An Efficient Implementation of Edmonds Algorithm
For Maximum Matching on Graphs

Harold Gabow

CU-CS-062-75

(—
e TUniv«’:m;ity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

An Efficient Implementation of Edmonds'
Algorithm for Maximum Matching on Graphs

by

HAROLD GABOW
Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-062-75 March 1975

An Efficient Implementation of Edmonds' Algorithm for

Maximum Matching on Graphs

Harold Gabow

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

ABSTRACT. A matching on a graph is a set of edges, no two of which
share a vertex. A maximum matching contains the greatest number of
edges possible. This paper presents an efficient implementation of
Edmonds' algorithm for finding a maximum matching. The computation

time is proportional to V3, where V is the number of vertices; previous
impTementations of Edmonds' algorithm have computation time proportional
to V4. The implementation is based on a system of labels that encodes
the structure of alternating paths.

KEY WORDS AND PHRASES: graph algorithm, matching on a graph, maximum

matching, augmenting path, Tabeling technique

CR CATEGORIES: 5.25, 5.32, 5.41

This work was partially supported by the NSF Graduate Fellowship Program
and the NSF under Grant GJ-1180 at Stanford Uniyersity, and by the NSF
under Grant 6J-660 at the University of Colorado,

1. Introduction

The problem of finding a maximum matching on a graph has applications
in operations research and integer programming. For example, the follow-
ing is a maximum matching problem:

In a factory, a manager must divide his workers into teams of two.
Certain teams are not allowed, because the workers are incompatible.
Choose the greatest possible number of teams of compatible workers.

We present an algorithm for finding a maximum matching on a graph.
If V is the number of vertices, the run time is proportional to V3. The
space required is 4V words in addition to the space needed for the graph.

The approach is a careful implementation of ideas presented by
Edmonds [4]. His algorithm has run time proportional to V4 [4,6 -
Erratum]. We improve this by eliminating the process of blossom expan-
sion. Instead, we use a system of labels to store the structure of
alternating paths. |

This approach is similar to labeling techniques in the matching
algorithms of Balinski [1] and Witzgall and Zahn [13]. The former algo-
rithm has run time proportional to V3, if a stack is used for vertex
selection; the latter algorithm can be implemented in time proportional

to V3

, using techniques described here. However, both algorithms may
label a vertex more than once in a search. This increases the run time,
and makes it difficult to generalize to other problems, such as finding
a maximum weighted matching [13]. The present algorithm overcomes
these difficulties [8].

After summarizing definitions in Section 2, we state the algorithm

in Section 3. A proof of correctness is given in Section 4. Section 5

discusses time and space bounds, and applications of the algorithm.

2. Preliminaries

This section summarizes some well-known definitions and results.

A graph G consists of a finite set of vertices and a finite set of
edges. An edge is an (unordered) set of two distinct vertices. The
edge containing vertices v and w is denoted vw (or wv). Vertices v and w

are adjacent. An adjacency 1ist for v is a Tist of the vertices

adjacent to v. A subgraph of G is a graph, whose vertices and edges
are in G. A graph is complete if any two vertices are adjacent.

A walk W is a Tist of vertices (V1’V2"”’Vn)’ where n > 1 and
ViVis is an edge, for 1 < i <n. A walk is simple if no vertex occurs
more than once in the Tist. A path is a simple walk. A cyele is a walk
(v1,v2,...,vn,v]) such that n > 2 and (V]’VZ""’Vn) is simple.

Let W = (V1’V2""’Vn) and X = (Vn+1’vn+2""’vm) be walks. The

reverse walk of W, denoted rev W, is (vn,vn_1,...,v]). The concatenation

of W and X, denoted W*X, is (v],.. v). For W*X to be a

ACRAYE ERRRRA
walk, it is necessary that VaVn+1 is an edge. For W*X to be a path, it
is further necessary that W and X are disjoint paths.

A matching on a graph is a set of edges, no two of which share a

vertex. A matched graph (G,M) is a graph G with a matching M. A vertex

v is matched if it is in some edge of the matching; otherwise v is un-

matched. M is a maximum matching if no matching on G contains more edges

than M. Figure 1 shows @ matching on a graph G (Matched edges are

s

drawn wavy). Verticgs Qfandwloiare unmatched. The matching is not:maximum,

since g matching with no unmatched vertices exists,

Fig. 1
Matched graph G

1

An ‘alternating path in a matched graph is a path (v],...,vn) such

that ekact1y one of every two edges Vi_1Vi and ViV

; is matched, for

i+1
1 <1 <n. An augmenting path is an alternating path whose ends vy and

v, are distinct unmatched vertices;

If (v],.;;,v2n) is an augmenting path in (G,M), a new matching M'
is obtained by replacing the matched edges VoiVoipts 1214 <n, with the
unmatched edges v21_1v21; 134 ¢S n; We say the matching M is augmented
to M', since M' contains one more edge than M; In Figure 1, (10,1,2,3,

4,8,7,6,5,9) 1is an augmenting path. Augmenting gives a maximum

m@tchi,ﬂg ’

Note that an augmenting path is simple. We cannot augment a

matching with a non-simple alternating wa]k; This is illustrated in
Figure T by the walk (10,1,2,3,4,8,7,4,3,9). "Augmenting" does not

give a matching, since edges 47 and 48 become "matched"..

