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Compilers for statically typed languages such as C/C++ and Java use the types from the

program to generate high performance code. Although the runtimes of dynamically typed languages

such as Python, Ruby and Javascript have evolved significantly over the past few years; they

have not yet reached the performance of their statically typed counterparts. A new type system

called gradual typing has been proposed in which the program can optionally be annotated with

type information. In this thesis, I implement gradual typing in Jython (an implementation of

Python language for the Java virtual machine) and generate type-specialized code. Also, I use

invokedynamic, a new byte code introduced in Java 7, to implement optimizations in Jython;

both in an effort to close the gap between Java and Jython in particular and statically type and

dynamically typed language in general.
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Chapter 1

Introduction

Based on the type system they use, modern programming languages can broadly be classified

as either being dynamically-typed or statically-typed. Both systems have well known advantages

and disadvantages. Statically-typed languages (such as C, C++, or Java) perform type-checking at

compile-time and require the program to have type information on all the variables. This not only

ensures that the compiler generates meaningful type errors, but also facilitates high performance

code generation, because the compiler has to generate code for only one type. This approach makes

a program rigid, making it harder handle situations where the type of a value depends on runtime

information and also to adapt to changing requirements.

Dynamically-typed languages (such as Perl, Python, or Javascript) are popular for their

ease of use and rapid development cycles [13]. These languages do not perform type checking

during compilation so that the programmer does not have to provide any type information on the

program. Although this feature can be helpful when developing a prototype, in this type system

the compiler generates inefficient code since the compiler must assume the most generic case for all

the expressions.

There has been a wealth of research into improving performance of dynamic languages. Cham-

bers and Ungar used static profiling techniques to bring some of the traditional optimizations using

data-flow analysis, such as sub-expression elimination, dead code elimination, constant folding and

copy propagation, into dynamic languages [3]. Hölzle and Ungar used type feedback (where they

extract type information from runtime and feed that back into the compiler), to decide which calls
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should be inlined [5]. Brunthaler cached the calls so as to avoid multiple lookup for calls [2]. Even

with all these optimizations, dynamically-typed languages have not reached the speed of statically-

typed languages. A new approach to improving the performance of dynamically-typed languages

is necessary.

In this thesis, I explore two main ways to improve the performance of Jython, an imple-

mentation of the Python programming language that runs on the Java virtual machine (JVM).

First, I use the invokedynamic byte-code introduced along with Java 7 to implement various

optimizations. Second, I implement gradual typing [11] in Jython and enable type-specialized code

generation. I show that these approaches help close the gap between Jython and Java in particu-

lar and the techniques can be used to close the performance gap between dynamically-typed and

statically-typed languages in general.

The paper is organized as follows: Chapter 2 provides an introduction to gradual typing and

invokedynamic; Chapter 3 presents the various optimizations implemented in Jython by using

invokedynamic; in Chapter 4 I present the details of an implementation of gradual typing in

Jython; I end the thesis with some concluding remarks in Chapter 5.



Chapter 2

Background

In this chapter I present background reading material required for the thesis. In Sec-

tion 2.1 I present a brief overview of gradual typing and in Section 2.2 I present an overview

on invokedynamic framework in Java 7.

2.1 Introduction to Gradual Typing

Traditionally statically typed programming languages (such as Java, C and C++) have dom-

inated industry usage for decades [14], their popularity is largely attributed to earlier detection of

programming mistakes, better documentation in the form of type signatures, more opportunities

for compiler optimizations and increased runtime efficiency. Dynamic languages (such as Python,

Ruby and Javascript) are heavily used for prototyping since the code is much more compact. These

languages allow programmers to get results quickly since these languages are generally not as ver-

bose as their statically typed counterparts and are more flexible which helps reduce overheads and

increase productivity [7].

In 2007, Siek and Taha introduced gradual typing to bridge the gap between the dynamically-

typed languages and statically-typed languages by developing a framework that allowed a language

to have some parts to be completely dynamically-typed and other parts to be statically typed [11] [9].

In this section I will provide a brief introduction to gradual typing.

The essence of gradual typing is that it allows input program to have optional types, where

some parts of the program can have type annotations and other parts type annotations can be left
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Variables x ∈ V
Ground Types γ ∈ G
Constants c ∈ C
Types τ ::= γ | ? | τ ← τ
Expressions e ::= c | x | λx : τ.e | ee |

λx.e ≡ λx : ?.e

Figure 2.1: Syntax for gradually-typed lambda calculus.

out. Parts of the program without type annotations are assumed to be dynamic by default. The

gradual typing system then converts this input program to an intermediate language with explicit

casts, inserting casts where the program transitions from dynamic typed part into a statically typed

part. These casts are enforced at runtime so that, if the value flowing in from the dynamically typed

part of the program does not match the static types, an exception is raised. An important property

of gradual typing systems is that if a program is completely annotated, then the type-checker

would catch all the type errors at compile time. In the remainder of this section I will explain the

type-checking and the cast insertion phase of a gradual typing system on a slight variation on the

simply-typed lambda calculus language.

2.1.1 Static semantics

The syntax for the language gradually-typed lambda calculus is shown in Figure 2.1; where

the simply-typed lambda calculus is extended with the type ? used to represent dynamic types.

The lambda function without annotation on the parameter implies that the parameter x is dynamic

and is a short-hand for writing λx : ?.e. With the language defined, let us look at the type-checking

rules to understand the type system of this language.

Figure 2.2 shows the type checking rules for this language. The rules look very similar to the

rules for the simply-typed lambda calculus except for the function application case (Γ ` e1 e2). Here,

instead of requiring that the types of the argument to the function and the type of the function’s

parameter to be equal, the authors require that the types be consistent instead. Consistency

written as ∼ is the basis of gradual typing, and allows for dynamic types to be used in place of any
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Γ ` e : τ

x = τ ∈ Γ
Γ ` x : τ

typeof(c) = τ

Γ ` c : τ

Γ, x : τ1 ` e : τ2
Γ ` λx : τ1.e : τ1 → τ2

Γ ` e1 : ? Γ ` e2 : τ2
Γ ` e1 e2 : ?

Γ ` e1 : τ → τ ′

Γ ` e2 : τ2 τ2 ∼ τ

Γ ` e1 e2 : τ ′

Figure 2.2: Type system for the gradually-typed lambda calculus.

other type and vice versa. Rules for consistency are defined below:

τ ∼ τ ? ∼ τ τ ∼ ?

τ1 ∼ τ3 τ2 ∼ τ4
τ1 → τ2 ∼ τ3 → τ4

Note that the consistency relation is reflexive and symmetric but not transitive. The consis-

tency relation places a less restrictive constraint on the types, than type equality. Since all types

are consistent with the type ?, the static type checker would allow an argument of any type to

be passed into a parameter of type ?, making the function far more flexible. To ensure that the

gradual type system does not produce type errors in statically typed parts at runtime, runtime

checks are performed at appropriate places. These checks throw runtime exceptions if the checks

fail. The checks can be thought of as guards making sure that the potentially malformed programs

that were allowed at compile time, actually adhere to the typing rules. For example, if at compile

time a expression of type dynamic was applied, then the cast makes sure that at runtime the value

at that point is a function. We shall now look at the pass which inserts these checks, neatly called

cast insertion phase.

The Figure 2.3 shows the rules for cast insertion phase. Cast insertion takes as input the

expression and produces back a casted expression and is similar in many rules to the type-checker

with the addition of an output term. The rules for function application (e1 e2) are the most
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Γ ` e e′ : τ

x = τ ∈ Γ
Γ ` x x : τ

typeof(c) = τ

Γ ` c c : τ

Γ, x : τ1 ` e e′ : τ2

Γ ` λx : τ1.e λx : τ1.e
′ : τ1 → τ2

Γ ` e1  e′1 : τ → τ ′

Γ ` e2  e′2 : τ

Γ ` e1 e2  e′1 e
′
2 : τ ′

Γ ` e1  e′1 : ? Γ ` e2  e′2 : τ2

Γ ` e1 e2  (〈 τ2 → ?〉 e′1) e′2 : ?

Γ ` e1  e′1 : τ → τ ′

Γ ` e2  e′2 : τ2 τ2 6= τ τ2 ∼ τ

Γ ` e1 e2 : e′1 (〈 τ〉 e′2) τ ′

Figure 2.3: Cast insertion for the gradually-typed lambda calculus.

interesting ones. In the first rule for application, the function e1 goes through cast-insertion and is

converted to e′1 and expects type τ for the argument and the argument e′2 indeed has type τ , and

no casts are needed in this case as the application can never fail at runtime. In the second rule for

application, the function e′1 has type dynamic ?, and the argument e′2 has type τ2. Here we insert

a cast (〈 τ2 → ?〉 e′1) on the function to make sure that the term e′1 is indeed a function that can

take a term of type τ2 as input. In the third case of function application, the function e′1 has type

τ → τ ′ but the argument has type τ2. This will not be a type error only if τ ∼ τ2, and at runtime

we need to make sure to cast the term e′2 to τ and therefore this cast is inserted before the function

is applied.

After the cast insertion phase, we are left with a program very similar to the original input

program but with the addition of casts. Therefore we can extend the original language by with

casts:

Expressions e ::= ... | (〈 τ〉 e)

And the additional typing rule for casts would be:

Γ ` e : τ ′ τ ′ ∼ τ
Γ ` (〈 τ〉 e) : τ
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2.1.2 Dynamic semantics

This new intermediate language can then either be compiled to run or interpreted. In this

subsection we will review the runtime semantics of the new language. Before diving into the details,

we first define a grammar to describe the different parts of the evaluation.

