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Abstract

Self-scaling updates have been proposed by Luenberger, Oren,
and Spedicato for use in quasi-Newton minimization algorithms. Their
departure from other updates is that the intermediate update

Hi = s Hi to the inverse Hessian approximation is performed before

each regular update. In recent computational tests by Brodlie and
Shanno and Phua, they performed less well than the BFGS update ex-
cept on problems with a singular Hessian at the solution. In this
paper we examine the self-scaling updates in an attempt to explain
this behavior. We find that for the self-scaling BFGS update to
retain the Q-superlinear convergence of the normal BFGS on problems
with a non-singular Hessian at the solution, it is necessary that
Y; converge to 1; a somewhat stronger condition is sufficient. This
indicates that asymptotically, use of the scaling parameter is un-
1ikely to be advantageous on non-singular problems. On the other hand,
on problems with a singular Hessian at the solution, where only
linear convergence is expected in general, Y does not necessarily
converge to 1, so that the self-scaling update may differ from the
BFGS even asymptotically.



1. Introduction

This paper analyzes a class of quasi-Newton methods for solving

the unconstrained minimization problem

min f: R" >R (1.1)
x ¢ R
where f is assumed twice continuously differentiable. We give a
brief overview of quasi-Newton methods, but assume the reader is
basically familiar with them. Recent references include Brodlie [2]
and Dennis and Moré [7].

Quasi-Newton methods generate a sequence of points X; € R"

which hopefully converge to the solution x, of (1.1). They are re-
lated to Newton's method, in which this sequence is produced by the

iteration

- _ 2
Xipg = X5 =V f(xi)

In the type of quasi-Newton methods with which we are concerned, due

_]Vf(xi). (1.2)

to the Hessian matrix v2 f(x) being expensive or impossible to compute,
(1.2) is modified by replacing vz f(xi)'] withan approximation H,
which is updated following each iteration. In addition, a Tine search
parameter x1 may be included, so that the iteration becomes
Xipp = X5 = Ay H @ f(xi), Ay > 0.

If Hi is positive definite, A; can be chosen so that f(x1+]) < f(xi).
The value Ay o= 1 is usually attempted first, and is called the direct
prediction value of A

The most successful quasi-Newton methods have chosen H1.+1 by

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, [4,8,9,17],
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y; =V F(x) - vE(xg).

This is one of the many updates which obey the secant equation,

Hipr¥s = S5 (1.4)

which is the way H.,, is made to resemble v2 f(xi+1)"]. Equation

i+]

(1.4) accurately models 72 f(x*)']

if f is quadratic, because then

v2 f(xi+1) S; T Yo and otherwise models it approximately because
[ Jr]vzf(x-+’rs.)dt} S. = VY..
i i i i
T =0

Update (1.3) is the one which, given Hi e RTN symmetric, solves the

problem
’ mianxn [ Hypq - Hy [l -1/2
i+l °
subject to Hi+1yi =S Hi+1 symmetric

where H is any fixed matrix obeying Hyi = s, Here HAW!M LA, Me g
denotes the Frobenius norm of A weighted by M, [[MAM [, where the
Frobenius norm |[Bl|. of any B e R is the square root of the sum of
the squares of the elements of B.

In this paper we are concerned with a variant of update (1.3),
the self-scaling update introduced by Oren and Luenberger [10,12], and
studied by Oren and Spedicato in many papers including [11,13,19,20].
In these methods, the matrix Hi is multiplied by a positive scalar
Y before each update, so that

Hy = viH; (1.5)



~

Hi is then updated by a normal quasi-Newton update which obeys secant
equation (1.4); while Oren and Spedicato have proposed many updates,
the most successful still seems to be the BFGS, (1.3) with ﬁi in
place of Hi' The entire updating process can be combined as a single

update to Hi’
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i+1 Y T
i Y4 (1.6)
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T, 2
(s;'ys)

i
which we will refer to as the self-scaling BFGS update.

The original motivation for the scaling (1.5) (Oren and
Luenberger [12]) concerned the performance of a perfect 1ine search
algorithm on quadratic problems; its pros and cons are well discussed
by Brodlie [3]. 1In any case this motivation is not directly relevant
to current algorithms or most problems. A more general motivation
is that (1.5) enables a rough rank n change to Hi’ which may enable
the general size of Hi+1 to more accurately resemble vzf(xi+1)-]
than the typical quasi-Newton update, which allows only a rank two
modification of HT' Specific choices of Yi» @S suggested by
Luenberger, Oren and Spedicato, are explained in Section 4.

Quasi-Newton algorithms using self-scaling updates have re-
cently been tested extensively on a variety of problems, and com-
pared with the same algorithms using the BFGS and other updates
(Brodlie [3], Shanno and Phua [18]). The general conclusion is that
the self-scaling update seems to be less effective than the BFGS,

except perhaps on problems where the Hessian at the solution is

singular. (Shanno and Phua also find that scaling at the first



iteration only is helpful). Our objective in this paper is to pro-
vide a theoretical analysis of self-scaling methods which will hope-
fully cast additional Tight on these results.

