second main phase. Repeat steps 1
through 3.

0 

0 

0 

0 
14 

15 

(f) Once the connectivity for a sub-
phase is computed, increase the
subphase value within the main
phase. Look for cells in the triangu-
lation list that have not been pro-
cessed yet, and check their connec-
tivity.

Figure 11: Subphase computation algorithm. Refer to section 2.4.6 for a more detailed
description.

For Figure 11, we would get the list in table 3:

We have 6 different triangles generated by Delaunay triangulation. By convention, the

order of the triangles is determined after the triangulation so that all phase 1 ones are located

at the top, followed by the phase 2 triangles. Each triangle is assigned a main phase and

sub-phase (see Table 3); the assignment is stored, using a one-to-one map by the XFEM

element.
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Triangle number Main Phase Sub-Phase
1 1 0
2 1 0
3 1 0
4 1 0
5 2 1
6 2 2

Table 3: Main-phase and sub-phase table for pseudo-elements.

2.4.7 Nodal enrichments for pseudo-elements

To interpolate fields in the XFEM elements we need to determine which nodal enrichments

are used within each pseudo element. The enrichments need to be chosen such that the

interpolations are continuous across adjacent elements within the same main phase and

unique within pseudo elements of the main sub-phase but topologically disconnected.

The main concept of the procedure is to clearly separate element-level and node-level

operations. This separation enables the parallelization of the procedure. The first step is

to determine the enrichment levels a particular node will use to interpolate fields in the

triangulated elements with a particular sub-phase. This step is done by looping over all

nodes. The result of this loop is a map that links the sub-phase information of an element to

an enrichment level for each node of the element. In a second step we loop over all elements

to update the enrichment levels of pseudo-element based on the map built previously.

Looping over all nodal clusters, we build the following node-element table. The entries

in the table are the sub-phases at the nodes within each element. The consistency node

numbers are marked by a “C”. Consistency nodes can be identified by nodes which have

entries in more than one column; so they can be identified easily on the fly.

Two conditions, consistency and uniqueness, must be satisfied to ensure the assigned

sub-phases are consistent across the nodal cluster. The consistency condition is satisfied if

all sub-phases in a row are the same. The uniqueness condition is satisfied if the sub-phase

of each set of connected nodes is unique in the cluster.
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Nodes/Elements 1 2 3 4
1 14
2 “C” 0 0
3 “C” 15 14 14 15
4 “C” 0 0
5 15
6 “C” 0 0
7 15
8 “C” 0 0
9 14

Table 4: Initial node-element table.

The initial node-element table (see Table 4) shows that the consistency condition is not

satisfied since node 3 is inconsistent. Also, nodes 5 and 7, for example, should be assigned a

unique sub-phase. Therefore the uniqueness condition is also not satisfied. To ensure both

conditions we build a second table and where we iteratively correct the sub-phase until all

conditions are satisfied. Note that the consistency and uniqueness checks are not needed for

a 1 element cluster. The correction procedure is as follows:

1. Initialize a list of all sub-phase possible; mark them as unused; initialize a list of checked

nodes. Mark all nodes as unchecked; build list of consistency nodes.

2. Ensure consistency: Repeat the following steps until all consistency nodes are checked.

• Select node: Start with the center node, which must be a consistency node (re-

member that this consistency and uniqueness check will not be applied for a

one-element cluster). Otherwise select the first unchecked consistency node.

• Select sub-phase: Select the lowest unused sub-phase. Mark the selected sub-

phase as used (keep consistency of sub-phase to the respective main phase).

• Identify connected consistency nodes and connected unique nodes:

– For each element to which the selected node belongs, connected nodes have

the same sub-phase as the selected node has for this particular element. Select

the connected nodes which may be either consistency or unique nodes.
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– In order to identify all connected consistency and unique nodes, search the

connected elements for additional connected consistency and unique nodes.

– The above process requires recursively (a) searching for nodes within an el-

ement with the same sub-phase and (b) identifying elements that share con-

sistency nodes. Note: the sub-phase id might change between elements if the

sub-phases are not consistent yet for a consistency node.

• Assign sub-phase: Assign the selected sub-phase to all connected nodes identified

in the search process described above. For any value that needs to be changed,

flip sub-phases for that element. Mark connected nodes as checked.

Nodes/Elements 1 2 3 4
1 14 → 15
2 “C” 0 0
3 “C” 15 → 14 14 14 15→ 14
4 “C” 0 0
5 15
6 “C” 0 0
7 15
8 “C” 0 0
9 14→ 15

Table 5: Flipping the enrichment levels to keep consistency.

3. Ensure uniqueness: Loop through the remaining unchecked nodes. For each element,

collect the unique nodes with an unused sub-phase, assign the next unused sub-phase

to these nodes and check the sub-phase as being used. Here nodes 1, 5, 7, and 9 are

assigned the sub-phase 16, 17, and 18, respectively (node 1 was flipped initially, but it

was not marked as checked). The outcome of the above correction procedure is Table

6:

4. Using the original and the corrected node-element tables we can build the map for the

central point (here node ID 3). See Table 7. The rows correspond to the elements, the

columns list the original sub-phases, and the entries are the enrichment levels used by
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Nodes/Elements 1 2 3 4
1 15
2 “C” 0 0
3 “C” 14 14 14 14
4 “C” 0 0
5 16
6 “C” 0 0
7 17
8 “C” 0 0
9 18

Table 6: The result of the enrichment algorithm. Nodes that are shared across elements
receive the same enrichment level.

the central node. When building this table we check that the map is consistent within

itself (the same sub-phases within each are assigned to the same enrichments).

For Node 3: 0 14 15
Element / Enrichment level
1 0 15 14
2 0 14 16
3 0 14 17
4 0 18 14

Table 7: Element to enrichment table for node ID 3. This table shows the initial enrich-
ments node 3 received during the sub-phase algorithm and the enrichment levels after the
enrichment algorithm.

5. With this map we can loop over all elements and assign enrichment levels for each node

to each pseudo-element, based on their sub-phase information.

2.4.8 Determine degrees-of-freedom used

The last step in the algorithm is to flag which enrichment levels each node will use for

interpolation. For example, in our test case, node 3 will have enrichment levels 0, 14, 15, 16,

17, 18 active.
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2.4.9 Implementation example 2
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(a) Discrete model.
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(b) Mesh information.

Figure 12: XFEM implementation configuration 2.

20

270



Nodes/Elements 1 2 3 4
1 0
2 “C” 14 14
3 “C” 0 0 0 0
4 “C” 0 0
5 14
6 “C” 14 14
7 14
8 “C” 14 14
9 0

Table 8: Initial node-element table for configuration 2.

Nodes/Elements 1 2 3 4
1 0
2 “C” 14 14
3 “C” 0 0 0 0
4 “C” 0 0
5 14
6 “C” 14 14
7 14
8 “C” 14 14
9 0

Table 9: Final node-element table for configuration 2.

For Node 3: 0 14
Element / Enrichment level
1 0 14
2 0 14
3 0 14
4 0 14

Table 10: Enrichment level map for configuration 2.
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2.4.10 Implementation example 3
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(b) Mesh information.

Figure 13: XFEM implementation configuration 3.
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Nodes/Elements 1 2 3 4
1 0
2 “C” 15 14
3 “C” 0 0 0 0
4 “C” 14 0
5 14
6 “C” 14 14
7 14
8 “C” 14 15
9 0

Table 11: Initial node-element table for configuration 3.

Nodes/Elements 1 2 3 4
1 0
2 “C” 14 14
3 “C” 0 0 0 0
4 “C” 15 15
5 14
6 “C” 14 14
7 14
8 “C” 14 14
9 0

Table 12: Final node-element table for configuration 3.

For Node 3: 0 14 15
Element / Enrichment level
1 0 15 14
2 0 14
3 0 14
4 0 15 14

Table 13: Enrichment level map for configuration 3.

2.5 Solving the problem

In the previous section, our algorithms determined which additional enriched degrees-of-

freedom each node requires to account for the discontinuities in the elements. We will study

our enrichment strategy with a heat conduction problem. To capture the discontinuities
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along the phase boundaries, we enrich the standard finite element approximation with addi-

tional shape functions. We adopt the generalized enrichment strategy of Makhija and Maute

(2014) which resolves consistently the temperature fields in the presence of small features

and does not suffer from artificially coupling disconnected phases.

u(x) =
M∑

m=1

(
H(−φ)

n∑

i=1

Ni u
A
i,m +H(φ)

n∑

i=1

Ni u
B
i,m

)
(2)

where m is the enrichment level, M is the maximum number of enrichment levels used

for each phase, N are the shape functions, uli,m is the vector of nodal temperature values at

node i for phase l = [A,B], φ is the level set value evaluated at the integration point, and

H denotes the Heaviside function.

The Heaviside function H depends on the level set function and is defined as follows:

H(z) =





1 z > 0

0 z ≤ 0

(3)

The Heaviside functions “turns on/off” the standard finite element interpolations in the

particular phases. The approximation allows for discontinuities of the temperatures along

the phase boundaries. Therefore the continuity is enforced weakly via the stabilized Lagrange

multiplier method.

2.6 Preconditioner

When a sub-domain of a material phase is too small (around O(ε1/2)), the Jacobian matrix

will be ill-conditioned. To solve this shortcoming, it is necessary to scale the matrix with

another preconditioning matrix. This scaling matrix will be a function of the level-set field.

The preconditioner TTT will have a scaling value for each degree of freedom in the problem.

To obtain these values, we check which enriched degrees of freedom each node uses. Then,

we proceed to compute the integral of the shape function for the node with respect to
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the material sub-domain that requires said enriched degree-of-freedom. Because a node

will have different scaling values across multiple elements, there are four preconditioner

implementations available to compute the scaling value in a nodal cluster:

• Maximum value of integrals of shape functions

• Sum of values of integrals of shape functions

• Maximum value of integrals of the derivatives of the shape functions

• Sum of values of integrals of the derivatives of the shape functions

The third preconditioner approach will be used in this study. The matrix TTT is a diagonal

matrix built by integrating the spatial derivatives of the shape functions over the nodal

support of nodes connected to an intersected element. The diagonal components of the

matrix are defined as:

TTT li,m =

(
max
e∈Ei

∫
De

l
∇Ni(x) · ∇Ni(x) dx

∫
De∇Ni(x) · ∇Ni(x) dx

)−1/2
(4)

where TTT li,m corresponds to the degree-of-freedom uli,m, i is the node index, l = [A,B] is the

material phase, m is the enrichment level, Ei is the set of elements connected to node i,

and Del is the element domain of phase l. The components of the matrix increase as the

region of influence of a degree-of-freedom decreases. The entries TTT li,m of nodes i that are not

connected to at least one intersected element are set to one.

To avoid numerical issues due to large values for the components of TTT , the degrees of

freedom associated with the diagonal entry TTT li,m are constrained to zero if the following

condition is satisfied:

TTT li,m ≥ Ttol (5)

where Ttol is 109 for this study.
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At this point, there is one scaling value for each degree-of-freedom in the system. These

scaling values are applied to the solution vector before the computation of the residual.

After the residual is computed, they are both unscaled and then the new solution vector is

computed.

3 Corroboration and results

3.1 Methodology

Two formulations were used to corroborate the results of the XFEM implementation.

Equation 6 computes the difference in solutions at the discontinuity. Since the model

we have implemented is based on inclusions and not crack propagation, this interface error

should approach zero as the mesh gets finer.

√∑
element

∑
interface

∫
u+ − u−dΓi∑

element

∑
interface

∫
dΓi

(6)

This equation computes the interface “jump” across all interfaces and elements in the

model, then scales it with respect to the perimeter or area of the interface, and finally takes

the square root.

Equation 7 compares the relative difference between the XFEM solution and the FEM

solution. √∫
uXFEM − uFEMdΩ∫

uFEMdΩ
(7)

uXFEM represents the XFEM solution, while uFEM represents the FEM solution.

XFEM was used to solve a thermal problem with the configuration of Figure 14. The

same problem was ran using the classical FEM. The FEM problem used two different types

of elements and its mesh was refined until the solution reached convergence.

The mesh has a width of 20 units and a height of 20 units. The problem has Dirichlet

boundary conditions on the sides. The temperature is prescribed to 0 on the left side and
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Figure 14: Diffusion problem setup.

100 on the right side. There is an inclusion at the center of the model. This inclusion is a

different material with a different thermal conductivity than the material phase 1 domain.

The test consisted in modifying the diameter of the circle from 2 units to 6 units in 500

steps using different mesh refinements, different conductivity ratios and different precondi-

tioners formulations.

3.2 Tests

3.2.1 Mesh refinement sweep

The mesh size was the variable in this test, while the conductivity ratio between both

materials remained fixed at 10. No preconditioner scaling was applied. The different mesh

sizes used were 20× 20, 30× 30, 40× 40, and 50× 50.

Figure 15 shows that as the mesh is refined, the interface error converges to zero.
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Figure 15: Mesh refinement sweep interface error.

Figure 16 shows that as the mesh is refined, the difference of the XFEM solution with

respect to the FEM solution decreases. The larger difference for the 50× 50 mesh is due to

the sampling and different mesh sizes used for the XFEM and FEM problems. A different

mesh resampling size fixed the issue in other tests.
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-0.0005

0.0000

0.0005

0.0010

0.0015

20 30 40 50

Figure 16: Mesh refinement sweep L2 error.

3.2.2 Conductivity ratio sweep

The conductivity ratio between the different materials was the variable in this test. The mesh

size was 30× 30 and the preconditioner formulation used the maximum spatial derivative of

the shape functions. The different conductivity ratios used were 0.1, 10, 100, and 1000.

28

278



Figure 17 shows that when the material conductivity is the same for both materials (a

“quasi-FEM” problem), the interface error is in the order of O(ε). However, the greater the

difference in material properties at an interface, the larger the interface jump is.

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

1000 100 10 1 0.1

Figure 17: Conductivity refinement sweep interface error.

For the L2 computation, only FEM solutions with conductivity ratios of 10, 100, and

1000 were computed. Figure 18 shows that the difference in solutions is very small O(10−4).
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1000 100 10

Figure 18: Conductivity refinement sweep L2 error.

3.2.3 Condition number comparison

These tests were performed to compare the condition number of the global Jacobian matrix

when the scaling was applied. The mesh size was 30× 30, the conductivity ratio was 10 and

29

279



the preconditioner formulation used the maximum spatial derivative of the shape functions.