Simple values s ∈ S ::= x | c |λx : τ.e

Values v ∈ V ::= s | (〈 ?〉 s)

Errors ε ::= CastError |TypeError |KillError

Results r ::= v | ε

The type result r is a super set of errors e and values v, where values can either be one of the simple

values s or a simple value with a cast. Of the three types of errors defined, KillError was added by

the original authors to prove type safety. The CastError symbolizes errors that the runtime system

is able to catch and thus raise exceptions. The TypeError represents the class of errors which if

uncaught would cause undefined behavior such as segmentation faults.

The evaluation rules are defined using big-step style with substitution, in the form e ↪→n r,

where e evaluates to the result r with a derivation depth of n. The evaluation rules for terms

resulting in values are presented in Figure 2.4 and the rules resulting in errors are presented in

Figure 2.5.

It is interesting to look at the rules of evaluation of casted expressions. Here, unbox is a

helper function which will get the underlying value by removing the cast around it. The rule for

function casts (2nd rule in Figure 2.4) handles the case of casting to a function type. If the run-time

type τ → τ ′ is consistent with the target type σ → σ′, then the cast is removed. Then, a new

function is created which wraps the inner value v and a cast is inserted to produce a well-typed

value of the appropriate type.

If the runtime type does not match the expected type, then a CastError is raised as shown

in the first rule in Figure 2.5. If a simple value is applied (function call) then the cast raises

a TypeError. The authors prove that this approach is type-safe [11]. Building on their initial
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e |µ ↪→n v |µ′ ∅ |Σ ` unbox v : γ

(〈 γ〉 e) |µ ↪→n+1 unbox v |µ′

e |µ ↪→n v |µ′ ∅ |Σ ` unbox v : τ → τ ′

τ → τ ′ ∼ σ → σ′ z = maxv v + 1

(〈σ → σ′〉 e) |µ ↪→n+1 λz : σ. (〈σ′〉 unbox v (〈 τ〉 z) ) |µ′

e |µ ↪→n v |µ′

(〈 ?〉 e) | ↪→n+1 (〈 ?〉 v) |µ′
0 < n

λx : τ.e |µ ↪→n λx : τ.e |µ

e1 |µ1 ↪→n λx : τe3 |µ3
e2 |µ2 ↪→n v2 |µ3

[x := v2]e3 |µ3 ↪→n v3 |µ4
e1 e2 |µ1 ↪→n+1 v3 |µ4

0 < n
c |µ ↪→n c |µ

e1 |µ1 ↪→n c1 |µ2 e2 |µ2 ↪→n c2 |µ3
e1 e2 |µ1 ↪→n+1 δc1 c2 |µ3

Figure 2.4: Evaluation rules going to values for the gradual typing intermediate language.

e |µ ↪→n v |µ′
∅ |Σ ` unbox v : σ σ � τ

(〈 τ〉 e) |µ ↪→n+1 CastError |µ′

e |µ ↪→0 KillError |µ 0 < n
x |µ ↪→n TypeError |µ

e1 |µ ↪→n v1 |µ′ v1 /∈ FunVal

e1 e2 |µ1 ↪→n+1 TypeError |µ′

e |µ ↪→n ε |µ′

(〈 τ〉 e) |µ ↪→n+1 ε |µ′
e1 |µ ↪→n ε |µ′

e1 e2 |µ ↪→n+1 ε |µ′

e1 |µ1 ↪→n v1 |µ2
v1 ∈ FunVal e2 |µ2 ↪→n ε |µ3

e1 e2 |µ1 ↪→n+1 ε |µ3

e1 |µ1 ↪→n v1 |µ2
e2 |µ2 ↪→n v2 |µ3

[x := v2]e3 |µ3 ↪→n ε |µ4
e1 e2 |µ1 ↪→n+1 ε |µ4

Figure 2.5: Evaluation rules going to errors for the gradual typing intermediate language.
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work, Siek et. al. extend gradual type system to handle object oriented languages [9]. They also

introduced an efficient way of storing the runtime cast information [12] [10].

2.2 Introduction to invokedynamic

In 2010, Java-7 introduced invokedynamic [8], a new byte-code in the Java virtual machine

(JVM) to give more control to developers of dynamic languages on method dispatch. Specifically

invokedynamic provides user-defined call site semantics, so that a language runtime can link

(and re-link) the call site based on runtime information. In this section I present an introduction

on this new bytecode.

The JVM was initially designed to support only the Java programming language, but it

quickly outgrew it’s initial purpose. Today many languages are implemented on top of the JVM

owing to the JVM’s type-safe byte code, optimizing just in compilers (JIT), scalable concurrency,

wide distribution, and the rich ecosystem of libraries and debugging tools surrounding it. Not only

do existing languages such as Python, Javascript, and Ruby have JVM implementations; but there

are also plenty of languages developed solely on the JVM such as Scala, Fortress, and Groovy. The

total number of languages with JVM implementations is more than 200 [15].

A large number of these languages have dramatic semantic differences when compared to

Java, making the translation from a non-Java language into JVM byte code difficult. For example

the language may support strong updates to an object, where the programmer can change a bound

method; or support mutable classes; or support arithmetic operations on dynamically typed objects

or multiple return values. Compiling such features require the implementation to keep additional

Java data structures, and possibly use of Java core reflection API which increase the execution

overhead and complexity. To address this issue the Da Vinci Machine project was set up and they

introduced the invokedynamic framework in Java 7.

Traditionally, before Java 7, the Java virtual machine only supported 4 instructions to invoke

a method:
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• invokevirtual invokes the method on an instance of an object, dispatching on the

virtual type of the object.

• invokestatic invokes a static method on a named class.

• invokeinterface invokes a method on an interface; the virtual machine searches the

methods implemented by the runtime object and dispatches to the appropriate method.

• invokespecial invokes a method on an instance requiring special handling such as the

constructor method.

With Java 7, a new byte code for method invocation was added called invokedynamic [6].

invokedynamic invokes the method which is the target of the call site object bound to the

invokedynamic instruction. At the first execution of the invokedynamic instruction, the Java

virtual machine calls a bootstrap method which returns the call site object, and this is bound

to the specific invokedynamic instruction. Unlike other invoke methods mentioned above, each

invokedynamic instruction in the byte code has a unique linkage state. A key point to emphasize

here is that invokedynamic is only a new instruction at in the JVM bytecode and does not have

an equivalent Java representation. It is unique because this is the first time that the JVM has

added a feature which does not have a direct equivalent in Java.

During the first call of an invokedynamic instruction, a bootstrap method is called. The

bootstrap method is provided by the custom language implementer, such as the sample bootstrap

method shown below:

public CallSite bootstrap(Lookup l, String name, MethodType type) {

return new CallSite(...);

}

Listing 2.1:

The contract of the bootstrap method is as follows:
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• The JVM passes the Lookup object (explained in the next paragraph), the method name

and the method type as parameters to the bootstrap method.

• The bootstrap method has to return an object of class java.invoke.CallSite (or

it’s subclass), where the language runtime is free to point this CallSite to any method

satisfying the received method type.

When the bootstrap method call returns, the CallSite object is bound to the specific invokedynamic

instruction by the JVM and the association is unchanged unless changed explicitly by the language

runtime. After the CallSite object is bound, the JVM extracts the target method reference from

the CallSite object (stored in the private field CallSite.target) and dispatches a call to

that method. Every other invocation of this particular invokedynamic instruction will use the

bound CallSite object to dispatch.

To be able to point to arbitrary methods, Java 7 introduces the concept of method handles.

Every method handle has a specific type (an object of MethodType) and behaves as a typed

function pointer. The CallSite object stores the target of the call site in a MethodHandle

object. Method handles are created by looking up the method or field on a Lookup object. The

Lookup object is a factory for creating method handles. Method handles do not perform access

checks when they are called, but rather when they are created. Therefore, method handle access

restrictions are enforced when a method handle is created.

The simplest form of method handle is a direct method handle, Listing 2.2 shows an example

which creates a method handle to System.out.println and calls it. Direct method handles

can emulate all the invoke bytecode instructions (other than invokedynamic) via corresponding

Lookup methods, such as, invokevirtual via Lookup.findVirtual; invokestatic via

Lookup.findStatic and so on.

Method handles are not limited to just direct method handles, there are other kinds of method

handles such as adapter method handles, bound method handles and control flow method handles.

Adapter method handles are a way to create a wrapped method handle of a new type, which
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1 MethodHandle println = MethodHandles.lookup().findVirtual(
2 PrintStream.class, "println",
3 MethodHandles.methodType(void.class, String.class));
4 println.invokeExact(System.out, "hello, world");

Listing 2.2: Example of creating a direct method handle and invoking it.

first calls the wrapper method which then delegates to the original target. These adapter

method handles provide functionality that is frequently desired such as convertArguments

: which can be used to cast an argument to a different type, dropArguments: which can

be used to ignore one or more parameters and permuteArguments: which can re-order

the parameters before calling the underlying function.

Bound method handles provide a way to bind arbitrary parameters to an object (provided that

the types match) and this returns a wrapped method handle which has the same type as

the previous method handle with the bound parameter dropped.

Control flow method handles were introduced so that language runtimes can encode complex

logic into the method dispatch mechanism. The MethodHandles.guardWithTest pro-

vides the following semantics:

∀S λ(test, target, fallback). λ a : S. if (test a) then target a else fallback a

This can be used to implement inline caches or guarded calls. Another control flow mecha-

nism is SwitchPoint.guardWithTest where one can register many target and fallback

method handles to an instance of SwitchPoint but there is no test method handle.

All the calls are always dispatched to the target method handle, until SwitchPoint.

invalidateAll method is called, at which point all the method handles are switched to

use the fallback method handle.

Constant method handles always return a (constant) value bound to the method handle with-

out dispatching to any method.
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1 public static CallSite bootstrap(Lookup lookup, String name,
2 MethodType type, String base64Array) {
3 BASE64Decoder decoder = new BASE64Decoder();
4 byte[] bytes = decoder.decodeBuffer(base64Array);
5

6 Class<?> returnType = type.returnType();
7 Object value = convertAsArray(bytes, returnType);
8 return new ConstantCallSite(MethodHandles.constant(returnType,
9 value));

10 }

Listing 2.3: Lazy decoding of a string into bytes.

