Large-scale Dynamic and Static Simulations of
Complex-shaped Granular Materials Using Parallel

Three-dimensional Discrete Element Method (DEM) on
DoD Supercomputers

Beichuan Yan®*, Richard A. Regueiro®

@ Department of Civil, Environmental, and Architectural Engineering, University of
Colorado Boulder

Abstract

In this paper we present unprecedented three-dimensional (3D) DEM simu-
lations of complex-shaped particles across five orders of magnitude of simu-
lation scale (namely, number of particles) using up to 32,768 cores on U.S.
Department of Defense (DoD) supercomputers. Firstly, we develop the paral-
lel algorithm based on domain decomposition by following Foster’s four-step
design methodology and incorporating a number of advances, including con-
cept of link-block (LLB), border layer and migration layers, adaptive compute
gridding technique, MPI transmission of C++ objects and pointers, etc. Sec-
ondly, performance analyses of the code including speedup, efficiency, scala-
bility are provided as benchmarks and guidelines, as well as optimal compu-
tational granularity (CG) for each simulation scale. Thirdly, three full-scale
simulations of sand pluviation, constrained collapse and particle shape ef-
fect are carried out to demonstrate the code capability as well as discover
mechanical response of particle assemblies.

The parallel code enables us to simulate a wide range of dynamic and
static laboratory and field tests in engineering applications that involve a
large number of granular and geotechnical material grains, such as sand plu-
viation process, buried explosion in various soils, earth penetrator interaction
with soil, influence of grain size, shape and gradation on packing density and

*Corresponding author. Fax: +1-303-492-7317
Email addresses: beichuan.yan@colorado.edu (Beichuan Yan),
richard.regueiro@colorado.edu (Richard A. Regueiro)

Preprint submitted to Engineering Computations February 1, 2018

shear strength, mechanical behavior under different gravity environments
such as on the Moon and Mars, etc.

Keywords: large-scale, parallel computing, discrete element,
complex-shaped, pluviation, collapse

1. INTRODUCTION

Since its introduction in the late 1970s by Cundall and Strack (1979), the
Discrete Element Method (DEM) has been applied to study the mechani-
cal and micro-mechanical behavior of particle assemblages for more than 40
years. However, application of 3D DEM to simulating practical problems
involving granular and geomechanical materials is still limited in terms of
problem size (namely, number of particles). For example, most applications
involving complex-shaped particles such as axi-symmetric/revolution ellip-
soids (Ng, 1994, 2004), three-axis ellipsoids (Yan et al., 2010), poly-ellipsoids
(Peters et al., 2009), superellipsoids (Wellmann et al., 2008; Delaney et al.,
2010), superquadrics (Williams and Pentland, 1992), constrain their number
of particles to a few thousand. This is mainly due to the fact that the DEM
poses high computational demands characterized by CPU-intensive interpar-
ticle contact detection and explicit time integration schemes.

Under many situations, the length scale and problem size of practical
engineering problems cannot be circumvented even if a multiscale model is
employed. For instance, to study the impact of blast waves on gravitationally
deposited coarse-grained soils in which an explosive charge is ignited, a 40
cm x 40 cm x 40 cm specimen composed of ellipsoidal sand particles contains
approximately 500 million 0.1~1 mm diameter particles depending on the
particle shapes and size distribution. The limitation of problem size poses a
barrier to simulating realistic engineering or laboratory problems involving
complex-shaped particles that are the same size as physical particles.

It is a natural and indispensable trend to take advantage of modern super-
computers to perform large-scale computational tasks of three-dimensional
(3D) DEM using parallel computing. This paper presents a study on the
parallelization of 3D DEM, its performance measurement and analysis, and
full-scale simulations of dynamic and static laboratory and engineering prob-
lems. It contains six sections. Section 1 has stated the motivation, mainly
from the perspective of engineering applications; section 2 overviews the
DEM framework, its computational features in neighbor search and contact

resolution, and recent interest in its parallelism; section 3 covers numer-
ous concepts, techniques, optimizations and latest programming technolo-
gies in the process of MPI parallelization; section 4 presents performance
analysis across five orders of magnitude of simulation scale using numerical
experimental data collected from DoD supercomputers, including MPI profil-
ing, optimal computational granularity (CG), formulation on execution time,
communication time and parallel overhead percentage with regard to number
of processors (strong scaling) and problem size (weak scaling), and FLOPS
measurement, using the Performance API (PAPI); section 5 presents three
full-scale simulations of sand pluviation, constrained collapse and particle
shape effect to discover mechanical response of particle assemblies that are
impossible without large-scale parallel computing capability; the last section
gives conclusion and outlook.

2. STATE-OF-THE-ART DEM AND ITS PARALLELISM
2.1. The DEM framework

A typical procedure of DEM analysis consists of three major computa-
tional steps in sequence, which are integrated in time using central difference
method until a simulation is completed:

e contact detection between particles, including two phases:

1. neighbor search (neighbor estimate)
2. contact resolution

e contact force computation for each pair of particles in contact.
e particle motion update (translations and rotations) using Newton’s sec-
ond law.

The contact detection process is usually the major computational bottle-
neck, especially for a large number of complex-shaped particles. It is divided
into two phases: neighbor search (or spatial reasoning) phase and contact
resolution phase. Neighbor search identifies/estimates objects near the tar-
get object. It often uses an approximate geometry for the objects, such as
bounding box or bounding sphere. The geometric contact resolution phase
then uses a specific geometric representation of each body to resolve the
contact geometry. For complex shapes such as ellipsoidal particles (three dif-
ferent semi-axis lengths) (Yan et al., 2010) or non-symmetric poly-ellipsoidal
particles (Peters et al., 2009), the contact resolution between two particles

3

is much more expensive than spheres, increasing the floating point opera-
tions by several orders of magnitude due to the requirement of numerical
accuracy and robustness. This is the most computationally challenging part
of 3D DEM in addition to the non-linear and history-dependent mechanical
models that describe interparticle interactions.

2.2. Neighbor search

In DEM simulations, there are three typical neighbor search algorithms
with different time complexities: O(n?), coming from n-by-n simple search;
O(nlogn), resulting from tree-based algorithms (Jagadish et al., 2005; Muja
and Lowe, 2009); and O(n), rooted from binning method (Munjiza and An-
drews, 1998; Williams et al., 2004) or link-cell (LC) method (Grest et al.,
1989), where n denotes the number of particles.

2.3. Contact resolution

z

Figure 1: Contact between two ellipsoidal particles.

Yan et al. (2010) developed a robust contact resolution algorithm for
three-axis ellipsoidal particles by constructing an extreme value problem of
finding the deepest penetration of one particle into the other, as shown in
Figure 1. Such an extreme value problem results in a sixth order poly-
nomial equation. Conventional polynomial root finders cannot satisfy the
high-precision numerical requirement in the 3D DEM computation. For ex-
ample, the elastic overlap between two particles of typical quartz sand may
vary between 1078 to 10~° meters depending on particle size, shape and ex-
ternal force, and a low-precision solver can lead to numerical instability or

spurious explosion of particles. Therefore, an iterative eigenvalue method is
selected to find roots of the polynomial and determine the contact geometry.
The algorithm and its implementation has been shown to be robust such
that it is applicable to not only regularly bulky ellipsoidal shapes but also
extreme-shaped ellipsoidal particles such as disks and needles, as shown in
Figure 2(a~d).

(a) Ellipsoids with various (b) Spherical particles. (c) Disk-like particles.
aspect ratios.

-
©0®o
\ O

(d) Needle-like particles. (e) Poly-ellipsoids with (f) Poly-ellipsoids.

various aspect ratios.

Figure 2: Ellipsoids and poly-ellipsoids represent a wide variety of shapes in DEM.

Peters et al. (2009) proposed a non-symmetric poly-ellipsoid shape which
joins eight component ellipsoids in eight different octants respectively to pro-
duce continuous surface coordinates, normal directions and intersections. It
is more computationally expensive than a symmetric ellipsoid but it acts as
a useful extension, as shown in Figure 2(e~f). Zhang et al. (2017) described
further details on poly-ellipsoid contact detection algorithm for improved
computational efficiency.

2.4. Contact model and damping mechanism

A typical interparticle contact model is composed of Hertzian nonlin-
ear normal contact model (Hertz, 1882), Mindlin’s history-dependent shear
model (Mindlin, 1949; Mindlin and Deresiewicz, 1953), Coulomb friction and
contact damping mechanism, illustrated in Figure 3, where k; and k,, denote
tangential and normal stiffness between two particles in contact, respectively,
and p denotes coefficient of friction.

ky
M k,
Cr

Figure 3: Model of contact interface.

The normal damping coefficient ¢, (Onate and Rojek, 2004) can be taken
as a fraction of the critical damping C., for the system of two rigid bodies
with masses my and msy, connected with a spring of stiffness k, (Taylor and

Preece, 1992):
k
. = 9,/meln (1)
mq + Mo

¢ = EC,, (2)

where ¢ is called damping ratio, which is usually 40 ~ 100% for parti-
cles’ interaction. In the tangential direction, Mindlin’s hysteresis model and
Coulomb friction work together to dissipate energy.