A direct solver and a GMRES iterative solver were used and compared.

Figure 19 shows that the Jacobian matrix has a condition number in the order of 1015

when no scaling is applied 1, while Figure 20 shows that the condition number decreases to

the order of 104 when scaling is applied.
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Figure 19: Condition number comparison - no pre-conditioner.

1.24E+04

1.25E+04

1.26E+04

1.27E+04

1.28E+04

1.29E+04

1.30E+04

1.31E+04

1.32E+04

1.33E+04

1.34E+04

1.35E+04
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Figure 20: Condition number comparison - with pre-conditioner.

1We use the GMRES solver provided by the Trilinos linear algebra package to solve for the linear system.
The solver uses an ILU preconditioner on top of the XFEM preconditioner of this study. However, the
condition number of the matrix, after the ILU preconditioner is applied, is not provided by the Trilinos
package. Because of that, the direct and iterative solver yield the same condition number. In reality, the
GMRES option may have a lower condition number due to the ILU preconditioner.
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4 Conclusions

The framework developed in this project will help eliminate the need to re-mesh a model when

discontinuities present in the domain. The program is capable of dividing an element into

integrable sub-domains, calculating its topology, its enrichment information and computing

the normal vector and Gauss points required for integration. The program is also capable

of solving XFEM problems with different topologies in 3D.

Results showed that the differences in solutions with a classical FEM problem for a two

dimensional heat conduction model are small.

The XFEM produced Jacobian matrices with high condition numbers, but the application

of a preconditioner as a function of the level set field solved this shortcoming.

Appendix

5 Delaunay Triangulation code

This code written in Matlab is the first attempt of the author to perform a Delaunay tri-

angulation in an element based on the level set function values at the corner nodes. To

triangulate different discontinuities change the levs variable: each entry corresponds to the

value of the level set function at a node. The ex, ey, and ez vector variables contain the

coordinates of the corner nodes and can be modified to change the shape of the element.

5.A main.m

MATLAB code

1 function [] = main()

2 % Main program

3 % Modify ex , ey , and ez to change shape of element

4 % Change levs to change level -set configuration

5

6 % Global x, y, z coordinates of element.
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7 % This will form a 3D cubic element cube.

8 ex = [-0.5 -0.5 -0.5 -0.5 +0.5 +0.5 +0.5 +0.5];

9 ey = [-0.5 -0.5 +0.5 +0.5 -0.5 -0.5 +0.5 +0.5];

10 ez = [+0.5 -0.5 -0.5 +0.5 +0.5 -0.5 -0.5 +0.5];

11

12 %% Extract a particular case (set k manually).

13

14 % Initial test for a particular levelset function.

15 % Randn function will return a m x n matrix of random positive and negative

16 % numbers.

17 hexsect = cell (127, 8);

18 k = round(1 + (127 -1).*rand);

19 % levs = randn (1, 8);

20 % levs = [-1 -1 -1 -1 -1 -1 -1 1];

21 levs = [+1 -1 +1 -1 -1 +1 -1 +1];

22 [nsct , isct , xsct , ysct , zsct , levs] = xfem8isct(ex, ey, ez, levs);

23 [xtet , ytet , ztet , ctet , ptet , pnd , plist , Tetp1 , Tetp2 , tet1G , tet1L , tet2G , tet2L , size_phase1 , size_phase2 , volume1 ,

volume2 , total_volume1 , total_volume2] = xfem8tet(isct , xsct , ysct , zsct , ex, ey, ez, levs);

24 hexsect{k, 2} = xtet;

25 hexsect{k, 3} = ytet;

26 hexsect{k, 4} = ztet;

27 hexsect{k, 5} = ctet;

28 hexsect{k, 6} = ptet;

29 hexsect{k, 7} = pnd;

30 hexsect{k, 8} = plist;

31 [max(plist) min(plist)];

32

33 figure (1)

34 tetramesh(Tetp1 , [xtet(1, :)’, ytet(1, :)’, ztet(1, :) ’], -ones(size(Tetp1 , 1), 1));

35 xlabel(’X’)

36 ylabel(’Y’)

37 zlabel(’Z’)

38 grid

39 axis equal

40

41 figure (2)

42 tetramesh(Tetp2 , [xtet(1, :)’, ytet(1, :)’, ztet(1, :) ’], ones(size(Tetp2 , 1), 1));

43 xlabel(’X’)

44 ylabel(’Y’)

45 zlabel(’Z’)

46 grid

47 axis equal

48

49 figure (3)

50 tetramesh(ctet , [xtet(1, :)’, ytet(1, :)’, ztet(1, :) ’], ptet);

51 xlabel(’X’)

52 ylabel(’Y’)

53 zlabel(’Z’)

54 axis equal

55

56 figure (4)

57 plot3(xtet(1, :), ytet(1, :), ztet(1, :), ’X’)

58 xlabel(’X’)

59 ylabel(’Y’)

60 zlabel(’Z’)

61 axis equal

32

282



62

63 end

5.B xfem8isct.m

MATLAB code

1 function [nsct , isct , xsct , ysct , zsct , levs] = xfem8isct(ex, ey, ez, levs)

2

3 % Intersection of hex8 based on level -set values.

4 %

5 % Input: ex : global x- coordinates of nodes of 3D element

6 % ey : global y- coordinates of nodes of 3D element

7 % ez : global z- coordinates of nodes of 3D element

8 % levs : level set values randomly generated

9 %

10 % Output: nsct : number of intersected edges

11 % isect : vector flags of intersected edges

12 % xsect : x- coordinates of intersections in global and local coordinates

13 % ysect : y- coordinates of intersections in global and local coordinates

14 % zsect : z- coordinates of intersections in global and local coordinates

15

16 % Map of node connections across edges in a 3D element.

17 % Edgmap is a 12 x 2 matrix.

18 edgmap = [ 1 2; 2 3; 3 4; 4 1; 1 5; 2 6; 3 7; 4 8; 5 6; 6 7; 7 8; 8 5];

19

20 % Values of nodes in master element (local coordinates ).

21 xp = [-1 -1 -1 -1 +1 +1 +1 +1];

22 yp = [-1 -1 +1 +1 -1 -1 +1 +1];

23 zp = [+1 -1 -1 +1 +1 -1 -1 +1];

24

25 % Set initial value of intersected edges to zero.

26 % Create a zero 12 x 1 matrix to flag edges with intersected edges.

27 % Create a zero 12 x 2 matrix to record x, y, z coordinates in global and

28 % local coordinates .

29 nsct = 0;

30 isct = zeros(12, 1);

31 xsct = zeros(12, 2);

32 ysct = zeros(12, 2);

33 zsct = zeros(12, 2);

34

35 for i = 1:12

36 % ic1 and ic2 return the values of the first and second columns of

37 % edgmap , respectively , for a determined row. ic1 and ic2 represent two

38 % nodes connected by a cube edge.

39 ic1 = edgmap(i, 1);

40 ic2 = edgmap(i, 2);

41 % The level set values at those nodes are multiplied to determined

42 % intersection .

43 if levs(ic1)*levs(ic2) < 0 % If so , then there is an intersection .

44 nsct = nsct +1; % Increase number of intersected edges by one.

45 isct(i) = 1; % Flag edge as having an intersection in isct matrix.
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46 sctr = -levs(ic1)/(levs(ic2)-levs(ic1)); % Dimensionless location (ratio) of intersection .

47 % Insection in glb coordinates

48 xsct(i, 1) = ex(ic1)+sctr*(ex(ic2)-ex(ic1));

49 ysct(i, 1) = ey(ic1)+sctr*(ey(ic2)-ey(ic1));

50 zsct(i, 1) = ez(ic1)+sctr*(ez(ic2)-ez(ic1));

51 % Insection in local coordinates

52 xsct(i, 2) = xp(ic1)+sctr*(xp(ic2)-xp(ic1));

53 ysct(i, 2) = yp(ic1)+sctr*(yp(ic2)-yp(ic1));

54 zsct(i, 2) = zp(ic1)+sctr*(zp(ic2)-zp(ic1));

55 end

56 end

57

58 display(’Number of intersected edges: ’);

59 disp(nsct);

60 display(’Edges with intersections: ’);

61 disp(isct ’);

62 display(’x-coordinates of intersections in global coordinates: ’);

63 disp(xsct(:, 1));

64 display(’x-coordinates of intersections in local coordinates: ’);

65 disp(xsct(:, 2));

66 display(’y-coordinates of intersections in global coordinates: ’);

67 disp(ysct(:, 1));

68 display(’y-coordinates of intersections in local coordinates: ’);

69 disp(ysct(:, 2));

70 display(’z-coordinates of intersections in global coordinates: ’);

71 disp(zsct(:, 1));

72 display(’z-coordinates of intersections in local coordinates: ’);

73 disp(zsct(:, 2));

74

75 end

5.C xfem8tet.m

MATLAB code

1 function [xtet , ytet , ztet , ctet , ptet , pnd , plist , Tetp1 , Tetp2 , tet1G , tet1L , tet2G , tet2L , size_phase1 , size_phase2 ,

volume1 , volume2 , total_volume1 , total_volume2] = xfem8tet(isct , xsct , ysct , zsct , ex, ey, ez , levs)

2

3 % Intersection of hex8 based on level -set values.

4 %

5 % Input: nsct : number of insected edges

6 % isect : vector flags intersected edges

7 % xsect : x- coordinates of insections in global and local coordinates

8 % ysect : y- coordinates of insections in global and local coordinates

9 % zsect : z- coordinates of insections in global and local coordinates

10 % ex : global x- coordinates of nodes

11 % ey : global y- coordinates of nodes

12 % ez : global z- coordinates of nodes

13 % levs : levs

14 %

15 % Output: xtet : x- coordinates of nodes of triangulated element

16 % ytet : y- coordinates of nodes of triangulated element
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17 % ztet : z- coordinates of nodes of triangulated element

18 % ctet : connectivity of tets in triangulated element

19 % ptet : phase of each tetrahedron

20 % pnd : nodal levelset values (actual values), # of nodes

21 % plist : phase of each node (in terms of -1, 1 and 0)

22 % Tetp1 : nodes of tetrahedrons for main phase 1

23 % Tetp2 : nodes of tetrahedrons for main phase 2

24 % tet1G : global coordinates of tetrahedron for phase 1

25 % tet1L : local coordinates of tetrahedron for phase 1

26 % tet2G : global coordinates of tetrahedron for phase 1

27 % tet2L : local coordinates of tetrahedron for phase 2

28 % size_phase1 : number of tetrahedrons in phase 1

29 % size_phase2 : number of tetrahedrons in phase 2

30 % volume1 : volume of a tetrahedron in phase 1

31 % volume2 : volume of a tetrahedron in phase 2

32 % total_volume1 : total volume of all tetrahedrons in phase 1

33 % total_volume2 : total volume of all tetrahedrons in phase 2

34

35 %% Identify coordinates and phases to triangulate

36

37 % Nodes in local coordinates

38 xp = [-1 -1 -1 -1 +1 +1 +1 +1];

39 yp = [-1 -1 +1 +1 -1 -1 +1 +1];

40 zp = [+1 -1 -1 +1 +1 -1 -1 +1];

41

42 % Find intersected edges. Order of edges depends on configuration of edgmap

43 % isct flagged intersected edges with a 1

44 itr = find(isct >0);

45

46 % Sort nodes by main phase. Determine which nodes have positive or negative

47 % level -set values.

48 ip1 = find(levs <0);

49 ip2 = find(levs >0);

50

51 % Id -numbers of node at edge intersections , i.e. create pseudonodes

52 ips = 9:8+ length(itr);

53

54 % Create phase vector for triangulated element. Vector contains level -set

55 % values at the 8 original nodes plus zero values for the new pseudonodes

56 pnd = [levs zeros(1, length(itr))];

57

58 % Create nodes for main phase 1

59 % Coordinates where nodes are negative plus coordinates of intersections in

60 % global coordinates

61 exp1 = [ex(ip1) xsct(itr , 1) ’];

62 eyp1 = [ey(ip1) ysct(itr , 1) ’];

63 ezp1 = [ez(ip1) zsct(itr , 1) ’];

64

65 % Nodes and pseudonodes numbers of main phase 1

66 ipx1 = [ip1 ips];

67

68 % Create nodes for main phase 2

69 % Coordinates where nodes are positive plus coordinates of intersections in

70 % global coordinates

71 exp2 = [ex(ip2) xsct(itr , 1) ’];

72 eyp2 = [ey(ip2) ysct(itr , 1) ’];
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73 ezp2 = [ez(ip2) zsct(itr , 1) ’];

74

75 % Nodes and pseudonodes numbers of main phase 2

76 ipx2 = [ip2 ips];

77

78 % Combine triangulation points of main phase 1 and 2 in local and global

79 % coordinates

80 xtet = [ex xsct(itr , 1) ’;xp xsct(itr , 2) ’];

81 ytet = [ey ysct(itr , 1) ’;yp ysct(itr , 2) ’];

82 ztet = [ez zsct(itr , 1) ’;zp zsct(itr , 2) ’];

83

84 % Same as xtet , ytet , ztet , but only with global coordinates . Useful for

85 % triangulation below.

86 exp = [ex xsct(itr , 1) ’];

87 eyp = [ey ysct(itr , 1) ’];

88 ezp = [ez zsct(itr , 1) ’];

89

90 %% Triangulate main phase 1 and 2 together

91

92 % If we triangulate main phase 1 and 2 separately , tetrahedron will

93 % superpose for some level -set combinations . We need to triangulate the

94 % entire element as a whole.

95 Tp = DelaunayTri(exp ’, eyp ’, ezp ’);

96 Tetp = Tp.Triangulation (:, :);

97

98 %% Separate triangulation into main phases 1 and 2

99

100 Tetp1 = zeros(1, 4);

101 Tetp2 = zeros(1, 4);

102 index1 = 1;

103 index2 = 1;

104

105 % If tetrahedron contains a negative node , it is phase 1. Phase 2,

106 % otherwise .

