
Using Minimum Description Length for Discretization

Classification of Data Modeled by Bayesian Networks

by

Nicholas D. Levine

B.S. in Mathematics, University of Denver, 2003

Master of Engineering Management, Old Dominion University, 2007

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Applied Mathematics

2011

This thesis entitled:
Using Minimum Description Length for Discretization Classification of Data Modeled by Bayesian

Networks
written by Nicholas D. Levine

has been approved for the Department of Applied Mathematics

Dr. Jem N. Corcoran

Dr. Debra S. Goldberg

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Levine, Nicholas D. (M.S., Applied Mathematics)

Using Minimum Description Length for Discretization Classification of Data Modeled by Bayesian

Networks

Thesis directed by Prof. Dr. Jem N. Corcoran

A Bayesian network is a graphical model that encodes conditional probability relationships

among multiple variables. Their applications extend through computational biology and bioinfor-

matics, medicine, image processing, decision support systems, and engineering. When applying

statical analysis to Bayesian networks several advantages are gained. First, Bayesian networks

are able to model many variables at once. They are able to predict casual relationships between

variables that allow for predictions to be made if changes are made to specific area in the network.

Second, Bayesian networks represent both casual and probabilistic relationships combining prior

knowledge to currently viewed data. This proves as a very valuable tool in problem solving. The

fundamental aspect of these powerful networks is the data that is used to construct them. Existing

recovery algorithms require either discrete or Gaussian data. Non-Gaussian continuous data is

normally discretized in an ad-hoc and careless manner which is highly likely to destroy the precise

conditional dependencies we are out to recover.

We explore the effectiveness of a method due to Friedman and Goldszmidt (1996) that is based

on a metric from information theory known as ”description length”. While theoretical interesting,

their proposed search strategy for an optimal discretization is infeasible for even moderately sized

data sets on the smallest of networks. We introduce a new search strategy based on a ”top-down”

approach utilizing a local description length metric that can be implemented with significant time

savings.

Dedication

To my wife, Jill, and our four little girls, Dylan, Riley, Keegan and Sawyer.

v

Acknowledgements

I would like to thank my advisor, Jem Corcoran, for her continued support. I think that it

is only fitting that my coursework both started and ended with her teachings. You have made a

lasting impression on my desire to continue to learn both in the classroom and in research. Thank

you for sacrificing so much of your personal time to teach!

To Anne Dougherty, thanks for being such a great supporter and advocate for me in this program.

You were my first impression of the department (from Cuban soil) and I appreciate your open

communication and effort in securing my place in the department.

vi

Contents

Chapter

1 Introduction 1

1.1 Bayesian Networks . 2

1.2 Data and Recovery . 4

1.2.1 Discretizing Discrete Data . 4

1.2.2 Discretizing Continuous Data . 6

1.3 The Minimum Description Length Approach . 7

2 Formalities and Previous Work 8

2.1 Bayesian Network Notation . 8

2.2 The Multinomial Connection . 8

2.2.1 The Multinomial Distribution . 9

2.2.2 The Multinomial Network . 9

2.2.3 Priors for the Multinomial Network . 10

2.3 Network Scores . 11

2.3.1 Maximizing the Likelihood . 12

2.3.2 Akaike’s Information Criterion (AIC) . 12

2.3.3 Bayesian Information Criterion (BIC) . 13

2.4 Network Recovery . 13

2.4.1 Simulating Data . 14

vii

3 Minimum Description Length 18

3.1 Introduction . 18

3.2 A Bit About Bits . 18

3.3 Description Length for Bayesian Networks . 19

3.3.1 Storing the Network . 19

3.3.2 Storing the Data . 21

3.3.3 Minimum Description Length as a Scoring Mechanism 22

4 Minimum Description Length For Discretization 24

4.1 Description Length for Discretization . 24

4.2 Searching for Discretizations . 27

4.2.1 Local Description Length Score: One Network 30

4.2.2 Local Description Length: Any Network . 31

4.2.3 The ”Top-Down Approach” . 33

4.2.4 The Single Iteration Top-Down Approach . 35

4.3 Conjecture . 35

4.4 Example . 37

4.5 Discretization of Several Variables . 38

5 Continuous Data 42

5.1 An Example . 42

5.2 Bootstrapping . 43

5.3 Estimating Mutual Information . 43

5.4 Conclusion . 44

viii

Bibliography 45

Appendix

A Huffman Coding and Shannon Coding 47

A.1 Huffman Coding a Sequence of Characters . 48

A.2 Huffman Coding a Random Variable . 49

A.3 Shannon Coding a Random Variable . 51

B More Examples 54

B.1 Searching All Discretizations . 54

B.2 Single Iteration Top-Down . 55

ix

Tables

Table

2.1 Number of Nodes Versus Number of DAGs . 14

2.2 Directed Acyclic Graphs on Three Nodes . 16

2.3 AIC and BIC Recovery . 17

3.1 Lengths of Binary Descriptions of Integers . 19

3.2 AIC, BIC and MDL Recovery . 23

4.1 Local Description Length Score . 32

4.2 Local Description Length Calculated for Three Node DAGs (NOTE: Graphs 16-25

were removed from the table as they are redundant and only graphs 1-15 are needed

to illustrate the findings) . 39

4.3 Local Description Length Score: Iteration 1 . 40

4.4 Local Description Length Score: Iteration 2 . 40

4.5 Local Description Length Score: Iteration 3 . 40

4.6 Local Description Length Score: Iteration 4 . 40

4.7 Local Description Length Score: Example 2 . 41

B.1 Example 2: Local Description Length Calculated for Three Node DAGs (NOTE:

Graphs 11-25 were removed from the table as they are redundant and only graphs

1-10 are needed to illustrate the findings) . 56

x

B.2 Example 3: Local Description Length Calculated for Three Node DAGs (NOTE:

Graphs 11-25 were removed from the table as they are redundant and only graphs

1-10 are needed to illustrate the findings) . 57

B.3 Local Description Length Score: Example 3 . 58

B.4 Local Description Length Score: Example 4 . 58

xi

Figures

Figure

1.1 A Directed Acyclic Graph . 2

1.2 Four DAGs With the Same (Undirected) Edges . 3

1.3 A Three Node DAG . 4

1.4 An Example of Loss of Conditional Independence . 6

4.1 100 Independent Values of Estimated Mutual Information Between Nodes X1 and

X2 for Graph 8 Based on Samples of Size 100,000 . 38

Chapter 1

Introduction

A Bayesian network is a convenient graphical way to visualize and convey potentially complex

probabilistic dependencies between a large number of random variables. It consists of a set of

conditional probability distributions and a directed acyclic graph in which nodes represent the

random variables and edges between nodes represent dependencies. There has been a great deal

of work done ([6],[8],[11], [12], [14],[15],[17],[18],[20]) on the problem of recovering (learning) the

structure of a generating network given data. Typically, the network random variables are either

discrete or, if not, they are either assumed to be Gaussian or are otherwise discretized before

network recovery. Often ([9], [16], [18], [22]) this discretization is performed in an ad hoc manner.

Unfortunately, such a non-rigorous approach is highly likely to destroy the precise conditional

dependencies one is out to recover (see sections 1.2.1 and 1.2.2). In this thesis, we explore the

effectiveness of a method due to Friedman and Goldszmidt [10] and introduce search strategies

that take this method from interesting to feasible. Throughout this thesis, we make heavy use

of simulated data so that we can verify that network recovery and discretization algorithms are

working correctly. We will focus on the ideal circumstances such that we are given small networks

with lots of data. If the true network or discretization cannot be recovered in these instances, they

will not be recovered in the less than ideal cases.

2

1.1 Bayesian Networks

A directed acyclic graph (DAG) is a set of nodes and directed edges which, as the name

suggests, do not form a closed loop or cycle. In a DAG for a Bayesian network, the nodes represent

random variables and the edges represent dependencies between them.

Consider the directed acyclic graph on five nodes shown in Figure 1.1.

Figure 1.1: A Directed Acyclic Graph

1

2

3

4 5

In this graph, we say that node 1 is a parent of nodes 2 and 3 and nodes 2 and 3 are

children of node 1. Figure 1.1 represents a joint density p(x1, x2, . . . , x5) for random variables

X1,X2, . . . ,X5 that can be written as

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x4). (1.1)

We can see from (1.1) that the random variables X2 and X3, for example, are independent once

the value of X1 is fixed or given. For a general Bayesian network, we say that “children of common

parents are conditionally independent given their parents”. Equation (1.1) also tells us that the

random variables X1 and X4 are independent once the value of X2 is given. We say in general

that “each random variable in a Bayesian network is independent of its non-descendants given its

parents”.

To further illustrate this point, see Figure 1.2 below. Given are four examples of DAGs that

possess the same edges, ignoring directions. They correspond to the following four joint probability

3

densities.

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2) (a)

p(x1, x2, x3) = p(x3)p(x2|x3)p(x1|x2) (b)

p(x1, x2, x3) = p(x1)p(x3)p(x2|x1, x3) (c)

p(x1, x2, x3) = p(x2)p(x1|x2)p(x3|x2) (d)

(1.2)

From (1.2), it is clear that for graphs (a), (b), and (d) X1 and X2 are dependent, X2 and

X3 are dependent, and X1 and X3 are dependent. Additionally, if we are given X2, then X1 and

X3 are independent. In contrast, graph (c) is oriented such that X2 is a child of both X1 and X3.

Thus, X1 and X2 are dependent and X2 and X3 are dependent, but X1 and X3 are independent

(without being giving X2). As they encode the same dependencies, graphs (a), (b), and (d) are

equivalent in some sense.

Figure 1.2: Four DAGs With the Same (Undirected) Edges

1

2 3

1

2 3

1

2 3

1

2 3

(a) (b) (c) (d)

A set of DAGs with the same set of edges are said to be Markov equivalent if, in general,

they DAGs share the same set of conditional independence relations among variables. Within a

Markov equivalence class DAGs differ when it comes to causality. Network recovery algorithms run

on a fixed data set can not distinguish between Markov equivalent graphs. The distinction can be

made if one has the ability to generate or collect data where certain nodes are being held to fixed

values. In this thesis, we will focus only on graph recovery up to the equivalence class.

In general, a Bayesian network on n nodes (random variables) consists of a directed acyclic

graph on n nodes and a set of conditional probability density functions that make up the terms in

4

an assumed joint density

p(x1, x2, . . . , xn) =
n∏

i=1

p(xi|Πi).

We are using Πi to denote the set of random variables corresponding to parent nodes of node i.

1.2 Data and Recovery

To date, much work has been done on the recovery of these Bayesian networks to identify their

specific structure. Examples can be found in [6],[8],[11], [12], [14],[15],[17],[18], and [20]. Although

recovery is important, most Bayesian network learning procedures make one of the following two

assumptions: (1) that the data are discrete or (2) that the data are continuous and either follow

a Gaussian distribution or are otherwise discretized before recovery. In many cases the data is

discretized in an ad hoc manner which often destroys the conditional relationships among variables.

As discretization of continuous random variables involves reassigning all values in a particular

interval to a single value, it is, in a sense, a classification problem which may also be encountered in

problems with originally discrete data. We will spend a significant portion of this thesis discussing

the ”discretization of discrete variables”.

1.2.1 Discretizing Discrete Data

To illustrate the concern in discretizing already discrete data consider the DAG in Figure

1.3.

Figure 1.3: A Three Node DAG

1

2 3

5

Now consider the discretization defined for i = 1, 2, 3, let

Yi =





1 , if Xi ∈ {1, 2}

2 , if Xi = 3.

