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Previous studies have documented a strong relationship between marine

ecosystems and large-scale modes of sea surface height (SSH) and sea

surface temperature (SST) variability in the North Pacific such as the Pacific

Decadal Oscillation and the North Pacific Gyre Oscillation. In the central and

western North Pacific along the Kuroshio-Oyashio Extension (KOE), the

expression of these modes in SSH and SST is linked to the propagation of

long oceanic Rossby waves, which extend the predictability of the climate

system to ~3 years. Using a multivariate physical-biological linear inverse

model (LIM) we explore the extent to which this physical predictability leads

to multi-year prediction of dominant fishery indicators inferred from three

datasets (i.e., estimated biomasses, landings, and catches). We find that despite

the strong autocorrelation in the fish indicators, the LIM adds dynamical

forecast skill beyond persistence up to 5-6 years. By performing a sensitivity

analysis of the LIM forecast model, we find that two main factors are essential

for extending the dynamical predictability of the fishery indicators beyond

persistence. The first is the interaction of the fishery indicators with the SST/

SSH of the North and tropical Pacific. The second is the empirical relationship

among the fisheries time series. This latter component reflects stock-stock

interactions as well as common technological and human socioeconomic

factors that may influence multiple fisheries and are captured in the training of

the LIM. These results suggest that empirical dynamical models and machine

learning algorithms, such as the LIM, provide an alternative and promising

approach for forecasting key ecological indicators beyond the skill

of persistence.

KEYWORDS

empirical dynamical model, fishery indicators, climate variability, climate change,
forecast, biomass anomalies, landings, catches
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1. Introduction

The Kuroshio-Oyashio system is composed of the western

boundary currents (WBC) of the North Pacific’s subtropical and

subpolar gyres. In the transition region between the two gyres,

quasi-stationary meanders form the Kuroshio-Oyashio

Extension jet (KOE). The KOE is flanked to the south by an

anticyclonic recirculation gyre which has been observed to

increase the eastward transport of the jet [Mizuno et al. 1983;

Qiu and Chen, 2005; Qiu et al., 2017]. Atmosphere-ocean

interactions are particularly intensified in the WBC. Almost

70% of the latent and sensible heat transferred to the atmosphere

from the ocean in the northern hemisphere is transferred in the

region between 25°N and 45°N latitude [Kwon et al., 2010]. This

heat transfer is crucial in controlling surface baroclinicity and

increasing storm activity. As a result, the KOE jet is one of the

regions with the greatest eddy kinetic energy in all the North

Pacific. [Kelly et al., 2010]

The internal dynamics of the KOE play a critical role in

explaining the decadal fluctuations of the Kuroshio-Oyashio

system [Mitsudera et al., 2001; Qiu, 2003]. However, it is now

well established that the interactions with external modes of

variability are important in triggering the quasi-stationary

meanders in the KOE jet. Recent study confirms that the

surface Chl-a concentration, nutrient concentration, and

catches of fish stocks are associated with two dominant modes

of variability of the North Pacific [Yati Emi et al., 2020] which

are the Pacific Decadal Oscillation (PDO) [Mantua et al., 1997]

and the North Pacific Gyre Oscillation (NPGO) [Di Lorenzo

et al., 2008; Yatsu et al., 2013; Lin et al., 2014]. One way in which

the PDO-related dynamics influences the marine ecosystems is

through the control of seasonal mixed layer processes. For the

northwestern Pacific, a positive phase of the PDO is associated

with a negative anomaly in the SST with an associated increase

in the mixed layer depth, leading to a weakening of the KOE

[Yatsu, et al., 2013]. The opposite happens in a negative phase.

These climate regime shifts are well correlated with fluctuations

in biological characteristics [Yati et al., 2020; Möllmann and

Diekmann, 2012]. The weakening of the KOE is hypothesized to

increase the catches of Japanese sardine in the northwestern

Pacific, while during a strengthening of the jet, catches of

Japanese anchovies are relatively high [Chavez et al., 2003].

While the patterns of climate variability are well established

[Liu and Di Lorenzo, 2018], the mechanism by which the marine

ecosystems are influenced by climate fluctuations remains

unclear [see review in Bograd et al., 2019]. As climate processes

induce fluctuations in marine ecosystems, human societies are

often negatively impacted, as food security and coastal economies

are dependent on the stability of marine resources [Yunne-Jai

et al., 2010; Shin et al., 2010]. This means that improved

predictions of future changes in the fisheries of the Kuroshio-

Oyashio system can have important socioeconomic impacts.
Frontiers in Marine Science 02
Forecasting marine ecosystems presents a series of

challenges because the interactions of the ecosystem with

human society often have been nonlinear and occur over a

range of spatial and temporal scales. Also, the lack of long and

accurate time series challenges our ability to study climate and

fisheries interactions and develop forecasts that are accurate at

long lead times. To address these challenges, past studies have

focused on identifying the observational needs for ecosystem

forecasting [Capotondi et al., 2019] and on exploring the use of

dynamical model approaches to account for non-linearities

present in marine ecosystems dynamics [Jacox et al., 2019;

Tommasi et al., 2017]. Yet, numerical dynamical models still

have biases, including erroneous representations of the WBCs

and their separation latitude, limiting their usefulness for

capturing many complex, fine-scale processes. Given that we

still do not have adequate dynamical models that capture the

dynamics of climate, fish, and human interactions, previous

studies [Koul et al., 2021] have investigated the use of simple

statistical models (linear regression and multiple linear

regression) for fishery forecasting. These studies have offered

successful predictions of cod stocks in the Barents Sea on decadal

time scales.