107 for i = 1:size(Tetp , 1)

108 if pnd(Tetp(i, 1)) < 0||pnd(Tetp(i, 2)) < 0|| pnd(Tetp(i, 3)) < 0||pnd(Tetp(i, 4)) < 0

109 Tetp1(index1 , :) = Tetp(i, :);

110 index1 = index1 + 1;

111 else

112 Tetp2(index2 , :) = Tetp(i, :);

113 index2 = index2 +1;

114 end

115 end

116

117 %% Display coordinates of phase 1 tetrahedrons

118

119 % Display coordinates of phase 1 tetrahedrons in global coordinates

120 % Display volume of each phase 1 tetrahedron

121 total_volume1 = 0;

122 display(’The global coordinates for the phase 1 tetrahedrons are: ’)

123 for i = 1:size(Tetp1 , 1)

124 tet1G = [xtet(1, Tetp1(i, 1)), ytet(1, Tetp1(i, 1)), ztet(1, Tetp1(i, 1));xtet(1, Tetp1(i, 2)), ytet(1, Tetp1(i,

2)), ztet(1, Tetp1(i, 2));xtet(1, Tetp1(i, 3)), ytet(1, Tetp1(i, 3)), ztet(1, Tetp1(i, 3));xtet(1, Tetp1(i,

4)), ytet(1, Tetp1(i, 4)), ztet(1, Tetp1(i, 4))];

125 disp(tet1G)

126 % Calculate volume. Algorithm : For 4 points in tetrahedron P, Q, R, S,
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127 % volume = abs(det ([Q-P;R-Q;S-R]))/6

128 a = tet1G(2, :)-tet1G(1, :);

129 b = tet1G(3, :)-tet1G(2, :);

130 c = tet1G(4, :)-tet1G(3, :);

131 volume1 = abs(det([a;b;c]))/6;

132 total_volume1 = total_volume1 + volume1;

133 display(’The volume of phase 1 tetrahedron is: ’)

134 disp(volume1)

135 end

136

137 % Display coordinates of phase 1 tetrahedrons in local coordinates

138 display(’The local coordinates for the phase 1 tetrahedrons are: ’)

139 for i = 1:size(Tetp1 , 1)

140 tet1L = [xtet(2, Tetp1(i, 1)), ytet(2, Tetp1(i, 1)), ztet(2, Tetp1(i, 1));xtet(2, Tetp1(i, 2)), ytet(2, Tetp1(i,

2)), ztet(2, Tetp1(i, 2));xtet(2, Tetp1(i, 3)), ytet(2, Tetp1(i, 3)), ztet(2, Tetp1(i, 3));xtet(2, Tetp1(i,

4)), ytet(2, Tetp1(i, 4)), ztet(2, Tetp1(i, 4))];

141 disp(tet1L)

142 end

143

144 % Display total volume of phase 1 tetrahedrons

145 display(’The total volume of phase 1 tetrahedrons is: ’)

146 disp(total_volume1)

147

148 %% Display coordinates of phase 2 tetrahedrons

149

150 % Display coordinates of phase 2 tetrahedrons in global coordinates

151 % Display volume of each phase 2 tetrahedron

152 total_volume2 = 0;

153 display(’The global coordinates for the phase 2 tetrahedrons are: ’)

154 for i = 1:size(Tetp2 , 1)

155 tet2G = [xtet(1, Tetp2(i, 1)), ytet(1, Tetp2(i, 1)), ztet(1, Tetp2(i, 1));xtet(1, Tetp2(i, 2)), ytet(1, Tetp2(i,

2)), ztet(1, Tetp2(i, 2));xtet(1, Tetp2(i, 3)), ytet(1, Tetp2(i, 3)), ztet(1, Tetp2(i, 3));xtet(1, Tetp2(i,

4)), ytet(1, Tetp2(i, 4)), ztet(1, Tetp2(i, 4))];

156 disp(tet2G)

157 % Calculate volume.

158 a = tet2G(2, :)-tet2G(1, :);

159 b = tet2G(3, :)-tet2G(2, :);

160 c = tet2G(4, :)-tet2G(3, :);

161 volume2 = abs(det([a;b;c]))/6;

162 total_volume2 = total_volume2 + volume2;

163 display(’The volume of phase 2 tetrahedron is: ’)

164 disp(volume2)

165 end

166

167 % Display coordinates of phase 2 tetrahedrons in local coordinates

168 display(’The local coordinates for the phase 2 tetrahedrons are: ’)

169 for i = 1:size(Tetp2 , 1)

170 tet2L = [xtet(2, Tetp2(i, 1)), ytet(2, Tetp2(i, 1)), ztet(2, Tetp2(i, 1));xtet(2, Tetp2(i, 2)), ytet(2, Tetp2(i,

2)), ztet(2, Tetp2(i, 2));xtet(2, Tetp2(i, 3)), ytet(2, Tetp2(i, 3)), ztet(2, Tetp2(i, 3));xtet(2, Tetp2(i,

4)), ytet(2, Tetp2(i, 4)), ztet(2, Tetp2(i, 4))];

171 disp(tet2L)

172 end

173

174 % Display total volume of phase 2 tetrahedrons

175 display(’The total volume of phase 2 tetrahedrons is: ’)

176 disp(total_volume2)

37

287



177

178 %% Display number of tetrahedrons in each phase

179

180 size_phase1 = size(Tetp1(:, 1));

181 size_phase1 = size_phase1 (1);

182 size_phase2 = size(Tetp2(:, 1));

183 size_phase2 = size_phase2 (1);

184 display(’The number of tetrahedrons in phase 1 is: ’)

185 disp(size_phase1);

186 display(’The number of tetrahedrons in phase 2 is: ’)

187 disp(size_phase2);

188

189 %% Locate triangle interfaces - new algorithm

190

191 % Use function ismember to compare array vectors

192 % Display only result if three nodes repeat

193 display(’The interfaces can be found on the triangles with nodes: ’)

194 for i = 1:size(Tetp1 , 1)

195 for j = 1:size(Tetp2 , 1)

196 r = ismember(Tetp1(i, :), Tetp2(j, :));

197 Tetp1_tri = Tetp1(i, :);

198 Tetp1_tri = Tetp1_tri(r);

199 if size(Tetp1_tri , 2) == 3

200 disp(Tetp1_tri)

201 end

202 end

203 end

204

205 %% Combine triangulation of nodes in ctet

206

207 % Size of ptet depends on number of tetrahedrons

208 % Phase 1 tetrahedrons have value of -1, phase 2 value of 1 in ptet

209

210 % Original:

211 % ctet =[ Tetp1;Tetp2 ];

212 % ptet=[-ones(size(Tetp1 , 1), 1);ones(size(Tetp2 , 1), 1)];

213

214 % New method:

215 % Provide two options for triangulation

216 % Option 1: based on volume

217 % If one phase is significantly larger than the other , switch tetramesh

218 if total_volume2 <= (0.2*( total_volume1 + total_volume2))

219 ctet=[ Tetp2;Tetp1];

220 ptet=[-ones(size(Tetp2 , 1), 1);ones(size(Tetp1 , 1), 1)];

221 else

222 ctet=[ Tetp1;Tetp2];

223 ptet=[-ones(size(Tetp1 , 1), 1);ones(size(Tetp2 , 1), 1)];

224 end

225

226 % Option 2: based on user ’s choice

227 % option = input(’Choose triangulation option 1 or 2: ’);

228 % if option == 1

229 % ctet =[ Tetp2;Tetp1 ];

230 % ptet=[-ones(size(Tetp2 , 1), 1);ones(size(Tetp1 , 1), 1)];

231 % elseif

232 % ctet =[ Tetp1;Tetp2 ];
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233 % ptet=[-ones(size(Tetp1 , 1), 1);ones(size(Tetp2 , 1), 1)];

234 % end

235

236 %% Check connectivity between phases. PART of ORIGINAL CODE

237

238 % Obsolete? plist produces the same value as pnd

239 % Check connectivity for main phase 1 and creat sub -phase information

240

241 % Matrix plisp1 formed of (nodes + pseudonodes ) x 1 elements with value of

242 % -2. ipx1 represents location of phase 1 nodes + pseudonodes . At these

243 % locations , values are replaced by -1

244 plisp1 = -2*ones(size(xtet , 2), 1);

245 plisp1(ipx1) = -1;

246 domp1 = 0;

247

248 % While there are phase 1 nodes

249 while ismember(-1, plisp1) > 0

250 domp1 = domp1 + 1;

251 % Find where the negative nodes are in the nodes + pseudonodes vector

252 % Value are progressively changed by 0, one at a time

253 ppp = find(plisp1 == -1);

254 plisp1(ppp (1)) = 0;

255 % Locate where values were changed to zero and create new variable ppp

256 % pid represents the node where value has transformed into zero

257 while ismember(0, plisp1) > 0

258 ppp = find(plisp1 == 0);

259 pid = ppp (1);

260 for it = 1:size(ctet , 1)

261 % If the node at pid belongs to Tetp1 and is negative

262 if ismember(pid , ctet(it, :)) > 0 && ptet(it) < 0

263 plisp1(ctet(it, :)) = max(0, plisp1(ctet(it, :)));

264 end

265 end

266 % At the location of phase 1 nodes + pseudonodes , the value will be

267 % replaced to 1.

268 plisp1(pid) = domp1;

269 end

270 end

271

272 % Check connectivity for main phase 2 and creat sub -phase information

273 % Functions the same as previous routine , but for phase 2

274 plisp2 = -2*ones(size(xtet , 2), 1);

275 plisp2(ipx2) = -1;

276

277 domp2 = 0;

278 while ismember(-1, plisp2) > 0

279 domp2 = domp2 +1;

280 ppp = find(plisp2 == -1);

281 plisp2(ppp (1)) = 0;

282 while ismember(0, plisp2) > 0

283 ppp = find(plisp2 == 0);

284 pid = ppp (1);

285 for it = 1:size(ctet , 1)

286 if ismember(pid , ctet(it, :)) > 0 && ptet(it) > 0

287 plisp2(ctet(it, :)) = max(0, plisp2(ctet(it, :)));

288 end
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289 end

290 plisp2(pid) = domp2;

291 end

292 end

293

294 % Build phase list including subphase information

295 % Replace all pseudonodes by 0

296 plisp1(ips) = 0;

297 plisp2(ips) = 0;

298

299 % Find location of the pseudonodes

300 idp1 = find(plisp1 >0);

301 idp2 = find(plisp2 >0);

302

303 % Create a zero (nodes + pseudonodes ) x 1 matrix plist

304 plist = zeros(size(xtet , 2), 1);

305 % Create list that shows which original nodes belong to phase I and II

306 plist(idp1) = -plisp1(idp1);

307 plist(idp2) = plisp2(idp2);

308

309 end

5.D number configurations.m

MATLAB code

1 function [] = number_configurations ()

2 % This function computes all possible combinations of level -set function

3 % values at the corner nodes to obtain the number of 3D triangulation

4 % combinations possible.

5

6 % x, y, z coordinates of element.

7 % This will form a 3D cubic element cube.

8 ex = [0 1 1 0 0 1 1 0];

9 ey = [0 0 1 1 0 0 1 1];

10 ez = [0 0 0 0 1 1 1 1];

11

12 %% Sweep over all possible level -set configurations .

13

14 % Twelve edges. Maximum number of configurations :

15 maxc = 2^12;

16 icase = zeros(maxc , 1);

17 hexsect = cell (127, 8);

18

19 % Set initial configuration , k

20 % This loop calculates the total number of possible configurations of

21 % edge intersections

22 % Routine uses simple negative/positive level set values

23 k = 0;

24 for i1 = -1:2:1

25 for i2 = -1:2:1

26 for i3 = -1:2:1
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27 for i4 = -1:2:1

28 for i5 = -1:2:1

29 for i6 = -1:2:1

30 for i7 = -1:2:1

31 for i8 = -1:2:2

32 levs = [i1 i2 i3 i4 i5 i6 i7 i8];

33 [nsct , isct , xsct , ysct , zsct , levs] = xfem8isct(ex, ey, ez, levs);

34 % isct is a 12 x 1 matrix representing each edge of the 3D cube element

35 % Since each edge can have one or zero intersections , the isct vector becomes a binary

display

36 cbin = sprintf(’%d%d%d%d%d%d%d%d%d%d%d%d’, isct (1), isct (2), isct (3), isct (4), isct (5),

isct (6), isct (7), isct (8), isct (9), isct (10), isct (11), isct (12));

37 % cbin is a binary number displayed as a string , and converted into the decimal cdec.

38 cdec = bin2dec(cbin);

39 % If icase is equal to zero , it means it is a new unique configuration and therefore ,

40 % number of total configurations k should

41 % be increased by one

42 if icase(cdec +1) == 0 && nsct > 0

43 k = k+1;

44 [xtet , ytet , ztet , ctet , ptet , pnd , plist , Tetp1 , Tetp2 , tet1G , tet1L , tet2G ,

tet2L] = xfem8tet(isct , xsct , ysct , zsct , ex , ey, ez, levs);

45 hexsect{k, 1} = cdec;

46 hexsect{k, 2} = xtet;

47 hexsect{k, 3} = ytet;

48 hexsect{k, 4} = ztet;

49 hexsect{k, 5} = ctet;

50 hexsect{k, 6} = ptet;

51 hexsect{k, 7} = pnd;

52 hexsect{k, 8} = plist;

53 [max(plist) min(plist)];

54 icase(cdec +1)=1;

55 end

56 end

57 end

58 end

59 end

60 end

61 end

62 end

63 end

64

65 fprintf(’Number of configurations = %d\n’, k);

66

67 end
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Appendix B

Internal I2: Minimum Feature Size Measure with CGAL

The Computational Geometry Algorithms Library (CGAL) is a software library that aims

to provide easy access to efficient and reliable algorithms in computational geometry. Similar to

the Trilinos library, it is a collection of packages ranging from Delaunay triangulation to geodesic

capabilities in graph theory.

In this document, we use the Surface Mesh Shortest Path module to compute geodesic paths

on XFEM surface meshes. We provide a brief tutorial on how to represent surface meshes (with a

femdoc-to-CGAL parser) and on how to find the shortest geodesic distance between two points.

The module has a dependency on the Boost Graph and GMP libraries; therefore, the program

must be compiled with libCGAL, libgmp, and libboost_system.

The following class was adapted from the tutorials provided by the CGAL package. In this

example, we model a 3D triangular surface mesh. The class is constructed by taking two matrices.