In particular, Broyden, Dennis and More [5] and Powell [14]
have proven that the points generated by (two different) quasi-Newton
algorithms using the BFGS update converge Q-superlinearly to the min-
imum x, for a large class of problems, as long as vz‘f(x*) is non-
singular. (Q-superlinear convergence of {Xi} to x, means that
| x5 = %l

Ix; - %l

Tim
>

where || - || is any vector norm.) In sectionyz we show that the same
results apply using self-scaling BFGS update (1.6) if.yg ’Yi'][
is bounded above by a suitable constant. In Section ; &eoshow that a
necessary condition for Q-superlinear convergence on the self-scaling
BFGS update is 1?m inf y. = 1 (for a subsequence containing at Teast
every second 1te;a:i§n). These results cast some doubt upon the
asymptotic value of self-scaling updates for problems with vzf(x*)
nonsingular, because they show that if the self-scaling BFGS update
is to work as well as the BFGS on such problems, then asymptotically
it must become the BFGS.

We then examine the specific choices of Yi (in'(1;5m6)) proposed
by Luenberger, Oren and Spedicato [10-13,19,20]. In Section 4 we
give a new derivation of the most common]y(used choice. It is strong-
1y related to the derivation by Biggs [1] of a different variant of
the BFGS, which Brodlie [3] finds to be just as effective as the BFGS.
The connection gives some indication of why the update of Biggs may be

superior to the self-scaling update. In Section 5 we discuss the rela-

tion of our analysis to the updates of Luenberger, Oren and



Spedicato. It is an open question whether these choices obey our
necessary or sufficient condition for Q-superlinear convergence on
problems with v2~f(x*) non-singular. However, Q-superlinear con-
vergence wWith any of the commonly used choices of & would require
11m vy = 1, so that the BFGS and self-scaling BFGS updates would be-
;&%: the same. On problems with v2 f(x,) singular the situation is
quite different. On such problems, where no better than Tinear con-
vergence is expected and the self-scaling updates have performed

well in practice, we show by example that Y; does not in general
approach 1 as i - «. Thus the self-scaling BFGS algorithm may differ
substantially from the normal BFGS in this case. This supports the
continued consideration of self-scaling updates for problems with
vzf(x*)singuTar.

We briefly summarize our results in Section 6.

2. Sufficient conditions for Q-superlinear convergence of self-

scaling methods

In this section we show that the Q-superlinear convergence
results of both Broyden, Dennis and More [5] and Powell [14] for quasi-
Newton algorithms using the BFGS update (1.3) extend to the self-scal-
ing BFGS update (1.6) if .z !Yi"]! is bounded above by a suitable con-
stant. The theorems of é&g;éen-Dennis—Moré and Powell involve two
different quasi-Newton algorithms and different assumptions on the func-
tion f, in a way that neither result implies the other. However, they
both demonstrate that an algorithm using the BFGS update and eventually
only the direct prediction step

Xip] = X5 - Hiv f(x.) (2.1)

i+1 i

will converge Tocally Q-superlinearly to the minimum of many functions



whose Hessian at the solution is nonsingular.
Broyden, Dennis and Moré [5] show that if (2.1) together with

BFGS update (1.3) is applied to minimize f(x) with x, sufficiently close

0

to the solution x,, HO sufficiently close to vzf(x*)'l, vzf(x*) positive

definite and some lesser conditions on f, then {Xi} converges Q-super-
Tinearly to X, - In Theorem 2.2 we show that the same result applies
using the self-scaling BFGS update (1.6) if ‘g [Yi—][ < ¢ for o
sufficiently small. The proof is just an egkgéiion of the techniques
of Broyden, Dennis and Moré for the BFGS. It is based on Theorem 2.1,
which gives a general condition on a quasi-Newton update for (2.1)
to be locally Q-Tinearly convergent. This theorem differs from the
original Theorem 3.1 in Broyden, Dennis and More [5] only by the addi-
tion of the w(x,H) term 1in (2.3). For its proof, which is a straight-
forward extension of the techniques of Broyden, Dennis and More, see
Schnabel [15], Theorems 9.2.2 and 9.2.3.

For the remainder of the paper, || « || (without subscript) will
denote the 22 vector norm or its induced matrix norm.

Theorem 2.1 Let f: R" = R be twice continuously differentiable in

the open convex set D, and assume for some x, € D and £ = O,

2 2
| v5F(x) =9 F(x) || = £]x - x4 ] (2.2).
for all x eD, where vf(x,) = 0 and vzf(x*) is positive definite. Let
nxn
U:R" x R 2R ~ {} be defined in a neighborhood N = N1 x N2 of

(x*,vzf(x*)']) where N, e D. Suppose there exist nonnegative constants
ays oy and a nonsingular symmetric M e RN such that for any (x,H) e N
and x, = x - Hv f(x), the function U satisfies

1 H, = 726 ()" Ly < (Pragm) | H=726 000 7 I,

My = (
(2.3)

toam + w(x,H)



for each H, e U(x,H), where m = max {[| x, - X, ||, [[x = x, ||} and

n nxn .
w: R xR + R. Consider the sequences X; € Rn, Hi e RN

generated from (xO,HO) e N by (2.1) with H1+1

each v ¢ (0,1) and any nonnegative constant w, there exist positive

£ U(Xi’Hi)' Then for

constants e(r), &(r) such that if || xo-x*l] < e(r),
J

2

HH - VoF(xXy) HM (r) and }  w(x;,H.) < wsé(r) for all j < o0,

i=0 T
then the sequence {Hi} is well defined and {Xi} converges to x,.

Furthermore,

HX-;.;.] Xyl < v “X1‘ - Xy ||

for each 1 = 0, and || H, ||}, (] H,”']| } are uniformly bounded.