(1.3)

Our goal is to now show that the conditional independence of nodes 2 and 3 given node 1 is not

preserved. From above we have:

P (Y2 = 1, Y3 = 1|Y1 = 1) = P (X2 ∈ {1, 2},X3 ∈ {1, 2}|X1 ∈ {1, 2})

= P (X1∈{1,2},X2∈{1,2},X3∈{1,2})
P (X1∈{1,2})

= P (X2∈{1,2},X3∈{1,2}|X1=1)P (X1=1)+P (X2∈{1,2},X3∈{1,2}|X1=2)P (X1=2)
P (X1∈{1,2})

.

Since X2 and X3 are conditionally independent given X1, we can factor the numerator to get

P (Y2 = 1, Y3 = 1|Y1 = 1) = P (X2∈{1,2}|X1=1)P (X3∈{1,2}|X1=1)P (X1=1)
P (X1∈{1,2})

+P (X2∈{1,2}|X1=2)P (X3∈{1,2}|X1=2)P (X1=2)
P (X1∈{1,2})

Similarly one can show that:

P (Y2 = 1|Y1 = 1) =
P (X2 ∈ {1, 2}|X1 = 1)P (X1 = 1) + P (X2 ∈ {1, 2}|X1 = 2)P (X1 = 2)

P (X1 = 1) + P (X1 = 2)

and

P (Y3 = 1|Y1 = 1) =
P (X3 ∈ {1, 2}|X1 = 1)P (X1 = 1) + P (X3 ∈ {1, 2}|X1 = 2)P (X1 = 2)

P (X1 = 1) + P (X1 = 2)

Combining the equalities above we see that:

P (Y2 = 1, Y3 = 1|Y1 = 1) 6= P (Y2 = 1|Y1 = 1) · P (Y3 = 1|Y1 = 1) (1.4)

Thus, nodes 2 and 3 are not conditionally independent given node 1.

6

1.2.2 Discretizing Continuous Data

An example of ad hoc discretization of continuous data can be found in [18]. In this paper,

the authors had simulated time series data for several nodes similar to that depicted in Figure 1.4.

There was a fairly obvious relationship between the random variables X1 and X2 in a “high/low

sense”, but once high or low, each random variable was then, independently, augmented by Gaussian

noise. The discretizations used divided up the data (the y-axis) into the dominant regimes of low,

middle, and high range values (assigned as 1’s, 2’s, and 3’s) as depicted by the breaks determined

by the horizontal lines in Figure 1.4. However, the independence of the noise components were

completely lost and the resulting data appeared to have completely deterministic relationships.

For example, every instance of X1 as 1 was matched by an instance of X2 as −1. This sort of

overly coarse discretization, resulting in a loss of information about dependence or conditional

independence, appears typical among practitioners in the literature.

Figure 1.4: An Example of Loss of Conditional Independence

0 50 100 150

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

time

x1

0 50 100 150

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

time

x2

7

1.3 The Minimum Description Length Approach

In this thesis, we explore an approach for discretization by Friedman and Goldszmidt that

is based on a measure of information know as ”minimum description length (MDL).” This thesis

is organized as follows. In Chapter 2 we formally define a Bayesian network to include notation

used throughout this paper and discuss discrete recovery. In Chapter 3 we describe minimum

description length and how it is currently applied. Chapter 4 focuses on MDL as it is utilized for

discretization. We introduce a local description length as a score for discretization and show how

it can significantly reduce the number of possible discretizations. Finally, in Chapter 5 we look at

the continuous data and evaluate techniques to maintain the integrity of the data while producing

accurate results in a timely manner.

Chapter 2

Formalities and Previous Work

2.1 Bayesian Network Notation

Bayesian networks are directed acyclic graphs that encode joint probability distributions for

the random variables used to construct the network. Formally, for a finite set of discrete random

variables U=(X1,...,Xn), a Bayesian network consists of the pair B = (G,Θ) where G is a directed

acyclic graph on n nodes and Θ is a parameter set containing discrete values θijk = p(Xi = k|Πi = j)

for all possible k in the support ofXi, and all possible j, where j is an enumeration of a configuration

of Πi, the set of random variables corresponding to parent nodes of node i. G defines a unique joint

probability distribution over U given by:

p(u) = p(x1, x2, . . . , xn) =
n∏

i=1

p(xi|Πi) =
n∏

i=1

θi,Πi,xi
. (2.1)

As stated before, each node is independent of it non-descendants given its parents and second,

children of common parents are conditionally independent given their parents. Πi represents the

set of random variables corresponding to parent nodes Xi in G.

2.2 The Multinomial Connection

The multinomial distribution is an extension of the binomial distribution where the outcomes

of a given experiment can result in more than one outcome. We now describe the relationship

between a Bayesian network and the multinomial distribution.

9

2.2.1 The Multinomial Distribution

Consider an experiment with m independent trials and r possible outcomes on each trial.

Let θi, for i = 1, 2, . . . , r be the probability that any one trial results in outcome i. Define the

random variables Y1, Y2, . . . , Yr where Yi is the number of trials that result in outcome i. Then

the vector Y := (Y1, Y2, . . . , Yr) has a multinomial distribution with parameters m, r, and

θ = (θ1, θ2, . . . , θr).

The probability distribution for Y is given by

p(Y1 = y1, Y2 = y2, . . . , Yr = yr) =
m!

y1!y2! · · · yr!
θ
y1
1 θ

y2
2 · · · θyrr (2.2)

where
∑r

i=1 θi = 1 and y1, y2, . . . , yr are non-negative integers summing to m.

2.2.2 The Multinomial Network

Consider now a Bayesian network on n nodes. Let Xi, for i = 1, 2, . . . , n denote the random

variable associated with node i. We assume that Xi can take on ri values and, for simplicity, we will

assume that the ri values are the integers 1, 2, . . . , ri. We express the dependency of each variable

Xi on its parents as:

p(Xi = k|Πi) = θi,Πi,k

where Πi is a particular configuration of the parent variables of Xi. We will also use the reduced

subscript notation

θi,k = p(Xi = k)

if Πi = ∅.

If we enumerate the number of possible configurations of values taken on by the parent nodes

of Xi as 1, 2, . . . , qi where qi = |Πi|, then we may write

p(Xi = k|Πi = j) = θi,j,k (2.3)

for

i = 1, 2, . . . , n, j = 1, 2, . . . , qi, and k = 1, 2, . . . , ri.

10

Now consider data consisting of m observations of the n nodes of a network, and restrict

attention for a moment to the m values of the ith node. Consider any one configuration j of the

parent nodes to node i that exists in the data. Let mj be the number of times that the parents of

node i take on configuration j in the data set. Then within the mj values of Xi|Πi = j, we can

describe the number of observed 1’s, 2’s, and so on, up to the number of ri’s with a multinomial

distribution with parameters mj , ri, and (θi,j,1, θi,j,2, . . . , θi,j,ri).

In this way, using (2.2), we may write the likelihood for the entire m× n data set D as

LD(θ) =
∏

i,j,k

θ
nijk

ijk (2.4)

where nijk is the total number of times in the sample that Xi is observed to have value k when it’s

parents take on configuration j. (The likelihood is any function proportional to the joint pdf for m

independent copies of (X1,X2, . . . ,Xn) considered as a function of the θ’s.) This is equivalent to

the likelihood function associated with m copies of the random vector with density given by (2.1).

2.2.3 Priors for the Multinomial Network

The terminology Bayesian network derives from the application of Bayes rule in order to

determine certain conditional probabilities. A study using Bayesian networks does not necessarily

imply a Bayesian modeling approach. However, in the case that one wishes to use Bayesian infer-

ential methods, it becomes necessary to assign prior distributions to the network parameters given

by θijk. Typically, for multinomial networks, one uses the conjugate prior given by the Dirichlet

distribution. That is, we will assume that the joint density for the θijk for a particular Bayesian

network BN , is given by

p(θ|BN) =
Γ(

∑
αijk)∏
αijk

∏
θ
αijk−1
ijk

for some fixed hyperparameters αijk > 0. Note that this is a high dimensional generalization of

the more familiar Beta distribution. It is a convenient way to assign values between 0 and 1 to

each θijk in a way such that
∑

k θijk = 1. It is called a conjugate prior for the multinomial

distribution because if the data given the θijk follow a multinomial distribution and our “prior”

11

belief about the θijk before observing the data is that they follow a Dirichlet distribution, then

the the posterior joint distribution of the θijk given the data (i.e. after we have observed the

data) is another (different parameter) Dirichlet distribution. This is a mathematical convenience

for Bayesian analysis.

With this Dirichlet prior, the probability, for any particular Bayesian network BN , of us

seeing the data set D is

p(D|BN) =
∫ ∫

p(D|BN, θ) · p(θ|BN) dθ

=
∫ ∏n

i=1

∏q∗
i

j=1 θ
nijk

ijk

Γ(
∑ri

k=1
αijk)∏ri

k=1
Γ(αijk)

∏ri
k=1 θ

αijk−1
ijk dθ

=
∏n

i=1

∏q∗
i

j=1
Γ(
∑ri

k=1
αijk)

Γ(
∑ri

k=1
(αijk+nijk))

∏ri
k=1

Γ(αijk+nijk)
Γ(αijk)

(2.5)

where q∗i is the number of distinct configurations of parents of node i observed in the data. This is

as opposed to qi which is the total number of possible configurations of parents of node i, though

q∗i may be replaced by qi since the lack of parent configuration j in the data will be reflected by

nijk taking on the value 0.

2.3 Network Scores

There are many ways to recover networks from data. Indeed, we may not even want to

think in terms of “one best network” and instead use a model averaging approach or one that

constructs a best network by combining best “features” (for example, high scoring edges) from

several networks. In the case that we are searching for the ”best network” a penalized likelihood

approach is commonly used.

12

2.3.1 Maximizing the Likelihood

Givenm n-tuples of data points, u1, u2, . . . , um, the likelihood function for a Bayesian network

is given by

LD(θ) =
m∏

i=1

p(ui) =
∏

i,j,k

θ
nijk

ijk ,

where nijk is the total number of times in the sample that Xi is observed to have value k when it’s

parents take on configuration j.

Given a particular DAG, we can estimate each θ with its maximum likelihood estimator

θ̂ijk =
observations with Xi = k and Πi = j

observations with Πi = j
,

and then compute and compare the maximized likelihoods

LD(θ̂) =
∏

i,j,k

θ̂
nijk

ijk .

In the event that there are no observations where Πi = j, we set θ̂ijk = 1. However, it is important

to note that we can always increase the likelihood by including additional θ parameters. Therefore,

we will observe the greatest likelihoods (“most likely models”) to coincide with DAGs with a

maximal number of edges. Thus, the log-likelihood alone is not useful for recovering networks.

However, it is the building block for other scoring criteria which generally include penalties for

overparameterized models. The two most common penalized likelihood statistics are given by the

following information criteria.

2.3.2 Akaike’s Information Criterion (AIC)

Akaike’s Information Criterion (AIC) is essentially a simple transformation of the above

defined likelihood with a term included that penalizes for overparameterization. For theoretical

reasons (In that it is an approximation to a Kullback-Leibler divergence distance between two

probability distributions) it is defined by:

AIC = −2 lnLD(θ̂) + 2 · (# parameters).

13

The goal then is to minimize the AIC to ensure a good fitting model in the sense of maximizing

the log-likelihood while penalizing for having too many parameters.

2.3.3 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) is defined by

BIC = −2 lnLD(θ̂) + (# parameters) · ln(m),

where m is, as before, the sample size. As with the AIC, the goal is to minimize the BIC.