2.5. Weight of neighbor search

It is worth noting that the three neighbor search algorithms, O(n?),
O(nlogn) and O(n), only affect the performance of neighbor search. They

have no bearing on contact resolution. The overall performance improve-
ment resulting from these algorithms is highly limited for complex-shaped
particles, because neighbor search only takes up a small fraction of floating
point operations in the whole computation. For instance, contact resolution
between a pair of three-axis ellipsoids is approximately 50 times as expen-
sive as that of a pair of spheres, and contact resolution between a pair of
poly-ellipsoids is nearly 300 times as expensive as that of a pair of spheres.

Both O(n?) and O(n) algorithms are implemented and tested in the paper.
The more complex the particle shapes are, the smaller the neighbor search
fraction (NSF) is, whereby NSF is defined as the ratio of neighbor search
time to the total contact detection time. With poly-ellipsoid computation
by O(n) algorithm, the NSF is as low as 0.7% whereas contact resolution
takes up to 95.5%. Furthermore, the lower the computational granularity
(CG), i.e., number of particles per process, the smaller the NSF.

Yan and Regueiro (2016a) pointed out: in both serial and parallel com-
puting of complex-shaped 3D DEM, the O(n?) neighbor search algorithm is
inefficient at coarse CG, however it executes faster than the O(n) algorithm
at fine CGs that are mostly employed in computational practice.

2.6. Efforts in developing parallel DEM

Firstly it is emphasized that this work is focused on DEM, not Molecular
Dynamics (MD). MD and DEM are essentially very different computational
methods in that: (a) MD simulations have become prominent because of
the availability of accurate interatomic potentials for a range of materials,
whereas granular particles in DEM generally interact with each other through
direct contacts and friction. In DEM simulations the significant majority
of floating point operations is consumed on contact geometry resolution,
while that is not the case for MD whereby spheres are used; (b) rotation
of granular particles plays a critical role in determining the deformation and
strength of assemblies, while that is not the case with atoms or molecules in
MD; (c) granular materials are usually frictional materials, for which particle
size, shape, size distribution and change of boundary conditions have strong
bearing on the assembly mechanical properties.

Secondly, there have been considerable efforts in developing parallel DEM
codes in recent years. Baugh Jr and Konduri (2001) presented a distributed
computing system for DEM that is designed for loosely-coupled networks
of workstations. The implementation is used to simulate a system with as
many as 200,000 spherical particles using eight processors. As an example,

7

the speedup is close to 6 using 8 processors for the computation of 120k
spherical particles.

Washington and Meegoda (2003) simulated a triaxial test using an algo-
rithm titled “TRUBAL for Parallel Machines (TPM)” and showed its ben-
efits over the serial version DEM code, TRUBAL. The TPM assigns each
processor a multiple number of contact pairs (two spheres in contact) exist-
ing within an assembly of spheres using static memory arrangement. Two
simulation scales are tested and compared, one with 403 spheres and the
other with 1,672 spheres, on Connection Machine (CM-5) with 512 nodes at
the Pittsburgh Supercomputing Center. The speedup is as low as 7.9 using
512 nodes for 403 spheres.

Henty (2000) chose to investigate the performance of a much smaller test
code that implements precisely the same algorithm but has limited function-
ality rather than tackle a complete physics DEM application with all of its
functionality and complexity. The superlinear speedup is observed in his
tests.

Maknickas et al. (2006) described the DEMMAT_PAR code for simulation
of visco-elastic frictional granular media, which has been created in the Par-
allel Computing Laboratory of Vilnius Gediminas Technical University. The
code adopts a static spatial domain decomposition strategy, link-cell concept
and MPI inter-processor communication. The speedup is approximately 11
on 16 processors for 100,000 spherical particles.

Munjiza et al. (2009) adopted parallel particle mesh (PPM) library to
parallelize the DEM, and used a conservative lower bound to estimate the
number of time steps between two Verlet list updates. In a sand avalanche
simulation, 122 million spheres were used. In the figure generated from fixed-
size problems that use up to 192 processors, superlinear speedup appears to
occur when the number of processors increases to a certain value.

Vedachalam and Virdee (2011) used LAMMPS (large-scale atomic and
molecular massively parallel simulator) and LIGGGHTS (LAMMPS improved
for general granular and granular heat transfer simulations) to study the mo-
tion of snow particles, wherein the snow grains are assumed to be spherical
particles of 5 mm diameter. With regard to the performance gain of paral-
lelism, the authors wrote “on 480 processors for 75K particles, the speedup
was 1.99, while on 960 processors for same number of particles speedup
achieved was 2.52” in comparison to 120 processors.

These DEMs mentioned above share several weaknesses and challenges:

1. They only deal with spheres rather than complex-shaped particles, thus
leading to several orders of magnitude less computational demand. For
instance, the CPU demand of simulating 122 million spheres is merely
equivalent to that of simulating 488k poly-ellipsoids, and the CPU demand
of simulating 10 million ellipsoids approaches that of 500 million spheres,
if the same interparticle contact mechanical models are used.

2. They highly simplify the complicated interparticle contact models and
thus cannot capture the physical properties of granular material accu-
rately. For instance, Munjiza et al. (2009) assumes constant normal and
tangential elastic modulus, and LAMMPS assumes variable normal and
tangential elastic modulus; however, both ignore the well-known history-
dependent tangential behavior for granular particles represented by the
Hertz-Mindlin contact model, which needs special implementation to keep
track of the complex load-unloading-reloading path and history variables.
Munjiza et al. (2009) updates the Verlet lists every 150 time steps, but
interparticle contacts can generate and disappear, and lasting shear con-
tact behavior can evolve, at every time step in conventional DEM, not to
mention in high-fidelity simulations like soil-buried explosion.

3. They do not completely disclose or implement advanced parallelism re-
quirements such as memory consumption management, dynamic load bal-
ancing technique, transmission of dynamically allocated objects between
MPI processes, particle motion tracking mechanism across MPI processes,
etc, which set a ceiling on computational performance gain and scalabil-
ity. For example, the root process may deplete compute node memory
in parallel computing, if it does not implement an effective memory deal-
location mechanism during the process of time integration of millions of
steps; a particle could disappear in computation when it moves across
dynamically adaptive compute grids, if particle migration mechanism is
not implemented correctly.

4. As presently reported in the literature, they achieve poor parallel speedup
and scalability. As an example of LAMMPS, 4x number of processors
gives rise to a low speedup of 1.99, and 8x number processors leads to
a low speedup of 2.52, in the simulation of 75k spheres (Vedachalam and
Virdee, 2011). Among these parallel DEMs, the algorithmic speedup and
scalability challenges mainly come from: (i) strategy of static vs dynamic
spatial domain decomposition; (ii) performance-critical details in design
and implementation of the MPI transmission of adjacent particles from
one process to another, which are thoroughly covered in Section 3.

9

Peters et al. (2009) divides the usage of DEMs into two classes of appli-
cation: (i) prototype-scale simulations for engineering studies, and (ii) mi-
cromechanical studies for research of fundamental mechanics. They pointed
out: “Prototype scale analyses require accurate bulk behavior of the medium,
which presumably can be achieved without capturing details at the particle
scale. In fact, in such studies both particle size and shape are sacrificed to
obtain problem sizes suitable for practical computations. For micromechan-
ical studies, greater fidelity to the actual particle characteristics is needed,
because for simulation to be on equal footing with physical experiments, the
particle-scale behavior must be correct. Simply reproducing bulk behavior
is not sufficient if the intent is to develop generalizations about fundamental
mechanics.” Unfortunately the spherical DEMs mentioned above fall into
the category of prototype-scale simulations, unless of course simple granular
materials like spherical glass beads are studied fundamentally, not realistic
sands or gravels.

3. MPI DESIGN, IMPLEMENTATION AND OPTIMIZATION

3.1. Four-step design and link-block

A concept of link-block (LB) is put forward for the design of the parallel
algorithm, illustrated in Figure 4. With introduction of LB, the Foster’s
four-step methodology (Foster, 1995) can be readily applied:

Partitioning: The computational domain is divided into blocks. Each
block may consist of many virtual cells. In Figure 4, there are 8 blocks
numbered from 0 to 7, each containing 5 x 5 x 5 small virtual cells. The
size of the virtual cells may be chosen to be the maximum diameter of the
discrete particles.

Communication: Each cell, as a primitive task unit, can communicate
with 26 possible surrounding ones to determine contact detection. However,
the communication manner may be changed after the process of agglomera-
tion.

Agglomeration: By combining 5 x 5 x 5 virtual cells into a block, com-
munication overhead is lowered in that each block only needs to communicate
with neighboring blocks through border/ghost layers, which are virtual cells
marked by blue dots in Figure 4.

Mapping: There are choices of mapping a block of particles to a core,
a CPU, multiCPUs within a node, or even a whole node. Very often each
block is mapped to a whole compute node.

10

e\®\®\0o\Oo \®\0\0 '\
(]

e

o

a
\e\e\e\e\elo\o\o\o\e

(BE R NE LN ENE NE BE R J
[]
L]
[]
[]
(]

border layer of block

virtual cell block

Figure 4: Schematic of link-blocks, virtual cells and border layers.