After looking at the different types of method handles, we can now look at a couple more

examples of bootstrap methods to better understand the possibilities enabled by invokedynamic.

Listing 2.3 shows how the bootstrap argument can be used to create a string to byte decoder.

Here, the string in base64Array is only decoded on the first invokedynamic call, which calls

the bootstrap method. Also, here we use a constant method handle to cache the value of the byte

array, therefore every invokedynamic call would just return this cached value [4].

The Listing 2.4 shows an example which install a generic target method install in the

bootstrap method. The install method takes all the runtime arguments and can re-bind the call

site if as appropriate.

Although invokedynamic is not exposed to the Java language itself, it is being used to

implement upcoming language features in the language such as lambda expressions and virtual

extension methods. It is also used in various other projects such as: Nashorn project which is an

implementation of JavaScript on the JVM; JRuby which is an implementation of Ruby on the JVM

and has proved useful in efficiently compiling complex language features.
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1 public static CallSite bootstrap(Lookup lookup, String name, MethodType
type) {

2 MyCallSite callSite = new MyCallSite(lookup, name, type);
3 MethodHandle install = INSTALL.bindTo(callSite);
4 callSite.setTarget(install);
5 return callSite;
6 }
7

8 public static Object install(MyCallSite callSite, Object[] args) {
9 MethodType type = callSite.type();

10 Class<?> receiverClass = args[0].getClass();
11 MethodHandle target = callSite.lookup.findVirtual(receiverClass,
12 callSite.name, type.dropParameterTypes(0, 1));
13 target = target.asType(type);
14 callSite.setTarget(target);
15 return target.invokeWithArguments(args);
16 }

Listing 2.4: Binding a call site based on runtime arguments instead of bootstrap arguments.



Chapter 3

Jython Optimizations

Compiling a dynamic language with powerful features such as Python [16] to Java byte

code is nontrivial, and generating high performance Java bytecode is challenging. There are a few

challenges in the efficient compilation of Python to Java byte code. Firstly, the JVM is tuned to

optimize näıve Java code, but code generated by Jython is usually complex and does not equate

to näıve Java code. Secondly, Python has a number of dynamic features limiting the ability to

apply any optimizations at compile-time. Since Python has late-binding of names, it prevents

Jython from loading built-in functions or names directly; they can only be loaded at runtime.

Python provides the ability to change an object’s method resolution order (MRO) which implies

that method dispatch would require heavy use of runtime data structures and creating nested call

graphs for even simple method calls, limiting the JVM’s ability to inline them.

In this chapter I tackle some of these challenges and show how optimizations can be imple-

mented with the use of invokedynamic. In Section 3.1 I describe the general framework used for

some of the optimizations and then use this framework to for two different optimizations described

in Subsection 3.1.1 and Subsection 3.1.2. In Section 3.2 I present a way to optimize the function

dispatch mechanism in Jython. Section 3.3 presents a way of utilizing programmer input to improve

the runtime performance. Finally, in Section 3.4 I evalute the optimizations implemented.
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Parser Scopes Compiler Code Compiler

Figure 3.1: The current Jython framework.

3.1 A framework for AST transformations

Jython currently does not perform any optimization passes, therefore before diving into

performing optimizations it was important to first develop an extendable framework that would

support optimization transformations. In this section I will discuss the framework I developed in

Jython.

A simplified overview of current Jython compiler framework is shown in Figure 3.1. Although

this representation an oversimplification, it suffices for our discussion here. As with most compilers,

the parser produces an abstract syntax tree (AST) – a tree containing nodes where each node

corresponds to a Python statement or expression. In Jython this AST is then passed to the Scopes

Compiler which creates another data-structure containing information regarding scopes. Then the

AST and the scopes data-structures are passed to the Code Compiler which compiles each node to

Java byte code creating a Java class. The AST nodes are tightly coupled with the language and

traditionally new nodes were only added when the language changed. This limits the number of

optimizations possible with the current framework.

To make the framework more extensible, I extended the AST by adding custom nodes that

were not part of the language definition. These nodes represent the optimized nodes and could

be compiled differently. The AST from the parser would still generate the same nodes as be-

fore, but then one or more optimization passes would then operate over the AST adding cus-

tom nodes as required. An overview of this approach is shown in Figure 3.2. The AST trans-

formation passes would generate a new AST as output which would include the custom added

nodes representing parts of the program for which optimized code can be generated. This AST
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Figure 3.2: Overview of the AST transformation framework.

would then pass through the Scopes Compiler which remains unchanged for the most part. A

new class called OptimizedCodeCompiler is created and this extends the previously existing

CodeCompiler, thus all the old nodes would still be handled by the CodeCompiler class and

the OptimizedCodeCompiler would only handle the newly added custom nodes that require

optimized byte code generation. The output from this stage is Java byte code which is potentially

optimized for performance.

In the remainder of this section I will dive into how for loops in Python can be optimized

in Jython (Subsection 3.1.1) and how global name lookups for built-in functions can be optimized

(Subsection 3.1.2).

3.1.1 Optimizing loops in Jython

Consider the Python program shown in Listing 3.1, it iterates over the variable i ranging

from 1 to 10,000,000 and performs some mathematical operations in each iteration. Jython uses

a generic compilation strategy for all loops, and the output, de-compiled to Java, is presented in

Listing 3.2.

In the generic loop compilation strategy presented in Listing 3.2, we see that in lines 1-

4 initializes PyObjects corresponding to 1, 10M, xrange and the first item from the xrange

object. Lines 5-13 show the actual loop and the arithmetic operations take place in lines 8-10.

1 for i in xrange(1, 10000000):
2 sum += (sum ˆ i) / i

Listing 3.1: A Python program with for loop.
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1 PyObject _2 = Py.newInteger(1);
2 PyObject _3 = Py.newInteger(10000000);
3 xrangeObj = frame.getglobal("xrange").__call__(ts, _2, _3).__iter__();
4 iterTmp = ((PyObject) xrangeObj).__iternext__();
5 while (iterTmp != null) {
6 frame.setlocal(2, iterTmp);
7 PyObject sumPyObj = frame.getlocal(1);
8 localPyObj = sumPyObj._iadd(frame.getlocal(1)
9 ._xor(frame.getlocal(2))

10 ._div(frame.getlocal(2)));
11 frame.setlocal(1, localPyObj);
12 iterTmp = ((PyObject) xrangeObj).__iternext__();
13 }

Listing 3.2: The de-compiled output of current compilation strategy for the Python program in
Listing 3.1 in Jython.
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In line 6 the current iteration item is stored onto the frame (variable i), line 7 loads the variable

sum); line 11 stores the result of the operation back into the variable sum and line 12 loads the next

object of the iteration. From the generated output we observe that the Jython compilation strategy

is to use a generic solution by using iterators and a while loop iterating over them. Although this

maintains all Python semantics; the generated code is not highly optimized since it provides very

little opportunity for optimization by the JVM. Since the JVM was primarily designed for the Java

language, most just in time (JIT) compilers developed for the JVM such as HotSpot (from Oracle),

J9 (from IBM) or Zing (from Azul Systems) are primarily tuned to recognize Java code and then

optimize them. Therefore generating idiomatic Java byte code would help the JVM optimize code,

improving the performance of Jython. If we could generate code that resembles a Java for loop,

such as the code presented in Listing 3.3 then the JVM could use readily recognize it which would

enable JIT optimizations.

1 for(int i = 0; i < 10000000; i++) {
2 sum += (sum ˆ i)/ i;
3 }

Listing 3.3: Ideal compilation.

We could potentially use the information that the built-in functions such as range and

xrange always iterate over integers, and then implement a compilation strategy that would gen-

erate a Java for loop for such Python loops iterating over these built-in functions, but we have to

be careful to not break Python semantics. At runtime the name "xrange" can be bound to any

arbitrary method, for example it maybe bound to an iterator that returns floating point numbers

instead of integers; or possibly a function that returns None. So the compilation strategy must

first check if the name "xrange" is indeed bound to the Python’s built-in xrange.

Our approach to handle such situations, is to use an invokedynamic check as a guard and

generated optimized byte code, in the fallback case we could fallback to Jython’s interpreter or

to a generated generic loop. Such an approach with fallback to Jython’s interpreter is shown in

Listing 3.4. The main point here is that we make an invokedynamic call and pass the object
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bound to "xrange". This call would return normally if the object is indeed bound to Python’s

built-in xrange function, else it throws an IndyOptimizerException. If the call returns

normally, then we proceed to line 3 where we declare integers as loop iterators and in lines 5-8

we perform the loop operation. If the call throws an exception then we fallback to using Jython

interpreter to execute that part of the code instead.

To implement this optimization, I created a new (custom) AST node called OptimizedFor

which extends the already existing node For. In the AST transform phase, instances of For

loop using "xrange" or "range" to iterate over the loop were replaced with this new node

OptimizedFor. Then in the OptimizedCodeCompiler class, this new node was compiled to

generate code corresponding to the one presented in Listing 3.4.

I compared the running times of the Python program in Listing 3.1 under 3 Python platforms:

CPython (version 2.7.3); Jython (version 2.7.0a2) and the custom Jython version with this loop

optimization enabled. The result is presented in Figure 3.3. The figure shows a bar graph, where the

height of the bar determines how much faster the program ran when compared to Jython 2.7.0a2.

We see that CPython runs the program about 7.75 times faster than Jython; and we see that our

optimization has enabled this program to run 15 times faster than stock Jython. Therefore, by

generating idiomatic Java code and using the knowledge of the return types of key builtin functions,

we have enabled the JVM to optimize the loop and improve the performance by a factor of 15x in

simple cases.

