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NONCOMMUTATIVE SOLENOIDS AND THE

GROMOV-HAUSDORFF PROPINQUITY

FRÉDÉRIC LATRÉMOLIÈRE AND JUDITH PACKER

Abstract. We prove that noncommutative solenoids are limits, in the sense
of the Gromov-Hausdorff propinquity, of quantum tori. From this observa-
tion, we prove that noncommutative solenoids can be approximated by finite
dimensional quantum compact metric spaces, and that they form a continuous
family of quantum compact metric spaces over the space of multipliers of the
solenoid, properly metrized.

1. Introduction

The quantum Gromov-Hausdorff propinquity, introduced by the first author [16,
13], is a distance on quantum compact metric spaces which extends the topology of
the Gromov-Hausdorff distance [7, 6]. Quantum metric spaces are generalizations
of Lipschitz algebras [28] first discussed by Connes [3] and formalized by Rieffel
[22]. The propinquity strengthens Rieffel’s quantum Gromov-Hausdorff distance
[26] to be well-adapted to the C*-algebraic framework, in particular by making
*-isomorphism a necessary condition for distance zero [14]. The propinquity thus
allows us to address questions from mathematical physics, such as the problem of
finite dimensional approximations of quantum space times [4, 20, 5, 27],[21, Ch. 7].
Matricial approximations of physical theory motivates our project, which requires,
at this early stage, the study of many different examples of quantum spaces.

Recently, the first author proved that quantum tori form a continuous family for
the propinquity, and admit finite dimensional approximations via so-called fuzzy
tori [10]. This paper, together with the work on AF algebras done in [1], explores the
connection between our geometric approach to limits of C*-algebras and the now
well studied approach via inductive limits, which itself played a role is quantum
statistical mechanics [2]. We thus bring noncommutative solenoids, studied by
the authors in [17, 18, 19], and which are inductive limits of quantum tori, into
the realm of noncommutative metric geometry. Our techniques apply to more
general inductive limits on which projective limits of compact metrizable groups act
ergodically. Noncommutative solenoids are interesting examples since they also are
C*-crossed products, whose metric structures are still a challenge to understand.
Irrational noncommutative solenoids [17] are non-type I C*-algebras, and many
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are even simple, thus they are examples of quantum spaces which are far from
commutative.

In our main result, we prove that noncommutative solenoids are limits, for the
quantum Gromov-Hausdorff propinquity, of quantum tori. As corollaries, we then
show that the map from the solenoid group to the family of noncommutative
solenoids is continuous for the quantum propinquity, and that noncommutative
solenoids are limits of fuzzy tori, namely C*-crossed products of finite cyclic groups
acting on themselves by translation. As noncommutative solenoids have nontrivial
K1 group [17], they are not AF algebras, so our proof that they are limits of finite
dimensional C*-algebras illustrates the difference and potential usefulness of our
metric geometric approach. Moreover, noncommutative solenoids’ connection with
wavelet theory [19] means that our result is a first step in what could be a metric
approach to wavelet theory, by means of finite dimensional approximations. Last,
metric approximations may prove a useful tool in the study of modules over non-
commutative solenoids, initiated in [18, 19], as recent research in noncommutative
metric geometry is concerned in part with the category of modules over quantum
metric spaces [25]

Noncommutative solenoids, introduced in [17] and studied further in [18, 19]
by the authors, are the twisted group C*-algebras of the Cartesian square of the
subgroups of Q consisting of the p-adic rationals for some p ∈ N \ {0, 1}. We begin
with the classification of the multipliers of these groups.

Theorem-Definition 1.1 ([17]). Let p ∈ N \ {0, 1}. The inductive limit of:

Z
k 7→pk

// Z
k 7→pk

// Z
k 7→pk

// · · ·

is the group of p-adic rational numbers:

Z

[

1

p

]

=

{

q

pk
: q ∈ Z, k ∈ N

}

.

The Pontryagin dual of Z
[

1
p

]

is the solenoid group:

S p = lim
←−

T T
z 7→zp

oo T
z 7→zp

oo · · ·
z 7→zp

oo =
{

(zn)n∈N
∈ TN : ∀n ∈ N z

p
n+1 = zn

}

,

where the dual pairing is given, for all q ∈ Z, k ∈ N, and (zn)n∈N ∈ S p, by
〈

q
pk , (zn)n∈N

〉

= z
q
k.

For any θ = (θn)n∈N ∈ S p, and for all q1, q2, q3, q4 ∈ Z and k1, k2, k3, k4 ∈ N,
we define:

Ψθ :

((

q1

pk1
,
q2

pk2

)

,

(

q3

pk3
,
q4

pk4

))

= θ
q1q4
k1+k4

.

For any multiplier f of Z
[

1
p

]

×Z
[

1
p

]

, there exists a unique θ ∈ S p such that f

is cohomologous to Ψθ.

Thus, formally, noncommutative solenoids are defined by:

Definition 1.2. A noncommutative solenoid Sθ, for some θ ∈ S p, is the twisted

group C*-algebra C∗

(

Z
[

1
p

]

×Z
[

1
p

]

,Ψθ

)

.
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We compute the K-theory of noncommutative solenoids in [17] in terms of the

multipliers of Z
[

1
p

]

×Z
[

1
p

]

, identified with elements on the solenoid via Theorem-

Definition (1.1); we then classify noncommutative solenoids up to their multiplier.
As the compact group S2p acts on Sθ for any θ ∈ S p via the dual action, any

continuous length function on S2p induces a quantum metric structure on Sθ, as de-
scribed in [22]. A quantum metric structure is given by a noncommutative analogue
of the Lipschitz seminorm as follows:

Notation 1.3. If A is a C*-algebra with unit, then the norm on A is denoted by
‖ · ‖A, while the unit of A is denoted by 1A. The state space of A is denoted by
S (A), and the subspace of self-adjoint elements in A is denoted by sa (A).

