
Large-Scale Elastic Computing with Virtual Machines

by

Paul D. Marshall

B.A., Augustana College, 2006

M.S., University of Colorado at Boulder, 2010

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2013

This thesis entitled:
Large-Scale Elastic Computing with Virtual Machines

written by Paul D. Marshall
has been approved for the Department of Computer Science

Henry M. Tufo

Dr. Qin Lv

Dr. Shivakant Mishra

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Marshall, Paul D. (Ph.D., Computer Science)

Large-Scale Elastic Computing with Virtual Machines

Thesis directed by Professor Henry M. Tufo

Computational resources experience dynamic load because demand is not constant. As a

result, resource providers (RPs) must estimate the appropriate amount of resources to purchase in

order to best meet variable demand, possibly resulting in under-utilized resources during periods

of low demand and over-utilized resources during periods of high demand. With the relatively re-

cent introduction of infrastructure-as-a-service (IaaS) clouds, which lease virtual machines (VMs)

on-demand, RPs can both deploy private clouds (offering users a new type of resource lease) and

outsource appropriate workload processing to external clouds when needed. To match resource de-

ployments with demand, RPs can create elastic environments that span private and public clouds,

expanding as demand increases and shrinking as demand decreases. However, elastic environments

do not provide the necessary mechanisms and techniques required to extend cluster resources auto-

matically and efficiently for scientific workflows. Instead, they must be managed manually, which

is inefficient and limits scalability, or use product-specific solutions that are not open or extensible.

Furthermore, IaaS toolkits typically provide high-cost, on-demand leases that are not required by

all workflow paradigms.

This dissertation presents a flexible cloud architecture and its implementation, consisting of

preemptible and preset leases and an elastic environment that is capable of outsourcing cluster

demand to IaaS clouds. The architecture allows RPs to adapt efficiently and cost effectively to

variable demand for common scientific workflow patterns. Preemptible and preset leases are a

new low-cost lease for IaaS clouds that are amenable for volunteer computing or high-throughput

computing workloads. For implementation, these leases are included in the open source Nimbus

IaaS toolkit and deploy preemptible VMs on idle resources, allowing RPs to increase utilization of

under-utilized IaaS clouds. To adjust to variable demand, the elastic environment uses resource

iv

provisioning policies that provision and relinquish IaaS instances, outsourcing to external clouds

when demand is high. The resource provisioning policies balance conflicting objectives between

users and administrators, such as minimizing job queued time and the cost of the deployment. For

evaluation, a complete end-to-end elastic environment is developed and used to process a large

bioinformatics workload across multiple clouds.

Dedication

To my wife, Megan.

vi

Acknowledgements

I would like to thank my advisor, Henry Tufo, and my committee for their support during

this thesis. Henry provided encouragement and advice for my work at the University of Colorado

and the National Center for Atmospheric Research. Kate Keahey at Argonne National Laboratory

provided the initial suggestion for this work, elastically extending site resources with infrastructure

clouds, as well as continued guidance and feedback on my work over the past four years.

I would also like to thank my colleagues at the University of Colorado and the National

Center for Atmospheric Research for their expertise and feedback on this project. I’d specifically

like to thank Guy Cobb, Jason Cope, Dmitry Duplyakin, Brad Henke, Michael Oberg, Theron

Voran, and Matthew Woitaszek. The Nimbus team at Argonne National Laboratory, including

Patrick Armstrong, John Bresnahan, Tim Freeman, David LaBissoniere, and Pierre Riteau offered

extensive support for my work with the Nimbus toolkit and deployments on FutureGrid as well as

detailed advice on many components of this project. Rob Knight, and members of his lab at the

University of Colorado, specifically Greg Caporaso, Antonio Gonzalez Pena, and Daniel McDonald

were helpful answering my questions about the QIIME toolkit and providing advice about this

work, especially as it related to bioinformatics workflows.

Finally, I would like to thank my friends and family, especially my parents David and

Elizabeth, for their support over the past six years. I am especially indebted to my undergraduate

advisor, Daniel Swets (1964 - 2011), who introduced me to the scientific research community and

encouraged me to pursue my interests in computer science research.

vii

Contents

Chapter

Glossary xvi

1 Introduction 1

1.1 Thesis Statement and Intellectual Contributions . 6

1.2 Organization . 8

2 Background 9

2.1 Virtualization . 10

2.2 Distributed Operating Systems . 12

2.3 Large-Scale Distributed Systems . 14

2.4 Grid Computing . 17

2.5 Cloud Computing Paradigms . 19

2.6 Discussion . 21

3 Architecting a Flexible Cloud Computing Environment 22

3.1 Cloud Infrastructure Challenges . 23

3.1.1 Performance . 24

3.1.2 Availability and Utilization . 26

3.2 Platform Challenges for Elastic Environments . 27

3.2.1 Dynamic Cluster Resource Provisioning . 27

viii

3.2.2 Contextualization . 29

3.2.3 Dynamic Resource Scheduling . 32

3.2.4 Application and Workflow Integration . 33

3.2.5 Commercial Solutions . 36

3.3 Financial Constraints . 38

3.3.1 Cost-based Grid Scheduling . 38

3.3.2 The Cost of Cloud Computing . 40

3.4 Open Research Questions . 42

4 A Flexible Cloud Architecture 44

4.1 Preemptible VMs . 46

4.1.1 Preemptible and Preset Leases . 46

4.1.2 Extending IaaS toolkits for Preemptible VMs 47

4.1.3 Termination Policies for Preemptible VMs . 49

4.2 Elastic Environments . 50

4.2.1 Elastic Manager Prototype . 51

4.2.2 Large-Scale Elastic Environment . 52

4.2.3 Automating Deployment and Configuration 54

4.2.4 Contextualization . 55

5 Preemptible VM Implementation and Evaluation 56

5.1 Implementation of Preemptible Virtual Machines . 56

5.1.1 Configuration Options . 58

5.1.2 Nimbus Workspace Service Extensions . 58

5.2 Preemptible VM Evaluation with HTC Workloads 59

5.2.1 Preemption Evaluation Metrics . 60

5.2.2 Workload Traces . 61

5.2.3 Understanding System Behavior . 63

ix

5.2.4 Understanding System Performance . 66

5.3 Conclusion . 69

6 Elastic Environment Implementation and Evaluation 70

6.1 Implementation . 70

6.1.1 Elastic Management . 71

6.1.2 Support for Auto-Scale Services . 72

6.1.3 Automating Service, Worker, and Application Deployment 73

6.1.4 Recontextualization . 75

6.1.5 Support for Shared Data Access . 77

6.2 Evaluation . 79

6.2.1 Metrics . 80

6.2.2 Workloads . 81

6.2.3 Understanding System Responsiveness . 81

6.2.4 Multi-Cloud and Scalable Elastic Computing 84

6.3 Conclusion . 87

7 Resource Provisioning Policies for Elastic Environments 88

7.1 Resource Provisioning Policies . 89

7.1.1 Basic Provisioning Policies . 90

7.1.2 Maximum Provisioning Policies . 91

7.1.3 Advanced Provisioning Policies . 92

7.2 Elastic Cloud Simulator . 96

7.2.1 Measuring Cloud Variability . 97

7.2.2 Elastic Cloud Simulator Implementation . 98

7.3 Evaluation of Resource Provisioning Policies . 98

7.3.1 Evaluation Environment Configuration . 101

7.3.2 Understanding Environment Impact on a Workload Model 101

x

7.3.3 Understanding Environment Impact on a Bioinformatics Workload 106

7.3.4 Understanding the Impact of Data . 111

7.4 Conclusion . 115

8 Bioinformatics Use Case 117

8.1 Bioinformatics Workflow . 117

8.2 Policies for Bioinformatics Workflows . 118

8.3 Deployment Environment . 119

8.4 Evaluation . 120

8.4.1 Understanding Policy Impact on Scientific Workflows 121

8.4.2 Understanding End-to-End Capabilities in Multi-Cloud Environments 124

8.5 Conclusion . 124

9 Conclusion and Future Work 126

9.1 Key Contributions . 127

9.2 Future Work . 128

Bibliography 132

Appendix

A Individual Traces of FutureGrid Deployments for the Denoising Bioinformatics Workload 141

xi

Tables

Table

2.1 Nimbus, OpenStack, and Eucalyptus IaaS Clouds available on FutureGrid in March

2013. 20

5.1 Preemption evaluation workloads that consist of serial jobs for the HTCondor work-

load and requests for 8-core VMs for the IaaS workload. 62

7.1 Basic, maximum, and advance resource provisioning policies for elastic environments

that adapt to variable demand. 90

7.2 Summary of Amazon EC2 east launch and termination times for a 10 GB Debian

5.0 image measured over the course of a day, transferred from Amazon S3. 97

7.3 Policy evaluation workloads, including a workload generated from the Feitelson work-

load model, a bioinformatics trace from a Top500 supercomputer, Janus, and a

bioinformatics trace with data input and output information. The Feitelson work-

load contains single core jobs as well as parallel jobs up to 64 cores. The Janus

bioinformatics workload consists of bioinformatics jobs run on the Top500 Janus su-

percomputer in March 2011. The bioinformatics trace with data information, based

on denoising and read mapping portions of the QIIME workflow, contains both 32-

core and 64-core jobs and includes data transfer information for individual jobs. . . . 99

xii

Figures

Figure

3.1 A model of an elastic environment. The elastic environment may extend physical

resources with IaaS resources or be deployed entirely in the cloud. 23

3.2 An example HPC cluster configuration, which typically requires exchanging host

information and SSH keys and mounting a shared file system across all nodes. 30

4.1 A flexible cloud architecture. The flexible cloud architecture responds appropriately

to variable demand, increasing the utilization of over-provisioned IaaS clouds when

demand is low and outsourcing workloads to external IaaS clouds when demand is

high. 44

4.2 Architecture of the elastic manager prototype. 51

5.1 An example preemptible VM deployment that integrates idle IaaS resources, running

preemptible VMs, with an HTCondor pool to process high-throughput computing

tasks. 57

5.2 Utilization of an IaaS cloud with preemptible VMs disabled. 63

5.3 Utilization of an IaaS cloud with preemptible VMs enabled. 64

5.4 Trace of the HTCondor workload executing on all VMM nodes without the IaaS

workload. 64

5.5 Trace of the IaaS workload running on-demand VMs along with the HTCondor

workload executing on available preemptible VMs. 65

xiii

5.6 Time from when HTCondor jobs are submitted until they first begin executing. . . . 66

5.7 Time from when HTCondor jobs are submitted until they begin executing for the

last time before completing successfully (e.g., due to rescheduling because VMs were

terminated). 67

5.8 Time to process an on-demand request for a VM. 68

6.1 The recontextualization process begins when the recontextualization client requests

that the broker create a new context. The context information is then passed to

instances in the context via the cloud provider’s metadata server. The agent reads

its userdata field to obtain the context information and then sends its information

to the broker in order to join the context. Steps 6 and 7 loop repeatedly as the agent

queries for updates to the context. 76

6.2 An example elastic environment deployment with support for shared data access. . . 78

6.3 Reactivity time for 2-node clusters through 256-node clusters (3 tests for each cluster

size). 82

6.4 Recontextualization time for 2-node clusters through 256-node clusters (3 tests for

each cluster size). Those showing fewer than 3 points are cases where values overlap. 83

6.5 Trace of a deployment running 256 30-minute “sleep” jobs on Hotel. 84

6.6 Trace of a multi-cloud deployment running 512 30 minute “sleep” jobs on Hotel and

Sierra. 85

6.7 Trace of a scalability test using Amazon EC2 and 512 30 minute “sleep” jobs. 86

7.1 The policy execution process begins with collecting sensor information, executing

the policy and minimizing objectives, electing to launch or terminate instances, and

then looping after a set amount of time. 89

7.2 Elastic Cloud Simulator architecture. 96

7.3 Makespan for the Feitelson workload. 102

7.4 CPU time by resource for the Feitelson workload. 102

xiv

7.5 Average weighted response time for the Feitelson workload. 103

7.6 Cost (USD) for the Feitelson workload. 103

7.7 Average weighted response time vs. cost (USD) for the Feitelson workload. 104

7.8 Makespan vs. cost (USD) for the Feitelson workload. 104

7.9 Job response time for a single iteration of the Feitelson workload. 105

7.10 Makespan for the Janus bioinformatics workload. 107

7.11 CPU time by resource for the Janus bioinformatics workload. 107

7.12 Average weighted response time for the Janus bioinformatics workload. 108

7.13 Cost (USD) for the Janus bioinformatics workload. 108

7.14 Average weighted response time vs. cost (USD) for the Janus bioinformatics workload.109

7.15 Makespan vs. cost (USD) for the Janus bioinformatics workload. 109

7.16 Job response time for a single iteration of the Janus bioinformatics workload. 110

7.17 Makespan for the bioinformatics workload. 111

7.18 CPU time by resource for the bioinformatics workload. 112

7.19 Average weighted response time for the bioinformatics workload. 112

7.20 Cost (USD) for the bioinformatics workload. 113

7.21 Average weighted response time vs. cost for the bioinformatics workload. 113

7.22 Makespan vs. cost for the bioinformatics workload. 114

7.23 Job response time for a single iteration of the bioinformatics workload. 114

8.1 Runtime for the denoising workload using 64 instances to run 64 denoising tasks.

Values of 1 to 64 are used for the N-preemptive provisioning policy and 3 iterations

are run for each experiment. 121

8.2 Job idle time and instance wasted time for the denoising workload using 64 instances

to run 64 denoising tasks. Values of 1 to 64 are used for the N-preemptive provision-

ing policy and 3 iterations are run for each experiment. 122

xv

8.3 Trace of the read mapping workload using the on-demand policy (N=1), showing the

number of queued, running, and complete jobs as well as VM and data information.

Data information includes data transferred out of the head node to workers (TX)

and data received on the head node from workers (RX). 123

A.1 Job and VM trace for the denoising workload using 64 instances on the Hotel cloud

at the University of Chicago and the N-preemptive provisioning policy with N=1

(i.e., on-demand). 141

A.2 Job and VM trace for the denoising workload using 64 instances on the Hotel cloud

at the University of Chicago and the N-preemptive provisioning policy with N=2. . . 142

A.3 Job and VM trace for the denoising workload using 64 instances on the Hotel cloud

at the University of Chicago and the N-preemptive provisioning policy with N=4. . . 142

A.4 Job and VM trace for the denoising workload using 64 instances on the Hotel cloud

at the University of Chicago and the N-preemptive provisioning policy with N=8. . . 143

A.5 Job and VM trace for the denoising workload using 64 instances on the Hotel cloud

at the University of Chicago and the N-preemptive provisioning policy with N=16. . 143

A.6 Job and VM trace for the denoising workload using 64 instances on the Hotel cloud

at the University of Chicago and the N-preemptive provisioning policy with N=32. . 144

A.7 Job and VM trace for the denoising workload using 64 instances on the Hotel cloud

at the University of Chicago and the N-preemptive provisioning policy with N=64. . 144

Glossary

AMI (Amazon Machine Image) - Amazon-specific VM image format that is pre-configured with

an operating system and applications for Amazon EC2.

AWS (Amazon Web Services) - Amazon’s suite of cloud computing products, including EC2 and

S3.

Batch-queue resource manager - queues user-submitted jobs for batch processing where a

scheduler determines the order in which to execute jobs as well as the available resources

to execute them on.

boto - Python library to interface with Amazon Web Services.

Chef - an open source systems integration framework developed by Opscode that can be used to

automate common system administration tasks such as installing packages and configuring

resources.

Cloud Computing - services provided over a network (e.g., the Internet) that allow users to

provision infrastructure resources, deploy applications on scalable platforms, or access and

run standalone applications hosted on remote servers.

Cyberinfrastructure (CI) - environments and infrastructure to support computing and data

storage and analysis.

xvii

DAV (data and visualization analysis environment) - large resources designed specifically for data

analysis and visualization purposes, e.g., consisting of significant amounts of RAM and

graphics processing units.

EBS (Elastic Block Store) - Amazon’s for-pay block storage service, allowing users to mount block

volumes in an instance with persistent data storage.

EC2 (Elastic Compute Cloud) - Amazon’s IaaS for-pay compute service that offers VMs on-

demand from data centers across the world.

Elastic Environment - an environment capable of supporting compute and storage resources

that adapt dynamically to demand, growing as demand increases and shrinking as demand

decreases.

FutureGrid - a large distributed CI designed for computer science research on the use of grid and

cloud computing tools and services. It consists of both HPC and IaaS resources distributed

across multiple sites.

Globus Toolkit - a collection of software tools and services to enable Grid computing across

distributed resources, providing services such as job management, single sign-on, and file

transfer.

GlusterFS - an open source, reliable, and distributed file system capable of aggregating disk and

memory resources across distributed resources into a single name space.

Grid Computing - collection of distributed resources that allow user communities to create vir-

tual organizations and distributed workflows across the resources.

GridFTP - a Grid-enabled file transfer protocol capable of transferring datasets in parallel by

opening multiple streams.

xviii

HPC (High-Performance Computing) - large high-performance compute and storage resources,

such as supercomputers and clusters, with low latency interconnects used to solve large

challenges with demanding resource requirements.

HTC (high-throughput computing) - computing environments that can deliver large amounts of

compute capabilities over significant amounts of time.

HTCondor - a resource manager specifically designed for high-throughput computing workloads

that are executed across large distributed resources.

IaaS (Infrastructure-as-a-Service) - cloud computing paradigm that provides virtual infrastructure

resources, such as virtual machines, on-demand.

libcloud - Python library to interface with a variety of IaaS cloud providers, including AWS,

Nimbus, and OpenStack.

MPI (Message Passing Interface) - a message-passing standard used to develop portable message-

passing applications for distributed computing environments.

NFS (Network File System) - distributed file system protocol that allows clients to access a central

file system server over a network.

Nimbus - a community project developing open source tools for scientific computing in the cloud,

including both infrastructure-layer toolkits and platform-layer services.

OGE (Oracle Grid Engine) - a cluster resource manager (formerly known as Sun Grid Engine)

capable of scheduling user jobs across distributed resources.

On-demand resource lease - a request for resources that is either fulfilled or rejected by the RP

in near-interactive time.

xix

OOI (Ocean Observatories Initiative) - an NSF funded initiative designed to build an advanced

science-driven sensor and computing infrastructure to improve mankind’s understanding of

the ocean and its processes.

OpenStack - an open source IaaS toolkit, originally developed by Rackspace and NASA, which

can be used to deploy private or public clouds.

PaaS (Platform-as-a-Service) - cloud computing paradigm that provides platform services, such

as programming language execution environments and databases, which are hosted in the

cloud and scaled by the cloud provider.

Preemptible and preset resource lease - a resource lease that configured by an RP adminis-

trator and is deployed on idle resources and can be preempted immediately by on-demand

resource leases.

QIIME (Quantitative Insights Into Microbial Ecology) - an open source toolkit, consisting of

native components as well as community tools, for comparison and analysis of microbial

communities.

Resource lease - a request for a specific amount of resources, e.g., a dual-core 2.93 GHz Xeon

VM with 8 GB of RAM and 20 GB of disk space. The lease may optionally include a

defined time period for the resource.

RP (resource provider) - an organization that makes computing and storage resources, such as an

IaaS cloud or supercomputer, available to one or more user communities.

S3 (Simple Storage Service) - Amazon’s for-pay object storage service, allowing users to store an

unlimited number of objects distributed across multiple regions.

SaaS (Software-as-a-Service) - cloud computing paradigm that provides individual applications,

hosted in the cloud that can be accessed via a web-based interface.

xx

Spot instances - Amazon’s IaaS instances that allow users to bid on unused capacity for possibly

a reduced cost. Spot instances can be terminated by Amazon at anytime when the spot

price is raised, allowing Amazon to reclaim infrastructure for on-demand resource leases.

TeraGrid - a large Grid computing infrastructure comprising 11 sites and integrating distributed

supercomputers and high-performance clusters with the Globus toolkit. It operated from

2004 to 2011, when it was replaced by XSEDE.

Torque - an open source resource manager for HPC supercomputers and clusters.

VM (Virtual Machine) - a virtual duplicate of a real machine, e.g. Intel’s x86, that allows custom

software stacks to be installed and multiple operating systems to share the same hardware.

Volunteer computing - a computing environment where the resource owners donate their sys-

tems to other purposes, such as executing tasks to process datasets without immediate

deadlines.

XSEDE (eXtreme Science and Engineering Discovery Environment) - follow-on to the TeraGrid

that includes 17 sites integrating distributed supercomputers and high-performance clusters

with the Globus toolkit.

XtreemFS - an open source, fault-tolerant, and distributed file system capable of replicating data

across multiple storage servers.

Chapter 1

Introduction

Physical resources, such as high-performance computing (HPC) clusters or data analysis

and visualization environments (DAVs), provide static capacity but experience dynamic demand.

Resource providers (RPs) must estimate the appropriate amount of static physical resources to

purchase in order to meet variable user demand. As a result, resources may be under-utilized

during periods of low demand and over-utilized during periods of high demand. Demand typically

bursts when users are actively debugging their applications and running full-system simulations to

generate results for a deadline, such as a paper deadline or an urgent computing deadline (e.g.,

tracking the path of a hurricane). Demand typically decreases between deadlines and when users

focus on gathering data or writing code. Furthermore, many problems, from climate modeling

to gene sequencing or financial risk analysis, require vast computational and storage resources to

perform relatively simple analyses. With even the slightest increase in the level of detail these

problems scale rapidly. A single simulation, submitted by a single user, has the potential to grow

far beyond today’s largest resources. Large-scale distributed infrastructures expand beyond the

resources owned by a single organization and provide a suitable platform for dynamic multi-user

communities experimenting with these challenges. At the same time, a key challenge for RPs is

balancing periods of low demand and high demand in order to most effectively serve their users.

Ideally, RPs would prefer to operate their resources at a relatively high level of utilization while

simultaneously responding to user requests almost immediately, temporarily offloading demand to

external resources, if necessary and cost effective.

2

Therefore, to serve users and RPs effectively, large-scale distributed infrastructures should

meet the following criteria:

• Elastic: The infrastructure should adapt dynamically to demand, expanding as demand

increases and contracting as demand decreases, minimizing wasted resources and costs.

• Customizable: Users should be able to customize the software stack of the infrastructure,

from the operating system upward, allowing them to deploy complex software stacks with

unique requirements.

• Scalable: The infrastructure should provide sufficient resources to address large-scale and

resource-intensive challenges.

• High utilization: The infrastructure should be capable of maintaining high utilization

and still serve users with a variety of needs, including users with immediate deadlines as

well as users with volunteer computing workloads who may not have immediate deadlines.

A variety of large-scale distributed platforms and resource managers exist for dynamic multi-

user communities with large-scale challenges. HTCondor is one example [117]; it was developed in

the late 1980s and is now a well-established and feature-rich resource manager. HTCondor provides

a generic environment for processing high-throughput computing (HTC) workloads by harvesting

cycles from idle workstations or scheduling a pool of compute resources by distributing tasks to

these systems. Similar to HTCondor, the “at home” paradigm of computing, as implemented

by a system such as BOINC [37], provides a large-scale cycle-scavenging platform that has been

successfully leveraged for specific applications, including protein folding [85] and the search for

extraterrestrial intelligence [38], and has been deployed on a world-wide scale. PlanetLab [50] is

a large-scale platform that is specifically focused on the deployment of network applications and

services on a global scale. The Grid [63] is a generic platform for integrating and sharing distributed

compute and storage resources, especially those dispersed across multiple organizations. However,

the Grid has a number of constraints that have limited its adoption. In particular, it assumes

3

that control over the remote resource is with the site and not the user and, therefore, users with

complex software stacks may encounter significant difficulties when deploying and configuring their

software. The Grid also lacks the necessary capabilities to expand and contract dynamically as

demand fluctuates, confining workflows and applications to a specific set of standalone resources.

Recently, cloud computing has emerged as a new computing paradigm that allows users to

access resources through well-defined application programming interfaces (APIs) and, thus, scale

applications immediately based on demand and outsource excess demand to external resources when

needed. Software-as-a-service (SaaS) clouds provide Web-based access to individual applications

and Platform-as-a-service (PaaS) clouds provide a cloud-based platform for applications that use

the platform’s specific services. Unfortunately, users must develop custom applications for specific

SaaS and PaaS clouds. However, infrastructure-as-a-service (IaaS) clouds [39] provide generic

infrastructure resources, typically in the form of virtual machines (VMs), as an on-demand service,

allowing users to deploy existing complex software stacks and create elastic environments that adapt

dynamically to demand. Elastic environments expand as demand increases in order to respond

quickly to user requests and shrink as demand decreases, limiting the compute cycles and storage

wasted by the deployment. Large cloud providers also offer sufficiently scalable IaaS infrastructures

for demanding applications and workflows. Finally, on-demand provisioning provided by IaaS clouds

is ideal for users with deadlines [90], for example, a paper deadline or an urgent computing deadline

where sufficient resources must be allocated for immediate use [43], [52].

From an RP perspective, RPs may choose to deploy elastic environments that either extend

existing physical resources, such as an HPC cluster, with IaaS resources or deploy standalone elastic

environments in the cloud, outsourcing demand when needed. Currently, elastic environments must

be managed manually, which is inefficient and limits scalability, or use product-specific solutions

that often only interface with a single cloud provider or application. RPs may also choose to

deploy private IaaS clouds in order to offer users traditional IaaS on-demand leases. However,

IaaS toolkits that are used to deploy private clouds typically only provide high-cost, on-demand

leases where specific requests for resources are either accepted or rejected in near-interactive time.

4

IaaS RPs must significantly over-provision their infrastructure to ensure on-demand availability,

requiring them to pay a high price for operating a resource with low utilization, or reject a large

proportion of user requests, which effectively eliminates the on-demand nature of the IaaS cloud.

At the same time, not all users require truly on-demand access to resources, such as those designed

for recoverable systems where interruptions in service are expected.

This Ph.D. dissertation presents a flexible cloud architecture and implementation that im-

proves underlying IaaS cloud infrastructure utilization and adapts resource deployments for platform-

layer user environments to match variable demand. In particular, this dissertation presents a new,

low-cost, preemptible and preset resource lease for IaaS clouds that deploys preemptible VMs on

idle IaaS resources. Such preemptible and preset leases allow RPs to increase utilization of under-

utilized IaaS clouds by offering a new resource lease amenable to users who don’t require immediate

access to resources, such as those with volunteer computing workloads that can leverage publicly-

owned resources [37] or HTC workloads [88]. The open source Nimbus IaaS toolkit [18] is extended

to support preemptible and preset leases. This dissertation also presents a large-scale elastic envi-

ronment that adjusts to demand using flexible resource provisioning policies to balance user and

administrator requirements. The elastic model extends existing services and resources with private

and public IaaS instances, outsourcing excessive demand to IaaS clouds. The environment adds

and removes instances based on two major factors: 1) the current demand, for instance, the number

of jobs in a work queue, and 2) the requirements specified by the resource administrator, such as

whether he or she wishes to minimize cost or responsiveness of the deployment. For implemen-

tation, the environment leverages existing auto-scale services, such as Phantom [80], to integrate

with a wide-variety of infrastructure clouds.

Other scheduling algorithms and policies exist to balance demand, utilization, and cost in

static environments, including supercomputers, dynamic HTC or volunteer computing environ-

ments, and large-scale distributed and shared Grid environments. IaaS clouds, however, introduce

three new properties that dictate the need to investigate and develop new algorithms, policies, and

models to balance demand and cost in IaaS clouds. First, many IaaS cloud providers charge for use,

5

often with actual currency (e.g., U.S. dollars). Second, IaaS clouds provision resources on-demand,

either immediately granting access to the resource or rejecting the request. Though IaaS cloud

environments may contain a variable number of instances, the size of these environments may be

dictated by the user. This differs from dynamic volunteer computing environments where member-

ship of workers is influenced by outside factors, such as the availability of idle desktop workstations.

And third, the underlying IaaS infrastructure needs to be significantly over-provisioned in order to

guarantee on-demand access to resources the majority of the time as opposed to traditional clusters

or supercomputers, which are typically provisioned to ensure relatively high utilization.

A primary goal of this work is to assist the scientific community by developing a reactive and

scalable implementation of the flexible cloud architecture that is open source and easy-to-use. An

open source implementation eliminates the costs associated with acquiring the software, allowing

anyone to deploy and improve it. An easy to use solution allows scientists and researchers to

leverage the implementation without investing significant time or money into software engineering

or system administration tasks. Therefore, the implementation will possess the following attributes:

• Open and extensible: Users and system administrators must be able to adapt the im-

plementation to suit their needs. For example, they should be able to enable preemptible

VMs as needed, customize the elastic environment to match their workload patterns, and

extend the software to support additional cloud providers.

• Reactive and scalable: The system should react quickly, efficiently, and appropriately to

changes in demand in order to maximize job throughput and minimize costs. Additionally,

the large-scale elastic environment needs to be scalable in order to meet the challenges

faced by demanding scientific problems.

• Easy to use: The elastic environment needs to be transparent, or nearly transparent, to

users and require minimal effort for the system administrator. The elastic environment

should contain a set of parameters to tune the elastic deployment in order to match the

resource deployment with site-specific workload patterns and requirements.

6

Other open source tools and research projects provide a subset of this elastic environment

functionality. As an example, OpenNebula [115] includes a set of cloud drivers to manage VMs

on local cloud infrastructure as well as public clouds. However, OpenNebula’s cloud drivers are

tightly integrated into OpenNebula and, therefore, both local and remote resource deployments

must be managed directly by OpenNebula. The cloud drivers also do not integrate with existing

scientific workload managers. No open source, extensible, and sufficiently scalable elastic envi-

ronment managers exist to extend local HPC clusters with IaaS instances based on demand or

deploy large-scale elastic environments in private or public clouds. Additionally, no open source

IaaS toolkits include preemptible and preset leases, allowing private IaaS deployments to increase

utilization by efficiently supporting workloads designed for recoverable systems. Finally, resource

provisioning policies are needed to balance user- and administrator-defined requirements in elastic

environments that use IaaS clouds. This dissertation presents scalable elastic computing services

and policies capable of deploying, contextualizing, and managing large-scale elastic environments.

1.1 Thesis Statement and Intellectual Contributions

Thesis Statement:

Cloud computing resources can provide an elastic and high-performance environment for large sci-

entific challenges where resource deployments closely match user and workload requirements.