The Q-superlinear convergence proof of Broyden, Dennis and Moré
[5] for the BFGS is extended to the self-scaling BFGS below. The main
step is to show that under its conditions, the norm of the difference
of these two updates is bounded above by a constant multiple of [y1—1l.
This enables the application of Theorem 2.1 to prove Tinear con-
vergence, and then Q-superlinear convergence follows directly from the

work of Broyden, Dennis and More.

Theorem 2.2 Let f:R" > R, x, ¢ R" satisfy the conditions of Theorem

2.1, and define M = vzf(x*)1/2. Consider the sequences X; € Rn,

Hi € Rnxn i=1,2,... generated from Xo € R" and a symmetric
nxn . - .

H0 e R by (2.1) with H1+1 Hi+1(Yi) given by (1.6), Sis Vs

defined as in (1.3) and Y; a nonzero real number. Then there exist
positive constants e, 8, o such that if

J
I Xo - x|l < ey || Hy - vzf (x4) ][M < 6sand ) [Y1-1I < ¢ for all

i=0
> 0, then the sequence {Hi} is well defined and {xi} converges

Q-superlinearly to x.,.



Proof: Broyden, Dennis and Moré [5] have proven this theorem in the
case p; = 1. With a slight expansion of their techniques we show that
update (1.6) satisfies (2.3) with W(Xi’Hi) = %-l y1—1{. This proves
the 1inear convergence of {Xi} by Theorem 3.1, and then the Q-super-

linear convergence follows directly from the work of Broyden, Dennis

and More.

Broyden, Dennis and Moré show that under the assumptions of this

theorem, there exist open neighborhoods N]*around X, and N2 around
2 -1

Vo f(x,) = such that if Xs € N1 and H, e N2 is symmetric, then there

exist nonnegative constants Oy O for which

[ H () = By < (agmy) [ Ry —HHM+oc2m (2.4)

A 2 -1
where m. = max {[| Xip1 ~ XI5 11 x5 = % 113 H = Vof(x,) .

(H1+](1), (1.6) with v =1, is simply the BFGS). They also show

that under these assumptions,
) T T
T T

S: Y5 S,y

)

<

7 Al

M

for any A ¢ RN Now, if necessary further restrict N2 so that
max {[[A [y, Ae Ny} <2

(The constant 2 is arbitrary. Note that as N2 becomes small,

l]AlIM ~ 1 for all A e N2.) Then since update (1.6) can be arranged as

g () = My (D)% (o)) (Toygsy D)y (s )

51 Y4 5

the triangle inequality, (2 4), (2.5) and 11H HM < 2 yield
I Hip (vy) HHM < (T+agm,) JIH, »H][M+0L2m +(9/2) (v;-1).

Therefore by Theorem 2.1 there exist positive constants g, §, and o

such that if || Xo = X | < e,llHo -FHlM < ¢ and



iyi-Tl < o for all j = 0, the sequence {H;} 1s well defined and

I 1 G

0
{Xi} converges Q-Tinearly to x,. The proof of Q-superlinear convergence

3

is then identical to that of Broyden, Dennis and Moré [5] for the

case vy, = 1.

It should be noted that Theorem 2.2 is not peculiar to the BFGS
update; it can readily be proven for other updates,such as the DFP or
Broyden's method, which have been proven Q-superlinearly convergent by
the techniques of Broyden, Dennis and Moré [5].

Powell [14] examines a different algorithm, in which each X4
is chosen by the Tine search iteration

X = X; - AGH, Af(xi). (2.6)

i+1
Parameter A is chosen to obey conditions (2.7), which basically assure
that each step results in an adequate reduction in f(x) and a step which
is not too small. Wolfe [21] has shown that these conditions are
sufficient to guarantee global convergence in many cases, and they are
used in a number of computational routines. Powell [14] proves that if
f is convex and some lesser conditions are met, then the points pro-
duced by (2.6) using the BFGS update and As obeying (2.7) converge to

a minimum x, of f from any Xo and Ho' If in addition vzf(x*) is pos-
itive definite, (2.2) holds and Ay = 1 is used whenever it obeys (2.7),
he shows that the convergence is Q-superlinear. In Theorem 2.3 we ex-

tend these results to the self-scaling BFGS update. The first part,

establishing convergence, goes through without much change as long as

3 o
{; i . Y{} is uniformly bounded above and below by positive constants.
i= g

The Q-superlinear portion requires the slightly stronger condition
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|v;=1] < = theextension of this portion of Powell's proof de-

no~18
(@]

i
pends mainly on the relation between the BFGS and self-scaling BFGS

updates established in the proof of Theorem 2.2.

Theorem 2.3 Let f:R" > R be convex, x, € Rn, and assume that

D = {x|f(x) < f(xo)} is bounded and f is twice continuously
differentiable in D. Let the sequence X; € Rn, i=1,2,... be gen-
erated from Xo and a symmetric HO e RN by (2.6), where

H1+] = H1+1(y1) given by (1.6), Y5 is a nonzero real number,

and Ay > 0 is chosen so that

Flxgq) = Flxp) + 8y TR0 (x4400%,) (2.7)

T T
Vf(x1+]) (x1+1-xi) > BZVf(Xi) (x1+1—x1)

B]g 82 constants obeying 0 < 61 < <1, B] < 1/2. If there exist

B
constants 0 < ymin< 1 < ymax such that

‘j .

