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Introduction

At an intermediate point in the design of a software system, some of the
system's components will be completely designed whereas other components will
be only partially designed and the design of some components will not have
been begun. At this point, the designer could proceed with the next design
step, further detailing the design of one of the incompletely designed com-
ponents. More effective, however, would be for the designer to first gain,
through formal or informal arguments, confidence that the design is appropri-
ate and correct. But this is generally precluded because of the absence of a
rigorous specification of the incompletely designed components. In this paper,
we develop a description scheme that allows incompletely designed software
system components to be rigorously specified so that designers may increment-
ally gain confidence in a design as it is being developed.

Rigorous specification of an incompletely designed component requires
the ability to model the component's behavior. That is, it requires the abil-
ity to describe what the component will do -- its behavior -- in terms of an
abstraction of the component's implementation which focuses upon effect rather
than cause. One means of abstraction is simple elimination of detail. Although
not always possible, this can be done when only certain characteristics of the
component need to be preserved in the model. For example, the model may des-
cribe the component's processing with respect to only a portion of its input.
Abstraction may also be accomplished by using a description scheme in which
the component's interesting characteristics may be succinctly specified. The
vocabulary of the new description scheme should be chosen to allow the direct
statement of characteristics that are only implicitly specified in a detailed
implementation description. A function procedure, for example, could be suc-
cinctly modelled by its mathematical definition.

The modelling scheme presented in this paper allows both these approaches
to abstraction to be usedduring the design of large-scale software systems. In
the scheme, software system components are described as collections of concur-
rentl processes or as data objects shared among these collections, and the
description of the interactions among the components is emphasized. As a
means of rigorously specifying undesigned system components, the scheme is
therefore of primary use during the early phases of large-scale software
system design, when the system's modules are being delineated and their inter-
actions designed.

We use the term concurrent to connote parallelism which may or may not be
actually realized when the system is executed.
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The scheme presented here was developed for use in an interactive design
tool called the Design Realization, Evaluation And Modelling (DREAM) system
[1]. DREAM is based upon a design language, the DREAM Design Notation (DDN),
and the scheme discussed here is a major part of that language. DDN allows a
design to be developed incrementally, in fragments called textual units, and

DREAM contains a data base management facility which allows a design des-
cription to be augmented or modified on a textual unit basis. DREAM has also
been developed in order to provide a variety of analysis aids to designers of
large-scale software systems; some of these aids are discussed at the end of
this paper.

In the next two sections, we outline the DDN approach to system descrip-
tion and discuss several desirable characteristics of description schemes in-
tended for the modelling of software systems. Next, we introduce the DDN
modelling constructs, first those for modelling shared data objects and then
those for the modelling of collections of concurrent processes. We then dis-
cuss some additional constructs which permit the non-procedural specification
of behavior. In the concluding sections, we indicate that the modelling
scheme provides a basis for several approaches to design analysis and lends
beneficial support to the designers of large-scale software design.

DDN Descriptions

In DDN descriptions, a software system is decomposed into subcomponents
of two types. Subsystems are those subcomponents which control and guide the
performance of the system's processing, which operate (conceptually at least)
concurrently and asynchronously with respect to other subcomponents, and which
are individually capable of performing several activities at once.! Monitors
are those subcomponents which also operate concurrently and asynchronously
with respect to other components but which serve primarily as repositories of
shared information and are individually capable of performing only a single
activity at any point in time.2 This decomposition may be hierarchical3, since

1Those system components which execute concurrently and manipulate shared data
objects are usually considered to be sequential processes, as defined in [2].
A subsystem is a more general object, being essentially a collection of
sequential processes.

2The monitors of DDN are essentially those defined by Hoare [3]. To the usual
definition of monitors, we have added constructs for behavior specification,
patterned after constructs developed for the TOPD system [4].

3We assume, for the purposes of this paper, that this hierarchical decomposi-
tion is tree-like. Non-tree-like decomposition is discussed in [5].
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a subsystem may be decomposed into (sub-)subsystems and (sub-)monitors and a
monitor may be decomposed into (sub-)monitors.

Hierarchical decomposition may proceed to any one of a number of levels.
For instance, the primitive (i.e., undecomposed) subcomponents could corre-
spond to the processing units and data objects provided by the system's execu-
tion environment. Or they could correspond to the undesigned components
existing at some point during the system's design. Whatever the extent of the
decomposition, the system's overall operation is the result of the activity
of the primitive subsystems as coordinated through their shared usage of the
primitive monitors. A particularly important means of coordination, since it
corresponds to direct subsystem interaction, is the transfer of messages.
This mode of interaction is therefore distinguished in DDN, making DDN a mes-
sage transfer modelling scheme.

We illustrate this approach to scftware description by applying it to
the HEARSAY speech recognition system [6] developed at Carnegie-Mellon Univer-
sity. In HEARSAY, all information about the utterance being processed and all
hypotheses as to its linguistic structure are stored in a central data base
called a blackboard. The information in the blackboard is augmented and modi-
fied by knowledge sources, each of which enforces a set of speech recognition
rules. The obvious subsystems in an initial decomposition of HEARSAY would
therefore be the blackboard and the knowledge sources. The message transfer
interactions would consist of the request messages sent by the kncwledge
sources and the responses returned by the blackboard. 1In addition, a message
would be sent by the blackboard to activate a knowledge source when an entry
of interest to the knowledge source changes value.

A possible next decomposition step might be to demarcate those sub-
systems (one for each knowledge source) within the blackboard which exchange
messages with the knowledge sources and manage the modifications each knowledge
source makes to the region of the blackboard of interest to the knowledge
source. The blackboard regions themselves would be monitors since they repre-
sent information repositories and since the synchronization primitives pro-
vided by monitors allow the succinct description of the coordination among the
possibly conflicting reading and writing of the areas falling within more
than one region. Also delineated at this level of decomposition would be
those subsystems within the blackboard which notify a knowledge source when
an entry of interest to it has changed value.



Attributes of Modelling Schemes

The description of systems viewed as proposed in the previous section
requires a hierarchical modelling scheme. Such a scheme must be able to
describe a subcomponent's external attributes, those characteristics which
pertain to its interactions with other subcomponents at the same level of
decomposition. It must also be able to describe a subcomponent's internal

attributes, those aspects which pertain to the manner in which a subcomponent
is composed of other subcomponents and the ways in which these subcomponents
are to interact so as to create the intended operation of the subcomponent
which they comprise.

With respect to describing the external attributes of subcomponents,
and focusing upon the description needs of software system designers, several
desirable characteristics of modelling schemes may be delineated. First,
facilities must be provided for both outward-directed descriptions, which des-

cribe those aspects of a subcomponent's behavior which are relevant to its
interactions with other subcomponents, and inward-directed descriptions, which

describe those aspects of behavior which are significant in developing the
subcomponent's impiementation. Second, the scheme should support projection,
providing the ability to focus upon and highlight interesting behavior (for a
variety of definitions of "interesting") and suppress irrelevant details.
Third, a means must be provided for non-procedural specification, allowing

the definition of behavior without the specification of an algorithm for
achieving the behavior. Fourth, the scheme should admit descriptions that are
non-prescriptive in that a wide variety of strategies, mechanisms and algo-

rithms can be used to implement the described behavior. Fifth, redundant
specifications must be possible, allowing the same behavior to be specified

from different points of view or with respect to different sets of concerns.
Sixth, it must be possible to give a description that is orthogonal to the
subcomponent's internal description in the sense that it may establish asso-
ciations among activities which occur within physically different parts of

the subcomponent. Seventh, the scheme must admit modular descriptions so

that different properties may be independently specified and inter-relationships
among these properties may be specified separately from the specification of the
properties themselves. Finally, the scheme should lead to analysis-oriented

descriptions which can serve as the basis for formal or informal arguments
through which the designer may gain increased confidence in the accuracy of
the design.
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The DDN constructs introduced in the next three sections provide soft-
ware system designers with a rigorous, formally-defined technique for the
medular, non-prescriptive specification of the external attributes of both
monitor and subsystem subcomponents. The constructs allow analysis-oriented
descriptions which are redundant, orthogonal, projective, non-procedural (and
procedural), and both inward-directed and outward-directed. The constructs
are illustrated by a series of examples which, taken together, provide an
abstract description of the blackboard subsystem within the HEARSAY system to
the Tevel of decomposition developed above.! 1In the examples, we focus upon
describing the blackboard's organization and behavior and upon specifying
the policies concerning the concurrent operation of the region managers. We
do not attempt to specify the mechanisms, or even the strategies, by which
conflicts are prevented -- this is deliberately done so as to highlight DDN's
use as a modelling rather than a programming language.

The Description of Monitors

To avoid having to describe each subcomponent, either monitor or sub-
system, explicitly, DDN descriptions are of classes of subcomponents. The
class concept was introduced in SIMULA [7] and has subsequently been widely
used in computer-oriented description schemes -- it underlies schemes such as
abstract data types [8], TOPD classes ([4],[9]), Parnas modules [10], Alphard
forms [11], CLU clusters [12] and Pascal types [13]. In DDN, class definitions
define the external and internal attributes of each instance of the class --
here, we focus primarily upon those parts of class definitions which are for
the specification of external attributes.

For a monitor class, external attributes pertain to the procedures
which may be invoked upon instances of the class. For each procedure, its
name and parameters must be specified along with a definition of its behavior.
A procedure's behavior may be specified ncn-procedurally via a formal defini-
tion of the function it computes. In DDN, this is accomplished by defining
the changes the procedure makes in the states of the objects it operates upon.

One aspect of the specification of the external attributes of a class
of monitor objects is therefore the definition of a set of observable states.

IThe description reflects our understanding of the HEARSAY system and is
oriented toward providing examples of the DDN constructs. We feel that the
description is reasonably accurate, but do not claim that it fully corre-
sponds to the actual HEARSAY system.



