
����������
�������

Citation: Demmig-Adams, B.;

Polutchko, S.K.; Adams, W.W., III

Structure-Function-Environment

Relationship of the Isomers

Zeaxanthin and Lutein. Photochem

2022, 2, 308–325. https://doi.org/

10.3390/photochem2020022

Academic Editor: Michael Moustakas

Received: 24 March 2022

Accepted: 15 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Structure-Function-Environment Relationship of the Isomers
Zeaxanthin and Lutein
Barbara Demmig-Adams *, Stephanie K. Polutchko and William W. Adams III

Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA;
stephanie.polutchko@colorado.edu (S.K.P.); william.adams@colorado.edu (W.W.A.III)
* Correspondence: barbara.demmig-adams@colorado.edu

Abstract: A synthesis is provided of the roles of the carotenoids zeaxanthin and/or lutein in opposing
(i) photodamage in plants, (ii) photodamage to the human eye as well as cognitive dysfunction and
a host of human diseases and disorders, and (iii) damage to extremophile microorganisms in the
most inhospitable environments on earth. Selected examples are used to examine microenvironments
and basic biological structures with which these xanthophylls associate as well as the effect of the
organisms’ external environment. An overview is presented of the multiple principal mechanisms
through which these xanthophylls can directly or indirectly impact organisms’ internal redox (oxi-
dant/antioxidant) balance that provides input into the orchestration of growth, development, and
defense in prokaryotic microorganisms, plants, and humans. Gaps in the research are identified,
specifically with respect to the need for further in vivo assessment of the mechanisms.
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1. Introduction

Carotenoids play a vital role in an array of physiological functions across all organisms.
There are over 1100 naturally occurring carotenoids thus far described [1]. Carotenoids are
widely studied, and a wealth of information is available on their natural functions (e.g., [2])
as well as their roles in human nutrition and health (e.g., [3]) but many questions remain.
After touching on some common features of carotenoids below, we provide a synthesis of
the literature on organisms that utilizes the closely related carotenoids, zeaxanthin, and
lutein, in key roles including support for the ability of (i) plants to survive and thrive in
challenging environments, (ii) humans to optimize cognitive function as well as to stave off
a host of diseases and disorders, and (iii) some (zeaxanthin-accumulating) microorganisms
to grow in the most inhospitable environments on earth. Information on zeaxanthin and
lutein is compared across taxa with respect to multiple functions and microenvironments
as well the role of the organism’s external environment. For further detail, we refer to
authoritative reviews in each area.

Carotenoids in a Nutshell

Carotenoids are synthesized de novo by organisms from all three major categories
(domains) of life, i.e., eukaryotes (such as plants, algae, and some fungi), bacteria, and
archaea [1]. Animals, however, must consume carotenoids with their diet, except for the
special case of some aphids that acquire carotenoid biosynthesis genes via transfer from
fungi [4]. Carotenoids are classified as either carotenes (pure hydrocarbons without oxygen,
e.g., β-carotene) or xanthophylls (that contain oxygen, e.g., lutein and zeaxanthin) and
absorb the visible light of blue or blue-green wavelengths (resulting in their yellow, orange,
or red color). The interaction of carotenoids, or their derivatives, with visible light gives
rise to key functions in light absorption for both humans and plants. In human vision,
the light-absorbing component of the protein rhodopsin is derived from carotenoids with
provitamin A activity [5]. In photosynthetic organisms, carotenoids have widespread
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functions that support photosynthesis, with a particularly prominent ecological role of
green-light absorbance by fucoxanthin, siphonoxanthin, and peridinin in some algae [6–9].
In particular, zeaxanthin and lutein have vital functions in the protection against damage
by intense light in both plants (e.g., [10]) and the human eye [11].

Carotenoids also play key roles in light-independent processes, e.g., as gene regulators
of human immune function. Carotenoid-derived vitamin A has a well-documented im-
munoregulatory role [5] and a similar role is emerging for xanthophylls. Xanthophylls may
be especially important in opposing non-resolving inflammation that can trigger a plethora
of associated inflammatory diseases, disorders, and dysfunctions [12,13]. Additionally,
lutein and zeaxanthin are emerging as candidates for protecting cognitive function across
the human lifespan, including attention, memory, learning, and executive functions [14,15].

How do carotenoids support so many functions? Pioneering work concentrated on
two mechanisms. The first was the protective role in the de-excitation of singlet oxygen, a
reactive oxygen species (ROS) formed under intense light in both photosynthesis [16,17]
and the human eye [11]. Second, xanthophylls can act as molecular rivets in biological mem-
branes due to their specific length and chemical structure [18]. A large body of mechanistic
work ranging from carotenoids dissolved in various solvents to isolated pigment-binding
complexes, isolated organelles, and mutants/transgenic organisms with altered carotenoid
composition, has revealed multiple potential functions for carotenoids. A given carotenoid
can apparently have different multiple functions depending on its specific microenviron-
ment because “energetics and dynamics of carotenoid excited states” are controlled not
only by factors such as conjugated-chain length and functional groups but also by, “perhaps
most importantly, carotenoid interaction with the local environment” [19]. Furthermore,
how much carotenoid is accumulated, and its location, is affected by an organism’s genetic
makeup as well as its acclimation to the external environment in which it developed.