The first matrix is a n-by-3 matrix, where n is the number of points in the surface mesh, and

the number of columns correspond to the x, y, and z coordinates. The second matrix is a m-by-3,

wherem is the number of triangles in the surface mesh, and each column entry maps to a coordinate

location.

C++ code

1 // in file Parser_CGAL.hpp

2

3 #include <cstdlib>
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4 #include <iostream>

5 #include <fstream>

6 #include <iterator>

7

8 #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

9 #include <CGAL/Random.h>

10 #include <CGAL/Polyhedron_3.h>

11 #include <CGAL/Polyhedron_items_with_id_3.h>

12 #include <CGAL/IO/Polyhedron_iostream.h>

13 #include <CGAL/Surface_mesh_shortest_path.h>

14 #include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>

15 #include <CGAL/boost/graph/iterator.h>

16

17 typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;

18 typedef CGAL::Polyhedron_3<Kernel , CGAL::Polyhedron_items_with_id_3>

Polyhedron_3;

19 typedef Kernel::Point_3 Point_3;

20 typedef Polyhedron_3::HalfedgeDS HalfedgeDS;

21 typedef Polyhedron_3::Vertex_iterator

Vertex_iterator;

22 typedef Polyhedron_3::Edge_iterator

Edge_iterator;

23 typedef Polyhedron_3::Facet_iterator

Facet_iterator;

24 typedef CGAL::Surface_mesh_shortest_path_traits<Kernel , Polyhedron_3> Traits;

25 typedef CGAL::Surface_mesh_shortest_path<Traits>

Surface_mesh_shortest_path;

26 typedef boost::graph_traits<Polyhedron_3>

Graph_traits;

27 typedef Graph_traits::vertex_iterator

vertex_iterator;

28 typedef Graph_traits::face_iterator

face_iterator;
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29 typedef Polyhedron_3::Halfedge_around_facet_circulator

Halfedge_facet_circulator;

30

31 template <class HDS>

32 class polyhedron_builder : public CGAL::Modifier_base<HDS>

33 {

34 public:

35 std::vector<std::vector<double> > & coords;

36 std::vector<std::vector<unsigned int> > & tris;

37

38 polyhedron_builder(

39 std::vector<std::vector<double> > & aCoords ,

40 std::vector<std::vector<unsigned int> > & aTris)

41 : coords(aCoords)

42 , tris(aTris)

43 {

44 }

45

46 void operator ()(HDS & hds)

47 {

48 // Postcondition: hds is a valid polyhedral surface.

49 typedef typename HDS::Vertex Vertex;

50 typedef typename Vertex::Point Point;

51

52 // Create a cgal incremental builder.

53 CGAL::Polyhedron_incremental_builder_3<HDS> B(hds , true);

54 B.begin_surface(coords.size(), tris.size());

55

56 // Add the polyhedron vertices.

57 for(unsigned int i = 0; i < (unsigned int) coords.size(); ++i)

58 {

59 B.add_vertex(Point(coords.at(i).at(0), coords.at(i).at(1),

coords.at(i).at(2)));
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60 }

61

62 // Add the polyhedron triangles.

63 for(unsigned int i = 0; i < (unsigned int) tris.size(); ++i)

64 {

65 B.begin_facet ();

66 B.add_vertex_to_facet(tris.at(i).at(0));

67 B.add_vertex_to_facet(tris.at(i).at(1));

68 B.add_vertex_to_facet(tris.at(i).at(2));

69 B.end_facet ();

70 }

71

72 // Finish up the surface.

73 B.end_surface ();

74 }

75 };

The matrices are modeled as Standard Template Library (STL) vectors of vectors. The

following example describes the triangular mesh of Figure B.1.

C++ code

1 // in main.cpp

2

3 #include "ParserCGAL.h"

4

5 std::vector<std::vector<double> > coords;

6 std::vector<std::vector<unsigned int> > tris;

7

8 // ... Allocate memory space for vectors.

9

10 // x, y, z coordinates of all points in surface mesh.

11 coords[0][0] = 0.0; coords[0][1] = 0.0; coords[0][1] = 0.0;

12 coords[1][0] = 1.0; coords[1][1] = 0.0; coords[1][1] = 0.0;
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Figure B.1: Surface mesh example.
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13 coords[2][0] = 3.0; coords[2][1] = 0.0; coords[2][1] = 1.0;

14 coords[3][0] = 3.0; coords[3][1] = 2.0; coords[3][1] = 1.0;

15 coords[4][0] = 1.0; coords[4][1] = 2.0; coords[4][1] = 0.0;

16 coords[5][0] = 2.0; coords[5][1] = 1.0; coords[5][1] = 0.5;

17 coords[6][0] = 0.0; coords[6][1] = 2.0; coords[6][1] = 0.0;

18

19 // Surface mesh topology.

20 tris[0][0] = 0; tris[0][1] = 6; tris[0][2] = 4;

21 tris[1][0] = 0; tris[1][1] = 4; tris[1][2] = 1;

22 tris[2][0] = 1; tris[2][1] = 4; tris[2][2] = 5;

23 tris[3][0] = 4; tris[3][1] = 3; tris[3][2] = 5;

24 tris[4][0] = 5; tris[4][1] = 3; tris[4][2] = 2;

25 tris[5][0] = 1; tris[5][1] = 5; tris[5][2] = 2;

The surface meshes in femdoc are described in the same manner as above, by coordinates and

topology. The surface mesh can be mapped to the CGAL Polyhedron_3 format using the parser

class formerly described.

C++ code

1 // in main.cpp

2

3 // Build the surface mesh.

4 Polyhedron_3 P;

5 polyhedron_builder<HalfedgeDS> triangle(coords , tris);

6 P.delegate(triangle);

7

8 // Initialize indices of vertices , halfedges and facets.

9 CGAL::set_halfedgeds_items_id(P);

10

11 // Assert it was built correctly.

12 CGAL_assertion(P.is_pure_triangle ());

Now, in order to find the shortest distance between two points, we need to instantiate the
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Surface_mesh_shortest_path CGAL class.

C++ code

1 // in main.cpp

2

3 // Construct a shortest path query object.

4 Surface_mesh_shortest_path shortest_paths(P);

Then, we need to add a source point from which we will compute the distance.

C++ code

1 // in main.cpp

2

3 // Select a vertex index.

4 const int target_vertex_index = 6;

5

6 // Build a vertex iterator.

7 vertex_iterator vertex_it = vertices(P).first;

8 std::advance(vertex_it , target_vertex_index);

9

10 // Add the source point.

11 shortest_paths.add_source_point(*vertex_it);

Alternatively, we can add some point on a triangle facet as the source point. This option is

particularly attractive because we can use the integration points as the baryocentric coordinates.

C++ code

1 // in main.cpp

2

3 // Select a triangle index.

4 const int target_triangle_index = 0;

5

6 // Build a face iterator.

7 face_iterator face_it = faces(P).first;
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8 std::advance(face_it , target_triangle_index);

9

10 // Integration point in local coordinates.

11 double xi = 0.0;

12 double eta = 0.0;

13 double zeta = 1.0;

14

15 // Define a barycentric coordinate inside the face.

16 Traits::Barycentric_coordinate face_location = {{xi , eta , zeta }};

17

18 // Add the source point.

19 shortest_paths.add_source_point(*face_it , face_location);

The following example shows how to get the shortest path to every vertex on the surface

from the source point defined above.

C++ code

1 vertex_iterator vit , vit_end;

2 for (boost::tie(vit , vit_end) = vertices(P); vit != vit_end; ++vit)

3 {

4 std::vector<Traits::Point_3> points;

5 shortest_paths.shortest_path_points_to_source_points(*vit ,

std::back_inserter(points));

6

7 // Print the points.

8 std::cout << points.size() << " ";

9 for (std::size_t i = 0; i < points.size(); ++i)

10 std::cout << " " << points[i];

11 std::cout << std::endl;

12 }

Alternatively, you can define another facet with baryocentric coordinates and find its distance

to the source point.
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C++ code

1 double t12_cgal = shortest_paths.shortest_distance_to_source_points (*face_it2 ,

face_location2).first;

A CGAL mesh can be converted to an ASCII file. These ASCII files can be written in the

.off format, and visualized with the Geomview library. Alternatively, the code below could be

easily modified to output .stl files.

C++ code

1 // in main.cpp

2 CGAL::set_ascii_mode(std::cout);

3 std::cout << "OFF" << std::endl << P.size_of_vertices () << ’ ’

4 << P.size_of_facets () << " 0" << std::endl;

5

6 std::cout << std::endl;

7

8 std::copy( P.points_begin (), P.points_end (),

9 std::ostream_iterator<Point_3>(std::cout , "\n"));

10

11 std::cout << std::endl;

12

13 for (Facet_iterator i = P.facets_begin (); i != P.facets_end (); ++i)

14 {

15 Halfedge_facet_circulator j = i->facet_begin ();

16

17 // Facets in polyhedral surfaces are at least triangles.

18 CGAL_assertion(CGAL::circulator_size(j) >= 3);

19 std::cout << CGAL::circulator_size(j) << ’ ’;

20 do {

21 std::cout << ’ ’ << std::distance(P.vertices_begin (), j->vertex ());

22 } while (++j != i->facet_begin ());

23 std::cout << std::endl;

24 }
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25

26 std::cout << std::endl;

For more details on the library and additional API calls, the reader is referred to the CGAL

user manual [CGAL, 2009].
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Abstract As the capabilities of additive manufactur-1

ing techniques increase, topology optimization provides2

a promising approach to design geometrically sophisti-3

cated structures which can be directly manufactured.4

Traditional topology optimization methods aim at find-5

ing the conceptual design but often lack a sufficient res-6

olution of the geometry and structural response, needed7

to directly use the optimized design for manufacturing.8

To overcome these limitations, this paper studies the9

viability and characteristics of the eXtended Finite El-10

ement Method (XFEM) in combination with the Level-11

Set Method (LSM) for topology optimization of three12

dimensional structural design problems. The LSM de-13

scribes the geometry by defining the nodal level set14

values via explicit functions of the optimization vari-15

ables. The structural response is predicted by a gener-16

alized version of the XFEM. The LSM-XFEM approach17

is compared against results from a traditional Solid18

Isotropic Material with Penalization (SIMP) method19

for two-phase “solid-void” and “solid-solid” problems.20

The numerical results demonstrate that the LSM-XFEM21

approach can describe crisply the geometry and predict22

the structural response of complex three-dimensional23

structures with acceptable accuracy even on coarse meshes.24

However, the LSM-XFEM studied here lacks a robust25
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and intuitive formulation to control the minimum fea-26

ture size, and the optimization results may depend on27

the initial design.28

Keywords eXtended Finite Element Method ·29

Topology Optimization · Solid Isotropic Material30

with Penalization · Level Set Methods · Additive31

Manufacturing · 3D Printing32

1 Introduction33

Recent advances in additive manufacturing allow the34

precise placement of one or multiple materials at mi-35

crometer resolution with essentially no restrictions on36

the geometric complexity of the spatial arrangement.37

Complex three dimensional solids can be created with38

highly non-regular material distributions in a near opti-39

mal fashion, enabling the fabrication of structures with40

enhanced performance. Topology optimization has emerged41

as a promising approach to utilize the benefits of addi-42

tive manufacturing (Ning and Pellegrino, 2012; Meisel43

et al, 2013). Structural topology optimization seeks to44

find the optimal geometry and/or the material layout of45

a body within a given design domain. The geometry is46

represented by the spatial distribution of two or more47

material phases; in structural problems, one of these48

material phases may represent void.49

Originally topology optimization methods were de-50

veloped primarily to create conceptual designs in the51

early stage of the design process (Bendsøe and Sig-52

mund, 2003; Rozvany, 2009). Later, topology optimiza-53

tion was applied to directly design micro-electro-mechanical54

systems (MEMS), utilizing the ability of thin-film fab-55

rication techniques, such as photolithography in com-56

bination with chemical etching, to create geometrically57

complex devices at low cost (Sigmund, 2001a,b). As the58
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MEMS design problem is essentially two-dimensional,59