3.1.2 Optimizing global name lookups

Global names in Python are resolved dynamically, at runtime and the Jython compiler cannot

rely on the names of the variables at compile-time but has to always perform a lookup on the

variable string at runtime. Functions and classes are often defined in the global scope of a module

and in most Python code they are rarely re-bound to other objects. With this insight, we can

implement an optimization which will cache the global objects such that the overhead of lookup is

reduced. This cache has to be invalidated when the global object is rebound. This would make the
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1 try {
2 indyDispatch();
3 int start = 0, stop, step = 1, downCountFlag = 0;
4 if(pyObjStart)
5 start = pyObjStart.asInt();
6 if(pyObjStop)
7 stop = pyObjStop.asInt();
8 if(pyObjStep){
9 step = pyObjStep.asInt();

10 if(step == 0)
11 Py.ValueError("step argument must not be zero");
12 else if(step < 0):
13 downCountFlag = 1;
14 }
15

16 PyObject iterTmp = null;
17 for(int i = start; (downCountFlag == 0) ? i < stop : i > stop;

i += step){
18 iterTmp = Py.newInteger(i);
19 // Do the loop stuff here
20 }
21 } catch (IndyOptimizerException e) {
22 // fallback to Python byte code virtual machine
23 }

Listing 3.4: The de-compiled output of a fast implementation of the Python program in Listing 3.1
using invokedynamic.
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Figure 3.3: Comparing the performance of the loop optimization.
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1 s = "hello world"
2

3 def foo():
4 print s

Listing 3.5: Example Python program to show a global call.

global accesses fast (since the lookup is avoided), while making the re-binding of global variables

slower than it currently is. I use the SwitchPoint mechanism provided with invokedynamic

to implement this optimization.

Consider the example presented in Listing 3.5, here the string s is defined in the global scope

of a module and is used in the function foo. Listing 3.6 shows the Java equivalent of the Java byte

code produced when compiling this example with current version of Jython. At compile-time the

compiler knows that the variable s does not exist in the local scope of the function foo since the

variable s does not appear as the parameters of the function nor in the body of the function. So

the compiler can infer that the variable s was defined in the global scope. As seen in line 2 of the

Java code, that Jython generates a getGlobal call on the frame.

Even though this seems harmless, each load of a global variable results in a frame lookup

which can be costly when trying to optimize hot loops. Consider for example a simple variation on

the previous example show in Listing 3.7, here the variables a and b are both global variables and

are accessed 5,000,000 times in the loop in line 6. Here we can see that loading global variables

from the frame would be costly.

Each getGlobal call on the frame is internally dispatched to a lookup on a PyDict ob-

ject called globals in the frame object. PyDict contains a HashMap mapping PyStrings to

1 public PyObject foo$3(ThreadState ts, PyFrame f) {
2 PyObject local = f.getGlobal("s");
3 Py.Println(local);
4 return Py.None;
5 }

Listing 3.6: Java equivalent of Jython generated Java byte code for Python example in Listing 3.5.
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1 a = 1
2 b = 2
3

4 def foo():
5 result = 0
6 for _ in xrange(5000000):
7 result += a + b # 2 global accesses
8 print(result)
9

10 foo()

Listing 3.7: Another Python program stressing the global lookup.

PyObjects where a given string such as "s" will be looked up. Going back to the first example

in Listing 3.5, let us look at how to improve the performance. The goal here is to cache the value

of the PyObject bound to the string "s" in line 2. The cache has to be invalidated if the global

variable "s" changed. SwitchPoint and invokedynamic provide the right tools to for this op-

timization. We can make the getGlobal call an invokedynamic (in line 2 in Listing 3.6) call

which first performs a lookup to get the global object and caches it at the call-site. The object is

actually cached in the MethodHandle associated with the call-site and the method handle has a

switch point guard around it. The global switch point is turned off whenever a global variable is

updated. This ensures that all getGlobal call-sites would re-load the value of the cached object

maintaining Python semantics.

To implement this optimization, we first need to move the globals out of the frame and asso-

ciate it with the module instead. Associating the globals PyDict would mean all the setGlobal

and getGlobal operations would happen on this dictionary and it would make sure that we inval-

idate the switch points consistently. Each module in Python is implemented as a class extending

PyFunctionTable in Jython. I created a new field of in the base class PyFunctionTable to

hold a reference to the globals and all the getGlobal and setGlobal are now redirected from

operations on the frame to operations on this new field. Listing 3.8 shows the optimized code with

invokedynamic call dispatch for getGlobal. The only difference in the generated byte code is

in line 2 where the getGlobal lookup on the frame is replaced by an invokedynamic bytecode,
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1 public PyObject foo$3(ThreadState ts, PyFrame f) {
2 PyObject local = invokedynamic<getGlobalBSM>(this, "s");
3 Py.Println(local);
4 return Py.None;
5 }

Listing 3.8: Java equivalent of the invokedynamic optimized getGlobal call for the Python
example in Listing 3.5.

bound to the getGlobalBSM bootstrap method. The invokedynamic call is given the current

object (this) and the string of the variable ("s") as arguments.

The bootstrap method is shown in Listing 3.9, and this method create a new CallSite

bound to the method handle point to the method initGetGlobal in the InvokeDynamicSupport

class. The method initGetGlobal is shown in Listing 3.10. In this method, in line 3, we first get

the value associated with the string from the PyFunctionTable which is module object. In lines

4-6 we create a new constant method handle. A constant method handle is a method handles which

always returns the value it is bound to, irrespective of the inputs. We wrap the constant method

handle with dropArguments to make sure the type of the target method handle matches the

type of the call-site. In lines 7-9 we wrap the method handle with a switch point, and in line 10

we add this switch point to the HashMap global_sps against the name of the global variable

(index). Then in line 11, the call site is updated with this new constant method handle. Lines

12-16 implement a re-linking logic, which triggers the re-caching mechanism.

With this logic implemented, we can look back at the stress-test example in Listing 3.7. Each

of the global variable reads of variables a and b in line 7 will be a invokedynamic instruction

which would cache the value of the global variable in a constant method handle. Since the global

variables are not modified, the switch point would never be invalidated; thus making global lookups

considerably faster.

The Figure 3.4 shows a bar graph of the performance improvement of running the program

in Listing 3.7 on Jython versus running the same program on CPython and the custom build of

Jython with the global lookup mechanism via method handles enabled. We see that caching the
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1 public static CallSite getGlobalBootstrap(Lookup lookup, String name,
2 MethodType type) {
3 GetGlobalCallSite site = new GetGlobalCallSite(type);
4 MethodHandle init = lookup.findStatic(
5 InvokeDynamicSupport.class, "initGetGlobal",
6 methodType(PyObject.class, GetGlobalCallSite.class,
7 PyFunctionTable.class, String.class));
8 init = insertArguments(init, 0, site);
9 site.setTarget(init);

10 return site;
11 }

Listing 3.9: The init method called by the bootstrap method on the first call (or a switch point
invalidate) of the getGlobal invokedynamic call.

1 public static PyObject initGetGlobal(GetGlobalCallSite site,
2 PyFunctionTable self, String index) throws Throwable {
3 PyObject value = self.getglobal(index);
4 MethodHandle target = dropArguments(
5 constant(PyObject.class, value), 0, GetGlobalCallSite.class,
6 PyFunctionTable.class, String.class);
7 SwitchPoint sp = new SwitchPoint();
8 target = sp.guardWithTest(target, MH_GET_GLOBAL);
9 target = insertArguments(target, 0, site);

10 self.global_sps.put(index, sp);
11 site.setTarget(target);
12 if(site.changedCount == GetGlobalCallSite.MAX_CHANGE_COUNT) {
13 self.global_sps.remove(index);
14 site.setTarget(MH_GET_GLOBAL_FALLBACK);
15 }
16 return value;
17 }

Listing 3.10: The init method called by the bootstrap method on the first call (or a switch point
invalidate) of the getGlobal invokedynamic call.
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global value in a method handle increases the performance by a factor of 2.5x. We can also see

that this performance is about 2 times better than CPython.

3.2 Changing the dispatch mechanism

Chapter 2 explains the invokedynamic instruction. This section will mainly deal with

using the instruction to change the dispatch mechanism of Jython. Subsection 3.2.1 shows how

the call dispatch mechanism work before invokedynamic and Subsection 3.2.2 presents the current

implementation using invokedynamic.

3.2.1 Current dispatch mechanism in Jython

In this section I describe how how function dispatch currently works in Jython, with an

example. Consider the example Python code presented in Listing 3.11. The function foo calls the

function bar with an argument 10.

Jython compiles this Python program into Java byte code and Listing 3.12 shows the Java

equivalent of the generated Java byte code. lines 3-5 show the equivalent of the function bar. All

Jython generated Java methods have the same signature, which is: PyObject as the return type

and ThreadState, PyFrame as arguments. The ThreadState stores the state of the current

thread and a reference to previous frames and the PyFrame object stores references to parameters

and local variables among other things.

Having a uniform signature for all generated methods makes the compiler design a little bit

easier, all the arguments passed into a function is stored in the frame; but, this also means that the

generated code cannot be optimized nearly as well if we had used the internal stack of the JVM

for passing arguments.

In Listing 3.11, at line 5, there is a call to the function bar; but in general when the compiler

encounters a call, it does not know the function, method or class being called. Therefore the

compiler must first get the object bound to the name and then call it. Lines 8-9 of Listing 3.12

show this exact procedure, where, in order to respect Python semantics, first the object bound to
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Figure 3.4: Comparing the relative performance the getGlobal stress test from Listing 3.7.