The following sections highlight selected examples for zeaxanthin and/or lutein
of (i) the contexts in which xanthophylls are found—either within organisms or with
respect to external environments/habitats, (ii) basic biological structures with which these
xanthophylls associate, and (iii) the multiple ways in which these xanthophylls directly
and/or indirectly impact organisms’ internal redox (oxidant/antioxidant) balance that
provides input into the orchestration of growth, development, and defense in prokaryotic
microorganisms [20], plants [21], and humans [22] alike.

2. Xanthophylls in High-Stress Contexts

Zeaxanthin and lutein are structural isomers with zeaxanthin possessing a slightly
longer system of conjugated double bonds (11) than lutein (10; Figure 1).

Photochem 2022, 2, FOR PEER REVIEW 3 
 

 

 
Figure 1. Chemical structures of zeaxanthin and lutein. Hydrophobic portions are shown in orange 
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Lutein and zeaxanthin are differentially distributed across the human retina (Figure 

2). The yellow center of the eye (macula), where the brightest light is received, has the 
highest overall xanthophyll concentration and the highest ratio of zeaxanthin to lutein 
[11]. The total xanthophyll concentration is about 1 mM in the macula and declines to less 
than 10 μΜ in the peripheral regions of the retina [23]. In addition to zeaxanthin and 
lutein, meso-zeaxanthin (a zeaxanthin stereoisomer) is present in the macula and is 
apparently produced from dietary lutein but not from dietary zeaxanthin [24]. 

A recent study using confocal resonance Raman spectroscopy, validated by the 
biochemical characterization of carotenoid composition, described the variation in the 
zeaxanthin-to-lutein ratio over short distances using continuous scans of xanthophyll 
composition across donor retinas [25]. The zeaxanthin-to-lutein ratios were 9:1 or greater 
in the center of the macula; 4:1 at a short distance (200 μm) from the center; and 1:4 just 
outside the macula (Figure 2; [25]). This preferential placement of zeaxanthin where the 
brightest light is received clearly indicates the unique role of zeaxanthin in supporting the 
vision process in the presence of bright light. Still, it does not allow an assessment of which 
one(s) of the multiple possible roles of zeaxanthin is/are at work in this location. Original 
ideas (starting in 1861) about the function of the xanthophyll-rich macula initially centered 
on potential improvements in visual acuity and contrast sensitivity with reduced glare 
sensitivity and light scatter (see [11]). However, the subsequent rise of age-related macular 
degeneration in the human population shifted the focus of attention to photoprotection 
(see review [11]). Nevertheless, both principal roles are still discussed today, and multiple 
mechanisms are under consideration (see below).  

Figure 1. Chemical structures of zeaxanthin and lutein. Hydrophobic portions are shown in or-
ange and hydrophilic portions in blue (containing oxygen). The grey outline highlights the longer
continuous, conjugated system of carbon to carbon (C=C) double bonds in zeaxanthin compared
to lutein.
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2.1. Zeaxanthin and Lutein in the Human Eye/Retina

Lutein and zeaxanthin are differentially distributed across the human retina (Figure 2).
The yellow center of the eye (macula), where the brightest light is received, has the highest
overall xanthophyll concentration and the highest ratio of zeaxanthin to lutein [11]. The
total xanthophyll concentration is about 1 mM in the macula and declines to less than
10 µM in the peripheral regions of the retina [23]. In addition to zeaxanthin and lutein,
meso-zeaxanthin (a zeaxanthin stereoisomer) is present in the macula and is apparently
produced from dietary lutein but not from dietary zeaxanthin [24].

A recent study using confocal resonance Raman spectroscopy, validated by the
biochemical characterization of carotenoid composition, described the variation in the
zeaxanthin-to-lutein ratio over short distances using continuous scans of xanthophyll com-
position across donor retinas [25]. The zeaxanthin-to-lutein ratios were 9:1 or greater in
the center of the macula; 4:1 at a short distance (200 µm) from the center; and 1:4 just
outside the macula (Figure 2; [25]). This preferential placement of zeaxanthin where the
brightest light is received clearly indicates the unique role of zeaxanthin in supporting the
vision process in the presence of bright light. Still, it does not allow an assessment of which
one(s) of the multiple possible roles of zeaxanthin is/are at work in this location. Original
ideas (starting in 1861) about the function of the xanthophyll-rich macula initially centered
on potential improvements in visual acuity and contrast sensitivity with reduced glare
sensitivity and light scatter (see [11]). However, the subsequent rise of age-related macular
degeneration in the human population shifted the focus of attention to photoprotection
(see review [11]). Nevertheless, both principal roles are still discussed today, and multiple
mechanisms are under consideration (see below).
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Figure 2. Zeaxanthin-to-lutein ratios across a gradient from dietary intake to blood serum and
different locations in the human eye, after data from [26] for dietary intake and serum, and for the
areas within and around the macula from [25]. “Zeaxanthin” here represents the sum of zeaxanthin
and meso-zeaxanthin (present in a 1;1 molar ratio in the macula).