Both the AIC and BIC have rigorous justifications, from both Bayesian and frequentist points

of view. AIC was derived from information theory, though it can be thought of as Bayesian if one

uses a clever choice of prior. On the other hand, BIC, originally derived through Bayesian statistics

as a measure of the Bayes factor, can also be derived as a non-Bayesian result. For more information

on these widely used scoring criteria, please see [1],[2], [3], and [5] (AIC), and [19] and [21] (BIC). To

make a broad generalization, the AIC tends to overfit the model in terms of number of parameters

and the BIC tends to overpenalize, or underfit the model. This often causes BIC to choose a more

simplistic model than AIC.

2.4 Network Recovery

In this section we illustrate recovery of a Bayesian network on a simple three node example.

In this case we are able to easily evaluate the AIC and BIC scores for all possible DAGs. Since

the number of possible DAGs increases super-exponentially as the number of nodes increases (see

Table 2.1), evaluating the scoring criteria for every DAG can quickly become overwhelming. In

these cases, it may become necessary to implement network space search methods. Examples of

search methods are the greedy hill-climbing, stochastic hill climbing, simulated annealing, and

Markov Chain Monte Carlo (MCMC).

14

Table 2.1: Number of Nodes Versus Number of DAGs

3 nodes 25 dags

4 nodes 543 dags

5 nodes 29,281 dags

6 nodes 3,781,503 dags

7 nodes 1,138,779,265 dags

8 nodes 783,702,329,343 dags

2.4.1 Simulating Data

Given a three node network with three random variables our goal is to recover the arrows

(edges) that describe their joint probability distribution. The list of all 25 DAGs corresponding to

3 node networks can be found in Table 2.2 and we will refer to these DAGs as they are numbered

here throughout this thesis.

We will assume that the data associated with each node is multinomial and they take on the

values 1,2,3,4,5,6. In our previously used notation, this means r1=r2=r3=6. In order to simulate

data from network 8, Table 2.2 we need to specify the following probabilities.

θ1,1 = P (X1 = 1), · · · θ1,5 = P (X1 = 5)

θ2,1,1 = P (X2 = 1|X1 = 1), · · · θ2,1,5 = P (X2 = 5|X1 = 1)

θ2,2,1 = P (X2 = 1|X1 = 2), · · · θ2,2,5 = P (X2 = 5|X1 = 2)

θ2,3,1 = P (X2 = 1|X1 = 3), · · · θ2,3,5 = P (X2 = 5|X1 = 3)

θ3,1,1 = P (X3 = 1|X1 = 1), · · · θ3,1,5 = P (X3 = 5|X1 = 1)

θ3,2,1 = P (X3 = 1|X1 = 2), · · · θ3,2,5 = P (X3 = 5|X1 = 2)

θ3,3,1 = P (X3 = 1|X1 = 3), · · · θ3,3,5 = P (X3 = 5|X1 = 3)

... · · ·
...

(Note that θ1,6 = 1−
∑5

i=1 θ1,i and θi,j,6 = 1−
∑5

k=1 θi,j,k for i ∈ {2, 3, 4, 5, 6} and j ∈ {1, 2, 3, 4, 5, 6}.)

For convenience, values for these probabilities were simulated from Dirichlet distributions

with uniform hyperparameters on the interval [0, 5].

15

We simulated (X1,X2,X3) by assigning values to X1 and then assigning values to X2 and

X3 given X1 according to the probabilities above. For this specific example we generated 100,000

values. Given this list of data, we used the AIC and BIC scoring mechanisms to select network 8

out of the 25 possible DAGs in Table 2.2. As mentioned in Chapter 1, AIC and BIC will not be

able to distinguish between networks that are in the same Markov equivalent class, so if a data set

scored by AIC and BIC recovers a network in the same Markov class it is considered successful.

The Markov classes for the 25 DAGs listed in Table 2.2 are: {1}, {2,3}, {4,5}, {6,7}, {8,9,10},

{11,12,13}, {14}, {15}), {16,17,18}, {19}, {20,21,22,23,24,25}. Table 2.3 shows the AIC and BIC

scores for all 25 DAGs and a successful recovery of DAG 8.

16

Table 2.2: Directed Acyclic Graphs on Three Nodes

1 2 3 4 5

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

6 7 8 9 10

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

11 12 13 14 15

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

16 17 18 19 20

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

21 22 23 24 25

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

17

Table 2.3: AIC and BIC Recovery

Graph AIC BIC
Number (n)

1 1040886.085 1041057.317

2 1001501.922 1001958.543

3 1001501.961 1001958.543

4 991255.256 991711.879

5 991255.259 991711.879

6 1036182.434 1036639.054

7 1036182.434 1036639.054

8 951871.096 952613.104

9 951871.096 952613.104

10 951871.096 952613.104

11 996798.271 997540.279

12 996798.271 997540.279

13 996798.271 997540.279

14 991435.745 936604.692

15 986551.608 987293.616

16 986551.608 987293.616

17 986551.608 987293.616

18 956755.233 958924.180

19 952051.582 954505.917

20 952051.582 954505.917

21 952051.582 954505.917

22 952051.582 954505.917

23 952051.582 954505.917

24 952051.582 954505.917

25 952051.582 954505.917

Chapter 3

Minimum Description Length

3.1 Introduction

As an alternative to AIC and BIC, the minimum description length principle (MDL principle)

states that the best model is the one which allows for the shortest description, in the sense of

encoding, of the data and model itself. With its origins in computer science and information

theory, “description length” is the number of bits required to store such an encoding. Unlike

AIC and BIC, the concept of minimum description length does not seem to be a familiar one to

statisticians and mathematicians. Thus, we devote this chapter to a more in-depth explanation.

3.2 A Bit About Bits

The binary representation of an integer is a string of 0’s and 1’s which represent coefficients

for terms that are powers of 2, starting with power 0 and read from the right. For example, the

binary number

1101

is equal to the decimal number

(1× 23) + (1× 22) + (0× 21) + (1× 20) = 13.

Table 3.1 shows the binary representations for the integers 0 through 16. Additional columns

in this table show the number of digits used in the binary representations and the base 2 logarithm

of the original integers in the cases where log2 is integer valued. The missing logs are in between

19

the consecutive integer log values. For example, 2 < log2 6 < 3. The emerging pattern is that the

binary representation of the integer n takes O (⌈log2 n⌉) digits where ⌈·⌉ is the ceiling function. For

the remainder of this thesis, we shall use log to denote log2. Also, we will omit the ceiling function

as storing n using approximately log n bits will be sufficient for our purposes.

Table 3.1: Lengths of Binary Descriptions of Integers

Decimal Binary Number of log2 n
Number (n) Representation Digits

0 0 1

1 1 1 0

2 10 2 1

3 11 2

4 100 3 2

5 101 3

6 110 3

7 111 3

8 1000 4 3

9 1001 4

10 1010 4

11 1011 4

12 1100 4

13 1101 4

14 1110 4

15 1111 4

16 10000 5 4

3.3 Description Length for Bayesian Networks

Description length, or the “minimum description length (MDL) score”, for a Bayesian network

is the number of bits required to store the network, including the DAG, the variables, and the

parameters, and to store the data. In this Section, we follow the construction of Friedman and

Goldszmidt [10] to derive the MDL score.

3.3.1 Storing the Network

Storing The Variables

20

We need to store the number of variables and the number of possible values taken on by each

variable. The number of possible values taken on by the random variable Xi will be denoted by

||Xi||.

The number of variables is n. As described in Section 3.2, this number can be stored using

log n bits. The integer ||Xi|| can be stored using log ||Xi|| bits for each of i = 1, 2, . . . , n. So, the

total variable storage contribution to the MDL score is

log n+
n∑

i=1

log ||Xi||.

Storing The DAG

We can describe the DAG by storing, for each of X1 through Xn, the number of parents and

a list of parents.

Recall that Πi denotes the set of parents for Xi. Using |·| to denote the number of elements in

a set, we have that Xi has |Πi| parents. This number takes log |Πi| bits to store. As a simplification

though, we will be conservative and say that it takes less than log n bits to store the number of

parents for each random variable since |Πi| < n.

Since the maximum node number is n, we will once again use the conservative value log n to

store any node number. To store the list of parents for the node corresponding to Xi we use log n

bits for each parent. That is, we use log n bits |Πi| times. Thus, we store the list of parents for Xi

using at most |Πi| · log n bits.

The total conservative contribution of the DAG to the MDL score is

n∑

i=1

(1 + |Πi|) log n.

Storing The Parameters

We now address storage of the θijk parameters. While |Πi| represents the number of parents

for Xi, we will use ||Πi|| to denote the number of configurations for the parent set for Xi. That is,

if Xi has two parents, one taking on 3 possible values and the other taking on 5 possible values,

|Πi| = 2 but ||Πi|| = 15.

21

SinceXi takes on ||Xi|| possible values for each parent configuration, we need to store ||Xi||−1

parameters (since they will add up to 1) for each parent configuration. Therefore, we need to store

||Πi||(||Xi|| − 1) parameters.

These parameters are not integers. According to Friedman and Goldszmidt, who cite [4] and

[14], the “usual choice in the literature” is 1
2 logm bits per parameter where m is the number of

n-dimensional data points.

The total parameter contribution to the MDL score is

1

2
logm

n∑

i=1

||Πi||(||Xi|| − 1).

In summary, the total description length (and contribution to the MDL score) for the net-

work is

D̃Lnet = log n+
∑n

i=1 log ||Xi||+
∑n

i=1(1 + |Πi|) log n+ 1
2 logm

∑n
i=1 ||Πi||(||Xi|| − 1)

= log n+
∑n

i=1 (log ||Xi||+ (1 + |Πi|) log n) +
1
2 logm

∑n
i=1 ||Πi||(||Xi|| − 1).

For the purpose of scoring and discretizing graphs that will be over a fixed number of variables,

we will drop the constant log n term and define

DLnet =
n∑

i=1

(log ||Xi||+ (1 + |Πi|) log n) +
1

2
logm

n∑

i=1

||Πi||(||Xi|| − 1). (3.1)

Note that this is not explicitly dependent on the θ parameters.

3.3.2 Storing the Data

Our data consists of m realizations of U = (X1,X2, . . . ,Xn). We will denote the realiza-

tions as u1, u2, . . . , um. Using Shannon coding (see Appendix A), the data point ui is encoded in

− log p(ui) bits where p(u) = p(x1, x2, . . . , xn) is given by (2.1). So, the description length of the

data is

DLdata = −
m∑

i=1

log p(ui). (3.2)

22

This is simply the negative log-likelihood for the model and is DAG dependent since the joint

density is determined by the DAG.

3.3.3 Minimum Description Length as a Scoring Mechanism

The minimum description length score is for a network and data is defined as

MDL = DLnet +DLdata.

This score is similar to the AIC and BIC scores in that it is also a negative log-likelihood plus a

term (DLnet) that penalizes for the number of parameters.

In this Section, we will use the MDL score to recover a network structure using simulated data

from DAG 8 in Table 2.2. Each of X1, X2, and X3 were assumed to take on values in {1, 2, . . . , 6},

and parameters for DAG 8 were drawn from the Dirichlet distribution using hyperparameters that

were uniformly distributed on the interval [0, 5]. (This is the same data used in Section 2.4.1.)

Results are shown in Table 3.2 along with the previously computed values of AIC and BIC.

We see that the AIC, BIC, and MDL scores all recovered the correct network up to the Markov

equivalence class.