-6-

The concept of observable state is more general than the concept of "value",
since a state may encode an instance's past history as well as reflect the
instance's current "value". For example, a region within the blackboard could
be in the state wrting_shared indicating that a write operation upon a portion
of the region shared with another region is in progress.

Simple examples of DDN monitor class definitions are given in figure 1.
These monitor objects are "variables" which are needed in later class defini-
tions -- objects of class! [region id] are integers which fall within some
range and which are used to identify the regions of the blackboard; objects
of class [entry id] are values which are used to address the entries in the
blackboard; class [datum] objects are the values stored as entries in the
blackboard.

1In DDN, identifiers used to name classes are always enclosed in square
brackets.
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[region_id]: MONITOR CLASS;
QUALIFIERS; range limit END QUALIFIERS;
STATE SUBSETS; 1, in_range, range limit END STATE SUBSETS;

STATE ORDERING; 1< in_range <= range Timit
END STATE ORDERING;

determine: PROCEDURE;
PARAMETERS; id VALUE OF [entry id] END PARAMETERS;

TRANSITIONS; id=defined --> in_range
END TRANSITIONS;

END PROCEDURE;
END MONITOR CLASS;
[entry id]: MONITOR CLASS;
STATE SUBSETS; defined, undefined END STATE SUBSETS;
END MONITOR CLASS;
[datum]: MONITOR CLASS;
STATE SUBSETS; defined, error-flag END STATE SUBSETS;
END MONITOR CLASS;

Figure 1

Pl e e S L T L T e
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The definition of [region_id] in figure 1 indicates that "parameterized"
class definitions are allowed in DDN. The qualifiers textual unit specifies
that the 1imit of the range may vary among instances and may be specified
when each instance is declared. Qualifiers, which are discussed more fully
in [5], may be used to specify a value for any single lexicographic unit
within a class definition.

In the class definitions of figure 1, states are not specified explicit-
1ys rather, (not necessarily disjoint) subsets of the state space are defined.
States, themselves, allow the potentially infinite domain of "values" for a
monitor object to be modelled by grouping them into a finite number of dis-
joint sets. State subsets extend this grouping capability, allowing the des-
cription to be focused upon interesting characteristics of monitor activity.
Note that an ordering relationship may be established among states so that
instances may be compared through the use of the usual set of relational
operators.

An instance of a monitor class may be inspected, at any time, to deter-
mine its state (or state subset) -- it is in this sense that states are observ-
able. This is quite valuable for the succinct, abstract specification of
behavior as will be illustrated in later examples. When used to specify the
algorithmic detail of a component's internal operation, however, state inspec-
tion may need to be coordinated with other operations upon the monitor. When
such coordination is necessary, it may easily be effected by having the state
inspection performed by a procedure defined for the monitor class.

The procedure textual unit of figure 1, and the parameter textual unit
nested within it, specify that the determine operation is available for mani-
pulating instances of the class [region id] and that an instance of the class
[entry id] must be passed as a value parameter. The intended purpose of this
procedure is to determine in which region an identified entry lies. This is
reflected by the transitions textual unit which specifies that a pre-condition
for the invocation of the procedure is that the parameter be in a state in its
defined state subset and that the effect of the procedure is to leave the
state of the parameter unchanged and to leave the object upon which the pro-
cedure is invoked in a state in its <n range state subset.

The regions of the blackboard are described in figure 2. The state
variables textual unit indicates that a coordinatization of the state space
may be used to specify the states. For example, a [region] class object could
be in the state <<selected=yes, doing=read>> which is intended to denote that
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the region has the right to access information which it shares with another
region and is in the process of reading that shared information. With the
specification of state variables, state subsets may be defined as indicated

[region]: MONITOR CLASS;
QUALIFIERS; my id END QUALIFIERS;

STATE VARIABLES; selected: VALUES(yes, no),
doing: VALUES(read, write, neither)
END STATE VARIABLES:

STATE SUBSETS;

rding private: <<--, doing=read>>,

wrting private: <<--, doing=write>>,

rding shared: <<selected=yes, doing=read>>,

wrting shared: <<selected=yes, doing=write>>,

stalled: <<selected=no, doing=read OR doing=write>>,
unoccupied: <<--, doing=neither>>

END STATE SUBSETS;

read: PROCEDURE;
PARAMETERS; value read RESULT OF [datum] END PARAMETERS;
TRANSITIONS;

prt read: unoccupied
| |rding private]|
, unoccupied AND (value read=defined OR value read=error flac
unoccupiead
| |OR(SEQUENCE (stalled,rding shared),rding shared)] |
unoccupied AND (value read=defined OR value read=error_flag)
END TRANSITIONS;

END PROCEDURE;
write: -PROCEDURE;

PARAMETERS; value to write VALUE OF [datum]
END PARAMETERS;

TRANSITIONS;

prt wrt: value to write=defined AND unoccupied
| lwrting private] |
unoccupied,

value to write=defined AND unoccupied
| |OR(SEQUENCE (stalled,wrting shared),writing shared)|]
~unoccupied ‘

END TRANSITIONS;
END PROCEDURE;
END MONITOR CLASS;
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in the state subsets textual unit appearing in figure 2. The notation "--"
specifies that the corresponding state variable may have any one of its
possible values.

The example of figure 2 also illustrates the general form for the speci-
fication of transitions. The "-->" notation usedpreviously specifies that the
state change occurs without the objects that are being manipulated being in
any observable intermediate states. The transitions of figure 2, however,
specify that intermediate states are observable. The second transition for
the read procedure, for example, indicates that during the procedure's execu-
tion, the class [region] instance being manipulated passes through the sequence
of states stalled, rding shared or the sequence rding shared.!

The Description of Subsystems

Since direct interaction between subsystems takes place via message
transfer, a subsystem's external attributes may be described by specifying
the message flow into and out of the subsystem. Part of this specification
is a definition of the communication paths which cross the subsystem's bound-
ary and the demarcation of any restrictions as to what messages may legally
flow across the boundary -- this is a specification of the subsystem's inter-
face. A second part of the specification describes correlations of message
flow into and out of the subsystem -- this is a description of the subsystem's
behavior over time.

In DDN, communication channels are represented by specialized monitors,
called links, which can store and forward messages and to which subsystems may
be attached. The point of attachment of a subsystem to a link is called a
port. Each port is therefore a "hole" through which messages may flow, having
a directional attribute, either in or out. The DDN constructs for port
definition are illustrated in figure 3, a subsystem class definition des-
cribing those subcomponents of a blackboard which notify the knowledge
sources of changes to entries in the stored information.

The messages which flow through a port are specified by a set of buffers
associated with the port definition. In the example, each note(Z) port has a
single buffer, notice(Z) associated with it. If the port is an out-port,
then a message sent out through the port is the (ordered) composition of the

1The constructs for describing sequences of states are discussed in [14].
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contents of the buffers at the time that the send operation causing the mes-
sage flow is performed. For an in-port, when a message passes in through the
port (as a consequence of a receivel operation) the message is decomposed and
used to determine new contents for the buffers associated with the port.

The buffer conditions textual unit of figure 3 indicates that the state
of the notice portion of the message (in this case, the notice portion is the
entire message) will be in its change state subset. The definition of class
[datum change], given in figure 4, indicates that this means the notice por-
tion will never be in a state that is in its out of range state subset.

1Receivg is a potentially-blocking operation whereas send is a non-blocking
operation. The semantics of these operations, and the operation of Tinks,
1s explained more fully in [15] and [16].

—.\-__....__............._....._.___..._....,..___-.._.__......-_-__...-.,_..——u...‘.....-.....-._...__...-..__—._-...._.___-.‘......_

[noticer]: SUBSYSTEM CLASS:
QUALIFIERS; # under surveillance END QUALIFIERS;
note: ARRAY[1::# under surveillance] OF QUT PORT;

BUFFER SUBCOMPONENTS;  notice OF [datum change]
END BUFFER SUBCOMPONENTS;

BUFFER CONDITIONS; notice=change END BUFFER CONDITIONS:
END OUT PORT;
observer: ARRAY[1::# under surveillance] OF CONTROL PROCESS;

MODEL; ITERATE
see_it: SET notice(MY INDEX) TO change;
SEND note (MY INDEX);
END ITERATE;
END MODEL;

END CONTROL PROCESS;
END SUBSYSTEM CLASS;

.._._.......-_._....-_....__-..........._._.......__._..__..__.___......_...__—‘u.._._.......__._—......-.._...,.,.._.._.-.._._.._._._...-...-

[datum change]: MONITOR CLASS;

STATE SUBSETS; change, out of range END STATE SUBSETS;
END MONITOR CLASS;

Figure 4
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Buffer conditions are both outward-directed and inward-directed speci-
fications. With respect to interactions with other subsystems, they specify
which messages will be sent out (for out-ports) or are expected to be re-
ceived (for in-ports). With respect to the eventual design of the subsystem,
they inform the designer of the Timitations concerning which messages may be
sent out (for out-ports) and which incoming messages should be expected (for
in-ports).

The control process portion of the example in figure 3 provides a pro-
cedural specification of the sequential portions of the subsystem's behavior.
In general, control process models specify sequences of message flow across
the subsystem's boundary and therefore define correlations among messages
flowing at different times through one or more of the ports. In the example,
the control process model indicates that there is a constant stream of change
messages flowing out through each port. This is the appropriate behavior,
at this level of decomposition, for that part of the HEARSAY data base which
notifies the knowledge sources of changes in the entries in the data base.

Control processes serve to abstractly model the actual operation of the
subsystem. In the example of figure 3, abstraction is partially achieved .
through the elimination of detail afforded by the set-to operation. This
statement models the possibly complex and Tengthy processing needed to cause
the notice(MY INDEX) buffer! to be in a state within its change state subset.
Abstraction is also achieved by allowing operations to be performed only
upon the ports and their buffers -- inside a control process model, reference
may not be made to the subsystem's internal componentry and hence the model
may not specify anything about the algorithmic detail of the subsystem's
internal operation. In the example, this results in a desirable hiding of
information as to what internal activity actually causes messages to be sent
out. Though always non-detailed with respect to the subsystem's internal
operation, models may be very elaborate (when the modelled behavior is itself
elaborate); this and other aspects of control processes are described in[16].