1 def bar(n):
2 pass
3

4 def foo():
5 bar(10)

Listing 3.11: Example Python program.
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1 PyInteger _10 = new PyInteger(10);
2

3 public PyObject bar$2(ThreadState ts, PyFrame f) {
4 return Py.None;
5 }
6

7 public PyObject foo$3(ThreadState ts, PyFrame f) {
8 PyObject local = f.getName("bar");
9 local.__call__(ts, _10);

10 return Py.None;
11 }
12

13 public PyObject call_function(int func_id, PyFrame f, ThreadState ts) {
14 switch(func_id) {
15 case 2: return bar$2(ts, f);
16 case 3: return foo$3(ts, f);
17 ...
18 }
19 }

Listing 3.12: Java equivalent of Jython generated Java byte code for Python example in Listing 3.11.
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1 public class PyFunction extends PyObject {
2

3 public PyCode func_code;
4

5 @Override
6 public PyObject __call__(ThreadState ts, PyObject arg0) {
7 return func_code.call(ts, arg0, ...);
8 }
9

10 }

Listing 3.13: Showing the relevant portions of PyFunction.

the name "bar" is loaded (line 8) and then the __call__ method is called on this object with

the current ThreadState object (ts) and the argument _10 (line 9). The dispatch mechanism

then depends on the type of object loaded.

In this case the object bound to the name "bar" is a PyFunction, Listing 3.13 shows the rel-

evant parts of PyFunction. All run-time objects in Jython extend PyObject and PyFunction

is no different. The __call__ method call on line 9 in Listing 3.12 calls into line 6 of Listing 3.13.

Each PyFunction object is associated with one PyCode object which is the actual implementa-

tion of the function definition. This extra level of indirection is added to support mutable function

objects.

Line 7 calls the call method on the func_code object with the arguments and a few other

parameters (omitted here since they are not important to this discussion). This call re-directs to

PyBaseCode which creates a new PyFrame object using the passed arguments and then redirects

to line 7 in Listing 3.14. At this point the arguments passed in at the call-site have been put on

the newly created PyFrame object. PyTableCode extends PyBaseCode which in-turn extends

PyCode and contains a reference funcs to the object in which the method bar$2 is defined in. It

also has the func_id (2 for function bar) of the method. This method calls the call_function

method on the funcs object which then takes us back to Listing 3.12 line 13. The call_function

defines a switch-case on func_id and calls the methods with their corresponding ids and since

the function bar has id 2, we call bar$2 in line 15.
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1 public class PyTableCode extends PyBaseCode {
2

3 PyFunctionTable funcs;
4 int func_id;
5

6 @Override
7 public PyObject call(ThreadState ts, PyFrame frame, PyObject
8 closure) {
9 PyObject ret;

10 ...
11 ret = funcs.call_function(func_id, frame, ts);
12 ...
13 return ret;
14 }
15 }

Listing 3.14: showing the relevant portions of PyTableCode.
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So, we see that for even a simple method call, there is a lot of back-and-forth between the

generated Java byte code and the Jython runtime. In the next sub-section we will device a way of

avoiding this by using invokedynamic.

3.2.2 Dispatch mechanism in Jython with invokedynamic

In this sub-section we will see how to use invokedynamic machinery to dispatch to functions

so that the JVM can readily optimize these calls. We would like to perform two optimizations, first

we want use invokedynamic calls to dispatch function calls instead of the __call__ mechanism

seen earlier. Next, we want to make use of parameter passing in the JVM instead of using frames

so that accessing parameters in a function is easier.

3.2.2.1 Dispatching to a method using invokedynamic

Since the function resolution happens at runtime in Python, we do not know which function

will be called at compile time or even at link time. Since the bootstrap method of a invokedynamic

call is called at link-time, at this time we still do not have all the information we need to dispatch

the call. So at bootstrap time we bind the call-site to a generic dispatch method. We make sure to

pass the CallSite object to this generic dispatch method which will be called at runtime on the

first call to the invokedynamic bytecode. At this point we can find out the target method of a

given function call and re-bind the call site appropriately. This would ensure that future calls to

the same function at that call-site would be directly dispatched to the actual target method.

In order for this optimization to work, every runtime function should be associated with a

method handled. The runtime function object in Jython is PyFunction, but the actual code

object is stored in the func_code attribute of PyFunction which is of type PyCode. So a new

field is added to PyCode called mHandle which stores the method handle associated with that

code object, and this function can then be called via this method handle.

Listing 3.15 shows the de-compiled Java byte code generated by Jython for the example in

Listing 3.11 using the invokedynamic machinery. We see that line 9 is now replaced by an
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1 PyInteger _10 = new PyInteger(10);
2

3 public PyObject bar$2(ThreadState ts, PyFrame f) {
4 return Py.None;
5 }
6

7 public PyObject foo$3(ThreadState ts, PyFrame f) {
8 PyObject local = f.getName("bar");
9 invokedynamic<bootstrap>(ts, local, _10);

10 return Py.None;
11 }

Listing 3.15: Dispatch using invokedynamic for code shown in Listing 3.11.

invokedynamic call instead of the previous __call__ method call. We have already seen that

at compile time we do not know what method we are dispatching to, therefore we must wait till

runtime to make the decision of where to dispatch a call. The invokedynamic byte code is

provided with the thread state, the local variable corresponding to the function object and _10

as arguments. We also see that this invokedynamic byte code is bound to bootstrap as the

bootstrap method.

Listing 3.16 shows the bootstrap method, that the invokedynamic call is bound to. This

method this returns a generic JythonCallSite object (a sub-class of CallSite) which binds

the call-site to a the installCS method. After calling the bootstrap method on the first call of

invokedynamic, the JVM proceeds to call the installCS method. This method is shown in

Listing 3.17.

The installCS is given the call site object from before and the rest of the arguments

passed in from the actual invokedynamic call-site is received in the args Object array. Since

we are dealing with specializing function dispatch, we check to see if the 1st argument is actually

1 public CallSite BSM(Lookup lookup, String name, MethodType type) {
2 return new JythonCallSite(lookup, name, type);
3 }

Listing 3.16: Bootstrap method for function dispatch.
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1 public static Object installCS(JythonCallsite callSite,
2 Object[] args) throws Throwable {
3 if (args[1] instanceof PyFunction) {
4 PyFunction pyFunc = (PyFunction) args[1];
5 int noOfArgs = args.length - 2;
6 if (pyFunc.func_code.mHandle != null) {
7 if (pyFunc.func_code instanceof PyBaseCode) {
8 PyBaseCode fcode = (PyBaseCode) pyFunc.func_code;
9 if (!fcode.varkwargs && fcode.varargs &&

10 noOfArgs == fcode.co_argcount) {
11 MethodHandle target = getCachedMH(callSite,pyFunc);
12 target = target.bindTo(callSite);
13 target = target.asType(callSite.type());
14 callSite.setTarget(target);
15 return target.invokeWithArguments(args);
16 }
17 }
18 }
19 }
20 return fallback(callSite, args);
21 }

Listing 3.17: Installing a function to the call site.
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1 public static Object fallback(JythonCallsite callSite, Object[] args) {
2 MethodType fallbackType = callSite.type().dropParameterTypes(1, 2);
3 MethodHandle fb = callSite.lookup.findVirtual(
4 PyObject.class, "__call__", fallbackType);
5 MethodType desiredType = fb.type().
6 changeParameterType(0, ThreadState.class).
7 changeParameterType(1, PyObject.class);
8 MethodHandle fbWithPermute = MethodHandles.permuteArguments(
9 fb, desiredType,

10 getPermuteArray(desiredType.parameterCount()));
11 callSite.setTarget(fbWithPermute);
12 return fbWithPermute.invokeWithArguments(args);
13 }

Listing 3.18: Fallback code for function dispatch.

a PyFunction (numbering starts from 0 and the 0th element is the thread state object) in line

3 of Listing 3.17. Then in line 6 we make sure that a method handle exists in the code object of

the current PyFunction, and in lines 10-11 we make sure that the current call does not contain

star arguments and double star arguments, and that the number of arguments passed in matches

the expected number of arguments. In line 11, we fetch the method handle target (the caching

mechanism is explained a bit later) associated with the current function object and in lines 12-14

re-bind the call site to point to the target method handle. In line 15 we invoke the target

method handle with the appropriate arguments. Subsequent invokedynamic calls at this call-

site will be directly dispatched to the method pointed by the method handle target, removing a

lot of overhead.

If any of the conditions in checks from lines 3-10 fail in Listing 3.17, the fallback method is

invoked. This method looks up the __call__ method in PyObject and then calls it, mimicking

the behavior of the previous approach. Listing 3.18 shows the outline for this method, in lines

3-5 we lookup the __call__ method of the appropriate type in PyObject. The arguments are

ordered so that thread state object is the 0th parameter and the function object is the 1st parameter,

but we wish to dispatch this method handle with the function object in the receiver position (in the

0th position). Lines 5-10 accomplish exactly this goal by permuting the arguments on the method
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1 public static MethodHandle setupMHForCall(MethodHandle target) {
2 MethodType targetType = target.type();
3 MethodHandle before = MH_CALL_BEFORE.asCollector(PyObject[].class,
4 targetType.parameterCount() - LEADING_NON_ARGS);
5 MethodHandle targetWithBefore = foldArguments(target, before);
6 MethodHandle targetWithBandA = setupAfter(
7 targetWithBefore, MH_CALL_AFTER);
8 MethodHandle gwt = setupGuardWithTest(targetWithBandA,
9 target.type().parameterCount() - LEADING_NON_ARGS);

10 return gwt;
11 }

Listing 3.19: Code for setting up the method handle for call.

handle. This new method handle fbWithPermute is updated as the call-site’s target and in line

12 this method handle is invoked with the appropriate arguments.

The method handle stored on a the code object points to the Java method which contains the

implementation of the code. When the method handle is created, the setupMHForCall method

is called to install these wrappers around the target method handle. The Listing 3.19 shows the

outline of this method. In lines 3-4 the target method handle is wrapped to first call the before

method handle using the foldArguments method. The before method handle points to a

method that first creates a new frame object (of type PyFrame) and adds all the arguments to

the frame. Line 6 creates a wrapper around the targetWithBefore method handle setting up

a method handle to call a method to call after the previous method handle has been executed.