23

Table 3.2: AIC, BIC and MDL Recovery

Graph AIC BIC MDL
Number (n)

1 1040886.085 1041057.317 520443.714

2 1001501.922 1001958.543 500885.425

3 1001501.961 1001958.543 500885.425

4 991255.256 991711.879 495762.093

5 991255.259 991711.879 495762.093

6 1036182.434 1036639.054 518225.681

7 1036182.434 1036639.054 518225.681

8 951871.096 952613.104 476213.804

9 951871.096 952613.104 476213.804

10 951871.096 952613.104 476213.804

11 996798.271 997540.279 498677.392

12 996798.271 997540.279 498677.392

13 996798.271 997540.279 498677.392

14 991435.745 936604.692 496536.904

15 986551.608 987293.616 493554.060

16 986551.608 987293.616 493554.060

17 986551.608 987293.616 493554.060

18 956755.233 958924.180 479196.648

19 952051.582 954505.917 476988.615

20 952051.582 954505.917 476988.615

21 952051.582 954505.917 476988.615

22 952051.582 954505.917 476988.615

23 952051.582 954505.917 476988.615

24 952051.582 954505.917 476988.615

25 952051.582 954505.917 476988.615

Chapter 4

Minimum Description Length For Discretization

Friedman and Goldszmidt [10] have developed a method for discretization of continuous data

for Bayesian networks which is based on the minimum description length principle. Essentially, the

MDL score is augmented with the description length necessary to be able to recover the original

data set from discretized data. The Friedman and Goldszmidt paper stands out among others in

this area as one of the only to suggest a rigorous approach to the problem. We begin this Chapter

by describing this MDL discretization and then give some improvements to take the method from

interesting to feasible. Examples in this Chapter, we will focus the ”discretization” of random

variables that are already discrete. That is, we will categorize or group together values into a

smaller number of values. In Chapter 5, we will consider truly continuous data.

4.1 Description Length for Discretization

A discretization is a mapping from the range of values in the original data set to the set

{1, 2, . . . , k} for some k ≥ 1. It will be described by k − 1 “thresholds” .

For simplicity, we will refer to node i and the random variable Xi interchangeably. Also, for

simplicity, we will assume at this point that node i is the only continuous one in the network and

that the others are discrete or have already gone through a discretization process. Furthermore, we

assume that Xi takes on mi distinct values in the data set with m n-dimensional points. (Clearly

mi ≤ m with equality in the case of truly continuous data.) The discretized version of Xi will be

denoted by X∗
i and we will use ki to denote the number of values taken on by X∗

i .

25

Friedman and Goldszmidt augment the MDL score with description lengths for

• the discretization rule which consists of thresholds for mapping data to {1, 2, . . . , k},

• the description of the discretized data, and

• the description of the original data set based on the discretized data set.

For a fixed DAG and a fixed threshold assignment, we proceed as follows.

Description Length for the Discretization Rule

The number of thresholds used in the discretization can be determined by looking at the

discretized data, which will be encoded in the description of the discretized data. Here, we will

include only the values of the thresholds. A useful observation is that, as we only need to distinguish

between values in the data set, we may choose thresholds from among the set of mi − 1 midpoints

in the set of distinct values for Xi. In order to get a discretization with ki values, we need to choose

ki−1 thresholds from the set of mi−1 thresholds. There are

(
mi − 1

ki − 1

)
such discretization policies

which may be indexed as 1 through

(
mi − 1

ki − 1

)
.

Storing this index will take at most log

(
mi − 1

ki − 1

)
bits. In order to achieve a simplification

towards the end of this Section, we note [7] the inequality

log




mi − 1

ki − 1


 ≤ (mi − 1)H

(
ki − 1

mi − 1

)

where H(·) is the entropy function for the Bernoulli distribution which is defined as

H(p) = −p log p− (1− p) log(1− p).

In summary, a conservative contribution of the discretization rule to the augmented MDL

score is

DLDR = (mi − 1)H

(
ki − 1

mi − 1

)
.

Description Length for the Discretized Data

26

Once the data has been discretized, its description can be stored in MDL bits where MDL is

the original score defined in Chapter 3. We will denote this as

MDL∗ = DL∗
net +DL∗

data

where DL∗
net is given by (3.1) and DL∗

data is given by (3.2).

Description Length for Information Needed to Recover the Original Data Set from

the Discretized Data

We begin with a small illustrative example. Suppose we have a small data set of 10 n-

dimensional values and that the values to be discretized for Xi are, in order,

0.17, 0.23, 0.46, 1.29, 1.78, 2.13, 2.44, 2.59, 2.99, 3.07.

Further suppose that these values have been discretized as follows.

0.17, 0.23, 0.46︸ ︷︷ ︸
1

, 1.29, 1.78︸ ︷︷ ︸
2

, 2.13, 2.44, 2.59, 2.99, 3.07︸ ︷︷ ︸
3

.

If we observe a discretized value of 3, for example, we know that the original value must

have been one of the values in the set {2.13, 2.44, 2.59, 2.99, 3.07}. We can encode which one of

these values appears in the specific instance of Xi we are observing. By using a Shannon coding

of values based on the frequencies in the entire data set (as opposed to the frequencies in the 5

element example set), we can exclude storage space for the frequencies in the description length

discretization scoring metric as it will be the same for all discretizations. Furthermore (see Appndix

A), for a particular value of X∗
i , we can encode the value of Xi using approximately − log P̂ (Xi|Xi∗)

bits.

Thus, the contribution of the continuous data reconstruction to the augmented MDL score

is

DLrecover = −
m∑

i=1

log P̂ (Xi|Xi∗).

In summary, the discretization score is defined as

DLDR +MDL∗ +DLrecover. (4.1)

27

As Friedman and Goldszmidt point out, there are many terms in the discretization score

that remain constant as the discretization of Xi changes. Thus, to simplify computations, they

consider only the terms in (4.1) that are affected by a change in discretization. After considerable

simplification of these terms, they have defined a “DL Local” score to be

DLlocal = 1
2 logm · ||Πi||(||X

∗
i || − 1) + 1

2 logm ·
∑

j:Xi∈Πj
||Πj ||(||Xj || − 1)

+ log ki + (mi − 1)H
(

ki−1
mi−1

)
−m

[
Î(X∗

i ,Πi) +
∑

j:Xi∈Πj
Î(Xj ,Πj)

]
(4.2)

where Î(~X, ~Y) is the estimated mutual information

Î(~X, ~Y) =
∑

~x,~y

P̂ (~x, ~y) log
P̂ (~x, ~y)

P̂ (~x)P̂ (~y)
.

The chosen discretization of Xi should be the one that minimizes DLlocal.

4.2 Searching for Discretizations

A discretization of Xi involves putting thresholds between values in the data set. In the case

of mi ≤ m distinct values, there are




mi − 1

0


+




mi − 1

1


+ . . .




mi − 1

mi − 1


 = 2mi−1

different discretizations to consider. Clearly, this number can get quite large for large data sets

with truly continuous (mi = m) data points. We now illustrate the enumeration of discretizations

in a toy case of categorization (“discretizing discrete data”) where they can be explicity listed. We

choose a node with 6 distinct values (mi = 6). Based on the section 4.1 we know that there are




mi − 1

ki − 1




discretization policies that result in ki categories. The total number of possible discretizations is

25 = 32.

28

We will use bars between the 6 numbers to show thresholds for discretization. For example,

writing

12|3|456

will imply a three category discretization where the values for Xi in the data will be reassigned as

1

2





→ 1, 3 → 2, and

4

5

6





→ 3.

For ki = 1 categories, 


5

0


 = 1.

The only possible discretization is to have all values in the same category. This is written as

123456

and implies (as there are no bars) that all values will be mapped to the value 1. This will be labeled

as “discretization 1”.

For ki = 2 categories, 


5

1


 = 5.

The 5 possible discretizations are:

1|23456 (discretization 2)

12|3456 (discretization 3)

123|456 (discretization 4)

1234|56 (discretization 5)

12345|6 (discretization 6)

For ki = 3 categories, the 


5

2


 = 10

29

possible discretizations are:

1|2|3456 (discretization 7)

1|23|456 (discretization 8)

1|234|56 (discretization 9)

1|2345|6 (discretization 10)

12|3|456 (discretization 11)

12|34|56 (discretization 12)

12|345|6 (discretization 13)

123|4|56 (discretization 14)

123|45|6 (discretization 15)

1234|5|6 (discretization 16)

For ki = 4 categories, the 


5

3


 = 10

possible discretizations are:

1|2|3|456 (discretization 17)

1|2|34|56 (discretization 18)

1|2|345|6 (discretization 19)

1|23|4|56 (discretization 20)

1|23|45|6 (discretization 21)

1|234|5|6 (discretization 22)

12|3|4|56 (discretization 23)

12|3|45|6 (discretization 24)

12|34|5|6 (discretization 25)

123|4|5|6 (discretization 26)

For ki = 5 categories, the 


5

4


 = 5

30

possible discretizations are:

1|2|3|4|56 (discretization27)

1|2|3|45|6 (discretization 28)

1|2|34|5|6 (discretization 29)

1|23|4|5|6 (discretization 30)

12|3|4|5|6 (discretization 31)

Finally, for ki = 6, there is 


5

5


 = 1

possible discretization which is

1|2|3|4|5|6 (discretization 32)

In Section 4.2.1, using an example of a 3 node network with simulated data, we will search

these 32 discretizations for the minimumDLlocal score. In general though, it is not feasible to search

all possible discretizations. Friedman and Goldszmidt recommend starting a search with no breaks

and trying to insert breaks that will reduce the local description length. In this thesis, we instead

recommend a “top-down” search strategy, described in Section 4.2.3, as a much more efficient

alternative and show that it will yield the “correct” discretization. In practice, the “correct” dis-

cretization of continuous data will be the one for which a graph recovery method, for example using

AIC, BIC, or MDL, will yield the generating DAG. However, for testing the DLlocal discretization

approach of Friedman and Goldszmidt and our “top-down” search strategy, we will ensure that

there is truly a correct discretization by simulating discrete data from a Bayesian network and then

“exploding” values into several randomly selected values.

4.2.1 Local Description Length Score: One Network

We simulated 100, 000 triples from the network represented by DAG 8 (Table 2.2) with 3 pos-

sible values for each node. The θijk parameters were simulated from the Dirichlet distribution with

31

hyperparameters simululated from the uniform distribution on the interval [0, 5]. We considered

the discretization problem at node 1 by “exploding” the data for node one as follows.

• Whenever node 1 took on the value 1, we randomly reassigned the value to be 1 or 2.

• Whenever node 1 took on (originally) the value 2, we randomly assigned the value to be 3,

4, or 5.

• Whenever node 1 took on (originally) the value 3, we reassigned the value to be 6.

Node 1 now takes on values in {1, 2, 3, 4, 5, 6} though 1 and 2 are indistinguishable and 3,

4, and 5 are indistinguishable. There are 32 possible discretizations ennumerated in Section 4.2.

We calculated the local description length for all possible discretizations. The results are shown in

Table 4.1. We observe that the local description length returned the smallest value for the correct

discretization.

4.2.2 Local Description Length: Any Network

TheDLlocal score is DAG dependent. In Section 4.2.1, we recovered the correct discretization,

but made all DLlocal computations using the generating DAG 8. Since discretization is a precursor

step to network recovery, we will not have the luxury of knowing the generating DAG. Friedman

and Goldszmidt suggest searching over the DAG space in addition to the different discretizations.

However, we will see that this Herculean task may not be necessary.