The DDN constructs for describing a subsystem's external attributes
allow the focusing of the description upon the interactions in which the sub-
system is able to participate. This is accomplished by requiring the explicit

Within arrays of contkoT processes, MY INDEX is a variable which has a dif-
ferent value for each of the models and may be used, as here, to make each
model specific to a different set of ports and buffers.
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specification of subsystem interaction in terms of message transfer. Further,
because of the ability to construct abstract models of the subsystem's behav-
ior, the description may be rigorous, projective, outward-directed and modular.
Finally, the description is also inward-directed, since it specifies the be-
havior which the implementation must achieve; but it is orthogonal, since the
organization of the subsystem's internal componentry need not bear any direct
resemblance to the organization of the control processes.

Event Definition

Procedure transitions and control process models are the basic DDN con-
structs for abstractly describing the simple, sequential behavior of software
system components. More complex behavior, which is not sequential in nature
or which pertains to inter-relationships between the behavior of several
components, may be described in DDN by the definition of events (significant
occurrences during system operation) and the non-procedural specification of
sequences of events. Event definition is discussed in this section and event
sequence specification is covered in the next section.

We distinguish two broad types of events, endogenous and exogenous, in

DDN. Endogenous events are those occurrences which arise from some activity
within the currently DDN-described portions of the software system. Exogenous
events are those occurrences which are relevant to or impinge upon the system's
behavior but arise from some activity outside the currently described portions
of the software system. Whether an event is endogeous or exogenous is there-
fore relative to the extent of the system's description and may change over
time -- for example, an exogenous event may become an endogenous event as
elaboration of the design leads to the description of the component whose
activity gives rise to the event. Some events, however, are inherently
exogenous since they pertain to the system's operation but do not stem from

- the software portion of the system being designed -- examples of such events
are activities within some other software system which interacts with the
system being designed or operations performed by some physical device con-
trolled by the software system.

The most elementary method for defining endogenous events is to simply
attach a label, called an event identifier, to some portion of the DDN des-

cription of a procedure or a control process. For example, the [region] moni-
tor class description of figure 2 defines the events read, write, pvt rd and
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pvt _wrt, with the first two corresponding to executions of the respective
procedures and the latter two corresponding to occurrences of (some of the)
transitions defined for those procedures. Thus, an execution of the read
procedure of some instance of class [region] would be an instance of a read
event, while an occurrence of the first transition defined for the read pro-
cedure would be an instance of the event pvt »d. Similarly, an occurrence
of the buffer modification described by the set-to statement within the
observer control process model in the [noticer] subsystem (figure 3) would
correspond to a see it event. Note that events defined within a DREAM
design description may occur simultaneously and thaf one event may occur as
part of another, as in the case of pvt read and read.

Unlike endogenous events, definitions of which may be embedded within
the monitor or subsystem classes whose activities give rise to them, exogenous
events are not naturally associated with any monitor or subsystem class defini-
tion. Therefore, a third class type, the event class, is available in DDN for
the definition of exogenous events. This is illustrated in figure 5 in which
we describe part of the activity of knowledge sources as it relates to the
operation of the blackboard.

In addition to its use in the definition of exogenous events as illus-
trated in figure 5, the event definition textual unit may be used within a
monitor, subsystem or event class definition for the specification of more
complex events. These events may be specified in terms of other events,
sequences of states of a monitor class, or sequences of statements in a con-
trol process model. In each case the specification is labelled with an
event identifier naming the specified event. Details and examples of DDN

o " 7o 7 - o T - o o - - o - . - o -

[ks]: EVENT CLASS;
EVENT DEFINITION;

request write: DESCRIPTION;

An event which occurs when a knowledge source requests a
write operation upon a region within the blackboard.
END DESCRIPTION;

END EVENT DEFINITION;
END EVENT CLASS;

Figure 5
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event definition facilities may be found in [17]; here we provide only a
simple illustration (figure 6!) in which the events shared_rd and shared wrt
are defined as state sequences (of length one). These definitions indicate
that the shared rd and shared wrt events correspond to a [region] monitor
instance's being in the state subsets rding shared and wrting shared, respec-
tively.

The event definition mechanisms of DDN provide a flexible and powerful
tool for defining arbitrarily complicated events in a software system design.
This event definition capability is the foundation of the DREAM behavior
specification technique. Moreover, its flexibility and generality are largely
responsible for the technique's projection properties, since various interest-
ing aspects of system behavior may be highlighted by appropriately defining
events related to those aspects.

Desired Behavior Specification in DREAM

Having defined a set of events by means of the DDN mechanisms described
above, a software system designer may specify intended behavior for the system
and its components by describing the possible sequencing and simultaneity of
event occurrences which would be considered acceptable during the system's
operation. This is accomplished in DDN by using event sequence expressions

and concurrency expressions within desired behavior textual units.

As an example of desired behavior specification, consider the textual
units shown in figure 7. The concurrency expressions in this figure use the

1Thg prefix '[region]: MONITOR CLASS' attached to the event definition textual
unit in figure 6 indicates that this textual unit is intended to be an addi-
tional part of the definition of the [region] monitor class.

'[region]: MONITOR CLASS' EVENT DEFINITIONS:
shared rd: STATE SEQUENCE(rding shared),

shared wrt: STATE SEQUENCE(wrting shared)
END EVENT DEFINITIONS;

Figure 6
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function operators MUTUALLY EXCLUSIVE and POSSIBLY CONCURRENT! to describe
the set of behaviors for instances of the [region] monitor class which would
be acceptable to the designer of the blackboard system.

The function operators for concurrency expressions are binary, their
operands being sets of events. When appearing in an operand of a concurrency
expression, event identifiers not qualified? by a class or instance identifier
refer to event occurrences specific to any single instance of the class for
which they are defined, while those qualified by a class identifier refer to
event occurrences arising from any instance of the class and those qualified
by an instance name refer to event occurrences specific to the named instance.
MUTUALLY EXCLUSIVE(x,y) represents the constraining behavioral specification
that no occurrence of an event from the set of events x may overlap any occur-
rence of an event from the set of events y, except that an event which is an
element of both x and y is not precluded from occurring. Thus the first con-
currency expression of the figure 7 example represents the restriction that
while some [region] monitor class instance is performing a shared write, i.e.
its event shared wrt is occurring, no other [region] monitor class instance
may be performing a shared write and no [region] monitor class instance may
be performing a shared read. Similarly, the second concurrency expression
expresses the restriction that while some [region] monitor class instance is

1POSSIBLY n CONCURRENT(x,y), where n is an integer expression, is a third DDN
concurrency expression function operator which may be used for describing
bounded concurrency situations.

’xly specifies the identifier y which is defined within the definition of
the identifigr X.

‘[region]: MONITOR CLASS' DESIRED BEHAVIOR;
MUTUALLY EXCLUSIVE(shared_wrt,OR([region]|shared wrt,
[region]|shared rd) ),
MUTUALLY EXCLUSIVE(shared_rd,[region]|shared wrt),
MUTUALLY EXCLUSIVE(OR(pvt wrt,pvt rd,shared wrt,shared _rd),
OR(pvt wrt,pvt rd, Shared wrt, shared rd) ),
POSSIBLY CONCURRENT(shared rd, [reg1on]lshared rd),
POSSIBLY CONCURRENT(OR(pvt wrt,pvt rd),
0R([reg1on]|pvt wrt,[region]lpvt rd,
[region]|shared wrt,
[region]|shared rd) )
END DESIRED BEHAVIOR;
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performing a shared read, i.e. its shared rd event is occurring, no [region]
monitor class instance may be performing a shared write. (Notice that neither
of these concurrency expressions precludes the possibility of shared reads
being performed by several [region] monitor class instances simultaneously.)
The third concurrency expression indicates the designer's intention that at
most one of the pvt wrt, pvt rd, shared wrt or shared rd events will be
occurring at any time within any given instance of the [region] monitor class.

The concurrency expression POSSIBLY CONCURRENT(x,y) represents the per-
missive behavioral specification that any occurrence of an event from the set
of events x may overlap any occurrence of an event from the set of events y.
Thus the fourth concurrency expression of the figure 7 example indicates the
designer's intention to allow multiple instances of the [region] monitor
class to be performing shared reads simultaneously, i.e. an instance's
shared_rd event may overlap the shared rd event of any instance. Similarly,
the final concurrency expression of the example expresses the designer's
willingness to allow pvt wrt or pvt rd events of one instance of the [region]
monitor class to overlap any of the events pvt wrt, pvt rd, shared wrt or
shared_rd of any [region] monitor class instance.

Taken together, the concurrency expressions of the desired behavior
textual unit in the figure 7 example represent precisely the behavioral
specifications which a software designer might wish to indicate regarding the
operation of and interactions among the regions of the blackboard. That is,
they specify that the writing of a shared subregion must not be concurrent with
any other manipulations of the shared subregion (first concurrency expression),
while the reading of a shared subregion may be concurrent with other reading
but not writing in that subregion (second and fourth concurrency expressions).
Further, this desired behavior textual unit indicates that reading or writing
of private subregions may be concurrent with reading or writing, shared or
private, by other instances of the [region] monitor class (fifth concurrency
expression), but that at most one of the four operation types may be occurring
within any given instance of the [region] monitor class at any given time
(third concurrency expression).

DDN constructs for describing desired behavior are discussed in greater
detail in [17]. The example of this section is sufficient, however, to
indicate that the constructs provide a very general facility for describing
a designer's intentions regardingacceptable behavior for the system under
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design. The example also indicates the ways in which DDN facilitates the
non-procedural, modular, perhaps redundant specification of behavior that

spans more than one component or relates to a component's behavior over time.