3.2. Flowchart of the parallel algorithm

The flowchart of the parallel code is designed as depicted in Figure 5. It
exhibits twelve flow processes or steps, among which one is sequential, two are
partially parallel, and nine are fully parallel. Ten of the twelve processes are
integrated in time using time increment loops until a simulation is completed.

In comparison to the serial algorithm, the parallel one ends up with six
more steps as follows:

1. step 2: 2-Root process divides and broadcasts info. This step only runs
once so it does not cost much CPU time.

2. step 3: 3-All processes communicate with neighbors. This interprocess
communication is the most important step in the parallel algorithm.

3. step 9: 9-All processes update compute grids. This step arises from
consideration of computational load balance.

4. step 10: 10-All processes merge and output info. This step serves the
goal of snapshotting simulation states. Beware that it does not execute
at each time increment, otherwise it could cause unacceptable cost.

5. step 11: 11-All processes release memory of receiving particle info. This
step arises from MPI transmission mechanism and must be carefully
taken care of.

11

No

| local communication |

<_global communication >

é

Time for snapshot?
Yes
No|

Simulation time reached?

Yes

Figure 5: Flowchart of the Iiajallel algorithm of 3D DEM.

6. step 12: 12-All processes migrate particles. This step handles the sit-
uation when particles move across block borders.

Note steps 5 and 7 are boundary processes: although they are partially
parallel in spatial distribution (only boundary processes are running while
other processes are idle), these two steps only perform two-dimensional op-
erations on computational boundaries, therefore taking up a relatively small
fraction of computational cost. Among the twelve steps, most of them only
involve local communication, while three of them are associated with global
communication.

3.8. Interblock communication

In Figure 4, beware that a border/ghost layer is not limited to construct-
ing a surface layer between two adjacent blocks, as there are other forms.
For example, block 3 communicates with block 1 through a surface border
layer, block 3 communicates with block 0 through an edge border layer, while
block 3 communicates with block 4 through a vertex border layer, as shown
in Figure 4. Usually a block needs to exchange information with its neighbors
through six surface border layers, twelve edge border layers and eight vertex
border layers. The width of border layers is selected to be the radius of the
largest particle and works well.

A “patch” test is designed using 162 ellipsoidal particles. The particle
assemblage is composed of two layers of 81 particles, gravitationally deposited
into a rigid container, illustrated in Figure 6(a). The container is partitioned
into four blocks separated by blue dashed lines shown in Figure 6(b), which
also represents the initial configuration of the randomly-sized particles as
shown from top view.

Each block is mapped to and computed by an individual process, so there
are four processes, p0 to p3. Each process needs to communicate with other
processes to determine its own boundary conditions. For example, process p3
needs to know those particles from process pl that are enclosed by the pink
rectangular box, those from process p2 enclosed by the red rectangular box,
and those from process p0 enclosed by the green square box. A detailed movie
records how those particles move across the borders and collide with particles
from other blocks, and it reveals that each process is able to determine its
boundary conditions accurately. The overall motion of the 162 particles
through parallel computing is observed to be the same as that observed in
serial computing.

13

(a) 3D view of initial configuration (b) Top view of initial configuration
Y Y
border layer
X X
(]

1 3 1 3
(<] Qo
<

s = s

{ .

po 2 0 2

@ ;
" "

(¢c) Top view at time t1 during simulation (d) Top view at time ¢2 during simulation

Figure 6: Illustration of interblock communication.

3.4. Load balance and adaptive compute grids

In parallel computing it is important to maintain load balance between
processes, otherwise some processes are busy computing while others could
be hungry awaiting tasks. To this end, dynamically adaptive compute grids
are developed in 3D DEM. In a test of pouring particles into a container via
gravity, it can be clearly observed from the movie that the compute grids
dynamically follow motion of the particles and redistribute across the space.
Three snapshots of this process are captured and shown in Figure 7, where
the 2 x 2 x 3 compute grids in x, y, z direction respectively are marked

14

by green boxes (differentiated from the fixed black box of the container).
Note that compute grids must be distinguished from the physical container
in terms of underlying data structure because compute grids are a dynamic
data structure while a container uses a fixed one.

(a) Initial configuration of (b) Middle stage of (¢) Final stage of particle

particle pluviation. particle pluviation. pluviation.

Figure 7: Dynamically adaptive compute grids that achieve efficient load balance.

3.5. Across-border migration

Each process only knows its own space and associated particles, and a
particle may enter or leave this space, which is called across-block migration.
If a particle migrates across the block border, one process needs to delete
this particle while another process needs to add this particle. Consider a
small particle located at location-1 in process pl at time ¢1 in Figure 6(c):
it moves across the border of process pl and enters the domain of process p0
at a later time ¢2, arriving at location-2 in Figure 6(d).

The algorithm to track how particles migrate across block/process bor-
ders is depicted by Figure 8. It looks similar to that of inter-process com-
munication, however they are different or even the inverse of each other
conceptually. In Figure 8, those rectangular and square boxes are a spatially
outward extension of process p3, not the inward inclusion of process p0, pl,

15

migration layer border '
X

I
) I
I
1 3 I
I
o)
Ch
- I ;
o
1
0 2
1
virtual cell

Vi
Figure 8: Particles migrate across blocks.

p2, respectively. They are called migration layers or migration zones. For
example, p3 ought to check its three spatial migration layers to see if any of
its particles move into the migration layers, and if yes, p3 should send such
particles to its neighbors and delete them from its own space. The width
of the migration layers is independent of the size of virtual cells, and it is
actually determined by the velocities of the particles and time step used in
current time increment, to ensure that no particle can leave the spatially
outward extended block/process within the time step.

Furthermore, many performance-critical details are managed optimally in
order to achieve the best performance, such as: optimizes memory manage-
ment by minimizing global communication and avoiding large MPI memory
consumption; achieves efficient MPI transmission of dynamic objects and
pointers using Boost C++ libraries (Boost.MPI, Boost.Serialization, Boost
Non-blocking communication, etc.); eliminates redundant contact informa-
tion between adjacent MPI processes using high-performance data structures;
and collects contact information between particles and partitioned bound-
aries using a special data structure with optimized MPI_Gather operations.

16

4. PERFORMANCE ANALYSIS OF 3D DEM

4.1. DoD Supercomputers

The target architectures in this work are four of the DoD supercomputers:
Spirit, Excalibur, Thunder and Topaz, and their parameters are listed in
Table 1.

Table 1: Four DoD supercomputers

supercomputer Spirit Excalibur Thunder Topaz
system SGI ICE X Cray XC40 SGI ICE X SGI ICE X
compute nodes 4,590 3,098 3,216 3,456
cores per node 16 32 36 36
total cores 73,440 101,184 125,888 125,440
memory per node 32 GB 128 GB 128 GB 128 GB
CPU Xeon E5-2670 Xeon E5-2698v3 Xeon E5-2699v3 Xeon E5-2699v3
core speed 2.6 GHz 2.3 GHz 2.3 GHz 2.3 GHz
interconnect 4x FDR InfiniBand Cray Aries 4x FDR InfiniBand 4x FDR InfiniBand
peak PFLOPS 1.50 3.77 5.62 4.66
MPI SGI MPT Cray MPICH2 SGI MPT SGI MPT

4.2. Types of DEM simulations

The serial DEM code for three-axis ellipsoids was initially developed by
Yan (2008), and has been successfully parallelized and extended to perform
nearly 20 types of simulation utilizing both ellipsoid and poly-ellipsoid shapes
during the past five years, and it is now named ParaE11ip3d, and hosted un-
der the open source Tahoe Development Project (tahoe.sourceforge.net
) with a BSD-3 license.

Overall, the problems that are modeled by 3D DEM fall into two main
categories:

e static or quasi-static problems: laboratory tests such as oedometer com-
pression, isotropic compression, conventional or true triaxial compres-
sion, in-situ Cone Penetration Test (CPT), static load test of cast-in-
place piles, etc.

e dynamic problems: sand pluviation or deposition with gravity, collapse
of particle assemblage, landslide under gravity, explosion beneath soil,
installation of precast piles by means of hammers, sand dune movement,
etc.

17

To cover the variations, sand pluviation (“raining”) is selected as our rep-
resentative test in evaluating parallel performance. Illustrated in Figure 7,
the sand particles are generated based on a specific soil gradation curve (so
that they have different sizes) and “floated” in space initially without inter-
action; during the process of gravitational pluviation, the bottom particles
start to pack up and interparticle contacts should be detected; at the end, all
particles come to rest and stay in a relatively “dense” state statically under
gravity.

The static/quasi-static simulations can achieve excellent load balance,
whereas in dynamic simulations, such as buried explosion in sand, it is diffi-
cult to achieve good load balance because the motion and distribution of soil
grains is unknown. Even though each link-block contains the same number
of particles, there could still be load imbalance, because the computational
cost is not determined by the number of particles but instead by the num-
ber of interparticle contacts, which is unknown before the computation is
performed.