This Ph.D. dissertation presents the development and evaluation of the flexible cloud archi-

tecture and its implementation. This dissertation addresses several areas of work not addressed in

the existing scientific and cloud computing communities. The flexible cloud architecture provides

a comprehensive system that adapts appropriately and dynamically to demand at both the cloud

infrastructure and user environment layers. At the cloud infrastructure layer, the flexible cloud ar-

chitecture provides preemptible and preset resource leases that allow RPs to offer cycles that would

have otherwise been idle to other processes, such as volunteer computing tasks, which typically do

not have deadlines or depend on other tasks in the set. At the user environment layer, the flexible

7

cloud architecture provides an elastic environment that can span local physical resources, private

clouds, and public clouds, outsourcing demand as needed. The elastic environment also uses re-

source provisioning policies that respond appropriately to demand by provisioning or relinquishing

cloud instances. The policies consider both user and administrator requirements and attempt to

minimize costs.

Several intellectual and engineering contributions are derived from this research. The intel-

lectual contributions include:

• Design of a flexible cloud architecture that adapts efficiently to variable demand, for both

the user environment and the underlying infrastructure, and supports common scientific

workflow patterns and characteristics.

• Formulation of resource provisioning policies for elastic environments that balance user-

and administrator-defined requirements, minimizing costs.

• Extend an existing scheduling algorithm for Grid environments to support IaaS environ-

ments that uses a genetic algorithm to balance conflicting objectives.

• Evaluation and analysis of the elastic cloud model, including both compute and data as-

pects. The model consists of a standalone cluster, a private cloud with limited scalability,

and an “infinitely” scalable for-pay public cloud provider.

The engineering contributions include:

• Development and evaluation of preemptible and preset leases for the open source Nimbus

IaaS toolkit, allowing users to leverage a new type of resource lease for workloads without

immediate deadlines, such as volunteer or HTC workloads.

• Development and evaluation of a scalable multi-cloud elastic environment that adapts to

variable demand, outsourcing work when needed using infrastructure clouds.

8

• Development of an elastic cloud simulator, which is used in this dissertation to develop and

analyze the resource provisioning policies and elastic cloud model.

• Evaluation of the elastic environment with a bioinformatics use case, demonstrating the

end-to-end capabilities of the elastic environment for workloads with significant data re-

quirements.

1.2 Organization

This remainder of this dissertation is organized as follows. Chapter 2 presents an overview

of existing technologies and platforms for large-scale distributed computing environments, includ-

ing tightly-coupled distributed operating systems and more loosely-coupled large-scale distributed

infrastructures. Chapter 3 highlights the main challenges of flexible computing environments with

infrastructure clouds and discusses related work. Chapter 4 presents the flexible cloud architecture

that allows both the user environment and underlying infrastructure to adapt efficiently to variable

demand. Chapter 5 presents the preemptible and preset leases for IaaS clouds, allowing RPs to

offer a new type of lease to users, as well as the evaluation of these leases. Chapter 6 describes the

scalable and multi-cloud elastic environment and its implementation and evaluation. Chapter 7

presents the resource provisioning policies and elastic cloud model as well as the simulation-based

evaluation. Chapter 8 demonstrates the end-to-end capabilities of the multi-cloud elastic envi-

ronment with a bioinformatics use case. Chapter 9 concludes this dissertation with a summary

of major contributions and a discussion of future work, including the general applicability of this

work to new domains.

Chapter 2

Background

Large-scale infrastructures must be able to handle dynamic, and sometimes significant, de-

mand in multi-user environments as well as provide customizable user environments due to diverse

user needs. Some applications require specific services or libraries while other applications may

require different underlying operating systems. Systems capable of addressing these two challenges

must allow individual users to customize their own software environments and also provide signifi-

cant compute and storage resources when needed. Existing static resource environments are unable

to adapt to variable demand and typically only provide users with a shared software environment,

forcing all users to conform to a single software stack. Forcing users into such environments is

unrealistic for complicated workflows with diverse applications and requirements. Additionally, a

single static resource may have trouble meeting user deadlines when experiencing heavy load and

leveraging distributed resources provides extra compute and storage resources to help meet demand

[90]. However, if these distributed environments integrate a set of heterogeneous and physical re-

sources (as is typically the case in large-scale Grid environments), the challenges of deploying a

complex software stack are only magnified.

This chapter reviews existing technologies and platforms for large-scale distributed computing

environments. In particular, the chapter provides an overview of virtualization, a fundamental

technology used by IaaS clouds that provides customizable user environments, before discussing

tightly-coupled distributed operating system approaches and loosely-coupled large-scale distributed

environments, such as PlanetLab [50] and HTCondor [117]. The chapter ends with a discussion of

10

Grid computing environments and an overview of current cloud computing paradigms, including

software-as-a-service (SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service (IaaS).

2.1 Virtualization

Virtualization, and in particular the use of system virtual machines, presents users with a

generic environment where they can tailor any level of the software stack to meet the needs of

their applications. System-level virtualization solutions implement an additional layer of software

between the hardware and operating system known as a Virtual Machine Monitor (VMM) or hyper-

visor. The hypervisor presents a virtual implementation of a real machine to the operating systems

running on top of it. System-level virtualization was clearly demonstrated in the IBM VM/370

time-sharing system [53] in the 1970s. The VM/370 was heavily influenced by the modular design

of Massachusetts Institute of Technology’s (MIT) Compatible Time-Sharing System (CTSS). In

particular, the VM/370 system borrowed components from CTSS’s compatibility and protection

mechanisms, which allowed multiple programs to be run on a single system without modification.

The VM/370 system contains three major components: the Control Program (CP), the Conversa-

tional Monitor System (CMS), and the Remote Spooling and Communications Subsystem (RSCS).

The CP functions as a hypervisor, allocating and managing the hardware amongst a group of VMs,

where each VM runs independently from the other VMs. The CMS is a single user operating

system, running as a VM that provides an environment for a user to interact with the machine,

for example, allowing users to enter commands or create and manage files. The RSCS provides

network support for VMs running on a VM/370 system with the appropriate network equipment,

allowing VMs to send or receive files to other systems.

Developed in the 1990s, SimOS [107] was designed to model computer hardware for re-

searchers and computer system designers, allowing them to model complete computer systems in

varying levels of detail for testing and verification purposes. SimOS was able to simulate the un-

derlying hardware, including the CPU, memory management unit, and I/O devices, in various

levels of detail. It used binary translation to dynamically convert a particular code into new code,

11

simulating its execution under different hardware configurations. Disco [45] and Cellular Disco [68]

moved beyond the simulation emphasis of SimOS and allowed multiple operating systems to run

simultaneously on the same system, increasing utilization of the resource. Disco and Cellular Disco

supported unmodified commodity operating systems, such as Windows NT and several Unix vari-

ants, in a virtual environment by emulating instructions, the memory management unit, and the

trap architecture of the processor. Cellular Disco added support for hardware fault containment as

well as more advanced resource management mechanisms and policies. The concepts developed in

Disco and Cellular Disco were commercialized by VMware, Inc. in 1998.

In 2001 the University of Cambridge introduced Xen [42] as an open source x86 virtualiza-

tion platform, allowing anyone to deploy virtual environments for their x86-based applications. The

original implementation of Xen used a paravirtualization approach as opposed to binary translation

in order to support virtualization on architectures that don’t support it natively. Xen’s paravirtu-

alization approach requires modifying the guest operating system to run in ring 1 instead of ring 0

on x86 processors; this prevents the guest operating system from executing privileged instructions,

such as installing a new page table. Instead, all privileged instructions must be executed by the

Xen hypervisor running in ring 0. Xen uses shared memory and asynchronous buffer-descriptor

rings to transfer I/O to and from guest operating systems.

Recently, virtualization-specific enhancements have been added to the x86 architecture, in-

cluding Intel-VT [16] and AMD-V [4]. Intel and AMD have also added additional virtualization

support in Nehalem and Barcelona, including Extended Page Tables [100] for more efficient guest OS

to physical address mapping. Even though virtualization provides numerous benefits to users, such

as a customizable software stack and isolation from other VMs, it still requires users and administra-

tors to have direct access to physical resources to setup, manage, and allocate VMs. Virtualization

solutions also require manual management of instance deployments, requiring administrators to

monitor usage and explicitly add or remove instances from their virtual environment.

12

2.2 Distributed Operating Systems

Virtualization solutions may oversubscribe a single machine with multiple operating systems

running simultaneously, distributed operating systems typically do just the opposite. Distributed

operating systems combine multiple systems together to form the appearance of a single system.

The main advantage of such a system is that it hides the complexities of the distributed environment

from the user and yet the user still receives many of the advantages of a distributed environment,

including the ability to leverage additional resources that dynamically join or leave the system

at any time. While there have been numerous research projects that have successfully built and

deployed distributed operating systems, none of them have gained substantial traction beyond the

research phase for large-scale scientific deployments.

An early distributed system developed at Digital Equipment Corporation (DEC), called VAX-

clusters [83], connected a group of VAX computers with a message-oriented interconnect so that

they appeared as a single system. Standard processors and a general-purpose operating system were

used to build VAXclusters. VAXcluster computers are all located within a single security domain,

can access shared services, including disk and print services, and run a copy of the VAX/VMS dis-

tributed operating system. VAXclusters provide a low-overhead communication architecture and

a high speed message-oriented interconnect. Nodes may join or leave a VAXcluster at any time,

but a node can only be a member of one VAXcluster at a time. Cluster managers prevent nodes

from partitioning the cluster into two or more clusters through a quorum-voting scheme. In this

scheme, individual nodes contribute a vote and a cluster manager tallies the votes. If the total is

equal to or greater than the quorum then the cluster continues operations. If the total falls below

the quorum, activity is suspended. A distributed lock manager is used to control access to shared

resources, which may only serve a single cluster at a given time.

Plan 9 [104] is a distributed operating system developed at Bell Laboratories, heavily influ-

enced by the design of Unix. Plan 9 presents a more loosely coupled environment from VAXclusters.

Systems are not required to fully exist within the same security domain, thus, home users may con-

13

nect remotely to utilize services provided by Plan 9. Services in Plan 9 are grouped into a variety of

categories, including CPU servers that concentrate compute power, file servers that provide storage,

and terminals that give users a dedicated interface to the system. The CPU servers and terminals

run the same kernel so applications execute on the local terminal or on a centrally located CPU

server. Plan 9 resources, including disks, terminals, or processes exist in a single namespace and

appear to the user as file systems, allowing uniform access. Plan 9 utilizes a file caching mecha-

nism, based on file version numbers, to amortize the effects of relatively slow interconnects between

remote terminals and the central file servers. In recent years, Plan 9 has seen renewed development

with a collaboration between Sandia National Lab (SNL) and IBM, specifically to provide a dis-

tributed programming and execution environment on a large supercomputer, the IBM Blue Gene,

with hundreds of thousands of cores [97].

Amoeba [99] is a distributed operating system with similarities to Plan 9. The Amoeba

architecture contains a processor pool for extra compute power, diskless workstations for user

interaction, and specialized file and database servers. These components are interconnected and all

systems run the same kernel, allowing processes to run anywhere in the distributed environment.

Amoeba is an object-based system where individual components are represented as objects on which

operations are performed. User processes interact with objects through Remote Procedure Calls

(RPC) to request operations. The actual user environment in Amoeba is an emulation of Unix.

This way, users can run many familiar Unix editors, compilers, and tools in Amoeba. However,

Amoeba is not Unix and does not provide 100% compatibility. Amoeba can also be deployed in

a wide-area network environment. In this case, Amoeba deployments are divided into domains

where each domain is a collection of local area networks and broadcast messages are restricted to

individual domains.

There are many other distributed operating systems, including the V distributed system

[49], Sprite [103], and CHORUS [108] that share similar characteristics with those discussed here.

While all of these distributed operating systems abstract away many of the underlying complexities

of distributed environments, they all face the same fundamental challenges that have thus far

14

prevented them from evolving into production-level, large-scale environments capable of tackling

massive challenges, such as those in the scientific community. Because distributed operating systems

bring multiple systems together as a single system, the underlying communication protocols can

cause performance problems as the system scales. Furthermore, due to the research-oriented nature

of many distributed operating systems, few production-level scientific applications have been ported

to run in a distributed operating system environment. Perhaps a notable exception is the SGI UV

[27], which is a commercial system capable of scaling a single OS over 2048 cores and up to 64

TB of RAM using a non-uniform memory access (NUMA) interconnect. However, because the SGI

UV uses proprietary SGI technologies and environments, it has seen limited adoption within the

broader scientific community.

2.3 Large-Scale Distributed Systems

An alternative to the tight interconnectedness provided by distributed operating systems is

a more loosely coupled approach to integrate large distributed resources. These loosely coupled

environments share similar characteristics: first, they manage a distributed set of resources often

on a large scale. Second, they dynamically integrate and organize the resources. Lastly, they

present an interface to the user for interacting with the environment. Unlike distributed operating

systems, these systems make no attempt to present a single environment to the user. Users are

expected to develop their applications and workflows specifically for a set of distributed resources

using message-passing systems, such as a message passing interface (MPI) application [70].

PlanetLab [50] is an exceptionally successful network overlay testbed for hosting and testing

large-scale deployments of distributed network services. Users deploy services in slices across the

overlay network. A slice is a horizontal cut of resources that includes processing, memory, storage,

and networking resources across individual PlanetLab nodes. Virtual machines provide isolation

between slices. PlanetLab nodes host multiple virtual machines, each running their own services.

PlanetLab’s virtual machines are based on Linux Vservers, which provide the appearance of multiple

independent servers running on the same node. Vservers implement isolation at the system call

15

interface and enforce isolation through the processes security context as well as checks on the

UID/GID when a process attempts to access a privileged resource. However, users aren’t given

root on their slices, instead they are given “pseudo” root on the system, which provides them with

the ability to access many of the services that require root. Because isolation is implemented at the

system call interface, a single kernel is shared along with numerous user-level daemons, possibly

allowing one malicious Vserver to exploit a kernel-level bug and allow it to gain control over all of

the Vservers. The Linux CPU scheduler provides a degree of fairness between processes, however,

it does not provide guarantees that are required for resource reservations. This potentially allows

processes to abuse their share of the resource. PlanetLab places a cap on outgoing traffic to ensure

that all Vservers share the network fairly.

To support large-scale deployments, PlanetLab must be able to discover available resources,

dynamically create slices on those resources, and then launch services within those slices. PlanetLab

manages its large-scale infrastructure with three solutions: a boot monitor that allows extensive

remote manipulation of the machine, a boot server that downloads instructions to a newly booted

machine, and a process running on the node to get and apply runtime updates of non-kernel

packages. PlanetLab also maintains the expectation that nodes are dynamic, that is, they may

occasionally be unavailable. Thus, services running in PlanetLab are expected to gracefully handle

such dynamism. This is an expectation that PlanetLab management operations can exploit: when

required, small groups of nodes can be taken offline without giving consideration to the services

running on the nodes.

The most obvious limitation with PlanetLab given its primary focus on network services,

is that it is not a generic platform for running any application; its architecture reflects this in

numerous ways. For example, Vservers share the same kernel, creating a potential security hole, as

noted earlier, and limiting applications to services provided by specific kernel versions. Vservers also

provide minimal control over resource usage and isolation. The network link is a perfect example of

this: PlanetLab expects that services won’t abuse the network and instead of rate-limiting network

traffic, excessive users are simply disabled. Many scientific applications have large I/O demands

16

where it may be favorable to limit I/O throughput over time as opposed to disabling the resource

for the particular application.

HTCondor [117] is a distributed job scheduler capable of harnessing idle workstations or clus-

ters for compute cycles. Some of the most prominent features of HTCondor include a distributed

job submission mechanism, a framework for matching jobs with resources, check pointing and mi-

gration, job suspend and resume, and support for heterogeneous platforms. Though HTCondor is

a generic platform for managing jobs on large distributed infrastructures, it isn’t ideal for many

types of applications. HTCondor was designed to be a cycle-scavenger, thus it is typically deployed

on systems that are, first and foremost, intended for other purposes, such as office or lab worksta-

tions. Many HTCondor deployments don’t offer any resource availability guarantees, nor any level

of performance guarantees. On these dynamic deployments it is not only possible but it is expected

that individual executions will be interrupted temporarily or need to be terminated and moved to

new resources as individual machines become active for their original purpose and unavailable in

the resource pool. Thus, it can be especially problematic for certain applications, such as MPI

applications that do not natively contain checkpoint-restart capabilities, if they are not executed

on resources with dedicated availability.

The combination of user-defined policies with an intricate matchmaking process that describes

virtually every combination of job requirement and resource capability, in addition to a vast set of

features offered by HTCondor, creates a usability issue. Deploying and maintaining a feature-rich

HTCondor pool is a time-consuming undertaking. Also, users must learn how to express their

job and resource requirements through ClassAds, which can be complicated for typical scientific

workflows. Finally, HTCondor lacks a defined payment model for resource usage. Resource owners

can only specify priorities, e.g., a computer science department operating a HTCondor pool on

their department machines can specify that jobs from users within the department have a higher

priority than jobs from users outside the department.

At home computing [37] is similar in many respects to HTCondor. It attempts to utilize

the capabilities of distributed workstations. However, at home deployments are often application

17

specific, such as SETI@home [38] or Folding@home [85]. Although these deployments have been

quite successful for specific applications, they require large investments in software engineering time

to tailor individual applications for large distributed deployments. Additionally, these deployments

are primarily suited to serial tasks because of their widely distributed nature.

2.4 Grid Computing

The Grid [63] is a large-scale distributed platform that provides a foundation for integrating

and sharing distributed resources, creating an environment for hosting and executing applications.

Two major examples from the scientific computing communities include the TeraGrid [48], now

XSEDE [31], and the Open Science Grid (OSG) [105]. The Grid bridges organizational boundaries

for individuals or groups of users at participating sites, allowing them to form a single virtual

organization (VO). The Grid uses a set of libraries and middleware to implement compute and

storage management, a security infrastructure, and monitoring and reporting services. The security

infrastructure allows for single sign-on so that once a user is logged into the grid he or she can

utilize all of the authorized resources without signing into each resource separately.

In 2001, Foster et al. [63] highlighted the Grid problem as “flexible, secure, coordinated re-

source sharing among dynamic collections of individuals, institutions, and resources.” The authors

present an open Grid architecture that highlights and categorizes the protocols, services, applica-

tion programmer interfaces (APIs), and software development kits (SDKs) that contribute toward

solving the Grid problem. The Globus Toolkit [62] is an implementation of much of this proposed

architecture, for example, GRAM [54] provides resource management and GridFTP [34] and RFT

[35] provide data management.

Grid computing enables direct access to physical resources, and due to the limited overhead

introduced by Grid middleware this makes it an ideal candidate for large and demanding scientific

applications. However, because of the direct access to remote physical resources, Grid computing

assumes that control of the resource is with the remote site. In practice, this has proved to be

a limiting assumption for some users [89], [33] due to the heterogeneity of hardware, operating

18

systems, and libraries used across Grid resources. For example, Agarwal et al. [33] note these

difficulties for deploying high energy physics applications because of application dependencies that

require specific OS versions and libraries. For security purposes Grid users are not given root on

remote resources, thus it can be difficult or impossible to deploy custom software stacks required

by a complex scientific workflow. Applications must also be ported to the different hardware

platforms on the Grid, which can be a long and painful process depending on the complexity and

requirements of the applications. Finally, because Grid environments are typically implemented

directly on physical resources, provisioning of those resources is not dynamic or on demand.

As an example, we attempted to deploy the Quantitative Insights Into Microbial Ecology

(QIIME) open source bioinformatics toolkit [47] on the TeraGrid. The TeraGrid’s resources in-

cluded both x86 systems, such as Ranger at the Texas Advanced Computing Center (TACC), and

PowerPC systems, including Big Red at Indiana University (IU) and Frost at the National Center

for Atmospheric Research (NCAR). QIIME integrates over 30 tools, including uclust [59], BLAST

[36], and FastTree [106], among others, for analyzing and comparing complex and diverse microbial

communities. These applications are developed by a variety of research groups and organizations

using many different programming languages and libraries. The QIIME toolkit itself consists of

Python scripts and modules, FastTree is a single C file, BLAST is an x86 binary, and another

application is written in Haskell while yet another is a Java application. Deploying the complete

QIIME software stack for even a single user on a variety of architectures, operated by different

organizations with different user and system policies was a time consuming and frustrating task.

And while the QIIME toolkit consists of over 30 applications, it also depends on a large number

of common system dependencies that were not always available on the systems (e.g., via common

system package managers such as Debian Apt [10]). Deploying QIIME for multiple users exacer-

bated these problems and required working with individual system administrators at each site to

help download and install dependencies. As systems retired and new systems were deployed on the

TeraGrid, the entire toolkit had to be reinstalled from scratch.

Furthermore, running QIIME’s embarrassingly parallel workloads on supercomputers that

19

are architected primarily for large tightly-coupled parallel jobs required significant modifications.

Frost, a Blue Gene/L at NCAR, only reserves job partitions in groups of 64 cores, meaning that a

single-core serial job still reserved 64 cores. The Blue Gene/L also only provides 256 MB of RAM

per core and performs a full reboot of its nodes between jobs. Therefore, to run a large number

of embarrassingly parallel QIIME tasks efficiently, we used the Blue Gene/L’s high-throughput

computing (HTC) mode [51] and modified its launcher to run multiple QIIME tasks between reboots

[96]. While the Blue Gene/L provided substantial cycles, its memory constraints limited the size

of datasets that could be processed for certain applications; it also required substantial investment

in software engineering time and root access to the system to make the HTC modifications.

2.5 Cloud Computing Paradigms

In 2005 Globus Virtual Workspaces [81] demonstrated a mechanism to provide isolated user

environments, which leveraged system-level virtualization, across Grid computing resources for

different VOs. These isolated environments allowed VOs to customize and manage their own

execution environments across Grid computing resources. Globus Virtual Workspaces eventually

evolved into the open source IaaS Nimbus toolkit [18], which offers on-demand resource provisioning

of VMs via API-based access. This allows users to integrate resource provisioning directly into their

workflows and deploy complex software stacks in contained virtual images. In addition to IaaS,

PaaS and SaaS cloud computing paradigms also provide mechanisms for developing and deploying

applications in the cloud. PaaS cloud computing runs applications that use the platform’s specific

services, such as its programming execution environments and database services. Unlike IaaS

clouds, users cannot easily deploy existing applications on PaaS clouds without customizing them

for the specific platform. SaaS clouds are even more constrained than IaaS and PaaS clouds. Users

must build and deploy individual applications and deploy them as standalone services that are

typically accessed via a Web-based interface.

IaaS clouds, such as those provided by FutureGrid (Table 2.1), typically consist of front-end

servers that monitor and control a large pool of back-end compute servers, allowing on-demand

20

Table 2.1: Nimbus, OpenStack, and Eucalyptus IaaS Clouds available on FutureGrid in March
2013.

IaaS Clouds

Name Location IaaS Software Virtualization Total cores
Hotel UChicago Nimbus Xen 328
Sierra SDSC Nimbus Xen 144
Sierra SDSC OpenStack Xen 24

Foxtrot UFL Nimbus Xen 176
Alamo TACC Nimbus KVM 96
India IU OpenStack Xen 224
India IU Eucalyptus Xen 240

provisioning of the resources with VMs. Typically, a user-defined resource lease specifies that a

VM image be deployed across a specific amount of resources (e.g., based on the number of CPU

cores or the amount of RAM required). If the cloud is able to fulfill the request, the VM image

is transferred from an image repository to the back-end compute resources and then booted. If

the cloud is unable to service the request (e.g., there are not enough available resources), it is

rejected. Because of virtualization’s isolation properties, users are given complete control over the

software stack inside their VMs. Users can elect to deploy any operating system and configure the

image to perform any function. In 2006, Amazon released the Elastic Compute Cloud (EC2) [3], a

commercial IaaS cloud offering that provided Linux instances on-demand for a minimum of $0.10

per hour (in 2013 the same instance now costs $0.06). Amazon EC2 is perhaps the most prominent

example of a commercial IaaS cloud platform with EC2 data centers around the world.

PaaS clouds provide a specific environment and are more restrictive than generic IaaS clouds.

Users are limited to the programming languages and services supported by the environment. For

example, a user cannot deploy a custom database within a PaaS environment, instead applications

must support the PaaS database solution. A primary advantage of PaaS clouds is that the underly-

ing services are typically designed to scale as needed. Thus, a user is not responsible for increasing

database capabilities under heavy demand, instead, the PaaS provider ensures that the service is

capable of handling the demand. Both Microsoft’s Azure platform [30] and Google’s Compute En-

gine [14] began as PaaS clouds, however, they have both recently added IaaS capabilities, allowing

21

users to deploy generic Linux instances. Other examples of PaaS clouds include Engine Yard [11]

and Heroku [15], both which initially supported Ruby applications. However, Heroku has expanded

to include support for Java, Node.js, Scala, Clojure, and Python applications. Engine Yard has

evolved to include support for JRuby, PHP, and Node.js.

SaaS clouds provide specific applications to users where the application itself is hosted and

maintained in the cloud. User data associated with the applications is also hosted in the cloud.

These applications are usually Web-based, commercial offerings include Google’s Gmail, Google

Docs, or Yahoo! Mail. Science gateways, such as the Asteroseismic Modeling Portal (AMP) [119]

at the National Center for Atmospheric Research (NCAR) and Galaxy [67] at Penn State, also

offer SaaS platforms, providing users with easy-to-use Web-based interfaces for running scientific

applications. SaaS applications are clearly the most constrained cloud environments, limiting users

to a specific application. SaaS applications also have high software engineering costs because

the entire environment and deployment must be customized for a specific application. However,

because SaaS applications are web-based, they also typically provide cross-platform and easy-to-use

graphical interfaces for users.

2.6 Discussion

Designing a large-scale computing infrastructure that adapts elastically to demand, provides

customizable user environments, and maintains high utilization while still serving the needs of

diverse user communities requires building on underlying components that support elasticity and

are customizable. Existing infrastructures and approaches, such as distributed operating systems

and Grid computing environments, lack the necessary components required to create scalable elastic

environments for users with complex software stacks and demanding workloads. However, with the

introduction of IaaS clouds that use virtualization to support isolated user environments and a

variety of resource provisioning leases (e.g., on-demand), it is now possible to create scalable elastic

computing environments that adapt dynamically to demand and support diverse user communities

with demanding workloads.

Chapter 3

Architecting a Flexible Cloud Computing Environment

IaaS clouds provide an ideal foundation for flexible computing environments that adapt effi-

ciently to demand, both for users and resource providers (RPs). On-demand resource provisioning

allows users or RPs to create elastic environments where resource deployments expand or contract

based on immediate demand, using private or public IaaS cloud providers. Elastic environments

can be used to extend local site resources with cloud resources or they can be deployed entirely in

the cloud. As an example, a local batch-queue cluster may be extended with IaaS resources, creat-

ing an elastic environment that integrates static local cluster resources with dynamic and virtual

cloud resources. Alternatively, an RP may instead choose to deploy an elastic cluster entirely in

the cloud for their user communities, completely outsourcing demand when needed. Figure 3.1 is a

model of a elastic environment with both static local site resources and cloud resources. From an

RP’s perspective, IaaS clouds can be employed to offer different forms of resource leases to users,

which help to optimize resource utilization and service offerings for the RP.

To create an efficient flexible cloud environment a number of infrastructure- and platform-

layer challenges must be addressed as well as the monetary aspects of such deployments. Infras-

tructure challenges include both low-level technical challenges, such as minimizing virtualization

overhead, and higher-level availability and utilization challenges. For example, IaaS cloud providers

must over-provision their infrastructure, operating a large amount of idle resources, to ensure on-

demand availability. This may result in poor resource utilization, which is particularly problematic

for scientific communities that typically achieve high utilization because of batch-queue resource

23

Cloud	
 Provider	
 Cloud	
 Provider	
 Cloud	
 Provider	

Compute	
 Resources	

Elas4c	
 Management	

Physical	
 resources	
 Cloud	
 resources	

Launch	
 and	
 terminate	
 resources	

Demand	

Storage	
 Resources	

Compute	

Resources	

Storage	

Resources	

Compute	

Resources	

Storage	

Resources	

Elas4c	
 Environment	

Monitor	

demand	

Figure 3.1: A model of an elastic environment. The elastic environment may extend physical
resources with IaaS resources or be deployed entirely in the cloud.

managers. User-level elastic environments must also address platform-layer challenges, such as de-

veloping algorithms and policies to balance user and administrator requirements when provisioning

elastic environments. Workflows and applications need to be adapted to support IaaS APIs and in-

tegrate into dynamic computing environments. Finally, the monetary aspects of such deployments

must be addressed as well. Specifically, the environment should not only adapt based on demand,

but should also consider the financial impact of for-pay IaaS deployments. This chapter provides an

overview of these challenges and discusses related work. It ends with a discussion of open research

questions.

3.1 Cloud Infrastructure Challenges

Cloud infrastructure challenges include both low-level performance challenges and higher-

level utilization and availability challenges. The virtual nature of IaaS resources introduces an

24

additional layer of overhead, potentially degrading performance and increasing the complexity of

the software stack. However, despite these challenges, there has been much work recently to address

the performance concerns of virtual IaaS resources. Solutions to address higher-level infrastruc-

ture challenges, such as offering on-demand availability while still achieving reasonable resource

utilization, vary from one cloud implementation to another.

3.1.1 Performance

At a low level, infrastructure clouds typically use commodity hardware and virtualization so-

lutions, such as Xen [42], to provide contained environments for users. Virtualization allows users

to securely share the same underlying hardware. Users can install custom software stacks, includ-

ing different operating systems, and configure them as needed. Virtualization, however, introduces

another layer of overhead, which can be problematic for workflows with strict performance require-

ments. Recent advancements from hardware vendors, including AMD-V [4] and Intel VT [16], have

minimized much of this overhead, especially for the CPU. Even if CPU cores aren’t shared, highly

active users may saturate other resources, such as the network or disk, negatively impacting other

users in the cloud. Recent research, including VMM-bypass techniques [74], show promise for mini-

mizing hypervisor overhead, however, they have yet to be widely adopted and deployed on existing

clouds and potential security issues must be examined and addressed. Amazon’s high-performance

cluster instances provide reasonable performance, as demonstrated by their recent inclusion in the

Top500, and eliminate the noisy neighbor problem by not allowing users to share the underlying

node hardware. Amazon’s provisioned IOPS for EBS volumes allow users to achieve a guaranteed

level of IO performance required by certain applications, however, many of these offerings come at

a high cost and are unavailable for smaller and cheaper instances. Finally, Amazon is one of the

only major public cloud providers that currently offer many of these high-performance features,

which limits deployments that require such features to Amazon’s infrastructure.