I  v. e [ymin, ymax] (2.8)
. i

1=0

for all j > o, then the sequence {Xi} is well defined and converges

to a minimun x, of f. If in addition vof(x,) is positive definite,

(2.2) holds for all x in some open neighborhood around x,, and there

J
exists some v > 0 such that ) lyi_]l < v for all j = 0, then
i=0
the rate of convergence is Q-superlinear.

Proof: The proof of convergence is accomplished by suitable mod-
ification of the proof of Powell [14]. Perhaps the easiest way is

to use the fact that the sequences {Xi} which can be produced by the
algorithm under consideration and ¢ obeying (2.8) are exactly the same

as can be produced if H. in (2.6) is replaced by ﬁg and the update
is replaced by
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H, +(oss, -Hys) siT+ silogsy-Hys) - <eus.-Hoyoy, >s1~51-T
S1Ty1 (siTy1)2
with
p; e [1/ymax, 1/ymin] (2.10)

(and H6 = Ho)' This is proven below. The proof of Q-linear convergence
is then complete because convergence of the ahove algorithm using update
(2.9) and o obeying (2.10) has been proven in Schnabel [16], under the
same conditions on f. It should be noted that this proof required only

one trivial modification of the proof in Powell [14].

The proof that the sequences which can be generated by algorithm
(2.6-7) using updates (1.6) or (2.8) are equivalent is an extension
of a result in Spedicato [19]. It rests mainly on the observation
that if S and y; are the same in (1.6) and (2.8) and ﬁ} = giHi for any
constant £, then ﬁ%+1(g/yi) = (g/yi)H1+](y1). Using this fact we first
show by induction on k that if sequences {xo,...,xk} and”{Ho,...,Hk}
can be generated using (1.6) with e obeying (2.8), then the sequences

{x ,...,xk} and {Ho’poH]"“pk—THk} can be generated by (2.9-10) using
This is clearly true for k = 0. Assume it is true

H.

for k = i. Then since H} = p i

i1 the search directions are equiv-

alent and the possibilities for x are clearly equivalent. If the

i+]
same‘xi+} is chosen by both algorithms, then their si‘s and yi's are

the same. Furthermore, if y. obeys (2.8) then p. obeys (2.10). Since
i i

p'i = p.i_]/Yi we have —HW.H_'I (p'l”*) = H'I‘H(p'l'"]/Y'l) = (01_]/Y1)H-‘+‘1 (Y.i)

= piHi+1(yi) and the induction is complete. To complete the proof,



-12-

one shows in a virtually identical manner that if {xo,... 1,

s Xy
{ﬁb,...,ﬁk} can be generated by (2.9-10), then {xo,...,xk},
{HB,H}/QO,...,Hk/pk_]} can be generated by (1.6-2.8) using
Yi T Py 1/Pso P_1 &1,

The extension of Powell's [14] proof of Q-superlinear convergence
to update (1.6) is based on our analysis of this update in proving
Theorem 2.2. The first portion of his proof, that z I X;=Xg|| s
bounded, goes through without change. It 1is then ;n{yonecessary to ex-
tend Theorem 8.7 of Dennis and More [7] to update (1.6). To do this,
we use the fact frqm the proof of Theorem 2.2 that given {Xi} > Xy
there exists an io > such that for all i = 10,

[ Mg = Hlly = (ragme) [1HG- Ly + oy + (978) 10l 1wy 4] (211)

where H = vzf(x*) Tom= H']/2

m, = max {]| X1+]'X*l[’I|X1“X*H } and
ap, o, are nonnegative constants. (Note that consulting the original
techniques of Broyden, Dennis and More [5], (2.11) requires ]{x1 - Xl
sufficiently small but does not require anything about HHi -H||l.) To
prove Theorem 8.7, it is now necessary to show that (2.11) implies

{HHiI[M} uniformly bounded. To do this, select some j > i  such that

2 a]n1+(9/2)y <1

where m

11~18
0~18

m. =
1:‘{

]Yi']l; and then select t so that
J i

J
om * (9/4) [IHlly vy 3

T - Za]m - (9/72)y

i

Q

T z‘maX{HHj-ﬂHH,

(2.12)

We show by induction that

[Hy - Hlly < 205 [IH Iy < 20+ (T, | (2.13)
for all i = j. For i = j this is clearly true, the second inequality
resulting from the triangle inequality. Assume (2.13) true for

i=13, ..., k. Then summing (2.11) for i = j to k gives
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”Hk.ﬂ ‘HHM < HHJ “H”M +

.

1

HHj{—HHM oc]mZ.’c+ u2m+ (9/4)(2T+|]H||M)y

k
Z ; (%miHHi —H”M + oy + (9/4) ”HT'HMI Yj'] 1)

+

IN

IA

the Tast two inequalities coming from the application of (2.12). This

completes the induction as lin+T”M <271 + l]H]]M again results from

the triangle inequality. Now consulting the original proof of Theorem
8.7 of Dennis and Moré [7] in Theorems 3.1-3.4 of Dennis and Moré [6],
it is seen that given (2.11) and (2.13), the remainder of the proof of
Theorem 8.7 goes through without change. As shown in Powell [14], this

completes the proof of Theorem 2.3.

We note that Brodlie states in [3] that Theorem 2.3 is true if
restriction (2.8) is relaxed to i € [ymin, ymax], ymin, ymax defined
as above. We have not been able to show this. Indeed, from our tech-
niques of proof, if Brodlie's statement is correct, then Theorem 2.3
would also apply to update (2.9) as long as o; € [(plﬂin)ii(pﬂﬁX)i] for

some constants o < omin < 1 < pmin. We doubt whether this is correct.