2.2. Zeaxanthin and Lutein in Leaves

Leaves of plants growing in sunny locations under conditions favorable for growth
rapidly form and remove zeaxanthin as the fraction of absorbed light not utilized in
photochemistry rises and falls over the course of the day (e.g., [10,27]). The characterizations
of the latter functional features were enabled by the development of portable instruments
to measure chlorophyll fluorescence from leaves under field conditions and in the presence
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of bright light [28,29]. Zeaxanthin is formed in the presence of excess absorbed light
from the di-epoxide violaxanthin via the mono-epoxide antheraxanthin in the xanthophyll
cycle [30,31]. Violaxanthin levels exhibit complementary decreases and increases over the
course of the day (e.g., [10,27]). However, the levels of other ubiquitous leaf carotenoids
(lutein, β-carotene, and neoxanthin) do not typically change over the course of the day in
sun-exposed habitats [10]. In slow-growing evergreens (which utilize a low fraction of full
sunlight for photochemistry), the ratio of zeaxanthin to lutein can approach unity in full
sun at midday, but this ratio is much lower in most plant systems most of the time. Ample
zeaxanthin for human nutrition is thus hard to come by when relying on rapidly growing
leafy greens, harvested and stored before consumption. For human nutrition, crops that
combine rapid growth and high zeaxanthin levels would be desirable.

We recently reported about the unusual ability of aquatic plants (Lemnaceae, or
duckweeds) to simultaneously grow very rapidly and accumulate exceptionally high levels
of zeaxanthin [32–34]. Figure 3 shows that visual appearance and carotenoid levels in
Lemna grown under a wide range of photon flux densities (PFDs) in which plant growth
remained high, with plant area doubling every other day. Additionally, zeaxanthin levels
continued to rise when the absorbed light became increasingly excessive, whereas the levels
of chlorophyll, lutein, and β-carotene declined (Figure 3D). The plants grown under the
highest light intensity were bright yellow (Figure 3C), still grew very rapidly, and exhibited
zeaxanthin-to-lutein ratios as high as ~1.3 (up from ~0.5 under the next lowest growth
PFD). Due to the fact that the levels of chlorophyll a + b declined more sharply than those of
any of the carotenoids under the highest-growth PFD, carotenoid levels increased relative
to chlorophyll, and none more sharply than zeaxanthin (Figure 3E). A considerable portion
of this zeaxanthin is presumably dissolved in the phospholipid portion of chloroplast
membranes. A role for zeaxanthin, but not lutein, as a membrane-based antioxidant and/or
membrane stabilizer was proposed for plants [35,36]. The sharp increase in the zeaxanthin-
to-lutein ratio in duckweed at the highest PFD (Figure 3D) is reminiscent of the dynamics
across the human eye described above.

The unusual ability of duckweeds to combine pronounced zeaxanthin accumulation
with fast growth may be associated with (i) the exposure of the entire leaf cross-section to
excess light due to minimal self-shading (in the absence of multi-tiered structures within
leaves or plant canopies [32–34]) and (ii) the loss of controls that act on growth in land
plants [37]. This unusual combination may also apply to other fast-growing edible aquatic
plants [32], which could be of considerable interest to human nutrition and illustrates
the importance of species choice. Although whole-food sources with superior zeaxanthin
content are of interest to human nutrition, it should be noted that supplements (e.g., the
AREDS2 formulation with 10 mg lutein and 2 mg zeaxanthin) can also provide benefits,
such as the delayed progression to advanced macular degeneration [38]; for additional
studies, see Section 4 below.

In addition to lending support in high-light environments, zeaxanthin also plays a
role in the heat tolerance of plants. A greater heat tolerance was demonstrated for the
Arabidopsis thaliana lines, which were engineered to overexpress β-hydroxylase (the enzyme
catalyzing biosynthetic conversion of β-carotene to zeaxanthin). This engineered line
exhibited elevated zeaxanthin levels but no enhancement of non-photochemical energy
dissipation, which is consistent with the role of additional zeaxanthin in the phospholipid
portion of the photosynthetic membrane [39].