Creating large-scale elastic environments for user applications and workflows also face chal-

lenges because of their distributed nature. Elastic environments that extend local resources with

25

IaaS resources may need to operate over the Internet, which introduces endless potential for poor

performance and unreliability. If the environment extends an HPC cluster these problems are only

exacerbated since cluster software and applications typically assume the opposite, that is, relatively

reliable and known performance with minimal interference on shared resources. As an example, an

elastic environment deployed across the Internet may have trouble using NFS to provide a shared

file system. Instead, more modern file systems with better reliability for unpredictable network

performance should be used, such as Gluster [13] or XtreemFS [76]. Large organizations may have

the appropriate resources to establish peering agreements with cloud providers, such as the Ocean

Observatory Initiative’s (OOI) use of CENIC and NorthWest GigaPoP’s peering agreement with

Amazon [20] that provides two 10 Gbps connections into Amazon Simple Storage Service (S3) and

Elastic Compute Cloud (EC2). Unfortunately, this is not likely a solution for many research groups

that instead must use or develop sufficiently reliable software solutions.

Lastly, many cloud providers offer a large number of instance types that vary significantly

in performance. Amazon, for example, currently offers over 15 instance choices, that cost from

$0.02 per hour for a micro Linux instance to $4.60 per hour for an eight extra large Linux instance.

Additionally, any number of VM images with different software configurations can be deployed on

these instances that also impact performance. And finally, public cloud providers do not publish

detailed technical specifications of the underlying hardware. Users are instead left with the burden

of benchmarking and analyzing different instance types in order to identify the optimal price-to-

performance ratio for their applications and workflows. This is a time consuming process and also

a potentially expensive one since a large number of instances must be deployed and benchmarked

regularly in order to have an up-to-date understanding of a particular cloud’s performance. A

central and well-defined “live” benchmarking platform for scientific computing would help to provide

insight into the current performance of different IaaS clouds. This would allow users to determine

if a cloud’s current price-to-performance ratio is desirable for different instance classes.

26

3.1.2 Availability and Utilization

Another challenge faced by IaaS providers is increasing infrastructure utilization without sac-

rificing on-demand requests. To ensure on-demand availability, IaaS providers must over-provision

their infrastructure, however, over-provisioning significantly reduces utilization. IaaS providers that

choose not to over-provision their infrastructure risk rejecting user requests, no longer providing

on-demand availability. Different IaaS implementations have addressed this issue using a variety

of approaches, from offering different types of resource leases to powering off or suspending idle

resources.

Amazon EC2 uses “spot” instances to address this challenge. With spot instances, users

place bids for the amount that they are willing to pay for an instance, a rate typically lower than

the on-demand cost of the instance. Amazon sets a spot price and terminates any bids that fall

below the spot price. Amazon can therefore serve a larger community of users and increase uti-

lization of their resources, while also reserving the ability to reclaim infrastructure when needed

(and without notifying spot users). User applications and workflows that can leverage spot in-

stances can potentially move to the cloud for lower cost than applications that require higher cost

on-demand instances. Volunteer computing systems, such as BOINC [37], and workflows with suf-

ficient checkpoint restart capabilities may be able to use spot instances effectively with little or no

modifications, however, long running applications or large parallel application that do not include

support for fault-tolerance may need significant enhancements in order to use spot instances. An

alternative to offering a multitude of resource leases is to instead suspend or power off idle infras-

tructure resources, also known as “green computing.” For example, Lefevre et al. [86] propose a

framework for energy efficient cloud computing to reduce electrical consumption by migrating tasks

to consolidate jobs, where possible, and then powering off idle nodes. Energy efficient approaches

allow RPs to save on energy costs, however, resources that are completely powered off go unused

and are not available to users at a lower cost. Therefore, RPs should may choose to consider green

computing techniques that dynamically power off unused components of individual nodes, greatly

27

reducing energy use but still keeping them available.

While green computing techniques allow RPs to conserve on energy costs and spot instances

are a viable solution for public cloud providers that charge for use with real currency, private and

community IaaS providers require solutions that do not require monetary bids. For example, IaaS

toolkits should allow RPs to deploy VMs on idle resources that can be preempted by on-demand

requests. Preemptible instances will allow users with appropriate workflows and applications to use

over-provisioned IaaS infrastructure effectively, while the RP is able to increase utilization without

sacrificing on-demand availability or powering off idle nodes.

3.2 Platform Challenges for Elastic Environments

Platform-layer services orchestrate deployments across IaaS clouds and create large-scale elas-

tic environments that adapt to changing user demand. Therefore, platform services must address

challenges related to resource provisioning, scheduling, and contextualization as well as application

and workflow integration. In this section, we examine platform-layer challenges required to create

useful large-scale elastic environments and the related work.

3.2.1 Dynamic Cluster Resource Provisioning

VioCluster [109] is one of the first systems to adapt a cluster to changing demand. A pro-

totype system, VioCluster leveraged User Mode Linux to balance nodes across multiple clusters

dynamically and transparently to the user. The implementation used Portable Batch System (PBS)

[72] clusters and a virtual domain that consisted of virtual machines and physical machines. In

VioCluster, a virtual domain is configured as a single cluster that is managed by a PBS job sched-

uler; one physical machine is designated as the PBS master node and the remaining nodes are

designated as compute nodes.

Each physical domain of machines, e.g., departmental clusters, creates policies to borrow

or lend VMs with other domains. The borrowing domain supplies the disk image to boot on the

physical machines. The decision of whether or not to borrow or lend machines is performed by

28

the domain’s broker service, which implements the administrator-defined policies. The prototype

deployment of VioCluster calculates demand as the sum of all of the nodes required by the jobs in

the PBS queue. The system then calculates the number of machines it would attempt to borrow (or

have available to lend) as demand minus the current number of machines it has available (virtual

or physical). If the result is positive, the broker attempts to borrow machines, and if the result

is negative, then that is the number of machines the broker can lend. The prototype system also

implements a primitive reclamation technique whereby any request of a domain to reclaim a lent

physical machine is immediately granted. Nodes in the virtual domain communicate with nodes in

the physical domain via an overlay network. The effect of such an overlay is that all of the virtual

machines (outside of the original physical domain) have a uniform and private IP address space

that are shared with the physical nodes and provide access to all of the domain services (e.g., an

NFS-mounted file system).

In-VIGO [32] is a more general and complex environment than VioCluster. In-VIGO com-

bines Grid techniques with virtualization to support engineering and scientific research commu-

nities. Virtualization is used to create dynamic, on-demand pools of resources for application- or

user-specific purposes. In-VIGO takes a three-layered approach to deploying and customizing these

environments. First, a base layer of resources, including compute, network, and storage resources

are deployed and connected together using virtualization and Grid technologies. The second layer

deploys Grid-enabled applications on those resources. The third layer builds on the previous two

layers by aggregating services (e.g., through a portal) and exporting an interface to the user through

an XML-based User Interface Manager.

In-VIGO uses a virtual distributed file system and a virtual network to connect its VMs. An

In-VIGO resource manager interfaces with queue managers (e.g., Torque or HTCondor) as well as

Grid resource managers (e.g., GRAM) and underlying operating systems to provide a single API

and point of access for managing the diverse set of resources. The resource manager is responsible

for determining the resource requirements of a particular job, selecting the necessary resources,

and then executing the job on the resources and monitoring its progress. Applications are bundled

29

and deployed as virtual appliances. Significant effort is required to bundle and deploy applications

in the In-VIGO environment. First, the application must be deployed on all of the Grid-enabled

resources, then an XML configuration file must be defined for the application, and finally a set of

rules must be defined that specify the application’s requirements and behavior. The rules consist of

Java classes that are used by the resource manager to locate the appropriate resource and execute

the application.

Cluster resource provisioning techniques rely on implementation-specific approaches that are

customized for individual deployments and do not expose services at the API-level. Large-scale

elastic environments, however, require API-level access for resource provisioning in order for appli-

cations and policies to adapt dynamically to demand across multiple providers. Generic resource

provisioning services, techniques, and policies must be developed to integrate distributed compute

and storage resources for elastic environments. Additionally, application-specific adaptors should be

developed to allow different applications and workflows to integrate with distributed deployments

and adapt dynamically to demand.

3.2.2 Contextualization

Individual VMs in elastic environments must be configured as part of a common group, a

process referred to as contextualization, so that VMs are aware of each other and can communicate

in order to run parallel jobs. Contextualization, for example, may involve exchanging SSH keys

and networking information so all nodes are configured to trust each other, as shown in Figure 3.2.

Keahey et al. [82] present an architecture for contextualization. The authors implement a

secure system, centered on a context broker service, that contextualizes a dynamic set of resources.

The contextualization solution can, for example, transform a set of standard Linux-based cloud

VMs into a cluster where one node functions as the head node, another exports a shared file

system to the cluster, and the remaining serve as compute nodes. Contextualization involves

three parties: the appliance provider, the resource provider, and the appliance deployer. The

appliance provider prepares the specific appliance and provides the VM disk image to the appliance

30

Head	
 Node	

Node1	
 Node2	

Storage	

Private	
 Key	
 Public	
 Key	

SSH	
 Known	
 Hosts	
 File	

Private	
 Key	
 Public	
 Key	

Private	
 Key	
 Public	
 Key	

Public	
 Key	

Public	
 Key	

Node2	

Head	
 Node	

Mount	
 file	

system	

SSH	
 Known	
 Hosts	
 File	

Public	
 Key	
 Node2	

Node1	
 Public	
 Key	

SSH	
 Known	
 Hosts	
 File	

Public	
 Key	

Node1	

Head	
 Node	

Public	
 Key	

Exchange	
 host	

informaBon	
 and	

SSH	
 keys	

Mount	
 file	

system	

Figure 3.2: An example HPC cluster configuration, which typically requires exchanging host infor-
mation and SSH keys and mounting a shared file system across all nodes.

deployer along with a contextualization template, which includes information about the components

within the appliance that need to be contextualized (e.g., IP addresses, hostnames, SSH keys, etc.).

The appliance deployer starts the image on the resource provider’s infrastructure. A minimal

set of context information provided to the appliance by the deployer include: network address and

hostname, address of the context broker, a context identifier, and a set of credentials that prove trust

between the appliance and context service. The context broker is a service that manages objects

that contain context-specific information and facilitates the exchange of this information between all

instances. The objects also contain the security and trust relationships for the context. Because the

appliance will need the contextualization information shortly after boot, the information contained

within the object must stabilize between all instances in the context, that is, the object must

contain its complete set of information for all instances that are part of the context.

The authors provide implementations on Amazon EC2 and Nimbus. Both EC2 and Nim-

31

bus provide IP address information via DHCP. EC2 also allows users to communicate 16 KB of

unstructured data to the VM via a metadata field that is associated with the cluster of virtual

machines. Nimbus allows users to patch the virtual disk image with a file that contains context-

specific information. After the virtual machine boots, a service running within the VM, known as a

context agent, processes the file and configures the necessary components. Both of these methods

only provide information in one direction: from the appliance deployer to the VM.

The context broker allows communication of context information in both directions via a

context template. The template has two major components: provides and requires. The provides

section of the template describes the role of the VM and the requires section of the template

describes what information is needed to contextualize the VM. The VM contains application-

specific contextualization scripts that use the finalized template to configure the virtual machine

after the contextualization process has stabilized. The context broker is a standalone service that

facilitates the configuration of a common context between independent resources; it does not assist

the user launching, monitoring, or repairing these deployments.

Bresnahan et al. [44] present a tool, cloudinit.d, that allows users to launch VMs across

multiple cloud providers and configure them to perform any function. With cloudinit.d, users can

monitor these deployments and repair them if necessary. Users define launch plans that specify

what services they want to launch. Similar to the UNIX init.d program, services can be grouped

into different run levels that may depend on services in the previous levels. For example, a user

may deploy a fairly typical database-backed website with cloudinit.d where the first run level boots

a VM and configures it to serve as the database. Once the database VM(s) have launched and are

configured, the second run level would then boot and configure the HTTP servers that connect to

the database VM(s).

Wrangler [78], another tool with similar functionality to cloudinit.d and the context bro-

ker, provides a service that allows users to provision, configure, and manage clusters deployed on

IaaS clouds. Users define their clusters in an XML format, specifying information such as the

cloud to provision VMs on, VM image to use, and hardware type. Users specify different roles

32

for nodes, which configure themselves appropriately based on their role. Users interact with the

Wrangler coordinator service using a client that allows them to launch new clusters, list active

clusters, terminate clusters, and obtain detailed information about clusters. Nodes interact with

the coordinator through agents that manage node configuration and state.

System integration frameworks, specifically Chef [6], typically include many capabilities re-

quired for recontextualization. However, because Chef doesn’t have a notion of “clusters” (e.g.,

HPC clusters) it would have to be extended to manage independent clusters of nodes. That is,

Chef can be used to distribute scripts out to nodes for contextualization and gather their results but

Chef can’t manage distinct sets of nodes as clusters. Other standalone tools, including the Nimbus

context broker, Wrangler, and cloudinit.d, don’t have the ability to recontextualize an environment

as it changes, distributing configuration scripts to nodes periodically, which is a key requirement

for elastic environments that continually adapt to changing demand. Individual VMs in elastic

environments may be added as demand increases or removed as demand decreases, and as these

events occur, the remaining VMs in the elastic environment require updated information about

the new set of VMs in the environment. Currently, no generic service exists to recontextualize

independent clusters of virtual or physical nodes.

3.2.3 Dynamic Resource Scheduling

Once an underlying infrastructure capable of supporting elastic environments is in place,

appropriate mechanisms for provisioning the resources and scheduling work on those resources

needs to be developed. If there is a monetary cost associated with the infrastructures, this should

be considered by the resource provisioning policies.

Currently, there are a number of existing resource management platforms that dynamically

integrate and schedule resources. HTCondor [117], for example, uses a distributed job submission

mechanism where any machine in the pool can submit jobs and maintain a queue of its jobs.

However, a central manager is required to orchestrate the entire lifecycle of the jobs, which is

responsible for tracking the queues of user-submitted jobs as well as tracking the status of all of

33

the machines in the pool. When a job is submitted, the central manager queries for all available

machines and idle jobs, it then matches jobs with machines based on job requirements and the

characteristics of the available resources.

PlanetLab [50] uses a hierarchical process, based on tickets and leases to locate and schedule

resources. A resource monitor runs on each node and periodically reports the status of the node to

one or more agents. Depending on node availability, the agent issues tickets for the node and may

decide to overbook the node. Each service in PlanetLab runs a service manager that is responsible

for contacting an agent to obtain tickets. Service managers redeem tickets directly at the nodes.

Moreover, each node runs a node manager that accepts tickets and compares them against the

node’s admission control policy to determine if the tickets can be redeemed. If the request can be

fulfilled, the node manager reserves the resource, creates a VM, and returns a lease. The service

manager is then responsible for starting the service in the VMs.

Dynamic resource managers, including HTCondor and PlanetLab, don’t factor a specific cost

for the resource (compute or data usage) into their resource allocation and scheduling strategies,

instead, they schedule tasks based on the requested number of resources, the type of requested

resource, and resource availability. Additionally, these resource managers often attempt to ensure

some level of fairness, typically defined by the administrator, amongst the users when scheduling

the resources. Separate from these dynamic resource managers, market-based systems explicitly

schedule resources based on a direct cost for resource usage [87], [85], [41]. The motivation of these

systems is to use an explicit cost for resource usage as an incentive for users to be honest about

their resource requirements. Market-based systems seek to maximize profits for RPs by scheduling

the requests that are willing to pay the most. They are not focused on selecting the optimal cost

from a user perspective and lack the ability to minimize costs for generic user workloads.

3.2.4 Application and Workflow Integration

Workloads and applications also need to be extended to support dynamic resource provision-

ing used by elastic environments. Applications can either be modified directly to support elastic

34

computing functionality or the functionality can be bundled in generic services. If generic ser-

vices are developed, appropriate hooks must also be developed and integrated with applications or

services. Bundling elastic computing functionality directly into applications has a number of ad-

vantages. First, it reduces overhead since extra components and services don’t have to be deployed

or administered by users. Second, policies for provisioning and relinquishing resources can be tai-

lored specifically to the particular application and its workflow. Numerous applications leverage

this approach and we highlight a few relevant examples in the following paragraphs.

OpenNebula [115] is an open source IaaS cloud computing toolkit that manages private cloud

resources in addition to public cloud resources using a tightly integrated approach, enabling the

creation of hybrid clouds. A set of cloud drivers in OpenNebula interface with third-party, external

cloud providers. OpenNebula’s cloud drivers currently support Amazon EC2 and ElasticHosts.

OpenNebula only manages infrastructure cloud resources (both local and remote), it does not

interface with local services or workflows, such as a local cluster resource manager.

In [98] the authors adjust the Sun Grid Engine (SGE) (now Oracle Grid Engine) [65] to deploy

clusters on demand (COD). A single physical cluster is partitioned into multiple virtual clusters

with VMs. Each virtual cluster is capable of meeting the needs of diverse user communities. CODs

rely on Virtual Cluster Managers (VCMs) to add or remove nodes from clusters dynamically. VCMs

use the current system load and a site policy to determine when to add or remove nodes from a

cluster. More recently, the Oracle Grid Engine (OGE) has directly added support to provision

resources on Amazon EC2 for job execution.

MIT’s StarCluster [17] is a tool to create and manage batch-queue clusters on Amazon EC2.

It provides tools for users to launch a cluster, dynamically add nodes to the cluster, and terminate

the cluster. The Network File System (NFS) is used to share data between nodes. Two of the more

interesting features of StarCluster include the ability to load balance the cluster, using OGE’s load

balancer, and the ability to use Amazon’s spot instances as workers. In the current implementation,

StarCluster only supports OGE and Amazon EC2.

In [60] and [122] the authors integrate elastic computing functionality directly into specific

35

end-user applications, as opposed to the previous examples that were more general and focused on

extending resource managers (OGE) and IaaS software (OpenNebula). In the former, the authors

create a custom Amazon Machine Image (AMI) for their application, which provisions instances

on Amazon EC2 directly and executes the MIT General Circulation Model. SSHFS [29] is used for

data transfer. In the latter, the authors measure CPU utilization and memory usage on resources

and then provision and relinquish resources based on a feedback control mechanism.

Similar to application-specific integration of elastic computing functionality, individual com-

mercial cloud providers, such as Amazon, often provide their own tools for dynamically scaling cloud

deployments based on resource utilization. Amazon Cloud Watch [2], for instance, monitors the

demand on EC2 instances and automatically launches additional instances when a user-specified

threshold is exceeded. These tools are cloud-specific and require that only cloud-provider sup-

ported services be used, and thus, are not general solutions for interfacing with a multitude of

cloud providers or local site services and resources.

Instead of extending applications with elastic computing functionality directly, a separate

service can be developed that includes such functionality. In this approach, applications must have

the appropriate hooks to integrate with the service. Because the vast majority of elastic computing

can be implemented in a single service, it greatly reduces software engineering time and the effort

required to maintain duplicate code. Furthermore, a single service is more extensible because

support for additional cloud providers is only added once and then leveraged by all applications

that use the service.

Cloud Scheduler [40] is a loosely coupled approach for integrating local services with remote

cloud resources. Cloud Scheduler provides a separate layer between local site services and cloud

providers; it is not tied to a specific local service or a specific cloud provider. As of March 2013,

Cloud Scheduler’s implementation supports Nimbus clouds and Amazon EC2, and can also interface

with a HTCondor queue to monitor and measure demand. Currently, Cloud Scheduler launches

instances on cloud resources until its requests are denied. In the case of EC2 a hard limit is

placed on the number of instances that it will attempt to launch. Cloud Scheduler divides the

36

instances evenly among all users and rebalances the infrastructure in a greedy fashion, immediately

terminating running jobs if necessary. If a resource is terminated before its job completes, the job is

re-queued by HTCondor. Cloud Scheduler does not include a rich set of policies to match resource

deployments with workloads, nor does it dynamically adjust cloud deployments to minimize costs.

Integrating third-party cloud resources with applications and workflows introduce security

concerns as well. Individual sites need to consider the sensitive nature of their data. Sites should

determine whether encryption will sufficiently protect their data or if certain datasets should not

be transferred to the cloud at all. Solutions that dynamically extend local resources with cloud

resources must limit the additional security risk posed to the site by adequately securing the remote

instances. For example, standalone cloud instances can be secured with host-based firewalls, only

allowing access to necessary services.

These existing approaches lack the necessary components to create end-to-end elastic environ-

ments for scientific workflows that integrate with a variety of cloud providers. Application-specific

approaches limit elastic functionality to the individual applications and require high software engi-

neering costs to maintain and extend. More generic approaches, including StarCluster and Cloud

Scheduler, allow users with OGE and HTCondor workloads to leverage basic elastic environment

functionality, such as outsourcing jobs to IaaS clouds. However, StarCluster limits users to Ama-

zon EC2, OGE, and NFS, which may not be adequate for all scientific users. Cloud Scheduler

limits users to HTCondor, which then dispatches tasks to Amazon EC2 and Nimbus clouds. These

existing solutions lack advanced resource provisioning policies that adapt appropriately to demand

and sufficiently reliable and parallel file systems for workloads with significant data requirements.

They also do not provide a solution for recontextualization, which is required for parallel jobs.

3.2.5 Commercial Solutions

Numerous commercial providers have developed their own platform-layer services to help

orchestrate and manage large deployments of IaaS instances. Amazon Auto Scale [1], for example,

integrates with Amazon’s CloudWatch metrics and lets users automatically scale their deployments

37

based on defined conditions, such as resource utilization. VMware’s Cloud Foundry [7] and Red

Hat’s OpenShift [22] provide PaaS environments for applications. Cloud Foundry supports Java,

Ruby, Node.js, and Scala applications and a handful of database services, including MySQL and

MongoDB. OpenShift supports Node.js, Ruby, Python, PHP, Perl, and Java applications as well as

MySQL, PostgreSQL, and MongoDB databases. These PaaS environments allow users to launch

scalable deployments without having to focus on or optimize infrastructure middleware services

for their operations. Unlike Amazon’s Auto Scaling service, these PaaS solutions do not provide a

“bare” platform for any application; instead, they operate as a typical PaaS service and limit the

applications that can be deployed and the services that they can use. RightScale [26] offers a variety

of products, including a Multi-Cloud Management application that abstracts away the details

of managing groups of instances across data centers, even those operated by different providers.

RightScale also provides an auto-scaling service based on load information, similar to Amazon’s

auto-scaling service.

However, these commercial solutions have their own limitations. For instance, Amazon’s

auto-scaling service only interfaces with EC2 and does not provide a generic and open service for

scientific communities that interfaces with a variety of providers. Amazon’s CloudWatch metrics

do not provide seamless integration with common scientific workload managers. PaaS solutions,

such as Cloud Foundry and OpenShift, offer relatively open platforms for individual applications,

however, these environments are often better suited for Web-based applications instead of scientific

workflows with complex software stacks that often do not use the programming languages supported

by large PaaS solutions. RightScale’s approach allows their customers to leverage multiple IaaS

providers, but they do not provide an open solution that integrates with community or scientific

cloud providers. Sufficiently open solutions to create large-scale elastic environments that integrate

with common scientific workload managers and private and community clouds are needed.

38

3.3 Financial Constraints

Monetary constraints must also be considered in any analysis as IaaS providers often charge

for use. Large public IaaS providers may appear to offer “infinite” capacity, however, the scale

of the deployment will certainly be limited by the budget of the user or RP deploying an elastic

environment. Solutions to address the cost of cloud deployment must consider both compute and

data costs, which may be significant for scientific workloads. In this section we examine cost-based

grid scheduling policies as well as recent work that investigates the cost of IaaS deployments.

3.3.1 Cost-based Grid Scheduling

The majority of cost-based scheduling algorithms for Grid resources expect the environment

to support advance reservations, which are then scheduled for different phases of a workflow. Yu

et al. [121] develop an approach that schedules workflows on pay-for-use Grids that minimizes

execution time while meeting a deadline. The approach assumes that it can accurately predict the

execution time of tasks in the workflow as well as reserve available resource slots. The workflow is

modeled as a Directed Acyclic Graph (DAG) and the overall deadline is divided into sub-deadlines

that are assigned to various stages of the DAG. To find the optimal schedule of the entire workflow,

optimized schedules are computed for each sub-deadline of the DAG by selecting the schedule

with the smallest cost that still meets the sub-deadline. The system reschedules tasks if an initial

deadline is violated.

Singh et al. [112] consider the impact that static resource provisioning (with advance reserva-

tions) and dynamic resource provisioning (through HTCondor Glideins) have on workflow execution

time in Grid environments. The authors evaluate three different scheduling policies: FIFO, fair

share, and fair share with backfill. In their treatment, they attempt to minimize the cost that each

of these methods has on workflow execution, where cost is defined to be the amount of time that a

job must wait before it is executed. To minimize cost, the authors query different resource providers

to determine the number of resources available and the amount of time that each resource will be

39

available. The resource that provides the earliest expected completion time for the workflow is

selected. The completion time is estimated as the sum of the expected wait time and the expected

execution time, which is directly related to the number of resources available for the workflow. In

the advance reservation case, a reservation is made for the earliest possible time. With dynamic

provisioning, jobs are submitted immediately and may begin execution earlier or later than ex-

pected depending on currently running jobs and any future jobs. In general, the authors find that

dynamic provisioning provides quicker turnaround times for workloads, especially when using FIFO

or a fair share scheduling. Backfill only improved completion time for fine-grained workflows.

In [111], Singh et al. develop a reservation price model for Grid computing environments

that supports advance reservations. The price of the reservation depends entirely on the negative

impact that the advance reservation has on queued best-effort jobs. If the advance reservation does

not delay any queued best-effort jobs, the additional cost of the reservation is zero. However, if the

advance reservation delays queued best-effort jobs, the cost of the reservation increases depending

on the amount of delay introduced by the reservation. The intent of the reservation price model is

to strike a balance between resource providers who are hesitant to allow advance reservations (due

to their negative impact on resource utilization) and users who, under certain circumstances (e.g.,

deadline-driven), may be willing to pay more in order to assure execution of their jobs.

In [113], Singh et al. devise a cost model for Grid-based compute resources that support

best-effort execution as well as advance reservation resource provisioning. RPs advertise resource

slots to users for a specific cost. Resource slots consist of the number of processors and the duration

that they are available. Resource providers periodically adjust the cost of the resources based on

demand and availability. In their work, they assume that there is reliable and accurate information

about the expected workflow execution time. The model first identifies available resources and their

associated cost, based on the estimated execution time. The model then attempts to minimize both

the cost of the resources as well as the workflow execution time. The concept of domination [56]

is used to compare different possibilities, which consider both the resource cost and the workflow

execution time. However, this may provide multiple solutions so a multi-objective genetic algorithm

40

[56] is used to find the best solution.

While the previously discussed Grid scheduling algorithms and models consider the cost

of executing workflows on resources, they all ignore certain cloud-specific characteristics. A key

difference between Grid and cloud environments is that resources are provisioned on-demand in

the cloud, thus there is no need to identify available slots on a static system and schedule them.

Cloud environments also typically charge for data transfer and data storage in addition to compute

cycles, all of which need to be accounted for in cost-based scheduling algorithms and models.

3.3.2 The Cost of Cloud Computing

Recent research examines the cost of using IaaS clouds to process workloads, specifically

those that charge money for use. In [58], Deelman et al. simulate the execution of an astronomy

application in the cloud to analyze the cost of different deployments. The authors examine three

scenarios using Amazon’s charging model: 1) assume that local resources are available and remote

cloud resources are only provisioned occasionally, 2) assume that there is local data storage and

the cloud is only used for computation, and 3) the entire workflow is executed in the cloud. The

conclusions of this experiment showed that provisioning the fewest cloud resources is the least

expensive option and that provisioning the most resources provided the best job turnaround time.

However, the authors note that there may be cases where a handful of extra resources could

be provisioned for only a slight increase in cost but still achieve a modest improvement in job

turnaround time. The authors found that remote I/O generated the highest cost due to Amazon’s

relatively high data transfer rates and storage costs were negligible compared to compute for their

applications.

Assuncao et al. [55] augment a local cluster of virtual machines with virtual machines from

the cloud. The authors use two schedulers, one to manage jobs on the local virtual machines and

another to manage jobs on the cloud resources using a variety of job and cloud scheduling strate-

gies, including conservative, aggressive, and selective backfill strategies. Conservative scheduling

schedules jobs as they arrive and requests may begin executing earlier than scheduled if they do

41

not delay other jobs. Aggressive scheduling only schedules jobs at the head of the queue and other

jobs are allowed to be scheduled if they do not delay the job at the front of the queue. And finally,

selective schedules jobs that have waited in the queue for a certain amount of time. The scheduling

strategies are then evaluated by simulating the San Diego Super Computer (SDSC) Blue Horizon

job traces supplied by the parallel workload archive [24] and computing the cost of performance

improvement for the different strategies. The main emphasis of the simulations focus on meeting

job deadlines. The authors show that a cluster with heavy load experiences higher costs and that

an increasing number of deadline-constrained jobs results in higher costs in order to meet the dead-

lines. However, their traces and simulations do not include advanced resource provisioning policies

or include data information.

Mao et al. [90] develop a cloud auto-scaling mechanism that considers both user performance

requirements and budget constraints to ensure workflow tasks complete within their deadlines for

minimal cost. Their approach provisions and relinquishes cloud VMs and schedules tasks across

the most cost-efficient resources. Workflows consist of tasks with deadlines that can be represented

as a DAG. A scaling plan is used to determine the number of instances required at any given time

while a scheduling plan selects the instance type to use for a particular task. The authors leverage

existing performance estimation techniques to determine the amount of time required to complete

an individual task on different instance types and an earliest deadline first algorithm to schedule

tasks across VMs. This work, however, does not consider common batch-queue scientific workloads

or the impact of data on the cost and performance of the elastic environment.

Instead of extending resource or workflow managers, another approach is to modify individual

applications to support elastic resource provisioning. In [122] Zhu et al. extend two applications

with the ability to provision resources using a feedback control mechanism. CPU utilization and

memory usage are monitored and used to determine when to adjust the deployment by launching

or terminating resources. The primary advantage of this approach is the ability to fine-tune the

resource provisioning algorithms for a specific application and its workloads. More general solutions,

such as services extending batch-queues, must balance the needs of numerous users, applications,

42

and workloads.