Hierarchical System Description

In this paper, we are primarily interested in the description of the
external attributes of software system components. However, we finish our
series of examples with that of figure 8 which illustrates several DDN con-
structs for the description of internal attributes. We include this example
because it completes our description of the HEARSAY data base and indicates
that hierarchical descriptions may be constructed by using the external
attributes of a set of subcomponents to define the internal attributes of
another subcomponent.

Before commenting on the constructs for describing internal attributes,
two comments may be made about the textual units in figure 8 which are con-
cerned with the definition of external attributes. First, in the model for
the manager arvray of control processes, note the use of nondeterminism in the
set-to statement. DDN provides a variety of nondeterministic constructs
since such constructs provide a convenient vocabulary for the task of abstrac-
tion. Second, in the event definition textual unit, note the ability to
reference events outside of the class definition in order to give an outward-
directed specification of behavior as well as the ability to reference internal
events in order to give an inward-directed behavior specification.

With respect to the specification of internal attributes, in figure 8
there are several major subcomponents declared for each instance of the class.
Three are declared in a straightforward way within the subcomponents textual
unit -- the declarations specify the names of the subcomponents and their
types. (The use of MY INDEX within the declaration of the reg array of sub-
components indicates that reg(1) is of class [region(1)] and that reg(2) is
of class [region(2)], where the arguments in the class reference specify
values for the qualifiers in the class' definition.) The other major sub-
components are declared, without reference to a previously defined class, by
giving a body textual unit for the manager array of control processes. This
textual unit specifies the algorithm that is to be performed by the control
process during subsystem operation. While it is not always the case, in this
example the control processes map one-to-one onto subcomponents which control



[db op]: MONITOR CLASS;
STATE SUBSETS; read, write, initialize END STATE SUBSETS;
END MONITOR CLASS;

[blackboard]: SUBSYSTEM CLASS;
QUALIFIERS; # ks, # under surveillance END QUALIFIERS;

SUBCOMPONENTS; reg ARRAY[1::2] OF [region(MY _INDEX)],
spy OF [noticer(# under surveillance)]

END SUBCOMPONENTS

request: ARRAY[1::# ks] OF IN PORT;
BUFFER SUBCOMPONENTS op OF [db op],
id OF [entry id],
val to write OF [datum]
END BUFFER SUBCOMPONENTS;
BUFFER CONDITIONS;
op=read OR op=write
END BUFFER CONDITIONS;
END IN PORT;

rd_response: ARRAY[T1::# ks] OF OUT PORT;
BUFFER SUBCOMPONENTS; val OF [datum] END BUFFER SUBCOMPONENTS;
END OUT PORT,

note: ARRAY[1::# under surveillance] OF OUT PORT;
BUFFER SUBCOMPONENTS; notice OF [datum change]
END BUFFER SUBCOMPONENTS;
BUFFER CONDITION; notice=change END BUFFER CONDITIONS;
END OUT PORT;

manager: ARRAY[1::# ks] OF CONTROL PROCESS;
MODEL; ITERATE  RECEIVE request(MY INDEX);
IF op(MY INDEX)=read THEN

gotread: SET val(MY INDEX) TO defined OR errorflag;
answer: SEND rd_response(MY INDEX);
ELSE
gotwrite: NULL;
END IF;
END ITERATE;
END MODEL;

LOCAL SUBCOMPONENTS; region number OF [region id(2)]
END LOCAL SUBCOMPONENTS
BODY; ITERATE RECEIVE request(MY INDEX);
region number. determ1ne(1d(MY INDEX))s
IF op(MY_INDEX)=write
THEN reg(region number).write(val to write(MY INDEX));
ELSE reg(region number).read(val (MY INDEX));
SEND rd_response(MY INDEX);
END IF;
END ITERATE;
END BODY;

END CONTROL PROCESS;
Figure 8, part 1
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EVENT DEFINITIONS;
notice: DESCRIPTION; passage of a message out through

one of the note ports,
noticed write: END DESCRIPTION,

SEQUENCE(OR(reg(1) lwrite, reg(2)twrite), spylsee it),
some request:

OR({gotread, SEQUENCE(gotwrite, notice)),
serviced write:

SEQUENCE([ks]Irequest write, gotwrite, notice)
END EVENT DEFINITION;

DESIRED BEHAVIOR;
POSSIBLY CONCURRENT(not1ced _write, [blackboard]inoticed write),
POSSIBLY CONCURRENT(some request, [blackboard]|some request),
POSSIBLY CONCURRENT(serviced write, [blackboard]|serviced wr1te)
END DESIRED BEHAVIOR;

END SUBSYSTEM CLASS;

Figure 8, part 2
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the message flow through the ports and the activation of the other subcompo-
nents. When this is the case, it is convenient to describe the subcomponents
directly as the bodies of the control processes.

The DDN facilities for hierarchical description of internal attributes
are discussed more fully in [5]. The major point to be noted here is that the
description of the class [blackboard] is redundant, with the description of
the componentry within a class of subsystems procedurally indicating how the
subsystems operate and the rest of the description providing a basically
non-procedural specification of behavior.

The Use of Behavior Specifications in Software Design Analysis

The DDN constructs for describing a software system design present numer-
ous possibilities for analysis of a design at various stages in its evolution.
The DDN behavioral specification constructs discussed here are particularly
valuable as a basis for simulation and formal or informal consistency check-
ing approaches to design verification.

The transitions and control process models of a DDN software system
description provide the basis for simulation of a system at any stage in the
design effort. Following the approach described in [18], expected values for
timing data and random variables controlling nondeterministic processing can
be used to augment the control process model specifications, permitting per-
formance statistics to be derived for the system as it is described at any
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stage in its development. Such simulations can uncover potential performance
problems at an early point in the design process, rather than allowing their
discovery to await a completed system implementation.

The DREAM behavioral specification technique allows for both formal and
informal analysis of a software system design based on consistency checking.
Informal arguments for correctness of a design may be made by showing the con-
sistency of the various redundant specifications for the designed system. Such
arguments may compare internal specifications, such as found in control pro-
cess bodies, with external specifications, such as given by control process
models or stated in the desired behavior textural units. Alternatively, in-
formal arguments may demonstrate the consistency among different behavioral
specifications, such as control process models and desired behavior textural
units or possibly the desired behavior textual units from several DDN class
definitions. Such arguments are clearly not, in and of themselves, suffici-
ent to prove the correctness of a design. However, by helping a designer to
consider the proposed design from various viewpoints, they can be very help-
ful in revealing errors or, when several different descriptions prove con-
sistent, in increasing confidence in the design's correctness.

Formal approaches to the analysis of DDN software system designs can
utilize essentially this same type of consistency checking between different
descriptions of the system's intended behavior. These formal methods, slated
for dinclusion in future versions of the DREAM system, are based upon the
automatic derivation, using an algorithm similar to that defined in [19], of
an event sequence expression describing the behavior represented by each
control process model. The behaviors represented by these expressions may
then be compared with those specified in desired behavior textual units to
determine whether the system as designed would conform to the designer's in-
tentions as expressed in the desired behavior information. In general, this
comparison cannot be conducted algorithmically [19], but cases can be found
[20] in which algorithmic manipulation is tractable. Alternatively, the
derived expressions may be presented to the software system designer, whose
knowledge and insight may facilitate the comparison with desired behavior
specifications, or who may simply find this alternative representation of the
control process' behavior informative. This latter approach is an example of
the "feedback analysis" [21] capabilities made possible by the DDN software
design language, with information concerning the characteristics of the system
under design being presented to the designer who uses human insight to check
the correctness of the design.
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Conclusions

The behavior specification constructs described in this paper are in-
tended to serve as useful tools for software system designers. They can
assist in the rigorous and formal description of a complex software system
design and also provide a basis for some analysis of that design at various
stages of the design effort.

The DDN design description facilities offer a medium for presenting
rigorous, formal and abstract specifications of software system components,
describing their behavior without revealing or requiring details of their
internal operation. Control process model, procedure transition, event
definition and desired behavior textual units can all serve as possibly re-
dundant, abstract behavioral specifications, orthogonal to the operational
descriptions of the implementations of the subcomponents. Such specifications
are valuable at early stages of design, when they allow for a high-Tevel,
non-detailed description of the evolving software system. In later phases of
the design effort they are ideally suited for use as external specifications
for component behavior, fulfilling an information-hiding function while pre-
senting a complete and formal component description.
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Abstract: A modelling scheme is presented which provides a medium for the
rigorous, formal and abstract specification of large-scale soft-
ware system components. The scheme allows the description of
component behavior without revealing or requiring the description
of a component's internal operation. Both collections of sequen-
tial processes and the data objects which they share may be
described. The scheme is of particular value during the early
stages of software system design, when the system's modules are
being delineated and their interactions designed, and when rigorous,
well-defined specifications of undesigned components-allows formal
and informal arguments concerning the design's correctness to be
formulated.

Key Words and Phrases: software design languages, software system behavior
modelling, message transfer models, event-based models, non-
procedural specification, desired behavior specification, software
design analysis, DREAM
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Abstract: A modelling scheme is presented which
provides a medium for the rigorous, formal and
abstract specification of large-scale software sys-
tem components. The scheme allows the description
of component behavior without revealing or requir-
ing the description of a component's internal opera-
tion. Both collections of sequential processes and
the data objects which they share may be described.
The scheme is of particular value during the early
stages of software system design, when the system's
modules are being delineated and their interactions
designed, and when rigorous, well-defined specifi-
cation of undesigned components allows formal and
informal arguments concerning the design's correct-
ness to be formulated.
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Introduction

At an intermediate point in the design of a
software system, some of the system's components will
be completely designed whereas other components will
be only partially designed and the design of some
components will not have been begun. At this point,
the designer could proceed with the next design
step, further detailing the design of one of the
incompletely designed components. More effective,
however, would be for the designer to first gain
confidence, through formal or informal arguments,
that the design is appropriate and correct. But
this is generally precluded because of the absence
of a rigorous specification of the incompletely
designed components. In this paper, we develop a
description scheme that allows incompletely designed:
software system components to be rigorously speci-
fied so that designers may incrementally gain con-
fidence in a design as it is being developed.