Augmenting paths are important for this reason:

Lemma_(Berge): A matched graph (G,M) has an augmenting path if and

only if M is not maximum;
Proof: See [2,4].

As a result, a maximum matching can be found by répeatedly
searching for augmenting paths, and augmenting the matching. The

algorithms in [1,2,13] and the ore gresented here are organized this way.

3. Statemént'of‘the‘A]gérithm

This section presents an algorithm, called E; for finding a maximum
matching on a graph. First the basic strategy and the data structures
of E are described. Then algorithm E is stated: An example of how E
works is given. Finally, E is compared with Edmonds' algorithm.

The algorithm begins by numbering the vertices and edges of the graph.
Below we do not distinguish between a vertex v and its number, denoting

both by V, e denote the number of an edge vw as n(vw).

Algorithm E constructs a number of matchings, the Tast of which
is maximum. A matching is stored in the array MATE. This array
has an entry for each vertex. If v and w are vertices, edge vw
is matched if MATE (v) = w and MATE (w) = v.
Algorithm E begins with all vertices unmatched. It searches for
an augmenting path. If such a path is found, the matching is augmented.
The new matching contains one more edge than the previous one. Next E
searches for an augmenting path for the new matching. This process
is iterated. Eventually, E constructs a matching that has no augmenting

path. This matching is maximum, by Berge's Lemma.

Algorithm E searches for an augmenting path in the following way.
First an unmatched vertex u is chosen. E scans edges to find alternating
paths to u. A vertex v is called outer when E finds an alternating path
from v to u that starts with a matched edge. Let such a path be P(v) =
(v,v],..., u), so v, is matched. E sets an entry in the LABEL array
for every outer vertex v. Path P(v) can be computed from LABEL (v). If
an edge joining an outer vertex v to an unmatched vertex u' # u is scanned,

E finds an augmenting path, (u')*P(v) = (u',v,v],...,u). If no such edge

-7-

is ever scanned, vertex u is not in an augmenting path.

Figure 2 illustrates a search for an augmenting path to vertex
u=9. Figure 2(a) shows paths P(3) and P(7). Figure 2(b) shows the
values stored by E. '‘Now we eXp]aTthhese~VaTues.

The LABEL entry for an outer vertex is interpreted as either a
start label, vertex Tabel, or edge Tabel. In Figure 2, eight vertices
are outer. Each is Tabeled in one of these ways. The remaining vertex,
1, is nonouter. This means there is no alternating path from 1 to 9
that starts with a matched edge. Nonouter vertices are drawn holTow in
all figures in this paper.

Now we describe the three label types.

Start label: In the search for an augmenting path to the unmatched
vertex u, u has-a start label, This defines an alternating ~ =
path, P(u) = (u).

Vertex label: If outer vertex v has a vertex label, LABEL (v) is

the number of another outer vertex. Path P(v) is defined as (v,MATE(v)) *
P(LABEL(v)). Using this definition, we compute P(8):
P(8) = (8,MATE(8)) * P(LABEL(8)) = (8,7) * (4,3,9) = (8,7,4,3,9).
Edge Tabel: If outer vertex v has an edge Tab&l, LABEL (v) contains
the number of an edge joining two outer vertices, LABEL (v) = n(xy).
Path P(v) is defined in terms of paths P(x) and P(y). As an example,
consider vertex 7, which has Tabel n(48). Vertices 4 and 8 are outer,
so there are alternating paths P(4) and P(8). Vertex 7 is in P(8).
Let P(8,7) denote the portion of P(8) from 8 to 7, i.e., P(g,7) =

(a)
yMATE(V) label type LABEL(v) FIRST(v)
2 nonouter -
1 vertex 3
4 edge n(67)
3 vertex 9
6 edge n(67)
5 vertex 9
8 edge n(48)
7 vertex 4
- ftart -
(b)
Fig, 2

Search values

(8,7). Then P(7) is defined as the path (rev P (8,7)) * P(4), i.e.,
P(7) = (rev (8,7)) * (4,3,9) = (7,8,4,3,9).

Path P(3) is defined similarly. The label of vertex 3 is n(67).

Since vertex 3 is in P(7), path P(3) = (rev P(7,3)) * P(6).

E also uses an array FIRST. If v is an outer vertex, FIRST (v)
1s the first nonouter vertex in P(v). In Figure 2, the first nonouter
vertex in P(2) is FIRST (2) = 9. Path P(7) does not contain any nonouter
vertices, so FIRST (7) is set to 0, a dummy vertex. If edge 67 is
removed, vertices 2,3, and 5 become nonouter, and FIRST (7) becomes 3.