Definition 1.4 ([22, 23, 16]). A pair (A, L) is a Leibniz quantum compact metric
space when A is a unital C*-algebra and L is a seminorm defined on some dense
Jordan-Lie subalgebra dom(L) of the space of self-adjoint elements sa (A) of A,
called a Lip-norm, such that:

(1) {a ∈ sa (A) : L(a) = 0} = R1A,
(2) max

{

L
(

ab+ba
2

)

, L
(

ab−ba
2i

)}

6 ‖a‖AL(b) + ‖b‖AL(a),
(3) the Monge-Kantorovich metric mkL dual to L on S (A) by setting, for all

ϕ, ψ ∈ S (A) by mkL(ϕ, ψ) = sup {|ϕ(a)− ψ(a)| : a ∈ dom(L), L(a) 6 1}
induces the weak* topology on S (A),

(4) L is lower semi-continuous with respect to ‖ · ‖A.

Classical examples of Lip-norms are given by the Lipschitz seminorms on the C*-
algebras of C-valued continuous functions on compact metric spaces. An important
source of noncommutative example is given by:

Theorem-Definition 1.5 ([22]). Let α be a strongly continuous action by *-
automorphisms of a compact group G on a unital C∗-algebra A and let ℓ be a
continuous length function on G. For all a ∈ sa (A), we define:

Lα,ℓ(a) = sup

{

‖a− αg(a)‖A
ℓ(g)

: g ∈ G, g is not the unit of G

}

.

Then Lα,ℓ is a Lip-norm on A if and only if α is ergodic, i.e. {a ∈ A : ∀g ∈
G αg(a) = a} = C1A. We note that Lα,ℓ is always lower semi-continuous.

Theorem (1.5) is thus, in particular, applicable to any dual action on the twisted
group C*-algebra of some discrete Abelian group, such as noncommutative solenoids
or quantum tori.

This paper continues the study of the geometry of classes of quantum compact
metric spaces under noncommutative analogues of the Gromov-Hausdorff distance,
with the perspective that such a new geometric approach to the study of C*-algebras
may prove useful in mathematical physics and C*-algebra theory. Our focus in this
paper is a noncommutative analogue of the Gromov-Hausdorff distance devised by
the first author [16] as an answer to many early challenges in this program, and
whose construction begins with a particular mean to relate two Leibniz quantum
compact metric spaces via an object akin to a correspondence.

Definition 1.6. A bridge from a unital C*-algebra A to a unital C*-algebra B is
a quadruple (D, ω, πA, πB) where:

(1) D is a unital C*-algebra,
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(2) the element ω, called the pivot of the bridge, satisfies ω ∈ D and S1(D|ω) 6=
∅, where:

S1(D|ω) = {ϕ ∈ S (D) : ϕ((1− ω∗ω)) = ϕ((1 − ωω∗)) = 0}

is called the 1-level set of ω,
(3) πA : A →֒ D and πB : B →֒ D are unital *-monomorphisms.

There always exists a bridge between any two arbitrary Leibniz quantum com-
pact metric spaces [16]. The quantum propinquity is computed from a numerical
quantity called the length of a bridge. We will denote the Hausdorff (pseudo)distance
associated with a (pseudo)metric d by Hausd [8].

First introduced in [16], the length of a bridge is computed from two numbers,
the height and the reach of a bridge. The height of a bridge assesses the error we
make by replacing the state spaces of the Leibniz quantum compact metric spa-
ces with the image of the 1-level set of the pivot of the bridge, using the ambient
Monge-Kantorovich metric.

Definition 1.7. Let (A, LA) and (B, LB) be two Leibniz quantum compact metric
spaces. The height ς (γ|LA, LB) of a bridge γ = (D, ω, πA, πB) from A to B, and
with respect to LA and LB, is given by:

max
{

HausmkLA
(S (A), {ϕ ◦ πA : ϕ ∈ S1(D|ω)}),

HausmkLB
(S (B), {ϕ ∈ πB : ϕ ∈ S1(D|ω)})

}

.

The second quantity measures how far apart the images of the balls for the
Lip-norms are in A ⊕B; to do so, they use a seminorm on A ⊕B built using the
bridge:

Definition 1.8 ([16]). Let A and B be two unital C*-algebras. The bridge semi-
norm bnγ (·) of a bridge γ = (D, ω, πA, πB) from A to B is the seminorm defined
on A⊕B by bnγ (a, b) = ‖πA(a)ω − ωπB(b)‖D for all (a, b) ∈ A⊕B.

We implicitly identify A with A⊕{0} and B with {0}⊕B in A⊕B in the next
definition, for any two spaces A and B.

Definition 1.9 ([16]). Let (A, LA) and (B, LB) be two Leibniz quantum compact
metric spaces. The reach ̺ (γ|LA, LB) of a bridge γ = (D, ω, πA, πB) from A to B,
and with respect to LA and LB, is given by:

Hausbnγ(·) ({a ∈ sa (A) : LA(a) 6 1} , {b ∈ sa (B) : LB(b) 6 1}) .