Rigorous specification of an incompletely
designed component requires the ability to model
the component's behavior. That is, it requires the
ability to describe what the component will do --

its behavior -- in terms of an abstraction of the
component's operation which focuses upon effect
rather than cause. One means of abstraction is
simple elimination of detail. Although not always
possible, this can be done when only certain char-
acteristics of the component need to be preserved
in the model. For example, the mode}l may describe
the component's processing with respect to only a
portion of its input. Alternately, abstraction
may be accompiished by using a description scheme
in which the component's interesting characteris-
tics may be succinctly specified. The vocabulary
of the new description scheme can be chosen to
allow the direct statement of characteristics that
are only implicitly specified in a detailed imple-
mentation description. A function procedure, for
example, can be succinctly modelled by its mathe-
matical definition.

The modelling scheme presented in this paper
allows both these approaches to abstraction to be
used during the design of large-scale software
systems. In the scheme, software system components
are described as collections of concurrent! proc-
esses or as data objects shared among these collec-
tions, and the description qf the interactions
among the components is emphasized. As a means of
rigorously specifying undesigned system components,
the scheme is therefore of primary use during the
early phases of large-scale software system design,
when the system's modules are being delineated and
their interactions designed.

The scheme presented here was developed for
use in an interactive design tool called the Design
Realization, Evaluation And Modelling (DREAM) sys-
tem [1]. DREAM is based upon a design language,
the DREAM Design Notation (DON), and the scheme
discussed here is a major part of that language.

+This work was supported by a grant from Sycor, Inc.

"We use the term concurrent to connote parallelism
which may or may not be actually realized when the
system is executed. A multiprogrammed system, for
instance, is a concurrent system in which no oper-
ations are actually performed in parallel.



RIDDLE, et al., Behavior Modelling---

DON allows a design to be developed incrementally,
in fragments called textual unifts, and DREAM con-
tains a data base management facility which allows
a design description to be augmented or modified on
a textual unit basis. OREAM has also been devel-
oped in order to provide a variety of analysis aids
to designers of large-scale software systems; some
of these aids are discussed at the end of this
paper.

It is not the purpose of this paper to give a
full description of the DDN language; that is done
in the referenced reports on various aspects of the
language. Rather, in this paper we discuss and
illustrate those features of DON which support the
modelling and analysis of large-scale software sys-
tems. In the next two sections, we outline the DON
approach to system description and discuss several
desirable characteristics of description schemes
intended for the modelling of software systems.
Next, we introduce the DDN modelling constructs,
first those for modelling shared data objects and
then those for the modelling of collections of con-
current processes. We then discuss some additional
constructs which permit the non-procedural specifi-
cation of behavior. In the concluding sections, we
indicate that the modelling scheme provides a basis
for several approaches to design analysis and lends
beneficial support to the designers of large-scale
software design.

DDN Descriptions

In DON descriptions, a software system is de-
composed into comoonents of two types. Subsystems.
are those components which control and guide the
performance of the system's processing, which oper-
ate {conceptually at least) in parallel and asyn-
chronously with respect to other components, and
which are individually capable of performing sever~
al activities at once.! Monitors are those compon-
ents which also operate concurrently and asynchron=
ously with respect to other components but which
serve primarily as repositories of shared informa-
tion and are individually capable of performing
only a single activity at any point in time.? This
decomposition may be hierarchical?, since a sub-
system may be decomposed into (sub-)subsystems and
(sub-)monitors and a monitor may be decomposed into
(sub-)monitors.

Hierarchical decomposition may proceed to any
one of a number of levels. For instance, the primi-
tive (i.e., undecomposed) components could corre-

Those system components which execute concurrently
and manipulate shared data objects are usuallycon-
sidered to be sequential processes, as defined in
[2]. A subsystem is a more general object, being
essentially a collection of sequential processes.

2 %
The monitors of DDN are essentially those defined
by Hoare [3]. To the usual definition of monitors,
we have added constructs for behavior specifica-
tion, patterned after constructs developed for the
TOPD system [4].

34e assume, for the purposes of this paper, that
this hierarchical decomposition is tree-]ike. Non-
tree-1ike decomposition is discussed in [5].

spond to the processing units and data objects pro-
vided by the system's execution environment. Or
they could correspond to the undesigned components
existing at some point during the system's design.
Whatever the extent of the decomposition, the sys-
tem's overall operation is the result of the activ-
ity of the primitive subsystems as coordinated
through their shared usaqge of the primitive moni-
tors. A particularly important means of coordina~
tion, since it corresponds to direct subsystem in-
teraction, is the transfer of messages. This mode
of interaction is therefore distinguished in DON,
making DDN a message transfer modelling scheme.

We illustrate this approach to software de-
scription by applying it to the HEARSAY speech
recognition system [6] developed at Carnegie-Mellon
University. In HEARSAY, all information about the
utterance being processed and all hypotheses as to
its linguistic structure are stored in a central
data base called a blackboard. The information in
the blackboard is augmented and modified by know-
ledge sources, each of which enforces a set of
speech recognition rules. The obvious subsystems
in an initial decomposition of HEARSAY would there-
fore be the blackboard and the knowledge sources.
The message transfer interactions would consist of
the request messages sent by the knowledge sources
and the responses returned by the blackboard. In
addition, a message would be sent by the blackboard
to activate a knowledge source when an entry of
interest to the knowledge source changes value.

A possible next decomposition step might be to
demarcate several components within the blackboard.
There would be subsystems (one for each knowledge
source) within the blackboard which exchange mess-
ages with the knowledge sources and manage the
modifications each knowledge source makes to the
region of the blackboard of interest to the knowledge
source. The blackboard regions themselves would
be monitors since they represent information repos-
itories and since the synchronization primitives
provided by monitors allow the succinct description
of the coordination among the possibly conflicting
reading and writing of the areas falling within
more than one region. Also delineated at this
level of decomposition would be those subsystems
within the blackboard which notify a knowledge
source when an entry of interest to it has changed
value.

Attributes of Modelling Schemes

The description of systems viewed as proposed
in the previous section requires a hierarchical
modelling scheme. Such a scheme must be able to
describe a component's external attributes, those
characteristics which pertain to its interactions
with other components at the same level of decompo-
sition. It must also be able to describe a com-
porient's internal attributes, those aspects which
pertain to the manner in which a component is com-
posed of other components and the ways in which
these components are to interact so as to create
the intended operation of the component which they
comprise.
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With respect to describing the external attri-
butes of components, and focusing upon the descrip-
tion needs of software system designers, several
desirable characteristics of modelling schemes may
be delineated. First, factlities should be provid-
ed for both outward-directed descriptions, which
describe those aspects of a component's behavior
which are relevant to its interactions with other
components, and inward-directed descriptions, which
describe those aspects of behavior which are sig-
nificant in developing the component's implementa-
tion. Second, the scheme should support Ezogectxon,
providing the ability to focus upon and highTight
interesting behavior (for a variety of definitions
of "interesting") and suppress irrelevant details.
Third, a means should be provided for non-procedur-
al specification, allowing the definition of bBehav~
Tor without the specification of an algorithm for
achieving the behavior. Fourth, the scheme should
admit descriptions that are non-prescriptive inthat
a wide variety of strategies, mechanisms and algo-
rithms can be used to implement the described be-
havior. Fifth, redundant specifications should be
possible, to allow the same behavior to be speci-
fied from different points of view or with respect
to different sets of concerns. Sixth, it should be
possible to give a description that is orthogonal
to the component's internal descriptionin the sense
that it may establish associations among activities
which occur within physically different parts of
the component. Seventh, the scheme should admit
modular descriptions so that different properties
may be independently specified and inter-relation-
ships among these properties may be specified sep-
arately from the specification of the properties
themselves. Finally, the scheme should lead to
analysis-oriented descriptions which can serve as
the basis for formal or informal arguments through
which the designer may gain increased confidence in
the accuracy of the design.

The DDN constructs introduced in the next three
sections provide software system designers with a
rigorous, formally-defined technique for the modu-
lar, non-prescriptive specification of the external
attributes of both monitor and subsysStem subcompon-
ents. The constructs allow analysis-oriented de-
scriptions which are redundant, orthogonal, pro-
jective, non-procedural (and procedural), and both
inward-directed and outward-directed. The con-
structs are illustrated by a series of examples
which, taken together, provide an abstract descrip-
tion of the blackboard subsystem within the HEARSAY
system to the level of decomposition developed
above.! In the examples, we focus upon describing
the blackboard's organization and behavior and upon
specifying the policies concerning the concurrent
operation of the region managers. We donot attempt
to specify the mechanisms, or even the strategies,
by which conflicts are prevented -- this {s delib-
erately done so as to highlight DON's use as a

modelling rather than a programming language. ®

'The description reflects our understanding of the
HEARSAY system and is oriented toward providing
examples of the DDN constructs. We feel that the
description is reasonably accurate, but do not
claim that it fully corresponds to the actual
HEARSAY system.

The Description of Monitors

To avoid describing each component individual-
}y. be iﬁ monitor or subsystem, DDN descriptions
classes The class concept
it have eubsequently been w1de y used in computer-
orjented description schemes -- abstract data types
(as defined in [8]), TOPD classes ([4],[9]), Parnas
modules [107], Alphard forms [11], CLU clusters [12]
and Pascal types [13]. InDDHN, class definitions
define the external and internal attributes of each
instance of the class -- here we Focus prwmar11y

external attributes.

For a monitor class, external attributes per-
tain to the procedures which may be invoked upon
instances of the class. For each procedure, its
name and parameters must be specified along with a
definition of its behavior. A procedure's behavior
may be specified non-procedurally via a formal def-
inition of the relationship between its input and
output. In DON, this is accomplished by defining
the changes the procedure makes in the states of
the objects it operates upon.