In Table 4.2 we calculated the local description length score for all possible DAGs and dis-

cretizations (using the same simulated data as above). What we find is that the lowest local

description length score corresponds to the correct discretization for all DAGs with the exception

of DAGs 1,6, and 7. Recall that we are working with a discretization of node 1 and note that DAGs

1,6, and 7 are the only DAGs where node 1 is not connected to any other nodes. In short, node 1

is isolated. As long as all the nodes are connected to the network by at least one edge, the lowest

local description length calculated for all DAGs corresponds to discretization 13. Thus, no matter

which discretization or network the data is generated from, it appears that one can calculate the

32

Table 4.1: Local Description Length Score

Discretization Discretization DL local
Number score

1 123456 33.22

2 1|23456 -6191.66

3 12|3456 -18474.07

4 123|456 -15129.52

5 1234|56 -13830.91

6 12345|6 -15116.82

7 1|2|3456 -18439.89

8 1|23|456 -15795.48

9 1|234|56 -15747.67

10 1|2345|6 -18416.07

11 12|3|456 -21209.95

12 12|34|56 -24645.59

13 12|345|6 -29929.17

14 123|4|56 -18535.49

15 123|45|6 -23819.33

16 1234|5|6 -19081.35

17 1|2|3|456 -21177.18

18 1|2|34|56 -24612.82

19 1|2|345|6 -29896.40

20 1|23|4|56 -19202.87

21 1|23|45|6 -24486.72

22 1|234|5|6 -20999.53

23 12|3|4|56 -24617.33

24 12|3|45|6 -29901.18

25 12|34|5|6 -29897.45

26 123|4|5|6 -23787.35

27 1|2|3|4|56 -24585.90

28 1|2|3|45|6 -29896.74

29 1|2|34|5|6 -29866.02

30 1|23|4|5|6 -24456.07

31 12|3|4|5|6 -29870.53

32 1|2|3|4|5|6 -29841.52

local description length for any DAG that has all the nodes connected with at least one edge. The

resulting lowest local description length corresponds to the correct discretization for the data. To

see more examples of this refer to Appendix B.

Although local description length is a powerful calculation as shown above, it is too cum-

33

bersome to calculate for all possible discretizations, even if only for one network. In an effort to

focus our search, we introduce a ”top-down” approach to try and reduce the number of calculations

required. (Our top-down method starts with the maximum thresholds as a discretization policy.

This is the opposite of the top-down method defined by Goldszmidt and Friedman in which they

start with no thresholds.)

4.2.3 The ”Top-Down Approach”

The “top-down approach” is a search strategy that removes threshold for the discretization

one at a time as long as they decrease the DLlocal score. Formally, the search algorithm is as

follows.

Top-Down Search Algorithm

Let k = ki be the number of distinct values taken on by Xi in the original data set.

Compute the DLlocal score with all k − 1 thresholds in place. This is known as the “full

DLlocal” score.

Assign the variable M to be the full DLlocal score.

(1) Compute the set, {D1,D2, . . . ,Dk−1} of DLlocal scores where Di corresponds to the score

with the ith threshold removed.

(2) If min(D1,D2, . . . ,Dk−1) < M , set M = min(D1,D2, . . . ,Dk−1), set k = k− 1, remove the

minimal scoring threshold, and return to Step 1.

If min(D1,D2, . . . ,Dk−1) ≥ M or if there are no more thresholds, stop.

For example, consider a node with 3 distinct values. The data is then exploded such that if

X1 = 1 the values in the new data set are X1 ∈ {1, 2}. Similarly, if X1 = 2 the values were exploded

such that X1 ∈ {3, 4, 5} and if X1 = 3 the value was changed to X1 = 6. We then calculate the

local description length with all thresholds. For notational purposes we number the thresholds or

34

breaks from 1 to ki (the maximum number of thresholds) from left to right by removing them one

at a time. The results are recorded in Table 4.3.

We see from the table that the local description length calculation corresponding to threshold

4 is the smallest of the 5 thresholds. We then compare this to the local description length calculated

with all breaks inserted and we see that threshold 4 is smaller. Thus, we remove threshold 4 and

the following discretization remains 1|2|3|45|6. Because a break was removed, we recalculate the

local description length by removing one break at a time but we begin with the discretization above

that has the break removed between the 4 and the 5. Table 4.4 shows the results. Of note here is

that we renumber the breaks from left to right based on the single break that is being removed at

very iteration.

We see that the lowest local description length corresponds to threshold 1 and it is lower

than the local description length calculated with all breaks inserted. Therefore, we remove the

break between the 1 and 2. What remains is the discretization corresponding to 12|3|45|6. We now

repeat the process for the 3 remaining thresholds. The results are shown in Table 4.5.

Again, we note that threshold 2 is the lower local description length and that it is also lower

than the local description length with all thresholds inserted. Thus, we remove break 2 and the

remaining discretization is 12|345|6. Table 4.6 displays the next iteration.

In this case we note that the lowest local description length corresponds to threshold 2 but

it is not lower than the local description length calculated with all thresholds inserted. This stops

the iteration and the remaining discretization is 123|45|6. This is exactly discretization policy that

the data was created from.

In general, the number of times that the local description length is calculated is

(mi − 1) + (mi − 2) + . . . + 1 =
mi(mi − 1)

2
.

35

4.2.4 The Single Iteration Top-Down Approach

Interestingly, there is a way to even further reduce the number of calculations required to

find the optimal discretization policy. In looking at the first iteration of the local description length

calculation in the example above (See Table 4.3), we note that although the local description

length value corresponding to threshold 4 is the smallest, the values for thresholds 1 and 3 are

also smaller than the local description length values calculated with all thresholds inserted. So,

for a discretization consisting of all breaks (1|2|3|4|5|6) we remove thresholds 1, 3, and 4 and what

remains of the discretization policy is 12|345|6. Amazingly, for the example begining in scetion

4.2.3 this is also the correct discretization policy in which the data was generated. All we may need

to calculate is the first iteration and compare all the calculated values by removing one break at a

time (and then replacing it) with the local description length where all breaks are inserted. Any

removed threshold corresponding to a local description length that is less than the local description

length with all breaks inserted is subsequently removed. What remains is the correct discretization.

One iteration of the single iteration top-down method requires mi calculations.

4.3 Conjecture

To generalize the findings in the simulation above we summarize with the following statement.

Conjecture:

Given a data set with mi distinct values, calculate the local description

length with all ki thresholds inserted. Then calculate the local description

length while removing one break at a time, resulting in ki − 1 more calcula-

tions. Compare all the values returned. If the local description length with a

break removed is smaller than the value returned for local description length

with all thresholds inserted, remove this break from the discretization with

all thresholds inserted. What remains is the optimal discretization.

36

To show this consider a node with 6 distinct values and consider the role of mutual information

in the calculation of local description length. In this example the break between the 3 and the 4 is

to be removed. Lets look specifically at the mutual information in the case where the discretization

policy has all 6 distinct values and compare that to the mutual information for the policy that has

the break between the 3 and the 4 removed, thus only 5 distinct values. The mutual informations

is calculated as follows:

I6 =
6∑

k=1

3∑

y=1

P (x, y) log

(
P (x, y)

P (x)P (y)

)

I5 =
5∑

k=1

3∑

y=1

P (x, y) log

(
P (x, y)

P (x)P (y)

)

In writing out the terms, the difference is:

I6− I5 =
3∑

y=1

P (3, y) log

(
P (3, y)

P (3) · P (y)

)
+P (4, y) log

(
P (4, y)

P (4) · P (y)

)
−

3∑

y=1

P ∗(3, y) log

(
P ∗(3, y)

P ∗(3)P (y)

)

Since we assumed that the break should be removed, the chance of seeing a 3 is equally likely

as seeing a 4. The following equalities are result.

P ∗(3, y) = P (3, y) + P (4, y)

P (3, y) = P (4, y)

P ∗(3, y) = 2 · P (3, y)

When substituting these equalities into the difference in mutual information above, it is noted

that all terms cancel and the result is that there is no change in mutual information! Additionally,

it is worth noting that the terms in front of the mutual information depend on the structure and

size of the discretization policy and not the relationship between variables. In the case where we

calculate the local description length with one break removed, this term is constant between all ki

calculations.

These findings are significant when identifying that the mutual information term dominates

the local description length calculation because it is multiplied by N. The other terms is the cal-

culation are significantly small or multiplied by the logN , which is grows much more slowly than

37

N. It is clear from the simulated data that the mutual information term dominates the calculation

as well because all the values for local description length are large negative numbers. Thus, we

calculate the local description length with all breaks inserted. Then perform the calculation with

a break that should be removed, and we will see a smaller (more negative number) because the

terms in front of the mutual information are reduced as we are evaluating local description length

at ki − 1 thresholds compared to ki thresholds.

In contrast, if a break is not to be removed there is a change in the mutual information. In

this case, the mutual information would be reduced because the variables are exhibiting less mutual

dependence. The contribution to the local description length is smaller. By subtracting a smaller

number we produce a larger local description length as compared to the local description length

with all thresholds inserted, which is not desired. Thus, the break will remain in the discretization

policy.

Based on the logic above, when calculating the local description length for one break that

should be removed we should see the same value for local description length when calculating any

other single break that should be removed as there is no change in mutual information. This was

not seen in the data given in Table 4.3. We attribute this difference to sample variability. To

illustrate the variability in the sample, we calculated the mutual information for 100 different data

sets produced by DAG 8. The results are shown in Figure 4.1.

Mutual information is a measure of the mutual dependence between two variables. Because

the data was generated from the same DAG, the same conditional dependency between variables

was established. Thus, we expect mutual information to be the same throughout the samples. The

histogram shows that this is not the case and that sampling variability exists.

4.4 Example

To conclude with another example, consider a graph with 3 distinct values. These values

were then exploded into 6 distinct values such that the following is the correct discretization policy:

12|345|6. See Table 4.7 for the results of the local description length calculation.

38

In this case, the thresholds corresponding to 1,3, and 4 are removed. This returns the correct

discretiation in 6 calculations of local description length. Further, we note that the local description

length values for thresholds 1,3,and 4 are not equal as we might expect. This is due to sampling

variance described above. Additional examples of the single iteration top-down method are provided

in Appendix B.

Figure 4.1: 100 Independent Values of Estimated Mutual Information Between Nodes X1 and X2

for Graph 8 Based on Samples of Size 100,000

mutual information

De
ns

ity

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

6

4.5 Discretization of Several Variables

All the work above has focused on one variable and it is not our intention to extend this

work to several variables at this time. If required, we recommend that you perform Goldszmidt and

Friedman’s procedure. Mainly, select a variable Xi and find its optimal discretization while treating

all other variables as discrete. Then move to a new variable Xi+1 and perform a discretization in the

same manner. Continue to discretize until you cannot improve the discretization of any variables.

Because of the inherent dependencies between variables in Bayesian networks, it will require several

iterations through all variables before the optimal discretization is discovered.