The array FIRST speeds up the computation. Using FIRST, E finds the
first nonouter vertex in P(v) with a table Took-up. Without FIRST, this
operation involves computing vertices in P(v) until a nonouter vertex
is found. Thus FIRST enables E to do in constant time what otherwise
requires time proportional to V, the number of vertices. This speed-up
is crucial in achieving the O(VB) time bound.

Now we state algorithm E in detail.

The vertices of the graph are numbered from 1 to V. E also
uses a dummy vertex 0 for boundary conditions.

The edges of the graph are stored in some standard manner, such as
an adjacency matrix [9] or adjacency lists. For convenience we choose
adjacency lists, using an approach described by Tarjan [11]. Let U
be the number of edges in the graph. An array END has entries numbered
from V+1 to V#2W. For each edge, there are two consecutive entries,
containing the numbers of the vertices in the edge. Thus edge vw is stored

th

as the i“" edge when END(V+2i-1) = v and END(V+2i) = w. The edge number

n(vw) is V+2i, Thus, v and w can be easily computed from n(vw). There

-10-

is an adjacency Tlist fpr each vertex v. This Tist contains the numbers
n(vw) of all edges containing v.

The array END and the adjacency Tists are referenced implicitly in the
algorithm. See for example step E2; below.

The MATE array has an entry for each vertex. MATE specifies a
matching. If v,w # 0 are'vertices, MATE (v) 20 if v is un-
matched; edge vw is matched if MATE (v) = w and MATE (w) = v.

The LABEL array has an entry for each vertex. In a given search, a
vertex v is outer if LABEL (v) 2 0. If v has a vertex label, LABEL (v) is
a vertex number between 1 and V. If v has an edge label, LABEL (v) is
an edge number between V+1 and V+2w. 1hese classifications are used implicitly
in the algorithm, in tests like "If the vertex is outer, then ...". See
for example step E4.

The FIRST array has an entry for each vertex. In a given search, if
v is an outer vertex then FIRST (v) is the first nonouter vertex in P(v).

The algorithm is presented below in a high-level Tlanguage similar

to Knuth's:[10]. E is the main routine. Tt Uses subroutines L and R,

E constructs a maximum matching on a graph. It starts a search for
an augmenting path to each unmatched vertex u. It scans edges of the graph,
deciding to assign new labels or to augment the matching.
EO. [Initialize.] Read the graph into adjacency lists, numbering the
vertices 1 to V and the edges V+1 to V+2W. Create a dummy vertex O.
For 0 54 SV, set LABEL (i) <« =1, MATE (i) <« 0(all vertices are nonouter
and unmatched). Set u <0.

El. [Find unmatched vertex.] Set u <« u+l. If u >V, halt; MATE contains

-11-

a maximum matching. Otherwise, if vertex u is matched, repeat step ET.
Otherwise (u is unmatched, so assign a start label and begin a new

search) set LABEL (u) <« FIRST (u) < 0,

E2. [Choose an edge.] Choose an edge xy, where x is an outer vertex,

(An edge vw may be chosen twice in a search - once with x=v, and once with

x=w). If no such edge exists, go to E7 (Edges xy can be chosen in an

arbitrary order. A possible choice method is "breadth-first":
an outer vertex x = X4 is chosen, and edges Xqy are chosen in succeeding
executions of E2; when all such edges have been chosen, the vertex X, that
was labeled immediately after Xy is chosen, and the process is repeated
for x = Xo - This breadth-first method requires algerithm E maintains a
list of outer vertices, X;;X,,...).
E3. [Augment the matching.] If y is unmatched and y # u, set MATE (y)
<« X, call R (x,¥), then go to E7 (R completes the augment along path
(y) * P(x)).
E4. [Assign edge Tabels.] If y is outer, call L, then go to E2 (L
assigns edge label n(xy) to nonouter vertices in P(x) and P(y)).
E5. [Assign a vertex label.] Set v < MATE (y). If v is nonouter, set
LABEL (v) < x, FIRST (v) <y, and go to E2 (See Figure 3).
E6. [Get next edge.] Go to E2 (y is nonouter and MATE (y) is outer, so
edge xy adds nothing).
E7. [Stop the search.] Set LABEL (06) < -1. For all outer vertices i,
set LABEL (i) « LABEL (MATE(i)) < -1. Then go to E1 (now all vertices
are nonouter for the next séarch).

L assigns the edge label n(xy) to nonouter vertices. Edge xy joins
outer ~vertices x,y. L sets join to the first nonouter vgrtex in both

P(x) amd P{y). -Then it Tabels all nonouter vertices preceding join in

-12-

X Label(v)
—
1“ P(v)
y First(v)
Mate(y) e vad!
Fig. 3

Assigning a vertex label

-13-

P(x) or P(y). See Figure 4.

LO. [Initialize.] Set r <« FIRST(X); S <« FIRST(y). If r=s, return

(no vertices can be 1abe1ed); Otherwise flag r and s (Steps L1-L2

find igigg by advancing alternately along paths P(X) and P(y). Flags

are assigned to nonouter vertices r in these paths; This is done by
setting LABEL (r) to a negative edge number, LABEL (r) < -n(Xy). This
way, each invocation of L uses a distinct flag value).