This after method is responsible for updating the frame in case an exception was raised in the

previous method. Finally, in line 8, the setupMHForCall creates a wrapper around the previous

targetWithBandA guarding the call with a test method. The test method checks to see if the

PyFunction object that was bound at the particular call site has changed. If it has changed, the

fallback method is called which will re-bind the call site to the correct target. If the test returns

true, then the target bound call site is invoked.
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3.2.2.2 Changing the calling convention

Now, we will look at changing the calling convention so that instead of passing the arguments

via the frame object, the arguments are also passed using the JVM operand stack. Jython main-

tained a uniform calling convention since the previous dispatch mechanism required it. Since we

are now using method handles, which are typed and more powerful, it would be straight-forward

to implement this change.

The Listing 3.21 shows the Java equivalent of the byte code generated by Jython after im-

plementing this change. We see that the function bar$2 now accepts a new parameter n of type

PyObject. The code compiler is updated to generate Java methods with the first three arguments

always being ThreadState, PyFrame and PyObject. The third argument is the function object

itself. The return type remains same at PyObject. After the 3 standard parameters, the number

of parameters equal to the argument count of the function (in Python) is added to the generated

method. In our example the function bar had 1 argument (n), which is added to the method

signature as seen in line 4 in Listing 3.21.

Recall that from Listing 3.14, previously PyTableCode was used to dispatch a given call to

the call_function method, which invoked the appropriate method. We cannot use this approach

directly anymore, since the expected function would have a different signature. Instead we make

use of method handles to invoke the target directly instead of delegating to the call_function

method. To do this, I created a new code object called PyMethodCode, the relevant parts of this

class are shown in Listing 3.20.

The method handle mHandle is created along with the code object creation. The switch

case in lines 8-18 dispatch to the target method handle depending on the number of arguments

passed in. The third argument is always set to null, since the function object is not needed for

this dispatch to work. Line 14 shows an example where if the number of arguments was one, as

in the case in our example (Listing 3.11), the target is invoked using the method handle passing

the appropriate parameters. The rest of the function dispatch stack remains largely unchanged.
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1 public class PyMethodCode extends PyBaseCode {
2

3 @Override
4 public PyObject call(ThreadState ts, PyFrame frame, PyObject
5 closure, PyObject[] args) {
6 PyObject ret;
7 ...
8 switch(args.length) {
9 case 0:

10 ret = (PyObject) mHandle.invokeExact(frame, ts,
11 (PyObject) null);
12 break;
13 case 1:
14 ret = (PyObject) mHandle.invokeExact(frame, ts,
15 (PyObject) null, args[0]);
16 break;
17 ...
18 }
19 ...
20 return ret;
21 }
22 }

Listing 3.20: The new PyMethodCode replacing the old PyTableCode
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1 PyInteger _10 = new PyInteger(10);
2

3 public PyObject bar$2(ThreadState ts, PyFrame f, PyObject func,
4 PyObject n) {
5 return Py.None;
6 }
7

8 public PyObject foo$3(ThreadState ts, PyFrame f, PyObject func) {
9 PyObject local = f.getName("bar");

10 invokedynamic<bootstrap>(ts, local, _10);
11 return Py.None;
12 }

Listing 3.21: Using the new dispatch mechanism coupled with the calling convention change for
the example in Listing 3.11.

The bootstrap method the call to a generic install call site, which then binds the correct target

loaded from the code object. The fallback method is also unchanged, but the fallback will invoke

the __call__ on PyMethodCode instead of the previous PyTableCode.

3.2.3 Performance evaluation

To evaluate the performance gains by this approach, we will use the classical fibonacci cal-

culated as implemented in Listing 3.22. Figure 3.5 shows a bar chart where the performance of the

fibonacci function from Listing 3.22 is compared by measuring the running time on three Python

platforms: Python, Jython and a custom build of Jython with the dispatch mechanism imple-

mented. The running time of Jython is used as the baseline, and we see that both stock Jython and

CPython have similar running times. The new dispatch mechanism which uses invokedynamic

enables the JIT in the JVM to better optimize the code at runtime giving a 2.32x performance

improvement.

3.3 Reducing frame overhead

Even though we see that in the previous performance experiment, the fibonacci function used

invokedynamic to dispatch to the target call, the method handle was wrapped to call another
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1 def fibonacci(n):
2 if n < 2:
3 return n
4 return fibonacci(n - 1) + fibonacci(n - 2)

Listing 3.22: An implementation of calculating the nth number in the fibonacci series.
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Figure 3.5: Comparing the relative performance running the fibonacci function from Listing 3.22.
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1 >>> import sys
2 >>> def print_locals(a, b):
3 ... pi = 3.14
4 ... print(sys._getframe().f_locals)
5 ...
6 >>> print_locals(4, 6)
7 {’a’: 4, ’pi’: 3.14, ’b’: 6}

Listing 3.23: Accessing the local variables from the frame.

method created a frame and added all the arguments into the frame. The Python frame is essential

for debugging purposes and allows for easy introspection of Python execution. A Python program

can easily get to the current Python frame, as shown in Listing 3.23.

Creating a new Python frame object before each call hampers performance on the JVM. We

have seen that, since we have changed the calling convention, we can use JVM’s operand stack to

pass arguments to functions instead of passing them via the Python frame. The globals are also

moved out of the frame, therefore reducing its dependence on the frame. We can further reduce our

dependency on the frame by using JVM’s locals array to store local variables, instead of doing the

same on a Python frame object. Although this is possible, we would still have to support Python

introspection abilities such as the program in Listing 3.23 as we cannot break Python semantics.

To get around this issue, we have introduced a new function decorator @frameless to

indicate that frames are not required for that particular function. This way the programmer is

explicitly telling the compiler to not create frames since they know that, in the current scope, the

frame need not be exposed to Python code.

To be able to mark a given function as frameless, the following are required:

• The function cannot rely on using the frame for introspection.

• The function cannot have inner (nested) functions, since the nested function would require

us to construct a frame for accessing variables in the bounded scope.

If a Python function is annotated with @frameless, and if the scope analysis determines

the function is a closure, it cannot be frameless, regardless of the decorator; a compilation error
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is raised in such a situation. The programmer should either remove the annotation or move the

nested function.

We have already seen how we move global variables and parameters out of the frame. Now,

we look into the details of the implementation of the not relying on Python frames local variables,

by using JVM’s locals array instead. We have All AST nodes are updated to now have a new

boolean field frameless. Once a function is annotated with @frameless, the AST node for the

corresponding function definition is updated setting frameless to true.

The scope analysis is updated to ensure that a frameless function definition node, does

not contain another function (or class) definition in it’s body. If it finds a nested definition, a

compilation error is raised. The OptimizedCodeCompiler is updated to not use frames for

loading and storing variables if the current scope is marked frameless. Variables are accessed via

the Name AST node. If the current scope is frameless, and the variable is local, then the variable

is either loaded form or stored in the JVM’s array.

A new boolean field frameless is also created in the class PyMethodCode, the runtime

code object. This boolean object is set to true if the function corresponding to code object is

marked frameless. During the call to a function, if the PyMethodCode object is marked frameless,

then the method handle wrapper is updated to bind a null object to the frame, instead of call the

additional method which constructs the frame. This removes the overhead of an additional method

call when dispatching to a frameless function.

Consider the fibonacci function annotated with the @frameless decorator on the function

in Listing 3.24. In this case, there is only one parameter, n, and because of the frameless annotation,

Jython does not use the Python frame object to load this parameter, instead uses the JVM operand

stack, by which the argument was passed. Like the previous case, I performed a performance

evaluation, comparing the running times for the fibonacci function in CPython, stock Jython and

the frameless-supported Jython. In the first two cases I used the original function from Listing 3.22

where as in the third case, I used the function in Listing 3.24. Figure 3.6 charts the performance

across the three implementations. We see that using frameless (and the previous invokedynamic
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1 @frameless
2 def fibonacci(n):
3 if n < 2:
4 return n
5 return fibonacci(n - 1) + fibonacci(n - 2)

Listing 3.24: A fibonacci function marked frameless.

optimizations) gives a 6x performance speed-up. Compared to the previous function dispatch

optimizations, we get a 2.6x speed-up just by removing the frame access and frame creation.

3.4 Performance evaluation

In the previous sections we used micro-benchmarks to evaluate the performance of the im-

plemented optimizations. Although micro-benchmarks are good way to assess improvements, they

are not representative of the applications that run with Jython (or Python in general). In this

section I will measure the overall impact of the optimizations using macro-benchmarks which are

more representatives of typical Python applications. To measure the performance, I’ve selected

benchmarks from the Unladen Swallow project [18] and the PyPy project1 . I have selected 10

programs to test the performance, first I will briefly explain each benchmark program and then

discuss the results.

call-simple is a small program that contains a large number of calls to a small number functions

and stresses the function call overhead.

chaos is a small Python program simulating fractals like the chaos game.

crypto-pyaes is a program that uses the pyaes library – a cryptographic Python module imple-

menting the AES algorithms – and tests encryption and decryption using 128-bit keys.

django uses the popular Django templating library to create a 150x150-cell HTML table.

fannkuch is a Python program, inspried from the famous LISP benchmark [1].

1 The benchmark programs and the runner can be found at http://bitbucket.org/shashank/benchmarks
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pyflate-fast is a pure-Python gzip and bzip2 decoder/decompressor.

raytrace-simple – a Python raytracing renderer.

regex-effbot is a stress test for the Python’s regular expression (regex) engine.

richards is a Python program that simulates the task dispatcher in the kernel of an operating

system.

telco program captures the essence of a telephone company billing application including applica-

tion calculations.