39

Table 4.2: Local Description Length Calculated for Three Node DAGs (NOTE: Graphs 16-25 were removed from the table as they are
redundant and only graphs 1-15 are needed to illustrate the findings)

Disc Graph

Number Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.00 16.61 0.00 16.61 0.00 0.00 0.00 33.22 33.22 33.22 16.61 0.00 0.00 -628.81 -628.81

2 4.61 -948.15 -956.45 -5238.90 -5247.21 4.61 4.61 -6191.66 -6191.96 -6191.96 -948.15 -956.45 -956.45 -1445.92 -5736.68

3 4.61 -2955.45 -2963.76 -15514.01 -15522.31 4.61 4.61 -18474.07 -18474.37 -18474.37 -2955.45 -2963.76 -2963.76 -3319.21 -15877.77

4 4.61 -3889.27 -3897.58 -11235.63 -11243.94 4.61 4.61 -15129.52 -15137.82 -15137.82 -3889.28 -3897.58 -3897.58 -4278.37 -11624.73

5 4.61 -5777.49 -5785.79 -8048.82 -8057.13 4.61 4.61 -13830.91 -13839.22 -13839.22 -5777.48 -5785.79 -5785.79 -6266.01 -8537.34

6 4.61 -9371.57 -9379.89 -5740.62 -5748.93 4.61 4.61 -15116.82 -15125.12 -15125.12 -9371.59 -9379.89 -9379.89 -10005.70 -6374.74

7 6.44 -2937.45 -2937.45 -15495.99 -15495.99 6.44 6.44 -18439.89 -18439.89 -18439.89 -2937.45 -2937.45 -2937.45 -3271.20 -15829.74

8 6.44 -4050.53 -4050.53 -11738.51 -11738.52 6.44 6.44 -15795.48 -15795.48 -15795.48 -4050.53 -4050.53 -4050.53 -4470.99 -12158.97

9 6.44 -6235.95 -6235.95 -9505.29 -9505.29 6.44 6.44 -15747.67 -15747.67 -15747.67 -6235.94 -6235.95 -6235.95 -6736.71 -10006.05

10 6.44 -10161.89 -10161.89 -8247.73 -8247.73 6.44 6.44 -18416.07 -18416.07 -18416.07 -10161.89 -10161.89 -10161.89 -10723.36 -8809.20

11 6.44 -5240.87 -5240.87 -15962.63 -15962.63 6.44 6.44 -21209.95 -21209.95 -21209.95 -5240.87 -5240.87 -5240.87 -5428.91 -16150.68

12 6.44 -8102.47 -8102.47 -16536.68 -16536.69 6.44 6.44 -24645.59 -24645.59 -24645.59 -8102.47 -8102.47 -8102.47 -8128.92 -16563.14

13 6.44 -12561.32 -12561.32 -17361.40 -17361.40 6.44 6.44 -29929.17 -29929.17 -29929.17 -12561.32 -12561.32 -12561.32 -12467.46 -17267.54

14 6.44 -6737.04 -6737.04 -11792.01 -11792.01 6.44 6.44 -18535.49 -18535.49 -18535.49 -6737.04 -6737.04 -6737.04 -6933.35 -11988.33

15 6.44 -11195.81 -11195.81 -12617.09 -12617.09 6.44 6.44 -23819.33 -23819.33 -23819.33 -11195.81 -11195.81 -11195.81 -11271.44 -12692.72

16 6.44 -10219.31 -10219.31 -8855.60 -8855.60 6.44 6.44 -19081.35 -19081.35 -19081.35 -10219.31 -10219.31 -10219.31 -10556.54 -9192.83

17 6.85 -5224.29 -5224.29 -15946.03 -15937.73 6.85 6.85 -21177.18 -21168.87 -21168.87 -5224.29 -5215.98 -5215.98 -5382.31 -16104.10

18 6.85 -8085.88 -8085.88 -16520.09 -16511.78 6.85 6.85 -24612.82 -24604.52 -24604.52 -8085.88 -8077.58 -8077.58 -8082.32 -16516.53

19 6.85 -12544.74 -12536.43 -17344.80 -17336.50 6.85 6.85 -29896.39 -29888.09 -29888.09 -12544.74 -12536.43 -12536.43 -12420.86 -17220.92

20 6.85 -6899.70 -6891.40 -12296.31 -12288.00 6.85 6.85 -19202.87 -19194.57 -19194.57 -6899.70 -6891.40 -6891.40 -7127.38 -12523.99

21 6.85 -11358.47 -11350.17 -13121.39 -13113.08 6.85 6.85 -24486.72 -24478.41 -24478.41 -11358.47 -11350.17 -11350.17 -11465.47 -13228.38

22 6.85 -10679.19 -10670.88 -10313.48 -10305.18 6.85 6.85 -20999.53 -20991.22 -20991.22 -10679.19 -10670.88 -10670.88 -11028.66 -10662.96

23 6.85 -8090.05 -8081.74 -16520.43 -16512.12 6.85 6.85 -24617.33 -24609.03 -24609.03 -8090.05 -8081.74 -8081.74 -8085.31 -16515.69

24 6.85 -12548.82 -12540.51 -17345.50 -17337.20 6.85 6.85 -29901.18 -29892.87 -29892.87 -12548.82 -12540.51 -12540.51 -12423.40 -17220.09

25 6.85 -12545.71 -12537.40 -17344.89 -17336.58 6.85 6.85 -29897.45 -29889.14 -29889.14 -12545.71 -12537.40 -12537.40 -12420.87 -17220.05

26 6.85 -11180.28 -11171.98 -12600.21 -12591.91 6.85 6.85 -23787.35 -23779.04 -23779.04 -11180.28 -11171.98 -11171.98 -11225.30 -12645.24

27 5.93 -8074.80 -8058.19 -16505.17 -16488.56 5.93 5.93 -24585.90 -24569.29 -24569.29 -8074.80 -8058.19 -8058.19 -8040.05 -16470.41

28 5.93 -12533.57 -12516.96 -17330.24 -17313.63 5.93 5.93 -29869.74 -29853.13 -29853.13 -12533.57 -12516.96 -12516.96 -12378.14 -17174.81

29 5.93 -12530.46 -12513.85 -17329.62 -17313.01 5.93 5.93 -29866.02 -29849.41 -29849.41 -12530.46 -12513.85 -12513.85 -12375.61 -17174.77

30 5.93 -11344.29 -11327.68 -13105.85 -13089.24 5.93 5.93 -24456.07 -24439.46 -24439.46 -11344.29 -11327.68 -11327.68 -11420.67 -13812.23

31 5.93 -12534.63 -12518.02 -17329.97 -17313.36 5.93 5.93 -29870.53 -29853.92 -29853.92 -12534.63 -12518.02 -12518.02 -12378.60 -17173.94

32 2.58 -12521.81 -12496.89 -17317.13 -17292.21 2.58 2.58 -29841.52 -29816.60 -29816.60 -12521.81 -12496.89 -12496.89 -12335.76 -17131.08

40

Table 4.3: Local Description Length Score: Iteration 1

Threshold Corresponding DL local
Number Discretization score

All ki 1|2|3|4|5|6 -24528.36

1 12|3|4|5|6 -24555.96

2 1|23|4|5|6 -22135.06

3 1|2|34|5|6 -24557.09

4 1|2|3|45|6 -24559.81

5 1|2|3|4|56 -21229.63

Table 4.4: Local Description Length Score: Iteration 2

Threshold Corresponding DL local
Number Discretization score

Min Threshold 1|2|3|45|6 -24559.81

1 12|3|45|6 -24589.32

2 1|23|45|6 -21772.70

3 1|2|345|6 -24586.56

4 1|2|3|456 -24262.39

Table 4.5: Local Description Length Score: Iteration 3

Threshold Corresponding DL local
Number Discretization score

Min Threshold 12|3|45|6 -24589.32

1 123|45|6 -21645.78

2 12|345|6 -24619.02

3 12|3|456 -21294.84

Table 4.6: Local Description Length Score: Iteration 4

Threshold Corresponding DL local
Number Discretization score

Min Threshold 12|345|6 -24645.78

1 12345|6 -19376.42

2 12|3456 -19306.80

41

Table 4.7: Local Description Length Score: Example 2

Threshold Corresponding DL local
Number Discretization score

All ki 1|2|3|4|5|6 -29841.52

1 12|3|4|5|6 -29870.53

2 1|23|4|5|6 -24456.07

3 1|2|34|5|6 -29866.02

4 1|2|3|45|6 -29896.74

5 1|2|3|4|56 -24585.90

Chapter 5

Continuous Data

Until this point, we have only considered examples of classification or “discretization of

discrete” data. In this Chapter, we focus on truly continuous data. As before, we will use an

example with 3 nodes and only one continuous variable, with the assumption (see Section 4.5) that

the other nodes have already been discretized.

5.1 An Example

Again using DAG 8, we simulated 100,000 values of X1 ∼ N(0, 1) and then simulated X2 and

X3 from independent discrete distributions on {1, 2, 3} with probabilities for these values depending

on X1 being in the interval (−∞,−3], (−3,−2], (−2,−1], (−1, 0], (0, 1], (1, 2], (2, 3], or (3,∞). Both

the top-down and modified top-down approaches to discretization removed all breaks when we were

expecting them to leave 7 breaks. In fact, a full search of all possible discretizations would not

have returned the correct result as we computed the DL local score for the correct discretization

and found that it was larger than several other DL local scores encountered in our search.

The problem with the Friedman and Goldszmidt minimum description length approach to

discretization is in the estimation of mutual information used in the DL local score in the case of

non-repeated or rarely repeated values in the data. Note that, while estimating mutual information

for continuous distributions is different than for discrete distributions (the probability estimates

turn into kernel density estimation problems), this is not the issue here as all estimates of mutual

information are only used in the calculation of the DL local score which is only considered on

43

various discretizations of the data. For discrete data with no (or few) repeated values, estimates of

mutual information tend to be close to zero and the DL local score for X1 becomes dominated by

the following terms

1
2 logm · ||Π1||(||X

∗
1 || − 1) + 1

2 logm ·
∑

j:X1∈Πj
||Πj ||(||X

∗
j || − 1)

+ log k1 + (m1 − 1)H
(

k1−1
m1−1

)

which is constant when considering different breaks being removed one at a time.

For the modified top-down approach, the full DLlocal (all breaks removed) was approximately

1
2 log 100000 · 0 · (100000 − 1) + 1

2 log 100000 · 2 · 100000(3 − 1)

+ log 100000 + (100000 − 1)H (1)

= 2 · 100000 log 100000 + log 100000 = 3453889

and the DLlocal with any single break removed was approximately

1
2 log 100000 · 0(99999 − 1) + 1

2 log 100000 · 2(99999)(3 − 1)

+ log 99999 + (100000 − 1)H
(

99999−1
100000−1

)

= 2 · 99999 log 100000 + log99999 + 18.05231 = 3321930.

Since this is smaller than the full DLlocal, all breaks were removed in the search process resulting

in consolidation of all values for X1 to a single value.

5.2 Bootstrapping

In order to get a better estimate of mutual information, we attempted a bootstrapping

approach on node 1 and sampled, with replacement, 100,000 values of X1 (along with their corre-

sponding values for X2 and X3). This resulted in approximately 64, 000 unique values and produced

some (incorrect) breaks in the discretization search but still did not give good enough estimates of

mutual information to recover the correct discretization.

5.3 Estimating Mutual Information

In an effort to ensure that our sample size for calculating the local description length was ad-

equate, we used a method derived by Gil, Fernandez and Martinez[13]) to calculate the sample size

44

required to accurately calculate mutual information. The method takes a subsample of significantly

smaller size (magnitude of 30-100 in the paper) and uses a derived formula to estimate the necessary

sample size to accurately determine the mutual information between two variables. Because the

mutual information calculation dominates the local description length, this is the foundation for

our sample size.

When using their derived formula on an example of 100,000 discrete data points derived with

6 distinct values at node 1 and 3 distinct values at node 2, the sample size required to accurately

calculate mutual information ranged from 2000 to 9000 values required. This was determined using

various subsample sizes of the same magnitude in the paper. The subsample was drawn with

replacement and contained numerous repeated values.