We thus choose a natural synthetic quantity to summarize the information given
by the height and the reach of a bridge:

Definition 1.10 ([16]). Let (A, LA) and (B, LB) be two Leibniz quantum compact
metric spaces. The length λ (γ|LA, LB) of a bridge γ = (D, ω, πA, πB) from A to B,
and with respect to LA and LB, is given by max {ς (γ|LA, LB), ̺ (γ|LA, LB)} .

The quantum Gromov-Hausdorff propinquity is constructed from bridges, though
the construction requires some care. We refer to [16] for the construction, and
summarize here the properties which we need in this paper.

Theorem-Definition 1.11 ([16]). Let L be the class of all Leibniz quantum com-
pact metric spaces. There exists a class function Λ from L×L to [0,∞) ⊆ R such
that:
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(1) for any (A, LA), (B, LB) ∈ L we have:

0 6 Λ((A, LA), (B, LB)) 6 max {diam (S (A),mkLA
), diam (S (B),mkLB

)} ,

(2) for any (A, LA), (B, LB) ∈ L we have:

Λ((A, LA), (B, LB)) = Λ((B, LB), (A, LA)),

(3) for any (A, LA), (B, LB), (C, LC) ∈ L we have:

Λ((A, LA), (C, LC)) 6 Λ((A, LA), (B, LB)) + Λ((B, LB), (C, LC)),

(4) for all (A, LA), (B, LB) ∈ L and for any bridge γ from A to B, we have
Λ((A, LA), (B, LB)) 6 λ (γ|LA, LB),

(5) for any (A, LA), (B, LB) ∈ L, we have Λ((A, LA), (B, LB)) = 0 if and only
if (A, LA) and (B, LB) are isometrically isomorphic, i.e. if and only if there
exists a *-isomorphism π : A→ B with LB ◦ π = LA, or equivalently there
exists a *-isomorphism π : A→ B whose dual map π∗ is an isometry from
(S (B),mkLB

) into (S (A),mkLA
),

(6) if Ξ is a class function from L×L to [0,∞) which satisfies Properties (2),
(3) and (4) above, then Ξ((A, LA), (B, LB)) 6 Λ((A, LA), (B, LB)) for all
(A, LA) and (B, LB) in L,

(7) the topology induced by Λ on the class of classical metric spaces agrees with
the topology induced by the Gromov-Hausdorff distance.

The study of finite dimensional approximations of quantum compact metric
spaces for the quantum propinquity is an important topic in noncommutative met-
ric geometry, with results about the quantum tori [9, 10], spheres [24, 25], and
AF algebras [1]. It is in general technically very difficult to construct natural ap-
proximations, while their existence is only known under certain certain quantum
topological properties (pseudo-diagonality) [15]. Moreover, quantum tori have been
an important test case for our theory, with work on the continuity of the family of
quantum tori [10], and perturbations of metrics for curved quantum tori [12]. We
refer to [14] for a survey of the theory of quantum compact metric spaces and the
Gromov-Hausdorff propinquity.

Last, we note that all our results are valid for the dual Gromov-Hausdorff propin-
quity [13, 11] and therefore for Rieffel’s quantum Gromov-Hausdorff distance [26].

2. Lip-norms from projective limits of compact groups

The first step in obtaining our results about noncommutative solenoids consists
in constructing a natural metric on the countable product

∏

n∈N
Gn of a sequence

(Gn)n∈N of compact metrizable groups. Our metric is inspired by a standard con-
struction of metrics on the Cantor set, and is motivated by the desire to have the
sequence of subgroups

(
∏

n>N Gn

)

N∈N
converge to the trivial group for the in-

duced Hausdorff distance. This latter property will be the key to our computation
of estimates on the propinquity later on. Our metrics are constructed from length
functions. We recall that ℓ is a length function on a group G with unit e when:

(1) for any x ∈ G, the length ℓ(x) is 0 if and only if x = e,
(2) ℓ(x) = ℓ

(

x−1
)

for all x ∈ G,
(3) ℓ(xy) 6 ℓ(x) + ℓ(y) for all x, y ∈ G.
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Hypothesis 2.1. Let (Gn)n∈N be a sequence of compact metrizable groups, and
for each n ∈ N let ℓn be a continuous length function onGn. LetM > diam (G0, ℓ0).
Let:

G =
∏

n∈N

Gn = {(gn)n∈N : ∀n ∈ N gn ∈ Gn} ,

endowed with the product topology. With the pointwise operations, G is a compact
group. We denote the unit of G by 1 and, by abuse of notation, we also denote the
unit of Gn by 1 for all n ∈ N.

Definition 2.2. Let Hypothesis (2.1) be given. We define the length function ℓ∞
on G by setting, for any g = (gn)n∈N in G:

ℓ∞(g) = inf

{

ε > 0 : ∀n ∈ N n <
M

ε
=⇒ ℓn(gn) 6 ε

}

.

The basic properties of our metric are given by:

Proposition 2.3. Assume Hypothesis (2.1). The length function ℓ∞ on G =
∏

n∈N
Gn from Definition (2.2) is continuous for the product topology on the com-

pact group G, and thus metrizes this topology. Moreover, if for all N ∈ N, we set
G(N) = {(gn)n∈N ∈ G : ∀j ∈ {0, . . . , N} gj = 1} , then G(N) is a closed subgroup
of G and:

(2.1) diam
(

G(N), ℓ∞

)

6
M

N + 1
,

and thus in particular, if 1 ∈ G is the unit of G:

(2.2) lim
N→∞

Hausℓ∞(G(N), {1}) = 0.

