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Abstract

A numerical technique for calculating the electric field distribu-
tion and capacitance of coplanar strip electrodes placed on top of a
layered dielectric substrate is presented. A Green's function for the
potential due to a point charge in the plane of the electrodes is found
using Fourier transform techniques, The charge distribution on the
clectrodes is calculated by solving an integral equation. Tle static
capacitance is calculated by integrating the charge distribution. The
electric field at any point in the substrate can be found by integrating

the charge distribution times the Green’s function.

1 Introduction

The analysis of coplanar transmission lines and electrode structures has been
studied extensively in recent years. Coplanar electrodes are used in any
MMIC structure involving FETSs, and in integrated optic devices. In many
devices, coplanar electrodes are placed on a layered dielectric substrate. The
modeling of coplanar electrode structures requires knowledge of the transmis-
sion line properties of the devices and in some cases the electric field distri-

hution in the substrate. In order to analyze the performance of electro-optic



devices, the transmission line properties of the electrodes must be calculated.
It is also useful to calculate the fields generated in the electro-optic miate-
rial in order to determine how much power is needed to achieve the desired
electro-optic effect. When the electrodes are placed directly on top of the
clectro-optic substrate, the line capacitance and fields can be found in closed
form by conformal mapping. This is the case when ITO{Indium Tin Oxide)
clecirodes are used since they act as a buffer layer for optical frequencies
and conductors at microwave frequencies. Gupta [1] calculates the static ca-
pacitance of coplanar strip electrodes. Ramer [2] uses conformal mapping to
calculate the static electric fields generated by coplanar strip electrodes in
the ahsence of a huffer layer.

When metal electrodes are used, a dielectric buffer layer must be placed
between the electrodes and the substrate to avoid attenuation of the light
by the metal. Conformal mapping is not applicable to solving this problem
when a buffer layer is present. Several approaches to this problem have been
presented recently. Knorr and Kuchler {3] use a spectral domain technique to
find the transmission line parameters of coplanar strip electrodes on a layered

dielectric substrate. Thylen and Granestrand [4] use an iterative approach



to calculate the electric field in the substrate. Kuester [5] uses an integral
equation approach to find an approximation for the static capacitance of
the electrodes. Marcuse [6] uses a point matching technique to solve for the
electric field in the substrate. Sabatier and Caquot [7] use the method of
images to find approximations for the electric field in the substrate as well
as the buffer layer.

In this paper, we present a numerical technique for computing the electric
field and line capacitance of coplanar strip electrodes with a diclectric buffer
layer present. All calculations are based on the quasi static approximation
sinee optical modulators have dimensions much smaller than the microwave
wavelengths currently being used in these applications. First the Green’s
[unctions for the potential in the plane of the electrodes and the field com-
ponents m the substrate due to a charge in the plane of the electrodes are
lound. The Green's function is then used to solve an integral equation for
the charge on the electrodes using the method of moments. Once the charge
is known, the capacitance can be found by integrating the charge. The field
components in the substrate can be found by integrating the charge times the

Green’s function for the fields. This paper will present a comparison between
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Figure 1: The structure to be analyzed

these numerical results, other published results and some experimental data.

2  Green’s functions in the three layer dielectric

The structure to be analyzed is shown in Figure 1. The electrodes are as-
sumed to be infinitely thin, and the substrate is assumed to be infinitely
thick.

The Green’s function for this problem corresponds to the potential due
to a point charge in the plane of the electrodes. The problem is divided into

four regions (see Figure 2). Region one is free space (¢, = 1} above the point
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Figure 20 The four regions and coordinaté system used to find the Green’s
[unction

charge. Region two is also free space, below the point charge but above the
buffer layer. Region two must be included to have sufficient boundary con-
ditions, then the limit where the thickness of region two approaches zero is
taken. Region three is the buffer layer (¢, = ¢,} and region four is the sul-
strate (¢, = ¢,). Finding the Green’s function therefore amounts to solving

the Poisson equation The Green'’s function is the solution of the Poisson



G | 8°G _ b(z — z0)b(z ~ z)
827 T B = o (1)

With the boundary conditions

G(z,zg,2,20) =0 at z = +c0 (2)
Gz, 20, 2,20) is continuous across dielectric boundaries (3}
G(z,z0,2,z9) is continuous across the point charge (4)
aG . : | .
€5, 1 continuous across boundaries (5)
4
ane

204 Sz — 2o .
/ G(z,29,2,20) = (——) (G)

20— €g

Taking the Fourier transform in x of equation 1. yields the equation

IT _ gy _ &8z — 2)

(7)

€o
The first four boundary conditions transform to identical forms, however the

fifth one (6) transforms to the form

e"jEzU

/ " G(€, 20, 2, 2) =

200~ €y



The homogeneous solution to this equation is
G(&, 20,2, 20) = AeTIIlE=x0) 4. Belél(a=20) (9)

Applying this homogeneous solution in each of the four regions results in
cight equations and eight unknowns. Fortunately the boundary conditions (2
- 6} provide eight equations. Solving this system of equations, then setting
zo = ( to put the charge in the plane of the electrodes, and taking the inverse
Fourier transform gives the following solution for the Greens function.