traditional approaches were sufficient to achieve the60

necessary geometric resolution at acceptable compu-61

tational cost. Motivated by the availability of afford-62

able additive fabrication methods for three dimensional63

structures, this paper focuses on topology optimiza-64

tion of three dimensional structures and introduces a65

new approach for finding optimized designs with high66

geometric resolution on rather coarse computational67

meshes.68

Most approaches for structural topology optimiza-69

tion are density methods. For a two-phase problem,70

the density is considered a design variable and can as-71

sume intermediate values between the density of the72

material phase “A” and the density of the material73

phase “B”. The most popular density method is the74

Solid Isotropic Material with Penalization method in-75

troduced by Bendsøe (1989) and Zhou and Rozvany76

(1991). It features great versatility, robustness, efficiency,77

and ease of implementation for a broad range of applica-78

tions (Sigmund and Maute, 2013; Deaton and Grandhi,79

2013).80

Density methods typically describe the boundaries81

between the material phases either via intermediate82

density values or by discrete material distributions lead-83

ing to jagged boundaries. In both cases, the enforce-84

ment of boundary and interface conditions at the ma-85

terial interface is hampered and may result in non-86

physical responses, such as premature yielding (Maute87

et al, 1998). Often this issue can be mitigated by mesh88

refinement or adaptive re-meshing (Maute and Ramm,89

1995, 1997). However, for problems that require an ac-90

curate description of the boundaries, such as boundary91

layer problems in fluids and skin-depth issues in elec-92

tromagnetics, it was reported that density methods fail93

(Sigmund and Maute, 2013).94

The shortcomings of density methods have promoted95

the development of the Level Set Method (LSM) for96

topology optimization. The LSM allows a crisp repre-97

sentation of the phase boundaries and the accurate en-98

forcement of boundary conditions on fixed meshes. The99

material interface in the LSM is described implicitly by100

the iso-contours of a Level Set Function (LSF), usually101

the zero level-set contour (Allaire et al, 2004; Sethian102

and Wiegmann, 2000; Wang et al, 2003).103

The LSF is typically discretized by the same mesh104

used for the physical field and is updated in the op-105

timization process via the solution of the Hamilton-106

Jacobi equations. Alternatively, the parameters of the107

discretized LSF are defined as explicit functions of the108

optimization variables, and the resulting parameter op-109

timization problem is solved by standard nonlinear pro-110

gramming methods (Dijk et al, 2013). The key chal-111

lenges for the LSM include (a) controlling the spatial112

gradients of the LSF in the vicinity of the zero-level113

set contour to avoid ill-conditioning of the optimization114

problem, (b) controlling local feature sizes, and (c) ac-115

celerating the convergence of the geometry in the opti-116

mization process. For a detailed discussion of the LSM,117

the reader is referred to the comprehensive review by118

Dijk et al (2013) and Gain and Paulino (2013).119

In LSMs, the structural geometry can be represented120

in the mechanical model via an Ersatz material ap-121

proach, immersed boundary techniques, or by adaptive122

geometry conforming meshes. The first two approaches123

allow the use of fixed, design independent meshes while124

the last approach requires local or global re-meshing as125

the structural geometry evolves in the design process.126

Using an Ersatz material approach, the void phase127

is modeled by a soft material and the material proper-128

ties in elements intersected by the zero-level set contour129

are interpolated between the “void” and solid phase,130

proportional to the volumes of the individual phases.131

However, this approach faces the same issues as den-132

sity methods in regards to enforcing boundary con-133

ditions across the material interface. Alternative ap-134

proaches to model the mechanical response include gen-135

eralized and adaptive finite element schemes such as the136

Super-Imposed Finite Element Method (SFEM) (Wang137

and Wang, 2006), the eXtended finite element method138

(XFEM) (van Miegroet and Duysinx, 2007; Wei et al,139

2010; Kreissl and Maute, 2012), and local re-meshing140

schemes (Yamasaki et al, 2011).141

In this paper, we focus on the LSM in combination142

with the XFEM. The XFEM does not require a mesh143

that conforms to the material interfaces and reduces144

the complexity of mesh construction. Spatial disconti-145

nuities in the structural response are captured by aug-146

menting the standard finite element interpolations with147

additional shape functions. This approach is similar to148

the SFEM (Wang and Wang, 2006) as the solution is149

obtained by super-imposing the standard and enriched150

shape functions. However, unlike the SFEM, the XFEM151

can combine multiple types of shape functions and thus152

allows for greater flexibility.153

The XFEM builds upon the partition of unity con-154

cept developed by Babuška and Melenk (1997). The155

XFEM was originally proposed by Belytschko and Black156

(1999) to model crack propagation. The reader is re-157

ferred to Yazid et al (2009) for an overview of the ap-158

plication of XFEM to problems in fracture mechanics.159

The XFEM has been used for a variety of problems in160

computational mechanics, such as fluid-structure inter-161

action (Gerstenberger and Wall, 2008b,a), multi-phase162

flows (Fries, 2009), and nano-scale heat transfer (Lee163
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et al, 2011). A general overview of the method is pre-164

sented by Fries and Belytschko (2010).165

Duysinx et al (2006) originally introduced the XFEM166

into shape optimization using a simplified XFEM for-167

mulation. This formulation does not use additional en-168

richment functions and is limited to problems where169

one of the material phases represents void and the ge-170

ometric configuration is “simple”, i.e. does not contain171

geometric features that are smaller than the size of two172

elements (Makhija and Maute, 2014). In this instance,173

the weak form of the governing equations is only in-174

tegrated over the solid material in each element. In175

addition, if the interface between the material phases176

is traction free, this simplified version of the XFEM177

only differs from the traditional finite element method178

with respect to the domain of integration. The sim-179

plified XFEM version was applied to structural shape180

optimization, for example, by Duysinx et al (2006), van181

Miegroet et al (2005), and van Miegroet and Duysinx182

(2007), and to topology optimization of two and three183

dimensional structures by Herrero et al (2013) and Li184

et al (2012), respectively.185

An XFEM approach based on a standard enrich-186

ment strategy allows to model two-phase problems with187

a simple intersection pattern. This formulation is con-188

sidered, for example, by Wei et al (2010) to solve “solid-189

void” structural topology optimization problems, mod-190

eling the “void” phase as a soft material. Maute et al191

(2011) used a standard enrichment strategy to discretize192

the phonon Boltzmann transport equation and optimize193

the thermal conductivity of nano-composites. However,194

this enrichment strategy is not guaranteed to consis-195

tently approximate the state variable fields for config-196

urations with complex intersection patterns.197

An enhanced version of the XFEM was proposed by198

Makhija and Maute (2014), who presented a general-199

ized enrichment strategy based on the step enrichment200

of Hansbo and Hansbo (2004) and applied it to two201

dimensional structural topology optimization. This for-202

mulation captures consistently the mechanical response203

for complex geometries and intersection patterns for204

general multi-phase problems.205

This paper will expand the combination of the LSM206

and the XFEM onto general two-phase problems in207

three dimensions. We will compare results of the pro-208

posed LSM-XFEM framework with SIMP results for209

structural topology optimization examples. The numer-210

ical results will show that the LSM-XFEM combination211

is a promising approach for three dimensional problems212

and allows for the use of coarse meshes to represent the213

structural geometry and to describe the structural re-214

sponse with acceptable accuracy.215

The main challenges of expanding the previous LSM216

with XFEM approaches to three dimensions stem from217

the increased complexity of possible intersections pat-218

terns. Such patterns include elements that are inter-219

sected multiple times and elements containing only a220

small volume of a particular phase. In contrast to Li221

et al (2012), we will adopt the generalized enrichment222

strategy of Makhija and Maute (2014) to (a) accurately223

model the structural response on complex three dimen-224

sional patterns and (b) solve solid-solid material distri-225

bution problems. Further, we will expand the precondi-226

tioning scheme of Lang et al (2013) onto three dimen-227

sions to mitigate ill-conditioning issues in the XFEM228

analysis problems due to elements with small volume229

fractions.230

The main contributions of the paper are: (a) we231

present a numerically robust and computationally vi-232

able approach for solving general two-phase, three di-233

mensional topology optimization problems, and (b) we234

provide a direct comparison of LSM-XFEM and SIMP235

results for three dimensional problems, highlighting key236

features of the two methods.237

The remainder of this paper is structured as follows:238

the geometry models of the LSM-XFEM and SIMP239

methods are described in Section 2. The mechanical240

model and the XFEM formulation are summarized in241

Section 3. Details of the LSM-XFEM and SIMP opti-242

mization approaches are presented in Section 4. Section243

5 highlights specific computational challenges of the244

XFEM approach for three dimensional problems. Sec-245

tion 6 presents structural topology optimization exam-246

ples, comparing the LSM-XFEM and SIMP approaches.247

Section 7 summarizes the main conclusions drawn from248

this study.249

2 Geometry Modeling250

In topology optimization, the geometry of a body is de-251

fined via its material distribution. In density methods,252

such as SIMP, the material distribution is discretized by253

finite elements, with either elemental or nodal parame-254

ters defining the distribution within the element. Most255

often the same mesh is used to approximate the density256

distribution and the structural response. Alternatively,257

the state and density fields can be discretized by differ-258

ent meshes with different refinement levels; see for ex-259

ample the Multi-resolution Topology Method (MTOP)260

by Nguyen et al (2010). The optimization variables de-261

fine analytically or by means of auxiliary partial dif-262

ferential equations the nodal or element density pa-263

rameters (Sigmund and Maute, 2013). For two-phase264

problems, the density is continuously varied between265
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“0” (phase “A”) and “1” (phase “B”). Implicit or ex-266

plicit penalization schemes, optionally combined with267

projection methods, are used to encourage “0-1” solu-268

tions (Guest et al, 2004; Sigmund, 2007).269

The crispness of the interface geometry, as described270

via the optimized material distribution, depends on (a)271

the formulation of the optimization problem, i.e. the ob-272

jective and constraints, (b) regularization techniques,273

such as density or sensitivity filters, and (c) the op-274

timization algorithm. In general, the resolution of the275

phase boundaries increases as the mesh is refined. For276

three dimensional problems, often coarse meshes are277

used to limit the computational costs. In this case, the278

boundary geometry either lacks crispness due to the279

presence of elements with intermediate densities or is280

approximated by a spatially discontinuous material dis-281

tribution, leading to jagged interfaces.282

Alternatively, the material distribution can be de-283

scribed via a level set function φ(x). Typically the zero284

level set contour defines the phase boundaries. Consid-285

ering a two-phase problem, the interface ΓA,B is defined286

as follows:287

φ(x) < 0, ∀ x ∈ ΩA,
φ(x) > 0, ∀ x ∈ ΩB ,
φ(x) = 0, ∀ x ∈ ΓA,B ,

(1)

where the vector x collects the spatial coordinates, ΩA288

is the domain of material phase “A”, ΩB is the domain289

of material phase “B”, and ΓA,B defines the material290

interface between phase “A” and phase “B”. For ex-291

ample, to model a sphere in a three dimensional mesh292

centered at (xc,yc,zc), the value of the level set function293

at a grid point (xi,yi,zi) is:294

φi = (xi − xc)2 + (yi − yc)2 + (zi − zc)2 − r2, (2)

where r represents the radius of the sphere, and the295

sign of φi at each node determines if the node is inside296

or outside the sphere.297

The level set field is typically discretized by shape298

functions with either local or global support (Dijk et al,299

2013). In the simplest and most common approach, the300

level-set field is approximated on the same mesh used301

for discretizing the governing equations. In this study,302

we follow this approach and define the nodal level-set303

values explicitly as functions of the optimization vari-304

ables (see 4.1). The resulting parameter optimization305

problem is solved by a standard nonlinear programming306

method.307

While LSMs provide a crisp definition of the phase308

boundaries, they require seeding the initial design with309

inclusions and/or introducing inclusions in the course310

of the optimization process, for example via topological311

derivatives (Eschenauer et al, 1994; Sokolowski and Zo-312

chowski, 1999; Burger et al, 2004; Norato et al, 2007).313

An example of an initial design with a regular pattern of314

spherical inclusions is shown in Fig. 1. The images in the315

upper row and the image in the lower left corner show316

only phase “A”. The material layout of both phases is317

depicted in the lower right image. This layout can be318

generated by superposing Eq. 2 for spheres at uniformly319

spaced center locations. The optimization results of the320

LSM are typically dependent on the initial layout. Fur-321

thermore, it is non-trivial to generate an initial design322

that satisfies geometric design constraints, such as vol-323

ume or perimeter constraints. In our experience, start-324

ing from an initial design that satisfies the constraints325

prevents the optimization process from converging to a326

design with poor performance and numerical artifacts,327

such as disconnected, free-floating material.328

3 Structural Analysis329

In this section, we briefly discuss the structural model330

and the XFEM analysis used in this paper. The gov-331

erning equations modeling a linear elastic structural re-332

sponse are presented first, followed by a summary of the333

XFEM discretization and analysis.334

3.1 Structural Model335

This paper considers the topology optimization of struc-336

tures using the LSM approach described above and the337

XFEM to predict the structural response, assuming in-338

finitesimal strains, a linear elastic material behavior,339

and static conditions. We consider the two-phase prob-340

lem depicted in Fig. 2, where ΓN denotes the surface341

where traction forces are applied, ΓD denotes the sur-342

face with prescribed displacements, and n is the normal343

at the material interface pointing from phase “A” to344

phase “B”. The weak form of the governing equations345

can be decomposed into the following terms:346

W = WS +WL +Wk = 0, (3)

where WS collects the contributions from the static347

equilibrium, including body forces and surface tractions,348

WL models the interface conditions along the phase349

boundaries for “solid-solid” problems, and Wk is due350

to a fictitious spring model to pin free floating material351

in “solid-void problems”.352
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Fig. 1: Initial design with array of spherical inclusions for the cantilever beam example of Section 6.3; blue represents

phase “A” material and red represents phase“B”.

Fig. 2: Two-phase problem.

The weak form of the structural equilibrium equa-353

tions is:354

WS =

∫

ΩA

ηηη : σσσ(u) dΩ+

∫

ΩB

ηηη : σσσ(u) dΩ−
∫

ΩA

v · b dΩ

−
∫

ΩB

v · b dΩ −
∫

ΓN

v · f dΓN , (4)

where v is the kinematically admissible test function, ηηη355

is the strain tensor associated with the test function v,356

u is the displacement vector, σσσ is the stress tensor, b357

is the applied body force, and f is the external traction358

applied along ΓN .359

To enforce continuity of the displacements along the360

phase boundaries, the static equilibrium equations are361

typically augmented by either an enhanced Lagrange362

multiplier or penalty formulations, such as the stabi-363

lized Lagrange multiplier and the Nitsche method. Note364

that the standard Lagrange multiplier approach is not365

suitable for the XFEM as it suffers from numerical in-366

stabilities. The reader is referred to Stenberg (1995),367

Juntunen and Stenberg (2009), and Dolbow and Harari368

(2009) for more details.369

In this paper, we enforce displacement continuity370

along phase boundaries for “solid-solid” problems via371

the following stabilized Lagrange multiplier method (Makhija372

and Maute, 2014):373

WL = −
∫

ΓA,B

[v] · λλλ dΓA,B + γ

∫

ΓA,B

µµµ · [u] dΓA,B

+

∫

ΓA,B

µ · (λλλ− σ̄σσ · nA,B) dΓA,B , (5)

374

[u] = u(A) − u(B) , [v] = v(A) − v(B) , (6)
375

σ̄σσ =
1

2

(
σσσ(A) + σσσ(B)