In this article we have considered an alternative approach to

predict of time series of fisheries indices by using an empirical

dynamical model (EDM) method or linear inverse modeling

(LIM). These approaches have proved very useful for

understanding the variability of North Pacific physical

ecosystems drivers, including extremes [Capotondi et al., 2022],

and have exhibited promising results when applied to North and

tropical Pacific SST forecasts [Newman, 2007]. Here, we apply the

LIM approach to explore the predictability of a set offisheries time

series describing the temporal changes of specific stocks. These

time series can be viewed as proxies that simplify complicated

biological and socioeconomic conditions over time [Blanchard

et al., 2010; Tam et al., 2019]. The three fisheries databases

considered in this study are (1) stock biomass anomalies from

scientific stock assessments performed for a limited number of

stocks in different regions (RAM database, [Ricard et al., 2012]),

(2) landings of stocks as reported by the country targeting the

species (LME database, [Pauly et al., 2020]), and (3) the catches of

species that are estimated from data reported to the United

Nations (FAO database [Pauly et al., 1998]).

These data sources are useful in the context of EDMs

because they provide a large number of time series that

capture physical, ecological and human factors inherent to

commercial fisheries statistics. Also, EDMs like the LIM have

the added advantage of being able to capture some of the

human-forced dynamics that are implicitly reflected in the fish

indicators and yet are not explicitly known.

The purpose of the paper is to analyze the ability of the EDM

to forecast fisheries time series. While the use of complex

dynamical models could be another possible approach [Park
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et al., 2019], the inclusion of fisheries information in dynamical

models is not straightforward. In addition, dynamical models

often suffer from biases in the representation of physical climate

features, such as the Western Boundary Currents, and are much

more computationally intensive. The EDM approach explored

here, if skillful, may provide a useful alternative for forecasting

fisheries indices. Here, we consider the forecasting skill related to

the fisheries metrics and partition the fisheries predictability

between the component associated with climatic variables, i.e.,

sea surface temperature (SST) and sea surface height (SSH) and

that related to stock-stock interactions or socioeconomic factors.
2. Methods

2.1 Reanalysis data

The physical data that we included in the LIM were extracted

from the ECMWF Ocean Reanalysis System 4 (ORAS4) on a 1°C

by 1°C latitude–longitude spatial resolution between 1958-2016,

for a spatial region of 15°S-62°N, 100°E-290°E, which includes

the tropical and North Pacific. It is important to include in the

LIM all North and tropical pacific basin for the physical state.

This allows us to capture the dynamics of the large-scale climate

modes such as PDO and NPGO and their tropical forcing linked

to the different flavors of the El Niño Southern Oscillation [Di

Lorenzo and Ohman, 2013].

As is often done with the LIM [Newman, 2007; Zhao et al.,

2021], the SSH and SST data were first coarsened by averaging

them into a box of 2 degrees of latitude and 5 degrees of

longitude. As a next step, the data were smoothed to remove

sub seasonal variations with a 3 months running mean. The SSH

and SST anomalies were computed by removing the mean

monthly climatology. Further description and access to the

data can be found at https://icdc.cen.uni-hamburg.de/daten/

reanalysis-ocean/easy-init-ocean/ecmwf-ocean-reanalysis-

system-4-oras4.html
2.2 Fisheries databases

The first database considered for the fisheries was the RAM

Legacy Stock Assessment Database (RAM), https://www.

ramlegacy.org, [Ricard et al., 2012]. Globally, this database

contains 331 stock assessments divided into 295 marine fish

stocks and 36 invertebrate stocks. The species considered from

the RAM database are displayed in Supplementary Table 1 and

included 20 species from the northwest Pacific region of interest

(Figure 1A). For some species, the associated time series have a

time duration of 63 years from (1950-2012). However, most of
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the fish indicators are only available after 1979. For this reason

we selected data after 1979 with less than 5 years of data gaps for

developing the LIM.

The second database considered was the commercial catches

from a database aggregated by Large Marine Ecosystem (LME),

https://www.lmehub.net/, [Cornillon, Peter. (2007)] (Figure 1B).

An LME is defined as an area of 200,000 km2 or greater whose

extent is determined by similarities in relevant variables such as

bathymetry, productivity, or trophic relationships [Sherman,

2014]. The database contains 10,438 stocks in all regions of

the world with 55 years of data, from 1950 to 2004. Three LMEs

were considered in this study (the Kuroshio, the Oyashio

Current and the Sea of Japan LMEs), and those included

catches for 225 stocks that have data gaps for less than 5 years.