L1. [Switch paths.] If s # 0, interchange r and s, re¢=ys (r is a flagged
nonouter vertex, alternately in P(x) and P(y)).

L2. [Next nonouter vertex.] Set r <« FIRST(LABEL(MATE(r))) (r is set to
the next nonouter vertex in P(X) or P(y)). If r is not flagged, flag r
and go to L1. Otherwise set join < r and go to L3.

L3. [Label vertices in P(x), P(y).] (A11 nonouter vertices between

x and join, or yrand join, will be assigned edge Tabels.

See Figure 4(3).) Set v < FIRST(x) and do L4. Then set v < FIRST(y) and
do L4. Then go to L5.

L4. [Label v.] If v # join, set LABEL (v) <« n(xy), FIRST (v) < join,

v <« FIRST(LABEL(MATE(v))) and repeat step L4. (See Figure 4(b).) Other-
wise continue as specified in L3.

L5. [Update FIRST.] For each outer vertex i, if FIRST(i) is outer, set
FIRST(i) < join (Join is now the first nonouter vertex in P(i)).

L6. [Done.] Return.

R (v,w) rematches edges in the augmenting path. Vertex v is outer.
Part of path (w) * P(v) is in the augmenting path. It gets rematched by
R(v,w) (Although R sets MATE (v) « w, it does not set MATE (w) « v.
This is done in step E3 or another call to R). R is a recursive routine.

R1. [Match v to w.] Set t <« MATE (v), MATE (v) < w. If MATE (t)

b
(5) Fig. 4

Assigning edge labels

-15-

v, return (ﬁhgwpath;is«completeijrematchgd)}

R2. [Rematch a paﬁhdj' If v has a vertex 1a&gJ; sg@.MATE (;) “« LABEL (v),
call R : (LABEL Cy[,t) reoﬁrsive]y; and tﬁgﬁ'reﬁurn}

R3. [Rematch two paths.] CVertex v has an edge label). Set x;y to
vertices so LABEL (v] = n(Xyi; call R(x,y) recursfveJyj call R(y,x)

recursively, and then return.

We illustrate how E constructs a maximum matching on graph G] of
Figure 1. Initially, all verticesﬂare~unmatchad} E searches for an
augmenting path to vertex 1. The first edge chosen, 12, forms such a
path. An augment is done by placing 12 in the matching. E sets
MATE(1) < 2, MATE(2] <« 1.

In a similar manner, edges 34, 56, and 78 are matched. This
gives the matching in Figure 1.

In the last search, vertex 9 gets a start label. Edge 93 1is
scanned, and vertex 4 gets a vertex label; similarly, vertices 6 and
8 get vertex Tabels. When E scans edge 48, vertex 7 gets an edge
label. The result is Figure 5. (Only scanned edges are shown. The
LABEL values of outer vertices are shown in Figure 2.)

Now we describe how vertices 3 and 5 are labeled, as shown in Figure 2.
E scans edge 67, and subroutine L is called to assign the label n(67).

L computes join in steps LO-L2, as follows:

1. In step LO, the first nonouter vertex in P(6) is computed as

FIRST (6)

5. The first nonouter vertex in P(7) is computed as

FIRST (7) = 3. Vertices 5 and 3 are flagged, by setting LABEL (5) «

LABEL (3) <« -n(67).
2. In step L2, the next nonouter vertex in P(7) is computed as

FIRST (9) = Q. Vertex 0 is flagged.

-16-

P(7)- - ~

Fig. 5
Search from vertex 9

17+

3. In step L2, thgwnext nonouter vertex in P(§) is computed as
FIRST (9) = 0. Since 0 is already'f1agged;‘j§iﬁ_is set to 0.

In steps L3-L4, L assigns the label n(67) to vertices 5 and 3.

L vesets FIRST (i) for i = 4,6,7,8, in step L5. No nonouter
vertices remain in P (i), so FIRST (i) is set to 0.

Finally, L returns.

Now E continues scanning edges; Vertex 2 gets a vertex label; the
result is Figure 2. When edge 32 is scanned, vertex 1 gets an edge
label, n(32); Finally edge 1 10 fg‘scanned; and the augmenting path
(10)%P(1) is found.

The augment is done in step E3 and subroutine R. Step E3 matches
vertex 10, and calls R(1,10) to rematch the remainder of (10)*P(1).
Figure 6(a) shows the result of R(1,10): edge 1 10 is matched, and two
recursive calls are pending on R, R(3,2) and R(2,3). (In Figure 6(a),
Path P(1) is defined as (rev P(2,1))*P(3). The call R(3,2) processes
path P(3). Figure 6(b) shows the matching when R(3,2) is complete
(R(3,2) makes recursive calls R(6,7) and R(7,6).) Then the call R(2,3)
processes path rev P(2,1). It sets MATE(2) = 3, completing the augment.

Now MATE contains a maximum matching. The algorithm halts in
step EI.

For comparison we briefly describe how Edmonds' algorithm [4] finds
the same matching on G]. We discuss the search for an augmenting path
to vertex 9.