One aspect of the specification of the exter-
nal attributes of a class of monitor objects is
therefore the definition of a set of observable
states. The concept of observable state i1s more
general than the concept of "value", since a state
may encode an instance's past history as well as
reflect the instance's current "value". For exam-
ple, a region within the blackboard could be in the
state writing ehared indicating that a write opera-
tion is jn progress upon a portion of the region
that is shared with another region,

Simple examples of DDN monitor class defini-
tions are given in figure 1. Instances of these
(regfon_id]: MONITOR CLASS;
QUALIFIERS; range_llmit END QUALIFIERS:
STATE SUBSETS; T, in_range, range_limit ENO STATE SUBSETS;

STATE ORDERING; 1 <= {n_range <= range limit
END STATE ORDERING;

determine: PROCEDURE;
PARAMETERS; {d VALUE OF [entry_id] END PARAMETERS;

TRANSITIONS; {d=defined --> in_range
END TRANSITIONS;

END PROCEDURE ;
END MONITOR CLASS:
{entry_id]: MONITOR CLASS;
STATE SUBSETS; defined, undefined END STATE SUBSETS;
ENO MONITOR CLASS;
[datum]: MONITOR CLASS;
STATE SUBSETS; dafined, error-flag ENO STATE SUBSETS;
END MONITOR CLASS;

Figure 1

classes are '"variables" which are needed in later
class definitions -- objects of class? [region id]
are integers which fall within some range and which

2In DDN, identifiers used to name classes are
always enclosed in square brackets.
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are used to identify the regions of the blackboard;
objects of class [entry id] are values which are
used to address the entries in the blackboard;
class [datum] objects are the values stored as en-
tries in the blackboard.

The definition of [region id] in figure 1 in-
dicates that "parameterized" cTass definitions are
allowed in DON. The QUALIFIERS textual unit spec-
ifies that the 1limit of the range may vary among
instances and may be specified when each instance
is declared. Qualifiers, which are discussed more
fully in [5], may be used to specify a value for
any single lexicographic unit within a class
definition.

In the class definitions of figure 1, states
~are not specified explicitly: rather,(not neces-
sarily disjoint) subsets of the state space are de-
fined. States, themselves, permit the potentially
infinite domain of "values" for a monitor object to
be modelled by partitioning into a finite number of
disjoint sets. State subsets extend this grouping
cabability, allowing the description to be focused
upon interesting characteristics of monitor activ-
ity. Note that an ordering relationship may be es-
tablished among states so that instances may be
compared through the use of the usual set of re-
lational operators.

An instance of a monitor class may be inspect-
ed, at any time, to determine its state (or state
subset) -- it is in this sense that states are ob-
servable. This is quite valuable for the succinct,

.abstract specification of behavior as will be illus-
When used to specify the

trated in later examples.
algorithmic detail of a component's internal oper-
ation, however, state inspection may need to be co-
ordinated with other operations upon the monitor.

When such coordination is necessary, it may easily
be effected by having the state inspection perform-
ed by a procedure defined for the monitor class.

The PROCEDURE textual unit of figure 1, and
the PARAMETER textual unit nested within it, spec-
ify that the determine operation is available for
manipulating instances of the class [region id]
and that an instance of the class [entryﬂﬁdT must
be passed as a value parameter. The intended pur-
pose of this procedure is to determine in which
region an identified entry lies. This is reflect-
ed by the TRANSITIONS textual unit which specifies
that a pre-condition for the invocation of the
procedure is that the parameter be in a state in
its defined state subset and that the effect of
the procedure is to leave the state of the para-
meter unchanged and to leave the object upon which
the procedure is invoked in a state in its
in_range state subset.

The regions of the blackboard are described
in figure 2. The STATE VARIABLES textual unit
indicates that a coordinatization of the state
space may be used to specify the states. For ex-*
ample, a class [region] object could be in the
state <<selected=yes, doing=read>> which is in-
tended to denote that the region has the right to
access information which it shares with another
region and is in the process of reading that shar-
ed information. With the specification of state
variables, state subsets may be defined as indi-

cated in the STATE SUBSETS textual unit appearina
in figure 2. The notation "--" specifies that the
corresponding state variable may have any one of
its possible values.

The example of figure 2 also illustrates the
general form for the specification of transitions.

[regfon]: MONITOR CLASS:
QUALIFIERS, my _id ERD QUALIFIERS,
STATE VARIABLES; selected: VALUES(yes, no},

dolng: VALUES(resd, write, neither)
END STATE VARIABLES:

STATE SUBSETS:
reading private: ¢<--, doingeresd>>,
writing private: <<--, doing=write>>,
reading_shared: <<selected=yes, doing=read>>,
writing shared: «<<selected=yes, doing=write>>,
stalled: <<sglected=no, doing=read OR doing=write>>,
unoccupied: EETEN doingeneither>>
END STATE SUBSETS:

read: PROCEDURE;

PARAMETERS; valug_read RESULT OF [datum] END PARAMETERS;

TRANSTTIONS;
uncccupied
| |OR(SEQUENCE (stalled ,reading shared),reading shared)||
unoccupted AND (value read=defined OR value read~error_flag)
private read: unoccupied - -

| ]maaﬂnz:apﬂvataf |
unoccupied AND (value_read=defined OR value read=error flag),
END TRANSTTIONS; -

END PROCEDURE ;
weite: PROCEDURE;
PARAMETERS; value_to write YALUE OF [datum]
END PARAMETERS;
TRANSITTONS

private_write: value_to_write=defined AND unoccupied

| IwTHn_qurivate! |
unoccupTed,

value to write=defined AND unoccupied
| |OR(SEQUENCE(stalled ,writing shared),writing shared)]|
unoccupied -

END TRANSITIONS;
END PRGCEDURE;
END MONITOR CLASS;

The "-->" notation used previously specifies that
the state change occurs without the objects that
are being manipulated being in any observable in-
termediate states. The transitions of figure 2,
however, specify that intermediate states are ob-
servable., The first transition for the read pro-
cedure, for example, indicates that during the pro-
cedure's execution, the class [region] instance be-
ing manipulated passes through the sequence of
states stalled, reading shared or the sequence
reading_shared.} -

The Description of Subsystems

Since direct interaction between subsystems
takes place via message transfer, a subsystem's ex-
ternal attributes may be described by specifying
the message flow into and out of the subsystem.
Part of this specification is a definition of the

The constructs for describing sequences of states
are discussed in [14].
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communication paths which cross the subsystem's
boundary and the demarcation of any restrictions as
to what messages may legally flow across the boun-
dary -- this is a specification of the subsystem's
interface. A second part of the specification
describes correlations among messages flowing into
and out of the subsystem -- this is a description
of the subsystem's behavior over time,

In DON, communication channels are represent-
ed by specialized monitors, called links, which can
store and forward messages and to which subsystems
may be attached. The point of attachment of a sub-
system to a link is called a port. Each port is
therefore a “hole" through which messages may flow,
having a directional attribute, either in or out.
The NON constructs for port definition are illus-
trated in figure 3, a subsystem class definition
describing those components of a blackboard which
notify the knowledge sources of changes to entries
in the stored information.

The messages which flow through a port are
specified by the set of buffers associated with the
port definition. In the example, each port note(i)
has a single buffer, notice(i), associated with it.
If the port is an out-port, then a message sent out
through the port is the (ordered) composition of
the contents of the associated buffers at the time
that the send operation causing the message flow is
performed. For an in-port, when a message passes
in through the port (as a consequence of a receivel
operation) the message is decomposed and used to
determine new contents for the buffers associated
with the port.

The BUFFER CONDITIONS textual unit of figure 3
indicates that the state of the notice portion of

[noticer]: SUBSYSTEM CLASS;
QUALIFIERS; #_under_surveillance END QUALIFIERS;
note: ARRAY[1::4_under_surveillance] OF OUT PORT;

BUFFER SUBCOMPONENTS; notice OF [datum_change]
END BUFFER SUBCOMPONENTS:

BUFFER CONDITIONS; notice»change END BUFFER CONDITIONS:
END OUT PORT;
observer: ARRAY[T::#‘yﬂder_yurve§11ance] OF CONTROL PROCESS;
| MODEL; ITERATE ’

see_it: SET notice(MY_INDEX) TO change;
SEND note (MY INDEX);
END ITERATE;

END MODEL ;

END CONTROL PROCESS;
END SUBSYSTEM CLASS;

the message (in this case, the notice portion is
the entire message) will be in its change state
subset. The definition of class [datum change],
given in figure 4, indicates that this means the
(datum_change]: MONITOR CLASS:
STATE SUBSETS; change, out_of range END STATE SUBSETS;
END MONITOR CLASS;

7

Figure 4

lReceive is a potentially-blocking operation where-
as send is a non-blocking operation. The semantics
of These operations, and the operatign of links,
is explained more fully in E\B% and f163.

notice portion will never be in a state that is in
1t5 out_of range state subset.

Buffer conditions are both outward-directed
and inward-directed specifications. With respect
to interactions with other subsystems, they specify
which messages will be sent out (for out-ports) or
are expected to be received (for in-ports). With
respect to the eventual design of the subsystem,
they inform the designer of the limitations con-
cerning which messages may be sent out (for out-
ports) and which incoming messages should be ex-
pected (for in-ports).

The control process portion of the example in
fiqure 3 provides a procedural specification of the
sequential portions of the subsystem's behavior.

In general, control process models specify se-
quences of message flow across the subsystem's
boundary and therefore define correlations among
messages flowing at different times through one or
more of the ports. In the example, the control
process model indicates that there is a constant
stream of change messages flowing out through each
port. This is the appropriate behavior, at this
level of decomposition, for that part of the
HEARSAY blackboard which notifies the knowledge
sources of changes in the entries in the data base.