3. Necessary conditions for Q-superlinear convergence of self-scaling

methods
In this section, we show that for the direct-prediction quasi-
Newton method (2.1) using the self-scaling BFGS update to be Q-super-
linearly convergent on the class of "well-behaved" functions considered
by Broyden, Dennis and More [5] or by Powell [14], one must have

Tim i = 1 for all i in some subsequence of R which includes at least
i >
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every second integer. We accomplish this in Theorem 3.1 by showing
that this condition is necessary for Q-superlinear convergence on
the nicest function of all, f(x) = (1/2) x2 (starting from any
X * 0 and HO # I). Unfortuantely, we must consider the two dimen-
sional case, since in one dimension Hi+1 is completely determined by
the secant equation and the parameter Y; has no effect. This makes
the analysis of our example quite complex; the reader may wish to
skip it. We believe the techniques used are of some further interest,
and comment on this following the proof. In Section 5 we show that
for any of the commonly used choices of Yis the stronger condition
Tim Vi = 1 can trivially be shown necessary for Q-superlinear con-

i+
vergence on any function obeying the assumptions of Theorem 2.1

To avoid an even messier proof of Theorem 3.1, we modify the
update being considered very slightly: if the angle between S and
Si_1 is less than some arbitrarily small constant, we let H1+] = Hi’
(The actual condition is slightly more complex - see below.) In
practice this would be a reasonable implementation condition for the
update. However, is should be realized that Theorem 3.1 is still
basically true without this restriction (there may be an exception
in one weird situation). Besides, from the proof of Theorem 3.1 we
see that if Q-superlinear convergence is attained, then even with
this condition eventually there will be an update at Teast every
second iteration. We also assume that {|[H.[|} is uniformly bounded.
This condition can similarly be omitted at the cost of the same possible
exception to Theorem 3.7, but since it is satisfied by all success-

ful quasi-Newton updates we know of on functions for which they Q-super-.

linearly convergent, we prefer to include it.
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We use #« (v,w) to denote the smallest positive angle from v to w,
Vv, Ws:Rn, where in measuring this angle we extend v and w to be full

lines (see Fig. 3.1). Therefore % (v,w) [0, /2] for all v, weR".
v

W
¢ ~ --m/l wwwwwwww s
Fig. 3.1

Theorem 3.1 Let f: Rna-R,x* eD satisfy the conditions of Theorem 2.17.

X
Rnn

Let the sequences X; eRn, Hi € , 1 =1,2,... be generated from

X
Rnn

X0 eR" and a symmetric Ho 3 as in Theorem 2.2, with this modifica-

tion: given some e in (0,%) and j(0) = 0, define at each iteration

j(i-1) otherwise

and if j(i) = j(i-1), then H1+1 = Hi‘ Then there exists some such f

such that if Xg # Xu and H0 # vzf(x*), then {Xi} converges Q-super-
linearly to x, only if 1im inf |y1~1[ = 0. Furthermore, the sub-
i+ o

sequence of Y5 which converges to 1 must contain at least every second

Y.i'

Proof: The proof is via an example: Q-superlinear convergence is shown

to require 1im inf [yi—1] = 0 in the case f(x) = xTx, n=2. Note
i > o

that by a Tinear transformation, this example can be extended to any

positive difinite two dimensional quadratic.

The proof for this example is rather complicated and probably not

too instructive. The possiblility that H1+] = Hi makes the notation
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and proof harder to follow, and so we first show how the proof proceeds
if « (51-1’31)2 e at each iteration. Then we readily extend our tech-
niques to the general case.

Since vf(x) = x, Yi 7 Ss for all i. Thus we only use S5 in what

2

follows. For any veR™, vJw will denote any vector in R2 such that

<vl,v> = 0. (By not specifying the orientation of viowe will get a
few = signs below, but they won't matter.) Finally for the description
of convergence to be meaningful we assume that no X; = 0. (In general,

this is the case for our example even if vy = 1.)

The main technique of the proof is to express any Xiy7 @S 2@ Tinear

+1

combination of s. and s. ,, calculate x.,,

and then show that Q-superlinear convergence is possible only if

as a function of S and Si_1°

Tim infy, -1 =0.

1>

Define

n

W,

AT

j
Pi = # (559554
for 1 > 0, where s_; is an eigenvector of H  which makes § = e. Note
that we are assuming for now that each %12 e. Then we can express
- x|l sin o,
X541 = 93557 * BiSs o] i+] ' i (3.7)
Is; 7l sin 2,

H =S5 Now substituting (1.6) for H.

10 USTng Hysy g =554

., 1S,
i+171 1=

and doing a fair bit of rearranging,
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Xigp = Foy s, llsi_]l

<T'Yi) sﬂw@it

yiliHisill cos P sin % (sy,H,s.)

-

=N
: ‘ i
so that using also formula (3.1) for o
HX'.;. H "I
e o gin W, (1—y1):ty1|}HisiH cos P sin ;(si,Hisi) & r;
IIX1+1”
”51” sin@i
(3.3)
We now show that 1im r. = 0 implies Tim inf lyi—I}= 0.
i >« i+ o
Assume Q-superlinear convergence, i.e., The main

step is to show that then Tim sup w. = 0.

i > e

L are the same, so that

X and s, _,

i+1
W, + @1 = 7/2.