)
, (7)
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where λλλ is the Lagrange multiplier, and µµµ is the as-376

sociated test function. The higher the weight γ is, the377

better the interface condition is satisfied, at the cost of378

numerical stability.379

In “solid-void” topology optimization problems, free-380

floating solid particles surrounded by void material may381

emerge, leading to a singular analysis problem. This is-382

sue does not exist in an Ersatz material approach as383

the void phase is modeled via a soft material. A similar384

approach can be applied to the XFEM to suppress sin-385

gularities and the “void” phase can be modeled via a386

soft material (Wei et al, 2010). However, this approach387

requires accounting for the interface contributions (5)388

and integrating the governing equations over the void389

phase. To avoid the associated complexity and compu-390

tational costs, we extend the approach of Makhija and391

Maute (2014) onto three dimensions and assume that392

the solid phase is supported by weak fictitious springs.393

This model leads to the following contribution to the394

governing equations, assuming that phase “A” is the395

solid phase:396

Wk =

∫

ΩA

k v · u dΩ, (8)

where k denotes the stiffness of the distributed system397

of springs.398

For a more detailed explanation of this XFEM for-399

mulation, the reader is referred to the paper by Makhija400

and Maute (2014).401

3.2 Discretization402

To capture the discontinuities in the strain and stress403

fields along the phase boundaries, we enrich the stan-404

dard finite element approximation with additional shape405

functions. We adopt the generalized enrichment strat-406

egy of Makhija and Maute (2014) which resolves consis-407

tently the displacement fields in the presence of small408

features and does not suffer from artificially coupling409

disconnected phases. Considering a two-phase problem,410

the displacement field is approximated as follows:411

u(x) =
M∑

m=1

(
H(−φ)

n∑

i=1

Ni u
A
i,m +H(φ)

n∑

i=1

Ni u
B
i,m

)
,

(9)

where m is the enrichment level, M is the maximum412

number of enrichment levels used for each phase, N are413

the shape functions, uli,m is the vector of nodal displace-414

ment components at node i for phase l = [A,B], φ is415

the level set value evaluated at the integration point,416

and H denotes the Heaviside function. The enrichment417

level is chosen such that the displacements in discon-418

nected volumes of the same phase are interpolated by419

separate sets of degrees of freedom. When interpolat-420

ing the level set field by element-wise linear functions,421

a maximum of 14 enrichment levels is needed in three422

dimensions. This enrichment strategy will be revisited423

in Section 5.424

The Heaviside function H depends on the level set425

function and is defined as follows:426

H(z) =

{
1 z > 0,

0 z ≤ 0,
(10)

The Heaviside functions “turns on/off” the standard427

finite element interpolations in the particular phases.428

The approximation (9) allows for discontinuities of the429

displacements along the phase boundaries. Therefore430

the continuity is enforced weakly via the stabilized La-431

grange multiplier method (5).432

Following a Bubnov-Galerkin scheme, we test the433

governing equations with the same subspace as we use434

for the trail functions; see Eq. 9. The weak form of the435

governing equations is integrated numerically over the436

individual phases, using the Delaunay triangulation of437

the element along the phase boundaries.438

3.3 Preconditioner439

As described above, the degrees of freedom uli,m in-440

terpolate the structural displacements in topologically441

connected subdomains of phase l in the elements con-442

nected to node i. As the total volume of these sub-443

domains vanishes, the discretized structural model be-444

comes increasingly ill-conditioned; i.e. the condition num-445

ber of the stiffness matrix rapidly increases. This phe-446

nomenon is more pronounced in three dimensional prob-447

lems than in two dimensional ones.448

To mitigate this ill-conditioning issue, we expand449

the geometric preconditioning scheme of Lang et al (2013),450

which was introduced and studied for two dimensional451

heat conduction and flow problems, onto three dimen-452

sional problems in structural mechanics. The goal of453

this preconditioning scheme is to balance the influence454

of all degrees of freedom in the system, as the volumes455

in which the subset of these degrees of freedoms in-456

terpolates the solution approach zero. To this end, we457

introduce the following projection:458

ũ = TTTu, (11)

where u is the vector of displacement degrees of freedom459

according to Eq. 9, TTT is a transformation matrix, and460

ũ is the solution vector in the transformed space. The461
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residual, R̃RR, and stiffness matrix, K̃KK, in the transformed462

space are defined as:463

R̃RR = TTTTRRR K̃KK = TTTTKKKTTT , (12)

where the residual, RRR, and the stiffness matrix, KKK, re-464

sult from integrating the weak form of the governing465

equations using the XFEM approximation (9).466

The preconditioner TTT is a diagonal matrix built by467

integrating the spatial derivatives of the shape func-468

tions over the nodal support of nodes connected to an469

intersected element. The diagonal components of the470

matrix are defined as:471

TTT li,m =

(
max
e∈Ei

∫
De

l
∇Ni(x) · ∇Ni(x) dx

∫
De ∇Ni(x) · ∇Ni(x) dx

)−1/2
, (13)

where TTT li,m corresponds to the degree of freedom uli,m,472

i is the node index, l = [A,B] is the material phase,473

m is the enrichment level, Ei is the set of elements474

connected to node i, and Del is the element domain of475

phase l. The components of the matrix increase as the476

region of influence of a degree of freedom decreases. The477

entries T li,m of nodes i that are not connected to at least478

one intersected element are set to one.479

To avoid numerical issues due to large values for480

the components of TTT , the degrees of freedom associated481

with the diagonal entry TTT li,m are constrained to zero if482

the following condition is satisfied:483

TTT li,m ≥ Ttol, (14)

where Ttol is a specified tolerance. As studies by Lang484

et al (2013) have shown, the above preconditioning scheme485

is rather insensitive to the value of Ttol and is typically486

set to a value larger than 108. For more details on this487

formulation, the reader is referred to the paper by Lang488

et al (2013).489

4 Optimization Model490

The design optimization problems considered in this491

paper can be written as follows:492

min
s
F(s,u(s)),

s.t.

{
s, subject to design constraints Gj ≤ 0,

u, solves W = 0 for a given s,

(15)

where s denotes the vector of design variables, F the493

objective function, and Gj the j-th design constraint. In494

general, the objective and constraints depend on the op-495

timization and state variables. The optimization prob-496

lem (15) is solved by nonlinear programming methods,497

and the gradients of the objective and constraint func-498

tions are computed via the adjoint method.499

In this paper, we compare the proposed LSM-XFEM500

approach against the well-known SIMP method, aug-501

mented by a projection scheme. In the following sub-502

sections, we briefly outline the models that define the503

discretized level set field and the material properties504

as function of the optimization variables in the LSM-505

XFEM and the SIMP method, respectively.506

4.1 XFEM507

The nodal values of the discretized level set field are508

defined as analytical functions of the optimization vari-509

ables via the following linear filter:510

φn(s) =

P∑
i=1

wn
i si

P∑
i=1

wn
i

, (16)

with511

wn
i = max (0, rφ− ‖ xi − xn ‖) , (17)

where φn is the level set value at node n, xn is the po-512

sition vector of node n, xi is the location of the node at513

which the design variable i is defined, wn
i is the weight514

of node n with respect to design variable i, rφ is the515

filter radius, and P is the number of nodes in the com-516

putational mesh.517

The above linear filter was used previously in the518

studies of Kreissl and Maute (2012) and Makhija and519

Maute (2014), and was shown to improve the conver-520

gence rate in the optimization process. However, in con-521

trast to density or sensitivity filters used in SIMP meth-522

ods, the filter above is not guaranteed to control the523

minimum feature size. This issue will be revisited in524

Section 6.525

4.2 SIMP526

Here, the material distribution is parameterized by nodal527

density values, ρi, which are treated as optimization528

variables, i.e. ρi = si. Following the work of Guest et al529

(2004), we compute the elemental density by combin-530

ing a linear density filter and a projection scheme as531

follows:532

ρe(s) =

E∑
i=1

we
i si

E∑
i=1

we
i

, (18)
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with533

we
i = max (0, rρ− ‖ xi − xe ‖) , (19)

where ρe is the elemental density of element e, xe is the534

position vector of the centroid of element e, xi is the535

location of the node at which the design variable i is536

defined, we
i is the factor of element e with respect to537

design variable i, rρ is the filter radius, and E is the538

number of elements in the computational mesh.539

Guest et al (2004) proposed a density projection540

method to reduce the volume occupied by material with541

intermediate densities. The projection is based on a542

smoothed Heaviside function and applied to the ele-543

mental densities as follows:544

ρ̂e(s) = 1− e−βρe(s) + ρe(s)e−β (20)

where ρ̂e is the projected elemental density, and the545

parameter β ≥ 0 controls the crispness of the projec-546

tion. For β = 0 the projection turns into an identity547

operator, i.e. ρ̂e = ρe.548

The Young’s modulus, E, is defined as a function of549

the density, ρ̂e, using the standard SIMP interpolation:550

E(x) = EB + |EA − EB |ρ̂e(s)p (21)

where EA and EB are the Young’s moduli for material551

phase “A” and “B”, and p is the SIMP penalization552

factor. To model a “solid-void” optimization problem,553

EB is set to value much smaller than EA.554

The filter (18) prevents the formation of features555

smaller than rρ, typically at the cost of generating in-556

termediate density values along the phase boundaries.557

This effect is mitigated by the projection (20) which,558

in the limit for β → ∞ , maps non-zero ρe values559

into “1”. The reader is referred to the papers by Guest560

et al (2004) and Guest et al (2011) for further details561

of the scheme presented above, and to Sigmund and562

Maute (2013) for a comprehensive discussion of projec-563

tion schemes.564

5 Computational Considerations565

Expanding the LSM-XFEM combination onto three di-566

mensional problems faces both algorithmic and compu-567

tational challenges which are briefly discussed below.568

The XFEM requires integrating the weak form of the569

governing equations separately in each phase. To this570

end, an element intersected by the zero level set con-571

tour is subdivided. For two dimensional problems and572

using a linear interpolation of the level set field within573

an element, there are only 8 intersection configurations574

which can be tabulated; see Fig. 3. In three dimensions,575

there are 127 intersection configurations. To handle this576

Fig. 3: Intersection patterns for a two-dimensional
QUAD4 element.

complexity, we compute the intersection point of the577

zero level set contour with the element edges and use a578

Delaunay triangulation to subdivide the element. In nu-579

merical experiments, this approach has proven robust580

and computationally inexpensive.581

Previous studies on topology optimization for three582

dimensional structures with the XFEM (Li et al, 2012)583

have employed a simplified enrichment scheme which is584

limited to “solid-void” problems and may suffer from585

artificial coupling of disconnected material. Our work586

overcomes these issues by adopting the generalized en-587

richment scheme summarized in Section 3.2. The key588

challenge of this scheme is to identify the enrichment589

levels needed to consistently interpolate the displace-590

ments in elemental subdomains with the same phase.591

Fig. 4: Initial assignment of enrichment levels.
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Fig. 5: Initial and final assignment of enrichment levels considering a cluster of elements.

To this end, the subdomains in all elements con-592

nected to a node need to be considered. This naturally593

leads to an algorithm which loops over all nodes and,594

in an inner loop, over all elements connected to the595

current node. As this approach processes an element596

repeatedly, the following simple and efficient two-step597

scheme is introduced:598

1. A temporary, elemental enrichment level is assigned599

to the subdomains in each element. Recall that the600

enrichment level defines the set of degrees of freedom601

used to interpolate the displacements in an elemen-602

tal subdomain. Because this assignment is done in-603

dividually for each element, the continuity of the in-604

terpolation across elements is not guaranteed. Fig. 4605

shows the triangulation and enrichment level for the606

red phase in two and three dimensions.607

2. The nodal enrichment levels are constructed to en-608

sure that the displacement field is interpolated con-609

tinuously across elements, and by a different set610

of shape functions for each disconnected elemental611

subdomain of the same phase. To this end, the clus-612

ter of elements connected to a node is considered,613

and the elemental enrichment levels assigned in step614

1 are adjusted to satisfy the continuity and consis-615

tency conditions.616

This process is illustrated in Fig. 5. The node of in-617

terest is the one located in the center of the element618

cluster. In step 1 each subdomain of the red phase is619

assigned an enrichment level of m = 1. Applying this620

enrichment level to the degrees of freedom for the red621

phase at the center node would incorrectly couple the622

displacement fields in the red phase subdomains. An-623

alyzing the element cluster around the center nodes624

shows that these subdomains are disconnected and in-625

dividual enrichment level are assigned.626

Topology optimization in three dimensions leads to627

FEM or XFEM models with a large number of degrees628

of freedom, and typically requires using iterative solvers629

and parallel computing. The stabilized Lagrange mul-630

tiplier formulation of the interface conditions (5) leads631

to a non-symmetric stiffness matrix. Numerical experi-632

ments have shown that the XFEM problems considered633

in this study can be robustly and efficiently solved by634

a generalized minimal residual (GMRES) method pre-635

conditioned by incomplete LU (ILU) factorization. Note636

that the ILU preconditioner operates on the projected637

XFEM system (12).638

6 Numerical Examples639

We study the features of the proposed LSM-XFEM640

topology optimization approach with numerical exam-641

ples. The LSM-XFEM results of “solid-void” and “solid-642

solid” problems are compared against the ones of the643

SIMP approach outlined in Section 4.2. In all examples644

we seek to minimize the strain energy subject to a con-645

straint on the volume of the stiff phase. This problem646

formulation is chosen because it is well studied in the647

literature and the numerical experiments can be easily648

repeated. The following numerical studies will provide649

insight into (a) the convergence of the geometry and650

the structural response as the meshes are refined and651

(b) the influence of regularization techniques on the op-652

timized results, such as the filter radii in (16) and (18),653

and perimeter constraints.654

In all examples, the optimization problems are solved655

by the Globally Convergent Method of Moving Asymp-656

totes (GCMMA) of Svanberg (2002). The sensitivities657

are computed by the adjoint method. The design do-658

mains are discretized by 8-node linear elements. The659

linear systems of the forward and adjoint problems are660

solved by a parallel implementation of the GMRES661

method (Heroux et al, 2003). The problems are pre-662

conditioned by an ILU factorization with a fill of 2.0663

and an overlap of 1.0. The convergence tolerances for664

both, the GCMMA and the GMRES solver, are chosen665

sufficiently low such that the optimization results do666

not depend on the tolerance values. In the SIMP prob-667

lems, the parameters p and β are kept constant in the668

optimization process, i.e. no continuation approach is669
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used. In the LSM-XFEM examples, the spring stiffness670

value, k, is 10−6. Geometric and material parameters671

are given in non-dimensional and self-consistent units.672

While the LSM-XFEM results can be directly used673

to fabricate the structure, for example by 3D printing,674

the SIMP results need to be post-processed. From a675

practitioner perspective, only the post-processed SIMP676

results should be compared against the LSM-XFEM re-677

sults. To this end, we post-process the SIMP results678

with a lumping method that uses the iso-contours of679

the density distribution. To obtain a strict “0-1” den-680

sity distribution with smooth phase boundaries, we con-681

struct iso-contours for different threshold values, ρT ,682

from the nodal density values, ρi; see Section 4.2. The683

volume enclosed by the iso-contour with ρ ≥ ρT is684

considered solid; the remaining volume is considered685

“void”. We select the threshold value that results in686

the smallest strain energy and for which the volume687

constraint is satisfied. The structural response of the688

design for different ρT values is analyzed conveniently689

with the XFEM. We refer to this post-processing ap-690

proach as iso-contour density lumping (IDL).691

To gain further insight into the crispness of the692

SIMP results and the influence of the post-processing693

methods above on their performance, we measure the694

volume fraction, ρ̄, occupied by elemental densities with695

0 < ρ̂e < 1 as follows:696

ρ̄ =
1∫

ΩD
dΩD

∫

ΩD

ρ̂e(1− ρ̂e) dΩD (22)

where ΩD denotes the design domain.697

6.1 Cube with center load698

Fig. 6: Cube with center load.