One purpose of control processes is to ab-
stractly model the actual operation of the sub-
system. In the example of figure 3, abstraction
is partially achieved through the elimination of
detail afforded by the set-to operation. This
statement models the possibly complex and lengthy
processing needed ta cause the notice(MY INDEX)
buffer! to be in a state within its change state
subset., Abstraction is also achieved by restrict-
ing operations to be performed only upon the ports
and their buffers -- inside a control process
model, reference may not be made to the subsystem's
internal componentry and hence the model may not
specify anything about the algorithmic detail of
the subsystem's internal operation. In the ex-
ample, this results in a desirable hiding of in-
formation as to what internal activity actually
causes messages to be sent out. Though always non-
detailed with respect to the subsystem's internal
operation, models may be very elaborate {(when the
modelled behavior is itself elaborate); this and
othfr 3spects of control processes are described
in [16].

The DON constructs for describing a sub-
system's external attributes allow the focusing of
the description upon the interactions in which the
subsystem is able to participate. This is ac-
complished by the explicit specification of sub-
system interaction in terms of message transfer.
Further, because of the ability to construct ab-
stract models of the subsystem's behavior, the de-
scription may be rigorous, projective, outward-
directed and modular. Finally, the description
may be inward-directed, since it specifies the be-
havior which the implementation must achieve: but

‘Within arrays of control processes, MY INDEX is a
variable which has a different value for each con-
trol process in the array and may be used, as here,
to make each model specific to a different set of
ports and thus buffers.
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it may also be orthogonal, since the organization
of the subsystem's internal componentry need not
bear any direct resemblance to the organization of
its control processes.

Event Definition

Procedure transitions and control process
models are the basic DON constructs for abstractly
describing the simple, sequential behavior of indi-
vidual software system components. More complex
behavior, which is not sequential in nature or
which pertains to inter-relationships between the
behavior of several components, may be described in
DON by the definition of events (significant oc-
currences during system operation) and the non-pro-
cedural specification of sequences of events.

Event definition is discussed in this section and
event sequence specification is covered in the next
section.

We distinguish two broad types of events, en-
dogenous and exogenous, in DDN. Endogenous events
are those occurrences which arise from some activi-
ty within the currently DDN-described portions of
the software system. Exogenous events are those
occurrences which are relevant to or impinge upon
the system's behavior but arise from some activity
outside the currently described portions of the
software system. Whether an event is endogenous or
exogenous is therefore relative to the extent of
the system's description and may change over time--
for example, an exogenous event may become an en-
dogenous event as elaboration of the design leads
to the description of the component whose activity
gives rise to the event. Some events, however, are
inherently exogenous since they pertain to the
system's operation but do not stem from the soft-
ware portion of the system being designed -- ex-
amples of such events are activities within some
other software system which interacts with the
system being designed or operations performed by
some physical device controlled by the software
system.

The most elementary method for defining en-
dogenous events is to simply attacha Tlabel, called
an event identifier, to some portion of the DDN
description of a procedure or a control process.
For example, the Eregion] monitor class description
nf fiqure 2 definas the events read and write,
corresponding to executions of the respective pro-
cedures, and the events private _read and private_
write, corresponding to occurrences of (some of
the) transitions defined for those procedures.
Thus, an execution of the read procedure of some
instance of class [region] would be an instance of
a read event, while an occurrence of the second
transition defined for the read procedure would be
an instance of the event private read. Similarly,
an occurrence of the buffer modificaticn described
by the set-to statement within the observer contro
process model in the [noticer] subsystem (figure 3)
would correspond to a see it event. Note that
events defined within a DREAM design description
may occur simultaneously and that one event may
occur as part of another, as in the case of
private read and read.

Untike endogenous events, definitions of
which may be embedded within the monftor or sub-
system classes whose activities give rise to them,
exogenous events cannot be associated with any moni-
tor or subsystem class definition. Therefore, a
third class type, the event class, is available in
DDN for the definition of exogenous events. This
fs 11lustrated in figure 5 in which we describe part
of the activity of knowledge sources as 1t relates
to the operation of the blackboard.

{ks]: EVENT CLASS;
EVERT DEFINITION;

request write: DESCRIPTION;
An event which occurs when a knowledge source requests a
write operation upon a region within the blackboard.
END DESCRIPTION;

END EVENT DEFINITION:
END EVENT CLASS;

In addition to its use in the definition of
exogenous events as illustrated in fiqure 5, the
EVENT DEFINITION textual unit may be used within a
monitor, subsystem or event class definition for
the specification of more complex events. These
events may be specified in terms of other events,
sequences of states of a monitor class, or sequences
of statements in a control process model. In each
case the specification is labelled with an event
identifier naming the specified event. Details and
examples of DON event definition facilities may be
found in [17]; here we provide only a simple illus-
tration. (figure 6') in which the events shared read
and shared write are defined as state sequences (of
length onef., These definitions indicate that the

MONITOR CLASS' EVENT DEFINITION;
shared_read: STATE SEQUENCE(reading shared),
shared write: STATE SEQUENCE(writing_shared)
END EVENT DEFINITION;

region]:

Fiqure 6

shared_read and shared write events correspond to
an instance of monitor class [region] being in the
state subtsets reading shared and writing shared,
respectively. -

The event definition mechanisms of DDN pro-
vide a flexible and powerful tool for definingarbi-
trarily complicated events in a software system de-
sign. This event definition capability is the
foundation of the DREAM behavior specification tech-
nique. Moreover, its flexibility and generality
are largely responsible for the technigue's pro-
Jection properties, since various interesting
aspects of system behavior may be highlighted by
appropriately defining events related to those
aspects.

IThe prefix '[region]: MONITOR CLASS' attached to
the EVENT DEFINITION textual unit in figure 6 in-
dicates that this textual unit is intended to be
an additional part of the definition of the
[region] monitor class.
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Desired Behavior Specification in DREAM

Having defined a set of events by means of the
DDN mechanisms described above, a software system
designer may specify intended behavior for the
system and its components by describing the possi-
ble sequencing and simultaneity of event occurrences
which would be considered acceptable during the
system's operation. This is accomplished in DDN
by using event sequence expressions and concurrency
expressions within TR HAVIOR textual units.

As an example of desired behavior specification,
consider the textual unit shown in figure 7. The

*{regfon]: MONITOR CLASS' DESIRED BEHAVIOR;
MUTUALLY EXCLUSIVE(shared write, Oﬁ([req1on}| shared write,
region] { shared read) ),
MUTUALLY EXCLUSIVE(shared resd, (region]| shared write),

MUTUALLY EXCLUSIVE(OR(private write,private read,Shared write,shared read),
OR(private write,private read,shared_write,shared read) },

POSSIBLY CONCURRENT(shared read, [region] | Shared read);
POSSIBLY CONCURRENT(OR(private write,private read7,

OR([regton] | private_wrife,[region] | private_read

reg1on] | shared write,
regton} | shared read) )
END DESIRED BEHAVIOR;

Figqura 7

cecncurrency expressions in this figure use the oper-
ators MUTUALLY EXCLUSIVE and POSSIBLY CONCURRENT!
to describe the set of behaviors for instances of
the [region] monitor class which would be accept-
able to the designer of the blackboard system.

The operators for concurrency expressions are
binary, their operands being sets of events. When
appearing in an operand of a concurrency expression,
event identifiers not qualified? by a class or in-
stance identifier refer to event occurrences spe-
cific to any single instance of the class for which
they are defined, while those qualified by a class
identifier refer to event occurrences arising from
any instance of the class and those qualified by an
nstance name refer to event occurrences specific
to the named instance. MUTUALLY EXCLUSIVE(x,y) re-
presents the constraining behavioral specification
that no occurrence of an event from the set of
events x may overlap any occurrence of an event from
the set of events y, except that an event which is
an element of both x and y is not precluded from
occurring. Thus the first concurrency expression
of the figure 7 example represents the restriction
that while some [region] monitor class instance is
performing a shared write, i.e. its event shared
write is occurring, no other [region] monitor class
instance may be performing a shared write and no
[region] monitor class instance may be performing
a shared read. Similarly, the second concurrency
expression expresses the restriction that while
some [region] monitor class instance is performing
a shared read, i.e. its shared_read event is oc-

k™
IPOSSIBLY n CONCURRENT(x,y) where n is an integer
expression, is a third DON concurrency expression

operator which may be used for describing bounded
concurrency situations.

2xly specifies the identifier y which is defined
within the definition of the identifier x.

curring, no [region] monitor class instance may be
performing a shared write, (Notice that neither of
these concurrency expressions precludes the possi-
bility of shared reads being performed by several
[region] monitor class instances simultaneously.)
The third concurrency expression indicates the de-
signer's intention that at most one of the private-
write, private read, chared write or shared read
events will be occurring at any time within any
given instance of the [region] monitor class.

The concurrency expression POSSIBLY CONCURRENT
(x,y) represents the permissive behavioral speci-
fication that any occurrence cf an event from the
set of events x may overlap any occurrence of an
event frem the set of events y. Thus the fourth
concurrency expression of the figure 7 example in-
dicates the designer's intention to allow multiple
instances of the [region] monitor class to be
performing shared reads simultaneously, i.e.
an instance's shared read event may overlap
the shared read event of any instance. Simi-
* larly, the final concurrency expression of the
example expresses the designer's willingness to
allow private write or private read events of one
instance of the [region? monitor class to overlap
any of the events private write, private_read,
shared write or shaved_read of any [region] monitor
class instance.

Taken together, the concurrency expressions
of the DESIRED BEHAVIOR textual unit in the figure
7 example represent precisely the behavioral speci-
fications which a software designer might wish to
indicate regarding the operation of and inter-
actions among the regions of the blackboard. That
{s, they specify that the writing of a‘shared sub-
region must not be concurrent with any other manip-
ulations of the shared subregion (first concurrency
expression), while the reading of a shared sub-
region may be concurrent with other reading but not
writing In that subregion (second and fourth con-
currency expressions). Further, this DESIRED BE-
HAVIOR textual unit indicates that reading or writ-
ing of private subregions may be concurrent with
reading or writing, shared or private, by other
instances of the %region] monitor- class (fifth con-
currency expression), but that at most one of the
four operation types may be occurring within any
given instance of the [region] monitor class at any
given time (third concurrency expression).