.), so that

Also define 8; = sk(xis1

.= W, oo 6,
Q1 Wii £ 94

and from (3.4),

tw, .+ 8, = i =
L /2, i

1,2,...

Tim ri © 0.
i+

From (3.2), the direction of

(3.4)

(3.5)

Now Dennis and Morée [6] show that Q-superlinear convergence implies

Tim 8; = 0, so that from (3.5),

i+ i+ o

Thus Q-superlinear convergence implies

Tim inf |r./sinw,| = 0,
. i i
i

ij sup wy # 0.

(3.6)

Dennis and More [6] also show that Q-superlinear convergence and

{lIH;][} uniformly bounded imply Tim ("”Hisifsiﬂ/iisif"!) = 0, so that

i+

Jdim [ Hyssl[sin g (sooH.sy) =

> o ——

l131H

(3.7)
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Since also {cos P, /sin pi} is bounded above due to each @i > e, (3.3),
(3.7) and Q-superlinear convergence imply that

Tim [ro/sinwg| = Tim [y,-1]. (3.8)

i > «© i > o

Therefore from (3.6) and (3.8), 1im inf |y.-1] = Timinf |[r./sinw.| = 0.
. i X i i

1 > T = o

From (3.8), Q-superlinear convergence also implies that

T9m (sinwi)(1—y1) = 0, which with (3.5) and 1im 8, = 0 shows.that the

i+
subsequence of {Yi} which converges to 1 must contain at least every

second Y-

This completes the proof under the assumption that each @1 > e,
In the general case, the proof is very similar if we express Xiy1 S

a Tinear combination of Si(1) and s )-1)° the Tast two values of

i(da
S. which caused updates to occur. Define

b T 250y %440)

.= 5(S. i 2Ss7av ).
% = *85(3(1)-1)"%3 (1)
By the construction of our algorithm, each g; = e, SO We can express

i1 T %5300 T

w?

i Sj(i)’ {&1‘] = “xj-ﬂ” sin Myl

Fs5¢5(1)-1)lIs1n s

(We define S_q as before and j(-1) = -1.) The same algebra as above

then gives the analogous equation to (3.2),

X'i+2 = i&_} SJ(1) L HSJ(J(.‘)_])”[(]‘YJ(T))S”'IO] +
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so that
”Xm“_‘“”“i{“'ij)”jm IH3 ()83l cos oy st & (s55yaHy5y854)).

(3.10)
From (3.10), the proof that Q-superlinear convergence requires

Tim inf v. = 0 is similar to the above. Define
i e

0.

i = *(85(4-1)0 8405

it

Using still w, = x (Si’xi+1)’ (3.9) shows that
W + 91 = 7/2.

Also

and from the construction of the algorithm, either j(i) = i so
that T, = 0, or j(i) = j(i-1) and T, < e Using again 8= f(xi,si),
91 T Mo Y
and again Q-superlinear convergence implies Tim 61 = 0. Thus from
i
the above equations

Wo tus g E (T_iiS_i) = /2

and Tim sup [Ti:téi} <e. This shows that 1im sup u; = 0 which is
i>w i+ e '
again the main result. These equations also show that

8.7 ¥ 91 + (111:51) = /2

. - . . ™ .
which implies that since & < 5 under Q-superlinear convergence

eventually at least every second 91 > %~> e, SO that an update is

made at that iteration. The remainder of the proof proceeds exactly

as above. Since Tim sup Wi ® 0 and each Wy Z €, the results of Dennis
i+
and More [6] show that (3.10) can only converge to zero if

Tim inf |y

.oaa=11 = 0.
Hin inf gy
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The techniques used in the proof of Theorem 3.1, and much of the
analysis, are independent of the update used. For instance, Schnabel
[15] uses basically the same techniques to prove a version of Theorem
3.1 for a variant of Broyden's method. We can also use the above
analysis with i = 1 to examine the direct prediction BFGS algorithm.
For example, the interesting fact that

SESTPRD SRR 0 (3.11)
holds for general quadratics of any dimension. ((3.11) is the general
form of the condition < Xi40s83> = 0 which was shown above in the case
1

f = xTx; it is obtained by expressing Xip] = X + a.s.

+Rg.s. for
171 81 i

L . . : . .
some s .) Therefore if Q-superlinear convergence is attained,

Tim -<si+2,v2 f(x*)si>‘ = 0, which contradicts a conjecture we have

)

sometimes heard that the final steps of a Q-superlinearly convergent
quasi-Newton algorithm will be in almost the same direction. Asymptotic
results Tike this are also readily extended to non-quadratic functions

f(x) with v2 f(x4) positive definite.

4. Relation of Luenberger, Oren and Spedicato's self-scaling update

to Biggs' update

We now introduce the choices of self-sealing parameter vy suggested
by Luenberger, Oren and Spedicato [10-13,19,20], and give a new deriva-
tion of a particular choice used by Brodlie [3] and Shanno and Phua
[18]. Our derivation is based on a cubic model of f obtainable from
the Tast iteration, and is closely related to the derivation of a
successful update by Biggs [1]. It suggests a reason for the observed

superior performance of Biggs' update on most problems.
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Luenberger, Oren and Spedicato suggest choosing Y; in (1.6) in

the range

<S4eYy> <sysHysy> (4.1)

b

. €
Y'I

RATL e <SysYy>
The original justification [12] stems from the performance of a perfect

line search algorithm on quadratic functions. A rougher reason is that

since v2 f(xi) Sy TV for quadratic f, it would be nice if
If (4.2) is true then <y1,y1Hiy1> = <YieSs > and<*si,y1yi> =

<51,H1']y1>, which motivates the two 1imits of range (4.1). Brodlie

[3] chooses

_ -1 ,
'Y_I _<S'i’H'i S1->/<S]~a}’1-> (4'°3)

because his algorithm stores and updates H1."1 instead of Hi’ making

(4.3) the only readily available member of (4.1). Shanno and Phua [18]

first consider s = (< S-,H?'] )1/2

3 , the geometric mean

;> /<y
of (4.1), but Tater consider using (4.3) at the first iteration and

Y ® 1 thereafter.