The catches were defined as the weight of fish caught in the open

sea independently of the way they have been taken (i.e., gear type

or as target or non-target catch). We have considered catches

data from 1959 to the most recent data. Here, catches in FAO

region 61 (Figure 1J) were analyzed (a region of the Northwest

Pacific from about 20°CN to 65°CN and from the coast of

Vietnam east to the Bering Strait). The discarded fish have not

been filtered out in the two databases; the stocks of the LME

database are referred as “catches” as the database contains more

catches in weight than the FAO database.

The last database considered included the landings obtained

from the Food and Aquaculture Organization (FAO) of the

United Nations (https://www.fao.org/fishery/en/statistics)

[Pauly et al., 1998] (Figure 1C). Landings for each region offer

insight into variability in commercial fishing operations and the

fish populations that support them. WE have used 171 landings

data with data gaps less than 5 years. As for the LME database we

have started the data from 1959.

The stocks considered for the landings and the catches are

displayed in Tables 1, 2 and 3 of Supplemental Materials.
2.3 Detrending and standardization

Before proceeding in developing the LIM, we detrended the

fisheries and physical time series so to increase their stationarity

(i.e., no linear trends are present in any record).

Specifically, the time series extracted from the fisheries

databases were standardized by dividing by the standard

deviation for each individual stock ID and detrended by

removing the best linear trend fit. Consequently, the time

series are represented in STD units, and the total number of

fish species is described by the StockID (Figures 1A - C). The fish

information relative to the fish stocks are provided in Table 1, 2,

and 3 of the Supplemental Materials. To examine the percentage

of variance excluded by the detrending, we calculated the
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difference in variance between the total original data and the

detrended time series. The mean variance explained by the trend

is 29.5% for the RAM biomass (Figure 1D). In particular, the Red

seabream Inland sea of Japan (stockID 18) displays the highest

variance associated with the trend. For the LME catches and the

FAO landings, the variance excluded by removing the trend is

13.5% and 17.5% respectively, as displayed in Figures 1E, F. The

associated sign of the removed trend displays a mixture of

positive and negative trends in the stock time series of all the

three databases (see supplemental Figure S1).
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2.4 Principal components and empirical
orthogonal functions

To reduce the dimensionality of the detrended and

standardized fish indicators, we have used a classic principal

components (PCs) analysis. To extract the PCs we first compute

the covariance matrix of each fish dataset Fi(s,t), where s denotes

the stock id, t its time values, and i the dataset label:

C(s, s) = Fi(s, t)Fi(t, s)
T

A B

D E F

G IH

C

FIGURE 1

Timeseries of detrended and normalized fish stocks for the RAM (A), LME (B), and FAO (C) datasets. The variance explained by the removed
trend is represented in (D, E), and (F). The mean variance excluded by the detrending has been inserted in the plots. The associated variability is
described by the first and second principal component (G) and (H), while the corresponding EOFs are displayed in Supplementary Figure S1. The
percentage of variance explained by the PCs in each dataset is shown in (I).
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By performing an eigenvalue decomposition of C(s,s),

Ei(s, k)L(k, k)Ei(k, s)
T = Ci(s, s)

we derive the eigenvector Ei(s,k) for the eigenmodes k=1…K

where K=7 or RAM, and K=8 for LME and FAO that are

associated with the K largest eigenvalues l(k) from the

diagonal of the eigenvalue matrix L(k,k) . The choice of K

modes retained in each dataset is explained in section 2.5.

Physically, these eigenvectors, referred to as the Empirical

Orthogonal Functions (EOFs), are the dominant patterns of

variance across the stocks and provide an orthogonal basis onto

which we can decompose the original fish datasets as:

Pi(k, t) = Ei(k, s)
TFi(s, t)

where Pi(k,t) are the PCs for each dataset i. Using this

approach we reduce the dimensionality of the fish dataset from s

(order ~100)!k(order ~10) Prior to the computation of the

covariance, years with missing data in any given stock were set to

zero to void any contribution to the covariance. Given that for

any given year there were only few missing data across all the

stocks, the impact of setting to zero the missing values has

negligible impact the estimation of the EOFs.

The first two dominant PCs for each of the fish dataset are

reported in Figures 1G, H and are discussed further in the results

section 3.1. The EOFs structures for the first two modes are

reported in supplemental material Figure S1.

By normalizing the eigenvalue om the EOFs decomposition,

we measure the fraction of variance explained by each pair of

PC/EOF mode k as l(k)=o
K

1
l(k). The spectrum of explained

variance is reported in Figure 1I.
2.5 Linear inverse model and forecast

Inverse modeling can be defined as the extraction of

dynamical properties of a physical-biological system from its

observed statistics. The LIM model suggests that on interannual

time scales, our system may be viewed as a linear system driven

by Gaussian white noise. The idea is that the climate timescales

underpinning the dynamics of our system are longer than the

noise. An example of noise are the fast air sea interactions. In

this framework the N component state vector of anomalies X

volves accordingly to the linear equation,

dXðtÞ
dt

= LXðtÞ + xðtÞ (1)

In this equation L represents a matrix that describes the

feedback among different components of X while x is the

stochastic forcing term.