Many of the existing cloud-specific scheduling and provisioning algorithms consider the cost

of compute resources, and most attempt to balance that cost with job turnaround time or resource

utilization, but these models typically ignore data transfer and data storage costs. Moreover,

these approaches often require tight constraints on assumptions about workloads and user-provided

information, such as deadlines. They are not designed for large multi-user batch-queue workloads

that may not have user-specified deadlines and may consist of a mixture of large parallel jobs and

serial tasks or HTC workloads. Therefore, policies that leverage IaaS clouds and minimize costs

and job response time for multi-user cluster workloads are needed.

3.4 Open Research Questions

Many of the underlying tools and services needed to support an open and flexible cloud

computing architecture, capable of adapting appropriately to low and high demand, are currently

available. IaaS services and standalone tools for contextualization and configuration provide build-

ing blocks for large-scale elastic environments that adapt to variable user demand. However, be-

cause IaaS clouds must be over-provisioned to offer on-demand resources, solutions to help IaaS

providers increase resource utilization without sacrificing on-demand requests are needed. Specifi-

cally, solutions targeting the scientific community should be amenable to a variety scientific workflow

paradigms and they should also be available in IaaS toolkits used to create community clouds. At

the same time, an elastic environment capable of adapting to variable demand and outsourcing jobs

to external clouds are needed. Such elastic environments require services to integrate with existing

scientific workload managers and applications, recontextualization solutions to exchange instance

information between all nodes as the environment grows and shrinks, and a reliable data movement

solution that is transparent to users. Many existing cluster file systems, for example, were designed

and developed for reliable networks with well-known performance characteristics, including high

throughput and low latency. These file systems often experience difficulties when deployed across

wide-area networks with unknown or highly variable bandwidth and latency characteristics. Ad-

43

ditionally, new algorithms and policies need to be investigated and developed to create efficient

elastic environments that balance user- and administrator-defined requirements, such as cost and

job response time. These policies need to be optimized for different scientific workflows and appli-

cations since it is unlikely that single policy will be able to meet the needs of all users. The elastic

environment should use these policies to adapt appropriately to demand, scale across multiple in-

frastructures, and be nearly transparent to users, seamlessly integrating with existing applications

and workflow managers. Finally, these components must be combined together to provide a com-

plete end-to-end flexible cloud architecture, capable of supporting diverse user communities with a

wide-variety of requirements.

Chapter 4

A Flexible Cloud Architecture

Private	

Cloud	

IaaS	

Manager	

Cluster	

Queue	

HTC	

Queue	

Idle	
 Resources	

On-­‐demand	
 VMs	

Preemp>ble	
 VMs	

Cluster	

VMs	
 User	

VMs	

Sensor	
 Agent	

Agent	

Recontextualiza>on	

Broker	

SSH	
 known	
 	

hosts	
 file	

Decision	
 Engine	
 Provisioner	
 or	

Auto-­‐Scaling	
 Service	

Policies	

Dispatch	

Jobs	

Dispatch	
 Jobs	

Launch	
 and	

Terminate	

VMs	

Submit	
 single-­‐core	
 and	

parallel	
 jobs	

Submit	
 HTC	
 jobs	
 Users	

request	
 VMs	

Public	
 	

Cloud	

IaaS	

Manager	

Users	

request	
 VMs	

Figure 4.1: A flexible cloud architecture. The flexible cloud architecture responds appropriately
to variable demand, increasing the utilization of over-provisioned IaaS clouds when demand is low
and outsourcing workloads to external IaaS clouds when demand is high.

Standalone compute and storage resources experience dynamic load as demand fluctuates.

These resources may be under-utilized when demand is low and over-utilized when demand is high.

Creating an architecture that adapts to variable demand requires a flexible design and services that

are capable of reacting to changing demand by automatically provisioning or relinquishing resources

45

as needed, allowing RPs to operate their resources at a relatively high level of utilization while still

responding to on-demand user requests in near-interactive time. Specifically, the system should

meet the criteria identified in Chapter 1: elastic, customizable, scalable, and capable of maintaining

high utilization. To address these requirements, we present a flexible cloud architecture, shown in

Figure 4.1. The flexible cloud architecture provides a comprehensive and elastic system that adapts

to variable demand, allowing RPs to improve utilization of over-provisioned IaaS resources as well as

outsourcing excess demand to external clouds when needed. IaaS clouds provide VMs on-demand,

allowing users to customize the entire software stack, and offer large-scale infrastructures to meet

the needs of scientific workloads. Commercial IaaS cloud providers, in particular, typically operate

massive data centers distributed across the globe, allowing users to deploy tens of thousands of

instances when needed [9].

To increase utilization of under-utilized IaaS clouds, preemptible and preset leases, origi-

nally presented in [93], are proposed for the flexible cloud architecture. The open source Nimbus

IaaS toolkit is extended to support these leases by deploying preemptible VMs on idle nodes.

Preemptible VMs are generic VMs that can be configured to perform any function and may be ter-

minated suddenly to service on-demand leases; they allow RPs to contribute cycles that would have

otherwise been idle to other processes, such as HTC workloads [88] or volunteer computing systems

(e.g., SETI@home [38] or Folding@home [85]). To adapt to high demand, an elastic environment is

developed. First, a prototype elastic environment is created, originally presented in [92], to explore

the necessary requirements and discover potential issues. Then, a large-scale design and implemen-

tation are developed. These components were originally presented in [95]. The elastic environment

provisions and relinquishes cloud resources to adjust to variable demand. It can be used to extend

existing site resources, such as an HPC cluster, with infrastructure clouds or it can be deployed

entirely in the cloud, allowing users or RPs to outsource their entire workflows to the cloud when

needed. The flexible cloud architecture, including preemptible VMs and elastic environments, is

discussed in detail in the following sections. The implementation and evaluation of preemptible

VMs are presented in Chapter 5 and the implementation and evaluation of the elastic environment

46

is presented in Chapter 6. Resource provisioning policies for the elastic environment are presented

and evaluated in Chapter 7. And finally, a bioinformatics use case with significant data processing

requirements that leverages multiple infrastructure clouds is presented and evaluated in Chapter 8.

4.1 Preemptible VMs

Organizations may choose to deploy private IaaS clouds, using toolkits such as Nimbus [18],

Eucalyptus [101], or OpenStack [23], in order to provide their users a local cloud for developing

cloud-based workflows. However, to ensure on-demand availability for their user communities RPs

need to keep a large portion of the resources idle. That is, they must either over-provision their

cloud infrastructure and suffer low resource utilization or under-provision the infrastructure and

reject a large number of on-demand requests, effectively eliminating the on-demand nature of the

IaaS cloud. Low resource utilization is particularly difficult for the scientific community where

batch schedulers typically ensure high utilization and much better resource amortization [120].

Thus, low utilization is a potentially significant obstacle to the adoption of IaaS clouds in the

scientific community.

At the same time, not all scientific workflows require on-demand access to resources. For ex-

ample, volunteer computing systems, including SETI@home [38] and Folding@home [85], leverage

resources opportunistically. Such systems are designed to be failure resilient and tolerate unex-

pected interruptions in service. Perhaps the most salient example in the scientific community is

HTC systems where the workloads do not have an immediate deadline, but instead must process

substantial datasets on the order of months or years. HTCondor [117] is an example of an HTC

workload manager, originally developed as a cycle-scavenger for idle desktop workstations. There-

fore, we propose preemptible and preset leases for IaaS clouds to combine on-demand provisioning

with the opportunistic allocation of cycles from idle IaaS nodes to other processes.

47

4.1.1 Preemptible and Preset Leases

Preemptible and preset leases provide infrastructure resources to users at an unspecified time

for an indeterminate amount of time. The cloud administrator supplies the VM for these leases,

that is, a user cannot deploy his or her own VMs without the assistance or intervention of the

administrator. This differs from the on-demand and non-preemptible leases typically offered by

cloud providers or spot instances provided by Amazon where users can provide their own VM and

are either granted or rejected access to non-preemptible resources in near-interactive time.

Preemptible and preset leases deploy preemptible VMs on idle IaaS resources. In this con-

text, preemptible VMs are generic VMs that can be configured to perform any function, such as

contribute cycles to HTC or volunteer computing workloads. Preemptible VMs have two limita-

tions: 1) they can be terminated suddenly at any time to free up space for the IaaS manager to

service an on-demand lease, and 2) the unpredictable timing of on-demand leases (from any number

of users) means that there may be a variable number of preemptible VMs running at any given

time. Preemptible leases can be provided to users at a lower cost than non-preemptible, on-demand

leases since the IaaS manager can reclaim resources when needed by terminating preemptible VMs.

Because of these limitations, certain applications and workflows are not well suited for preemptible

VMs (e.g., parallel applications, which require all processes to be available during the full execu-

tion). While large parallel applications are not ideal for volatile preemption environments, many

workflow paradigms are suitable candidates for such environments. For example, HTC or volunteer

computing workloads [117], which consist of jobs eventually needing to be processed but do not

have an immediate deadline and do not depend on other jobs in the set, are typically designed for

dynamic environments with a variable number of workers. In this case, it is acceptable to terminate

HTC jobs in the middle of their execution and re-queue them for later execution as long as the

workload is eventually processed.

48

4.1.2 Extending IaaS toolkits for Preemptible VMs

The underlying physical IaaS resources as well as the user communities, both for on-demand

VMs and preemptible VMs, influence the design of the implementation and should be considered.

First, applications and workflows that accommodate volatile environments should be identified;

specifically, the applications and workflows should handle failures gracefully. Second, the granu-

larity with which preemptible VMs are deployed should be determined. That is, will single-core

preemptible VMs be deployed on multi-core IaaS hypervisor nodes? Or will multi-core preemptible

VMs be deployed, possibly using all cores on the VMM? Single-core preemptible VMs allow the IaaS

administrator fine-grained control over the deployment, however, the disadvantage is the increase

in overhead required to run multiple VMs simultaneously on the same physical system. Multi-core

preemptible VMs, and in particular a single preemptible VM per VMM node, reduces the virtu-

alization overhead on the VMM node. The disadvantage of this approach is that an on-demand

request for even a single-core VM may cause the preemptible VM to be terminated, leaving the

remaining cores idle on the VMM node. An IaaS administrator may also choose to configure pre-

emptible VM deployments based on other resources, such as RAM instead of (or in addition to)

CPU cores.

The size of the preemptible VM deployment, relative to the size of the IaaS cloud, must also

be determined. The preemption deployment may use all available nodes, however, the overhead re-

quired to terminate preemptible VMs in order to service on-demand requests should not be ignored.

The overhead may be somewhat significant if preemptible VMs are shutdown cleanly (requiring up

to 10s of seconds) instead of trashed immediately. Therefore, the IaaS administrator may choose to

only allow preemptible VMs to utilize a fraction of idle resources, leaving some resources available

to service on-demand requests immediately. Finally, the mechanism for deploying preemptible VM

images to idle VMM nodes should be selected. One choice is to transfer a fresh preemptible VM

image from the IaaS image repository for every preemptible VM deployment (commonly referenced

as VM image propagation). However, this approach introduces additional network contention and

49

may slow the deployment of on-demand VMs, depending on the underlying storage and network

architecture of the cloud. A second choice is to propagate the VM image for preemptible VMs to

the VMM nodes and cache it, only redeploying the image if it has been updated or removed from

the cache on the VMM node. A third choice is to manually transfer the preemptible VM image to

all nodes, reducing network contention (since it is only performed when the administrator chooses

to, ideally when the network is not heavily utilized) and reduce the launch time for preemptible

VMs since the image doesn’t need to be copied across the network. The main disadvantage with

this approach is that the administrator must manually copy the preemptible VM image to all nodes

when it is updated.

4.1.3 Termination Policies for Preemptible VMs

Preemptible VMs are terminated when the IaaS service needs to reclaim resources on the

cloud to deploy an on-demand VM. Terminating preemptible VMs impacts the applications running

inside the VMs. Ideally, termination policies for preemptible VMs should consider the applications

running inside the preemptible VMs, however, such policies would require a substantial investment

in software engineering time and effort. Gathering and processing this information is highly ap-

plication dependent and requires modifying the underlying IaaS toolkit to adapt to all application

workloads running inside the preemptible VMs. Perhaps the most straightforward policy is to

randomly terminate preemptible VMs until the on-demand VM can be launched. Unfortunately, if

the preemptible VM is running a job then its work will be lost while other idle preemptible VMs

continue running. Another basic policy is to terminate preemptible VMs that have been running

for the least amount of time until the on-demand VM can be launched. This policy assumes that

the preemptible VMs running the longest may also be executing jobs for the longest amount of

time and, therefore, will lose the most work when terminated. The intuition behind this policy

is that a workload consisting of long-running jobs (or a mixture of long and short jobs) will be

impacted the most by terminating preemptible VMs that have been running the longest whereas

a workload consisting of short-running jobs will only be moderately impacted by the termination

50

of any preemptible VM. More advanced termination policies for preemptible VMs can use “hints”

from the IaaS scheduler and form a more complete picture of cloud VM placement to terminate

preemptible VMs. For example, if the termination policy is aware of VM placement on VMM nodes,

it may be able to terminate the fewest number of preemptible VMs instead of blindly terminating

preemptible VMs until an on-demand lease can be fulfilled.

4.2 Elastic Environments

In addition to increasing low infrastructure demand, the flexible cloud architecture can also

adapt to variable user demand with an elastic environment. The elastic environment adapts to

variable demand by provisioning IaaS instances as demand increases and relinquishing IaaS in-

stances as demand decreases. In cases where demand exceeds the capacity of site resources, such

as an HPC cluster or a private cloud, the elastic environment can outsource demand to external

community or public IaaS clouds with minimal user intervention. The elastic environment can also

be deployed by users or RPs completely in the cloud, operating as a standalone entity, allowing

users to process their workflows entirely in the cloud when needed.

A number of different approaches can be used to create the proposed elastic environment.

Using an application-specific approach, elastic functionality can be bundled in individual appli-

cations, including the ability to monitor demand, provision and relinquish resources, and policies

to ensure efficient resource utilization. The main advantage of this approach is that provisioning

policies can be tailored to the specific application, that is, the application’s policies don’t need to

consider a wide range of inputs and different execution paradigms. However, the main disadvantage

is the high software engineering cost required to extend and maintain every application with elastic

computing functionality.

A second, service-based, approach is to create a central service responsible for adapting to

changing demand. The central service interfaces with individual applications through lightweight

application-specific sensors and policies that monitor demand. By bundling much elastic environ-

ment functionality in a central service, the software engineering cost required to support a large

51

number of cloud providers, which are constantly changing and updating their services and APIs,

can be minimized. Custom policies for different applications can still be created and used by the

central service, allowing it to adapt appropriately for many different applications and execution

paradigms.

4.2.1 Elastic Manager Prototype

Elastic Site Manager

Main Driver

Execute Policy

Manage Cluster

Cloud
Infrastructure

(Nimbus or EC2)

Cluster Queue
(Torque) Job Completes

Dispatch Job

Node Joins Cluster

Start / Stop VM

Status

Query, UpdateStatus

Figure 4.2: Architecture of the elastic manager prototype.

In [92] we created a prototype “elastic site” environment that dynamically extended a Torque

cluster with IaaS resources. The architecture is shown in Figure 4.2. The prototype implementa-

tion used the service-based approach described above, that is, it encapsulated elastic computing

functionality as a separate service. It monitored the Torque queue and responded to changes in

the queue by launching or terminating instances on Amazon EC2 or Nimbus clouds, which were

then added to the cluster at run time. The implementation dynamically opened and closed network

ports using iptables. Cloud instances exchanged host information and SSH keys with the Torque

head node through the Nimbus context broker [82]. Though the prototype provided valuable in-

52

sight into the requirements and challenges of large-scale elastic environments; it had a number of

limitations that prevented it from scaling appropriately, using multiple IaaS clouds simultaneously,

and recontextualizing continually as the environment adapted to demand.

Due to the initial design and implementation, the prototype elastic manager ran directly on

the Torque head node because it called and parsed Torque commands to perform cluster opera-

tions. The prototype called the Java-based Nimbus cloud client to launch and terminate instances.

The Nimbus cloud client polls until operations complete, meaning that individual calls to launch

a VM could take up to a few hundred seconds. This greatly limited the scalability of the elastic

manager since it could only run, approximately, a dozen simultaneous cloud client threads launch-

ing or terminating instances. Therefore, the prototype was only able to launch a dozen instances

every hundred seconds. While the prototype supported multiple cloud provider interfaces, it could

only be configured to use a single cloud at a time. Furthermore, the prototype deployment used a

preinstalled cluster image on each cloud and the image was preconfigured to trust the cluster head

node and join the cluster at boot. This required that the image be setup completely on every cloud

infrastructure supported by the cluster, a tedious and untenable process after the first time. The

prototype leveraged the Nimbus context broker to exchange host information and SSH keys between

newly launched cloud instances and the cluster head node. However, because the Nimbus context

broker can only contextualize nodes at launch, additional instances cannot join or leave the context

after the original group of nodes in a context have launched. And since the elastic environment con-

tinually adapts to demand (by launching and terminating nodes), the prototype could only launch

single-node contexts so the head node and cloud instance exchanged information. The prototype

also relied on Torque’s ability to SCP individual files to and from the head node. Unfortunately,

these limitations prevented the environment from supporting parallel jobs since the environment

didn’t provide a shared file system and cloud instances never exchanged host information or SSH

keys with each other. Lastly, the prototype had no self-monitoring or repairing capabilities, which

prevented the system from identifying failed instances and automatically replacing them. These

issues are addressed in our later implementations, described in the following sections.

53

4.2.2 Large-Scale Elastic Environment

To address the limitations of the initial prototype, we present a scalable elastic environment

capable of creating environments that span multiple clouds simultaneously and recontextualizing as

nodes join or leave the environment. The environment can also deploy a reliable and shared file sys-

tem that allows workers to access the same namespace. Instead of tightly integrating components,

a distributed design for the elastic manager is selected that also uses a service-based approach.

Our first iteration of the elastic manager leveraged components that evolved into the open source

Phantom service [80], which is based on the Ocean Observatories Initiative (OOI) Elastic Process-

ing Unit (EPU) [21]. The elastic management services provide a framework to monitor demand,

react to demand, and launch and terminate instances across different IaaS clouds. The system

consists of three main components: sensors that monitor demand, decision engines that respond to

demand, and a provisioner or auto-scaling service to manage IaaS resources. Unlike the Java-based

cloud client, the system uses IaaS Representational State Transfer (REST) interfaces and does

not continually poll until operations, such as VM launches and terminations, complete; instead,

it periodically queries the status of IaaS instances. The decision engine loops periodically and

responds to changes in demand by electing to launch additional IaaS instances, terminate existing

IaaS instances, or leave the environment unchanged. Sensors are deployed throughout the envi-

ronment that monitor demand and send information to the decision engine. However, the initial

elastic management components used a “pull” queue model where individual workers pull tasks

from a central queue. This differs from a “push” queue model, such as those used by batch-queued

clusters, where a central scheduler identifies available workers and dispatches tasks to the workers,

supporting both single-core and parallel jobs. To support a push queue model, we created a custom

decision engine that responds to job information, such as the number of queued jobs and the state

of workers. In the push queue model, the sensors both monitor demand and execute operations

on behalf of the decision engine, for example, by adding newly launched nodes to the cluster or

opening ports.

54

Unfortunately, because our initial design was tightly coupled with the elastic management

components, the entire elastic management software stack had to be configured and deployed,

including numerous unneeded services. This version also used the advanced message queueing

protocol (AMQP) [118] to communicate between all components, including the Torque sensor and

core elastic management services. This resulted in a moderately heavyweight deployment with an

unnecessary amount of required configuration and dependencies. To address this limitation, we

updated the architecture so that the sensors and policy are now decoupled from the central elastic

scaling services. Specifically, the architecture consists of the same basic components, including

sensors to monitor demand, a decision engine that executes a policy to evaluate demand, and an

auto-scale or provisioning service to scale the deployment as required. The auto-scaling service

is also responsible for monitoring the deployment and replacing failed instances. The process of

gathering sensor information, evaluating the policy, and responding to demand by expanding or

contracting the deployment loops continuously. The sensors and policy now communicate with

the central auto-scaling service using Amazon’s auto-scaling API as implemented by open source

auto-scaling services, such as Phantom [80]. This way, a user can deploy their sensors and policy on

any system they choose (e.g., a local Torque head node) and these components can communicate

with a central scaling service via a simple API supported by various libraries (e.g., boto [5]).

4.2.3 Automating Deployment and Configuration

To support multiple cloud providers seamlessly, the installation and configuration of worker

nodes is automated using a system integration framework, such as Chef [6], and software package

managers, such as Debian Apt [10]. Using this approach, a base image that is available on any cloud

(e.g., a new Debian 5.0 installation) is configured as a worker at boot by the system integration

framework and common software is installed using the software package manager. Once the software

is installed, the worker is configured to join the cluster head node automatically.

Unfortunately, many scientific applications are not currently bundled using common software

package managers. And worse yet, some scientific researchers are completely unaware of best

55

practices and community standards for software development and packaging. For example, some

developers only release a single source file of their application and do not version it as they continue

to develop. Other developers require that variables be hard coded in source files at the time of

deployment. To deploy complex scientific software stacks, we develop a generic software deployment

tool, app-deploy, to automatically download, configure, compile, and install scientific applications.

App-deploy allows users to specify the applications in a configuration file (e.g., the URL and build

process) and then download, compile, and install the entire application stack into a contained

environment. In cases where application deployments require extensive customizations, such as

modifying source files at deployment time, the customization process can be confined to a single

Python module.

4.2.4 Contextualization

The final component required to complete our elastic environment system is to create a shared

and trusted context between all nodes in the environment, originally presented in [95]. For example,

all nodes in a cluster must exchange SSH host keys and host information in order to communicate

with each other and support parallel jobs. Because elastic environments continually adapt to

changing demand the environment must be recontextualized periodically. To recontextualize elastic

environments, we propose a recontextualization service that securely and periodically exchanges

information between all nodes in the context. The service maintains an ordered list of nodes in the

context, including hostnames, IP addresses, SSH keys, and a generic data field for all nodes. The

service updates the list as nodes join or leave the environment. All nodes in the context periodically

query the recontextualization service, which sends an order list of updates of the context to the

node. The node then applies the updates in order (e.g., by adding the SSH keys of newly launched

nodes to the SSH known host file). The entire large-scale elastic environment implementation,

including application-adaptors, elastic management interfaces, and the recontextualization service

are presented in Chapter 6.

Chapter 5

Preemptible VM Implementation and Evaluation

The focus of this chapter is to present our preemptible VM implementation and evaluate its

effectiveness. To increase utilization of IaaS clouds while still offering on-demand VMs, the open

source Nimbus IaaS toolkit is extended to support preemptible and preset leases that deploy pre-

emptible VMs on idle cloud resources (as shown in Figure 5.1), further details can be found in [93].

The implementation allows RPs to address low demand by contributing IaaS resource cycles, which

would have otherwise been idle, to other processes, such as running HTC or volunteer computing

jobs. To evaluate the implementation, we configure the preemptible VMs as HTCondor workers to

process an HTC workload. We evaluate the ability of the system to increase the utilization of the

IaaS cloud without sacrificing the ability to service on-demand leases. We also consider the ability

of the preemption-enabled environment to process HTC jobs with minimal workload overhead. We

demonstrate that preemptible VMs are able to increase the utilization of an IaaS cloud from an

average of 36.36% and maximum of 43.75% to an average utilization of 83.82% and maximum of

100% while only introducing 6.39% workload overhead.

5.1 Implementation of Preemptible Virtual Machines

The open source Nimbus cloud computing toolkit provides on-demand access to resources,

allowing RPs to deploy a private or community IaaS cloud for their users. We extend Nimbus

2.6 to support preemptible and preset leases, deploying preemptible VMs on idle VMM nodes.

Our implementation makes a number of assumptions: 1) the Nimbus administrator must configure

57

Condor	
 Pool	

Nimbus	
 Cloud	

Workspace	
 Service	

VMM	
 Nodes	

Master	

Workers	

Workers	

	
 (Unavailable)	

VMM	
 1	

User	

VM	

VMM	
 2	

User	

VM	

User	

VM	

VMM	
 4	
 VMM	
 3	

Preempt.	

VM	

IniCate	
 or	
 Terminate	

Workspaces	

Submit	
 Job	
 (3	
 Tasks)	

Preempt.	

VM	

Dispatch	
 Tasks	

Dispatch	
 Task	

Preempt.	

VM	

Join	
 Pool	

IniCate	
 or	

Terminate	

Workspaces	

Launch	

Preempt.	
 VMs	

Cloud	

User	

HTC	

User	

User	

VM	

Figure 5.1: An example preemptible VM deployment that integrates idle IaaS resources, running
preemptible VMs, with an HTCondor pool to process high-throughput computing tasks.

preemption, 2) one preemptible VM is deployed per VMM node, 3) unless a maximum is specified,

preemption automatically attempts to deploy as many preemptible VMs as possible when enabled,

and 4) preemption cleanly shuts down the preemptible VM, allowing applications running inside the

preemptible VM to respond appropriately (e.g., by notifying a central scheduler to reschedule jobs

running inside the VM). Moreover, our implementation supports two termination policies: selecting

preemptible VMs at random and selecting the preemptible VM that has been running for the least

amount of time in order to minimize work lost by unexpected and premature termination. In

February 2011, our preemptible and preset leases were included in the Nimbus 2.7 release, allowing

Nimbus to deploy preemptible VMs on idle VMM nodes.

58

5.1.1 Configuration Options

Configuration options for preemptible VMs are specified in a single file on the Nimbus service

node, allowing administrators to enable and configure preemptible VMs easily. In addition to an

option to enable preemptible VMs, the options include:

• Max.instances: Specifies the maximum number of preemptible VMs to launch. The default

is 0 and launches as many as possible.

• Memory.MB: Specifies the amount of RAM to use for preemptible VMs. The default is 64

MB.

• VCPUs: Specifies the number of VCPUs to use for preemptible VMs. The default is 1

VCPU.

• Duration.seconds: Specifies the amount of time (in seconds) preemptible VMs can run

before being terminated. The default is one week.

• Termination.policy: Specifies the termination policy. The policies currently supported

include “most recent” to terminate the preemptible VMs that have been running for the

least amount of time and “any” that terminates a random preemptible VM. The default is

the former.

• Retry.period: Specifies the duration (in seconds) to sleep between attempts to deploy pre-

emptible VMs on idle VMM nodes. The default is 300 seconds.

• Network: Specifies the network to use for preemptible VMs. The supported options include

“public” and “private.”

5.1.2 Nimbus Workspace Service Extensions

For implementation, we extended the Nimbus workspace service [18] to support preemptible

and preset leases, which deploy preemptible VMs on idle VMM nodes. The workspace service

59

manages VMM nodes and handles user requests. Preemption functionality is added to Nimbus by

the creation of a separate Java class. When the Nimbus workspace service starts, the configuration

file is read, and if preemptible VMs are enabled, preemptible VMs are deployed on any available

VMM nodes. The process loops continuously, attempting to launch preemptible VMs on VMM

nodes and sleeping for the duration specified in the configuration file between iterations.

In addition to core preemption functionality, we also modified the Nimbus scheduler to de-

tect possible rejected on-demand requests and terminate preemptible VMs if needed. The current

implementation terminates a single preemptible VM and then attempts to service the on-demand

request. If the request still can’t be fulfilled, it continues terminating preemptible VMs and at-

tempting to launch user VMs until it either succeeds or all preemptible VMs are terminated, in

which case the user request is rejected and the user notified. Rejecting the request up-front, with-

out terminating preemptible VMs, would require a complete picture of VMM resources and VM

placement on those resources, something not currently provided by any IaaS toolkit.

5.2 Preemptible VM Evaluation with HTC Workloads

To evaluate preemption, we consider two perspectives: First, we examine the ability of the

system to increase utilization without sacrificing its ability to provision on-demand resources. Sec-

ond, we examine the ability of the preemptible deployment to process HTC jobs using cycles that

would have otherwise been idle. The evaluation environment consists of a preemption-enabled ver-

sion of Nimbus 2.6, deployed on the Hotel cloud on FutureGrid [12]. Nimbus manages a group of

16 VMM nodes, each with single-socket 2.4 GHz 8-core Intel Xeon processors and 3 GB of RAM

per core with 20 GB allocated to user VMs. This allows for a total of 128 single-core VMs. The

Nimbus workspace service, responsible for servicing on-demand user requests for VMs, ran on an

additional node on Hotel and also hosted the user VM image repository.

To evaluate our solution, we configure preemptible VMs to use the entire VMM node, that

is, a single preemptible VM uses all 8 cores on the VMM node. To fulfill user VM requests (even

single-core), the entire preemptible VM must be terminated. We chose this level of granularity

60

for the preemptible deployment to reduce virtualization overhead on VMM nodes and avoid extra

network contention caused by transferring a single preemptible VM for each core over the network.

We also manually push the preemptible VM image out to all VMM nodes ahead of time, again,

to reduce unnecessary network contention. Preemptible VMs are configured to join an HTCondor

pool at boot and the HTCondor master runs on a separate evaluation node. The HTCondor pool

only contains HTCondor workers from the preemptible VMs. Two additional nodes, the same as

the VMM nodes described above, are used to generate and manage the workload. One of the nodes

hosts the HTCondor master service and queues the HTC HTCondor jobs. The other node executes

the Nimbus workspace service workload by requesting single-core on-demand user VMs from the

Nimbus workspace service.

All evaluations use the “most recent” termination policy. This policy terminates the pre-

emptible VMs that have been running for the least amount of time first. Preemptible VMs are

shutdown cleanly when they are terminated, which allows the HTCondor workers running inside the

preemptible VM to notify the master to reschedule any jobs running on the VM. If clean shutdown

isn’t used, HTCondor relies on timeouts to reschedule jobs; in our experience this can sometimes

take up to two hours. (At the time of our evaluation, HTCondor had an experimental feature to

reverse the direction of the pings used to determine the status of worker nodes, which would allow

us to trash the preemptible VM and quickly reschedule its jobs. However, when we enabled the

feature it did not behave as expected, therefore, we did not use it and instead chose to shutdown

the preemptible VMs cleanly.)

5.2.1 Preemption Evaluation Metrics

We use the following four metrics to evaluate preemption from both the perspective of the

IaaS cloud provider as well as the HTC user. The metrics are:

• Utilization: The percentage of user cycles consumed by CPU cores on the VMM nodes in

the IaaS cloud. This includes cycles consumed by HTC jobs and on-demand user VMs. We

61

do not include the cycles consumed by preemptible VMs that are not running HTC jobs.