In the substrate:

1 oo gitle—mo)e=ldlz peyds
G(€,20,2,0) = Trcg oo 7] L (10)

where

_ 1
F(g)__"(eb_l)(l__i:)e—zlfld—-l—‘iz—ﬁb_ﬁs (1])

which can be written

1

F(f) = Ce"zifld _D (12)
wlere
C=(a~1)1-2) (13)
€
€5
D=1+6—+eb+c, (14)
b



taking out a factor 1/D results in

1 1 .
F§) = D1=Gonad (15)

using the equality
=14zt 4+2%4. .. (16)

l1—-=z

F(€) can be reduced to

1.
FE) = Y (et a7
255
using the fact that
e?€=20) = cog €(z — zo) + 7 siné(z — ) (18)

and the sine terms drop out because sine is an even function and the inte-

gration is fromr —oo to +oo the integral becomes

+°°1 C' cos{(z:—wg) ~Klz+2nd) g¢

G 1 gy 2, 19
now to solve the integral in equation 19 we let
I /°° cos aze~**dz (20)
z
-:;—é = -—/Dw cos axe ¥ dz (21)



using the identity

|7 e costge + A)do = i Slpeos(h) —gsinQ))s] (22)

vields
dl b
—_— = = '7,;-
db b? 4 A? (23)
integrating with respect to b gives the result
1 2, 12 :
I=—§1n|a + & | (24)

using the results from equations (24) and (19) yields the following result for

ihe Green’s function
o0
G2, 20,2,0) Z CID | (z — o) + (2 + 2nd)? | (25)

Similarly the Green's function in the plane of the electrodes is found to be

G(;lr,ﬂfu) = ! [ln(.z: — .720 — 1/2 Z C/D) A/D) 11‘]((1 t -T'D)2 +

2meg fomer

(2(n +1)d)?) + (B/ D) In((z — z0)* + (2nd)?)]]
where C and D are the same as above and

A-—-e,—eb (26)
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and
B=¢ +¢ (27)

For a typical case of LiNb0; substrate and 5t0; buffer layer ¢, = 34.7 ,

€} 23.9,

wlle}

=047 (§)" 2 107% for n = 15. I used 15 terms to approximate

the infinite series.
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Since £ = ~ 7 @, the Green’s functions for the x and 2 directed fields
can be found by taking the x and z derivatives of the Green’s function for
the potential. The x component of electric field in the substrate generated

by a point charge in the plane of the electrodes is given by:

2(x — z)

D (1. = - n 28
EE‘(111'012) (I/D),E(C/D) (m_xo)g + (Z— 20 + (2_”4))_2 ( )
Similarly the Green's function for the z component is given by
b 2(z - 2n
Bu(,20,2) = ~(1/D) S (C/ D" (z = 2 + 2nd) (29)

= (x—T0)? + (2 — 20 + (2nd))?
where (C and D are given by equations (13) and (14). For an $iQ, buffer
layer (¢ = 3.9) with a LiNbOjy substrate (e = 34.7), £ = ~0.47 which means
that only about fifteen terms of the infinite series are needed to get five place

accuracy.

3  Computation of charge distribution on coplanar

electrodes

The first step in the numerical process is to compute the charge density on

the clectrodes. Computing the charge distribution is unique to this method

12



of solution. This is done by solving the integral equation

V() = o(z")G(x,z')dz’ + (2")G(z,z")dz'

/left electrode right electrode 7

(30)
where o(2) is the charge distribution, G is the Green’s function (26) found
in the last section and V(z) is zero on the left electrode and unity on the
right electrode. Due to the linearity of the problem, if the voltage on the
right electrode is multiplied by a constant, the fields will be multiplied by
the same constant.

Iiquation (30) is then solved by the method of moments. We chose to
use Dirac delta functions as both basis and weighting functions so that all
integration could be performed in closed form. The solution is obtained in

the following way.