For the purpose of this study, the components of the state

vector X and of the operator L in equation (1) are:
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dX(t)
dt

=

X(t)fishery

X(t)SST

X(t)SSH

2
664

3
775

=

Lfishery−fishery LSST−SSH LSST−fishery

LSSH−SST LSST−SST LSSH−fishery

Lfishery−SST LSST−SST LSSH−SSH

2
664

3
775

X(t)fishery

X(t)SST

X(t)SSH

2
664

3
775

+

x(t)fishery
x(t)SST
x(t)SSH

2
664

3
775 (2)

In this framework, the state vector X is made of three

substate vectors representing the fishery, SST, and SSH dataset.

Each of these substate vectors is constructed using the PCs to

reduce the dimensionality of the problem. For example,

X(t)SST¼  ½SST _ PC1(t),   SST _ PC2(t),  … :  ,   SST _ PCK (t)   �
where K is number of dominant PC retained for

each dataset.

In equation (2), the operator L as in the main diagonal the

interaction terms of each variable with itself (LSST-SST,Lfisheyr-

fishery,LSSH-SSH), while the terms outside the main diagonal

are the interaction terms of each variable with the other ones

(LSST-SSH,LSST-fishery, LSSH-fishery,LSSH-SST,Lfishery-SST,

Lfishery-SSH).

As discussed by Penland et al. [1989], the statistics of a

system modeled by the LIM must be Gaussian [Penland et al.,

1995]. The operator L can therefore be determined from the state

vector X by discretizing the equation (1).

L =
1
t
ln ( 〈X(t + t)X(t) 〉 〈X(t)X(t) 〉 ) (3)

After obtaining L we can forecast of the state vector for a

specific lead time t using:

X̂ (t + t) = exp (L · t)X(t) (4)

An important assumption in the use of the LIM, and the

forecast equation (4), is that the statistics of the system are

stationary over the period considered. For this reason, the

operator L must be dissipative, which means its eigenvalues

must have negative real parts [Newman et al., 2013]. Similarly,

we expect that the statistics of stochastic forcing Q=〈xxT〉
[Penland et al., 1995], which are determined from the

fluctuations-dissipation relationship,

Q = −LC(0) + C(0)LT (5)

has positive eigenvalues. In supplemental Figure S2 we have

displayed the eigenvalue spectrum for the operator L and the

matrix Q We obtain negative eigenvalues for L and positive for

Q indicating that our statistics are stationary.
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2.5.1 LIM forecast configuration
Number of PCs used in the state vector. To implement the

LIM forecast model, the number of PCs retained in the physical

and biological state vectors were chosen differently. For the

physical components of the analysis, we retain 20 PCs for the

SST and 17 for the SSH which capture 77% and 76% of the

variance, respectively. These numbers were selected following

the configuration of a previous Pacific LIM that uses the same

data sources and domain area [see Zhao et al., 2021]. Equation 2

is used independently for each of the fish datasets. To establish

how many PCs to retain for each dataset (e.g. RAM, LME, and

FAO), we performed a series of cross-validated forecasts

(explained in the next section 2.6) using equation (4) to

identity the number of biological PCs to retain in the LIM that

would lead to the highest forecast skill for the reconstructed fish

indicators. Based on this cross-validation, we retained 8 PCs for

the RAM biomass, corresponding to 94% of the variance of that

quantity, 7 PCs for the LME catches, which describes 74% of the

catches total variance, and 7 PCs for the FAO landings, which

still correspond to 70% of the variance. Also, for the fishery state

vectors, we interpolate the data to the same monthly scale of SST

and SSH to allow inclusion of physical information at seasonal

time scales.

Temporal span of forecast. The dataset used in this study

have different spatial coverage. The physical data is only

available starting 1959. Thus, we begin our training of the LIM

and examination of the forecast skill over the following period:

1959-2016 for SSTa, 1979-2012 for RAM, 1959-2004 for LME,

and 1959-2014 for FAO.
2.6 Cross-validation

To ensure that the LIM is tested on independent data, the

estimates of L and of forecasting skills were cross validated by

subsampling the data record. We have removed in total 10% of

the data, for both the fishery and the physical part, and

computed the operator L for the remaining data. The

independent years removed are then forecasted using the

computed L. This procedure is repeated for the entire period.

The associated forecasting skills are computed by the correlation

r(t) between the observational data and the forecast for the

different lead times t For example, to evaluate r(t) for the each of
the fish datasets, the PCs of the forecasted substate vector X̂ (t
)fishery obtained from (eq. 4) [Newman et al., 2003] are projected

into the truncated EOF space,

F̂ i(s, t) = Ei(s, k)
T P̂ i(k, t)

to obtain the forecasted fishery time series that are then

correlated with the original data Fi(s,t) We apply this procedure

to the LIM that (1) contains only the physical state variables SST
Frontiers in Marine Science 06
and SSH, and (2) contains the physical variables plus the