4.8. MPI performance across multiple nodes

43:12

—+—case 1: mpi1-node 2241

38:24 —e—case 2: mpi 2-node 4421
case 3: mpi4-node4441

33:36 —+—case 4: mpi 6-node 446 1

'E‘ —+—case 5: mpi 8-node 4481
€ 28.8
= note: e.g., 22 4 1 denotes 2,
£ 2, 4 MPI processes inXx, y, z
GEJ 24:00 direction respectively and
= each process runs 1 OpenMP
¥ 10:12 thread.
o
O
go 14:24

9:36

4:48

0:00

0 20 40 60 80 100

Computational progress of 0.5 million steps in depositing 12k
particles (%)

Figure 9: MPI performance across multiple nodes simulating 12k particles.

18

The simulation parameters are listed in Table 3. For sand pluviation of
12k particles, 1 to 8 compute nodes are utilized and their wall clock time ver-
sus computational progress curves are plotted in Figure 9; for 150k particles,
32 and 64 nodes are used to complete the simulation within 24 hours and
plotted in Figure 10(a); for 1 million particles, 256 nodes are requested to
run within 24 hours and plotted in Figure 10(b). Note that all of the times,
including wall clock time and module execution times per step, are acquired
using function MPI Wtime for a high resolution measurement.

21:36 33:36

19:12 —+—mpi32-node 8881

2348 | —+MPpi256-node 161616 1

—+—mpi 64-node 88 16 1
16:48
note:e.g., 161616 1
denotes 16, 16, 16 MPI
processes in x, y, z direction
respectively and each
19:12 process runs 1 OpenMP
thread.

=
»
9
kS

note: e.g., 88 81 denotes 8,
8, 8 MPI processes in x, y, z
direction respectively and
each process runs 1 OpenMP
thread.

g

9:36

Wall clock time (hh:mm)
Wall clock time (hh:mm)

o 20 40 60 80 100 0 20 40 60 80 100

Computational progress of 0.5 million steps in depositing 150k Computational progress of 0.5 million steps in depositing 1
particles (%) million particles (%)
(a) 150k particles. (b) 1 million particles.

Figure 10: MPI performance of a large number of particles.

From all the simulations of 2.5k, 12k, 150k and 1 million particles, it is
observed that wall time versus computational progress curves using different
number of compute nodes exhibit larger gaps, which is particularly clear in
Figure 10(a): the 32-node and 64-node curves overlap at the earlier stage
of simulation when interparticle contacts have not accumulated, but deviate
and keep increasing the gap at later simulation stage when more interparticle
contacts have developed.

4.83.1. Constraint on performance gain

Figure 11 plots the speedup and experimentally determined serial frac-
tion (EDSF) for a static simulation of 12k particles in terms of number of
processors (namely, evaluated relative to the single processor performance).
For a problem of fixed size, the speedup of a parallel computation typically
increases while the efficiency typically decreases, as the number of processors

19

%0 in terms of processors (cores) 0.0050

0.0045
0.0040
0.0035
0.0030
0.0025

EDSF

0.0020
-speedup
-+EDSF

0.0015
0.0010
0.0005

0.0000

0 16 32 48 64 8 96 112 128
Number of processors (cores)

Figure 11: MPI speedup and EDSF of 12k particles.

increases; for the relatively small number of processors (128) used in these
tests, the speedup exhibits a nonlinear relationship. MPI has achieved excel-
lent speedup in this test; for example, it achieves a speedup of 83 using 128
cores.

Firstly, it is seen that the EDSF e values are between 0.01% and 0.43%,
which indicates a very low serial fraction. According to Gustafson-Barsis’s
law, speedup v < p + (1 — p)s, where p is the number of processors and
s denotes the fraction of time spent in the parallel computation performing
inherently sequential operations, if we let s = e (which actually overestimates
the value of s), it is obtained that ¢ < 128 + (1 — 128) % 0.43% = 127.45
using the data from 128 processors, therefore an excellent scaled speedup is
achieved.

Secondly, it is shown that EDSF increases as the number of processors
increases. This provides an important indication: the MPI performance
gain is not constrained by inherently sequential code, but mostly by parallel
overhead, which could be time spent in process startup, communication, or
synchronization, or it could be an architectural constraint, as stated by the
book Parallel Programming in C with MPI and OpenMP (Michael, 2003).

4.4. MPI profiling
For each scale of number of particles (2.5k, 12k, 150k, 1M and 10M),
various numbers of compute nodes are used to test the speedup and efficiency

20

in static simulations. In particular, an excessive number of compute nodes
may be employed for the following purpose: (1) observe how the speedup
and efficiency respond to the increasing number of compute nodes; (2) test
if there is an optimal computational granularity (number of particles per
process) for each scale.

4.4.1. Speedup and efficiency

Figure 12 plots the speedup and efficiency of the five scales, each of which
tests up to an excessive number of compute nodes. For example, the 2.5k-
particle test requests up to 128 nodes which results in nearly 1 particle per
process, and the 150k-particle test requests up to 512 nodes which results in
nearly 18 particles per process.

Of the five scales, it can be discovered that the excessive number of com-
pute nodes leads to a decrease of speedup, although the speedup exhibits a
nonlinear increase within the range of adequate number of compute nodes.
As an example, the 150k-particle test achieves a speedup of 92 using 128
nodes while it achieves a speedup of 76 using 256 nodes. It implies that
for each scale of simulation there must be an optimization of computational
resources, which we have defined as computational granularity, namely, the
number of particles per process.

With regard to efficiency, it can become very low if an excessive num-
ber of compute nodes is used. For example, in the 12k-particle test, the
efficiency is 0.60 (60%) using 8 nodes and 0.07 (7%) using 128 nodes. Low
efficiency means low usage of computational resources, and should be avoided
in parallel computing.

With adequate number of compute nodes, the speedup exhibits a mono-
tonically increasing relationship with respect to the number of compute nodes
at all scales, while the efficiency exhibits a monotonically decreasing trend.
On the scale of 150k, 1M and 10M particles, higher-than-1 efficiency is ob-
served. The superlinear speedup is pronounced; for example, the efficiency
goes as high as 1.97 (197%) at 8 nodes in the 150k test; and 17.75 (1,775%)
at 32 nodes, and 7.65 (765%) at 256 nodes in the 1 million particle test.
It is worth noting that for all of the 1-node tests across the five scales, the
memory size is sufficiently adequate to satisfy the computation and does not
cause swap-out to hard drive.

Yan and Regueiro (2016b,a) investigate the superlinear speedup in complex-
shaped 3D DEM and concludes that: (1) Strong and weak scaling measure-
ments show that cache miss rate is sensitive to the memory consumption

21

6.0 2.5k particles 1.00 13.0 12k particles 1.00

5.5 0.90 0.90
5.0 0.80 110 0.80
45 0.70 00 0.70
24,0 060 3 o 060 3
3 £ 3 g
@ 35 0.50 .2 o 7.0 0.50 .2
g 2 g- 2
&30 0.40 ¥ & 0.40 &
2.5 030 50 0.30
2.0 #speedup 0.20 10 #speedup 0.20
15 -+efficiency 0.10 efficiency 0.10
1.0 0.00 1.0 0.00
0 32 64 % 128 0 64 128 192 256
Number of nodes Number of nodes
(a) 2.5k particles. (b) 12k particles.
101 150k particles 2.00 2501 1 million particles 20.00
1.80 18.00
1.60 2001 16.00
1.40 14.00
=3 120 T 21501 1200 3
3 g 3 <
g 100 3 o 1000 g
& 0.80 & S1001 800 &
#speedup 0.60 :Slf)fe'e'dup 6.00
st efficienc
+efficiency 40 501 Y 4o
0.20 2.00
0.00 1 0.00
0 128 256 384 512 0 256 512 768 1024
Number of nodes Number of nodes
(c) 150k particles. (d) 1 million particles.
3501 10 million particles 140.00
3001 120.00
2501 100.00
= g
52001 80.00 £
©]
3 g
1501 60.00 ¥
& &
1001 “speedup 40.00
-+efficiency
501 20.00
1 -A 0.00
0 512 1024 1536 2048
Number of nodes

(e) 10 million particles.

Figure 12: Speedup and efficiency across orders of magnitude of simulation scale in terms
of number of particles.

22

reduction per processor, and the last level cache (LLC) contributes most sig-
nificantly to the strong superlinear speedup among all of the three cache levels
of modern microprocessors; (2) both O(n?) and O(n) algorithms exhibit a
strong superlinear speedup on large-scale simulations of complex-shaped 3D
DEM. The O(n) algorithm always exhibits a lower speedup than the O(n?)
algorithm across all computational scales and granularities, mostly due to
the base point measurement at a single compute node, whereby the O(n)
algorithm executes much faster than the O(n?) algorithm. On average, the
speedup in O(n) algorithm is reduced by approximately 1/3 relative to O(n?)
algorithm on the simulation scale of 1 million ellipsoidal particles; (3) the su-
perlinear speedup is commonplace for large-scale complex-shaped 3D DEM.

Speedup at different problem size and Efficiency at different problem size and
number of nodes number of nodes

1000

32,00
W g

5 2 16.00

= >

o 100 g s00

3 [

3 ‘S 4.00 <0-2.5k particles
a -#-2.5k particles & =412k particles
“ 2.00

150k particles

«&=12k particles
<@-1 million particles

=150k particles
<#-1 million particles 0.50
«4-10 million particles

10

«4-10 million particles

1 4 16 64 256 1 4 16 64 256
Number of compute nodes (log) Number of compute nodes (log)

(a) Speedup across orders of magnitude (b) Efficiency across orders of magnitude of
simulation scale. simulation scale.