Proof. We easily note that diam (G, ℓ∞) 6 diam (G0, ℓ0). Indeed, if g = (gn)n∈N ∈
G then for n = 0 < 1 = M

diam(G0,ℓ0)
we have ℓ0(g0) 6 diam (G0, ℓ0). So by definition,

ℓ∞(g) 6 diam (G0, ℓ0).
Now, let N ∈ N. We observe that if g = (gn)n∈N ∈ G(N), then for all n 6 N <

M
M

N+1

we have ℓn(gn) = 0 6 M
N+1 . Thus, ℓ∞(z) 6 M

N+1 .

This proves both Expressions (2.1) and (2.2).
Assume now that (gm)m∈N converges in G to some g, i.e. converges pointwise.

Let ε > 0. Let N = ⌊M
ε
⌋. For each j ∈ {0, . . . , N}, there exists Kj ∈ N such

that for all m > Kj, we have ℓj(g
m
j g

−1
j ) 6 ε, by pointwise convergence. Let

K = max{Kj : j ∈ {0, . . . , N}}. Then by construction, for all m > K, we have,

for all n < M
ε

, that ℓn(g
m
n g

−1
n ) 6 ε, so ℓ∞(gmg−1) 6 ε. Thus ℓ∞ is continuous and

induces a weaker topology on G than the topology of pointwise convergence.
Assume now that ℓ∞((gn)n∈N) = 0. Fix k ∈ N. LetN > k. Then ℓ∞((gn)n∈N) 6

M
N+1 . Thus by definition, ℓk(gk) 6 M

N+1 for all N > k. Thus ℓk(gk) = 0 for all
k ∈ N and thus gk is the unit of Gk for all k ∈ N.

Thus the topology induced by ℓ∞ is Hausdorff, and thus, as the product topology
on GN is compact by Tychonoff theorem, ℓ∞ induces the product topology on GN.
This could also be easily verified directly. �

We shall apply Definition (2.2) and Proposition (2.3) to projective limits, and
thus we record the following corollary. We note that all our projective sequences of
groups involve only epimorphisms.
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Corollary 2.4. Let G0 G1
ρ0
oooo G2

ρ1
oooo · · ·

ρ2
oooo = (Gn, ρn)n∈N be a projec-

tive sequence of compact metrizable groups, and let ℓn be a continuous length func-
tion on Gn for all n ∈ N. Let M > diam (G0, ℓ0). Let:

G = lim
←−

(Gn, ρn)n∈N =

{

(gn)n∈N ∈
∏

n∈N

Gn : ∀n ∈ N gn = ρn(gn+1)

}

.

The restriction to G of the length function ℓ∞ on
∏

n∈N
Gn from Definition (2.2)

metrizes the projective topology on G; moreover if GN = G ∩ G(N) for all N ∈ N,
then Hausℓ∞(GN , {1}) 6

M
N+1 with 1 ∈ G the unit of G.

Proof. This is all straightforward as G is a closed subgroup of G. �

We begin our study of quantum metrics on inductive limits with the observation
that the proof of [14, Theorem 3.83] includes the following fact, which will be of
great use to us in view of Corollary (2.4):

Lemma 2.5. Let G be a compact metrizable group, H ⊆ G be a normal closed
subgroup, ℓ a continuous length function on G and A a unital C*-algebra endowed
with a strongly continuous ergodic action α of G. Let K = G /H and let ℓK be the
continuous length function ℓK : k ∈ K 7→ inf{ℓ(g) : g ∈ kH} where kH, for any
k ∈ K, is the coset associated with k.

Let AK = {a ∈ A : ∀g ∈ H αg(a) = a} be the fixed point C*-subalgebra of A
for the action α of K on A. Note that α induces an ergodic, strongly continuous
action β of K on AK. Using Theorem (1.5), Let L be the Lip-norm on A given by
the action α of G and the length function ℓ, and let LK be the Lip-norm on AK

given by the action β of K and the length function ℓK. Then:

Λ((A, L), (AK , LK)) 6 diam (H, ℓ).

Proof. We first note that since H is closed, ℓK is easily checked to be a length
function on K. Moreover, if π : G։ K is the canonical surjection, then the trivial
inequality ℓK(π(g)) 6 ℓ(g) for all g ∈ G proves that ℓK is continuous on K since
g ∈ G 7→ ℓK(π(g)) is 1-Lipschitz, by characterization of continuity for the final
topology on K.

Let µ be the Haar probability measure on H . For all a ∈ A, we define:

E(a) =

∫

H

αg(a) dµ(g).

A standard argument shows that E is a unital conditional expectation on A with
range AK . In particular, E maps sa (A) onto sa (AK).
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Moreover, we note that since H is normal, we have gH = Hg for all g ∈ G, and
thus:

LK(E(a)) = sup

{
∥

∥αg
(∫

H
αh(a) dµ(h)

)

−
∫

H
αh(a) dµ(h)

∥

∥

A

ℓ(g)
: g ∈ G \ {1}

}

= sup







∥

∥

∥

∫

gH
αh(a) dµ(h)−

∫

H
αh(a) dµ(h)

∥

∥

∥

A

ℓ(g)
: g ∈ G \ {1}







= sup







∥

∥

∥

∫

Hg
αh(a) dµ(h)−

∫

H
αh(a) dµ(h)

∥

∥

∥

A

ℓ(g)
: g ∈ G \ {1}







6 sup

{

∫

H

∥

∥αhg(a)− αh(a) dµ(h)
∥

∥

A

ℓ(g)
: g ∈ G \ {1}

}

= sup

{

‖a− αg(a)‖
A

ℓ(g)
: g ∈ G \ {1}

}

= L(a).