Therefore, it is possible for all VMM nodes to be running preemptible VMs, but not HTC

jobs, and still have 0% utilization. Higher utilization is better.

• First queued time: The amount of time that elapses between the time a HTCondor job is

first submitted to the HTCondor queue and when it begins executing for the first time.

• Last queued time: The amount of time that elapses between the time an HTCondor job

is first submitted and the time the job begins executing before completing successfully.

Because on-demand user VMs can cause the termination of preemptible VMs at any time,

HTCondor jobs may be rescheduled multiple times before finally executing until successful

completion. Shorter time is better since this metric represents the time it takes until the

job is able to run successfully, producing results for the user.

• User VM service response time: The amount of time it takes the Nimbus workspace service

to respond to a user request for on-demand VMs. More specifically, the amount of time

that elapses between the time the workspace service first receives the request and the time

it determines whether to reject the request or launch the appropriate VMs. This does not

include the time required to propagate the VM images or boot the VM. If preemptible

VMs are deployed, this metric does include the time to terminate them (either via clean

shutdown or by trashing them).

5.2.2 Workload Traces

The workloads used for evaluation consist of real workload traces that are representative of

common HTC and IaaS workloads. The workloads are adjusted to fit the size of our evaluation

environment and are summarized in Table 5.1. The HTCondor workload is a workload trace from

the Condor Log Analyzer at the University of Notre Dame [8]. It contains 748 jobs that each sleep

for variable amounts of time. The minimum job runtime is 1 second and the maximum is 2089

seconds, with a standard deviation of 533.2. The trace submits 400 jobs immediately, followed by

62

Table 5.1: Preemption evaluation workloads that consist of serial jobs for the HTCondor workload
and requests for 8-core VMs for the IaaS workload.

HTCondor Workload

Number of Jobs 748
Minimum runtime 1 second
Maximum runtime 2089 seconds

IaaS Workload

Number of available cores 128
Minimum on-demand instances 0
Maximum on-demand instances 56

348 jobs 2573 seconds later. The IaaS cloud workload trace consists of user requests for on-demand

VMs. The workload is from the University of Chicago’s (UC) Nimbus science cloud. This workload

trace was chosen because it is generally characteristic of the traces observed on the UC Nimbus

cloud, despite its lack of dynamism. The UC Nimbus cloud did not appear to be highly dynamic on

relatively short time intervals (e.g., over a few hours), instead, users typically requested a specific

number of instances for a long period of time (e.g., 6 VMs for 24 hours). The IaaS workload also

demonstrates the expected behavior of an over-provisioned cloud, that is, it contains many idle

VMM nodes that are available to service on-demand VMs. We also multiplied the requests for

VMs in the workload by 8 because the UC Nimbus science cloud only contained 16 cores while

our evaluation environment consists of 128 cores. Thus, a request for a single-core VM on the UC

Nimbus cloud would be a request for 8 single-core VMs in our evaluation.

Both workloads submit individual and independent requests for a single core. The HTCondor

jobs are “sleep” jobs that sleep for the desired amount of time. For the on-demand workload, VMs

are launched and run for the appropriate amount of time. Because preemptible VMs use the entire

VMM node, they are capable of executing 8 jobs concurrently across all 8 cores on the VMM node.

Finally, we terminate the evaluation shortly after the overlapping HTCondor trace completes.

Despite the infinite number of possible on-demand and HTC workloads we could have con-

sidered, many of which may have artificially highlighted the usefulness of preemptible VMs to the

on-demand IaaS user community or the HTC user community, we instead chose to base our evalu-

63

ation off of two realistic workload traces. With these workload traces we are able to demonstrate

the usefulness of preemptible VMs to both user communities given at least one possible scenario.

5.2.3 Understanding System Behavior

0 1000 2000 3000 4000 5000 6000
Second

P
re

e
m

p
ti

o
n
 D

is
a
b
le

d

0 10 20 30 40 50 60 70 80 90 100

Figure 5.2: Utilization of an IaaS cloud with preemptible VMs disabled.

We compare three scenarios to understand the interactions between preemptible VMs, on-

demand VMs, and the HTC workload. The first scenario only considers the on-demand IaaS user

workload. In this scenario, the IaaS cloud achieves an average utilization of 36.36%, Figure 5.2,

with a minimum utilization of 0% and a maximum of 43.75%. The second scenario considers the

HTCondor workload. In this scenario, we execute the HTCondor workload using all 16 VMMs (128

cores) without the on-demand IaaS user workload. The entire workload completes in approximately

84 minutes (5042 seconds) and is shown in Figure 5.4. Finally, in the third scenario, the HTCondor

workload is combined with the on-demand IaaS user workload. By combining the two workloads,

the HTCondor workload takes an additional 11 minutes and 45 seconds to complete, completing

64

0 1000 2000 3000 4000 5000 6000
Second

P
re

e
m

p
ti

o
n
 E

n
a
b
le

d

0 10 20 30 40 50 60 70 80 90 100

Figure 5.3: Utilization of an IaaS cloud with preemptible VMs enabled.

0 1000 2000 3000 4000 5000 6000
Second

0

100

200

300

400

500

600

700

800

Jo
b
s
S
u
b
m
it
te
d
 /
 C
o
m
p
le
te

0

20

40

60

80

100

120

140

Jo
b
s
R
u
n
n
in
g

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

V
M
M
 c
o
re
s

Preemptible VM cores (8 cores / VM)

User VM cores (1 core / VM)

Total VMM cores

Figure 5.4: Trace of the HTCondor workload executing on all VMM nodes without the IaaS
workload.

65

0 1000 2000 3000 4000 5000 6000
Second

0

100

200

300

400

500

600

700

800

Jo
b
s
S
u
b
m
it
te
d
 /
 C
o
m
p
le
te

0

20

40

60

80

100

120

140

Jo
b
s
R
u
n
n
in
g

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

V
M
M
 c
o
re
s

Preemptible VM cores (8 cores / VM)

User VM cores (1 core / VM)

Total VMM cores

Figure 5.5: Trace of the IaaS workload running on-demand VMs along with the HTCondor workload
executing on available preemptible VMs.

in approximately 96 minutes (5747 seconds), as shown in Figure 5.5. At the same time, the

utilization of the IaaS cloud, Figure 5.3, increases to an average utilization of 83.82% with a

minimum utilization of 0% and a maximum of 100%. The utilization drops just before 6000 seconds

into the evaluation because HTCondor jobs begin to complete, and therefore, the IaaS cloud is only

running on-demand user VMs.

The utilization of the infrastructure increases significantly without sacrificing the ability to

launch on-demand VMs because the IaaS cloud is able to process HTCondor jobs and service user

requests for on-demand VMs at the same time. However, the increase in utilization is dependent

on the amount of work in the HTC workload, longer and more jobs will translate into higher

utilization. However, such jobs may not translate into high efficiency. Long-running HTC jobs are

more likely to be interrupted by on-demand VMs, requiring the jobs to be requeued, and possibly,

lose all work unless they support checkpointing. Increasing utilization of the IaaS cloud without

66

100 200 300 400 500 600 700
Condor Job ID

200

400

600

800

1000

1200

1400

1600

S
e
co

n
d
s

No User VMs

Preemption Enabled

Figure 5.6: Time from when HTCondor jobs are submitted until they first begin executing.

sacrificing the ability to service on-demand requests certainly benefits the cloud provider. Figure

5.5, also demonstrates that preemption is advantageous to HTC workloads, as it is only delays

the workload 11 minutes and 45 seconds when combined with on-demand VMs. However, it is

presumed that the cost of utilizing preemptible VMs would be lower than dedicated on-demand

VMs since the cloud provider can reclaim preemptible VMs at any time and without warning.

5.2.4 Understanding System Performance

To understand how preemption impacts on-demand users and HTC users, we again consider

the three scenarios. The first scenario is only the on-demand IaaS workload, the second scenario is

only the HTCondor workload running on the 128-core VMM infrastructure, and the third scenario

overlays the first two scenarios.

As we would expect, the HTCondor first queued time, that is, the time from when the job is

first submitted until it first begins executing, is smallest when HTCondor has exclusive access to

67

100 200 300 400 500 600 700
Condor Job ID

200

400

600

800

1000

1200

1400

1600

S
e
co

n
d
s

No User VMs

Preemption Enabled

Figure 5.7: Time from when HTCondor jobs are submitted until they begin executing for the last
time before completing successfully (e.g., due to rescheduling because VMs were terminated).

the resources, see Figure 5.6. Introducing on-demand, IaaS user VMs increases the HTCondor first

queued time for some jobs because there are fewer preemptible VMs processing HTCondor jobs.

On-demand VMs also increase the amount of time HTCondor jobs are delayed until finally executing

before successful completion, as shown by the 48 spikes in Figure 5.7. These 48 jobs actually first

begin executing much earlier, as shown by the lack of spikes in Figure 5.6, however, the jobs are

delayed by the arrival of on-demand VMs, which cause preemptible VMs to be terminated and

HTCondor jobs to be preempted. Of the 48 preempted jobs, the average delay before executing for

the final time is 627 seconds, with a standard deviation of 76.78. The minimum delay is 273 seconds

and the maximum is 714 seconds. These 48 jobs spent a total of 22,716 CPU seconds processing

the HTCondor workload before they were preempted. The entire HTCondor workload requires a

total of 355,245 CPU seconds, thus, for these experimental traces, the use of a preemption-enabled

IaaS cloud resulted in 6.39% overhead for the HTCondor workload.

68

0 10 20 30 40 50
VM ID

0

2

4

6

8

10

12

14

S
e
co

n
d
s

No Preemption

Preemption Enabled

Figure 5.8: Time to process an on-demand request for a VM.

Preemptible VMs also impacts user requests for on-demand VMs, as is shown in Figure 5.8.

Without preemption, all on-demand requests are handled in 2 seconds or less. With preemption,

the amount of time required to respond to an on-demand request can be as high as 13 seconds

when a preemptible VM needs to be terminated. After the preemptible VM is terminated for a

single-core on-demand VM, the remaining 7 cores can be used to service on-demand VMs within 2

seconds. The large increase is due to the fact that Nimbus must cleanly shutdown preemptible VMs

in order to accommodate on-demand user VMs. Because the evaluation environment consists of

8-core VMM nodes and preemptible VMs use all 8 cores, terminating one preemptible VM actually

frees 8 cores for on-demand user VMs, allowing an additional 7 on-demand requests for single-core

VMs to be served within seconds.

69

5.3 Conclusion

The usefulness of preemptible VMs clearly depends on the characteristics of the workloads

and the environment configuration, as well as the termination policies employed for preemptible

VMs. Our evaluation, which uses representative HTC and IaaS workload traces, demonstrates

that a shared infrastructure between IaaS clouds and HTC workload managers can be highly

beneficial to both cloud providers and HTC users. Preemptible VMs helps increase utilization of

the cloud infrastructure, and therefore decrease overall cost, while also contributing cycles that

would otherwise be idle to processing HTC jobs without impacting on-demand IaaS leases. In

particular, our representative HTC and IaaS traces show that it is possible to increase utilization of

the IaaS cloud from an average utilization of 36.36% to 83.82% while only introducing 6.39% HTC

workload overhead and delaying a portion of IaaS on-demand requests by approximately 10 seconds.

Preemptible and preset leases also provide the scientific community with a new type of resource

lease, allowing them to potentially move their workloads to the cloud for a reduced cost.

Chapter 6

Elastic Environment Implementation and Evaluation

The flexible cloud architecture adapts to changing demand by provisioning IaaS resources

as demand increases and relinquishing IaaS resources as demand decreases, creating an elastic

environment. In cases where demand is exceptionally high, the elastic environment can outsource

demand to community or public IaaS clouds. Much of the elastic environment functionality is

contained in three components: a sensor service to monitor demand, a decision engine that executes

a policy to respond to demand, and an auto-scaling service capable of launching and terminating

VMs on IaaS clouds. This chapter describes our work to create, deploy, and evaluate an elastic

environment, originally presented in [95].

6.1 Implementation

The implementation extends existing elastic management services with support for batch-

queue clusters and automatically scales the environment based on immediate demand. System

and software integration frameworks are used to automate deployment of the elastic environment

services, workers, and applications. We also develop app-deploy, a generic tool for deploying com-

plex software stacks that can deploy a wide variety of applications with a single command into a

contained environment. The dynamic elastic environments are periodically recontextualized with

a REST-based service that exchanges host information, SSH keys, and any other required data.

Various file system solutions can be deployed using the recontextualization broker and system inte-

gration frameworks in order to meet the demands of different applications and workflows. Finally,

71

the elastic environment is evaluated using NSF FutureGrid and Amazon EC2, demonstrating its

scalability and its ability to leverage multiple clouds simultaneously. Figure 6.2 is an example

deployment of an elastic environment, consisting of a sensor to monitor the demand of an HPC

cluster, a policy to respond to sensor information, and an auto-scaling service to launch and ter-

minate instances on IaaS clouds.

6.1.1 Elastic Management

The initial implementation of elastic management capabilities leveraged components that

evolved into the open source Phantom [80] service, which provides a framework to monitor demand,

respond to demand, and interface with IaaS clouds. The components use the Advanced Message

Queuing Protocol (AMQP) [118] for communication. The three main components are: sensors, a

decision engine (to execute a policy), and a provisioner or auto-scaling service to interface with

IaaS clouds. However, originally only AMQP-based sensors were supported, which use a “pull”

queue model where available workers connect to the queue and request work. Unfortunately, many

existing scientific applications and workflows do not currently use AMQP as a message protocol

for communication. To address this, we develop a custom sensor that integrates with a widely

used cluster resource manager, Torque [72], allowing any Torque-based workflow to leverage elastic

environments seamlessly. We also develop a custom decision engine to respond to Torque sensors,

which reports information about the jobs in the queue and the status of workers.

The Torque sensor is written in Python and it monitors the Torque queue and sends infor-

mation to the decision engine. The sensor gathers job information, including the total number of

queued jobs and the total cores requested by queued jobs, as well as node information, including

a list of Torque worker hostnames and the state of workers (free, busy, offline, down, etc.). The

Torque sensor executes commands on behalf of the decision engine, which does not need to run on

the same system as the Torque head node. For example, when a new node is assigned an IP at

boot, the information must be sent to the Torque server node so it can be added to the cluster.

Similarly, when the decision engine elects to terminate workers, it instructs the sensor to mark

72

nodes as offline and remove them from the cluster, etc.

The custom decision engine responds to Torque sensor information by choosing to either

launch additional workers, terminate workers, or leave the environment unchanged. Each time

the decision engine loops (typically every few seconds), the decision engine performs a number of

actions. First, it determines whether or not to launch additional instances based on the number

of queued jobs and available workers. For example, if the decision engine implements a relatively

basic on-demand policy it would calculate the number of instances to launch as the total number

of queued jobs minus the total number of available workers. If the result is a positive integer,

the decision engine would notify the provisioner to launch that many instances. Second, after

evaluating whether or not to launch instances, the decision engine then instructs the Torque sensor

to add any recently launched instances to Torque, mark any idle workers as offline in preparation

to terminate them, and terminate any workers it had previously marked as offline. And third, the

decision engine also replaces stalled instances. Instances are considered stalled if they have been

pending for 10 minutes or more, a value that is configurable by the administrator. However, if even

one instance that was pending moves into the running state, the decision engine waits another 10

minutes before attempting to replace stalled instances.

6.1.2 Support for Auto-Scale Services

We also decouple the sensors and policies from individual elastic management components,

extending them to support central cloud auto-scaling services via Amazon’s auto-scaling API as

implemented by open source services such as Phantom [80]. Amazon’s auto-scaling API provides

an explicit mechanism for creating auto-scaling groups, which define the desired capacity of the

environment, that is, the number of instances to deploy as well as minimum and maximum values

for the group. The auto-scaling service, such as Amazon Auto Scale or Phantom, continually

monitors the instances and ensures that the group never falls below the minimum or exceeds the

maximum. For example, a user may create a launch configuration for an auto-scale group that

defines the clouds to use. The launch configuration is registered with the auto-scaling service and

73

then the user creates an auto-scale group, defining the number of instances to deploy. The auto-

scale service then deploys the instances across the different clouds and continually monitors them,

replacing them if they crash. The lightweight sensors and policies are implemented in Python and

use boto [5] to communicate with auto-scaling services. In particular, the sensor monitors a Torque

queue and provides job and node information to the policy, which evaluates this information,

along with various user-defined preferences (e.g., USD to spend per hour), and either launches

instances, terminates instances, or leaves the environment unchanged. The Python sensor and

policy loop continuously, querying the status of the environment and evaluating demand. Reactive

environments should loop frequently while less reactive environments may not need to adapt to

demand as frequently. The initial public implementation, Phorque, queries Torque and includes a

decision engine that integrates with Phantom for auto-scaling; it is available on GitHub [25].

6.1.3 Automating Service, Worker, and Application Deployment

Base elastic environment instances, which include the elastic management components and

Torque server, are deployed via cloudinit.d [44]. Cloudinit.d is an open source tool to orchestrate

IaaS cloud deployments. It uses launch plans to specify the number of instances to launch as well as

the services to run in those instances. Cloudinit.d is similar to the Linux init.d process; it organizes

service deployment into run levels where services in each level must complete before proceeding to

the next. In addition to launching instances and deploying services in those instances, cloudinit.d

can be used to monitor, repair, and terminate the environment. This allows quick and repeatable

environment deployments using a single command.

After the elastic environment launches new instances, workers need to automatically install

and configure cluster software as well as user software. This is a crucial component of the elastic

environment since workers may join or leave at any time. The Chef [6] systems integration frame-

work is used to download, install, and configure software for the environment. Chef uses “recipes”

to automate common system administration tasks, including software installation, starting services,

and running bash scripts. Specifically, we develop a set of Chef recipes to download, compile, and

74

install Torque, and other miscellaneous packages required by the environment.

To deploy complex scientific application stacks in a contained environment, we create a

generic deployment application, app-deploy. Applications and user data are specified in a simple

configuration file. App-deploy then deploys applications into a contained environment, all within a

single directory, e.g., /opt/software/. Each application is deployed in its own directory within the

specified deploy directory. For example, QIIME might be deployed in /opt/software/qiime-1.4.0/.

App-deploy uses threads to download and install applications in parallel. Dependencies can be

specified in the configuration file and app-deploy will wait until all dependencies have deployed

before attempting to install the applications that depend on them. App-deploy also generates an

environment configuration file, activate.sh, that defines information relevant to the environment,

such as environment variables. The user can simply “source” the activate.sh script to activate the

environment, setting their PATH environment variable correctly for all applications.

The app-deploy configuration file is divided into three sections: global, data, and applications.

The global section defines information that includes the final deploy directory for all applications,

the log level, and the number of threads. Applications and data are specified by their location

(e.g., a URL or repository), the version to deploy, any extra options for GNU autoconf configure or

make, any required environment variables to set, dependencies that should be installed first, and

finally, the build type of the application. Currently, app-deploy supports the following build types:

GNU autoconf, Python distutils, make, make-install, compile an individual C or C++ file, ant,

copy (e.g., to copy a precompiled binary to the deploy directory), and custom. Applications that

require custom deployments can define their deployment process in a Python method or module,

for example, if the application source file needs to be patched before compiling.

Instead of configuring and maintaining worker VM images on each cloud provider, automating

the deployment and configuration of worker instances allows us to leverage multiple cloud providers.

A base image, common across all cloud providers (e.g., a fresh install of Debian 5.0 Lenny) is

selected, and then can be used as a worker on any cloud provider at runtime. However, because

downloading, configuring, and installing the entire software stack on each worker is time consuming

75

and introduces possible points of failure, the software can be cached in the VM image, greatly

speeding up the deployment process.

6.1.4 Recontextualization

Elastic environments constantly adapt to changes in demand, therefore, instances in the en-

vironment need to continually exchange information as they join or leave the environment. To

illustrate, cluster instances that use host-based SSH authentication need to exchange host informa-

tion, including hostnames and IP addresses as well as SSH host keys, with new instances as they

join the environment. To handle such events, we propose a recontextualization broker that period-

ically and securely exchanges host information (short and full hostnames as well as IP addresses),

SSH public host keys, and generic text-based data between all instances in a context. The broker

is a lightweight, Representation State Transfer (REST), recontextualization service. Unlike other

contextualization solutions, such as the Nimbus context broker [82] or Wrangler [78], our recontex-

tualization broker does not use the notion of roles to differentiate between nodes in a context; it

exchanges a set of information between all nodes in the context. A recontextualization client allows

users to create a new context with the recontextualization broker and a recontextualization agent

runs inside instances and exchanges host information with other instances through the broker. All

components are written in Python and use REST over HTTPS for communication; symmetric keys

are used for both user and context security.

The recontextualization agent sends its information to the broker and receives information

about other nodes in the context from the broker. It uses a set of administrator-created scripts

(e.g., bash scripts) to define how to handle updates from the broker. For example, when new nodes

join an HPC cluster, the environment, their hostname, IP address, and SSH public key need to

be added to the ssh known hosts file. The scripts are grouped into four categories: initialization

scripts that are used by the agent when it first starts, add node scripts that are executed when the

agent processes updates for a node that has joined the context, delete node scripts for when the

agent processes updates for a node that has left the context, and restart scripts.

76

Recontextualiza-on	

Client	

Resource	

Provider	

Resource	
 Provider	

Metadata	
 Server	

Recontextualiza-on	

Broker	

Instance	

Disk	
 Image	

1	
 Create	

Context	

Recontextualiza-on	
 Agent	

2	

3	

4	

5	

6	

7	

Context	
 created,	

responds	
 with:	

•  Context	
 ID	

•  Context	
 URI	

•  Context	
 key	

•  Context	
 secret	

Launch	
 resources	

(ID,	
 URI,	
 key,	
 secret)	

Context	

Read	

userdata	

(ID,	
 URI,	
 key,	

secret)	

Provide	
 informa-on	

(hostname,	
 IP	
 address,	
 etc.)	

Query	
 for	
 updates	

Send	
 updates	

Figure 6.1: The recontextualization process begins when the recontextualization client requests
that the broker create a new context. The context information is then passed to instances in the
context via the cloud provider’s metadata server. The agent reads its userdata field to obtain the
context information and then sends its information to the broker in order to join the context. Steps
6 and 7 loop repeatedly as the agent queries for updates to the context.

Recontextualization starts when a user creates a context using the recontextualization client.

This sends a request to the broker, which creates the context and responds with a unique context

ID, a uniform resource identifier (URI), and a unique context key and secret. As an example,

context 1 would have the following URI: https://hostname:port/ctx/1 and the key and secret

are random strings unique to the context, allowing only those that know the strings to join the

context. When the user launches a cloud instance, this information is passed to the agent inside

the instance via the IaaS cloud’s userdata field. When the instance boots, the agent starts and

reads the instance’s userdata field to get the context information; it then sends its information

(hostnames, IP address, SSH public host key, and any generic text-based data) to the broker. The

broker maintains an ordered list of all nodes that join or leave a context. The list begins with

77

ID 0, signifying no updates. Each list entry contains all of a node’s information and an action

specifying whether the node joined or left the context. The agent enters into a loop, referred to as

the recontextualization period, after sending its information to the broker. At each loop iteration,

the agent requests updates from the broker and processes them by calling its add node scripts,

remove node scripts, and restart scripts. To request updates, the agent sends its current ID in the

ordered list, beginning at 0, to the broker. The broker compares the ID to the latest list ID for the

context and, if they do not match, the broker sends the updated portion of the list to the agent.

The agent applies the updates in order by executing its add node scripts for nodes that joined the

context and delete node scripts for nodes that left the context, followed by its restart scripts. When

the agent executes the add node scripts or the delete node scripts, it passes the host information

for the entry in the list to the scripts. After restarting any required services, the agent sleeps for

a short time before looping again. The amount of time the agent sleeps determines the reactivity

of the recontextualization process; highly reactive environments should loop frequently whereas

relatively stable environments should loop less often. Future work will examine the possibility of

using a “feedback control” mechanism to automatically adjust the recontextualization period. The

entire recontextualization process is shown in Figure 6.1.

It should be noted that while the recontextualization broker is developed specifically for

elastic IaaS environments, it could also be used with physical resource deployments (e.g., if cluster

nodes need to exchange information periodically to reconfigure themselves). Additionally, it does

not currently have a mechanism to “inject” the agent into a VM image, which would provide a

fully automated recontextualization process; instead, the agent must be installed in the image by

an administrator and configured to start at boot.

6.1.5 Support for Shared Data Access

Because the elastic environment must support a common scientific workflow patterns, a

reliable shared file system is needed. Individual cluster resource managers, such as Torque, may

include capabilities to transfer input data to worker instances before jobs begin executing and

78

Cloud	
 Provider	
 Cloud	
 Provider	
 Cloud	
 Provider	

Recontextualiza3on	

Broker	

Head	

Node	

Submit	

job	

	

Worker	
 node	

	

Worker	
 node	

Data	

File	
 system	
 server	
 File	
 system	

client	

File	
 system	

client	

Auto-­‐Scaling	

Service	

Amazon	

API	

Job	
 queue	

DE	
 /	
 Policy	

Sensor	

Execute	
 job	
 Execute	
 job	

Physical	
 resources	
 Cloud	
 resources	

Figure 6.2: An example elastic environment deployment with support for shared data access.

output data once jobs complete. However, this prevents workers from using a shared file system,

which many existing scientific workflows assume. Therefore, our current implementation can deploy

shared file systems, such as NFS, using the recontextualization broker and system integration

frameworks. These solutions enable administrators to configure the deployment for their specific

needs, allowing any number of file system solutions to be deployed. To date, the elastic environment

implementation natively supports NFS [110], XtreemFS [76], and Gluster [13] and it includes a set

of scripts to download, configure, and install these file systems on both servers and clients. For the

initial implementation, the file system server is only deployed on the cluster head node, and it is

not replicated across multiple nodes. The file system server exports a portion of the underlying

head node file system, providing a single mount point and shared file system for all clients in the

environment, as shown in Figure 6.2. However, in previous deployments, we found that NFS often

fails in wide-area environments, such as multi-cloud environments that operate across the Internet

and therefore recommend that NFS only be used for deployments within a single cloud. Gluster

79

and XtreemFS have proven to be relatively reliable distributed and scalable file systems for both

single- and multi-cloud deployments. Users can access the Gluster file system via NFS and SMB

protocols as well as Gluster’s native GlusterFS protocol.

6.2 Evaluation

We evaluate the ability of our elastic environment to react to changes in demand, recon-

textualize as the environment adapts, and scale appropriately. The performance of the underlying

cloud provider hardware, which is tied directly to the performance of the underlying node, network,

and storage performance, as well as the software configuration of the deployment, is not examined.

Other studies have evaluated the performance of virtualization technologies and IaaS cloud provider

solutions [64], [102], [71], [66], [75]. Users with strict performance requirements should select the

appropriate cloud hardware, such as Amazon EC2’s cluster compute instances, which ranked #42

on the November 2010 Top500 [19].

The evaluation environment consists of deployments using NSF FutureGrid and Amazon

EC2. On FutureGrid, the Hotel cloud (fg-hotel), located at the University of Chicago (UC), and

Sierra (fg-sierra), located at the San Diego Supercomputer Center (SDSC) are used. Both clouds

run Xen [42] for virtualization. The recontextualization broker and cluster head node are deployed

in separate VMs on Hotel for all tests. The VM for the recontextualization broker consists of eight

2.93 GHz Xeon cores and 16 GB of RAM; the cluster head node VM has two 2.93 GHz Xeon

cores and 2 GB of RAM. The cluster uses Torque 2.5.9 and Maui 3.3.1 [77], and also runs the

elastic management components, including a sensor, decision engine, and provisioner. Deployment

and configuration of the head node is completely automated using cloudinit.d. Worker nodes are

deployed on both Hotel and Sierra and consists of two 2.93 GHz Xeon cores and two GB of RAM.

Evaluations involving EC2 use 64-bit EC2 east micro instances as workers, primarily because micro

instances are inexpensive, at only two cents per hour. Micro instances use Elastic Block Storage

(EBS) for disk and contain up to two EC2 compute units with 613 MB of RAM. (An EC2 compute

unit is defined as the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon.)

80

Deployment of worker nodes is completely automated. As part of the contextualization phase,

worker nodes mount /scratch from the head node using NFS.

For all evaluations, the sensor is configured to query Torque every 60 seconds to gather job

and worker information. The decision engine executes every 5 seconds, querying IaaS clouds for

changes in instance state and executing the policy to adjust based on demand. Recontextualization

agents send their information to the broker when they first start and then query the broker for

updates every 120 seconds. We believe that a 120-second recontextualization period is appropriate

for scientific batch-queue workloads, which typically contain jobs that run for hours, or possibly

days since the environment won’t need to be recontextualized more frequently than every few

minutes, at a minimum.

6.2.1 Metrics

We define the metric reactivity time to be the time from when the first job is submitted

until the time the last job begins running for a group of jobs submitted together. For MPI jobs,

enough cores must be available to run all tasks for all jobs. That is, if a single 128-task MPI job

is submitted to a cluster that deploys single-core IaaS nodes, 128 nodes must launch and join the

cluster before the job will run. We define the metric recontextualization time to be the time from

when a new node attempts to join a context until the time all nodes in the context receive and

apply the updates for that node. For example, if 256 nodes are running and the context is stable

(all 256 nodes are aware of each other and have exchanged host information), and then a new

node attempts to join the context by sending its information to the broker, the recontextualization

time is the amount of time from when the new node sends its information until the time when all

256 nodes have executed their scripts to add the new node to the context. We also examine the

ability of the elastic environment to deploy instances across multiple clouds simultaneously and

scale quickly. For these evaluations we use a series of traces showing workload information (jobs

submitted, queued, running, complete) and VM information (VMs running and cores available).

81

6.2.2 Workloads

The workload for the reactivity and recontextualization tests consist of a simple MPI appli-

cation that sleeps for an hour. In the reactivity tests, we only measure the time it takes until the

job begins executing, and then we gather the required logs and terminate the environment. For the

recontextualization test, one hour is more than enough time for the initial nodes to boot and for

the context to stabilize, and then, for an additional node to boot and join the context. Once the

new node joins the context and all other nodes apply their updates, we gather the required logs

and terminate the environment. In the case of the multi-cloud and scalability tests, we examine the

ability of the environment to scale up as demand increases and scale down as demand decreases.