The search begins by growing a tree consisting of the edges in

Figure 5, except for edge 48. When this edge is scanned, it completes

-18-

rev P(2,1)—,

8
(b)
Fig. 6

Augment path (10)* P(1)

-19-

a cynle¢‘(4,7,8,4). ‘Edmonds defines a bl¢sst as an odd number of
vertices:jofned by a maxima11y\matched'cyc1eQ"Verttces 4,7, and 8 form
a blossom. These vertices and the edges between them are shrunk into

a single vertex, b. Vertex b is adjacent to any vertex adjacent to
4,7, or 8; b is matched with vertex 3. The result is a reduced graph
G{.

i
.

1
the path (10,1,2,3,b,6,5,9), corresponding to (10)*P(1), is found.

Now the problem is to find an augmenting path in G Suppose
The matching in Gi is augmented. So edge b6 becomes matched. Then
blossom b is expanded into the original cycle (4,7,8,4). Vertex 7
is matched to 6. The remaining vertices are matched along edges of
the cycle. The result is a maximum matching.

The intermediate steps that find the augmenting path in Gi are
similar. Two more blossoms are shrunk. (These correspond to edge
labels n(67) and n(32)). In the augment, these two blossoms are expanded
and rematched.

The implementation of this elegant algorithm requires some care.

A time bound of O(V4) results from (possibly) V2 blossom expansion
operations, each requiring time O(Vz). Algorithm E avoids shrinking
and expansion by recording the pertinent structure of blossoms in LABEL

and FIRST. This results in a factor of V speed-up.

4. Proof of Correctness

This section proves algorithm E constructs a maximum matching.
It shows E constructs valid augmenting paths; each matching is augmented
correctly; and the last matching is maximum.

It is convenient to introduce the dummy vertex, 0, to handle

-20-

boundary conditions. ‘In any search, we assume vertex 0 is nonouter,
and is "matched” with the unmatched vertex u. MWe also extend the
paths P(v) to vertex 0, as follows:

Definition 1 An outer path is an alternating path (;‘v,vi,.,..,u,ﬂ) that

starts with a matched edge A2 and ends with the dummy vertex, O.
The definition guarantees an outer path contains at least one nonouter
vertex.

The first task is to prove that in step E3, (y)*P(x) is an
augmenting path. [t suffices to show;PCX) is an outer path. We do
this below, in Corollary 1. The main issue is proving P(x) is simple.

We start by defining a search graph, which gives the properties
of a search conducted by E. Functions p; f, and £ in the definition
correspond to P, FIRST, and LABEL, in algorithm E.

Definition 2 A search graph (G,0,u,p,f,£) consists of: a matched

graph G; a set of vertices, 0, called outer vertices; an unmatched

outer vertex u; a function p, mapping an outer vertex v to p(v),

an outer path starting at vg; a function f, mapping an outer vertex
v to f(v), the first nonoutér vertex in p(v);: a function £, mapping
certain outer vertices v to £(v), another outer vertex.

In addition, the following properties are satisfied for an outer
vertex v. Let r = f(v), the first nonouter vertex in p(v); let r~ be
the vertex matched with r; and let r' = 2(r").

2.1 Path p(v) = p(v,r)*p(r+).

2.2 An outer vertex x in p(v,r) has f(x) = r.

21=

Figure 7 shows an outer path p(v) in a search graph. A1l outer

vertices x with the same vertex f(X) are grouped in a circle. Vertex

it

r = f(v) is the first nonouter vertex in path p(v). <Consider a vertex

x in v's circle. Properties 2.1-2 imp]y'ﬁ(x) consists of a path
inside the circle to r~; followed by edges r r, rr+; followed by'p(r+).
(Note the circles in Figure 7 correspond to blossoms in Edmonds' algorithm).
- oo -Figure 2 shows a search graph.constructed by E. - The .
outer vertex 3 illustrates property 2.2, since all vertices x in
P(8,9) have FIRST (x) = 0
The decomposition property‘z.i at first seems too weak. It seems
natural that p(v) = (v,v1,...,v2f_],v21,...) decomposes as
p(v,in_])*p(VZi), for any i. However this is false. In Figure 2,
p(3) # (3,4)*p(8).
Now we derive the structure of path p(v) shown in Figure 7. Let
the nonouter vertices in p(v) be rys for 03jsJd. Thus r0=r=f(v),
and rJ=0. Property 2.1 shows for any i in 0sisd,
(1) (V) = p(var o (r"ar)% o #o(rT g org)* L (e,
A vertex x # ' in p(r+j_],rj) is outer, and f(x) - ry-
Next we derive the relationship between two outer paths p(v) and
p(w), as shown in Figure 7. Let the nonouter vertices in p(w) be
Sk’ for 05kSK. Let z be the first outer vertex in p(v) that is also
in p(w). Decomposition (1) shows f(z) is a nonouter vertex in both
paths, f(z) = re = sg for some indices f,g. So it is easy to see
p(v) and p(w) are identical after re = Sgo and p(v,rf_]) and p(w:sg_])
are disjoint. Thus, as shown in Figure 7, p(v) and p(w) both partition

into three subpaths. The first subpaths, p(v,rf_1) and p(w,sg_1), are

disjoint; the last subpaths, p(r+f) and p(s+g) are identical; the

o+ _
P(/Y‘jﬂ], rj) -

p(v)— =

-22-

Fig. 7

Search graph

-23-

middle subpaths, p(r+f_],rfl,and P(Sfé-]’Sg)’ intersect arbitrarily.
Now we show E maintains a search graph. First we formally define the

function Pi

Definition 3 The outef path function P for algorithm E is defined

(recursively) as follows:

1. The unmatched vertex u has outer path P(u) = (u,0).

2. If v has a vertex label, LABEL (v) is the number of an outer
vertex, and P(v) = (v,MATE(v))#P(LABEL(y)).

3. If v has an edge label, LABEL (v) is the number of an edge xy,
where x and y are outer vertices. Either veP(x) or veP(y). In the

former case, P(v) = (rev P(x,v))*P(y); otherwise, P(v) = (rev P(y,v))*P(x).

Lemma 1: Each time step E2 is executed in algorithm E, a search graph is
formed by'(G,O,u,P,FIRST,LABEL).
Proof: The argument is by induction. Assume a search graph is formed,
with outer vertices Q. Below we show that if E assigns an edge label
n(xy) to new vertices 0', then a search graph is formed, with outer
vertices OU0'. The case where E assigns a vertex label is left as an
easy exercise.

Edge labels are assigned in step E4 and subroutine L. From Figure 7,
we see steps LO-L4 work as follows:

In steps LO-L2, consecutive nonouter vertices in P(x) and P(y) are
flagged. (In a search graph, the nonouter vertex after r is f(£(r-)))-

In step L2, join is set to the first nonouter vertex common to

9)°
In step L4, a label is assigned to each nonouter vertex v preceding

P(x) and P(y) (In Figure 7, join = Pe=s

join in P(x) or P(y).

-24-

Now‘we‘cbeck}the~searcn,graphwpropertigs for an outer vertex V.
We assume first veO, and then veQ'.

If ve0, let r be the vertex FIRST(v) before L is executed. We
assume r is labeled in step L4, since otherwise there is nothing new
to check. Either reP(x) or reP(y)s assume the former. Figure 7, applied
to paths P(v) and P(x), shows thesé paths are identical after r. So
after L is executed, the first nonouter vertex in P(v) is join. The
value FIRST (v) is set to join in step L5. Thus array FIRST is.
maintained correctly.

Properties 2.1-2 follow easily from (1). Thus vertices in O satisfy
all search graph properties. |

Now we check these properties for a vertex ve0'. Before step L4,
v is a nonouter vertex in P(x) or P(y). Assume the former, so
P(v) = (rev P(x,v))*P(y). This defines an outer path (see Figure 7).
In particular, P(v) is simple, since P(x,v) and P(y) are disjoint.

Thus P(v) is defined correctly.

The remaining search graph properties for v follow from those for
vertices X,y,e0.

The lemma now follows by induction. [J
Corollary 1: E labels vertices v so P(v) is an outer path starting at
V.

Thus we see E constructs valid augmenting paths. Next we show
E augments a matching correctly. We begin with two useful definitions.

In an augment, step E3 and subroutine R change values of MATE.

A nonzero vertex v is originally matched if MATE (v) is unchanged from

its value before step E3 begins. For example, in Figure 6(a), all

vertices except '.1,10, and 0 are originally matched.

-25-

Define a partial order on vertices, (<), as follows: v (<)w means
v is:an outer vertex, and v is labeled before w is labeled. In Figure 2,
9()7(1. le consider vertices labeled in the same call to L as being

labeled simultaneously. So neither 3(<)5 nor 5(<) 3.

Lemma 2: Let R(v,w) be called, with v an outer vertex and wgP(v).
Suppose the first vertex of P(v) = (v,v1;v2,..;)'tﬁat is not originally

matched 1s v, .15 and V{<)Vy 4

Then R changes MATE (Vi)’ 0 < i< 2m, togive a maximum matching
of the path (w) * P(v,va) (i.e., MATE (v) = w, and for 1 < 1 <m,
MATE (VZT-]) = Voio MATE (v21) = v21_]).

Proof: The proof is by induction on m. The argument falls into
three cases: m = 0; m & 0 and v has a vertex label; m > 0 and v has an
edge Tabel. For details, seeﬂ[8].£3
Corollary 2: E augments a maféhing correctly.
Proof: We show that after gtéﬁ:E3 and R are executed, MATE is changed
according to an augment along the path (y) * P(x).
The value MATE (y) is set correctly in step R3. When R(x,y) is
called, all vertices in P(x) are originally matched, except vertex 0.
The hypotheses of the lemma are satisfied with Vomsl™ 0. So when
R(x,y) returns, MATE is changed to give a maximum matching of (y) * P(x).
The final task is to show the Tast matching is maximum. Suppose
yertex u is unmatched in the last matching. In some execution of step ET,
a search is started from vertex u. This search terminates without
augmenting. Let Su denote the search; let Mu denote the matching
when search Su is made. We investigate how subsequent searches interact

with Sy The following concept is central [4].