2.3. Zeaxanthin and Related Xanthophylls in Extremophiles

Among the over 1100 naturally occurring carotenoids described, only seven are
synthesized de novo by organisms from all three domains of life [1]. The few known
carotenoids synthesized by representatives of eukaryotes, bacteria, and archaea include
zeaxanthin and its biosynthetic precursors (for a detailed review of carotenoid biosyn-
thetic pathways among the taxa of life, see [40]). Zeaxanthin is found not only in light-
absorbing/photosynthetic bacteria but also in non-photosynthetic bacteria and archaea.
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Although the functions of zeaxanthin and related xanthophylls (Figure 4) in these organ-
isms are yet to be elucidated, the environments in which they occur expose the organisms
to high levels of stress (visible or ionizing radiation, heat, or salinity). Among eukaryotes,
fungi typically do not produce lutein or zeaxanthin but can produce a variety of other
carotenoids [41,42] as well as many other pigments (e.g., melanins, flavins, phenazines,
quinones, monascins, violacein, and indigo; [43]).
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Figure 3. (A–C) Images of crystallizing dishes with Lemna gibba fronds grown under 3 different PFDs.
Relationship between growth PFD and the levels of zeaxanthin (Z), lutein (L), and β-carotene (β-C)
on a frond area basis (D) or a chlorophyll basis (E). Colors of the symbols from dark green to yellow
correspond to the different visual appearances of fronds grown under the different growth PFDs.
Data re-graphed from [33].

Zeaxanthin and related xanthophylls accumulate in bacteria and archaea that occur in
the most extreme environments. Prokaryotic organisms do not synthesize lutein [42] but
do produce zeaxanthin. Zeaxanthin-producing microorganisms include photosynthetic
cyanobacteria, such as Synechococcus (see [44]) that accumulates zeaxanthin in the high-
light environment of surface ocean water, but less so in sub-surface layers where light
levels are lower [45]. Cyanobacteria use other xanthophylls, such as 3′-hydroxyechinenone
(Figure 4), to protect their phycobilisome chromophores [46] that harvest light in blue- and
red-light-depleted zones deeper in the water column.
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Figure 4. Chemical structures of β-carotene, β-carotene-derived structures, and structures with similar
features mentioned in the text, i.e., β-carotene β-cryptoxanthin, zeaxanthin, 3′-hydroxyechinenone,
deinoxanthin, and thermozeaxanthin.

Zeaxanthin is also accumulated by non-photosynthetic bacteria, some of which are
named after this feature (Mesoflavibacter zeaxanthinifaciens, Zeaxanthinibacter enoshimensis,
Paracoccus zeaxanthinifaciens; [47,48]). A notable case of an extremophile is the bacterium
Deinococcus radiodurans, isolated from a radioactive site in Japan and described as a “gold
medalist” for the tolerance of ionizing radiation [49]. Deinococcus radiodurans accumulate
deinoxanthin and zeaxanthin [50–53]. Ionizing radiation produces vast amounts of ROS
(e.g., hydroxyl radical and superoxide) via water hydrolysis [54]. A zeaxanthin glycoside
ester, thermozeaxanthin, is accumulated in non-photosynthetic microorganisms, including
members of the bacterial genera Halococcus, Halobacterium, and Thermus [55,56] as well as
the Archean Haloarcula japonica [57], which all exhibit robust resistance to salinity and/or
extreme heat. These findings further support the role of xanthophylls, with features such
as those shown in Figure 4, in supporting life in extreme environments.
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3. Association with Proteins and/or Phospholipid Bilayers
3.1. Association of Lutein and Zeaxanthin with Proteins—Selected Examples across Taxa

Carotenoids bind to a wide variety of proteins, including some with chromophores that
intercept light and many that do not. In photosynthetic organisms, most light-harvesting
proteins bind carotenoids in addition to their primary light-collecting chromophores (see
chapters on carotenoid association with light-collecting complexes in various photosyn-
thetic organisms in [58]). Ongoing work continues to expand the list of carotenoid-binding
proteins in photosynthetic organisms that either bind light-harvesting pigments or interact
with light-harvesting complexes. Many of these proteins bind lutein and/or zeaxanthin
(see, e.g., [59]) or other xanthophylls (see, e.g., [60] for the orange carotenoid-binding
protein of cyanobacteria).

Similarly, proteins involved in human vision (such as retinoid transporter proteins
that have indirect roles in the vision process) bind zeaxanthin and lutein [38]. Moreover,
selective uptake of zeaxanthin and lutein into the macula of the human retina is mediated
by two different proteins [61] that bind either zeaxanthin and meso-zeaxanthin (glutathione
S-transferase [62]) or lutein (steroidogenic acute regulatory domain protein [63]). Addition-
ally, there are carotenoid-binding proteins not associated with light-collecting processes.
These include proteins that transport carotenoids through the bloodstream in humans, such
as high-density lipoprotein (for an in-depth review of human proteins that bind carotenoids,
especially lutein and zeaxanthin, see [38]).

3.2. Lutein and Zeaxanthin Localization within the Phospholipid Bilayer of Biological
Membranes—Selected Examples across Taxa

Carotenoids may have first emerged in archaea as molecules that reinforced biological
membranes as “molecular rivets” with just the right length and structure to span the
phospholipid bilayer [18,64]. In many other organisms, carotenoids are also localized
in membranes. Xanthophylls, in particular, can incorporate directly into phospholipid
bilayers in a membrane-spanning orientation with no apparent association with proteins
and do so in some microorganisms (see above), plants [34,36], and humans. The high levels
of carotenoids in the human brain (71% of which consisted of the xanthophylls lutein,
zeaxanthin, and cryptoxanthin [65]) are likely localized largely in the phospholipid bilayer
of membranes. Although it seems clear that lutein is a component of the lipid bilayer
portion of animal membranes, localization in the lipid bilayer portion of plant membranes
has thus far been discussed mainly for zeaxanthin [35,36]. Future research should further
address if lutein also plays a role in plant membranes, and if so, why.