Hence E is a weak contraction from (A, L) onto (AK , LK).
Let now id be the identity operator on A and ϑ : AK →֒ A be the canonical

inclusion map. We thus define a bridge γ = (A, 1A, ϑ, id) from AK to A, whose
height is null since its pivot is 1A. We are thus left to compute the reach of γ.

To begin with, if a ∈ sa (AK) with LK(a) 6 1, then an immediate computation
proves that L(a) = LK(a) 6 1 and thus ‖a1A − 1Aa‖A = 0.

Now let a ∈ sa (A) with L(a) 6 1. Then LK(E(a)) 6 1, and we have:

‖a− E(a)‖
A
=

∥

∥

∥

∥

∫

H

αh(a)− a dµ(h)

∥

∥

∥

∥

A

since µ probability measure,

6

∫

H

‖αh(a)− a‖A dµ(h)

6

∫

H

ℓ(h)L(a) dµ(h)

6

∫

H

diam(H, ℓ)dµ(h) = diam (H, ℓ).

Thus, the reach, and hence the length of γ is no more than diam(H, ℓ), which, by
Theorem-Definition (1.11), concludes our proof for our lemma. �

We are now in a position to prove one of the main results of this paper.

Theorem 2.6. Let G0 G1
ρ0
oooo G2

ρ1
oooo · · ·

ρ2
oooo = (Gn, ρn)n∈N be a projective

sequence of compact metrizable groups, and for each n ∈ N, let ℓn be a continu-
ous length function on Gn. Let A be a unital C*-algebra endowed with a strongly
continuous action α of G = lim

←−
(Gn, ρn)n∈N. Let ̺n : G ։ Gn be the canonical

surjection for all n ∈ N.
We endow G with the continuous length function ℓ∞ from Definition (2.2) for

some M > diam (G0, ℓ0).
For all N ∈ N, let:

G(N) = ker ̺N = {(gn)n∈N ∈ G : ∀n ∈ {0, . . . , N − 1} gn = 1} E G
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and let AN be the fixed point C*-subalgebra of α restricted to G(N). We denote by
αn the action of Gn induced by α on An for all n ∈ N.

Moreover, for all n ∈ N and g ∈ Gn we set:

ℓn∞(g) = inf {ℓ∞(h) : ̺n(h) = g} .

If, for some n ∈ N, the action of Gn induced by α on An is ergodic, then:

(1) α is ergodic on A and αn is ergodic on An for all n ∈ N

(2) If L is the Lip-norm induced by α and ℓ∞ on A and Ln is the Lip-norm
induced by αn and ℓn∞ on An using Theorem (1.5), then for all n ∈ N:

Λ ((A, L), (An, Ln)) 6
M

n+ 1

and thus: limn→∞ Λ ((A, L), (An, Ln)) = 0.

Proof. For any given n ∈ N, the group Gn is isomorphic to G /G(n) and we are in
the setting of Lemma (2.5) — in particular, ℓn∞ is a continuous length function on
Gn and αn is a well-defined action.

We note that by construction, for all n ∈ N:

(2.3) {a ∈ An : ∀g ∈ Gn αg
n(a) = a} = {a ∈ An : ∀g ∈ G αg(a) = a} .

Let us now assume that the action αn is ergodic for some n ∈ N. Let a ∈ A

such that for all g ∈ G we have αg(a) = a. Then a ∈ An in particular, since a
is invariant by the action of α restricted to G(n). Moreover, a is invariant by the
action αn by Expression (2.3) and thus a ∈ C1A. Thus α is ergodic. This, in turn,
proves that for all n ∈ N, the action αn is ergodic by Expression (2.3).

Thus, L and Ln are now well-defined. By Lemma (2.5) and Corollary (2.4), we
obtain:

Λ((A, L), (An, Ln)) 6
M

n+ 1
.

This concludes our proof. �

Theorem (2.6) involves an ergodic action of a projective limit of compact groups
on a unital C*-algebra and one may wonder when such actions exist. The following
theorem proves that one may obtain such actions on inductive limits, under reason-
able compatibility conditions. Thus the next theorem provides us with a mean to
construct Leibniz Lip-norms on inductive limits of certain Leibniz quantum com-
pact metric spaces.

Theorem 2.7. Let G0 G1
ρ0
oooo G2

ρ1
oooo · · ·

ρ2
oooo = (Gn, ρn)n∈N be a projective

sequence of compact groups. Let:

G =

{

(gn)n∈N ∈
∏

n∈N

Gn : ∀n ∈ N ρn(gn+1) = gn

}

,

noting that G = lim
←−

(Gn, ρn)n∈N.