A different motivation of (4.3), following the derivation of a
different update by Biggs [1], is as follows. From the step just taken

we have four pieces of information about f: f(xi), f(xi+]), vf(xi),

vf(x1+1). These can be used to approximate the restriction of f to the
1ine connecting X and X7 %(r) = f(xi+'risi), by the unique cubic
q(t) which interpolates £ and %' at X2 and X341 (tr=0,1). Note that
%I(T) = vf(xi +'rsi)Tsi, f (1) = 511-v2 f(xi +'rsi) S Function q(r1)
is found by standard interpolation techniques; in particular

q" (1/72) = s;7y;. (4.4)
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Now since Hi = YiHi is an intermediate matrix between approximating

v2 f(xi)'] and v2 f(xi+])"], it seems reasonable that it approximate

ve f(x;+ (1/2)s;)"". Since also

q"(1/2) = siTvz f(x1+‘(1/2)si)si,

this may be partially accomplished by setting

" T AR e oo Ty =l
q"(1/2) = si Hy sy = s. M Si/ Y;

which from (4.4) results in the choice (4.3).
Biggs uses the same model to a different end. He reasons that
H1+1y1 should be in the direction of Si» but allows
Y5 = 045
for some parameter Py He then reasons that since H1.+1 approximates

2 -1 2

v f(x1+]) and gq"(1) ~ sV f(xi+1) S it would be good if

T -1 . . -1 _ .. .
S H1+1 S; =4 (1). Since H1+1 s; = yi/ Py this is accomplished
by setting p; = szyi /q"(1) (g"(1) s easily calculated). The update

then used is the BFGS (1.3) with S replaced by 035, throughout.

To us, Biggs' use of the cubic model is more appealing than the
self-scaling idea. This is because the step from X; to X472 and the
cubic model, give information about f only in the direction Ss- Biggs
uses this information to affect the model Hessian H1+1'] specifically
as it acts on S However, the self-scaling update, no matter how it
is motivated, incorporates the information in direction Ss by making
an equal change to the product which H1+1—1 makes with any vector.
This seems 1ike a fundamental weakness of the self-scaling idea.
Perhaps it accounts for its inferior performance to Biggs' method and

the BFGS on most problems (Brodiie [3]).
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We finally comment on the observation of Shanno and Phua [18]
that when HQ = 1 (a common choice), the scaling QQ = 7oHg> Yo given
by (4.3), is helpful while scaling at subsequent iterations usually is
not. While this initial scaling would seem to have the same weakness
mentioned above, namely that information from one direction is used to
influence QO in all directions, this may help explain its success at
the first iteration. This is because, if the range of ejgenvalues of
VZ‘F(XO) is not too broad and doesn't include 1, then multiplying

-1

H0 = I by a constant which scales it well in direction SO will

probably also improve its accuracy in the other directions.

5. Relation of this analysis to the self-scaling methods of Luenberger,

Oren and Spedicato

We now discuss the relation of our analysis in Sections 2 and 3
to the particular self-scaling BFGS updates proposed by Luenberger,
Oren and Spedicato [10-13,19,20]. We consider separately the cases
when the Hessian at the solution x, is nonsingular and singular.

When vzf(x*) is non-singular, successful quasi-Newton methods
converge Q-superlinearly on a wide class of problems (Broyden, Dennis
and Moré [5], Powell [147). In Sections 2 and 3 we exhibited necessary
and sufficient conditions for methods using the self-scaling BFGS update
(1.6) to also attain this rate of convergence. They indicate that a
sequence containing at least every second ¥ will need to approach 1,
perhaps at a fast rate. We have not been able to show whether or not
the choices (4.1) suggested by Luenberger, Oren and Spedicato obey
either the necessary or the sufficient condition. (The problem seems

to be obtaining a measure of how close Hi—]si is to yi.) However,
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from Theorem 2.2 of Dennis and Moré [6], it is trivial to show that if
the points generated by direct prediction iteration (2.1) converge
Q-superlinearly to the minimum x, of a function f obeying the assumptions

of our Theorem 2.1 and all the Hi‘s are nonsingular, then for the most

common choice vy =< s.,H,i"1

; S >/<<si,y1>, Tim vy, must equal 1 regard-

i >
less of the update used. This stems from Dennis and Moré's [6]

result that Q-superlinear convergence requires

I ('H°_T ‘VZ f(Xg)) S5 [ — 0 (5.1)

Tim i =
s,

and the commonly used lemma that under the assumptions of Theorem 2.1

I VZ f(xs) 55 ‘y1H < Lmax {|] Xs - Xyl s Hx-i.ﬂ - Xy ||} (5.2)
151

(see e.g., Broyden, Dennis and Moré [5]). If in addition {HHi[[} is

uniformly bounded, then (5.1) and (5.2) show that given Q-superlinear
convergence, any other ¥ in the range (4.1) must also converge to 1.
Therefore, if the self-scaling BFGS update with any Vs given by (4.1)
is to be successful on problems with V2 f(x,) nonsingular, it must
asymptotically become the same as the BFGS.