In vitro studies demonstrated that lutein and zeaxanthin have different orientations in
phospholipid bilayers. Whereas zeaxanthin was exclusively orientated in a perpendicular,
membrane-spanning orientation, some of the lutein was oriented in a horizontal position
parallel to the phospholipid head groups [66,67]. On the other hand, lutein may have a
higher propensity to form tightly stacked aggregates that exhibit a blue shift in xanthophyll
absorbance, which may affect the absorption of blue light in the retina [68]. Moreover,
biological membranes are clearly heterogeneous along their axes, with some microdomains
containing more polyunsaturated fatty acids (PUFAs) and others more saturated fatty acids
and cholesterol; xanthophylls are concentrated in the areas enriched in PUFAs [69,70].
More work is needed to distinguish the similarities and differences in zeaxanthin and
lutein localization and/or orientation in microdomains and in membranes as well as the
functional significance of such differences.

4. Multiple Functional Intersections of Xanthophylls with Reactive Oxygen Species in
the Context of Gene Regulation

As touched upon in the introduction, aerobic life forms, from microorganisms to
plants and humans, use redox-signaling pathways and redox-modulated gene regulators
to orchestrate growth, development, and defense (see, e.g., [22]). Although the modest
ROS levels formed in chloroplasts and/or mitochondria provide essential input into these
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regulatory circuits, elevated ROS levels formed in these organelles and other sites under
certain conditions can activate responses, such as programmed cell death, which occur
long before further increases in ROS levels cause uncoordinated oxidative damage to
cell structures (see, e.g., [71]). Many metabolites that interact with ROS (and that are
synthesized endogenously in some organisms or consumed within the diet in others) either
directly eliminate ROS or interact with the signaling molecules and/or gene regulators. In
humans, signaling pathways and gene regulators were modulated by supplementation
with either lutein or mixes of lutein and zeaxanthin. This includes gene regulators such
as NF-kB (nuclear factor kappa B) and Nfr2 (nuclear factor erythroid 2–related factor 2),
both of which receive input from the cellular redox state and, in turn, contribute to shifting
redox homeostasis [72]. Lutein supplementation dampened the activity of NF-kB, which
is activated by ROS-stimulated signaling pathways and triggers responses that produce
more ROS as part of immune defenses [72]). On the other hand, lutein supplementation
activated Nfr2, which triggers the production of endogenous antioxidants [72]. Since most
of these studies were conducted using lutein-only supplements, more studies are needed
on the effect of zeaxanthin versus lutein.

One example of redox-modulated gene regulators in plants are the transcription factors
of the C-repeat binding factor (CBF) family that play a role in coordinating plant response to
changes in the external or internal environment (see, e.g., [73]). One of the inputs into this
and other redox-signaling networks is the level of excess excitation energy in the chloroplast
(that is, in turn, modulated by carotenoid-dependent de-excitation events; see below). The
system of conjugated double bonds allows carotenoids to not only absorb visible light, but
also to potentially modulate redox-responsible elements of gene-regulatory pathways via
direct antioxidant effects. Alternatively, or in addition, carotenoids and/or their derivatives
can modulate such pathways directly by binding to gene-regulatory proteins. Such direct
binding to gene regulatory proteins is well-known for carotenoids with provitamin A
activity and is increasingly proposed as a target of investigation for other carotenoids (see
e.g., [72]).

Figure 5 classifies the effects of carotenoids, and especially xanthophylls with an
emphasis on lutein and zeaxanthin, into three principal categories of intersection with ROS.
These categories include

1. Pre-emptive counteraction of ROS formation by blue-light shielding in the retina and
de-excitation of light-absorbing chromophores that can transfer excitation energy
and/or electrons to oxygen,

2. Possible direct detoxification of ROS and other reactive species after they have been
formed, followed by re-reduction by other antioxidants (well-documented in vitro
but more difficult to verify in vivo), and

3. Modulation of gene expression, especially for genes responsive to the organism’s redox
state, the gene products of which also affect the redox state. Such genes include those
involved in defense/immune responses as well as cell cycle control and programmed
cell death in plants, humans, and other organisms.

Each category of interaction will be examined more thoroughly in the following
subsections of the review.