We consider the “solid-void” optimization problem699

depicted in Fig. 6. With this example we will illus-700

trate the basic features of the LSM-XFEM approach701

for three dimensional problems and show that the pro-702

posed LSM-XFEM approach and the SIMP formulation703

may exhibit comparable convergence behaviors as the704

mesh is refined.705

The 1 × 1 × 1 cubical design domain is pinned at706

its four bottom corners in the vertical direction and a707

unit force is applied at the center of the bottom face.708

The Young’s modulus of the stiff phase is set to 1 and709

the Poisson ratio to 0.3. The maximum volume of the710

stiff phase is 10%. We compare LSM-XFEM and SIMP711

results for two mesh sizes: 24×24×24 and 65×65×65.712

The problem is solved by analyzing the entire design713

domain, i.e. we do not restrict the solution to a sym-714

metric design.715

First, we apply the SIMP approach with a penaliza-716

tion factor of p = 3. The Young’s modulus of the void717

phase is set to EB = 10−9. The size of the smooth-718

ing radius is mesh dependent, and is set to rρ = 3.2719

for the coarse mesh and rρ = 1.182 for the fine mesh;720

the projection parameter is set to β = 0. Note that721

the smoothing radius is intentionally set relative to the722

element size (1.6× element edge length). While this ap-723

proach does not ensure mesh-independent optimization724

results, it still prevents the formation of checker-board725

patterns and provides insight into the dependency of726

the geometry resolution of SIMP as the mesh is re-727

fined. The design domain is initialized with a uniform728

material distribution of ρi = 0.1. The optimized ma-729

terial distributions are shown in Figure 7 where mate-730

rial with a density lower than ρi < 0.75 is considered731

void. The strain energies are reported in Tab. 1. For732

both meshes the volume constraint is active in the con-733

verged designs. As expected, the optimized geometry is734

smoother and the strain energy is lower for the refined735

mesh. The SIMP results for the coarse and fine mesh are736

post-processed with the IDL approach described above.737

The strain energies for varying threshold values, ρT ,738

are plotted in Fig. 8. The volume constraint is met for739

ρT = 0.78 for the coarse mesh and ρT = 0.44 for the740

fine mesh. For these threshold values, the strain ener-741

gies of SIMP-IDL designs are 4.8939% and 12.1625%742

lower than the ones of the raw SIMP results for the743

coarse and fine meshes, respectively. The value of ρT744

is higher for the coarse mesh because it cannot con-745

verge to a design with void inclusions. In both cases746

the strain energies of the post-processed results match747

well the SIMP predictions as the density distributions748

converged well to “0-1” solutions.749

The volume fractions of intermediate densities (22)750

are 0.285 and 0.0189 for the coarse and fine mesh, re-751
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(a) 24x24x24 mesh (b) 65x65x65 mesh

Fig. 7: SIMP results for cube with center load problem; clockwise: bottom, side, top, and clipped views.

Fig. 8: IDL post-processing of SIMP results for cube
with center load problem.

spectively. The post-processed designs have lower strain752

energies because the post-processing counteracts the ef-753

fect of the density filter (18). The same optimization754

problem is solved with the proposed LSM-XFEM ap-755

Fig. 9: Initial level set configurations for cube with cen-

ter load problem.

Mesh size Strain energy
SIMP 24 × 24 × 24 9.1456e-01

65 × 65 × 65 3.5244e-02
XFEM 24 × 24 × 24 1.0082e+00

65 × 65 × 65 3.5519e-02

Table 1: Comparison of strain energies of SIMP and
LSM-XFEM results for cube with center load problem;
the corresponding designs are shown in Figs. 7 and 10.

proach. The smoothing radius is set to rφ = 3.2 for756

the coarse mesh and rφ = 1.182 for the fine mesh. No757

perimeter constraint is imposed. We seed the initial de-758

sign with two different configurations of void inclusions759

to study the influence of the initial layout on the opti-760

mization results. For both configurations we start from761

an equally spaced array of square-shaped holes with762
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(a) 24x24x24 mesh (b) 65x65x65 mesh

Fig. 10: LSM-XFEM results for cube with center load problem; clockwise: bottom, side, top, and clipped views.

Fig. 11: Evolution of strain energies in the optimization
process for SIMP and LSM-XFEM approaches.

rounded corners, by modifying Eq. 2 into the following:763

φi = (xi − xc)10 + (yi − yc)10 + (zi − zc)10 − r10. (23)

One configuration has 3×3×3 equally spaced holes with764

radius 5.50, the other 7×7×7 holes with radius 2.0, as765

shown in Fig. 9. In both cases, the volume constraint766

is not satisfied with the initial design. Note that no767

inclusions are placed at the four bottom corners where768

the boundary conditions are applied.769

Both level set configurations converge to nearly in-770

distinguishable designs and strain energy values, for771

both the coarse and fine meshes. The optimized de-772

signs are shown in Fig. 10. The strain energies of the773

optimized designs are given in Tab. 1. The convergence774

history for the coarse meshes in SIMP and LSM-XFEM775

is shown in Fig. 11.776

For the example considered here, the SIMP and777

LSM-XFEM results match well, both in regards to the778

geometry and the strain energy values. The LSM-XFEM779

approach shows a faster convergence as the mesh is re-780

fined. Comparing the optimized geometries, the SIMP781

results contain more structural features for both mesh782

resolutions. For example, considering the fine mesh, the783

SIMP method generates two small holes in the webs784

connecting the supports to the load point, while the785

LSM-XFEM approach leads to only one larger hole, in-786

dependent of the initial design configuration. However,787

these small differences have only a minor impact on the788

structural performance, i.e. the strain energy, of the op-789

timized designs.790

Considering the conceptual structural layout, both,791

the SIMP and the LSM-XFEM approach, display only792

minor mesh dependencies for the problem studied here.793

Although the strain values show significant differences,794

the optimized geometries obtained with the coarse and795

fine meshes differ insignificantly for the SIMP and LSM-796

XFEM approach. The following example will demon-797

strate a less benign convergence and identify more pro-798

nounced differences between the SIMP and LSM-XFEM799

methods.800
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Fig. 12: Cuboid under torsion model.

6.2 Cuboid under torsion801

The second “solid-void” example is taken from Nguyen802

et al (2012) and reveals differences in the SIMP and803

LSM-XFEM approaches. We will show that, without804

imposing a mesh-independent minimum feature size con-805

straint, the proposed LSM-XFEM approach may con-806

verge to a design with a significantly lower strain en-807

ergy than the SIMP method employed in this paper.808

However, we will also illustrate that our LSM-XFEM809

approach suffers from a lack of a robust and intuitive810

shape control technique.811

The design domain is a cuboid of size 4× 1× 1, as812

shown in Fig. 12. A torque moment is generated via 4813

unit loads acting at the centers of the edges of the top814

face. The design domain is clamped at the bottom face.815

The Young’s modulus is set to 1.0 and the Poisson ratio816

to 0.3. The volume of the stiff phase is constrained to817

10% of the total volume. The problem is solved on the818

full mesh.819

6.2.1 Mesh convergence study820

The optimization problem is solved with the SIMP ap-821

proach for four different mesh sizes: 40× 10× 10, 60×822

15×15, 80×20×20, and 120×30×30. The Young’s mod-823

ulus of the void phase is set to EB = 10−9. The design824

domain is initialized with a uniform material distribu-825

tion of ρi = 0.1. The penalization factor is p = 3. First826

Mesh size Strain energy
SIMP 40 × 10 × 10 7.5195e+03

60 × 15 × 15 4.2076e+03
80 × 20 × 20 4.0298e+03

120 × 30 × 30 2.6555e+03

Table 2: Strain energies of SIMP results for cuboid un-
der torsion problem; SIMP parameters: p = 3, rρ = 1.6
of the element edge length, and β = 0; the correspond-
ing designs are shown in Fig. 13.

we consider a projection parameter of β = 0 and scale827

the smoothing radius with the element size: rρ = 1.6×828

the element edge length.829

The optimized material distributions are shown in830

Fig. 13 where material with a density lower than ρi <831

0.35 is considered void. The strain energies are reported832

in Tab. 2 and display the expected decrease in strain833

energy as the mesh is refined. For all meshes the vol-834

ume constraint is active in the converged designs. As835

the mesh is refined, the evolution of the SIMP results836

shows an interesting discontinuity which is typically837

not observed for two dimensional problems. The op-838

timized material layout switches abruptly from a grid-839

type structure, which conceptually agrees with the re-840

sults of Nguyen et al (2012), to a hollow square prism841

design. In contrast to two dimensional structures, where842

refining the mesh with a mesh-dependent filter radius843

leads to an ever increasing number of holes, in this844

example the opposite is the case. As the filter radius845

drops below a threshold, it is more advantageous to846

form a continuous thin outer wall rather than a grid-847

type structure. This behavior is a direct consequence848

of the combination of SIMP penalization and density849

smoothing. We will revisit this issue again later.850

The LSM-XFEM results for a smoothing radius of851

rφ = 1.6× the element edge length are shown in Fig. 14.852

No perimeter constraint is applied to this problem. Here853

only the results for the coarsest and the finest meshes of854

the SIMP study above are shown. Note that in contrast855

to the SIMP results, the LSM-XFEM approach leads to856

conceptually equivalent design on both meshes. Refin-857

ing the mesh only improves some local details. This fea-858

ture is due to the ability of the LSM to represent thin859

structural features on coarse meshes. The thicknesses860

of the walls at half the height of the design domain are861

0.0288 for the coarse mesh and 0.0276 for the fine mesh.862

The strain energies of the LSM-XFEM results are given863

in Tab. 3. The strain energy for the fine mesh is slightly864

larger than the one of the coarse mesh. This effect is due865

to the tendency of coarse finite element discretization866

over predicting the stiffness. The differences between867

the SIMP and LSM-XFEM results are significant. Al-868
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(a) 40x10x10 (b) 60x15x15

(c) 80x20x20 (d) 120x30x30

Fig. 13: SIMP results of cuboid under torsion problem
for different levels of mesh refinement; SIMP parame-

ters: p = 3, rρ = 1.6 of the element edge length, β = 0.

Mesh size Strain energy
LSM-XFEM 40 × 10 × 10 8.7551e+ 02

120 × 30 × 30 9.8262e+ 02

Table 3: Strain energies of LSM-XFEM results for

cuboid under torsion problem; LSM-XFEM parame-
ters: rφ = 1.6 of the element edge length, no perimeter
constraint; the corresponding designs are shown in Fig.
14.

(a) 40x10x10 (b) 120x30x30

Fig. 14: LSM-XFEM results of cuboid under torsion
problem for two levels for mesh refinement; LSM-

XFEM parameters: rφ = 1.6 of the element edge length,
no perimeter constraint.

though the discrepancy in strain energy decreases as the869

mesh is refined, the difference is large even for the two870

finer meshes where the SIMP and LSM-XFEM designs871

are similar. As the following investigation will show,872

the poorer performance of the SIMP results is primar-873

ily caused by the density filter, which prevents the ma-874

terial distribution to converge to a “0-1” result. First875

we study the influence of the projection scheme (20) on876

the SIMP results for the most refined mesh. The opti-877

mized material distributions for β = 4.0 and β = 8.0 are878

shown in Fig. 15, where material with a density lower879

than ρi < 0.35 is considered void. For convenience the880

result for β = 0.0 is shown again. Table 4 reports on881

the strain energies and the volume fractions of inter-882

mediate densities, ρ̄, as the projection parameter, β, is883

increased. The higher β, the lower ρ̄ and the lower the884

strain energy, approaching the one of the LSM-XFEM885

result. Note that as β increases, the more holes emerge.886

The thickness of the walls for β = 8 is 0.0434, which887

is smaller than the value for β = 0, 0.0447, and closer888

to the LSM-XFEM value. Instead of enforcing a bet-889

ter convergence toward a “0-1” solution by increasing890

the projection parameter β, we post-process the SIMP891

results for β = 0 by the IDL post-processing method.892

Figure 16 shows the strain energy of the post-processed893

design over the threshold density, ρT , for the coarsest894

and the finest mesh. The volume constraint is satis-895
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(a) β = 0 (b) β = 4 (c) β = 8

Fig. 15: SIMP results for different projection parameters β = [0.0, 4.0, 8.0]; mesh size: 120× 30× 30.

β projection Strain energy ρ̄ utilization
SIMP 0 2.6555e+03 4.0688e-02

4 2.0264e+03 2.5131e-02
8 1.9039e+03 1.9509e-02

Table 4: Strain energies of SIMP results for differ-
ent projection parameters β = [0.0, 4.0, 8.0]; the cor-

responding designs are shown in Fig. 15.

Mesh ρT Strain energy
SIMP 40 × 10 × 10 0.4634 1.5601e+ 03

120 × 30 × 30 0.5174 1.1530e+ 03

Table 5: Strain energies of the SIMP-IDL designs of
cuboid under torsion problem; the corresponding de-
signs are shown in Fig. 13.

fied for a threshold value of ρT = 0.4634 for the coarse896

mesh, and ρT = 0.5174 for the fine mesh. For these897

threshold values, the strain energies of the SIMP-IDL898

designs are 70.6564% and 62.8167% lower than the ones899

of the raw SIMP results for the coarse and fine meshes,900

respectively. The associated strain energies are given in901

Tab. 5. The strain energy of the post-processed results902

of the fine mesh is rather similar to the result obtained903

for SIMP with β = 8.0 in Tab. 4 and the LSM-XFEM904

results in Tab. 3. For the coarse mesh, the strain en-905

ergy is well below the raw SIMP results from Tab. 2906

but still above the results for the LSM-XFEM approach907

in Tab. 3. As we will see below, this is because of the908

larger smoothing radius which prevents the formation909

of smaller features and thinner walls.910

Fig. 16: IDL post-processing of SIMP results for cuboid

under torsion problem; the vertical lines mark the
threshold values at which the volume constraint is sat-
isfied.