Figure 13: Speedup and efficiency across orders of magnitude of simulation scale in terms
of number of particles.

Figure 13(a) compiles all of the speedup data from static simulations at
the five different scales. A loglog graph is plotted due to the wide range of
problem size and number of processors. The Amdahl effect is pronounced:
speedup is an increasing function of the problem size for any fixed number
of processors.

Similarly, Figure 13(b) plots the efficiency across the five different scales
using a log-log graph. Large-scale simulations such as 150k, 1M and 10M
particles exhibit high efficiency above 1, while smaller scale simulations such
as 2.5k and 12k particles show a lower-than-1 efficiency.

23

4.4.2. Module execution time and parallel overhead

i 150k particles
2.E-01 12k particles 25 4.E+00 P 20
20°\= x
= S BIE00 153
o 1.E-01 -#-commuT $ % g
% migraT 15 2 g
5 -A-compuT “>‘ 5 2.E+00 10 >
[-% -0-totalT 10 _° [-% -commuT 2
] o i 2
£ 5.E-02 overheadys = g *mlgraTT 2
= — compu =
[~ & F1E
5 & +00 o totalT 58
overhead%
0.E+00 o — — — 0.E+00 - — 2o
0 2 4 6 8 0 16 32 a8 64
Number of nodes Number of nodes
(a) 12k particles. (b) 150k particles.
Figure 14: MPI profiling on modules for 12k and 150k particles.
illi i 1 million particles
3.E402 1 million particles 20 1.E+03 p 20
--commuT
1.E+02 migraT
— 15 X -A-compuT 15 xX
G T L 1E+01 --totalT E]
o 2.E+02 S = s
by 2 o overhead% 2
+ + + 1E+00 =
“ [© o
] 10 > - 10 >
g & commuT °© Z.rn1 o
o migraT 9 o %\.\I o
E LE+02 -&-compuT T Eirom B I S— ©
L -#-totalT 5 S L 5 S
overhead% 1.E-03
&
0.E+00 LAm-—m L] mo 1.E-04 0
0 64 128 192 256 0 64 128 192 256
Number of nodes Number of nodes
(a) 1 million particles. (b) 1 million particles, wall time in

logarithmic scale.

Figure 15: MPI profiling on modules for 1 million particles.

Execution time of different modules is plotted with the percentage of
parallel overhead using adequate number of compute nodes in Figures 14
and 15. Note that Figure 15(b) uses a logarithmic scale in wall time to
distinguish between the close curves shown in Figure 15(a). Each module is
described here again:

e commuT: communication time in step 3 (3-All processes communicate
with neighbors) of the flowchart in Figure 5.

24

e migraT: migration time in step 12 (12-All processes migrate particles)
of the flowchart.

e compu'l: numerical computation time, it equals total T-commuT-migraT.

e totalT: total time at each step.

e overhead%: (commuT+migraT)/totalT, i.e., the overall parallel over-
head percentage.

Note that the IO cost in 3D DEM is very limited. As a typical exam-
ple, only 100 snapshots are taken for 5 million time increments of 3D DEM
simulation. The synchronization overhead is less than 0.1% of the commuT
across all of the simulation scales such that it is a negligible fraction of overall
parallel overhead, of which the communication cost dominates.

Firstly, the ratio of migration time to communication time is as low as
1-6% across all simulation scales. This makes sense because there are no par-
ticles migrating across borders in static simulations, although step 12 must
be executed and thus spends a very small fraction of time. Note that this
ratio remains low even if it is evaluated in a dynamic simulation because use
of the adaptive compute grids minimizes particle migration across borders.

Since step 3 (3-All processes communicate with neighbors) and step 12
(12-All processes migrate particles) of the flowchart employ the same design
and implementation with different layer definitions, as shown in Sections
3.3, it can be approximately deduced that the actual interprocess communi-
cation spends about 95% of the overall communication overhead while the
additional /redundant computation needed for the communication only takes
about 5%.

Secondly, as the number of compute nodes increases, both the computa-
tion time and communication time (thus the total time) decrease, and the
decrease rates are high at the very beginning and slow down later for a fixed
problem size. This is the goal and anticipation from parallel computing. In
addition, the communication time remains a small fraction relative to the
computation time.

Thirdly, the parallel overhead consumes a low fraction of the wall time.
On the scale of 12k particles it stays as high as between 11-21% using 2 to
8 nodes; on the 150k particles it ranges between 2.9-16.8% using 2 to 64
nodes; on the 1 million particles it ranges between 0.2% to nearly 14% when
the number of nodes increases from 2 to 256. Overall, the parallel overhead
percentage is nearly 10% for static simulations when an optimal number of
compute nodes is used for computation. Considering that 6 steps are added in

25

order to parallelize the code, as described in Section 3.2, the overall parallel
overhead (communication operations plus redundant computations) is low
and acceptable.

1 million particles

1.E+03 20
1.E+02
--commuT 15 5
. ()
Y 1E+01 migraT °
-A-compuT ©
Q. (]
31400 -@-totalT 10 £
» LY overhead% E
5 X = 73.809x1-301 S
. y=73. :

Q 1.E-01 ., 2 - —_
p” . R? = 0.9528 5 o
= ©
- ©
0 A

1.E-04 -5

0 128 256 384 512 640 768 896 1024
Number of nodes

Figure 16: MPI profiling on modules for 1 million particles using excessive number of
nodes.

Figure 16 depicts the log-log relationship between module time and paral-
lel overhead for 1 million particles using 1 to 1,024 compute nodes excessively.
In particular, a curve fitting is performed for the total execution time per step
and parallel overhead percentage. It is seen that the relationship between
the total execution time per step and number of nodes can be described in
the form of a negative power function,

T(n,p) =O0(p~"), (3)

where p is the number of nodes and k is a number greater than 1. The
relationship between the parallel overhead percentage and number of nodes
can be described in the form of a logarithmic function,

overhead% = O(log p). (4)

T'(n,p) decreases quickly and overhead% increases slowly when p increases.

26

1.E+08
<i-2.5k particles

12k particles
S 1.E+06 =#-150k particles

1.E+07

o =®-1 million particles
ELE05 5<10 million particles

t

=% 1.E+04

[0}

O 1.£+03

=
= 1.E+02

1.E+01 .\.’._.’ip

1.E+00
1 10 100 1000 10000 100000

Number of particles per process
(computational granularity)

Figure 17: Computational granularity for various scales of simulation.

4.5. Computational granularity (CG)

Figure 17 plots the wall clock time versus number of particles per MPI
process on different computational scales such that it is able to read the
optimal computational granularity. Due to the wide range of number of
particles and wall clock time per step, a log-log graph has been used.

Overall, as the number of compute nodes increases and thus the number of
particles per process decreases, the wall clock time decreases, which indicates
that a smaller computational granularity leads to faster computation for a
fixed problem size. However, it can be observed that the wall time starts to
increase when an excessive number of compute nodes is used and thus the
computational granularity becomes too small. This occurs for all of the five
scales: 2.5k, 12k, 150, 1M and 10M particles.

Although the speedup can keep increasing and thus wall clock time can
keep decreasing until an extremely excessive number of compute nodes is
used and thus leads to a speedup decrease and wall clock time increase even-
tually, the reasonable amount of computational resource (number of compute
nodes) usually should not be requested too aggressively in performing practi-
cal computational tasks. For example, the 150k-particle simulation achieves
a speedup of 74.6 (27.3 seconds per step) using 64 nodes, and 92.3 (25.3

27

seconds per step) using 128 nodes; then requesting 64 nodes may be a better
choice than requesting 128 nodes.
As a guideline, the optimal computational granularity (CG), which can

be estimated before submitting a job on supercomputers, is recommended in
Table 2:

scale 1k 10k 100k 1 million | 10 million
CG | 20~50 | 50~100 | 100~300 | 200~500 | 5k~10k

Table 2: Optimal computational granularities.

4.6. Weak scaling measurement

Weak scaling measurements are performed on multiple DoD supercom-
puters. Figure 18(a) plots the memory usage per process at different scale
on the three supercomputers. Across all of the simulation scales it varies
between 10~50 MB, which is a very low memory consumption.

Figure 18(b), (c¢) and (d) plot the module execution time on Spirit, Excal-
ibur and Thunder, respectively. On Excalibur the communication time stays
constant as the workload is increased in direct proportion to the number of
compute nodes, while on Spirit and Thunder the communication time nearly
stays constant until the number of nodes reaches 512 or 1,024, whereby the
increase is most likely attributed to the lack of hypercube interconnect (Rudi
et al., 2015).