fishery’s principal components.
2.7 LIM t est

To test the validity of linear approximation of the LIM, we

perform the so called a t test, which is designed to test the ability

of the LIM to reproduce the lag covariance statistics using a lag

which goes far beyond the training t=3 months . Practically, the

test consists of comparing the covariance matrix obtained from

the original state vector to the covariance matrix calculated using

the LIM for different lags t=3 .. 12 .. 36 months . The LIM is re-

computed each time using the different training t Given that the

LIM must be independent of the chosen lag, these two covariance

matrices should give a compatible result for the LIM to perform

well [Newman et al., 2011; Newman and Sardeshmukh, 2017]. A

comparison of the diagonal elements of the observed lag

covariances with the one obtained from the LIM is show in the

supplemental material for the SST (Figure S3), and each of the

fishery datasets (Figures S4–S6). Overall, LIM is able to capture

the main structures of the lag autocovariance pattern for both the

SST (Figure1 of Supplemental Materials) and the fishery indicator

(Figure 2-4 of Supplemental Material) for lags up to t=72 months

in the fish dataset.Results from this test indicate that the LIM

approximation is valid for long-lead forecasts of this set of

physical and fishery indicators.
2.8 Persistence and forecast skill

When evaluating the skill of a forecast it is customary to ask

the question of whether the forecast model adds skill beyond the

so-called persistence forecast. This is equivalent to forecasting

that each future conditions is the same as the condition today.

From a mathematical point of view the persistence correlation

forecast skill at different lead time t for a timeseries y(t). given by

the auto-correlation function

ACF(t) =
y(0)y(t)
y(0)y(0)

where y(0)y(0) is the covariance at zero lag and y(0)y(t) is
the covariance at lag t.

In climate science, for a forecast model to have higher skill

that persistence is a fundamental measure to indicate that the

model is able to extend the predictability through its dynamics

beyond the natural temporal auto-correlation that exists in the

data. A recent discussion of the concept of persistence can also

be found in Jacox et al. [2020]. In the article, we compare the LIM

forecast skill to persistence as a way to estimate the LIM’s ability

to capture the dynamics of the system and to use those dynamics

to extend the predictability of the fish indicators. Specifically, we

use the following definitions for the correlation skill,
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rPersistence(t) = ACF(t)

rForecast(t) = correlationð   ŷ (t),   y(t)Þ
where ŷ (t) is the LIM forecasted state at lead t and ŷ (t) is

the observed state. As reported in section 2.6, all the forecasted

states use a LIM that is trained with a dataset that does not

include the observed state, which we also refer to this as the

cross-validated forecast skill.

To estimate the statistical significance of the correlation skill

we have used a Montecarlo approach. Specifically, we first

develop an auto-regressive model of order 1 (AR1) as a null-

hypothesis simulation model (i.e., red noise) for a given pair of

timeseries that are being compared in the correlation. Next, for

each of the timeseries we estimate the lag-1 auto-correlation

coefficient and use that to generate 2000 pairs of red noise

timeseries using the AR1 model. We compute the probability

distribution function (PDF) of correlation coefficients between

the red noise timeseries pairs. This PDF is then used to estimate

the 95% and 99% confident levels of the correlation between the

two original timeseries.
3 Results and discussion

3.1 Fisheries biomass data and relation to
physical quantities

Given that the data has been decomposed in EOFs and PCs

we first perform an inspection of their statistics. The temporal

evolution of the first two dominant modes for the fish datasets

are captured by the PC1 and PC2 (Figures 1G, H). Both the PCs1

and PCs2 displays very strong low-frequency variability in each

dataset with a significant level of coherency across the datasets.

As further discussed in the next sections, these low-frequency

variations may be associated not only with decadal climate

variability, but also with human influences. For example, these

stocks have been heavily exploited in the last 60 years [Pons

et al., 2017]. In particular, the increase in fishing pressure

coupled with the demography of the fish stocks has led to a

collapse and recovery of populations with common trends

among stocks as discussed by previous authors [Myers and

Worm, 2003; Nye et al., 2009; Wang et al., 2020]. The amount

of variance explained by the first two PCs for each fisheries

databases (see Methods section 2.4) is very large (Figure 1I). For

example, PC1 for the RAM biomass represents 47% of the total

variance, while the PC1 of the LME catches and the FAO

landings describe respectively 25% and 35% of the variance.

This indicates that despite the large number of fish stock

indicators, the overall degrees of freedom in the datasets are

low and represented by a relatively low number of modes (e.g.

pairs of PCs/EOFs).
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To quantify the extent to which the low-frequency

fluctuations of the fish indicators are tracking climate

variability, we perform a correlation analysis between the PCs

of the fisheries data and large scale SSTa. Correlations between

SST anomalies and the PCs1 for the three fish datasets are

reported in Figure 2A. While the patterns show some differences

it is evident, especially for the LME and FAO, that stronger

correlation existing the region of the KOE. This is more evident

by computing a map of the mean correlations across the datasets

(Figure 2B), which shows a strong negative correlation from the

East China Sea and coastal Japan extending in the central North

Pacific. A similar correlation analysis for the PCs2 (Figure 2C)

reveals the emergence of the more familiar basin-scale pattern of

Pacific decadal variability such as the PDO across all the

datasets. Again, this PDO-like pattern becomes clearer in the

map of the mean correlations for PCs 2 (Figure 2D) exhibiting

strong correlations in the canonical center of actions of the PDO

over the central and eastern North Pacific. The correlation

patterns of the PCs with the SSTa (Figure 2) gives us

confidence that the link between the climate variability and

the fish can be exploited for forecasting, especially in the KOE

region, where previous studies have shown longer-lead multi-

year predictability (see next section 3.2).
3.2 LIM forecasts of the low-frequency
variability of the KOE

It is well known that the KOE variability is strongly linked to

wind induced Rossby waves formed in the Central North Pacific

[Deser et al., 1999; Schneider and Miller, 2001; Seager et al., 2001].