The performance measurements were run on the JVM from the 64-bit Oracle JDK SE 7

update 10 (b18). Each benchmark was run 150 times and the average of the result is reported

here. Before collecting the results, the first few runs of the benchmark were ignored since this

typically represents JVM warm-up time. Since the benchmarks are pure-Python and do not contain

any programmer annotations, we do not measure the effect of the @frameless annotation from

Section 3.3.

The figures in this section show the performance speedup achieved with the optimizations

enabled and is expressed as a percentage improvement (or degradation) in running time over the

original Jython code base (Jython without any of the above optimizations). First we will look at

the impact of implementing the optimizations in isolation.

• The loop optimization introduced in Subsection 3.1.1, produces a 0.42% overall decrease

in performance. The breakdown is shown in Figure 3.7. As we can see from the figure,

some benchmarks improve in performance while other degrade, and in case of 2 benchmarks

(django and telco) there is no difference in the performance.

• The getglobal optimization introduced in Subsection 3.1.2, increases the performance

by 4.04%. The breakdown is in Figure 3.8. We observe that the benchmark call-simple

increases in performance by 55% and the richard benchmark improves by 14%.
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• The new function dispatch mechanism introduced in Section 3.2, decreases the performance

of the overall test suite by 2.46%. The break down is shown in Figure 3.9, most applications

performance is marginally decreased (0-3%) and the benchmark django decreases by 9%.

Now, we will look at the performance of these benchmarks with the getGlobal optimization

and the new function dispatch combined. This produces an overall improvement in performance

of 3.2%. The breakdown is shown in Figure 3.10. Although the overall number is lesser than just

the getGlobal optimization (which is +4.04%), the results are a bit skewed because of the huge

performance improvement provided by call-simple. If we just consider the mean performance of

the rest 9 benchmarks without call-simple, then we get the following numbers:

• only getGlobal: -0.51%

• only function dispatch change: -2.32%

• both combined: +0.12%

This test shows that although the dispatch mechanism change degraded the performance

of the overall suite, when combined with the getGlobal optimization we get a slight increase

in the overall suite. Also, we suspect that some of the performance degradation is due to the

overhead of using wrapped method handles, and we expect this performance to get better as the

invokedynamic framework grows mature.

Finally, we investigate the performance of all 3 optimization enabled together. The 3 opti-

mizations enabled together produce an overall performance increase of 5.7%. The breakdown is

presented in Figure 3.11. We see that these optimizations together produce a 31% speedup in the

case of call-simple and on the other extreme makes the plyflate-fast benchmark run 5% slower. The

overall increase in performance of 5.7% is more than any of the optimization individually.
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Chapter 4

Gradual Typing for Jython

In the preceding chapter we improved the performance of Jython by generating optimized

code while making sure that Python semantics are maintained, using the invokedynamic frame-

work. But the runtime performance of Jython is severely limited since Jython does not use the

primitive types provided by the JVM, but uses wrapped objects instead. For example a Python

integer is represented as an object of class PyInteger in Jython. Simple operations such as ad-

dition of two Python integers is then implemented as a method in the PyInteger class to fully

support Python semantics. The performance would greatly improve if we used the iadd operand

in the JVM. In this chapter we will implement gradual typing in Jython not only to generate

type-specialized code, but also provide clear error messages at API boundaries.

In this chapter I will discuss about how gradual typing can be implemented in Jython for a

subset of the features in Python. I will show that using gradual typing and type-specialization, we

can achieve performance comparable to Java. Before diving in too deep, I will present the design

choices we made in implementing the gradual typing system in Section 4.1.

4.1 Design Choices

We expect a programmer to write completely un-typed (dynamic) code during the prototype

phase. Once the prototype shows some promise, the programmer would then go back and add

type-annotations both as documentation in the exposed APIs and also on the performance intensive

functions of the code. One design principle we have followed is that Gradual Jython should always
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be backwards compatible with Jython maintaining all Python semantics. This implies that all

un-typed code in Gradual Jython should work the same way as it does in Jython.

The restriction that Gradual Jython has to be backwards compatible implies that the Gradual

Jython typechecker cannot reject any Python programs. Therefore something like: ’hi’+ 42

should not be rejected, since Python throws a runtime error in this case, and so should Gradual

Jython. The Gradual Jython system can only reject programs if the module has type annotations

in it.

In Gradual Jython, we have introduced types in the compiler. This means that names of

Python built-in types such as int, bool, float and str always correspond to the type they

represent. Re-assigning these builtin names is allowed, but does not affect the compilation, since

the compiler only looks at the string representation of the type variable. Therefore, if the builtin

type float is assigned to point to a user defined class, if the name is used in the type field in

Gradual Jython; the typed-expression would still behave as the Python builtin float. This restriction

is an important one when trying to generate type-specialized code. If the compiler cannot make

assumptions about the types, then it would make it very hard to generate type-specialized code.

In this thesis I have assumed that the built-in types cannot be re-defined. This does not break

backwards compatibility, since the types can be re-defined in normal Python code.

In addition to supporting the following standard Python builtin types: bool, int, float

and str; we also propose a new type jint. The new type – jint is specific to Gradual Jython.

The reason for introducing jint is that standard integers in Python are allowed to dynamically

grow into longs which is only limited by the amount of memory in the virtual machine. When

performing performance optimizations, we would like to represent the standard integer as a native

Java integer, which has a fixed length. If done this way, it would have an adverse affect, as every

operation on an integer must be checked for overflow. To alleviate this problem we decided to

provide a new type “jint” which represents the Java integer. A programmer can choose to use

this type if they are trying to optimize their Python code for performance, and explicitly do not

care about overflows (possible because they know it will never happen).
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Another design choice is making typed-functions frameless automatically. This removes an-

other burden on the programmer to add the @frameless annotation. One of the reasons we

expect a programmer to add type annotations is for performance improvement. We have seen be-

fore, in Section 3.3, using the Java locals array instead of Python frames significantly increases the

performance. Therefore, if a typed-function does not have nested function, the said typed-function

is marked frameless by the Gradual Jython system. If the programmer decides that they need

frames for this function; for debugging purposes for example, then they can annotate the function

with @frameful annotation.

After having discussed the design choices made in our implementation of gradual typing in

Jython, we can now dive into the details of how Gradual Jython was implemented. To implement

gradual typing we need to accomplish the following:

• Extend the language syntax to provide type annotations. Jython currently only supports

Python 2.5 syntax, that does not have function annotations. We also need to add type

annotations for assignments to variables.

• Implement a type checker to make sure malformed programs are caught and descriptive type

errors are thrown to help the programmer. The above two points are further elaborated in

Section 4.2.

• Implement a cast-insertion phase which would insert casts in places where dynamic stuff

is begin passed into statically typed portions of the program and vice-versa. This phase is

presented in Section 4.3.

• Generate code to enforce these casts at runtime. Also, use the type-annotations to generate

type-specialized-code to improve performance. This part is detailed in Section 4.4.

4.2 Parsing and type checking

The work presented in this thesis is based off Jython 2.5.2 which only supports Python 2.5

syntax. Although PEP-3107 [17] provides a syntax for function annotation, it was only introduced
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1 def fib(n:jint) -> jint:
2 one: jint = 1
3 two: jint = 2
4 if n < two:
5 return n
6 return fib(n - one) + fib(n - two)

Listing 4.1: A function to calculate fibonacci with types.

in Python 3.x releases. To support gradual typing we need a way to specify types on functions

as well as assign types to variables. Therefore we extended the parser to support specifying type

variables in assignment statements. The syntax we use for specifying types is:

answer: int = 42

where the variable answer is assigned the constant 42 of type int. The important thing to note

here is that this is an experimental syntax, only used here to show how gradual typing can be

introduced to a dynamic language. The discussion of a concrete syntax for annotating variables is

controversial and is out of the scope of this thesis. We also implemented the function annotation

syntax of PEP-3017, so that we can specify types for parameters and return values of functions.

The parser and the type checker extended and implemented by Michael Vitousek.

To easily illustrate each step in the introduction of gradual typing in Jython, I will use a

running example. We will use a modified version of the fibonacci function we examined in the

Chapter 3, as presented in Listing 4.1. Here the first line annotates the function, with marking

the parameter n with jint and the return type of this function as jint. In lines 2-3 two jint

variables are created and lines 4-6 is performs the fibonacci operation just as before.

The AST is first traversed and checked with the type checking rules. Each node is also

assigned a type. The root of all AST nodes in Jython is a class named PythonTree and we added

a field internalType to it. In the type checking phase, this type is updated after first processing

the node. This means that after the type checking phase we get back an AST in which each node

is associated with a type. For un-typed nodes, this would be dynamic. The type checker rejects

malformed programs by throwing a TypeError. Since we made a choice to allow all completely
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un-typed Python programs to pass through the type-checker in order to be backwards compatible,

we do not perform any type-inference. Even constants such as 42, ’hi’ are treated as dynamic.

This ensures that all plain-Python (un-typed) programs type check without raising type errors.

We have implemented gradual typing for a subset of Python, without dealing with objects.

All objects are treated as dynamic. The only types recognized are the basic types and function

types. The type checker implementation is closely matched by the rules in Figure 2.2.

4.3 Cast Insertion and type specialization

After the type checking phase we pass the AST to the “Explicate” pass which inserts casts and

marks code for type-specialization. The cast insertion implementation closely follows the theory

and inserting casts as directed. The current AST is given as input to the cast insertion phase,

which returns a modified AST inserting casts and type-specialized nodes in the appropriate places.

The cast insertion phase is guided by the gradual typing rules in Subsection 2.1.1, more

specifically in Figure 2.3. The important idea is that casts must to be inserted when dynamically-

typed part of the code transitions to statically-typed part. In our implementation of gradual typing,

where we want to generate type-specialized code, we also need to insert casts if the code transitions

from statically-typed to dynamically-typed. This is because the statically-typed portion could

potentially be type-specialized, implying that we could use primitive types of the JVM. These casts

would allow us to convert from such type specialized code back to a subclass of PyObject which

represents the dynamic type.