The computation time increases slightly on Spirit and Thunder while it
increases more pronouncedly on Excalibur. The increase of computation time
is not attributed to the global communication operations, namely, the step
9 (9-All processes update compute grids) in Figure 5, which is nominally
included into computation time. Our measurements reveal that the global
communication operations for updating compute grids normally take as low
as 0.1% fraction of the computation time. The increase is actually related to
the characteristics of memory consumption and cache hit/miss rate on these
systems. This is justified by the cache miss statistics shown in Figure 18(e)
and (f), wherein the total cache misses (TCM) of L3, L2 and L1 caches
increase with the workload that is in direct proportion to the number of
compute nodes. The PAPI_L3_TCM is plotted in Figure 18(f) to reveal more
details.

28

Memory footprint per process
100
20
80 «®-Spirit
70 =#-Excalibur
=¢-Thunder

Memory (MB)
«
8

1 16 256 4096
Number of nodes (log)

(a) Memory footprint.

Execution time per iteration

3.56-02 30.0
3.06-02 250
25602

20.0

& 2.0e-02

] 15.0

£

i 15€02

“®-commuT
veoz Ay 100
1.0E =-totalT
~«overhead%
S et —e———go—"—o—0 .
0.0E+00 0.0
1 16 256 4096

Number of nodes (log)

(¢) Execution time on Excalibur.

Cache miss rate measurement on Spirit
8.00E+09
7.00E+09

6.00E+09

s

S 5.00E+09
5

> 4.00E+09
! <#-PAPI_L3_TCM
o

3006409 -+PAPI_L2_TCM

2.00E409 ~-PAPI_L1_TCM

1.00E+09

1.00E406 & —— —e—°
1 16 256 4096
Number of nodes (log)

(e) Cache miss measurement.

Execution time per iteration

4.5E-02 250
4.0E-02
3.5E-02 200
3.0€-02
=z 15.0
L 2.5€-02
Q
£ 20602 -o-commuT
= =h=compuT 100
1.56-02 “m-totalT
~<overhead%
1.0E-02 .
5.0E-03 ./0—.—4—0—0—0—0-0—0/’_.
0.0E+00 0o
! 16 256 4096

Number of nodes (log)

(b) Execution time on Spirit.

Execution time per iteration

2.5€-02 40.0
35.0
2.0E-02
300
25.0
z 15602
o 200
£
= 1.0e-02 ~8-commuT
~de-compuT 15.0
<#-totalT 100
50603 ~«overhead% :
5.0
0.0E+00 0.0
1 16 256 4096

Number of nodes (log)

(d) Execution time on Thunder.

L3 cache miss rate measurement on Spirit

2.04E408
1.64E+08

o

2 1.24E+08

m

i

E 8.40E+07
a
4.40€+07

4.00E+06
1 8 64 512 4096

Number of nodes (log)

(f) L3 cache miss measurement.

Figure 18: Weak scalability measurement

4.7. Floating-point operation performance

The Performance API (PAPI) (Browne et al., 2000) is adopted in the
C++ source code to measure the simulation performance by using perfor-
mance counter hardware found in the microprocessors. Due to the limited
access and allocation on the DoD supercomputers, we are only able to ex-
tend our simulations to 2,048 compute nodes and measure the floating-point
operations on Spirit (note that floating point counters have been disabled in
the Intel Haswell CPU architecture, on Excalibur and Thunder).

Figure 19 exhibits a linear relationship between FLOPS and number of
compute nodes for the simulation of 1 million particles.

Floating-point operation performance

0 128 256 384 512
Number of nodes

Figure 19: Floating-point operation performance of 1 million particles.

5. LARGE-SCALE SIMULATIONS OF PARTICLE MOTION

5.1. Sand pluviation and rebound

A dynamic simulation may exhibit characteristics that do not exist in a
static one. For instance, from Figure 10 it can be observed that the curve
changes its slope at different stages of sand pluviation: the time increment
is fastest between 0-20%, it becomes slower between 20-40%, then it be-
come fast again between 40-100%, though it is not as fast as that between
0-20%. Without combining the curve and corresponding snapshots of pluvi-
ation states and compute grids, as shown in Figure 20, it is nearly impossible
to understand the change of curve slope.

30

A full-scale simulation of depositing one million ellipsoidal particles rang-
ing over 2~5 mm diameters is carried out using 256 compute nodes on Spirit.
The particles are generated in an initially floating-in-air state that occupies a
volume of 30 cm x 30 ¢cm x 170 c¢m in X, y, z direction respectively, and start
to free fall gravitationally into an enclosed rigid container. The parameters
are listed in Table 3.

Young'’s modulus E (Pa) 2.9 x 101
Poisson’s ratio v 0.25
specific gravity Gy 2.65
interparticle coef. of friction u 0.5
interparticle contact damping ratio & 0.85
particle radii (m) 0.001 ~ 0.005
particle shape (aspect ratio) 1:0.8:0.6
time step At (sec) 1.0 x 1079
simulation time (sec) 1.2
computational wall time (hours) 29

Table 3: Numerical parameters used in pluviation simulation.

High-resolution movies generated from the simulation are displayed at
YouTube:

e 3d view: https://www.youtube.com/watch?v=_XY73KKMSv8
e side view: https://www.youtube.com/watch?v=JCyLot7mZpM
e zoomed-in side view: https://www.youtube.com/watch?v=0RiotH7ajPw

[lustrated by the pluviation states in Figure 20, there are not many in-
terparticle contacts between 0-20% stage, so the time increment computation
goes quickly; between 20-40%, interparticle contacts increase more quickly
while most compute grids are consumed by spatially scattered upper parti-
cles without contacts, thus time increment computation slows down; after
40%, nearly all particles are settled and most compute grids are used by the
settled particles, therefore the time increment computation speeds up again.

It is a bit surprising to discover that nearly 50% of the time increment
loops (0-50% stage) are spent on the overall gravitational pluviation, while
the other 50% of the time increment loops (50-100% stage) are spent on
the rebound phenomenon at the top of the settled particle assemblage. The
rebound is clearly shown in the movie and can also be seen during the 50-70%

31

(12132w) 1y81ay pue a1eis uonelan|d

e s] & &8 8 § § 8
- - - = o o o o ©
\
3 .

\ ==

AY

)"

g 3 & & 8 38

4 3 £ 8

(wwiyy) awn%gw lnem

Figure 20: Sand pluviation of one million particles.

10

Computational progress of 0.5 million steps in depositing 1 million particles (%)

stage in Figure 20. It is captured at a certain instant and zoomed-in on the
left side of Figure 21, and on the right is the rested particle assemblage.

0.6 1 06
0.5 1 05
0.4 1 04

0.3 0.3
0.2 0.2
01 nA1

Figure 21: Sand rebound and rested state.

Simulating the rebound phenomenon in DEM is a challenging task in
that:

e The relative impact velocity between the rebounding and falling parti-
cles could be much higher, and it requires more strict time step control.

e The overall rebound height of 20 ¢cm in the numerical simulation agrees
with that in our in-situ experiments of free falling 2~5 mm diameter
gravel particles at a 1.7-meter height. Note the particles involved in the
rebound are those that initially are positioned close to the 1.7 meter
such that experimental release and the numerical release are close in
terms of potential energy.

e Some rebounding particles, especially those small particles, could re-
bound at an abnormally high velocity (translational and sometimes
rotational) and in an arbitrarily sideways direction (hitting the con-
tainer’s side wall). This has been frequently observed in our in-situ
experiments of free falling 2~5 mm diameter gravel particles at a 1.7-
meter height.

33

e The migration of particles from one compute grid to the other occurs
frequently in the rebound area, as shown in the simulation movie, thus
the parallel algorithm must be able to handle the across-border migra-
tions accurately.

In this sense, the rebound phenomenon in sand pluviation may serve as
a valuable testing problem in justifying the DEM model and the parallel
algorithm. In addition, it should be particularly helpful to compare with
high speed imaging results for the purpose of calibration and verification.

It is worth noting that although the rebound of top particles leads to
inefficiency in compute grids allocation and computational load imbalance,
fortunately the time increment speed is not significantly affected, which can
be justified by the linear segment between the 50-100% stage.

5.2. Constrained collapse

A series of numerical simulations are carried out on Topaz to study the
deposition and collapse effect of particle assemblies, and the numbers of
particles used in the series are 7.4k, 36k, 56k, 76k, 104k, 130k, 167k, 267k,
384k, 535k, 703k and 1M, respectively. Of all the 12 simulations the particles
are initially floated between the elevation of 0 ~ 30 cm, and start to free fall
into a rigid container whose four side walls are always 8 cm away from the
initial particle assembly. Figure 22 demonstrates the initial and rested states
of 36k and 384k particles, respectively, whereby the container boundaries are
plotted by blue lines.

The parameters of these simulations are listed in Table 4. The simula-
tion time is extended to 2.0 seconds such that particle rolling motions along
the assembly surface are sufficiently observed even if the overall assembly is
settled.

High-resolution movies generated from the simulations are provided at
YouTube playlists:

e 3d view of the 12 movies: https://www.youtube.com/playlist?list=
PLOSpdOMtb6vWlg_h4R_uYVcsh8mu9JtcS

e side view of the 12 movies: https://www.youtube.com/playlist?
1list=PLOSpdOMtb6vUIMW2cx6XxviWeW-z_ZJg2q

Figure 23 demonstrates the collapse process of 535k particles with 8 snap-
shots in sequential order of time. Note the scattered particles in the central

34

05 05 05 05

(1a) 36k particles initial. (1b) 36k particles rested.