In the case of continuous data at any one node, the subsample would not contain any repeated

values. The calculation to determine sample size for the mutual information is virtually limitless

in this case. There is no basis for comparison in the mutual information calculation therefore you

can’t ever have a large enough sample size. This renders the local description length calculation

almost meaningless as mutual information such a dominant portion of the calculation.

5.4 Conclusion

We were unable to make the Friedman and Goldszmidt minimum description length principle

work for a truly continuous data set with strictly observational data. If one is able to generate

experimental data, holding certain nodes at fixed values while generating values for other nodes,

it should be possible to improve estimates of mutual information and to have success with the

minimum description length approach to discretization. The generation of experimental data is

already necessary to determine causality in Bayesian networks and is in widespread use in the

study of genetic regulatory networks. Thus, the discretization procedures outlined in this thesis

could potentially be quite useful in this setting.

Bibliography

[1] H. Akaike. Information theory and an extension of the maximum likelihood principle. In B.N.
Petrov and F. Csaki, editors, Second international symposium on information theory., pages
267–281. Budapest: Academiai Kiado, 1973.

[2] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

[3] H. Akaike. Likelihood of a model and information criteria. Journal of Econometrics, 16:3–14,
1981.

[4] R.R. Bouckaert. Properties of Bayesian learning algorithms. UAI ’94, pages 102–109, 1994.

[5] H. Bozdogan. Akaike’s information criterion and recent developments in information complex-
ity. Journal of Mathematical Psychology, 44:62–91, 2000.

[6] T. Chen, H.L. He, and G.M. Church. Modeling gene expression with differential equations. In
Pacific Symposium Biocomputing ’99, pages 29–40. 1999.

[7] T. Cover and J. Thomas. Elements of Information Theory. Wiley & Sons, New York, 2006.

[8] A. Dobra, C. Hans, B. Jones, J.R. Nevins, G. Yao, and M. West. Sparse graphical models for
exploring gene expression data. Journal of Multivariate Analysis, 90(1):196–212, 2004.

[9] N. Dojer, A. Gambin, A Mizera, B. Wilczynski, and J. Tiuryn. Applying dynamic Bayesian
networks to perturbed gene expression data. BMC Bioinformatics, 7:249–260, 2006.

[10] N. Friedman and M. Goldszmidt. Discretizing continuous attributes while learning Bayesian
networks. In Proceedings of ICML-1996, pages 157–165.

[11] N. Friedman and D. Koller. Being Bayesian about network structure. Machine Learning,
50:95–126, 2003.

[12] N. Friedman, M. Linial, I. Nachman, and D. Pe‘er. Using Bayesian networks to analyze
expression data. Journal of Computational Biology, 7:601–620, 2000.

[13] M.A. Gil, M.J. Fernandez, and I. Martinez. The choice of samle size in estimating mutual
information. Applied Mathematics and Computation, 27:201–216, 1988.

[14] D. Heckerman. A tutorial on learning with Bayesian networks. Technical report, Microsoft
Corporation, 1995.

46

[15] D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from mi-
croarray experiments with dynamic Bayesian networks. Bioinformatics, 19(17):2271–2282,
2003.

[16] D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from mi-
croarray experiments with dynamic bayesian networks. Bioinformatics, 19(17):2271–2282,
2003.

[17] S. Imoto, S. Kim, T. Goto, S. Miyano, S. Aburatani, K. Tashiro, and S. Kuhara. Bayesian net-
work and nonparametric heteroscedastic regression for nonlinear modeling of genetic network.
Journal of Bioinformatics and Computational Biology, 1:231–252, 2003.

[18] E.D. Jarvis, V.A. Smith, K. Wada, M.V. Rivas, M. McElroy, T.V. Smulders, P. Carninci,
Y. Hayashizaki, F. Dietrich, X. Wu, P. McConnell, J. Yu, P.P. Wang, A.J. Hartemink, and
S. Lin. A framework for integrating the Songbird brain. Journal of Comparative Physiology
A, 188:961–980, 2002.

[19] R.L. Kashvap. A Bayesian comparison of different classes of dynamic models using empirical
data. IEEE Transactions on Automatic Control, 22(5):715–727, 1977.

[20] I.M. Ong, J.D. Glasner, and D. Page. Modeling regulatory pathways in E. coli from time series
expression profiles. Bioinformatics, 18:241–248, 2002.

[21] G. Schwartz. Estimating the dimension of a model. The Annals of Statistics, 5(2):461–464,
1978.

[22] D.E. Zak, F.J. Doyle, G.E. Goyne, and J.S. Schwaber. Simulation studies for the identification
of genetic networks from cDNA array and regulatory activity data. Proc. 2nd Intl. Conf.
Systems Biology, pages 231–238, 2001.

Appendix A

Huffman Coding and Shannon Coding

In this appendix we give a very brief description of two popular data compression algorithms.

Suppose we wish to encode the string

22131234322132

using zeros and ones. Using the binary representation of these digits with varying lengths as

needed(see Section 3.2) gives

10101111101110011101011110.

A compression algorithm will assign a different sequence of zeros and ones to each of the

original characters (in this case digits) in such a way that more frequently occuring characters (like

the 2 in this example) will have a shorter representation than less frequently occuring characters.

A desirable feature of such an algorithm is that it produces a “prefix code” which means that there

is no coded character that is a prefix of any other coded character. Because the prefixes are unique

someone wanting to decode a sequence does not need special markers between words. A pure binary

representation of a string of numbers is not a prefix code since, for example, 1111 may represent

several things such as (but not limited to) four 1s, or two 3s, or a 3 followed by two 1s, or a 7 and

a 1, or a 15.

48

A.1 Huffman Coding a Sequence of Characters

Huffman coding is an optimal compression algorithm ([7]) as it encodes data in the smallest

string possible. In fact, it can be shown that no other prefix coding algorithm can do better

than Huffman coding. To encode the string 22131234322132, we begin by listing the characters in

descending frequency.

Character Frequency

2 6

3 4

1 2

4 1

We then add the two lowest frequencies and list this frequency along with the remaining

original frequencies in descending order.

Character Frequency

2 6 6

3 4 4

1 2 3

4 1

Repeating the process gives us

Character Frequency Space Spaaacing

2 6 6 7

3 4 4 6

1 2 3

4 1
,

and finally

49

Character Frequency Space Spaaacing

2 6 6 7 13

3 4 4 6

1 2 3

4 1
.

Now, in the cases where branches split, we put a 0 on the upper branch and a 1 on the lower

branch.

Character Frequency Space Spaaacing

2 6 6 7 13

3 4 4 6

1 2 3

4 1

0

1

0

1

0

1

.

Reading the branches from right to left (ignoring segments without 0’s and 1’s, we get the following

code for each character.

Character Code

1 010

2 1

3 00

4 011

The original message of 22131234322132 is now encoded as

11010000101001100011010001

which can easily be decoded using the above code table as each prefix is unique.

A.2 Huffman Coding a Random Variable

Suppose that X is a random variable taking on the values 1, 2, 3, 4, or 5 with respective prob-

abilities 0.20, 0.37, 0.12, 0.23, and 0.08. The Huffman coding process is the same as in Section A.1

50

with “Frequency” replaced by “Probability”. First, the possible values for X are listed in order of

descending probability.

Value Probability

2 0.37

4 0.23

1 0.20

3 0.12

5 0.08

The two smallest probabilities are combined and listed with the remaining original probabilities in

descending order.

Value Probability

2 0.37 0.37

4 0.23 0.23

1 0.20 0.20

3 0.12 0.20

5 0.08

Continuing, we get

Value Probability Space Spaaacing

2 0.37 0.37 0.40

4 0.23 0.23 0.37

1 0.20 0.20 0.23

3 0.12 0.20

5 0.08

and, after a few more steps,

51

Value Probability Space Spaaacing Space Space

2 0.37 0.37 0.40 0.60 1

4 0.23 0.23 0.37 0.40

1 0.20 0.20 0.23

3 0.12 0.20

5 0.08

0

1

0
1

0

1

0

1

The coded values for the random variable X are

Value Code

1 10

2 00

3 110

4 01

5 111

Notice that the higher probability values are assigned a shorter code. So, a data set consisting of

realizations of X will be more compressed than, say, a binary encoding with a fixed number of bits.

A.3 Shannon Coding a Random Variable

Shannon coding of a random variable is designed to give a prefix code for the value i that has

length ℓi = ⌈log 1
pi
⌉ where pi = p(X = i) and ⌈·⌉ is the ceiling function. Using the same random

variable from Section A.2, we see that we want a code for 1, 2, 3, 4, and 5 with lengths given in the

following table.

i pi ℓi

1 0.20 3

2 0.37 2

3 0.12 4

4 0.23 3

5 0.08 4

52

To construct the code, we begin by reordering the values from highest probability values to

lowest. Let val(j) denote the value of the random variable corresponding to the jth value in the

probability ordered list. Define F1 = 0 and, for j ≥ 2, define Fj =
∑j−1

k=1 pval(j).

j val(j) pval(j) Fj

1 2 0.37 0

2 4 0.23 0.37

3 1 0.20 0.60

4 3 0.12 0.80

5 5 0.08 0.92

The codeword (or unique prefix code) for the jth value is the truncated (to the desired length)

number after the decimal point of the binary representation of Fj .

For example, F1 = 0 becomes, in binary 0.0000 . . . and so val(1) = 2, for which we want a

code of length 2, is encoded as 00.

F2 = 0.37 becomes, in binary, 0.010011010 . . . and so val(2) = 4, for which we want a code

length of 3, is encoded as 010.

F3 = 0.60 becomes, in binary, 0.10011001 . . . and so, val(3) = 1, for which we want a code

length of 3, is encoded as 100.

F4 = 0.80 becomes, in binary, 0.11001100 . . . and so, val(4) = 3, for which we want a code

length of 4, is encoded as 1100.

Finally, F5 = 0.92 becomes, in binary, 0.11101011 . . . and so, val(5) = 5, for which we want

a code length of 4, is encoded as 1110.

The Shannon coded values for the random variable X are

53

Value Code

1 100

2 00

3 1100

4 010

5 1110

Note that the Shannon code in this case produced a prefix code. To prove that this will always

be the case, we note that, based on our choice of ℓi, pi is bounded as follows: 2−ℓi < pi < 2−(ℓi−1).

From this we know that each pi must differ by at least 2−ℓi . This implies that each Fj will differ

by at least 2−ℓi and there will be at least once place different in the first L − i bits of the binary

expansion for Fj and Fj+1. In summary, the codeword for Fj will differ from the codeword for Fj+1

at least one in the first li places of the binary expressions.

Shannon coding is utilized for encoding data because it equates to the negative log likelihood

that more traditional statistical models are based upon. Although Huffman coding is the best, this

provides a common basis for the scoring metrics used in statistical analysis.

Appendix B

More Examples

In this appendix we provide further computational evidence to support claims that were made

in Chapter 4. Although significantly more computations were performed to verify our findings, the

examples below illustrate the significance and power on other three node networks.

B.1 Searching All Discretizations

In this section we provide further evidence to support that the searching all discretizations

is not necessary. We can significantly reduce the calculation time required by choosing a DAG in

which all nodes are connected by at least one edge. In this example, we begin with 3 unique values

for each node generated by DAG 14. The data at node 1 is then exploded such that if X1 = 1, the

values in the new data set are X1 ∈ {1, 2}. Similarly, if X1 = 2, the values were exploded such that

X1 ∈ {3, 4} and if X1 = 3 the value was changed to X1 = {5, 6}. This corresponds to discretization

12 and results of calculating all DLlocal scores are contained in Table B.1.