Therefore, the workload consists of individual single-core “sleep” jobs that sleep for 30 minutes.

6.2.3 Understanding System Responsiveness

To understand system responsiveness we consider the amount of time it takes the environment

to react to changes in demand, or reactivity time, and we also consider the amount of time it takes

a context, or group of nodes, to recontextualize when the context is updated, referred to as the

recontextualization time. The reactivity time is the amount of time it takes a newly submitted

job or group of jobs to begin running. This includes the time it takes the environment to detect

the change in demand, execute the policy to respond to demand, request instances from an IaaS

provider (if applicable, as determined by the policy), and wait for the instances to boot and join

the cluster.

To measure reactivity time, we submit MPI sleep jobs, causing the environment to launch

the needed number of nodes and begin running the job. We used EC2 east micro instances (as

single-core workers), and performed a series of tests, beginning with 2 node clusters and increasing

to 256, shown in Figure 6.3. We ran the test three times for each cluster size and between each

test we allowed the environment to terminate all worker nodes and return to an idle state with an

empty job queue.

82

1 2 4 8 16 32 64 128 256
Nodes

0

500

1000

1500

2000
R

e
a
ct

iv
it

y
 t

im
e
 (

s)

Figure 6.3: Reactivity time for 2-node clusters through 256-node clusters (3 tests for each cluster
size).

Interestingly, small cluster sizes, those from 2 nodes through 16 nodes, all have relatively

similar reactivity times. However, larger cluster sizes have increasing reactivity times. In particular,

32- and 64-node clusters each have one test with a reactivity time similar to smaller clusters while

the other two tests have much higher reactivity times. This can be explained by the fact that the

decision engine replaces stalled instances after 10 minutes. We observed that EC2 micro instances

would periodically fail in our evaluation; the instances would most often fail to boot completely or

access the network. As we deployed larger clusters, the chances of encountering a failed instance

increased as we can see by the increasing reactivity times for larger clusters. This isn’t to say that

smaller clusters won’t encounter failed instances occasionally, only that we did not encounter any

in our evaluation.

To measure recontextualization time, we submit MPI sleep jobs that request the appropriate

number of cores and allows the cluster to boot, contextualize, and start running the job. Once

83

the job begins running, we submit another single-core sleep job, causing the elastic environment

to launch an extra instance. Once the extra node booted and joined the cluster, we measured the

time from when the new instance sent its information to the broker until all other nodes receive

and apply the host information for the new node. We rely on Amazon’s ability to synchronize the

clocks of instances, which is done at the VMM layer using NTP and passed to the VMs. Again, we

used EC2 micro instances, from 2 node clusters through 256 node clusters, running three tests for

each cluster size.

1 2 4 8 16 32 64 128 256
Nodes

0

20

40

60

80

100

120

140

R
e
co

n
te

x
tu

a
liz

a
ti

o
n
 t

im
e
 (

s)

Figure 6.4: Recontextualization time for 2-node clusters through 256-node clusters (3 tests for each
cluster size). Those showing fewer than 3 points are cases where values overlap.

As shown in Figure 6.4, all of the clusters are fully able to recontextualize within 1 second

of the 120-second recontextualization period. Those tests that fully recontextualize before the 120

second period do so because all of the nodes in the environment check in with the broker shortly

after the additional node sends its information to the broker. This is the result of the random

timing when nodes boot and install their software. The 2-node cluster tests demonstrate this

84

characteristic clearly. For one of the tests, the cluster recontextualizes quickly while for another

test it takes almost two minutes for both nodes to recontextualize. As the number of nodes in the

context increase, the likelihood that one or more nodes will require the full 120 seconds (after the

new node joins the context) to check in with the broker increases, as shown by the three 256-node

tests that fully recontextualize one second after the 120-second recontextualization period.

6.2.4 Multi-Cloud and Scalable Elastic Computing

0 1000 2000 3000 4000
Second

0

50

100

150

200

250

Q
 /
 C

 /
 S Jobs submitted

Jobs queued

Jobs complete

Jobs running

0

50

100

150

200

250

R
u
n
n
in

g

0 1000 2000 3000 4000
0

50

100

150

200

250

C
o
u
n
t

fg-hotel VMs running

Total cores available

Figure 6.5: Trace of a deployment running 256 30-minute “sleep” jobs on Hotel.

To examine the ability of the elastic environment to scale as demand fluctuates and leverage

multiple clouds simultaneously, we submit workloads containing 30-minute single-core “sleep” jobs

that run to completion. For the first test, we only deploy workers on Hotel, submitting 256 jobs,

as shown in Figure 6.5. Each Hotel worker has 2 cores and 2 GB of RAM. The elastic environment

scales to over 100 VMs but it doesn’t quite reach 128 VMs (or 256 cores) within 30 minutes due

to the underlying storage, network, and node performance of Hotel, which is unable to deploy 128

85

VMs in 30 minutes. As the first jobs complete and the instances become available, those instances

are able to start processing the remaining queued jobs, stopping the environment from completely

deploying the final instances. Idle instances are terminated once the queue is empty.

0 1000 2000 3000 4000 5000
Second

0

100

200

300

400

500

Q
 /
 C

 /
 S Jobs submitted

Jobs queued

Jobs complete

Jobs running

0

50

100

150

200

250

300

350

R
u
n
n
in

g

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

C
o
u
n
t

fg-hotel VMs running

fg-sierra VMs running

Total VMs running

Total cores available

Figure 6.6: Trace of a multi-cloud deployment running 512 30 minute “sleep” jobs on Hotel and
Sierra.

For the second test, workers are deployed on both Hotel and Sierra and we submit 512 jobs,

shown in Figure 6.6. Again, each worker contains 2 cores and 2 GB of RAM. The workers from

both Hotel and Sierra are configured to trust the head node as well as each other. In this test

we observe the limited scalability of private clouds as Hotel and Sierra are unable to scale to 512

cores. Both clouds reach the maximum number of instances that they can deploy, shown by the

horizontal line for VMs running on each cloud (which occurs at 2,000 seconds for Sierra and 3,000

seconds for Hotel). The scalability of clouds is limited by the amount of hardware available and

also by the number of other users running on the cloud at the time. Similar to the previous test,

the environment scales down as jobs complete, terminating free instances.

The final test examines the scalability of the environment using EC2 east micro instances,

86

0 1000 2000 3000 4000
Second

0

100

200

300

400

500

Q
 /

 C
 /

 S Jobs submitted

Jobs queued

Jobs complete

Jobs running

0

100

200

300

400

500

R
u
n
n
in

g

0 1000 2000 3000 4000
0

100

200

300

400

500

C
o
u
n
t

EC2 VMs running

Figure 6.7: Trace of a scalability test using Amazon EC2 and 512 30 minute “sleep” jobs.

shown in Figure 6.7. We submit 512 single-core sleep jobs at one time. Though the environment

scales to 476 instances in less than 15 minutes, it is not able to reach 512 instances within the first

30 minutes of the evaluation, only being able to reach a total of 490 instances. The remaining 22

instances fail to boot completely on EC2, even after the decision engine detects stalled instances

and tries replacing them, multiple times. The reason for this is not entirely known. However, we did

not observe any problems with the elastic management components or recontextualization broker.

It is worth noting that while inexpensive single-core micro instances are used for the scalability test,

the entire evaluation is run on a per-node basis. Thus, the 490-node scalability test would result in

a 5,880-core cluster if 12-core worker nodes were deployed. However, a 512-node cluster on Amazon

EC2, using their largest cluster instance size, cc2.8xlarge, would cost $1,228.80 per hour compared

to $10.24 per hour for a 512-node cluster of micro instances at the time of this writing. Additionally,

it should be noted that the key difference in the ability of EC2 to scale quickly, compared to the

FutureGrid tests, is due to the performance and configuration of the underlying node, storage, and

87

network differences between the infrastructures. For example, FutureGrid Nimbus clouds used in

this evaluation contain a single VM image repository and require that the VM image be transferred

to worker nodes before booting, creating contention at the VM image repository and on the network

as the image is copied to all nodes. In contrast, the EC2 micro instances used EBS-backed images

that can begin booting immediately once the volume is created for the instance and do not require

a VM image to be fetched from an image storage service.

6.3 Conclusion

Large-scale elastic environments provide a reactive environment capable of adapting to vari-

able demand and VMs provided by IaaS clouds allow users to install and configure complex software

stacks for their workflows. Multi-cloud elastic environments, in their current implementation, are

better suited for embarrassingly parallel workloads or loosely-coupled parallel jobs because they typ-

ically must use the Internet for a network between clouds, possibly resulting in unpredictable and

high-latency communication performance. However, workflows that are not amenable to multi-

cloud environments (e.g., applications with strict latency requirements) should be restricted to

individual cloud infrastructures. Such restrictions can be enforced through node attributes or mul-

tiple queues with routing, etc. RPs can leverage elastic environments to outsource excess demand

to external clouds when needed, giving them the flexibility to purchase smaller resources that meet

the needs of their users a majority of the time and budget for future outsourcing costs. Fully-

automated elastic environments also allow RPs or users to deploy standalone large-scale computing

and analysis environments in the cloud, helping to democratize IT by allowing them to access

significant resources for their research that they might not otherwise be able to access.

Chapter 7

Resource Provisioning Policies for Elastic Environments

This chapter presents and evaluates a set of resource provisioning policies to respond to

variable demand in elastic environments. These policies, originally proposed in [94], balance often-

conflicting requirements of users and administrators, such as minimizing the cost of deployments

and reducing job queued time. Elastic environments, and resource provisioning policies, allow RPs

to adjust to high demand by outsourcing demand to external clouds, such as free community clouds

or for-pay public clouds. In this work we consider the scenario where a resource provider extends

existing local resources with IaaS clouds on a fixed budget. We consider the following use case: a

research lab at a university with a small cluster may occasionally need more capacity than they

purchased in capital equipment. The lab specifies a fixed hourly budget, for example, $5 per hour,

which can be used to outsource excess demand to IaaS clouds. This money may accumulate so if

the lab doesn’t deploy IaaS instances over a three-hour period, $15 can be used toward their next

IaaS deployment.

The most straightforward resource provisioning policy is to deploy the maximum number

of instances allowed by the budget and leave them running at all times. However, such a naive

policy may not be the most efficient use of resources or money. Therefore, we propose basic flexible

resource provisioning polices that adapt immediately to demand as well as advanced policies that

balance user- and administrator-defined requirements, one of which also evaluates data transfer

information between the local resource and external clouds, if provided. For comparison purposes,

we also consider the cases where only the local cluster is used as well as only using free resources

89

and the for-pay public cloud provider. Finally, we develop a discrete event simulator, the elastic

cloud simulator (ECS), to evaluate our policies using scientific workload traces.

7.1 Resource Provisioning Policies

Collect	
 Informa.on	

Analyze	

(Minimize	
 objec.ves)	

Sensor	

Informa.on	

Decide	

Loop	
 periodically	

Launch	
 or	
 terminate	

instances	

User	

preferences	

Figure 7.1: The policy execution process begins with collecting sensor information, executing the
policy and minimizing objectives, electing to launch or terminate instances, and then looping after
a set amount of time.

A decision engine loops periodically and executes a resource provisioning policies to evaluate

demand, responding by either provisioning instances, terminating instances, or leaving the envi-

ronment unchanged, as shown in Figure 7.1. In addition to collecting information about workload

demand, provisioning policies may also include user or administrator provided information, such

as a budget or deadline information. The basic provisioning policies consist of policies that re-

spond immediately to demand but don’t attempt to consider user or administrator requirements,

maximum provisioning policies that use the maximum budget, and advanced resource provisioning

policies that balance user and administrator requirements. We also compare our policies to using

the local cluster, referred to as the Local policy. They are summarized in Table 7.1.

90

Table 7.1: Basic, maximum, and advance resource provisioning policies for elastic environments
that adapt to variable demand.

Basic Provisioning Policies

Policy Configurable Minimizes monetary costs Includes Data
OD No No No

OD++ No No No
ODFree No Yes No

Maximum Provisioning Policies

Policy Configurable Minimizes monetary costs Includes Data
SM No No No
Max No No No

Public No No No

Advanced Provisioning Policies

Policy Configurable Minimizes monetary costs Includes Data
ETR No Yes Yes
FC Yes Yes No

MCOP Yes Yes No

7.1.1 Basic Provisioning Policies

We propose the following basic resource provisioning policies that respond immediately to

changes in demand:

• On-demand (OD): The on-demand policy launches instances for all cores requested by

jobs in the queued state. It stops launching instances once it has launched the requested

number of instances to accommodate the request, used the allowable budget, or reached

the maximum number of instances allowed by the cloud provider. On-demand begins with

the least expensive cloud first before moving on to more expensive clouds, and terminates

instances when there are no more queued jobs and the instances are idle.

• On-demand++ (OD++): On-demand++ is similar to on-demand in that it launches in-

stances for all cores of queued jobs, beginning with the least expensive cloud. The primary

difference between OD and OD++ is that OD++ only terminates idle instances that will

be charged by the cloud provider before the next policy evaluation iteration (and once there

are no remaining queued jobs). In other words, if a cloud provider chargers instances on

an hourly basis, and if the policy evaluation iteration is every 5 minutes, then OD++ will

91

terminate idle instances that will be charged before the next policy evaluation executes

(e.g., 55 minutes into the hour).

• On-demand Free (ODFree): On-demand free is similar to OD, except that it only uses free

resources (e.g., a local cluster and a shared community cloud that does not charge for use);

it does not attempt to provision resources on for-pay clouds.

Basic policies that respond immediately to demand, such as OD and OD++, are undoubtedly

acceptable to users who are only concerned with reducing job turnaround time and not the cost

of the deployment. Unfortunately, because the cluster administrator can’t adjust these policies to

meet the needs of shared cluster environments, they may not create optimal elastic environments

for users.

7.1.2 Maximum Provisioning Policies

We propose the following maximum provisioning policies that use the entire budget, if pro-

vided, or ignore it completely:

• Sustained Max (SM): Sustained max immediately launches the maximum number of in-

stances allowed by the cloud provider or the budget and leaves them running at all times.

If multiple clouds are available, it first launches the maximum on the least expensive cloud

before moving on to the next cloud until the budget is completely used.

• No Budget (Max): is similar to OD++ in that it provisions instances for all queued jobs

and terminates idle instances before they are charged again. However, if a budget has

been specified by the administrator the policy ignores the budget and provisions as many

instances as needed.

• Only For-Pay Public Providers (Public): is similar to Max, except that it only uses for-pay

public cloud providers and does not use the local cluster or free clouds, even if available.

92

It ignores budget information, even if provided. This policy is included primarily for com-

parison purposes to demonstrate the impact of only using for-pay cloud providers (e.g.,

Amazon EC2).

7.1.3 Advanced Provisioning Policies

Basic provisioning policies only respond immediately to demand by launching enough in-

stances to process queued jobs while maximum policies use the entire budget to launch the maxi-

mum number of instances possible or ignore the budget altogether. In this section we present three

advanced provisioning policies that attempt to balance user and administrator defined require-

ments, including minimizing job queued time while also considering the cost of the deployment.

One policy, estimated time remaining, also uses data transfer information, if provided, in its decision

process.

7.1.3.1 Estimated Time Remaining

Estimated time remaining (ETR) provisions instances for queued jobs on for-cost clouds

if the estimated time required to launch the instances and transfer input data is less than the

estimated time remaining for currently running jobs to complete and transfer their output data. It

immediately deploys instances on all free resources (e.g., no-cost community clouds). The estimated

time remaining is calculated as the difference between requested walltime and the time a job has

already been running. For example, if a running job has a walltime of 2 hours, but it has already

been running for 90 minutes and it is determined that it will take longer than 30 minutes to launch

instances and transfer data for the next queued job, then ETR will wait for the current job to

complete instead of provisioning additional instances. If the job doesn’t include estimated data

sizes, then the policy estimates the time required to launch instances for the job.

93

7.1.3.2 Average Queued Time Policy

The average queued time policy (FC) allows an administrator to define the minimum and

maximum number of jobs that the policy should respond to as well as a desired response, r, which

is considered a reasonable average weighted queued time (AWQT) for the current set of queued

jobs, Q. FC launches instances for the first n queued jobs at each policy evaluation iteration where

AWQT is described by the following formula:

AWQT =

Q∑
j
j.num cores ∗ j.queued time

Q∑
j
j.num cores

Additionally, the administrator may also optionally define a threshold value, θ, for the desired

response. If the measured AWQT is less than r − θ, at the policy evaluation iteration, the policy

subtracts one from the number of jobs it responds to for the next policy evaluation iteration until

the desired minimum is reached. If the measured AWQT is greater than r + θ, then the policy

adds one to the number of jobs it will respond to for the next policy evaluation iteration until the

maximum is reached. For example, if an administrator determines that r=2 hours is an appropriate

desired response rate with a threshold of 45 minutes, then when the policy measures AWQT to be

less than 1 hour and 15 minutes it will subtract 1 from the number of jobs it responds to at each

policy evaluation iteration, and when it measures greater than 2 hours and 45 minutes it will add

1. If it measures AWQT between those two values then it will respond to the same number of jobs

as the previous policy evaluation iteration. After determining the number of jobs to respond to, n̂,

the policy then selects the maximum number of cloud providers it will use by evaluating:

NC = max(bAWQT

r
c, 1)

After calculating NC and n̂, the policy then proceeds to launch instances for each job in n̂

across the least expensive NC clouds until instances have been launched for all jobs, the budget has

been spent, or the limit on the cloud provider’s number of allowable instances has been reached.

94

However, the policy will only launch the appropriate number of instances as determined by

the requested core counts for the n̂ queued jobs. For example, if the policy determines that it

can launch 17 single-core instances based on the cost of cloud providers and available allocation

credits, but there are only two 16-core jobs, then the policy will only launch 16 instances, as the

17th instance can not be used. The final action of FC is to terminate instances that will be charged

before the next policy evaluation iteration, which is the same termination process as in OD++.

7.1.3.3 Multi-Cloud Optimization Policy

A major concern for users is reducing the amount of time their jobs are queued, and at the

same time, a major concern for elastic environment administrators is to minimize the cost of the

deployment while still minimizing job queued time. Minimizing these two conflicting objectives is a

multi-objective optimization problem [57]. The multi-cloud optimization policy (MCOP) attempts

to balance the requirements of both users and administrators. The work in [114] uses a genetic

algorithm (GA) to schedule jobs across static Grid slots and served as the motivation for MCOP,

which provisions and relinquishes resources on IaaS clouds and uses a GA to balance cost and job

queued time.

Finding a solution requires searching as many configurations as possible, an expensive task

depending on the number of queued jobs, the number of cloud providers available, and the amount

of allocation credits. Since searching all possible configurations may be intractable given the limited

time available at an individual policy evaluation iteration. MCOP employs a GA to search as many

configurations as possible [56]. Due to the time constraints, we do not allow the GA to run until

it converges, instead, we only allow the GA to execute a set number of iterations to ensure the

policy decides within a reasonable amount of time. The number of iterations can be configured

by an administrator depending on their needs. We realize this is not ideal, however, we believe

that allowing the GA to explore a sufficient number of possible configuration will result in a better

solution than simply selecting one at random. In addition to the GA, the administrator also defines

two weights representing their preference for minimizing cost or job queued time.

95

MCOP is similar to FC in that it only considers configurations that are relevant to the core

counts of queued jobs. The GA setup is as follows. Alleles in the chromosome represent individual

queued jobs where a 1 signifies that a job will be considered and a 0 does not. The length of the

chromosome is the maximum number of queued jobs for the independent policy evaluation iteration.

We initially generate a population of 30 individuals for each cloud, that is, each MCOP considers

various combinations of jobs for each available cloud. The GA is initialized with common values,

generally known to perform well [69], specifically, the default GA iterates 20 times with a mutate

probability of 0.031 and a crossover probability of 0.8, although these values can be changed as

needed for different workloads and configurations.

MCOP’s execution is similar to the standard execution of a GA. After randomly generat-

ing the initial populations, the GA then iterates 20 times for each cloud provider’s populations,

performing crossover and mutation based on the probability. The GA also considers the extreme

cases, that is, no jobs (all zeros) and all jobs (all ones) for each cloud provider. The fitness of an

individual is calculated as the weighted preference (using the administrator-defined weights) of the

estimated cost and job turnaround time for the configuration; those with the lowest cost mate to

produce offspring.

After all iterations complete, the final populations for each cloud provider are compared

against the final populations of all other cloud providers. The cost of the configuration and job

queued time are estimated by building a FIFO schedule of the jobs across the environment. De-

pending on the number of available cloud providers, the administrator may wish to only compare

a subset of the final populations. Based on these comparisons, we generate the Pareto optimal set

of solutions, using domination [56] to select the optimal solutions. Recall that domination states

that one configuration dominates another if both of the following conditions are true:

(1) The cost of the first configuration is less than or equal to the cost of the second configuration

and the total job queued time for the first configuration is less than or equal to the total

job queued time for the second configuration.

96

(2) The cost of the first configuration is less than the cost of the second configuration or the

total queued job time is less than the cost of the second configuration.

All configurations that are not dominated by any other configurations are added to the

Pareto optimal set. To select the final solution from this set, the administrator-defined weights

are multiplied by normalized values for the cost and job queued time for each configuration. The

solution with the smallest value for the sum of these two items is selected. If more than one

configuration is a minimum, MCOP selects the least expensive one. If two or more minimums also

have the same cost, the solution is randomly chosen between them. To terminate instances, MCOP

follows the same process of FC and OD++, terminating instances that will be charged before the

next policy evaluation iteration.

Policy	
 Class	

Elas,c	
 Manager	
 Process	

Trace	

Output	

Process	

Credit	

Alloca,on	

Process	

Workload	
 Defini,on	
 File	

Workload	
 Generator	
 Process	

Job	
 Class	

Resource	
 Manager	
 Class	

(job	
 queue)	

Resource	
 Class	

(cloud	
 or	
 sta,c	
 cluster)	

Instance	
 Processes	

Figure 7.2: Elastic Cloud Simulator architecture.

7.2 Elastic Cloud Simulator

Evaluating resource provisioning policies for IaaS clouds can require a substantial, and pos-

sibly prohibitive, investment in time and money. Cost is especially a concern when evaluating

97

Table 7.2: Summary of Amazon EC2 east launch and termination times for a 10 GB Debian 5.0
image measured over the course of a day, transferred from Amazon S3.

EC2 East Launch Times (small instance)

Probability Mean σ
63% 50.86s 1.91
25% 42.34s 2.56
12% 60.69s 2.14

EC2 East Termination Times (small instance)

Probability Mean σ
100% 12.92s 0.50

commercial cloud providers, such as Amazon EC2, which charge with real currency. Therefore,

to evaluate our resource provisioning policies we develop a discrete event simulator, the elastic

cloud simulator (ECS), which simulates all of the necessary components of the elastic environment.

This includes workload generation, workload submission, launching cloud instances, processing the

workload, terminating cloud instances, and accounting for allocation credits, shown in Figure 7.2.

Furthermore, ECS simulates static physical resource deployments, private cloud infrastructures

with limited scalability, and commercial cloud providers that provide the appearance of infinite

scalability but charge for usage.

7.2.1 Measuring Cloud Variability

For simulation, we consider two main sources of variability in IaaS clouds: instance launch

and termination times. To measure instance launch and termination times, we launched and then

terminated 60 Debian 5.0 Linux instances (with a 10 GB VM image stored in Amazon S3) on EC2

east over the course of a day. After launching the instance, we began pinging it until we received

a successful response. We calculate the launch time as the difference between the time we sent

the launch request and the time of the first successful ping. To calculate the termination time, we

terminate the instance and then ping it until the ping fails. We calculate the termination time as

the difference between the time we sent the termination request until the time the first ping fails.

Launch and termination times are summarized in Table 7.2. Termination times appeared rel-

98

atively consistent with an average time of 12.92 seconds and a standard deviation of 0.50. However,

launch times experienced much more variability. Launch times appeared to group around three

values; the majority of launches, 63 percent, averaged 50.86 seconds with a standard deviation of

1.91, 25 percent averaged 42.34 seconds with a standard deviation of 2.56 seconds, and 12 percent

average 60.69 seconds with a standard deviation of 2.14. ECS uses these values to randomly select

launch and termination times for IaaS instances.

7.2.2 Elastic Cloud Simulator Implementation

ECS is written in Python and uses SimPy [28] for simulation; the architecture is shown

in Figure 19. It can either use a workload definition file specifying job arrival and run times

or automatically generate and format a workload based on the Feitelson workload model [61],

which provides a comprehensive HPC workload model that is representative of cluster workloads.

ECS processes jobs in first-in-first-out (FIFO) order, scheduling jobs on simulated resources in

the order that they are submitted. ECS can simulate static physical resource deployments, such

as a batch-queue cluster, as well as dynamic IaaS clouds. Parallel jobs are only scheduled on

individual resource infrastructures; they are not allowed to span multiple infrastructures due to

the latency requirements of many parallel jobs and the fact that different cloud providers are

often only connected via the Internet. ECS consists of a workload generator process, an elastic

manager process, any number of instance processes (each representing individual worker instances),

a credit allocation process that keeps track of available credits, and a trace output process that

provides information about the environment. Each process loops continually for the duration of

the simulation. ECS policies are implemented as individual Python modules and are completely

interchangeable.

7.3 Evaluation of Resource Provisioning Policies

For evaluation, we compare the policies described in Section 7.1 and summarized in Table

7.1. The evaluation considers the use case described earlier, that is, a small research lab extends

99

Table 7.3: Policy evaluation workloads, including a workload generated from the Feitelson workload
model, a bioinformatics trace from a Top500 supercomputer, Janus, and a bioinformatics trace
with data input and output information. The Feitelson workload contains single core jobs as
well as parallel jobs up to 64 cores. The Janus bioinformatics workload consists of bioinformatics
jobs run on the Top500 Janus supercomputer in March 2011. The bioinformatics trace with data
information, based on denoising and read mapping portions of the QIIME workflow, contains both
32-core and 64-core jobs and includes data transfer information for individual jobs.

Feitelson Model Workload

Number of Jobs 10,000
Minimum runtime 0.0003 seconds
Maximum runtime 12 hours

Mean runtime 37 minutes

Janus Bioinformatics Workload

Number of Jobs 51233
Minimum runtime 0.0 seconds
Maximum runtime 80.0 hours

Mean runtime 2.5 hours

Bioinformatics Data Workload

Number of Jobs 256
Minimum runtime (64-core jobs) 5 hours
Maximum runtime (32-core jobs) 12.5 hours

a small local physical cluster with IaaS clouds on a fixed hourly budget. For MCOP, we consider

two variants. In the first case, MCOP specifies a 20% preference for cost and an 80% preference for

reducing queued time (MCOP-2080) and in the second case an 80% preference for cost is specified

and a 20% preference for reducing queued time (MCOP-8020). The evaluation focuses primarily

on the ability of the elastic cluster to reduce the runtime of workloads, minimize job queued time,

and keep monetary costs to a minimum, over the two extremes, specifically, using a local cluster or

only using a public cloud provider, such as Amazon EC2.

Three traces are used for evaluation: 1) a trace generated from the Feitelson workload model

[61], 2) a trace of bioinformatics jobs run on a Top500 supercomputer, Janus, at the University of

Colorado at Boulder from March 2011, and 3) a trace generated from runtime and data information

of denoising and read mapping bioinformatics jobs. The Feitelson model was used in order to

represent a common job trace for a multi-user cluster and the Janus bioinformatics trace was

chosen as a real job trace from a production supercomputer. The third trace was created because

100

existing scientific workload traces from clusters and supercomputers do not typically include the

amount of data transferred on a per-job basis (if at all).

The Feitelson workload contains serial jobs as well as parallel jobs up to 64 cores. The

workload submits 10,000 jobs over a 4-hour period with jobs that have a minimum runtime of 0.0003

seconds, a maximum runtime of 12 hours, and a mean of 37 minutes. The Janus bioinformatics

workload contains over 51,000 jobs submitted over a month with a minimum runtime of 0 seconds

and a maximum of 80 hours. The bioinformatics data workload trace was created from a set

of bioinformatics jobs, which performed denoising of 454 datasets and read mapping portions of

QIIME’s workflow. The trace contains 256 jobs, consisting of 32-core and 64-core jobs, submitted

over a 6 day period. The 32-core jobs run for 12.5 hours and transfer 125 GB out of the head node

and 55 GB into the head node. The 64-core jobs run for 5 hours and transfer 48 GB of data out of

the head node and 3 GB in. The workloads are summarized in Table 7.3.

As metrics, makespan is defined to be the time from when the first job in the workload is

submitted until the time the last job completes. Cost is defined to be the amount of money spent

(in USD) over the entire evaluation for the workload, this includes the cost of instances as well as

data transfers (where applicable). Resource CPU time is defined to be the total number of CPU

hours consumed by all instances on all resources. Response time is defined to be the amount of

time a job is queued before it begins running, that is, the time from when it is submitted until

it begins executing. Finally, average weighted response time (AWRT) is defined to be the average

response time of all jobs in a workload, weighted by the requested number of cores. Response time

is defined as the job completion time minus job submit time. Specifically:

AWRT =

Q∑
j
j.num cores ∗ j.response time

Q∑
j
j.num cores

AWRT demonstrates the impact the policy has on all users where increasing AWRT suggests

that jobs are remaining queued for longer times.

101

7.3.1 Evaluation Environment Configuration

The environment simulates a small static physical cluster, a private community cloud with

limited scalability, and a commercial cloud provider (e.g., Amazon EC2) that appears to offer

“infinite” scalability but charges by the hour for each instance. The local cluster contains 256

static single-core instances and resources cannot be added or removed from the cluster; launch and

termination times are not simulated for this resource since it represents an “always on” cluster.

The private cloud contains up to 512 single-core instances. As the private cloud represents a

community cloud (e.g., Magellan or FutureGrid), we do not use a monetary cost for the instances.

The commercial cloud provider, on the other hand, does have an hourly monetary cost of $0.26

per instance/hour; partial hour charges are rounded up. Data transfers are $0.12 per GB out of

the cloud. Data transferred into the cloud does not incur any cost. This pricing model is chosen

to be the same as Amazon EC2. The commercial cloud does not have limited scalability; it is able

to respond to as many requests as needed. Both simulated IaaS clouds randomly generate instance

boot and shutdown times based on the times gathered from Amazon EC2 in Table 7.2. Because

parallel jobs are often latency sensitive, they are only executed across individual infrastructures,

that is, they are not allowed to execute on both the local resource and an IaaS cloud or across both

IaaS clouds. The fixed hourly budget is set to be $10 per hour for this evaluation and any unspent

money accumulates. For example, if the budget is not spent over 3 hours then $30 will be available

for future purchases. The policy executes every 5 minutes to examine the job queue and status of

the environment; it responds by launching or terminating IaaS instances.