Let A0
�

� ϕ0
// A1

�

� ϕ1
// A2

�

� ϕ2
// · · · = (An, ϕn)n∈N be an inductive sequence of

unital C*-algebras where, for all n ∈ N, we assume:

(1) ϕn is a *-monomorphism,
(2) there exists an ergodic action αn of Gn on An,
(3) for all g = (gn)n∈N ∈ G we have:

(2.4) ϕn ◦ α
gn
n = α

gn+1

n+1 ◦ ϕn.
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We denote by A the inductive limit of (An, ϕn)n∈N.
Then there exists an ergodic strongly continuous action α of G = lim

←−
(Gn, ρn)n∈N

on A.

Proof. For all (an)n∈N ∈
∏

n∈N
An, we set ‖(an)‖∞ = lim supn→∞ ‖an‖An

, which
defined a C*-seminorm on

∏

n∈N
An. The quotient of

∏

n∈N
An by {a ∈

∏

n∈N
An :

‖a‖∞ = 0}, endowed with the quotient seminorm of ‖ ·‖∞, which we still denote by
‖ · ‖∞, is a C*-algebra, which we denote by lim supn→∞ An. Let π be the canonical
surjection from

∏

n∈N
An onto lim supn→∞ An.

Up to a *-isomorphism, A = lim
−→

(An, ϕn) is the completion of the image by π of
the set:

A∞ = {(an)n∈N : ∃N ∈ N ∀n > N an = ϕn−1 ◦ . . . ◦ ϕN (aN )} ,

in lim supn→∞ An.
We begin with a useful observation. Let a = (an)n∈N and b = (bn)n∈N in A∞

with ‖a−b‖∞ = 0. Let N ∈ N such that, for all n > N , we have an+1 = ϕn(an) and
bn+1 = ϕn(bn): note that by definition, such a number N exists. If ‖aN −bN‖A > ε

for some ε > 0, then since ϕn is a *-monomorphism for all n ∈ N, it is an isometry,
and thus lim supn→∞ ‖an − bn‖An

> ε, which is a contradiction. Hence, for all
n > N we have ‖an − bn‖An

= 0. Informally, if two sequences in A∞ describe the
same element of A, then their predictable tails are in fact equal.

We now define the action of G on A. For g = (gn)n∈N ∈ G and (an)n∈N ∈ A∞,
we set αg((an)n∈N) = (αgn(an))n∈N

, which is a *-morphism of norm 1. Condition
(2.4) ensures that αg maps A∞ to itself. It induces an action of G on π(A) by norm
1 ∗-automorphisms in the obvious manner, and thus extends to A by continuity (we
use the same notation for this extension). It is easy to check that α is an action of
G on A.

Let a ∈ π(A∞) such that αg(a) = a for all g ∈ G. Let (an)n∈N ∈ A∞ with
π((an)n∈N) = a. Let N ∈ N such that for all n > N , we have an+1 = ϕn(an).
By definition of the action α, we have for all g = (gn)n∈N ∈ G that αg(a) =
(αgn

n (an))n∈N, and we note that:

α
gn+1

n+1 (an+1) = α
gn+1

n+1 (ϕn(an)) = ϕn (α
gn
n (a)) ,

by Condition (2.4). Thus by our earlier observation, we conclude that αgN
N (aN ) =

aN for all g ∈ G. Thus, as ρN is surjective, and αN is ergodic, we conclude that
aN = λ1AN

. Thus for all n > N we have an = ϕn−1◦· · ·◦ϕN(λ1AN
). Consequently,

a ∈ C1A by definition.
Now, let µ be the Haar probability measure onG and define E(a) =

∫

G
αg(a) dµ(g)

for all a ∈ A. It is straightforward to check that E(a) is invariant by α for all a ∈ A.
Let a ∈ A such that αg(a) = a for all g ∈ G. Thus E(a) = a. Let ε > 0. There

exists aε ∈ A∞ such that ‖a− aε‖A 6 ε
2 . Now:

‖E(a)− E(aε)‖A = ‖E(a− aε)‖A 6 ‖a− aε‖A 6
ε

2
.

and yet E(aε) ∈ C1A since G is ergodic on A∞. Thus, as ε > 0 is arbitrary, E(a)
lies in the closure of C1A, i.e. in C1A, and thus α is ergodic.

Finally, again let a ∈ A and ε > 0, and let aε ∈ π(A∞) such that ‖a− aε‖A 6 ε
3 .

Let (an)n∈N ∈ A∞ such that π((an)n∈N) = aε. There exists N ∈ N such that
ϕn(an) = an+1 for all n > N . Since αN is strongly continuous, there exists a
neighborhood V of 1 ∈ GN such that ‖αg

N(aN ) − aN‖AN
< ε

3 for all g ∈ V . Let
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W = ρ−1
N (V ) which is an open neighborhood of 1 ∈ G. Then since ϕn is an isometry

for all n ∈ N, we have for all g = (gn)∈N ∈W :

‖αgn
n (an)− an‖An

= ‖αgN
N (aN )− aN‖AN

6
ε

3
.

Thus for all g ∈W we have:

‖a− αg(a)‖A 6 ‖a− aε‖A + ‖aε − α
g(aε)‖A + ‖αg(aε − a)‖ 6 ε.

Thus α is strongly continuous. �

Thus, Theorem (2.7) can provide ergodic, strongly continuous actions on certain
inductive limits, which then fit Theorem (2.6) and provide us with convergence of
certain Leibniz quantum compact metric spaces to inductive limit C*-algebras:

Corollary 2.8. We assume the same assumptions as Theorem (2.7). Moreover,
for each n ∈ N, let ℓn be a continuous length function on Gn. Let ℓ∞ and, for all
n ∈ N, let ℓn∞ be given as in Theorem (2.6), for some M > diam(G0, ℓ0).