-26-

Definition 4: The Hungarian subgraph H for vertex u is a subgraph of

G. It consists of all edges containing an outer vertex of Su’ and all
vertices in these edgés.

In 61, if edge 23 is deleted, Figure 2 shows the Hungarian. subgraph
for vertex 9. Note these obvious properties of a Hungarian subgraph H:
In search Su’ each edge of H is chosen at Teast once in Step E2. If

vertex v e H, the matched edge containing v is in H.

The basic result is that no augmenting path constructed after Su
intersects H.

N H.

~Lemma 3: Suppose a matching M agrees with MU on H, MA H = Mu
Then no augmenting path for M contains a vertex in H.
Eﬁgéf; The hypothesis implies we can refer to "a matched edge in H"
unambiguously. We do so below.

Let Q be an augmenting path for Mvcontaining a vertex in H. We
derive a contradiction, proving the Temma.

Path Q is not contained entirely in H. So we can set Q = (v],
Voseeos VZn)’ where for some i in 1 < i<'n, vertex Voipl € H and
Voiso # H. The matched edge VoiVoisl is in H. So a vertex in this edge
is outer in Su. Since Vois is nonouter, Vos is outer.

Choose an index j, 0 ¢ j < i, so path Q' = (VZj’ v2j+1,..., V21+1) is
in H,and yertex y,, is outer for j < k < i but nonouter for j=k. This

can be done, since if Vor 1s outer in H, then the matched edge V2k_2V2V_]

is in H. (Note if j = 0, we have vV, = 0 and vy = u).

We derive a contradiction by calculating FIRST (v2j+1) at the end
of Su‘ If x and y are adjacent outer vertices, then at the end of Su,
FIRST (x) = FIRST (y). (This results from executing subroutine L on

edge xy). Applying this observation to vertices in path Q' shows

-27-

FIRST (v = v2k*1,.the,first'nonouter vertex in Q'. (This vertex

23+1)
exists, since vo;uq 18 nonouter.)

However, path P(v2j+1) = (v2j+1, V2j"")’ so FIRST (v2j+1)
= V- Since Vos 7 Vorers we have a contradiction. [}

Now we show E works correctly.
‘ Coko1]any 3: E halts with a maximum matching specified by MATE.k
Proof: First note E always halts. We have seen subroutines L and R
halt. So any search eventually Stops;'fnwstep E2 or E3. E starts =
a finite number of searches in step E1. So algorithm E halts.

Corollary 2 shows MATE specifies a valid matching when E halts.
To prove the last matching is maximum, it suffices to show no augmenting
path exists, by Berge's Lemma. Let u be an unmatched vertex. Lemma 3
shows no augment made by E after Su invelves edges in H. So Lemma 3 can be
applied to the Tast matching»to show there {s no augmenting'path to u, {J

We conclude this section by describing a useful modification to
algorithm E, due to Edmonds [4]. The idea is to ignore a Hungarian
subgraph H in searches after Su' (By Lemma 3, searching in H is
fruitless.) We change step E2, as follows:
E2'. [Chopse an edge.] Choose an edge,,. If no such
edge exists, go to ET.
Step E2' causes step E7, which unlabels vertices, to be skipped after
Su‘ It is easy to check that in the modified algorithm, a vertex y e
H is never labeled in a search after Su‘

This modification speeds up the algorithm if a maximum matching
contains unmatched vertices. It does not change the worse case time

bound,

-28-

5. Efficiency and Applications

Algorithm E requires at most O(V3) time units when executed on a
random access computer. This is seen from Table I, which gives simple
bounds on the time for each step. For example, steps E4-LO can be
executed in a constant amount of time (c); in a given search, they
are executed at most W times (where W is the number of edges); since
there are at most V searches, and W < V(V-1)/2, the total time for

these two steps is O(Vs).

executions total

steps time per search time
EO Vi : V2
El o) v
E2 ¢ 2U v3
E3-R v] V2
E4-L0 | ¢ W v
L1-L6 | V V/2 V3
E5 c v/2 V2
E6 c W v
E7 v 1 V2
Table I

Worst-case time bounds
(Note in step E2, we assume edges are chosen in a breadth—first or
similar method, where a Tist of outer vertices is maintained. The 1ist
allows an unexamined edge to be chosen in time c.)*

* The run time of algorithm E is at most O(VWa(W,V)), if an efficient
set merging algorithm is used to maintain FIRST in step L5. Here o
is a very slow growing function; o(W,V)<3 for all graphs that can
be s%gred in an existing computer memory [12]. For sparse graphs
(W<<V¢), this variant of E is preferable.)

20~

Families of graphs that require time O(V3) can be constructed.

We describe such a family, assuming algorithm E uses the breadth-first
method in step E2. Similar families can be constructed for other
methods [8].