The effect of the wave propagation can be separated into two

dynamical modes of variability. The first mode is related to a

latitudinal shift of the KOE jet, while the second is associated with

a strengtheningorweakeningof theKOEquasi-stationarymeanders

[Taguchi et al., 2007;Taguchi et al., 2014;Ceballos et al., 2009]. These

dynamical changes in the KOE jet can impact the local marine

populations with changes in the wintertime mixing and springtime

stratification that control seasonal nutrients and light supply for

primaryproducers [Chiba et al., 2013;Nakata et al., 2003].Given that

it takes approximately 2-3 years for theRossbywaves to propagate in

the KOE region, these large-scale dynamics carry an inherentmulti-

yearpredictability thatcanbeexploited for longer lead low-frequency

forecasts on physics and marine ecosystems.

Thus, before exploring the predictability of the fisheries time

series, it is informative to quantify the low-frequency

predictability of the KOE physical environment, specifically

the SST, which is a state variable with strong links to the

dynamics of fish populations.

For this purpose, we build a LIM using only SSTa and SSHa

data (see Methods section 2.5) and use equation (4) to perform a

series of cross-validated forecasts for lead times of 6, 12, and 24
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months (Figures 3A, B, C). We find that areas of higher skill are

concentrated along the Northeast Pacific coast and the KOE

extension and are co-located with centers of actions of the PDO

and the KOE low-frequency variability patterns [Matsumura

et al., 2016]. We also examine the forecast skill in the KOE

region (the average SSTa in the black box of Figure 3A) as a

function of the month used to initialize the forecast (Figure 4A).
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We find that significant forecast skill (correlation >0.6) extends

only up to 1.5 year. If we compare this skill level with that obtain

from persistence (Figure 4B), we find that the LIM extends this

skill beyond persistence up to 10 months (Figure 4C).

Given that the fisheries are predominantly characterized by

low-frequency variability, we now quantify the low-frequency

predictability of the SSTa in the KOE by applying a 6-year filter
A

B D

C

FIGURE 2

Correlation map between SST anomalies and PC1 (A) and PC2 (C) of the fishery datasets (RAM, LME, FAO). The average correlation maps across
the datasets for PC1 and PC2 are shown in (B) and (D).
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to the forecasted state vector. As expected when applying a lowpass

filter, we find an overall increase in skill spatially at 6, 12, and 24

months (Figures 3D, E, C). If we examine the skill as a function of

initialization month (Figure 4D), we find that high skill levels

(R>0.6) extends up to lead times of 4-5 years. However, the filtering

also leads to longer persistence skill due to the increase in

autocorrelation, up to 1.5 years (Figure 4E). Nevertheless, if we

look at the difference in skill between the LIM forecast and

persistence (Figure 4F), we find that the filtering does extend

dynamically the low-frequency predictability by 4-5 years. As

emphasized by previous articles [Thompson et al., 2010], the

increased skill shows the importance of the low frequency

variability of SST anomalies in the KOE jet. These results confirm

previousfindings that in the KOE, the large-scale climate associated
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with the propagation of Rossby waves and the modes of decadal

variability lead to extended multi-year predictability.
3.3 LIM forecast of fisheries time series

We now analyze if the long-lead, low-frequency

predictability of the KOE physical state is important in

extending the forecast of fisheries metrics. We construct three

independent forecast LIMs for each of the fish datasets (i.e.,

RAM, LME, FAO) using the definition of the state vector in

equation (2) (see Methods section 2.5). The results from the

cross-validated forecast are shown in Figures 5A, B, C for leads

up to 160 months. Results show high correlation skill values R ~
A

B

D

E

FC

FIGURE 3

Forecast correlation skill of the LIM with physics only (SSTa, SSHa) for lead-times of 6 months (A), 12 months (B), and 24 months (C).
In (D), (E), and (F) the same correlation skill maps are shown but computed using the 6-year low-pass filter applied on the original and
forecasted monthly data.
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0.7 extending almost to the end of the forecast window. Given

that stocks are characterized by timeseries with exceptional low-

frequency variability, it is critically important to assess If the

correlation skill of the LIM is significant. Using the Montecarlo

approach discussed in Method section 2.8, we identify the 95%

and 99% significance levels for each of the datasets. These are

marked in the colorbar of Figure 5 and show that any correlation
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above R=0.55 (RAM), R=0.41 ((LME), and R=0.44 (FAO) is

significant at the 95%. Correlations above R=0.66 (RAM),

R=0.51 (LME), and R=0.54 (FAO) are significant at the 99%

with the RAM being higher than the other datasets because of its

shorten temporal span, which reduced the degrees of freedom.

We further examine the impact of autocorrelation in the data on

the forecast still by computing the persistent forecasts (Figures 5D,
A B

D

E F

C

FIGURE 4

KOE SSTa index forecast correlation skill as a function of the initialization month of the year from the physics only LIM (A), the persistence
(B), and their difference (C). The same correlation skill maps are shown but computed after applying a 6-year low-pass filter applied on the
original and forecasted monthly data (D, E), and (F).
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E, F). We find significant persistence skill R~0.7 up to 4 years for

some of the RAM biomass anomalies (Figure 5D) and up to 3 years

for the LME (Figure 5E) catches and FAO landings (Figure 5F).