0505

(2a) 384k particles initial. (2b) 384k particles rested.

Figure 22: Initial and rested states of particles in 3D view.

Young’s modulus E (Pa) 8.5 x 10°
Poisson’s ratio v 0.25
specific gravity Gy 2.65
interparticle coef. of friction p 0.5
interparticle contact damping ratio & 1.00
sphere radii (m) 0.002
time step At (sec) 5.0 x 1077
simulation time (sec) 2.0

Table 4: Numerical parameters used in collapse simulation.

35

(5) (6) (7) (8)

Figure 23: Side view of the collapse process of 535k particles.

area of Figure 23 (4 ~ 6) are rebounded from the front/back walls, not from
the left /right walls.

Figure 24 plots side view of the initial and rested states of the 12 simu-
lations. It is clear that the horizontal side length or perimeter of the initial
particle assembly “column” increases with an increasing number of particles
while retaining a constant distance of 8 cm to the container walls. There are
several observations that are worth noting:

Firstly, the 4 corners of the container seem to pile more particles than
the 4 sides of the container. This can also be observed in Figure 22 or from
the movies at YouTube. This is not a surprise as the spreading particles are
reflected towards the corners when hitting the wall.

Secondly, for the first 6 cases (7.4k to 130k particles) it is seen that the
rested particle assemblies display a nearly flat or very slightly bulging surface
in the central area; for the last 6 cases (167k to 1M particles) it is observed
that the rested particle assemblies exhibit a clearly raised or lumped “hill”
in the central area. The more particles used in the simulation, the clearer
the hill shape is formed. This is not surprising as there is less space for the
particles to move with increasing number of particles.

Thirdly, the lumped “hill” can even form a top platform, similar to a
Mesoamerican pyramid, in the case of 703k and 1M particles. This is partic-
ularly clear if observing the 3D YouTube movies.

36

m . .
v o1 0z 3
v

v2 s v2 2 s v2

(1a) 7.4k initial (1b) 7.4k rested (2a) 36k initial (2b) 36k rested
(3a) 56k initial (3b) 56k rested (4a) 76k initial (4b) 76k rested

(5a) 104k initial (6a) 130k initial (6b) 130k rested

n®

v2 v2 3 v2 3 v2

(7a) 167k initial (7b) 167k rested (8a) 267k initial (8b) 267k rested

v2 3 3 v2

(9a) 384k initial (9b) 384k rested (10a) 535k initial (10b) 535k rested

v2 v2

(11a) 703k initial (11b) 703k rested 37 (12a) 1M initial (12b) 1M rested

Figure 24: Side view of initial and rested states of 12 simulations.

Quantitative analyses will be further investigated for these simulations,
such as velocity field distribution, energy and its conversion process, packing
density and its distribution, angle of repose vs number of particles, etc.

5.8. Particle shape effect

Although particle shape plays an insurmountably important role in deter-
mining the assembly mechanical behavior, there are no practical numerical
tools to study it systematically before large-scale simulations are made possi-
ble. In this section, numerical collapse experiments of 535k different-shaped
particles are performed on Topaz to obtain an initial impression on effect of
particle shape. The particles shapes are chosen to be spheres and ellipsoids
(aspect ratio 1:0.8:0.6) for the purpose of comparison, of which the maximum
particle semi-axis length is 2 mm. The numerical parameters are listed in

Table 5.

Young’s modulus E (Pa) 8.5 x 107
Poisson’s ratio v 0.25
specific gravity G 2.65
interparticle coef. of friction p 0.5
interparticle contact damping ratio & 1.00
particle maximum radii (m) 0.002
particle shape (aspect ratio) 1:1:1, 1:0.8:0.6
time step At (sec) 5.0 x 1077
simulation time (sec) 1.5

Table 5: Numerical parameters used in particle shape simulation.

5.3.1. Volume and motion

Figure 25 plots the side view of initial and rested states of the spherical
and ellipsoidal particles in the collapse simulation. Obviously they exhibit
different rested bulk volume because the individual spherical particles have
a larger volume than that of individual ellipsoidal particles (with a volume
ratio of 1:0.48). More details can be observed via movies that are uploaded
to YouTube:

e 3d view of spheres: https://www.youtube.com/watch?v=Z2VX4-fREy2M
e 3d view of ellipsoids: https://www.youtube.com/watch?v=nrUUplrz90Y
e side view of spheres: https://www.youtube.com/watch?v=ThzDJ19CkUw

38

(1a) Spheres initial. (1b) Spheres rested.

JzonR
Ldodd

(2a) Ellipsoids initial. (2b) Ellipsoids rested.

Figure 25: Shape effect between spherical and ellipsoidal particles.

e side view of ellipsoids: https://www.youtube.com/watch?v=00nviFsK1GY

Figure 26 shows the cross-sectional view of the sphere and ellipsoid as-
semblies at rest. Details of the particle motion along the cross sections can
be observed via the following movies at YouTube:

3d view of spheres: https://www.youtube.com/watch?v=slmczgvy0OEc

3d view of ellipsoids: https://www.youtube.com/watch?v=kDc-dYykrfg
side view of spheres: https://www.youtube.com/watch?v=nVuv_TT3J5w
side view of ellipsoids: https://www.youtube.com/watch?v=sFBT2Pc2Cfk

39

(1 Spheres. (2) Ellipsoids.

Figure 26: Cross-sectional view of sphere and ellipsoid assemblies at rest.

The main difference lies in that the ellipsoidal particle assembly tends to
“mobilize” much less than spherical particle assembly:

1. The sphere assembly impacts the container wall at a much higher speed,
especially with surface particles running into container corners and
causing strong reflection.

2. The ellipsoid assembly exhibits a much lower horizontal speed in the
collapse, leading to a weak reflection from the container walls.

3. Counterintuitively, the sphere assembly forms a central cone shape
while the ellipsoid assembly ends up with a flatter platform.

The difference stems mainly from the stronger rolling resistance of the el-
lipsoid shape. Quantitative evaluation of the particle shapes will be further
investigated and compared with high-speed imaging results.

5.8.2. Velocity field
The velocity fields are also recorded by the following movies at YouTube:

side view of spheres: https://www.youtube.com/watch?v=7rroK70sc8E
side view of ellipsoids: https://www.youtube.com/watch?v=AocRAlbgMt0
top view of spheres: https://www.youtube.com/watch?v=Q5U-0sQG58Y
top view of ellipsoids: https://www.youtube.com/watch?v=_-uHT8gwY-Y

Figure 27 captures the velocity field at the instant of 0.35 seconds for the
two assemblies. Note again the scattered velocity vectors observed in the
central area are rebounded from the front/back walls, not from the left /right
walls. It is read from Figure 27 (la) and (1b) that the particle vertical
velocities are approximately 1.0 m/s and 0.2 m/s for sphere and ellipsoid
assemblies, respectively, for the frontal particles that impact the container
walls. Figure 27 (2a) and (2b) plots the top view of velocity field at the

40

e
L

(1a) Sphere velocity side view. (1b) Ellipsoid velocity side view.

(2a) Sphere velocity top view. (2b) Ellipsoid velocity top view.

Figure 27: Velocity field of spherical and ellipsoidal particles.

instant of 0.35 second, when the collapse nears the rested state but there
are still many particles sliding along the assembly surface. It is interest-
ing to observe that the ellipsoid assembly tends to have a higher horizontal
speed of those sliding particles than the sphere assembly at this stage. This
phenomenon is also clearly observed from the aforementioned 3D movies at
YouTube.

5.3.3. Impact and verification

The interaction between particles and the bottom and side walls of the
rigid container is recorded in the collapse process. Figure 28 plots the pro-
cess of impact forces between particles and walls. Firstly an important phys-
ical verification of the static force at the bottom wall is performed for the

41

Force Force

1000 600
—top —top
900 - —bottom —bottom
—front 500 —front
800 —back —back
left left
700" —right 400 —right
g 600 g
§ 500 § 300
© S
< 400+ w
300 200
200+ 100
100 /‘\
0 0 ¥
Y 1 2 3 0 5 10 15
Step x10° Step x10°
(a) Spheres. (b) Ellipsoids.

Figure 28: Impact forces that particles act onto the container walls.

complex-shaped ellipsoidal particles: it reads 223.9 N from Figure 28(b) as
the result of parallel computing using 256 compute nodes. In comparison to
the physical weight, 223.4 N, of all the ellipsoidal particles, the computational
error is merely 0.2%. In this sense our integration of selected interparticle
contact models, contact resolution algorithm for complex-shaped particles,
and parallel design and implementation, delivers an accurate computational
framework that covers both dynamic and static DEM simulations.

Secondly, the peak forces acting on the bottom wall are 913 N and 535 N
(1:0.58) for the sphere and ellipsoid assembly, respectively. The peak forces
acting on the side walls are averagely 90 N and 10N (1:0.11) for the sphere
and ellipsoid assembly, respectively. The gap between the lateral ratio 1:0.11
and the vertical ratio 1:0.58 indicates the particle shape effect of more rolling
resistance, interlocking-prone and internal energy dissipation by ellipsoidal
particles.