7.3.2 Understanding Environment Impact on a Workload Model

For the Feitelson workload, we execute 10 iterations and simulate over 555 hours. The total

makespan is shown in Figure 7.3, that is, the time from when the first job is submitted until the

time the last job completes. The total cost is shown in Figure 7.6 and the comparison of makespan

vs. cost is shown in Figure 7.8. AWRT is shown in Figure 7.5 and the comparison of AWRT and

102

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

100

200

300

400

500

600

H
o
u
rs

Lo
ca

l 0

100

200

300

400

500

600

Figure 7.3: Makespan for the Feitelson workload.

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8

0

M
C

O
P
-8

0
2

0

Fr
e
e0

20000

40000

60000

80000

100000

120000

H
o
u
rs

Local Private Public

Lo
ca

l 0

20000

40000

60000

80000

100000

120000

Figure 7.4: CPU time by resource for the Feitelson workload.

103

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

50

100

150

200

250

300

H
o
u
rs

Lo
ca

l 0

50

100

150

200

250

300

Figure 7.5: Average weighted response time for the Feitelson workload.

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8

0

M
C

O
P
-8

0
2

0

Fr
e
e0

1000

2000

3000

4000

5000

6000

U
S
D

Instance Costs
Data Transfer Costs

Lo
ca

l 0

1000

2000

3000

4000

5000

6000

Figure 7.6: Cost (USD) for the Feitelson workload.

104

0 1000 2000 3000 4000 5000 6000
Cost (USD)

0

50

100

150

200

250

300

A
W

R
T
 (

h
o
u
rs

)

MCOP-2080

OD++OD

Local
Free
MCOP-8020
MCOP-2080
FC
ETR
OD++
OD
Max
Public
SM

Figure 7.7: Average weighted response time vs. cost (USD) for the Feitelson workload.

0 1000 2000 3000 4000 5000 6000
Cost (USD)

0

100

200

300

400

500

600

M
a
ke

sp
a
n
 (

h
o
u
rs

)

MCOP-2080

OD++OD

Local
Free
MCOP-8020
MCOP-2080
FC
ETR
OD++
OD
Max
Public
SM

Figure 7.8: Makespan vs. cost (USD) for the Feitelson workload.

105

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

20

40

60

80

100

120

140

160

H
o
u
rs

Lo
ca

l 0

100

200

300

400

500

H
o
u
rs

Figure 7.9: Job response time for a single iteration of the Feitelson workload.

cost is shown in 7.7. The total CPU time by resource is shown in Figure 7.4. Outsourcing to IaaS

clouds shows a clear benefit over using local resources, reducing the makespan from over 500 hours

to less than 16 hours using the Max, Public, and MCOP-2080 policies, which is approximately a

96% reduction in makespan. The Max and Public policies also achieve impressive job response time

(Figure 7.9), with a median response times of approximately 15 seconds and a max response times

of 5 minutes. However, Max, Public, and MCOP-2080 have a high cost (Figure 7.6): over $3,300.

The reason those policies have a high cost is due to their heavy use of the public cloud (Figure

7.4). However, the trade-off is that those policies also appear to have the smallest average weighted

response times (Figure 7.5). While using the public cloud incurs a cost, even outsourcing to the

private cloud and only using free resources reduces the makespan to approximately 167 hours and

achieves a median response time of 79 hours. MCOP-2080 and MCOP-8020 clearly demonstrate the

trade-offs of MCOP’s cost preference. MCOP-2080, which only has a 20% preference for minimizing

costs, achieves low makespan and job response times. However, it experiences comparable cost to

106

the Max and Public policies, over $3,300. MCOP-8020, on the other hand, specifies an 80%

preference for minimizing costs and does not spend any money, which also results in relatively high

job response time. While MCOP-8020 doesn’t incur any cost because it only uses free resources,

it uses the resources more effectively than the Free policy (which uses an on-demand approach) as

well as OD and OD++, as it achieves lower makespans and job response times for no cost.

ETR appears to strike a reasonable balance between a minimal makespan, low monetary cost,

and job response times. ETR achieves low makespan and job response times and a lower cost than

all policies except MCOP-8020, Free, and Local as they incur no costs. FC achieves even better

response time and makespan than ETR. However, it does so at more than twice the cost. The SM

policy is the worst policy. It has a similar makespan to both OD and OD++ but it also has high

monetary cost (over $5,500) compared to OD and OD++ (approximately $1070). SM also has a

higher cost than Max and Public because instances run for the entire duration of the evaluation

even if there are no jobs. We expected OD++ to have a noticeably lower cost or response time

than OD because instances are left running until they are due to be charged again, allowing them

to process additional jobs if needed. However, for this workload, that was not the case as both OD

and OD++ have similar makespans, costs, and job response times.

7.3.3 Understanding Environment Impact on a Bioinformatics Workload

For the Janus bioinformatics workload, we ran 10 iterations and simulate over 818 hours.

The workload makespan is shown in Figure 7.10. Overall, the policies, except Local, have similar

makespans due to the fact that the workload trace is from jobs submitted over a month, thus, the

last batch of jobs submitted at the end of the month largely determine overall makespan. The

Local policy doesn’t have enough resources available to process the jobs as quickly as the other

policies. CPU time by resource is shown in Figure 7.11 where all policies except Public are able

to process most of the jobs on the local cluster or private cloud, which minimizes the monetary

cost of the deployment (Figure 7.13). Only the Public and SM policies have high monetary costs

since Public only uses the public cloud and SM maintains running instances on the public cloud

107

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

100

200

300

400

500

600

700

800

900

H
o
u
rs

Lo
ca

l 0

100

200

300

400

500

600

700

800

900

Figure 7.10: Makespan for the Janus bioinformatics workload.

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8

0

M
C

O
P
-8

0
2

0

Fr
e
e0

20000

40000

60000

80000

100000

120000

140000

H
o
u
rs

Local Private Public

Lo
ca

l 0

20000

40000

60000

80000

100000

120000

140000

Figure 7.11: CPU time by resource for the Janus bioinformatics workload.

108

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

5

10

15

20

H
o
u
rs

Lo
ca

l 0

5

10

15

20

Figure 7.12: Average weighted response time for the Janus bioinformatics workload.

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8

0

M
C

O
P
-8

0
2

0

Fr
e
e0

2000

4000

6000

8000

10000

12000

14000

U
S
D

Instance Costs
Data Transfer Costs

Lo
ca

l 0

2000

4000

6000

8000

10000

12000

14000

Figure 7.13: Cost (USD) for the Janus bioinformatics workload.

109

0 2000 4000 6000 8000 10000 12000 14000
Cost (USD)

0

5

10

15

20

A
W

R
T
 (

h
o
u
rs

)

Free

MCOP-8020

ETR

OD++

OD

Local
Free
MCOP-8020
MCOP-2080
FC
ETR
OD++
OD
Max
Public
SM

Figure 7.14: Average weighted response time vs. cost (USD) for the Janus bioinformatics workload.

0 2000 4000 6000 8000 10000 12000 14000
Cost (USD)

0

500

1000

1500

2000

2500

3000

3500

4000

M
a
ke

sp
a
n
 (

h
o
u
rs

)

Free

MCOP-8020

ETR

OD++

OD

Local
Free
MCOP-8020
MCOP-2080
FC
ETR
OD++
OD
Max
Public
SM

Figure 7.15: Makespan vs. cost (USD) for the Janus bioinformatics workload.

110

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

5

10

15

20

25

30

35

H
o
u
rs

Lo
ca

l 0

50

100

150

200

250

H
o
u
rs

Figure 7.16: Job response time for a single iteration of the Janus bioinformatics workload.

even if they are idle. The other policies are all sufficiently dynamic enough to only use the for-

pay public cloud when needed. AWRT is shown in Figure 7.12 and again, the limited resources

available to the Local policy results in a much higher AWRT at approximately 19 hours compared

to 2.5 to 3 hours for the other policies. FC has a slightly higher AWRT than the other policies

because it adapts slower to changes in demand, only provisioning additional resources as AWQT

increases. The trade-off between AWRT and cost and makespan and cost is shown in Figures 7.14

and 7.15, respectively. Finally, job response time for a single iteration of the workload is shown in

Figure 7.16. Interestingly, FC, MCOP-2080, MCOP-8020, and Free all have noticeably higher job

response time for some of the jobs compared to ETR, OD++, OD, SM, Max, and Public despite

the fact that their AWRTs are similar. The reason for this is primarily due to the fact that those

with shorter job response times are all policies designed to respond immediately to demand across

all available resources whereas FC, MCOP-2080, and MCOP-8020 do not necessarily respond to

demand immediately and Free is not able to use the public cloud, thus limiting it’s ability outsource

111

to a public cloud provider when needed, resulting in higher job response times. Understandably,

the Local policy has the highest job response times because it doesn’t have sufficient resources to

meet the demand.

7.3.4 Understanding the Impact of Data
P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

50

100

150

200

250

300

350

400

H
o
u
rs

Lo
ca

l 0

50

100

150

200

250

300

350

400

Figure 7.17: Makespan for the bioinformatics workload.

To understand the impact of the bioinformatics data workload, we execute 10 iterations and

simulate over 416 hours. Similar to the Feitelson workload, MCOP-8020, Free, and Local do not

incur any cost and only use free resources. However, for this workload, MCOP-8020 does not achieve

nearly the same improvement in makespan (Figure 7.17) or job response time (Figure 7.23), as it is

similar to the Free policy. This workload again demonstrates the advantage of outsourcing to IaaS

clouds, as the makespan is reduced from over 350 hours for the Local policy to approximately 150

hours for the other policies and the average weighted response time is reduced from over 140 hours

to less than 20 hours (Figure 7.19). The trade-offs of makespan vs. cost is shown in Figure 7.22 and

112

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

20000

40000

60000

80000

100000

H
o
u
rs

Local Private Public

Lo
ca

l 0

20000

40000

60000

80000

100000

Figure 7.18: CPU time by resource for the bioinformatics workload.

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8

0

M
C

O
P
-8

0
2

0

Fr
e
e0

20

40

60

80

100

120

140

160

H
o
u
rs

Lo
ca

l 0

20

40

60

80

100

120

140

160

Figure 7.19: Average weighted response time for the bioinformatics workload.

113

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8
0

M
C

O
P
-8

0
2
0

Fr
e
e0

500

1000

1500

2000

2500

3000

3500

4000

4500

U
S
D

Instance Costs
Data Transfer Costs

Lo
ca

l 0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 7.20: Cost (USD) for the bioinformatics workload.

0 1000 2000 3000 4000
Cost (USD)

0

20

40

60

80

100

120

140

160

A
W

R
T
 (

h
o
u
rs

)

Free

MCOP-2080

Local
Free
MCOP-8020
MCOP-2080
FC
ETR
OD++
OD
Max
Public
SM

Figure 7.21: Average weighted response time vs. cost for the bioinformatics workload.

114

0 1000 2000 3000 4000
Cost (USD)

100

150

200

250

300

350

400

M
a
ke

sp
a
n
 (

h
o
u
rs

)

Local
Free
MCOP-8020
MCOP-2080
FC
ETR
OD++
OD
Max
Public
SM

Figure 7.22: Makespan vs. cost for the bioinformatics workload.

P
u
b
lic

M
a
x

S
M

O
D

O
D

+
+

E
T
R FC

M
C

O
P
-2

0
8

0

M
C

O
P
-8

0
2

0

Fr
e
e0

5

10

15

20

25

30

35

H
o
u
rs

Lo
ca

l 0

50

100

150

200

250

H
o
u
rs

Figure 7.23: Job response time for a single iteration of the bioinformatics workload.

115

AWRT vs. cost is shown in Figure 7.21. ETR, the only policy that considers data transfers in its

decision process, and MCOP-8020 appear to strike the best balance between a minimal makespan

(Figure 7.17), low cost (Figure 7.20), and reasonable job response times (Figure 7.23). For example,

ETR reduces the makespan to 150 hours from 350 hours for the local policy, representing a 57%

reduction. And again, while the Max and Public policies achieve the lowest job response times

with an approximate median of 0.26 hours and a maximum of 0.54 hours, they do so at high cost,

over $3,500 for Public and over $1,200 for Max compared to ETR at $950. The Public policy’s use

of only public cloud instances (Figure 7.18) also translates to higher data transfer costs (Figure

7.20). As expected, MCOP-8020 and MCOP-2080 again demonstrate the trade-offs of choosing a

preference to minimize cost. Interestingly, for this workload, OD++ achieves lower job response

times than OD, however, at a slightly higher cost.

If multiple cloud providers are available and data information is known, ETR achieves the

best combination of relatively low job response times, low makespans, and low costs. The Max and

Public policies are clearly the best policies to minimize job response time and makespan, however,

they do so at a cost. FC achieves relatively low job response time, though it is higher than ETR and

the policy incurs more cost than ETR. OD and OD++ have lower costs than Max and reasonable

job response times but they both have higher cost and job response time than ETR. MCOP offers

administrator’s the ability to specify their preference for reducing cost or job response time. SM

appears to offer no value over the other more dynamic policies and has a high cost since instances

run for the duration of the evaluation, whether or not they are processing jobs.

7.4 Conclusion

This chapter presented a set of resource provisioning policies for elastic environments that

allow such environments to outsource demand to external cloud providers by provisioning and

relinquishing cloud resources. Resource provisioning policies are a central component in the flexible

cloud architecture since they determine the size of the elastic environment as well as the clouds that

instances are deployed in, which directly impact job queued time and the cost of the deployment.

116

The question of which policy is the “best” depends on numerous factors, including the money

available to the administrator, user requirements, and workload characteristics. However, it is

clear that elastic environments provide many advantages over using only a standalone local cluster,

allowing workload runtimes and job queued times to be reduced significantly by outsourcing demand

to external clouds. Even in cases where cost is a concern, it is possible to leverage free private

clouds to reduce the workload makespan and job response times. Preemptively provisioning the

maximum number of instances, based on budget and available resources, doesn’t offer any significant

advantages over more flexible resource provisioning policies. Furthermore, policies that consider

more factors than just the number of queued jobs, including the estimated time remaining and the

time to transfer data or attempt to balance conflicting objectives, offer better results than basic

on-demand policies, often reducing both job queued time and the cost of the deployment.

Chapter 8

Bioinformatics Use Case

To demonstrate the complete end-to-end capabilities of the elastic environment, a bioinfor-

matics toolkit, Quantitative Insights Into Microbial Ecology (QIIME) [47], is deployed and used

to process bioinformatics datasets. QIIME is a software package that supports the analysis and

comparison of complex communities of microorganisms, such as bacteria based on DNA sequence

data. Datasets of 10s to 100s of GB in size are generated by high-throughput DNA sequencing

technologies, such as pyrosequencing [91]. These datasets contain genomic subsequences from tens

of thousands of microbial organisms (e.g., bacteria) in a given sample. The main goal of this use

case is to demonstrate the ability of the environment to integrate seamlessly with the bioinformat-

ics workflow. Scientific researchers must be able to use elastic environments in the same manner

that they use their existing standalone clusters, for example, logging into a cluster and running

command line applications to execute the QIIME pipeline.

8.1 Bioinformatics Workflow

QIIME integrates many tools that have been previously developed into a single workflow.

Additionally, it implements many techniques natively to support the analysis of microbial commu-

nities. Studies of microbial communities are becoming more frequent and researchers are continually

improving their tools and techniques for analysis, allowing them to explore increasingly complex

questions. A typical QIIME analysis will apply several different applications in the workflow, in-

cluding OTU picking with tools such as uclust [59] or BLAST [36], multiple sequence alignment with

118

PyNAST [46], and phylogenetic tree construction with RAxML [116] or FastTree [106]. These steps

support “downstream” statistical analyses of microbial diversity as well as generation of visualiza-

tions and publication-quality graphics. QIIME integrates over 30 software packages and libraries,

developed by research groups and organizations across the world. This is reflected clearly in the

large number of technologies and programming languages used. For example, QIIME’s underlying

software stack consists of a Haskell application, Python scripts, and x86 binaries, among others.

Researchers typically execute the QIIME workflow by running a series of command line scripts.

Numerous stages of the workflow include parallel support, allowing researchers to seamlessly use

multiple cores on their systems or submit jobs to a cluster queue. QIIME currently supports both

Torque or Oracle Grid Engine resource managers.

In this use case, we consider two parallel stages of QIIME’s workflow. The first stage, de-

noising 454 datasets that are generated from 454 pyrosequencing technologies, is a computationally

expensive procedure for correcting errors in DNA sequencing reads and involves both parallel and

serial steps. The second parallel stage is the mapping of DNA sequence reads to a database of

known sequences. It is used to assign sequenced genome fragments from the DNA sequencing

instrument to known functional genes. Denoising mixes serial and parallel steps, and therefore

submits individual single-core jobs in a chain, while read mapping submits all of its jobs at once.

8.2 Policies for Bioinformatics Workflows

Bioinformatics researchers can run the QIIME workflow as-is using basic provisioning policies,

such as an on-demand policy that launches cloud instances for queued jobs and achieve reasonable

results. However, creating custom policies that match the submission patterns of different parts of

the workflow may significantly improve resource provisioning, allowing jobs to begin running sooner

and reducing time to result depending on workflow job submission. We present a new policy, N-

preemptive, customized for the denoising stage of the workflow that attempts to preemptively

provision the needed number of instances and reduce the amount of time it takes for denoising

to begin executing. For comparison purposes we also include the on-demand policy we proposed

119

previously in Chapter 7. The policies are defined as follows:

• On-demand: launches the appropriate number of instances for all cores requested by queued

jobs. Idle instances are terminated immediately. For example, if a user submits a 32-core

job, the policy would request 32 total cores from the cloud provider. Once the jobs complete

and the instances become idle, the instances are terminated.

• N-preemptive: launches N total cloud cores for every core requested by queued jobs. Similar

to on-demand, idle instances are terminated immediately. For example, if the administrator

sets N to be 8, then the policy would launch a total of 8 cores for each core requested by

queued jobs.

The N-preemptive policy is intended for workflows similar to the denoising workflow, that is,

those that submit jobs in a dependency chain. The N-preemptive policy launches multiple instances

at once, allowing the subsequent jobs in the chain to possibly begin running earlier. If N is set to

be 1, the policy is equivalent to the on-demand policy.

8.3 Deployment Environment

For the bioinformatics deployment, the elastic environment operates entirely in the cloud and

is configured to extend a batch-queue cluster with IaaS worker nodes. The environment provides

an interactive login node for users, which runs the cluster server software and hosts user applica-

tions. App-deploy is used to install the complete QIIME toolkit on all of the nodes throughout

the environment. The lightweight sensor and policy are hosted on the login node and use the

Phantom auto-scaling service, running on a separate node, to deploy and manage worker nodes.

The recontextualization broker is also deployed on a separate node and facilitates the exchange

of host information between all nodes in the environment. As worker nodes launch, they join the

context and configure themselves to join the cluster. This process includes adding SSH host keys

for all other nodes in the environment to their ssh known hosts file, connecting to the cluster server,

and installing Gluster in order to seamlessly access the central Gluster file system being exported

120

from the cluster head node. Researchers can then login to the elastic environment and execute the

QIIME workflow in the exact same manner as they use it on traditional clusters. Parallel jobs are

submitted to the batch queue and execute on IaaS cluster workers, which are fully integrated into

the cluster and have access to read and write from the shared cluster file system.

8.4 Evaluation

Experimental setup is as follows, the elastic environment is deployed across multiple NSF

FutureGrid clouds and is used to process bioinformatics datasets that contain millions of sequences.

The environment consists of the Hotel cloud at the University of Chicago and Sierra at the San

Diego Supercomputing Center. The head node is a dual-core 2.93 GHz Xeon with two GB of

RAM running on Hotel; workers are dual-core 2.93 GHz Xeons with six GB of RAM running on

either Hotel or Sierra. The head node manages the Torque 3.0.6 server components and exports

the shared Gluster 3.3.1 file system. The denoising workload contains over 1.7 million sequences

and the input file is 194 MB. The read mapping workload contains slightly less than 10 million

sequences that are represented in an approximately 2 GB (input) file.

As a metric, workload time is defined to be the time from when the first job is submitted until

the last job completes. Time until all jobs running is defined as the time until all jobs submitted

together in one stage of the workflow are running. Cumulative instance deployment time is defined

to be the cumulative amount of time that it takes to deploy all instances. And finally, cumulative

idle time until all jobs are running is defined to be the cumulative time instances are idle until all

jobs are running. For example, for the denoising workload, if the user specifies 64 jobs, cumulative

idle time until all jobs are running consists of the total amount of time any individual jobs are

running on instances until all 64 jobs are running, allowing the parallel portion of denoising to

proceed. To demonstrate the end-to-end capabilities of the environment, a trace for QIIME’s read

mapping analysis is also included. The trace shows the number of jobs queued, running, and

complete as well as instances launched and running, and the amount of data transferred in and out

of the head node.

121

8.4.1 Understanding Policy Impact on Scientific Workflows

12 4 8 16 32 64
N-preemptive policy

0

2

4

6

8

10
H

o
u
rs

Workload time using 64 instances

Time until all 64 jobs begin running

Figure 8.1: Runtime for the denoising workload using 64 instances to run 64 denoising tasks.
Values of 1 to 64 are used for the N-preemptive provisioning policy and 3 iterations are run for
each experiment.

For the denoising workload and the N-preemptive provisioning policy, all runs specify 64

tasks and only use workers on Hotel. QIIME submits 64 jobs in a dependency chain, beginning

with a single job, and all jobs must begin running for denoising to start. Values of N from 1 to 64

are considered, meaning that when the first denoising job is submitted N instances will be launched

immediately. Setting N to 1 is equivalent to the on-demand policy where only a single instance

is launched for a single job. For this portion of the evaluation, we are particularly interested in

the ability of the N-preemptive policy to minimize the time until all 64 jobs are running, minimize

overall runtime, and minimize wasted time over simply using a basic on-demand policy (i.e., N=1).

Due to the significant amount of time required for a single run, only 3 experiments are run for each

value of N and the denoising workload.

122

12 4 8 16 32 64
N-preemptive policy

0

50

100

150

200

250

H
o
u
rs

Cumulative instance deployment time

Cumulative idle time until all jobs running

Figure 8.2: Job idle time and instance wasted time for the denoising workload using 64 instances
to run 64 denoising tasks. Values of 1 to 64 are used for the N-preemptive provisioning policy and
3 iterations are run for each experiment.

Figure 8.1 shows the overall workload time and the time until all 64 jobs are running. Preemp-

tively provisioning more than a single node when the first job is submitted significantly reduces the

overall runtime for the denoising workflow. The on-demand policy (N = 1) takes over 7 hours until

all 64 parallel denoising jobs are running whereas N-preemptive for N ≥ 8 is approximately 2 hours.

While on-demand provisioning may be well-suited for many scientific workloads, the N-preemptive

policy clearly demonstrates that a provisioning policy customized for specific submission patterns

can greatly reduce overall runtime and wasted time. Interestingly, provisioning all 64 instances

at once does not offer substantial improvement over provisioning 8 instances or more at a time.

The is primarily due to the specific cloud architecture and implementation of Hotel. That is, the

more instances that are deployed at the same time, the longer it takes to deploy them because

network contention is encountered as the images are transferred from the image repository to cloud

123

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

N
u
m

.
V

M
s

0

50

100

150

200

G
B

TX (GB)

RX (GB)

Sierra VMs

Hotel VMs

Total running

Total launched

1 2 3 4 5 6 7 8 9 10 11 12 13
Hour

0
10
20
30
40
50
60
70
80
90

Jo
b
 c

o
u
n
t

Queued Running Complete

Figure 8.3: Trace of the read mapping workload using the on-demand policy (N=1), showing
the number of queued, running, and complete jobs as well as VM and data information. Data
information includes data transferred out of the head node to workers (TX) and data received on
the head node from workers (RX).

hypervisor nodes, as shown in Figure 8.2. While increasing N reduces wasted idle time, it increases

instance deployment time (again due to network contention). However, it is worth noting that

increasing instance deployment time for an increasing number of instances may not be true of all

cloud providers. Therefore, it is also important to consider the characteristics of individual clouds

when creating or adapting a policy to match a specific workflow pattern. Individual traces for

increasing values of N from 1 to 64 showing job and VM information are included in the appendix.

124

8.4.2 Understanding End-to-End Capabilities in Multi-Cloud Environments

To demonstrate the end-to-end capabilities of the environment, the read mapping workload,

which has significant data requirements, is processed using multiple IaaS clouds. Since this portion

of QIIME’s workflow submits all parallel jobs at the same time only the on-demand policy is

considered. Figure 8.3 shows a trace of the workload, using both Hotel and Sierra, that includes

jobs submitted, running, complete, and VMs launched and running, as well as data transferred into

(RX) and out of (TX) the head node. The entire workload transfers over 200 GB of data between

the head node and workers, with 150 GB transferred out of the head node and approximately 50 GB

in. Unfortunately, the multi-cloud environment is not able to scale to 64 instances. This is possibly

due to heavy demand on the community clouds from other users. However, the environment is able

to launch 36 instances on Hotel before launching an additional 21 instances on Sierra. Once the head

node is configured with the Torque sensor and policy, the entire environment operates automatically

and without any user intervention. Cloud workers are launched and terminated automatically as

jobs are submitted to the queue. Once workers are running, jobs are automatically dispatched to

the workers and data transfers seamlessly. In this elastic environment, a user can simply execute

QIIME commands on the head node as they would on any other cluster, and the elastic environment

adapts automatically as it should.

8.5 Conclusion

The elastic environment seamlessly outsources scientific workloads to multiple IaaS clouds

and allows researchers to interact with the environment in the same manner that they use traditional

clusters. The complex bioinformatics software stack, QIIME, which consists of over 30 dependen-

cies, is deployed with a single command using app-deploy. The experimental evaluation shows

that provisioning policies customized for specific workflows can be highly beneficial, in particular,

the N-preemptive provisioning policy reduces the runtime of one stage of the QIIME workflow by

approximately a factor of two compared to our on-demand approach. The experimental evaluation

125

also shows the ability of the elastic environment to support large-scale deployments that seamlessly

transfer hundreds of gigabytes of data between multiple cloud providers. However, the performance

of these elastic environments depend largely on the performance of the underlying hardware and

technologies. Consideration should be given to the limitations of the performance of the under-

lying hardware as well as the requirements of the scientific workflow. Scientific applications with

strict latency requirements or sensitivities to OS jitter may not be well-suited for widely-distributed

elastic environments given the current state of underlying technologies. However, many other sci-

entific workloads and applications, such as loosely coupled parallel jobs or embarrassingly parallel

workloads similar to these bioinformatics workloads, may be easily outsourced to IaaS clouds. Fi-

nally, the diversity of scientific applications and workflows that can effectively leverage these elastic

environments will likely continue to increase as technologies evolve and mature, offering better

performance for lower costs.

Chapter 9

Conclusion and Future Work

This dissertation addresses the need for flexible cloud environments that adapt to variable

demand. Preemptible and preset leases, which deploy preemptible VMs, increase the utilization of

under-utilized IaaS clouds and an elastic environment is developed to adapt to variable demand

using IaaS clouds, outsourcing excess demand to external clouds. The open source Nimbus IaaS

toolkit is extended to support preemptible and preset leases, deploying preemptible VMs on idle

VMM nodes, which allow tasks to use cycles that would have otherwise been idle. The elastic

environment extends site services, such as HPC resource managers, to use cloud auto-scaling services

and adjust to variable demand. The environment adjusts based on two major factors: 1) the

current demand, such as the number of queued jobs, and 2) the requirements specified by the

resource administrator, such as minimizing job queued time or the cost of the deployment. By

adapting to variable demand, the flexible cloud architecture allows RPs to purchase a smaller

resource that meets the needs of their user community a majority of the time while budgeting for

future outsourcing costs. RPs should give consideration to workload requirements when outsourcing

demand. Certain workloads, such as HTC or volunteer computing jobs without deadlines, are

more amenable to preemptible VMs because they can be preempted and rescheduled while parallel

jobs with deadlines require high-cost, on-demand instances to ensure parallel or deadline-driven

applications can run to completion before instances are terminated [90].

127

9.1 Key Contributions

To address variable demand effectively, a flexible cloud architecture and implementation is

developed and evaluated. The flexible cloud architecture consists of preemptible and preset leases

to help increase utilization without sacrificing on-demand leases and an elastic environment to

outsource excess demand when needed. To support preemptible and preset leases, an open source

IaaS toolkit, Nimbus, was extended. These preemptible and preset leases provide a new type of

resource lease, typically offered at less cost than on-demand leases, for scientific users seeking to use

IaaS clouds. A large-scale elastic environment was also created and a prototype implementation

developed. The elastic environment scales up the deployment as demand increases and terminates

instances as demand decreases. It can either be deployed entirely in the cloud or be used to extend

existing site resources, such as a local Torque cluster. To balance user and administrator require-

ments, provisioning policies were developed and evaluated. The provisioning policies elect to launch

or terminate cloud instances based on demand as well as user and administrator requirements, such

as minimizing costs. Finally, the end-to-end capabilities of the elastic environment prototype is

demonstrated by processing a bioinformatics workload with data requirements, outsourcing jobs to

multiple IaaS clouds. The key intellectual contributions of this research include:

• Design of a flexible cloud architecture that adapts efficiently to variable demand for both the

user environment and the underlying infrastructure. The architecture supports common

scientific workload patterns and characteristics, including HTC or volunteer computing

workloads and parallel computing workloads.

• Formulation of resource provisioning policies for elastic environments that balance user- and

administrator-defined requirements, minimizing costs. The policies seek to adapt effectively

to demand for both specific workloads and generic workload models in order to meet the

desired requirements.

• Extend an existing scheduling algorithm for Grid environments to support IaaS environ-

128

ments. The policy uses a genetic algorithm to balance conflicting objectives.

• Analysis of the elastic cloud model, including both compute and data aspects. The model

consists of a standalone cluster, a private cloud with limited scalability, and an “infinitely”

scalable for-pay public cloud provider and examines the trade-offs of deployments that use

these different infrastructures.

• Evaluation and analysis of the elastic environment using bioinformatics workloads with

significant data requirements, providing additional insight into the requirements of large-

scale deployments for scientific workflows.