Despite the long-lead forecast skill from persistence, the difference

maps between the LIM forecast and persistence skill (Figures 5G, H,

I) show that the LIM has higher and extended significant forecast

skill beyond the range of persistence by 3-5 year limit.

Despite the statistical measures of skill significance discussed

above, it is important to recognize that ultimately the real

usefulness of these forecast will depend on how, and what

aspects of, this information enables better informed decisions

by fishery managers. For this purpose, it is informative to show

the timeseries of the LIM forecasts for a few selected species. In

each database we picked two species that show extended

predictability and displayed their 2- and 5-years composite

forecast timeseries (Figure 6, red lines are the cross-validated

forecasts, blue line the original data). Focusing on the RAM,

Figures 6A, B displays the stock Striped Marlin North Pacific and

Yellow sea bream Sea of Japan from the RAM database. Despite

the overall higher frequency variability of the LIM forecast,

overall the 2-year LIM well captures the low-frequency evolution

of the timeseries including some of the interannual extrema on
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timescale between 2-5 years. In contrast, for longer lead forecasts

such as the 5-year (Figures 6C, D), the LIM is only able to

capture the low-frequency variations (6 year and above) and

loses information about the interannual fluctuations (e.g.

compare Figures 6B vs D). A similar behavior is somewhat

evident also in the LME catches stocks Sardinops sagax and

Reinhardtius evermanni (Figures 6E-H) and the FAO landings

stocks Sciaenidae and Colorabis saira (Figures 6I-L). We

examine this behavior more systematically across the stocks –

that is the LIM loses its ability to forecast interannual

fluctuations for longer forecast leads, by applying a 6-year

highpass filter on the composite forecasted timeseries for leads

times between 0-160 month and re-examine the correlation skill

with the original data. We find that the LIM interannual forecast

skill is significantly less for longer lead times (Supplemental

Figure S7A, B, C) as evident by taking the difference with the

non-filtered forecast (Figures S7D, E, F).
A B

D E F

G IH

C

FIGURE 5

The LIM forecasting correlation skill as a function of different lead-times is displayed from the RAM (A), LME (B), and FAO (C) stocks. The
persistence correlation skill for each of these stock is also shown for comparison in (D, E), and (F). A different between the skill of the LIM minus
persistence is shown in (G, H), and (I).
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3.4 LIM forecasting skills sensitivity
analysis

To better understand how marine ecosystem components

and physical components (and their interaction) contribute to

the forecast skill, we perform a sensitivity analysis to investigate

key physical and biological factors that influence the

predictability of the fisheries. More precisely, the purpose of

the sensitivity analysis is to quantify how the forecasting skill of
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individual fisheries time series depends on knowledge of the

climate state and to the knowledge of the other fish stocks.

We begin by exploring the role of the physical state variables

in the predictability of the fisheries time series by including the

constraint that the interaction terms of the fisheries with SSTa

and SSHa in the operator L are zero. This condition implies that

we are excluding the interaction of the SSTa and SSHa PCs with

the fishery PCs. The forecast skill of the LIM that does not

include the coupling with the physics is shown in Figures 7A - C
A

B

D

E

F

G

I

H

J

K

L

C

FIGURE 6

Selected single stock time series (blue lines) and the forecasted time series (red lines). The stock have been selected considering those that have
the highest difference between forecasting LIM skill and the persistence. The 2-year lead forecast are shown for the RAM (A, B), for LME
(E, F) and for the FAO (I, J). The same comparison are shown for the 5-year lead forecast in panels (C, D) for RAM, (G, H) for LME, and (K, L) for
FAO. The name of the selected stock is displayed at the top of each panel.
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for the different fish datasets. It is immediately apparent that the

skill is greatly reduced with compared to the full LIM

(Figures 7D–F, show the difference map) suggesting that the

information of the phsycial climate variability plays a primary

role in extending the LIM forecast skill of the fishery indicators.

Specifically, we find that a LIM forecast that depends only on the

knowledge of the stock vs. stock interactions (e.g. without the

physical information) has limited extended predictability to up

to 50 months across the RAM, LME, and FAO timeseries. This

reduction in skill can be attributed to several factors, which are

not fully investigated in this study. One possible reason regards

the role of the Rossby wave propagation in the multiannual

prediction of ecological systems [Jacox et al., 2020]. These waves

are predominantly initiated in the eastern side of the North

Pacific Ocean through modulation of Ekman pumping

connected with wind stress curl anomalies induced by the
Frontiers in Marine Science 13
PDO mode [Capotondi and Alexander, 2001; Qiu et al., 2017].