Like the example in Chapter 4, we see that the lowest local description length score corre-

sponds to discretization 12 for all networks except DAGs 1,6,and 7. So given a data set, we can

choose to search any DAG in which all nodes are connected by one edge and still return the correct

discretization.

To provide an additional example, the data in Table B.2 was generated in the same manner

as the previous example except it was derived from DAG 12. The data was then exploded using

discretization 9 {1|234|56}. Table B.2 contains DLlocal scores calculated for all DAGs and all

55

discretizations. We see that the lowest local description length score for all DAGs with the exception

of DAGs 1,6, and 7 corresponds to discretization 9. Thus, choosing a DAG with all nodes connected

by at least one edge can save significant computational time when attempting to recover the correct

discretization.

B.2 Single Iteration Top-Down

In this section we provide two more examples of the single iteration top-down method. The

first example begins with 3 distinct values assigned to each node based on DAG 17. With a sample

size of 100,000 data points, the values at node 1 were then exploded into 6 distinct values such that

the following is the correct discretization policy: {123|4|56}. See Table B.3 for the results of the

local description length calculations.

Using the conjecture presented in Chapter 4, we will remove any threshold the is less than

the local description length score calculated with all thresholds inserted. From Table B.3 we see

that thresholds 1,2,and 5 are to be removed. This results in the following discretization {123|4|56}

which is the correct result. The correct answer was found in only six calculations.

To further illustrate the power of single iteration top-down, consider an additional example.

The three distinct values at node 1 were generated using DAG 20 with a sample size of 100,000

data points. The data was exploded into the following discretization policy {1|23|456} The results

of the DLlocal calculations are depicted in Table B.4.

Applying our conjecture to Table B.4, we see that thresholds 2,4, and 5 are to be removed.

This returns the correct discretization of {1|23|456}.

56

Table B.1: Example 2: Local Description Length Calculated for Three Node DAGs (NOTE: Graphs 11-25 were removed from the table
as they are redundant and only graphs 1-10 are needed to illustrate the findings)

Disc Graph

Number Number

1 2 3 4 5 6 7 8 9 10

1 0 16.61 0 16.61 0 0 0 33.219 16.61 16.61

2 4.61 -3387.45 -3395.755 -1470.765 -1479.07 4.61 4.61 -1439.096 -1447.401 -1447.401

3 4.61 -8783.985 -8792.29 -3490.963 -3499.268 4.61 4.61 -3458.508 -3466.813 -3466.813

4 4.61 -1403.988 -1412.293 -1800.639 -1808.944 4.61 4.61 -1767.693 -1775.998 -1775.998

5 4.61 -632.196 -640.5017 -1036.309 -1044.614 4.61 4.61 -1003.149 -1011.454 -1011.454

6 4.61 -283.992 -292.296 -258.211 -266.515 4.61 4.61 -226.922 -235.226 -235.226

7 6.44 -8765.991 -8765.991 -3743.743 -3473.381 6.44 6.44 -3425.394 -3425.394 -3425.394

8 6.44 -3653.614 -3653.614 -2210.743 -2210.743 6.44 6.44 -2162.497 -2162.497 -2162.497

9 6.44 -4955.712 -4955.712 -1961.12 -1961.12 6.44 6.44 -1913.226 -1913.226 -1913.226

10 6.44 -4085.369 -4085.369 -1599.039 -1559.039 6.44 6.44 -1512.005 -1512.005 -1512.005

11 6.44 -9998.884 -9998.884 -3801.052 -3801.52 6.44 6.44 -3752.322 -3752.322 -3752.322

12 6.44 -13455.98 -13455.98 -4245.882 -4245.882 6.44 6.44 -4197.811 -4197.811 -4197.811

13 6.44 -10651.65 -10651.65 -3610.538 -3610.538 6.44 6.44 -3562.978 -3562.978 -3562.978

14 6.44 -4842.736 -4842.736 -2227.622 -2227.622 6.44 6.44 -2178.821 -2178.821 -2178.821

15 6.44 -2546.543 -2546.543 -1830.861 -1830.861 6.44 6.44 -1783.001 -1783.001 -1783.001

16 6.855 -614.911 -614.911 -1019.786 -1019.786 6.855 6.855 -972.66 -972.6 -972.6

17 6.855 -9982.305 -9974 -3784.885 -3776.58 6.855 6.855 -3720.623 -3712.318 -3712.318

18 6.855 -13439.4 -13431.09 -4229.716 -4221.411 6.855 6.855 -4166.111 -4157.806 -4157.806

19 6.855 -10635.07 -10626.77 -3594.372 -3586.067 6.855 6.855 -3531.278 -3522.973 -3522.973

20 6.855 -7093.777 -7085.473 -2639.14 -2630.835 6.855 6.855 -2575.04 -2566.735 -2566.735

21 6.855 -4797.584 -4789.279 -2242.379 -2234.074 6.855 6.855 -2179.22 -2170.916 -2710.916

22 6.855 -4939.841 -4931.536 -1946.012 -1937.707 6.855 6.855 -1884.092 -1875.787 -1875.787

23 6.855 -13439.05 -13430.74 -4229.449 -4221.144 6.855 6.855 -4164.865 -4156.56 -4156.56

24 6.855 -11142.85 -11134.55 -3832.688 -3824.383 6.855 6.855 -3769.045 -3760.741 -3760.741

25 6.855 -13440.11 -13431.8 -4230.774 -4222.469 6.855 6.855 -4168.677 -4160.372 -4160.372

26 5.932 -4826.866 -4818.561 -2212.514 -2204.209 5.932 5.932 -2149.687 -2141.382 -2141.382

27 5.932 -13423.81 -13407.2 -4214.621 -4198.011 5.932 5.932 -4134.504 -4117.894 -4117.894

28 5.932 -11127.61 -11111 -3817.859 -3801.25 5.932 5.932 -3738.684 -3722.075 -3722.075

29 5.932 -13424.87 -13408.26 -4215.946 -4199.336 5.932 5.932 -4138.316 -4121.706 -4121.706

30 5.932 -7079.245 -7062.635 -2625.37 -2608.76 5.932 5.932 -2547.244 -2530.635 -2530.635

31 2.585 -13424.51 -13407.91 -4215.679 -4199.069 2.585 2.585 -4137.069 -4120.46 -4120.46

32 2.585 -13411.7 -13386.78 -4203.274 4178.36 2.585 2.585 -4109.132 -4084.217 -4084.217

57

Table B.2: Example 3: Local Description Length Calculated for Three Node DAGs (NOTE: Graphs 11-25 were removed from the table
as they are redundant and only graphs 1-10 are needed to illustrate the findings)

Disc Graph

Number Number

1 2 3 4 5 6 7 8 9 10

1 0 16.61 0 16.61 0 0 0 33.219 16.61 16.61

2 4.61 -758.46 -766.764 -7.435 -15.739 4.61 4.61 -770.504 -778.809 -778.809

3 4.61 -1538.386 -1546.691 -52.47 -60.774 4.61 4.61 -1595.465 -1603.77 -1603.77

4 4.61 -2470.34 -2748.675 -121.92 -130.224 4.61 4.61 -2866.899 -2875.204 -2875.204

5 4.61 -4292.939 -4301.244 -218.234 -226.539 4.61 4.61 -4515.783 -4524.088 -4524.088

6 4.61 -1504.321 -1512.626 -55.902 -64.207 4.61 4.61 -1564.832 -1573.137 -1573.137

7 6.44 -1928.062 -1928.062 -56.225 -56.225 6.44 6.44 -1990.727 -1990.727 -1990.727

8 6.44 -3529.589 -3529.589 -148.351 -148.351 6.44 6.44 -3684.38 -3684.38 -3684.38

9 6.44 -5371.403 -5371.403 -262.751 -262.751 6.44 6.44 -5640.593 -5640.593 -5640.593

10 6.44 -1658.141 -1658.141 -46.071 -46.071 6.44 6.44 -1710.652 -1710.652 -1710.652

11 6.44 -3122.992 -3122.992 -126.316 -126.316 6.44 6.44 -3255.748 -3255.748 -3255.748

12 6.44 -4964.749 -4964.749 -241.01 -241.009 6.44 6.44 -5212.197 -5212.197 -5212.197

13 6.44 -2051.306 -2051.306 -67.792 -67.792 6.44 6.44 -2125.538 -2125.538 -2125.538

14 6.44 -4564.828 -4564.828 -220.162 -220.162 6.44 6.44 -4791.43 -4791.43 -4791.43

15 6.44 -2889.861 -2889.861 -114.875 -114.875 6.44 6.44 -3011.176 -3011.176 -3011.176

16 6.44 -4275.023 -4275.023 -200.476 -200.498 6.855 6.855 -4481.942 -4481.942 -4481.942

17 6.855 -3514.083 -3505.778 -131.487 -123.182 6.855 6.855 -3652.425 -3644.12 -3644.12

18 6.855 -5355.84 -5347.535 -246.18 -237.876 6.855 6.855 -5608.874 -5600.57 -5600.57

19 6.855 -2442.397 -2434.092 -72.963 -64.658 6.855 6.855 -2522.215 -2513.91 -2513.91

20 6.855 -5355.463 -5347.158 -248.09 -239.704 6.855 6.855 -5610.327 -5602.022 -5602.022

21 6.855 -3680.496 -3672.191 -142.721 -134.416 6.855 6.855 -3830.072 -3821.767 -3821.767

22 6.855 -5354.902 -5346.598 -246.411 -238.106 6.855 6.855 -5608.168 -5599.863 -5599.863

23 6.855 -4948.866 -4940.561 -225.974 -217.669 6.855 6.855 -5181.695 -5173.39 -5173.39

24 6.855 -3273.899 -3265.594 -120.686 -112.382 6.855 6.855 -3401.44 -3393.135 -3393.135

25 6.855 -4948.248 -4939.943 -224.669 -216.364 6.855 6.855 -5179.772 -5171.467 -5171.467

26 6.855 -4548.328 -4540.023 -203.823 -195.517 5.932 5.932 -4759.005 -4750.7 -4750.7

27 5.932 -5341.295 -5324.685 -232.483 -215.873 5.932 5.932 -5579.71 -5563.1 -5563.1

28 5.932 -3666.328 -3649.718 -127.195 -110.586 5.932 5.932 -3799.455 -3782.845 -3782.845

29 5.932 -5340.677 -5324.068 -231.178 -214.569 5.932 5.932 -5577.787 -5561.178 -5561.178

30 5.932 -5340.301 -5323.691 -233.007 -216.397 5.932 5.932 -5579.24 -5562.63 -5562.63

31 5.932 -4933.703 -4917.094 -210.973 -194.363 2.585 2.585 -5150.608 -5133.998 -5133.998

32 2.585 -5328.556 -5303.642 -219.91 -194.991 2.585 2.585 -5551.046 -5526.132 -5526.132

58

Table B.3: Local Description Length Score: Example 3

Threshold Corresponding DL local
Number Discretization score

All ki 1|2|3|4|5|6 -28764.00

1 12|3|4|5|6 -28784.49

2 1|23|4|5|6 -28781.20

3 1|2|34|5|6 -21685.14

4 1|2|3|45|6 -21708.83.03

5 1|2|3|4|56 -28785.03

Table B.4: Local Description Length Score: Example 4

Threshold Corresponding DL local
Number Discretization score

All ki 1|2|3|4|5|6 -339.41

1 12|3|4|5|6 -100.16

2 1|23|4|5|6 -359.31

3 1|2|34|5|6 -300.21

4 1|2|3|45|6 -356.26

5 1|2|3|4|56 -357.34