The key engineering contributions of this research include:

• Development of preemptible and preset leases for the open source Nimbus IaaS toolkit,

allowing users to leverage a new type of resource lease for workloads without immediate

deadlines, such as HTC or volunteer computing workloads.

• Development of a scalable multi-cloud elastic environment that adapts to variable demand,

outsourcing work with infrastructure clouds when needed.

• Development of an elastic cloud simulator to evaluate the elastic cloud model, which consists

of local resources, private clouds, and public clouds for different scientific workloads.

9.2 Future Work

This thesis presented a working elastic cloud framework that transparently (to the user)

extends a common open source cluster software stack to produce an elastic cluster computing en-

vironment. The resulting environment satisfies the design objectives and is thoroughly tested by

running a series of simulations, common use case studies, and demanding QIIME bioinformatics

workflows. There remains, however, a wide range of research and development that would improve

and extend this environment. In particular, the tools and techniques presented in this disserta-

tion can be customized and tuned for individual workloads and applications in order to improve

129

performance and user experiences. For example, the on-demand policy may be suitable for some

workflow patterns, such as those that submit jobs in batches periodically. However, it is also possi-

ble for the on-demand policy to waste significant time or resources by not responding appropriately

to different workflow patterns. This was illustrated with the bioinformatics denoising workload,

consisting of serial and parallel jobs, where jobs were submitted in a dependency chain. Using

the on-demand policy to provision a single VM for a single queued job required over 10 hours to

process a dataset while provisioning 8 or more VMs at the same time reduced the workload time by

approximately a factor of two. Workflow patterns that submit jobs continuously instead of periodic

batches may benefit from the gradual adjustments made by the average queued time policy instead

of a basic on-demand policy, which may result in wasted time or resources by constantly launching

and terminating instances.

Currently, the policy for the elastic environment must be chosen manually, however, develop-

ing a framework to automatically select an appropriate policy based on environment and workload

information will allow the elastic environment to operate effectively without user intervention. Such

a framework requires sensors to gather information about the environment, including its utilization

and job response time, as well as its own set of policies to identify needed adjustments, such as

switching to a different elastic environment policy or leveraging a different cloud providers as their

offerings change. Furthermore, users with highly custom workflow patterns should be able to de-

fine and provide their own policies that are best suited for their workflow and application patterns,

minimizing wasted time, resources, or money.

The elastic environment implementation also relies on existing distributed file systems, such

as Gluster or XtreemFS, for data movement. Developing more advanced data movement solutions

that integrate with user workflows will also be beneficial. In particular, these solutions should

account for both network performance as well as the cost of transferring data into and out of

clouds. These solutions should handle failures gracefully and accommodate deployments consisting

of a variable number of instances. The elastic environment can also leverage existing batch-queue

techniques, including the use of multiple queues for batch-queue resource managers, in order to

130

improve performance for certain applications and workflows. For example, jobs could be routed

to multiple queues on a batch-queue system where jobs in different queues execute on different

resources. A single queue could be made available for users, but jobs could then be automatically

routed to different hidden queues depending on their characteristics. This would allow tightly-

coupled jobs with low latency requirements to be routed to a queue that only executes jobs on

a local resource with a fast interconnect while parallel jobs capable of tolerating high latency or

embarrassingly parallel jobs could be routed to a queue monitored by an elastic environment sensor

and policy, allowing them to execute across multi-cloud infrastructure resource deployments.

A framework to perform “live” benchmarking of cloud resources is needed in order to better

understand the performance of different clouds and their offerings, which continuously evolve. Such

a benchmark suite will allow users to compute an up-to-date price-to-performance ratio when evalu-

ating cloud providers and avoid some of the pitfalls associated with cloud provider over-provisioning,

specifically the case where a large number of VMs share a single physical node. Another area is the

development of tools and methods for image definition, creation, and resource contextualization.

Improved tools and methods are required to assist users with the complicated process of configuring

and deploying images for a wide variety of IaaS clouds. New workflow tools that orchestrate the

execution of workflow applications across elastic IaaS environments will allow users to easily map

different workflow components to appropriate resources, improving utilization and performance of

their deployments depending on cloud characteristics and workload requirements.

While we demonstrate the usefulness of the tools and techniques presented in this disserta-

tion with a bioinformatics use case, many of these tools and techniques can be applied directly

to other domains without modification. Scientific applications and workflows that leverage batch-

queue clusters can use this work directly, allowing users to outsource their workloads to the cloud

transparently. Parallel applications that tolerate high latency communication and embarrassingly

parallel applications can run across multi-cloud deployments while tightly-coupled parallel applica-

tions can be restricted to resources with low latency interconnects using multiple queues and queue

routing. In particular, specific applications including those used by the Asteroseismic Modeling

131

Portal running the Aarhus Stellar Evolution Code and a parallel genetic algorithm [119] as well

as earthquake simulation codes and geological applications [79], among others. With support for

additional resource managers, such as Hadoop, large-scale data analysis applications and workflows

will be able to use the environment. Furthermore, new sensors and policies can be developed to

integrate web server software or database services with the elastic environment. While the policies

presented in this dissertation respond to both bioinformatics batch-queue workloads and generic

batch-queue workload models, they can also be tailored for other workload paradigms, such as

monitoring and responding to variable CPU or memory load on web server or database processes.

For example, a website administrator may choose to use a variant of the multi-cloud optimization

policy to balance request response time for a Web site, instead of job queued time, with the cost

of the deployment.

Bibliography

[1] Amazon Auto Scaling, Amazon, Inc. http://aws.amazon.com/autoscaling/.

[2] Amazon Cloud Watch, Amazon, Inc. http://aws.amazon.com/cloudwatch/.

[3] Amazon Elastic Compute Cloud (EC2), Amazon Inc. http://aws.amazon.com/ec2/.

[4] AMD-V. http://www.amd.com/virtualization.

[5] boto: A Python Interface to Amazon Web Services.

[6] Chef. Opscode. http://wiki.opscode.com/display/chef/Home.

[7] Cloud Foundry. http://www.cloudfoundry.com.

[8] Condor Log Analyzer. http://condorlog.cse.nd.edu.

[9] Cycle Computing, 50,000-core Cluster. http://www.cyclecomputing.com/news/news/250-
cycle-spins-up-50000-core-cluster-in-amazon-cloud.

[10] Debian Apt. http://wiki.debian.org/Apt.

[11] Engine Yard. https://www.engineyard.com.

[12] Future Grid. http://futuregrid.org/.

[13] Gluster. http://www.gluster.org.

[14] Google compute engine. https://cloud.google.com/products/compute-engine.

[15] Heroku. http://www.heroku.com.

[16] Intel VT. http://ark.intel.com/Products/VirtualizationTechnology.

[17] MIT StarCluster. http://star.mit.edu/cluster/.

[18] Nimbus. http://www.nimbusproject.org.

[19] November 2010 TOP500. http://www.top500.org/list/2010/11/.

[20] OOI 10-Gigabit Peering with Amazon Web Services.
http://calit2.net/newsroom/release.php?id=1709.

133

[21] OOI Elastic Computing Framework. https://confluence.oceanobservatories.org/display/syseng/
CIAD+CEI+OV+Elastic+Computing.

[22] OpenShift, Red Hat, Inc. https://openshift.redhat.com/app/.

[23] OpenStack. http://www.openstack.org.

[24] Parallel Workload Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.

[25] Phorque, GitHub. https://github.com/cu-csc/phorque.

[26] RightScale, Inc. https://www.rightscale.com.

[27] SGI UV, SGI, Inc. http://www.sgi.com/products/servers/uv/.

[28] SimPy Python Simulation Package. http://simpy.sourceforge.net/.

[29] SSH Filesystem. http://fuse.sourceforge.net/sshfs.html.

[30] Windows Azure. http://www.windowsazure.com/.

[31] XSEDE. https://www.xsede.org.

[32] Sumalatha Adabala, Vineet Chadha, Puneet Chawla, Renato Figueiredo, JosÈ Fortes, Ivan
Krsul, Andrea Matsunaga, Mauricio Tsugawa, Jian Zhang, Ming Zhao, Liping Zhu, and
Xiaomin Zhu. From virtualized resources to virtual computing grids: the in-vigo system.
Future Generation Computer Systems, 21(6):896 – 909, 2005.

[33] A Agarwal, R Desmarais, I Gable, D Grundy, D P-Brown, R Seuster, DC Vanderster, A Char-
bonneau, R Enge, and R Sobie. Deploying hep applications using xen and globus virtual
workspaces. In Journal of Physics: Conference Series, volume 119, page 062002. IOP Pub-
lishing, 2008.

[34] Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl Kesselman,
Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke. Data management and
transfer in high-performance computational grid environments. Parallel Computing, 28(5):749
– 771, 2002.

[35] William E Allcock, Ian Foster, and Ravi Madduri. Reliable data transport: A critical service
for the grid. In Building service based grids workshop, Global Grid Forum, volume 11.
Citeseer, 2004.

[36] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang,
Webb Miller, and David J. Lipman. Gapped blast and psi-blast: a new generation of protein
database search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

[37] David P. Anderson. Boinc: A system for public-resource computing and storage. In
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID ’04,
pages 4–10, Washington, DC, USA, 2004. IEEE Computer Society.

[38] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: an experiment in public-resource computing. Commun. ACM, 45:56–61,
November 2002.

134

[39] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew
Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.
Above the clouds: A berkeley view of cloud computing. Technical report, EECS Department,
University of California, Berkeley, February 2009.

[40] Patrick Armstrong, Ashok Agarwal, A. Bishop, Andre Charbonneau, Ronald J. Desmarais,
K. Fransham, N. Hill, Ian Gable, S. Gaudet, S. Goliath, Roger Impey, C. Leavett-Brown,
J. Ouellete, M. Paterson, C. Pritchet, D. Penfold-Brown, Wayne Podaima, D. Schade, and
Randall J. Sobie. Cloud scheduler: a resource manager for distributed compute clouds. CoRR,
abs/1007.0050, 2010.

[41] Alvin AuYoung, Brent Chun, Alex Snoeren, and Amin Vahdat. Resource allocation in feder-
ated distributed computing infrastructures. In Proceedings of the 1st Workshop on Operating
System and Architectural Support for the On-demand IT InfraStructure, volume 9, 2004.

[42] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper.
Syst. Rev., 37:164–177, October 2003.

[43] Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh. Spruce: A system for
supporting urgent high-performance computing. In Patrick Gaffney and James Pool, editors,
Grid-Based Problem Solving Environments, volume 239 of IFIP International Federation for
Information Processing, pages 295–311. Springer Boston, 2007.

[44] John Bresnahan, Tim Freeman, David LaBissoniere, and Kate Keahey. Managing appliance
launches in infrastructure clouds. In TeraGrid, Salt Lake City, UT, 2011.

[45] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco: running com-
modity operating systems on scalable multiprocessors. ACM Trans. Comput. Syst., 15:412–
447, November 1997.

[46] J. Gregory Caporaso, Kyle Bittinger, Frederic D. Bushman, Todd Z. DeSantis, Gary L.
Andersen, and Rob Knight. Pynast: a flexible tool for aligning sequences to a template
alignment. Bioinformatics, 26(2):266–267, 2010.

[47] J Gregory Caporaso et al. Qiime allows analysis of high-throughput community sequencing
data. Nature Methods, 7(5):335–336, 04 2010.

[48] Charlie Catlett, William E Allcock, Phil Andrews, Ruth Aydt, Ray Bair, Natasha Balac,
Bryan Banister, Trish Barker, Mark Bartelt, Pete Beckman, et al. Teragrid: Analysis of
organization, system architecture, and middleware enabling new types of applications, 2007.

[49] David Cheriton. The v distributed system. Commun. ACM, 31:314–333, March 1988.

[50] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike Wawrzoniak,
and Mic Bowman. Planetlab: an overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev., 33:3–12, July 2003.

[51] J. Cope, M. Oberg, H.M. Tufo, T. Voran, and M. Woitaszek. High throughput grid computing
with an ibm blue gene/l. In Cluster Computing, 2007 IEEE International Conference on,
pages 357–364, 2007.

135

[52] Jason Cope and Henry Tufo. Adapting grid services for urgent computing environments. July
2008.

[53] R. J. Creasy. The origin of the vm/370 time-sharing system. IBM Journal of Research and
Development, 25(5):483 –490, 1981.

[54] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren Smith,
and Steven Tuecke. A resource management architecture for metacomputing systems. In
Dror Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing,
volume 1459 of Lecture Notes in Computer Science, pages 62–82. Springer Berlin / Heidelberg,
1998.

[55] Marcos Dias de Assuncao, Alexandre di Costanzo, and Rajkumar Buyya. Evaluating the
cost-benefit of using cloud computing to extend the capacity of clusters. In Proceedings of
the 18th ACM international symposium on High performance distributed computing, HPDC
’09, pages 141–150, New York, NY, USA, 2009. ACM.

[56] Kalyanmoy Deb. Multiobjective Optimization Using Evolutionary Algorithms. Wiley, 2001.

[57] Kalyanmoy Deb. Multi-objective optimization. In Edmund K. Burke and Graham Kendall,
editors, Search Methodologies, pages 273–316. Springer US, 2005.

[58] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing science on the
cloud: The montage example. In High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008. International Conference for, pages 1 –12, 2008.

[59] Robert C. Edgar. Search and clustering orders of magnitude faster than blast. Bioinformatics,
26(19):2460–2461, 2010.

[60] Constantinos Evangelinos and Chris N. Hill. Cloud computing for parallel scientific HPC
applications: Feasibility of running coupled atmosphere-ocean climate models on amazon’s
EC2. In Cloud Computing and Its Applications, Chicago, IL, October 2008.

[61] Dror Feitelson. Packing schemes for gang scheduling. In Dror Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing, volume 1162 of Lecture Notes in
Computer Science, pages 89–110. Springer Berlin / Heidelberg, 1996.

[62] Ian Foster. Globus toolkit version 4: Software for service-oriented systems. In Hai Jin, Daniel
Reed, and Wenbin Jiang, editors, Network and Parallel Computing, volume 3779 of Lecture
Notes in Computer Science, pages 2–13. Springer Berlin / Heidelberg, 2005.

[63] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of High Performance Computing Applications,
15(3):200–222, Fall 2001.

[64] Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, Karsten Schwan, Vishakha Gupta, Ripal
Nathuji, Radhika Niranjan, Adit Ranadive, and Purav Saraiya. High-performance hypervisor
architectures: Virtualization in hpc systems. In Workshop on System-level Virtualization for
HPC (HPCVirt), 2007.

136

[65] W. Gentzsch. Sun grid engine: towards creating a compute power grid. In Cluster Computing
and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, pages 35
–36, 5 2001.

[66] Devarshi Ghoshal, Richard Shane Canon, and Lavanya Ramakrishnan. I/o performance of
virtualized cloud environments. In Proceedings of the second international workshop on Data
intensive computing in the clouds, DataCloud-SC ’11, pages 71–80, New York, NY, USA,
2011. ACM.

[67] Belinda Giardine, Cathy Riemer, Ross C. Hardison, Richard Burhans, Laura Elnitski, Prachi
Shah, Yi Zhang, Daniel Blankenberg, Istvan Albert, James Taylor, Webb Miller, W. James
Kent, and Anton Nekrutenko. Galaxy: A platform for interactive large-scale genome analysis.
Genome Research, 15(10):1451–1455, 2005.

[68] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cellular disco:
resource management using virtual clusters on shared-memory multiprocessors. ACM Trans.
Comput. Syst., 18:229–262, August 2000.

[69] J.J. Grefenstette. Optimization of control parameters for genetic algorithms. Systems, Man
and Cybernetics, IEEE Transactions on, 16(1):122 –128, jan. 1986.

[70] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard. Parallel computing,
22(6):789–828, 1996.

[71] Qiming He, Shujia Zhou, Ben Kobler, Dan Duffy, and Tom McGlynn. Case study for running
hpc applications in public clouds. In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, HPDC ’10, pages 395–401, New York, NY,
USA, 2010. ACM.

[72] Robert Henderson. Job scheduling under the portable batch system. In Dror Feitelson and
Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume 949 of
Lecture Notes in Computer Science, pages 279–294. Springer Berlin / Heidelberg, 1995.

[73] Z. Hill and M. Humphrey. A quantitative analysis of high performance computing with
amazon’s ec2 infrastructure: The death of the local cluster? In Grid Computing, 2009 10th
IEEE/ACM International Conference on, pages 26–33, 2009.

[74] Wei Huang, Matthew J. Koop, Qi Gao, and Dhabaleswar K. Panda. Virtual machine
aware communication libraries for high performance computing. In Proceedings of the 2007
ACM/IEEE conference on Supercomputing, SC ’07, pages 9:1–9:12, New York, NY, USA,
2007. ACM.

[75] Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar K Panda. A case for high perfor-
mance computing with virtual machines. In Proceedings of the 20th annual international
conference on Supercomputing, pages 125–134. ACM, 2006.

[76] Felix Hupfeld, Toni Cortes, Björn Kolbeck, Jan Stender, Erich Focht, Matthias Hess, Je-
sus Malo, Jonathan Marti, and Eugenio Cesario. The xtreemfs architecture—a case for
object-based file systems in grids. Concurrency and Computation: Practice and Experience,
20(17):2049–2060, 2008.

137

[77] David Jackson, Quinn Snell, and Mark Clement. Core algorithms of the maui scheduler. In
Dror Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing,
volume 2221 of Lecture Notes in Computer Science, pages 87–102. Springer Berlin / Heidel-
berg, 2001.

[78] Gideon Juve and Ewa Deelman. Automating application deployment in infrastructure clouds.
Cloud Computing Technology and Science, IEEE International Conference on, 0:658–665,
2011.

[79] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman, Benjamin P.
Berman, and Phil Maechling. Data sharing options for scientific workflows on amazon
ec2. In Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages 1–9, Washington, DC, USA,
2010. IEEE Computer Society.

[80] Kate Keahey, Patrick Armstrong, John Bresnahan, David LaBissoniere, and Pierre Riteau.
Infrastructure outsourcing in multi-cloud environment. In Workshop on Cloud Services,
Federation, and the 8th Open Cirrus Summit, 2012.

[81] Kate Keahey, Ian Foster, et al. Virtual workspaces: Achieving quality of service and quality
of life in the grid. Scientific Programming, 13(4):265–275, 01 2005.

[82] Kate Keahey and Tim Freeman. Contextualization: Providing one-click virtual clusters.
eScience, IEEE International Conference on, 0:301–308, 2008.

[83] Nancy P. Kronenberg, Henry M. Levy, and William D. Strecker. Vaxcluster: a closely-coupled
distributed system. ACM Trans. Comput. Syst., 4:130–146, May 1986.

[84] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell, Philip
Patchin, Stephen M. Rumble, Eyal de Lara, Michael Brudno, and Mahadev Satyanarayanan.
Snowflock: rapid virtual machine cloning for cloud computing. In Proceedings of the 4th
ACM European conference on Computer systems, EuroSys ’09, pages 1–12, New York, NY,
USA, 2009. ACM.

[85] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande. Folding@Home and Genome@Home:
Using distributed computing to tackle previously intractable problems in computational bi-
ology. ArXiv e-prints, January 2009.

[86] Laurent Lefèvre and Anne-Cécile Orgerie. Designing and evaluating an energy efficient cloud.
The Journal of Supercomputing, 51:352–373, 2010.

[87] Chunlin Li, Layuan Li, and Zhengding Lu. Utility driven dynamic resource allocation using
competitive markets in computational grid. Advances in Engineering Software, 36(6):425 –
434, 2005.

[88] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum. Mechanisms for high
throughput computing. SPEEDUP journal, 11(1):36–40, 1997.

[89] Cam Macdonell and Paul Lu. Pragmatics of virtual machines for high-performance com-
puting: A quantitative study of basic overheads. In Proc. of the 2007 High Performance
Computing and Simulation Conf, 2007.

138

[90] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, pages 49:1–49:12, New
York, NY, USA, 2011. ACM.

[91] Marcel Margulies et al. Genome sequencing in microfabricated high-density picolitre reactors.
Nature, 437(7057):376–380, 09 2005.

[92] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic Site: Using clouds to elastically
extend site resources. In Proceedings of the 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, CCGRID ’10, pages 43–52, Washington, DC, USA,
2010. IEEE Computer Society.

[93] Paul Marshall, Kate Keahey, and Tim Freeman. Improving utilization of infrastructure clouds.
In Proceedings of the 2011 11th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, CCGRID ’11. IEEE Computer Society, 2011.

[94] Paul Marshall, Henry Tufo, and Kate Keahey. Provisioning policies for elastic computing
environments. In Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages 1085 –1094, may 2012.

[95] Paul Marshall, Henry Tufo, Kate Keahey, David LaBissoniere, and Matthew Woitaszek. Ar-
chitecting a large-scale elastic environment: Recontextualization and adaptive cloud services
for scientific computing. In Proceedings of the 2012 7th International Conference on Software
Paradigm Trends, ICSOFT, 2012.

[96] Paul Marshall, Matthew Woitaszek, Henry M. Tufo, Rob Knight, Daniel McDonald, and
Julia Goodrich. Ensemble dispatching on an ibm blue gene/l for a bioinformatics knowledge
environment. In Proceedings of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers, MTAGS ’09, pages 13:1–13:8, New York, NY, USA, 2009. ACM.

[97] Ronald Minnich and Jim Mckie. Experiences porting the plan 9 research operating system to
the ibm blue gene supercomputers. Computer Science - Research and Development, 23:117–
124, 2009.

[98] Justin Moore, David Irwin, Laura Grit, Sara Sprenkle, and Jeff Chase. Managing mixed-
use clusters with cluster-on-demand. Technical report, Technical report, Duke University,
Department of Computer Science, 2002.

[99] S.J. Mullender, G. van Rossum, A.S. Tananbaum, R. van Renesse, and H. van Staveren.
Amoeba: a distributed operating system for the 1990s. Computer, 23(5):44 –53, May 1990.

[100] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel virtualization
technology: Hardware support for efficient processor virtualization. Intel Technology Journal,
10(3):167–177, 2006.

[101] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov.
The eucalyptus open-source cloud-computing system. In Cluster Computing and the Grid,
2009. CCGRID ’09. 9th IEEE/ACM International Symposium on, pages 124 –131, may 2009.

139

[102] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas Fahringer,
and Dick Epema. A performance analysis of ec2 cloud computing services for scientific
computing. In Cloud Computing, volume 34 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pages 115–131. Springer
Berlin Heidelberg, 2010.

[103] J.K. Ousterhout, A.R. Cherenson, F. Douglis, M.N. Nelson, and B.B. Welch. The sprite
network operating system. Computer, 21(2):23 –36, 1988.

[104] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, et al. Plan 9 from bell labs. In
Proceedings of the summer 1990 UKUUG Conference, pages 1–9, 1990.

[105] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy, Paul Avery,
Kent Blackburn, Torre Wenaus, Frank Wrthwein, Ian Foster, Rob Gardner, Mike Wilde,
Alan Blatecky, John McGee, and Rob Quick. The open science grid. Journal of Physics:
Conference Series, 78(1):012057, 2007.

[106] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. Fasttree: Computing large min-
imum evolution trees with profiles instead of a distance matrix. Molecular Biology and
Evolution, 26(7):1641–1650, 2009.

[107] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta. Complete computer system simu-
lation: the simos approach. Parallel Distributed Technology: Systems Applications, IEEE,
3(4):34 –43, 1995.

[108] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann,
C. Kaiser, S. Langlois, P. Léonard, and W. Neuhauser. Overview of the chorus distributed
operating systems. Computing Systems, 1:39–69, 1991.

[109] P. Ruth, P. McGachey, and Dongyan Xu. Viocluster: Virtualization for dynamic computa-
tional domains. Cluster Computing, IEEE International Conference on, 0:1–10, 2005.

[110] Spencer Shepler, Mike Eisler, David Robinson, Brent Callaghan, Robert Thurlow, David
Noveck, and Carl Beame. Network file system (nfs) version 4 protocol. Network, 2003.

[111] G. Singh, C. Kesselman, and E. Deelman. Adaptive pricing for resource reservations in shared
environments. In Grid Computing, 2007 8th IEEE/ACM International Conference on, pages
74 –80, 2007.

[112] Gurmeet Singh, Carl Kesselman, and Ewa Deelman. Performance impact of resource pro-
visioning on workflows. University of Southern California available at http://www. cs. usc.
edu/Research/TechReports/05-850. pdf, pages 05–850, 2005.

[113] Gurmeet Singh, Carl Kesselman, and Ewa Deelman. A provisioning model and its compar-
ison with best-effort for performance-cost optimization in grids. In Proceedings of the 16th
international symposium on High performance distributed computing, pages 117–126. ACM,
2007.

[114] Gurmeet Singh, Carl Kesselman, and Ewa Deelman. A provisioning model and its com-
parison with best-effort for performance-cost optimization in grids. In Proceedings of the
16th international symposium on High performance distributed computing, HPDC ’07, pages
117–126, New York, NY, USA, 2007. ACM.

140

[115] B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Foster. Virtual infrastructure management
in private and hybrid clouds. Internet Computing, IEEE, 13(5):14 –22, sept.-oct. 2009.

[116] A. Stamatakis, T. Ludwig, and H. Meier. Raxml-iii: a fast program for maximum likelihood-
based inference of large phylogenetic trees. Bioinformatics, 21(4):456–463, 2005.

[117] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Beowulf cluster com-
puting with linux. chapter Condor: a distributed job scheduler, pages 307–350. MIT Press,
Cambridge, MA, USA, 2002.

[118] S. Vinoski. Advanced message queuing protocol. Internet Computing, IEEE, 10(6):87 –89,
2006.

[119] Matthew Woitaszek, Travis Metcalfe, and Ian Shorrock. Amp: a science-driven web-based ap-
plication for the teragrid. In Proceedings of the 5th Grid Computing Environments Workshop,
GCE ’09, pages 1:1–1:7, New York, NY, USA, 2009. ACM.

[120] Matthew Woitaszek and Henry Tufo. Developing a cloud computing charging model for high-
performance computing resources. In 10th IEEE International Conference on Computer and
Information Technology, Bradford, UK, June 2010.

[121] Jia Yu, R. Buyya, and Chen Khong Tham. Cost-based scheduling of scientific workflow
applications on utility grids. In e-Science and Grid Computing, 2005. First International
Conference on, pages 8 pp. –147, 2005.

[122] Qian Zhu and Gagan Agrawal. Resource provisioning with budget constraints for adaptive
applications in cloud environments. In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, HPDC ’10, pages 304–307, New York, NY,
USA, 2010. ACM.

Appendix A

Individual Traces of FutureGrid Deployments for the Denoising Bioinformatics

Workload

The denoising workload evaluations presented in Chapter 8 examines the use of the N-

preemptive provisioning policy with values from N=1 to N=64. Individual traces of these eval-

uations are included here, showing job information and VM information, including the amount of

data transferred from the head node to worker nodes (TX) and the amount of data transferred

from the worker nodes back to the head node (RX).

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

N
u
m

.
V

M
s

0

10

20

30

40

50

G
B

TX (GB)

RX (GB)

Total running

Total launched

1 2 3 4 5 6 7 8 9 10 11 12
Hour

0
10
20
30
40
50
60
70
80
90

Jo
b
 c

o
u
n
t

Queued Running Complete

Figure A.1: Job and VM trace for the denoising workload using 64 instances on the Hotel cloud at
the University of Chicago and the N-preemptive provisioning policy with N=1 (i.e., on-demand).

142

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

N
u
m

.
V

M
s

0

10

20

30

40

50

G
B

TX (GB)

RX (GB)

Total running

Total launched

1 2 3 4 5 6 7 8
Hour

0
10
20
30
40
50
60
70
80
90

Jo
b
 c

o
u
n
t

Queued Running Complete

Figure A.2: Job and VM trace for the denoising workload using 64 instances on the Hotel cloud at
the University of Chicago and the N-preemptive provisioning policy with N=2.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

N
u
m

.
V

M
s

0

10

20

30

40

50

G
B

TX (GB)

RX (GB)

Total running

Total launched

1 2 3 4 5 6 7 8 9 10
Hour

0
10
20
30
40
50
60
70
80
90

Jo
b
 c

o
u
n
t

Queued Running Complete

Figure A.3: Job and VM trace for the denoising workload using 64 instances on the Hotel cloud at
the University of Chicago and the N-preemptive provisioning policy with N=4.

143

1 2 3 4 5 6 7
0

10

20

30

40

50

60

N
u
m

.
V

M
s

0

10

20

30

40

50

G
B

TX (GB)

RX (GB)

Total running

Total launched

1 2 3 4 5 6 7
Hour

0
10
20
30
40
50
60
70
80
90

Jo
b
 c

o
u
n
t

Queued Running Complete

Figure A.4: Job and VM trace for the denoising workload using 64 instances on the Hotel cloud at
the University of Chicago and the N-preemptive provisioning policy with N=8.

1 2 3 4 5 6
0

10

20

30

40

50

60

N
u
m

.
V

M
s

0

10

20

30

40

50

G
B

TX (GB)

RX (GB)

Total running

Total launched

1 2 3 4 5 6
Hour

0
10
20
30
40
50
60
70
80
90

Jo
b
 c

o
u
n
t

Queued Running Complete

Figure A.5: Job and VM trace for the denoising workload using 64 instances on the Hotel cloud at
the University of Chicago and the N-preemptive provisioning policy with N=16.

144

1 2 3 4 5
0

10

20

30

40

50

60

N
u
m

.
V

M
s

0

10

20

30

40

50

G
B

TX (GB)

RX (GB)

Total running

Total launched

1 2 3 4 5
Hour

0
10
20
30
40
50
60
70
80
90

Jo
b
 c

o
u
n
t

Queued Running Complete

Figure A.6: Job and VM trace for the denoising workload using 64 instances on the Hotel cloud at
the University of Chicago and the N-preemptive provisioning policy with N=32.

1 2 3 4 5 6
0

10

20

30

40

50

60

N
u
m

.
V

M
s

0

10

20

30

40

50

G
B

TX (GB)

RX (GB)

Total running

Total launched

1 2 3 4 5 6
Hour

0
10
20
30
40
50
60
70
80
90

Jo
b
 c

o
u
n
t

Queued Running Complete

Figure A.7: Job and VM trace for the denoising workload using 64 instances on the Hotel cloud at
the University of Chicago and the N-preemptive provisioning policy with N=64.