Propagating Rossby waves (RWs) have an important impact on

nutrients availability on interannual timescales, which are linked

to changes in primary [Sakamoto et al., 2004] and secondary

producers as well. In particular, it has been found that RWs

modulate the depth of the nutricline by a few tens of meters

[Killworth et al., 2004] with corresponding impact on surface

nutrient availability. In addition, RW impact surface chlorophyll

concentration by a vertical displacement of the chlorophyll

maximum, [Dandonneau et al., 2003]. Consequently, it is

possible that the exclusion of the physical interactions that are

associated with skillful physical predictions from the LIM lead to

a much lower forecasting skill for most of the stocks.

Next, we want to examine how the forecast skill depends on the

interactions among species. To this end, the full case LIM forecast is

repeated by replacing the principal components of the North
A B

D E F

G IH

J K L

C

FIGURE 7

Same as Figure 5, except showing the forecast skill of the LIM where the physics and fish sticks are decoupled, (A) RAM, (B) LME, (C) FAO. The
differences in skill between the decoupled and the full LIM case are shown in (D), (E), and (F). The forecasting correlation skill as a function of
different lead-times is displayed also for a LIM where each stock is forecasted independently are shown for the RAM (G), LME (H), and FAO (I)
datasets, along with the differences from full LIM case in panels (J), (K), and (L), respectively.
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Pacific stocks with the data time series for each single stock rather

than all stocks together (Figures 7G–I). For each of the three

databases, the RAM biomass, the FAO landings, and the LME

catches, we find again substantial reduction in forecast skill when

data from other stocks are excluded from the LIM (Figures 7K–M,

show the difference map). This suggest that interactions between

stocks contains information that is useful for predictability.

Through these sensitivity analysis, we conclude that the

climate forcing has a considerable impact on the fisheries

forecast, but it does not represent the only contribution to the

skill. To a lesser extent, skill is contributed from the fisheries data

from other stocks in the region.
4 Conclusions

Previous studies [Brander et al., 2007; Yati et al., 2020] have

documented how climate variability and change have a significant

impact onmarine populations and fish species in the North Pacific.

However, the mechanisms linking climate fluctuations to the

dynamics of marine ecosystems are not fully understood and are

currently not well captured by numerical models. Long-term

timeseries of data for both climate and fisheries such as

population biomass (RAM), catches (LME), and landings (FAO)

provide an opportunity to explore the coupled climate-fish

predictability using empirical dynamical models and machine

learning approaches. These approaches are very promising

because the time series of fish indicators also reflect non-climate

forcings that are related to the internal stock dynamics, human

exploitation by commercial fishing, economic conditions, and

technological advancements. These combined interactions are

hard to resolve in traditional dynamical models. Each of these

non-climate processes and their interactions, can have a substantial

influence on metrics of fisheries biomass, landings, and catches.

However, the relative importance of these factors on the variability

of fish species and their predictability has not been fully explored.

In this paper, we used observationally derived lag covariance

statistics to empirically capture the linear and (fast) nonlinear

interactions among fish stocks, and offish stocks with human and

climate drivers (e.g. the LIM forecast model). Our results showed

that the empirical dynamical forecast of the climate-fish-human

multi-variate LIM has long-lead predictability that extends

beyond the persistence timescale for up to 5-years with

significant skill. This finding is consistent with recent studies

showing how both short-lived and long-lived species display a

response to climate variability and to the increased fishing

pressure [Pinsky and Byler, 2015; Rouyer et al., 2014; Wang

et al., 2020]. To further confirm and separate the impacts that

climate and non-climate drivers are having on the fisheries, we

have implemented a series of sensitivity analyses that selectively

included or excluded the interaction terms between climate and

fisheries time series in the LIM dynamical operator. Results of the

analysis revealed a significant decrease in fish forecast skill when
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the interaction with the SSH and SST is excluded. While the LIM

methodology does not allow us to explicitly diagnose which

mechanisms of physical-biological coupling are important for

extending the predictability in the KOE region, it does confirm

and quantify the critical role of ocean climate dynamics, which

previous studies had discussed but not explored with rigorous

quantitative measures [see also review from Jacox et al., 2020]. In

fact, this study is to our knowledge one of the first attempt to

explore empirical model forecasting in the KOE region.

Further analyses also revealed that the forecast skill arising

from empirical relationships among the stocks are also

important, although less important than the inclusion of

physical characteristics. This indicates that the information

shared among stocks, which could be reflective of changes in

industrial fishing practices, market forces, or species

interactions, substantially improves forecasting skill. In

particular, we notice a distinction in the RAM data between

short-lived species and long-lived species as we compare the

results with the first sensitivity analysis. Short living species are

highly dependent on the climate factors and much less on the

stock-stock interactions. While long-living species have a

dependency on climate factors of the North Pacific, but the

stock-stock interactions give a high contribution as well to the

forecasting skill much more than short living species.

Although more studies are required to understand the joint

predictability dynamics between climate and fisheries In the

Pacific Ocean, the analyses presented here with a multivariate

linear inverse model provide a promising approach for utilizing

climate information to predict socio-ecological indicators such

as fish catch, biomass, and landings. Our results also suggest that

this approach may be successful in accounting for the dynamics

of external human forcing (e.g., in this case fishing) that are

implicitly incorporated in the stock-stock interaction terms.

Lastly, these findings support the idea that predicting the

marine ecosystem as a hole (e.g., including multi-variate

ecological indicators) is more skillful than focusing on

individual stock timeseries.
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