DDN constructs for describing desired be-
havior are discussed in greater detail in [17].
The example of this section serves to indicate that
the constructs provide a very general facility for
describing a designer's intentions regarding ac-
ceptable behavior for the system under design. The
example also indicates the ways in which DDN facili-
tates the non-procedural, modular, perhaps redun-
dant specification of behavior that spans more than
one component or relates to a component's behavior
over time.

Hierarchical System Description

In this paper, we are primarily interested in
the description of the external attributes of soft-
ware system components. However, we finish our
series of examples with that of figure 8 which
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i1luystrates several” DON constructs for the descrip-
tion of internal attributes. We include this ex-
ample because it completes our description of the
HEARSAY blackboard and indicates that hierarchical
descriptions may be constructed by using the exter-
nal attributes of a set of components to define the
internal attributes of another component.

Before commenting on the constructs for de-
scribing internal attributes, two comments are ap-
propriate about the textual units in fiqure 8 which

[db‘pD]: MONITOR CLASS:
STATE SUBSETS; read, write, initialize END STATE SUBSETS;
END MONITOR CLASS;

[blackboard]: SUBSYSTEM CLASS;
QUALIFIERS; ‘l_y:. #_under_surveillance END QUALIFIERS;

SUBCOMPONENTS; reg ARRAY[1::2] OF [region(MyY INDEX)}.
spy OF (noticer(#_under_surveillance)]

ENO SUBCOMPONENTS;

request: ARRAY(1::# ks] OF IN PORT;
BUFFER SUBCOMPONENTS:  op OF Edbvpp],
td OF [entry_id],
val_to_write OF [datum]
END BUFFER SUBCOMPONENTS;
BUFFER CONODITIONS;
op=read OR opmwrite
ENO BUFFER CONDITIONS;
END IR PORT;

read response: ARRAY[1::# ksg F OUT_PORT;
BUFFER SUBCOMPONENTS; vaT OF [datum] END BUFFER SUBCOMPONENTS;
END OUT PORT;

note: ARRAY[1::# under_surveillance] OF OUT PORT;
BUFFER SUBCOMPONENTS:™ notice OF [datum_change]
END BUFFER SUBCOMPONENTS;
BUFFER CONOITION; noticeschapge END BUFFER CONDITIONS;
END OUT PORT;

managers ARRAY(1::# ks] OF CONTROL PROCESS;
MODEL; [TERATE  RECEIVE request(HY”INDEX);
. IF -op(MY_INDEX )=read
THE

N
gotread: SET val(MY_INDEX) TO defined OR errorflag;
answer: SEND read_response(MY INDEX);
ELSE
gotwrite: HULL;
END IF;
END [TERATE;
END MOOEL 5

LOCAL SUBCOMPONENTS; region_number OF {region_{d{2)]
END LOCAL SUBCOMPONENTS,
80UY;  ITERATE RECEIVE request(MY_INDEX);
region number.determine{{d(MY_INDEX)};
IF op(MY_INDEX)=write

THEN reg({reglon_number).write(val to write(MY_INDEX));

ELSE reg(region number).read(val (MY_TKDEX));
SEND read-Fesponse(MY_INDEX);
END IF;
END ITERATE;
END B80OY;

END CONTROL PROCESS;

EVENT DEFINITION;
notice: DESCRIPTION;passage of a message out through
one of the note ports
END DESCRIPTION;
noticed write:
SEQUENCE(OR(reg(1)|write, reg(2)|write), spy|see it),
some request:
OR{gotread, SEQUENCE(gotwrite,notice)),
serviced write:
SEQUENCE([ks]|request_write, gotwrite, notice)
END EVENT DEFINITION;

&
DESTRED BEHAVIOR;
POSSIBLY CONCURRENT(noticed write, [blackboard?Inot!ced_yrite).
POSSIBLY CONCURRENT(some request, [blackboard]|some request),
POSSIBLY CONCURRENT (serviced write, [blackboard]|serviced write)
END DESIRED BEHAVIOR; -

END SUBSYSTEM CLASS;

Figure 8

are concerned with the definition of external at-
tributes. First, in the model for the manager ar-
ray of control processes, note the use of nondeter-
minism in the set-to statement. DON provides a
variety of nondeterministic constructs since such
constructs provide a convenient vocabulary for the
task of abstraction. Second, in the EVEMT DEFINI-
TION textual unit, note the ability to reference
events outside of the class definition in order to
give an outward-directed specification of behavior
as well as the ability to reference internal events
in order to give an inward-directed behavior
specification.

With respect to the specification of internal
attributes, in figure 8 there are several major
components declared for each instance of the class.
Three are declared in a straightforward way within
the SUBCOMPONENTS textual unit -- the declarations
specify the names of the components and their types.
(The use of My INDEX within the declaration of the
reg array of components indicates that reg(1) is
of class [region(1)] and that reg(2) is of class
[region(2)], where the arquments in the class re-
ference specify values for the qualifiers in the
class' definition.) The other major components
are declared, without reference to a previously
defined class, by giving a BODY textual unit for
the manager array of control processes. This
textual unit specifies the algorithm that is to be
performed by the control process during subsystem
operation. While it is not always the case, in
this example the control processes map one-to-one
onto components which control the message flow
through the ports and the activation of the other
components. When this is the case, it is conven-
ient to describe the components directly as the
bodies of the control processes.

The DDN facilities for hierarchical descrip-
tion of internal attributes are discussed more
fully in [5]. The major point to be noted here is
that the descrintion of the class [blackboard] is
redundant, with the description of the componentry
within a class of subsystems procedurally indi-
cating how the subsystems operate and the rest
of the description providing a basically non-
procedural specification of behavior.

The Use of Behavior Specifications in Software

Jesian Analysis

The DDN constructs for describing a software
system design present numerous possibilities for
analysis of a design at various stages in its ev-
olution. The DON behavioral specification con-
structs discussed here are particularly valuable
as a basis for simulation and formal or informal
consistency checkina approaches to design verifi-
cation.

The transitions and control process models
of a DDN software system description provide the
hasis for simulation of a system at any stage in
the design effort. Following the approach describ-
ed in [18], expected values for timing data and
random variables controlling nondeterministic pro-
cessina can be used to augment the control process
model specifications, permitting performance
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statistics to be derived for the system as it is
described at any stage in its development. Such
simulations can uncover potential performance prob-
tems at an early point in the design process, rather
than allowing their discovery to await a completed
system implementation.

The DREAM behavioral specification technique
allows for both formal and informal analysis
of a software system design based on consistency
checking. Informal arguments for correctness of a
design may be made by showing the consistency of
the various redundant specifications for the design-
ed system. Such arguments may compare internal
specifications, such as found in control process
bodies, with external specifications, such as given
by control process models or stated in the DESIRED
BEHAVIOR textual units. Alternatively, informal
arguments may demeonstrate the consistency among dif-
ferent behavioral specifications, such as contro]
process models and DESIRED BEHAVIOR textual units
or possibly the DESIRED BEMAVIOR textual units from
several DDN class definitions. Such arguments are
clearly not, in and of themselves, sufficient to
prove the correctness of a design. However, by
helping a designer to consider the proposed design
from various viewpoints, they can be very helpful
in revealing errors or, when several different de-
scriptions prove consistent, in increasing confid-
ence in the design's correctness.

Formal approaches to the analysis of DDN
software system designs can utilize essentially
this same type of consistency checking between dif-
ferent descriptions of the system's intended behav-
ior. These formal methods, slated for inclusion in
future versions of the DREAM system, are based upon
the automatic derivation, using an algorithm similar
to that defined in [19], of an event sequence ex-
pression describing the behavior represented by
each control process model. The behaviors repre-
sented by these expressions may then be compared
with those specified in desired behavior textual
units to determine whether the system as designed
would conform to the designer's intentions as ex-
pressed in the desired behavior information. In
general, this comparison cannot be conducted algo-
rithmically [19], but cases can be found [20] in
which algorithmic manipulation is tractable, Al-
ternatively, the derived expressions may be pre-
sented to the scftware system designer, whose know]-
edge and insight may facilitate the comparison with
desired behavior specifications, or who may simply
find this alternative representation of the control
process' behavior informative. This latter ap-
proach is an example of the “feedback analysis®
[21] capabilities made possible by the DDN software
design language, with information concerning the
characteristics of the system under design being
presented to the designer who uses human insight
to check the correctness of the design. o

Conclusions

The DON design description facilities offer
a medium for presenting well-defined, abstract
specifications of software system components, de-
scribing their behavior without revealing or re-

quiring details of their internal operation. Con-
trol process MODEL, procedure TRANSITIONS, EVENT
DEFINITION and DESIRED BEHAVIOR textual units can
all serve as possibly redundant, abstract behavior-
al specifications, orthogonal to the operational
descriptions of the implementations of the sub-
components. Such specifications are valuable at
early stages of design, when they allow for a high-
Tevel, non-detailed description of the evolving
software system. In later phases of the design ef-
fort they are ideally suited for use as external
specifications for component behavior, fulfilling
an information-hiding function while presenting a
complete and formal component description.

We have used DDN to prepare abstract descrip-
tions of several software systems, both hypotheti-
cal and real. We have found that DDN assists in
the rigorous and formal description of a complex
software system design and provides a basis for
some analysis of that design at various stages of
the design effort. We expect that the form and
syntax of DDN will change as we use it in trial
design efforts. We also expect that the develop-
ment of specific analysis algorithms will further
shape the language. We have placed the most empha-
sis upon the naturalness of the language for the
task of modelling and feel that we have identified
several concepts which are important to carrying
out that task.
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