4.1. Preemptive Counteraction of ROS Formation by Photosensitizers

ROS formation by light-absorbing photoreceptors can be prevented in several ways.
Particularly in the central portion of the retina, blue light is absorbed by macular xantho-
phylls. A model was proposed by Luchowski and his co-workers [74], in which trans-to-cis
photoisomerization allows macular xanthophylls to work as “molecular blinds”, where
xanthophylls in trans configurations assume a perpendicular orientation in the membrane
under dim light and allow blue light to pass, thus enabling color vision and high acuity in
dim light. In contrast, xanthophylls in cis configuration assume a position parallel to the
membrane surface, in which they attenuate blue light under high-light exposure [74].
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The absorption of more light (excitation energy) than can be processed photochemi-
cally leads to the interconversion of pigment-excited singlet states to triplet states, with a
subsequent transfer of excitation energy. This sequence of events is shown in Figure 6 for
chlorophyll or ocular chromophores. Although a substantial body of work on the interac-
tion of lutein and zeaxanthin with excited states of chromophores exists for photosynthesis
(see below), more work is needed to address such interactions in the human eye.

ROS and other reactive species can be formed by ocular photosensitizers in the human
eye, such as the by-products of retinal or, possibly, trans-retinal itself [11,75]. Such by-
product accumulation also increases with age [11]. The latter authors concluded that
“zeaxanthin and lutein can protect against photooxidation by quenching the excited state
sensitizer and also by intercepting and quenching singlet oxygen after it is formed.” Further
details of this process should be the target of future research, with particular attention
paid to which excited states of which ocular chromophores are subject to de-excitation via
xanthophylls.

In the chloroplast, both triplet (3Chl*) and singlet (1Chl*) excited states of chlorophyll
can be de-excited by carotenoids. Both lutein [76] and zeaxanthin [77] can de-excite 3Chl*
in specific components of the light-harvesting system of plants. De-excitation of 1Chl*,
which is used to drive photochemistry, is under tight metabolic control to prevent a loss of
usable excitation energy. This control involves (i) proteins that activate the de-excitation
process and (ii) control of xanthophyll concentration by xanthophyll cycles. There is
a long-standing debate about the role of zeaxanthin as an allosteric regulator of non-
photochemical energy dissipation, either instead of or in addition to a direct role in 1Chl*
de-excitation (see chapters in [58]). Xanthophylls, and especially zeaxanthin, may enhance
1Chl* de-excitation indirectly by altering the microenvironment of chlorophyll complexes,
e.g., [78,79]. Zeaxanthin may also aid in the integration of pigment-binding proteins into
the photosynthetic membrane [80]. These different mechanisms are not mutually exclusive
and may occur concomitantly in specific microenvironments, in different organisms, or in
different growth environments.

In vivo measurements of time-resolved fluorescence in the intact microalgae, Nan-
nochloropsis oceanica, indicated that de-excitation of 1Chl* can take place either via excitation-
energy transfer or rapid reversible charge (electron) transfer between chlorophyll and
zeaxanthin [81]. Lutein can also de-excite 1Chl* via a rapidly reversible charge transfer in



Photochem 2022, 2 317

certain chlorophyll-binding complexes of plants in zeaxanthin-free mutants with excess
lutein (see, e.g., [82]), but only in the presence of zeaxanthin in wild-type [83]. Such added
control over the removal of the excited state 1Chl* that can also drive photochemistry by a
xanthophyll (zeaxanthin) that is formed only in the presence of excess light would appear
attractive. In contrast, most or all lutein is already present even under light levels limiting
to photosynthesis. However, a role in the de-excitation of 1Chl* was also described for a
pool of lutein formed in another xanthophyll cycle (the lutein epoxide cycle) found only in
certain plant species [84]. Other xanthophylls can apparently also de-excite the singlet ex-
cited state of chlorophyll or other chromophores in other organisms [58,60]. Photophysical
models based on fluorescence lifetime measurements predict (i) a 10-fold higher capacity
for quenching per molecule for zeaxanthin versus lutein and (ii) a low likelihood that
zeaxanthin serves only as an allosteric regulator [85].
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Figure 6. Schematic depiction of the series of excitation-energy transfers beginning with light
absorption and excitation of chlorophyll (Chl; in plants) or ocular chromophores (Ochrom; in the
human eye) from the ground state to the singlet excited state. For each step, the main contributing
xanthophyll(s) under physiological conditions is listed (see text for further details). Energy dissipation
(red to pink arrows) is facilitated by zeaxanthin (Zea), lutein (Lut), and/or tocopherols (Toc). 1Chl*,
3Chl* = singlet and triplet excited states of chlorophyll; 1Ochrom*, 3Ochrom* = singlet and triplet
excited states of the ocular chromophore; 1O2* = singlet excited state of oxygen; LOO• = lipid peroxyl
radical; LOOH = lipid.