We denote by A the inductive limit of (An, ϕn)n∈N.
Let α be the action of G on A constructed in Theorem (2.7). For all n ∈ N, let

Bn is the fixed point C*-subalgebra of the restriction of α to ker ρn, let Ln be the
Lip-norm defined from the restriction of α to Gn on Bn using the length function
ℓn∞. If L is the Lip-norm on A induced by α and ℓ∞ via Theorem (1.5) then:

lim
n→∞

Λ((A, L), (Bn, Ln)) = 0.

Proof. Apply Theorem (2.6) to Theorem (2.7). �

3. Approximation of noncommutative solenoids by quantum tori

We apply the work of our previous section to the noncommutative solenoids. We
begin by setting our framework. We begin with some notation.

Notation 3.1. For any θ ∈ S p, the noncommutative solenoid Sθ is, by Definition

(1.2), the universal C*-algebra generated by unitaries Wx,y with x, y ∈ Z
[

1
p

]

×

Z
[

1
p

]

, subject to the relations: Wx,yWx′,y′ = Ψθ((x, y), (x
′, y′))Wx+x′,y+y′ .

By functoriality of the twisted group C*-algebra construction, we note that non-
commutative solenoids are inductive limits of quantum tori. All the quantum tori
in this paper are rotation C*-algebras, and we shall employ a slightly unusual no-
tation, which will make our presentation clearer:

Notation 3.2. The rotation C*-algebra Aθ, for θ ∈ T, is the C*-algebra generated
by two unitaries Uθ and Vθ which is universal for the relation V U = θUV .

Theorem 3.3 ([17]). Let p ∈ N \ {0} and θ ∈ S p. For each n ∈ N, we define the
map Θn : Aθ2n → Aθ2n+2

as the unique *-monomorphism such that:

Θn(Uθ2n) = U
p
θ2n+2

and Θn(Vθ2n) = V
p
θ2n+2

.

Then:
Sθ = lim

−→
(Aθ2n ,Θn)n∈N.

Moreover, the canonical injection ρn from Aθ2n into Sθ is given by extending the
map:

Uθ2n 7→W 1
pn

,0 and Vθ2n 7→W0, 1
pn

.
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Remark 3.4. In Theorem (3.3), only the entries with even indices in the solenoid
element defining the twist of the noncommutative solenoid are involved, since by
our choice of multiplier in Theorem-Definition (1.1), the commutation relations
between the canonical generators W0,p−k and Wp−k,0 only involves these indices.
Note however that the definition of the solenoid group implies that given all the
even indices entries of one of its element, the entire group element is uniquely
determined.

We note that the dual action of S p on any noncommutative solenoid may be
obtained using Theorem (2.7) and the dual actions on quantum tori.

We now have all our ingredients to prove the main result of this paper.

Theorem 3.5. Let θ ∈ S p and ℓ a continuous length function on T2. We let ℓ∞ be
the length function of Definition (2.2) on S2p for M = diam

(

T2, ℓ
)

. For all n ∈ N

and all z ∈ T2, let:

ℓn∞(z) = inf
{

ℓ∞(ω) : ω ∈ S2p, ω = (zp
n

, zp
n−1

, . . . , z, . . .)
}

.

Then ℓn∞ is a continuous length function on T2. Let Ln be the Lip-norm on the
quantum torus Aθ2n defined by ℓn∞, the dual action of T2 on Aθ2n , and Theorem-
Definition (1.5).

Let L be the Lip-norm on Sθ defined by the dual action α of S2p and the length
ℓ∞ via Theorem-Definition (1.5).

We then have, for all n ∈ N:

Λ
∗((Sθ, L), (Aθ2n , Ln)) 6

diam
(

T2, ℓ
)

n+ 1
.

In particular:

lim
n→∞

Λ
∗ ((Sθ, L) , (Aθ2n , Ln)) = 0.

Proof. Let N ∈ N and let S p,N = {(zn)n∈N : ∀n 6 N zn = 1} . If G = S2p then

S2p,N = G(N) using the notation of Theorem (2.6).

The quotient S p

/

S p,N
is given by:

{

(zn)06n6N ∈ TN+1 : ∀n ∈ {0, . . . , N} z
p
n+1 = zn

}

.

The map z ∈ T 7→ (zp
N

, zp
N−1

, . . . , z) is an isomorphism from T onto S p

/

S p,N
.

Moreover, the dual of S p

/

S p,N
is isomorphic to the subgroup:

ZN =

{

q

pk
: k ∈ {0, . . . , N}

}

of Z
[

1
p

]

; this subgroup is trivially isomorphic to Z via the map z ∈ Z 7→ z
pN . In

fact, this isomorphism is also (up to changing the codomain to make it a monomor-

phism) the canonical injection of the N th copy of Z to Z
[

1
p

]

, with range ZN ⊳Z
[

1
p

]

,

when writing Z
[

1
p

]

as the inductive limit of Z
k 7→pk

// Z
k 7→pk

// · · · .

By Theorem (2.6), it is thus sufficient, to conclude, that we identify the fixed
point C*-subalgebra of Sθ for the subgroup S2p,N .
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Let µ be the Haar probability measure on S2p. As in the proof of Lemma (2.5),
We define the conditional expectation EN of Sθ by setting for all a ∈ Sθ:

EN (a) =

∫

S2
p,N

αg(a) dµ(g).