Figure 8(a) shows a graph G6m’ with a maximum matching. This
graph is formed from vertices 1,2,...,6m, by joining vertices 1,2,...,
4dm in é cémp]eté gkaph; K4m; and jofnfng vértex Zi-i with Vertex
4mti, for 1 _ i ngm. Adjécency lists contain vertices in numerical
order. Figure 8(b) shows the intermediate matching with 2m edges
constructed by algorithm E. Figure 8(c) illustrates a typical search
to match vertex 4m+i. A1l vertices except 1,3,5,...,2i-1, are made
outer. An augmenting path to vertex 4m+i+1 is found when outer vertex
2i+1 is chosen in step E2. Over 4mi edges are chosen in this search,
3

and over 4m

is 0(v3).

edges are scanned in the last m searches. Thus the time

Several experiments were conducted with an implementation of E in

ALGOL W on the IBM 360/165. For the worst-case graphs described above,

2.8

run times proportional to V°°° were observed, over the interval

T <m <24 (66 <V < 144, 968 < W < 4608), with times from .18 to
1.6 seconds. For a similar experiment on Edmonds’ algorithm, times

3.5 were observed (versus vt predicted) with time

proportional to V
1.7 seconds for m=11. Experiments on E on "random" graphs gave times
one order of magnitude faster than worst-case graphs with 3200 edges

raj.

(o

(k)

U Mia -y

Fig. &
Worst-case graph G6m

Hwm

-31-

The space used by the ALGOL W implementation of E is 5V+4W

words. This includes V+4W words for the graph; 2V words for MATE and
LABEL; V words for FIRST, also used by the stack of recursive calls to
R; and V words for a Tist of outer vertices for step E2.

Algorithm E can be used to speed up the scheduler devised by
Fujii, et. al. [6]. They solved this problem: Compute an optimal
schedule for N tasks to be executed by two processors, assuming the
tasks have equal length and arbitrary precedence constraints. Their

approach is to construct a compatibility graph, showing which tasks

can be executed simultaneously; then find a maximum matching on the
compatibility graph; finally, sequence the matched task pairs and
the unmatched tasks according to precedence constraints. This
algorithm was thought to require time O(N4) [6-Erratum]. But the
first and Tast steps can be executed in time 0(N3), and algorithm E
finds the matching in time O(N3). So the scheduler is an O(N®) algorithm.
(Recent work by Coffman and Graham [3] solves this scheduling problem
in time O(Nz). Their elegant method does not employ matchings
directly.) |
Algorithm E can be generalized to find maximum matchings on

weighted graphs. In a weighted graph, each edge has a weight that

is a real number. The problem is to find a matching with maximum
weight. Matching on ordinary graphs is the special case of this
problem where all edges have equal weight. Edmonds [5] first
developed an efficient (O(V4)) algorithm for this problem. The
generalization of algorithm E takes time O(V3)[8];

-32~

6. Acknowledgments

The author wishes to thank Professor Harold Stone of Stanford
University, for assisting in the preparation in the preparation of
this manuscript, and Professor Eugene Lawler of the University of
California at Berkeley, for communicating his stimulating ideas on

matching.

-33-

REFERENCES

1. Balinski, M. L. Labelling to obtain a maximum matching. In
Combinatorial Mathematics and Its Applications, R. C. Bose
and T. A. Dowling, Ed., U. of North Carolina Press, Chapel Hill,
North Carolina, 1967, 585-602.

2. Berge, C. Two theorems in graph theory. Proc. Nat. Acad. Sci. 43
(1957), 842-844.

3. Coffman, E. J. Jr., and Graham, R. L. Optimal scheduling for
two-processor systems. Acta Informatica 1 (1972), 200-213.

4. Edmonds, J. Paths, trees and flowers. Canadian J. Math. 17
(1965), 449-467.

5. Edmonds, J. Maximum matching and a polyhedron with 0,1-vertices.
J. Res. National Bureau Standards 69B (1965), 125-130.

6. Fujii, M., Kasami, T., and Ninomiya, K. Optimal sequencing
of two equivalent processors. SIAM J. Applied Math. 17 (1969),
784-789; Erratum, 20. (1971), 141.

7. Gabow, H. An efficient implementation of Edmonds' maximum matching
algorithm. Tech. Rep. 328, Computer Science Department, Stanford
University, Stanford, Calif., 1972.

8. Gabow, H. Implementations of algorithms for maximum matching on
nonbipartite graphs. Ph.D. diss., Computer Science Department,
Stanford University, Stanford, Calif., 1973.

9. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

10. Knuth, D. The Art of Computer Programming, Vol. 1. Addison-Wesley,
Reading, Mass., 1968.

11. Tarjan, R. E. An efficient planarity algorithm. Tech. Rep. 244,
Computer Science Department, Stanford University, Stanford, Calif.,
1971.

12. Tarjah; R. E: Effiéiency of a gbod but not 1inéar set union
algorithm. J. ACM 22 (1975), 215-225.

13. Witzgall,D. and Zahn, C. T., Jr. Modification of Edmonds' algorithm
for maximum matching of graphs. J. Res. National Bureau Standards
69B (1965), 91-98.