The growth environment during plant development may affect the microenvironments
in which xanthophylls act within the intact organism. Observation under natural field
conditions, as well as the recent application of chlorophyll fluorescence lifetime snapshots,
indicate that the effects of the repeated exposure of plants to excess light—as is typical under
natural conditions—differ from those of single transfers from darkness or non-excessive
light to excess light and back. For example, the components of non-photochemical energy
dissipation with rather rapid kinetics of onset and relaxation are modified depending on
the components with slower kinetics.
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Individuals of a tropical evergreen that had experienced daily exposure to excess
light in their growth environment exhibited a dramatically faster onset and post-exposure
relaxation of non-photochemical fluorescence quenching indicative of 1Chl* de-excitation,
as well as concomitant dramatically faster formation and post-exposure removal of zeax-
anthin compared to plants of the same species that were grown in the absence of excess
light [86,87]. In addition, almost instantaneous onset and post-exposure relaxation of
non-photochemical fluorescence quenching, indicative of 1Chl* de-excitation, was seen in
the leaves of vines growing under a forest canopy where they were exposed to rapidly
fluctuating light intensity (lightflecks) daily [88]. During the day, these leaves maintained
considerable zeaxanthin levels that were evidently not continuously engaged in photopro-
tective energy dissipation. The employment of fluorescence lifetime snapshot studies to
monitor nonphotochemical energy dissipation throughout repeated light-dark cycles “has
the potential to reveal new insights into the complicated and overlapping nature of the
various responses associated with [energy dissipation] induction and relaxation and the
complex roles of the various molecular actors [involved]” [82].

The effects of a light environment during development have also been reported in
animals, for example, dark-reared mice exhibit very rapid photoreceptor degeneration
upon exposure to even moderate light levels [89]. Moreover, there are differences in
the individual genetic propensity of humans to accumulate xanthophylls in the macula
([90] see also [91,92]). These findings suggest that both genetic variation and the external
environment during development affect endogenous carotenoid localization and function
in various organisms.

4.2. De-Excitation of Singlet Oxygen

Carotenoid-facilitated de-excitation of singlet oxygen has been the subject of consider-
able investigation and is visited here only in passing. Schalch and his co-workers concluded
that “zeaxanthin and lutein can protect against photooxidation by . . . intercepting and
quenching singlet oxygen after it is formed” and that “zeaxanthin appears to be a better pho-
toprotectant than lutein” [11]. It is noteworthy that a mix of zeaxanthin, meso-zeaxanthin,
and lutein was more effective in protecting the retina than either lutein or zeaxanthin alone.
This outcome is consistent with a descending singlet-oxygen quenching efficiency in the
order of all three combined > meso-zeaxanthin > zeaxanthin > lutein (summarized in [75]).
Leaf carotenoids can quench singlet oxygen either by the transfer of excitation energy and
subsequent loss of this energy as heat or by a chemical mechanism involving oxidation of
the carotenoid [16,17].

4.3. Oxidation and Re-Reduction of Zeaxanthin in Phospholipid Bilayers In Vitro

Due to their ability to donate electrons as well as their propensity to become pro-
oxidants, carotenoids are principally well suited to serve as links in a chain of redox cycles,
although this remains to be further verified in vivo. Numerous studies conducted in vitro
have demonstrated a direct antioxidant effect, i.e., the ability to reduce lipid peroxyl radicals,
for carotenoids and especially zeaxanthin (e.g., [93–95]). The resulting carotenoid radicals
can themselves become oxidants, and such pro-oxidant effects of carotenoid radicals can be
avoided via re-reduction by another antioxidant (Figure 5; [11,96]). Figure 7 outlines the
process of re-reduction and recycling of zeaxanthin in membrane environments. This has
been documented in vitro for vitamin E (in the lipid phase) and for ascorbate (vitamin C;
Figure 7) as well as other dietary (phenolic) and endogenous (glutathione and, eventually,
NADH) antioxidant metabolites at the membrane/aqueous-phase interface (see [94]). Lipid
peroxidation chemically induced in liposomes was poorly opposed by lycopene, partially
prevented by either β-carotene and one of several ketocarotenoids, and fully prevented
by either zeaxanthin or vitamin E (tocopherol) [97]. In other studies, combinations of
zeaxanthin with vitamin E or zeaxanthin with vitamin C lowered lipid peroxidation more
than either alone, with the degree of protection varying with the type of hydroperoxide [95].
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These interactions form multiple intertwined cycles of oxidation and reduction reactions
(Figure 7).
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4.4. Carotenoids and Gene Expression in Plants and Humans

As stated above, ROS have an essential role not only in biotic defense (against
pathogens and other invaders), but also in the overall orchestration of growth, devel-
opment, reproduction, and aging. In addition to encountering ROS in the context of light
absorption, organisms produce ROS endogenously during energy metabolism (e.g., in
chloroplasts and/or mitochondria) as well as for biotic defense and the elimination of
other unwanted cells. Consequently, the modulation of ROS production by agents with
direct or indirect antioxidant effects plays a similarly integral part in this orchestration.
For example, the process of photosynthesis and its inherent role in ROS production, pro-
vides input into several signal transduction networks with “profound influence on almost
every aspect of plant biology” [98]. As regulators of many key genes, ROS function “to
monitor metabolic flux” [98]. The same can be expected for ROS-opposing antioxidant
processes. Although there are numerous water-soluble antioxidant systems, just a handful
of membrane-embedded systems—including carotenoids and vitamin E—interact with the
initial events of the membrane-associated redox signaling pathways (see Figure 7).