Let (z, y) ∈ S2p, and q1, q2 ∈ Z, k1, k2 ∈ N. By Theorem-Definition (1.1) and by

definition of the dual action α of S2p on Sθ, we compute:

αz,y

(

W q1

pk1
,

q2

pk2

)

= z
q1
k1
y
q2
k2
W q1

pk1
,

q2

pk2

.

Thus, if (z, y) ∈ S2p,N then αz,y(W q1

pk1
,

q2

pk2

) = W q1

pk1
,

q2

pk2

for all q1
pk1

, q2
pk2
∈ ZN .

On the other hand, EN (W q1

pk1
,

q2

pk2

) = 0 for all q1
pk1

, q2
pk2
6∈ ZN .

Thus the range of EN , which is the fixed point C*-subalgebra for S2p,N , is the

C*-subalgebra of Sθ generated by:
{

W 1

pk1
, 1

pk2

:
q1

pk1
,
q2

pk2
∈ ZN

}

.

Now, by definition:

W 1

pk1
, 1

pk2

= Ψθ

((

q1

pk1
, 0

)

,

(

0,
q2

pk2

))

(

W 1

pN
,0

)q1k1p (

W0, 1

pN

)q2k2p

.

Thus, the range of EN is the C*-subalgebra of Sθ generated by W 1

pN
,0,W0, 1

pN
.

By Theorem (3.3), the range of EN is the image of Aθ2n in Sθ via the canonical
injection ρN defined in Theorem (3.3). Now, note that ρN is an isometry from LN

to the Lip-norm LS2
p,N

defined by Theorem (1.5), the restriction of the dual action

α to S2p,N , acting on EN (Sθ) (as in Lemma (2.5)). Thus:

Λ((EN (Sθ), LS2
p,N

), (Aθ2n , LN )) = 0.

By Theorem (2.6), we thus conclude:

Λ((Sθ, L), (Aθ2N , LN )) = Λ((Sθ, L), (EN (Sθ), LS2
p,N

))

6 diam
(

Sp,N
2, ℓ∞

)

6
diam

(

T2, ℓ
)

N + 1
by Corollary (2.4).

This completes our proof. �

We note that since convergence for the quantum propinquity implies convergence
in the sense of the Gromov-Hausdorff distance for classical metric spaces, we have
proven that (T2, ℓn∞)n∈N converges to S2p in the Gromov-Hausdorff distance, using
the notations of Theorem (3.5).

We begin with the immediate observation that, since quantum tori are limits of
fuzzy tori for the quantum propinquity, so are the noncommutative solenoids.

Corollary 3.6. Let p ∈ N \ {0} and θ ∈ S p. Fix a continuous length function ℓ

on T2 and let ℓ∞ be the induced length function on S2p given in Definition (2.2).

There exists a sequence (ωn)n∈N ∈ TN and a sequence (kn)n∈N in NN with
limn→∞ kn =∞, limn→∞ |θ2n − ωn| = 0, and ωkn

n = 1 for all n ∈ N, such that:

lim
n→∞

Λ((C∗(Z2
kn
, σn), Ln), (Sθ, L)) = 0
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where Zk = Z /kZ , Ln and L are the Lip-norms given by Theorem (1.5) for the
dual actions, respectively, of the groups of kn roots of unit and the solenoid group
S p, and:

σn : ((z1, z2), (y1, y2)) ∈ Z2
kn
×Z2

kn
7→ exp(2iπωn(z1y2 − z2y1)).

Proof. This follows from a standard diagonal argument using Theorem (3.5) and
[10, Theorem 5.2.5]. �

Quantum tori form a continuous family for the quantum propinquity, and to-
gether with Theorem (3.5), we thus can prove:

Theorem 3.7. Let ℓ be a continuous length function on T2. For each θ ∈ S p, let
Lθ be the Lip-norm defined by Theorem (1.5) for the dual action of S2p on Sθ and
the continuous length function ℓ∞ of Definition (2.2).

The function θ ∈ S p 7−→ (Sθ, Lθ) is continuous from S p to the class of Lei-
bniz quantum compact metric spaces endowed with the quantum Gromov-Hausdorff
propinquity.

Proof. Fix some continuous length function m on T. This length function need
not be related to ℓ. Its purpose is simply to provide us with a metric λm for the
topology of S p.

Let ε > 0. Let N ∈ N be chosen so that
diam(T2,ℓ)

N+1 6 ε
3 . By Theorem (3.5), for

all θ ∈ S p, we have:

Λ
∗((Sθ, L), (Aθ2N , L)) 6

ε

3
.

By [10, Theorem 5.2.5], there exists δ > 0 such that, for all ω, η ∈ [0, 1) with
m(ωη−1) 6 δ, we have Λ

∗((Aω, L), (Aη, L)) 6
ε
3 .

Let ς = min
{

δ,
diam(T,m)

N+1

}

. Let θ, ξ ∈ S p with λm(θ, ξ) 6 ς . By definition of

λm, we have m(θ2nξ
−1
2n ) 6 δ. Consequently:

Λ((Sθ, Lθ), (Sξ, Lξ)) 6 Λ((Sθ, Lθ), (Aθ2N , L))

+ Λ((Aθ2N , L), (Aξ2N , L)) + Λ((Aξ2N , L), (Sξ, Lξ)) 6 ε,

which concludes our theorem. �
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