Figure 29 (a) and (b) plot the energy process of the sphere and ellip-
soid assemblies, respectively. Each energy term is normalized to the initial
mechanical energy of the particle assembly. Note the initial mechanical en-
ergy equals the initial gravitational potential energy as particles have not
started to move at that instant. It is clearly shown that gravitational energy

42

Energy Energy

1 1
—transEnergy —transEnergy
0.9 —rotatEnergy 0.9 —rotatEnergy
kinetEnergy kinetEnergy
0.8 —graviEnergy 0.8 —graviEnergy |
—mechaEnergy —mechaEnergy
30.7 0.7
- B
g | — 206"
506 S 0.
T T
.g 0.5f 1 lg 0.5f
g 0.4 g 0.4
])
Zz03 Zz0.3
0.2 ~\ 0.2
0.1 0.1
o
0 - . 0
0 5 10 15 0 5 10 15
Step x10° Step x103
a eres. ipsoids.
Sph b) Ell d

Figure 29: Particle assembly energy in the process of collapse.

of the particle assembly is converted to kinetic energy, and the mechanical
energy (sum of gravitational potential energy and kinetic energy) dissipates
effectively by DEM friction and damping mechanisms. It is also observed
that the rotational kinetic energy takes a very small fraction relative to the
translational kinetic energy, and that the normalized kinetic energy of ellip-
soids goes higher than that of spheres even though spheres tend to be more
"mobilized”.

6. CONCLUSION AND OUTLOOK

The parallelized 3D DEM of complex-shaped particles features negligible
serial fraction and low parallel overhead when executing on contemporary
multiprocessing supercomputers, and delivers high speedup and efficiency.
The performance analyses reveal that communication time is a decreasing
function of the number of compute nodes, and superlinear speedup is a com-
mon phenomenon for large-scale 3D DEM simulations of complex-shaped
particles.

These days DEM researchers are still struggling in simulating a few to
many thousand complex-shaped particles, whereas we have advanced the

43

scale to 10 million, and used them for full-scale simulations such as gravita-
tional deposition and buried explosion (through DEM Computational Fluid
Dynamics) in sandy soils for a DoD project successfully. With this signifi-
cant computational capacity extension for complex-shaped particles, the 3D
DEM opens the door to simulating many natural phenomena, engineering
problems or laboratory tests such as sand dune movement, quick sand phe-
nomenon, soil liquefaction in earthquakes, soil-tire interaction, landslide in
geotechnical engineering, precast pile installation /penetration and load bear-
ing capacity mechanisms in civil engineering, internal shear band evolution
in soil mechanics, etc.

Acknowledgments

We would like to acknowledge the support provided by ONR MURI grant
N00014-11-1-0691, and the DoD High Performance Computing Moderniza-
tion Program (HPCMP) for granting us the computing resources required to
conduct this work. We declare that there is no conflict of interest.

John W Baugh Jr and RKS Konduri. Discrete element modelling on a cluster
of workstations. Engineering with Computers, 17(1):1-15, 2001.

Shirley Browne, Jack Dongarra, Nathan Garner, George Ho, and Philip
Mucci. A portable programming interface for performance evaluation on
modern processors. International Journal of High Performance Computing
Applications, 14(3):189-204, 2000.

Peter A Cundall and Otto DL Strack. A discrete numerical model for granular
assemblies. Geotechnique, 29(1):47-65, 1979.

Gary W Delaney, Paul W Cleary, Matt D Sinnott, and Rob D Morrison.
Novel application of dem to modelling comminution processes. In IOP
Conference Series: Materials Science and Engineering, volume 10, page
012099. IOP Publishing, 2010.

Ian Foster. Designing and building parallel programs. Addison Wesley Pub-
lishing Company Reading, 1995.

Gary S Grest, Burkhard Diinweg, and Kurt Kremer. Vectorized link cell
fortran code for molecular dynamics simulations for a large number of
particles. Computer Physics Communications, 55(3):269-285, 1989.

44

David S Henty. Performance of hybrid message-passing and shared-memory
parallelism for discrete element modeling. In Proceedings of the 2000
ACM/IEEE conference on Supercomputing, page 10. IEEE Computer So-
ciety, 2000.

Heinrich Hertz. Ueber die Berithrung fester elastischer Korper. [On the fixed
elastic body contact]. Journal fir die reine und angewandte Mathematik
(Crelle), 92:156-171, 1882.

Hosagrahar V Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui
Zhang. idistance: An adaptive b+-tree based indexing method for nearest
neighbor search. ACM Transactions on Database Systems (TODS), 30(2):
364-397, 2005.

Algirdas Maknickas, Arnas Kaceniauskas, Rimantas Kacianauskas, Robertas
Balevicius, and Algis Dziugys. Parallel dem software for simulation of
granular media. Informatica, 17(2):207-224, 2006.

J Quirm Michael. Parallel Programming in C with MPI and OpenMP. New
York: McGraw-Hill Press, 2003.

R.D. Mindlin. Compliance of elastic bodies in contact. Trans. ASME, J.
App. Mech., 16(3):259-268, 1949.

R.D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying
oblique forces. Trans. ASME, J. App. Mech., 20(3):327-344, 1953.

Marius Muja and David G Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2:331-340, 2009.

A. Munjiza and K.R.F. Andrews. Nbs contact detection algorithm for bodies
of similar size. International Journal for Numerical Methods in Engineer-
ing, 43(1):131 — 149, 1998.

Antonio Munjiza, Jens H Walther, and Ivo F Sbalzarini. Large-scale parallel
discrete element simulations of granular flow. FEngineering Computations,
26(6):688-697, 2009.

Tang-Tat Ng. Numerical simulations of granular soil using elliptical particles.
Comput. Geotech., 16(2):153 — 169, 1994. ISSN 0266-352X.

45

Tang-Tat Ng. Triaxial test simulations with discrete element method and
hydrostatic boundaries. Journal of Engineering Mechanics, 130(10):1188
— 1194, 2004.

E. Onate and J. Rojek. Combination of discrete element and finite element
methods for dynamic analysis of geomechanics problems. Comp. Meth.
App. Mech. Engr., 193(27-29):3087 — 3128, 2004. ISSN 0045-7825.

John F. Peters, Mark A. Hopkins, Raju Kala, and Ronald E. Wahl. A
polyellipsoid particle for nonspherical discrete element method. Engineer-
ing Computations, 26(6):645-657, 2009.

Johann Rudi, A Cristiano I Malossi, Tobin Isaac, Georg Stadler, Michael
Gurnis, Peter WJ Staar, Yves Ineichen, Costas Bekas, Alessandro Curi-
oni, and Omar Ghattas. An extreme-scale implicit solver for complex pdes:
highly heterogeneous flow in earth’s mantle. In Proceedings of the Interna-

tional Conference for High Performance Computing, Networking, Storage
and Analysis, page 5. ACM, 2015.

Lee M. Taylor and Dale S. Preece. Simulation of blasting induced rock mo-

tion using spherical element models. Engineering Computations (Swansea,
Wales), 9(2):243 — 252, 1992. ISSN 0264-4401.

Vinodh Vedachalam and Davy Virdee. Discrete element modelling of granular
snow particles using liggghts. M. Sc., Unwersity of Edinburgh, 2011.

David W Washington and Jay N Meegoda. Micro-mechanical simulation
of geotechnical problems using massively parallel computers. Interna-

tional journal for numerical and analytical methods in geomechanics, 27
(14):1227-1234, 2003.

Christian Wellmann, Claudia Lillie, and Peter Wriggers. A contact detec-
tion algorithm for superellipsoids based on the common-normal concept.
Engineering Computations, 25(5):432-442, 2008.

John R Williams and Alex P Pentland. Superquadrics and modal dynamics
for discrete elements in interactive design. Engineering Computations, 9
(2):115-127, 1992.

46

John R Williams, Eric Perkins, and Ben Cook. A contact algorithm for par-
titioning n arbitrary sized objects. Engineering Computations, 21(2/3/4):
235-248, 2004.

Beichuan Yan. Three-dimensional discrete element modeling of granular ma-
terials and its coupling with finite element method. Technical report, The-
sis (Ph.D.)-University of Colorado, 2008.

Beichuan Yan and Richard A. Regueiro. Comparison Between O(n?) and
O(n) Neighbor Search Algorithm and its Influence on Superlinear Speedup
in Parallel 3D Discrete Element Method (DEM) for Complex-shaped Par-
ticles. In review, 2016a.

Beichuan Yan and Richard A. Regueiro. Superlinear Speedup Phenomenon
in Parallel 3D Discrete Element Method (DEM) Simulations of Complex-
shaped Particles. In review, 2016b.

Beichuan Yan, Richard A. Regueiro, and Stein Sture. Three dimensional
ellipsoidal discrete element modeling of granular materials and its coupling
with finite element facets. Engineering Computations, 27(4):519-550, 2010.

B. Zhang, R.A. Regueiro, A.M. Druckrey, and K. Alshibli. Construction of
poly-ellipsoidal grain shapes from smt imaging on sand, and the develop-
ment of a new dem contact detection algorithm. FEngineering Computa-
tions, 2017.

47