Biological membranes are the site of the production of lipid peroxidation-based gene
regulators in plants and humans. Due to their exceptional sensitivity to oxidation, PUFAs
are sentinels for oxidative stress and the input from PUFA derivatives into redox-signaling
pathways serves as an early-warning system that triggers changes in gene expression and
defense responses. In plants, a group of stress and/or defense hormones (e.g., jasmonic acid
and its precursors and derivatives) are derived from lipid peroxidation [99]. In vivo effects
of vitamin E level on the level of jasmonates and/or jasmonate-dependent anatomical or
functional features are evident from the use of tocopherol mutants [100]. Additionally, a
possible similar role for zeaxanthin is suggested by the increased level of the jasmonic acid
precursor 12-oxo-phytodienoic acid in a zeaxanthin-deficient mutant [101]. Although these
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mutant studies indicate in vivo roles of xanthophylls or tocopherols in signaling pathways
involving lipid-peroxidation derivatives, Munné-Bosch emphasized that it is the interplay
among these and other factors that determines overall outcomes, with multiple factors
operating in conjunction with each other [102].

Research on xanthophylls in humans has mirrored the progression of research on
vitamins from attention to topical functions (such as the function of vitamin A in vision
or of vitamin D in bone health) to system-wide gene regulation. The remainder of this
section focuses on gene-expression modulation by carotenoids in humans. Carotenoids
with provitamin-A activity, β-carotene, β-cryptoxanthin, and α-carotene act through the
formation of vitamin A (a group of retinoids including retinol, retinal, and retinoic acid)
with well-characterized immuno-regulatory functions. Retinoids directly interact with
genes by binding to a retinoid receptor and moving into the nucleus where they can
regulate the immune response as well as cell division, cell death, and other key functions
and are often activated via redox-signaling pathways in response to a shift to the oxidative
side [103].

A large body of supplementary studies has established that non-provitamin-A carotenoids,
such as lutein or a mix of lutein and zeaxanthin, can also modulate the expression of
genes involved in the human immune response, including as master gene regulators such
as NF-kB and Nfr2 [72]. A meta-analysis of randomized controlled trials on the effect
of xanthophyll supplementation on inflammation reported significant effects of either
lutein, lutein and zeaxanthin, cryptoxanthin, or astaxanthin in lowering inflammation
markers [104]. It is thus clear that these xanthophylls have an impact on the organism’s
redox state in vivo. However, more work is needed to clarify whether these xanthophylls
act by modulating redox-signaling pathways or by binding directly to ligand-activated re-
ceptor proteins that function in gene regulation. The possibility has been suggested that the
cleavage products of zeaxanthin and lutein [105] may bind to such ligand-activated recep-
tors [106,107]. The oxidation products of carotenoids may also act as signaling molecules
in plants [16].

Much recent research on carotenoids in humans has focused on the brain with its high
concentrations of PUFAs, oxygen, and xanthophylls. Supplementation with xanthophylls
that lower inflammation level [108–110] resulted in better cognitive function across the
lifespan [108,111,112]. Cognitive performance was also enhanced by supplementation
with a combination of lutein and the omega-3 PUFA docosahexaenoic acid [113,114] or a
combination of vitamin E and carotenoids [115]. More studies are needed with different
supplements—alone and in combination.

5. Conclusions and Recommendations about Zeaxanthin and Lutein
5.1. Summary

• Both zeaxanthin and lutein can principally act via multiple different mechanisms
as components of light-collecting systems with photosensitizers as well as in light-
independent roles.

• Both zeaxanthin and lutein can bind to multiple different proteins.
• Zeaxanthin, but not lutein, is found in all three domains of life, ranging from ex-

tremophile microorganisms to humans.
• Zeaxanthin and lutein assume distinguishable positions within phospholipid bilayers.
• There is evidence that both zeaxanthin and lutein play a role in the phospholipid

bilayer portion of biological membranes in animal systems, but thus far only for
zeaxanthin in plant and bacterial/archaeal systems.

• Lutein, or the combination of lutein and zeaxanthin, plays a role in human vision,
as well as in modulating the human immune response (lessening inflammation),
in human cognitive function, and in additional processes not related to human vision.

• In addition to its role in plant photoprotection, zeaxanthin may have a role in the
modulation of plant defenses and other functions beyond photosynthesis.
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5.2. Future Research

Advances in technology are needed that allow for the non-intrusive characterization
of the in vivo functions of zeaxanthin and lutein (as well as other xanthophylls) in specific
endogenous microenvironments in organisms that developed under, and that are exposed
to, external environments typical of natural settings. Specific questions for future research
thus include the effect of genetic variation and growth environment on xanthophyll local-
ization and function, the function of lutein and zeaxanthin in the phospholipid portions of
biological membranes with respect to microdomains and between plants and animals, and
the evaluation of the role of xanthophylls as direct antioxidants in biological membranes,
modulators of redox-signaling pathways, or direct gene regulators.
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