Casts are represented by the new InsertCast node. The node is implemented as a Python

expression containing the source (from) and target (to) types of the cast and the expression

undergoing the cast (rest). The internal type of the node itself is set to the target (to) type. If a

given Python expression and it’s children do no have the same internal type, then a cast is inserted

between them, casting the child node into the type of the parent expression.

It is possible that sometimes identity casts are introduced, casting a int to another int.

To remove such casts, the AST is passed through another passed called “Constantify” pass, which
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removes redundant identity casts. Currently, we do not perform any type-specialization for the

Python types str and int. The Jython runtime objects PyString and PyInteger are used

to implement them. Thus casts from and to these types are removed in the “Constantify” pass as

well.

Now we will look at the type-specialization part of the explicate pass. When we identify

a node with a type other than dynamic, we replace the current node with a typed node. The

code compiler is then updated to generate type specialized code for these nodes. We have created

the following typed nodes: TypedBinOp, TypedCompare, TypedName, TypedReturn, TypedCall,

TypedUnaryOp. Each of them extend their corresponding untyped nodes. If we identify that the

child nodes of these nodes are typed, then we replace them with a Typed variant.

For example, if both the operands of a BinOp (left and right), are both typed of the same

type, say jint then we generate a TypedBinOp node of type jint replacing the previous node. If

only one of the nodes (left or right in case of binop) has a type other than dynamic and the other

is dynamic, then we insert a InsertCast node marking the point where a cast has to be inserted,

but we do not generate a Typed node.

4.4 Code generation

In this section I will describe how we generate specialized code for typed AST nodes and also

look at how we handled typed and casted functions, leveraging the invokedynamic framework.

The code generation is detailed in two parts, first we show how to generate code for the Gradual

Jython types and second we show how to generate type-specialized code for functions.

The AST is passed to the TypedCodeCompiler which handles the type specialized code

generation. The TypedCodeCompiler extends the previous OptimizedCodeCompiler and

handles all the newly introduced Typed nodes and the InsertCast node. The basic outline for

code generation is unchanged from the previous code compiler. At each node, we first visit the

children of the current node, generating code for each of them and in the end the code for the

current node is generated.



58

1 import math
2

3 def std(x: jint, y: jint, z: jint) -> jint:
4 three: jint = 3
5 avg: jint = (x + y + z)/three
6 e1: jint = x - avg
7 e2: jint = y - avg
8 e3: jint = z - avg
9 return math.sqrt((e1*e1 + e2*e2 + e3*e3)/three)

10

11 print std(1, 2, 5)

Listing 4.2: A typed function computing the standard deviation among 3 numbers.

4.4.1 Standard Gradual Jython types

As mentioned previously, we support the following types: bool, int, jint, float and str.

The nodes “Constantify” pass will remove casts containing str and int and these types fallback

to using the previous implementation. The code generation phase currently only specializes jint,

bool and float. We use the JVM primitive type int to represent a Gradual Jython type jint;

types bool and float are represented using boolean and double in the JVM respectively.

Let us look at an example of generating code for a TypedName node. If a TypedName node

has the type jint, then generate code such as iload, istore for the load and store operations

respectively. For a TypedBinOp node, and for the add operation on type jint, we generate an

JVM iadd instruction.

Consider the a function to compute the standard deviation of 3 numbers such as the one

in Listing 4.2. Here all the variables are marked jint. Type specialized Gradual Jython would

generate Java byte code similar to the Java code presented in Listing 4.3.

The InsertCast node for the standard types use helper methods in Jython runtime. If there

exists a cast from a dynamic object to a jint, the virtual method on the object with signature

int PyObject.asInt() is invoked. This is a method defined on PyObject throws a runtime

error if invoked on a non-number. For a cast from an object of type jint to a dynamic or even a

int, we make use of the helper function: PyObject Py.newInteger(int i), defined in the
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1 public PyObject std(PyFrame f, ThreadState ts, PyObject func,
2 int x, int y, int z) {
3 int three = 3;
4 int avg = (x + y + z)/three;
5 int e1 = x - avg;
6 int e2 = y - avg;
7 int e3 = z - avg;
8 PyObject t = Py.newInteger((e1*e1 + e2*e2 + e3*e3)/three);
9 PyObject sqrt = invokedynamic<getGlobal>(this, "math")

10 .__getattr__("sqrt");
11 return invokedynamic<call>(ts, sqrt, t);
12 }

Listing 4.3: The type specialized code generated by Jython for the typed-Python program in
Listing 4.2.
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1 public PyObject fibonacci$1(PyFrame frame, ThreadState ts, int n) {
2 int one = 1;
3 int two = 2;
4 if (n < two) {
5 return n;
6 }
7 PyObject res =
8 invokedynamic<call>(
9 invokedynamic<getGlobalBSM>("fibonacci"), ts, n - one) +

10 invokedynamic<call>(
11 invokedynamic<getGlobalBSM>("fibonacci"), ts, n - two);
12 return res;
13 }

Listing 4.4: The java code corresponding to typed-byte code generated by Jython.

class Py.java. This method never fails since the input is statically guaranteed to be an integer.

We implement similar casts on the other types bool and float which are represented using JVM’s

boolean and double primitive types.

4.4.2 Functions

The function type determines the corresponding method signature in Gradual Jython. Con-

sider the example shown in Listing 4.1, since the parameter type of n is jint, the function signature

in Java byte code for the corresponding parameter should be integer. A Java equivalent of the out-

put from the Gradual Jython compiler is shown in Listing 4.4. We see that in line 1, the parameter

is indeed of type int. The compiling of such typed functions follows the new compilation intro-

duced in Section 3.2. We generate the invokedynamic instruction to dispatch to the correct

callsite. If the target method uses Java primitives types, the same is reflected in the method handle

that points there.

After reviewing the compilation of typed-function calls, let us now examine how function

casts are implemented. The InsertCast node on a function indicates that a function needs to be

cast into a new type. To support casting, we have to ensure that the arguments and return values

match the expected type. To help with casting, each runtime function code object (PyCode in
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1 def identity(n):
2 return n
3

4 typed_id: (jint->jint) = identity

Listing 4.5: An example of a function cast.

Jython) now has a new field type which stores the threesome type of the function.

The concept of threesomes was introduced by Siek and Wadler [12] as an efficient way of

storing runtime cast information. Each threesome has three attributes: source type, target type

and middle type. The source type represents the type of the original object, the target type

represents the type of the cast to which the object has to be casted to. The middle type represents

the most restrictive type that the object has been cast to. The authors show that all the information

in a series of casts can be condensed into threesome with these three types. The middle type is

computed by merging the middle types of the incoming types. The merge operator computes the

greatest lower bound on the type.

The threesome object is implemented as a simple class with source, middle and target types.

Consider the example Gradual Jython program shown in Listing 4.5. Here, the function identity

is of type dynamic, and in line 3 typed_id has cast the function into taking and returning jints.

In the Gradual Jython implementation, the function code object corresponding to identity

, will have type as dynamic. When the function is cast (line 3) into jint->jint, a new copy

of the original object is created. In this copy, the type threesome is updated: source type would

be the source of the original; target type would be the type of the cast and the middle type of

threesome would be the merged type of the original middle type (dynamic) and the cast. Then the

method handle on the copy object is updated to ensure the correct parameter and return types.

This copy is then stored as the variable typed_id. Creating a copy is essential, since the original

function identity could still be called with any object.

To update the method handle on the cast object, we make use of the method handle frame-

work, specifically MethodHandles.filterReturnValue and MethodHandles.filterArguments
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to convert the return value and the arguments to the expected type. As before, we use the helper

functions such as int PyObject.asInt() and Py.newInteger(int i) on individual argu-

ments to covert them. Each code object now stores the original method handle, in a new field

originalHandle which points to the method handle without any casts applied. The method

handle used for dispatching (mHandle) would be the same as originalHandle if there are no

casts on the function. If casts exist, at the point of the cast, we update the mHandle with the

conversion and this method handle will be used to dispatch to the corresponding code. By storing

the original method handle, we avoid multiple conversions even if multiple casts exist on a function.

4.4.3 Evaluation

We will now look at the performance impact of generating type specialized code. We will use

the example from Listing 4.1. Figure 4.1 shows the performance comparison chart. We see that

the type specialized Jython code is 35x faster than Jython without type annotation. This version

is only about 60% slower than a similar fibonacci method implemented in pure Java. The gray bar

(Untyped optimized Jython) shows the performance of Jython with all the optimizations developed

in the previous chapter applied to the untyped fibonacci function. We observe that adding types

and generating type-specialized code results in approximately a 15x speedup.
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Figure 4.1: Comparing the relative performance running the typed fibonacci function.



Chapter 5

Conclusions and Future Work

Python programs are hard to optimize given their dynamic nature. In this thesis we have used

the invokedynamic byte code introduced in Java 7 to generate optimized code in Jython and

saw that it significantly improved performance, providing upto 15x speed ups in some examples.

We proposed that using a type system where the programmer can choose to provide optional type

annotations on the program, can provide significant performance improvement. We implemented

gradual typing in Jython and saw that the optimized code generated performed an order of magni-

tude better than before, and only 60% slower than Java. The code for this project is available on

bitbucket at https://bitbucket.org/shashank/jython-gradual. All the optimizations

implemented in this thesis will be pushed upstream to Jython.

In the future, we can add support for object types in Gradual Jython which have been ignored

in this thesis. Generating type specialized objects could not only lead to better performance but

also provide better Java integration in Jython. Adding blame tracking to Gradual Jython would

help improve the error messages, providing developers clear error messages when casts fail.
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