6.2.2 Feature size control911

The mesh refinement study above suggests that the912

results of the LSM-XFEM approach are less sensitive913

to mesh refinement than the SIMP method without914

mesh-independent filtering. Geometric features, such as915

the thin walls, can be represented on coarse and fine916
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(a) SIMP (b) LSM-XFEM

Fig. 17: SIMP and LSM-XFEM results for larger
smoothing radius; mesh size: 120× 30× 30.

meshes, independent of their size. This observation is917

in agreement with studies for two-dimensional prob-918

lems, see for example Kreissl and Maute (2012), but the919

phenomena is more pronounced and of greater impor-920

tance for three dimensional problems. The lesser mesh921

sensitivity of the LSM-XFEM approach is in general922

a desired feature. In addition, however, the ability to923

control the minimum feature size is of importance for924

many applications, for example to account for man-925

ufacturing constraints and costs. The following study926

will show that the proposed LSM-XFEM approach cur-927

rently lacks the ability to efficiently and intuitively con-928

trol the local feature size. We first show that applying929

the same absolute filter radius in the SIMP formula-930

tion efficiently controls the feature size. Figure 17(a)931

shows the SIMP results on the 120× 30× 30 mesh for932

a projection parameter β = 0, a penalization factor of933

p = 3, and a smoothing radius of rρ = 0.16 which is934

the same radius applied earlier for the coarsest mesh in935

Fig. 13(a). Comparing the SIMP results in Fig. 17(a)936

and Fig. 13(a) confirms the finding of numerous studies937

(Bendsøe and Sigmund, 2003) that the SIMP approach938

leads to the same conceptual layout independent of the939

mesh refinement level if a mesh-independent filter is940

used. The strain energy of the design in Fig. 17(a) is941

given in Tab. 6. A similar effect is not observed in the942

LSM-XFEM approach when we apply the same filter943

radius, rφ, used earlier for the coarse mesh to the fine944

mesh. Figure 17(b) shows the outcome of this proce-945

dure. The overall design is unchanged, and increasing946

the smoothing radius results in a less smooth design.947

Mesh size Strain energy
SIMP 120 × 30 × 30 6.5772e+ 03
LSM-XFEM 120 × 30 × 30 8.2077e+ 02

Table 6: Strain energies of SIMP and LSM-XFEM re-

sults for cuboid under torsion problem using a mesh in-
dependent filter; the corresponding designs are shown
in Fig. 17.

(a) (b)

Fig. 18: LSM-XFEM results for cuboid under torsion
problem using a perimeter constraint: (a) LSM-XFEM
restarted from SIMP and (b) LSM-XFEM restarted

from LSM-XFEM result; mesh size: 120× 30× 30.

The strain energy of this design is reported in Tab. 6.948

To control the overall structural complexity in the LSM,949

the formulation of the optimization problem (15) is of-950

ten augmented by a perimeter constraint (Dijk et al,951

2013). While this approach does not directly control952

the minimum feature size, reducing the maximum fea-953

sible perimeter often removes small features which do954

not alter much the structural performance. To study955

the influence of a perimeter constraint on the torsion956

problem, we perform the following two numerical exper-957

iments on the 120×30×30 mesh using the LSM-XFEM958

approach. We measure the perimeter of the SIMP result959

shown in Fig. 17(a) and impose this value as an upper960

bound on the perimeter. One problem uses the SIMP961

result in Fig. 17(a) as the initial design, and the other962

one uses the LSM-XFEM result in Fig. 14(b). The re-963

sults are shown in Fig. 18 and the strain energies are964

given in Tab. 7.965

Depending on the initial designs, the LSM-XFEM966

problems converge to different designs. While the de-967
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Initial design Strain energy
LSM-XFEM SIMP 1.3321e+ 03

LSM-XFEM 1.3185e+ 03

Table 7: Strain energies of LSM-XFEM results for

cuboid under torsion problem using a perimeter con-
straint and different initial designs; the corresponding
final designs are shown in Fig. 18.

Fig. 19: Initial setup for two-phase cantilever beam
problem.

sign in Fig. 18(b) displays a truss-like design in the968

bottom half of the design domain, the perimeter con-969

straint does not prevent the formation of thin walls in970

the upper half. The thickness of the walls in the up-971

per half of the design is 0.0188. Thus, the perimeter972

constraint does not control the local feature size. The973

design in Fig. 18(a) resembles closely the SIMP result974

from which it was restarted. However, considering the975

strain energy in Tab. 7, this design has a larger strain976

energy than the one in Fig. 18(b).977

The study above has shown that neither smoothing978

the level set field nor imposing a perimeter constraint979

allows controlling the minimum feature size. Further,980

the effect of a perimeter constraint is non-intuitive as981

the result in Fig. 18(b) shows. The design has more982

structural features than the design without perimeter983

constraint in Fig. 14(b).984

6.3 Two-phase Cantilevered Beam Design985

The examples in the two previous subsections were con-986

cerned with “solid-void” problems. Here we study a987

“solid-solid” problem to demonstrate the applicability988

of the proposed LSM-XFEM approach to this class of989

problems. Note that the simplified XFEM formulation990

discussed in Section 1 is not applicable to such prob-991

lems. The generalized enrichment strategy of Section992

3.2 is required and the interface conditions of Eq. 5 need993

to be satisfied. We study the optimal two-phase layout994

of a 4 × 1 × 1 cantilevered beam subject to a tip load;995

see Fig. 19. The stiff phase “A” has Young’s modulus996

of EA = 1.0; three values of Young’s moduli for the soft997

phase are considered: EB = [0.5, 0.1, 0.01]. Both phases998

have a Poisson ratio of 0.3. The maximum volume of999

the stiff phase is limited to 30% of the total volume.1000

The design domain is discretized by 120 × 30 × 30 el-1001

ements. Because of the symmetry condition, only one1002

half of the cuboid is numerically analyzed. We compare1003

the SIMP and LSM-XFEM results.1004

The optimization problem is solved by a SIMP ap-1005

proach with a penalization factor of p = 3, a smooth-1006

ing radius of rρ = 0.05333 (1.6× element edge length)1007

and the projection parameter of β = 0. The design do-1008

main is initialized with a uniform material distribution1009

of ρi = 0.3. The optimized material distributions are1010

shown in Fig. 20 where material with a density lower1011

than ρi < 0.25 is transparent. The strain energies are1012

reported in Tab. 8.1013

The LSM-XFEM results for a smoothing radius of1014

rφ = 0.05333 (1.6× the element edge) are shown in1015

Fig. 20 and the strain energies are given in Tab. 8.1016

Considering the full design domain, the level set field1017

is initialized with a 16 × 4 × 4 array of equally spaced1018

holes with radius of 0.1050. The initial design is shown1019

in Fig. 1 and satisfies the volume constraint for the stiff1020

phase. Note that the interface condition is enforced via1021

the stabilized Lagrange multiplier method (5) with an1022

element wise constant Lagrange multiplier, λ, and a1023

consistency factor of γ = 10 (EA + EB).1024

Comparing the SIMP and LSM-XFEM results, the1025

same trends can be observed for this “solid-solid” prob-1026

lem as for the “solid-void” ones studied earlier. The1027

LSM-XFEM approach leads to three dimensional struc-1028

tures with thinner walls and higher stiffness. In con-1029

trast, the SIMP method generates truss-type structures,1030

in particular if the discretization is too coarse and the1031

optimum wall thickness is less than the size of an ele-1032

ment.1033

For illustration purposes only, we show a realization1034

of the LSM-XFEM optimized design for EB = 0.1EA1035

in Fig. 21. The structure was fabricated with a poly-1036

jet 3D printing process on a Connex Objet 260 printer.1037

White material represents phase “A”, black represents1038

phase “B”. The left and center pieces show the indi-1039

vidual phases printed separately, the printed two-phase1040

design is shown on the right.1041

7 Conclusions1042

In this paper we presented an optimization approach1043

combining a level set method (LSM) for describing the1044

geometry and an extended finite element method (XFEM)1045

for predicting the structural response. Building upon1046

generalized enrichment and preconditioning schemes,1047
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Fig. 20: SIMP and LSM-XFEM results for different stiffness ratios: (from left to right) EB = 0.5EA, EB = 0.1EA,
EB = 0.01EA, EB is void; SIMP results (top row); LSM-XFEM results (bottom row).

Fig. 21: LSM-XFEM optimized two-phase design for EB = 0.1EA realized by 3D printing.

Stiffness ratio Strain energy
SIMP EB = 0.50EA 4.4081e− 05

EB = 0.10EA 6.2862e− 05
EB = 0.01EA 7.8627e− 05
EB is void 7.6721e− 05

LSM-XFEM EB = 0.50EA 4.3221e− 05
EB = 0.10EA 5.9192e− 05
EB = 0.01EA 6.4448e− 05
EB is void 6.6283e− 05

Table 8: Strain energies of SIMP and LSM-XFEM re-
sults for different stiffness ratios; the corresponding de-
signs are shown in Fig. 20.

previously developed for two-dimensional problems, the1048

proposed optimization scheme was applied to two-phase1049

“solid-void” and “solid-solid” problems in three dimen-1050

sions. In all examples, the strain energy was minimized1051

subject to a volume constraint on the stiff phase. The1052

results of the LSM-XFEM approach with and without1053

perimeter constraints were compared with the ones of a1054

SIMP method which employs density filtering and pro-1055

jection.1056

The numerical studies suggest that the LSM-XFEM1057

method features an improved convergence as the mesh1058

is refined and is able to represent thin-walled struc-1059

tures on coarse meshes. The SIMP approach may re-1060

quire a strong projection to achieve clear “0-1” results1061

with comparable strain energies. While density filter-1062

ing is an efficient and intuitive method to control the1063

local feature size, neither level set smoothing nor im-1064

posing a perimeter constraint achieves a similar effect1065

on LSM-XFEM results.1066

The current lack of a feature size control and the sig-1067

nificant improved complexity of the LSM-XFEM formu-1068

lation limit the attractiveness of this scheme. However,1069

for problems where a high mesh resolution is not tol-1070

erable and/or interface conditions need to be enforced1071

with high accuracy, the LSM-XFEM approach might1072

be an interesting alternative to SIMP-type methods.1073

The advantages of the LSM-XFEM problem have been1074

shown by Kreissl and Maute (2012) for fluid problems1075

at high Reynolds numbers in two dimensions. The au-1076

thors plan to study three dimensional flow problems1077

with the LSM-XFEM approach in the future.1078
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van Miegroet L, Moës N, Fleury C, Duysinx P (2005)1215

Generalized shape optimization based on the level set1216

method. In: 6th World Congress of Structural and1217

Multidisciplinary Optimization1218

Nguyen T, Song J, Paulino G (2010) Challenges and1219

advances in system reliability-based optimization of1220

structural topology. In: Structures Congress 2010, pp1221

480–4911222

Nguyen T, Paulino G, Song J, Le C (2012) Improv-1223

ing multiresolution topology optimization via multi-1224

ple discretizations. International Journal for Numer-1225

ical Methods in Engineering 92(6):507–5301226

Ning X, Pellegrino S (2012) Design of lightweight1227

structural components for direct digital manufactur-1228

ing. In: 53rd AIAA/ASME/ASCE/AHS/ASC Struc-1229

tures, Structural Dynamics and Materials Conference1230

Norato J, Bendsøe M, Haber R, Tortorelli D (2007) A1231

topological derivative method for topology optimiza-1232

tion. Structural and Multidisciplinary Optimization1233

33(4):375–3861234

Rozvany G (2009) A critical review of established meth-1235

ods of structural topology optimization. Structural1236

and Multidisciplinary Optimization 37(3):217–2371237

Sethian J, Wiegmann A (2000) Structural boundary1238

design via level set and immersed interface methods.1239

Journal of Computational Physics 163(2):489–5281240

Sigmund O (2001a) Design of multiphysics actuators1241

using topology optimization – Part I: One–material1242

structures. Computer Methods in Applied Mechanics1243

and Engineering 190(49–50):6577–66041244

Sigmund O (2001b) Design of multiphysics actuators1245

using topology optimization - part II: Two-material1246

structures. Computer Methods in Applied Mechanics1247

and Engineering 190(49-50):6605–66271248

Sigmund O (2007) Morphology-based black and white1249

filters for topology optimization. Structural and Mul-1250

tidisciplinary Optimization 33(4-5):401–4241251

Sigmund O, Maute K (2013) Topology optimization ap-1252

proaches: A comparative review. Structural and Mul-1253

tidisciplinary Optimization1254

Sokolowski J, Zochowski A (1999) Topological deriva-1255

tives for elliptic problems. Inverse problems 15:1231256

Stenberg R (1995) On some techniques for approx-1257

imating boundary conditions in the finite element1258

method. Journal of Computational and Applied1259

Mathematics 63(1-3):139 – 1481260

Svanberg K (2002) A class of globally convergent op-1261

timization methods based on conservative convex1262

separable approximations. SIAM J on Optimization1263

12(2):555–5731264

Wang MY, Wang X, Guo D (2003) A level set1265

method for structural topology optimization. Com-1266

puter Methods in Applied Mechanics and Engineer-1267

ing 192(1-2):227–2461268

Wang S, Wang MY (2006) A moving superimposed1269

finite element method for structural topology opti-1270

mization. Int J Numer Meth Engng 65:1892–19221271

Wei P, Wang M, Xing X (2010) A study on X-FEM in1272

continuum structural optimization using a level set1273

model. Computer-Aided Design 42(8):708–7191274

Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishi-1275

waki S (2011) A level set-based topology optimization1276

method targeting metallic waveguide design prob-1277

lems. International Journal for Numerical Methods1278

in Engineering 87(9):844–8681279

Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-1280

of-the-art review of the x-fem for computational1281

fracture mechanics. Applied Mathematical Modelling1282

33(12):4269 – 42821283

Zhou M, Rozvany GIN (1991) The COC algorithm, part1284

II: Topological, geometrical and generalized shape1285

optimization. Computer Methods in Applied Me-1286

chanics and Engineering 89(1-3):309–3361287

323