The situation on problems with v2 f(x4) singular is markedly
different. It is on these problems that self-scaling methods have
been successful in practice (Brodlie [3], Shanno and Phua [18]). On
such problems, neither quasi-Newton nor Newton's method achieve better
than Tinear convergence in general. Furthermore, we show in Example
5.1 below that any ¥ in the range (4.1) does not in general converge
to 1 on such problems (using either direct prediction or the 1ine
search of Theorem 2.3). Therefore the self-scaling BFGS update is

expected to differ from the BFGS on singular problems. This does not
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indicate whether it will be better or worse, but at least that we are
considering fundamentally different updates. Shanno and Phua [18] give
some justification why the self-scaling updatesvshou1d be helpful on

a special class of singular problems, the homogeneous functions. In our
example, f is homogeneous as well as being singular.

Example 5.1 may be somewhat misleading. For ease of analysis, we
use a one dimensional function f. So while we show that Vs given by
(4.3) (or any Ys e (4.1), as they are equivalent in this case) does not
converge to 1, this has no impact on the points generated by the al-
gorithm in this case, because H1+] is totally determined by

H = s.. However, it should be clear from this example that

+1Y5 T %
Y e (4.1) will in general also not converge to 1 when v2 f(xy) is
singular and n > 1, and then the choices of Y; will affect the matrices

Hi and points X which are produced.

Example 5.1 Suppose the direct prediction quasi-Newton iteration (2.1),

using update (1.6) with Y4 given by (4.3) is applied to f : R+ R,

f = x2k, k > 1 a positive integer. Let r be the root of
oK1 B2 iy the interval (0,1). IF xg = 0 and Hy =
(1-r)/ 2kx02k'2, then at each iteration
= . = 1/p2k=2 8 - 2k-2
X347 re Xy Y 1/r=" =y, H'i,+1 = (1-(‘)/2!()(1&” .

For example, if k = 2, r = .755 and y=1.75. As k + «, r > 1 and
y + 2, both from below.

Furthermore, if 1ine search iteration (2.6-7) is used instead of

(2.1), then if

™
—
IA
—
]
—l=
n
W
J—
—
-
g
-

w
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-
>
w™ >
no
—
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the choice Xi = 1 always satisfies the 1ine search condition. Since
é](k) > 1/2 > éz(k) for all k > 1, this means that there exist permis-
sible values of By and By in (2.7) such that if the Tine search is
implemented to use Ai = 1 whenever it satisfies (2.7), then the above

also applies to line search iteration (2.6-7).

Proof: The first part of the example, concerning the direct prediction
method, follows from straightforward algebra. Asymptotically,
(1-r) e [1/(4k-2),1/(4 k-4)Tand r2K=2 = p2K1 Ly 5.

For the Tine search result, we just need to show that
2k-1 2k-2

é](k) > 1/2 > éz(k). We use the fact that since r°" ' + r =]
and r < 1,
r' > 1/2 for all i < 2k-2 (5.3)
and r2k1 ¢ 1/2. Thus éz(k) < 1/2 is immediate. Now express
k-1 . -
SICRRUZON N (R
J:

2k-1)-]

and from (5.3), rJ + o > 1 for all j e [0,k-17 so that

é](k) > 1/2. For k = 2, é](k) ~ .68, éz(k) ~ .43; asymptotically,

By(k) > 1 and 8,(k) ~1/2.

Example 5.1 can be shown to indicate the asymptotic value of ¥;

2k-2

when H,y = (1-r)/2kr We also expect that it is indicative

0
of the asymptotic behavior of Y; on other functions f with‘vzf(x*)
singular. Thus it gives good indication that the se1f?sca11ng BFGS
and normal BFGS updates differ, even asymptotically, on singular

problems.
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6. Summary and concluding remarks

We have shown that for the self-scaling BFGS method to be Q-super-
Tinearly convergent under normal assumptions (including vzf nonsingular
at the solution x,) it is necessary that TTm inf v, = 1 and sufficient

i > o
that ‘Z 3y1—1[ is bounded by a suitable constant. It is an open
quesfggg whether the choices of Y; suggested by Luenberger, Oren and
Spedicato [10-13,19,20] and used by Brodlie [3] and Shanno’and Phua
[18] satisfy either condition. However, from our theory it is seen
that if any self-scaling BFGS update in use is to be as successful as
the BFGS on nonsingular problems, then asymptotically it must be the
same as the BFGS. Along with the computational results of Broyden and
Shanno and Phua, which show the self-scaling update faring Tess well
than the BFGS on problems with vzf(x*) nonsingular, this discourages
the use of self-scaling updates on nonsingular problems. Another
possible disadvantage of self-scaling methods is indicated in Section 4:
they use information about the effect of the Hessian in one direction
to alter the Hessian approximation in all directions.

We have also considered the behavior of the self-scaling update on
problems with vzf(x*) singular, where it has proven attractive in
practice, and where only linear convergence can be expected in general.
We give an example of a class of such problems in which the commonly
used self-scaling parameter ¥; does not converge to 1. Our example

indicates that the normal and self-scaling BFGS updates are Tikely to

be fundamentally different on such problems.
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