0’(.’17) =i0,'b,'($) (31)

bi(r) = &(x — x;) where the z,s are equally (32)

spaced along the electrodes

wi(z) = &(z — z;) where the z;s are equally spaced along the (33)
electrodes but offset from the z;s

13



The integral equation is then reduced to the matrix equation

(L)[u] = [v] (34)

where L is the known n by n matrix with elements

Li'j . .Ll;ctrodes Lb,(&?)'w_?(:c)dx (35)
= Lb(z) |:=, (36)
= o, Gl o) (37)
= Glz;,2;) (38)

u is the unknown vector which contains the solution for the charge density
(the g;s) and v is the known vector which contains the voltages on the clec-

trodes. So solving

[u] = [L]7[¢] (39)

vields the charge distribution on the electrodes.

In figure 3 the charge distribution on a symmetric electrode structure
is plotted. The structure has a three micron gap, symmetric ten micron
electrodes and a 0.3 micron buffer layer. The buffer layer is $i0, (e = 3.9)

and the substrate is LiNbO3 (e = 34.7) Although LiNbOs is anisotropic it

14
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I"igure 3: Charge distribution on symmetric coplanar electrodes with threc

micron gap, and ten micron electrodes

has been shown [9] that letting €, = | /ez€, does not change the capacitance

or charge distributi

o1.

Irom figure 3 it is clear that adding a buffer layer tends to flatten out

the charge distribution, reducing the peaks in charge near the edge of the

clectrode, but has little effect on the flat charge distribution near the center

of the electrode,
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4 Computation of static capacitance of electrodes

Once the charge distribution on the electrodes is known, the capacitance per

unit length is very simple to compute using (5]

1
= — d
C 1% '/cle_ctrodes 0'(50) z (40)

since we have defined the charge using delta functions (31) and defined the

voltage across the gap to be unity, the capacitance per unit length is simply

C=Zn:0',' (41)

i=0
Kuester 3] uses an integral equation and perturbation technique to approxi-
mate the static capacitance of symmetric coplanar strip electrodes. Ivuester’s
expression for the capacitance is given by

Coles +1)/2)

]— Cod g=ci
co wep(es+1)

C= (42)

Where Cj is the capacitance of the structure in free space and is given hy

K(k)
K()

Co = €p (43)

where K is the complete elliptic integral of the first kind, and the k is given

k=g/{g+2w) (44)
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Width | Gap | Buffer Layer | Numerical | Kuester’s | % Difference
thickness | capacitance | capacitance
30uM | 3uM 0 8.91 x107° | 8.86x10-10 0.5
30ud | 3uM 0.3 M 6.24 x10719 | 7.18x10-1° 15
10puM | 3uM 0 3.41 x10710 | 3.44x10"1° 2.8
10pM | 3uM 0.3uM 2.19 x1071° | 2.21x10-10 0.7
M | 3ud 0 2.27 x10°1° | 2.47x10710 8
IuM | 3uM 0.3uMM 9.59 x10~1 | 1.06x1071° 9
L | 3uM 0 1.95 x1071% | 1.80x1071° 7
LA | 3pdM 0.3uM 7.31 x1071* | 4.56x10-1 37

Figure 4: Comparison of numerical method vs Kuester’s approximation.

Kuester’s approximation is exact when the buffer layer thickness is zero

and

igure 4 shows calculations of static capacitance for various electrode struc-

tures using both the technique outlined above and Kuester’s approximation

The numerical results we obtained for capacitance agree very well with

K =+v1-—k2

17
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the exact solution (no buffer layer) for relatively wide electrodes, When the
electrodes become close to or smaller than the gap size, the accuracy of our
technique is diminished. This is due to the fact that more of the charge
becomes concentrated near the edges of the electrodes in these cases. The
delta functions are unable to model these rapid changes in charge density.
Kuester’s approximation [5] also breaks down when the electrodes become
narrow due to innacurate modeling of the charge distribution near the edges

of the electrodes.

5 Computation of Electric fields in the substrate

The components of the electric field in the substrate can be found using the
charge distribution and Green's function calculated above in the following

equation

E(z,2)= o(z')Gy(2, 7', 2)da’ (46)

elecirodes

where G,(x,2',2) is given in equation (28). and

E.(z,7) = / o(2')G, (2,2, 2)da’ (47)
electrodes
where G.(z,2’) is given in equation (29). Figures 5 - § show plots of

18



electric fleld in the substrate at a depth of one micron comparing our numer-
ical results to the exact solution of Ramer [2] and comparing our numerical
results to the approximation of Sabatier and Caquot [7] in the presence of
a buffer layer. Figures 9 and 10 show the x and z components of the field
with and without a buffer layer. The computation of 46 and 47 can be made
considerably faster by noting that when | z — 2’ |>> z the Green's functions
for a two layer dielectric can be substitued in place of equations 28 and 20.

This is given by the much simpler expressions

1 Az - 2') q
GE(J,JT,_Z)— 277(_@;'*‘1) ($—I')2+(Z'—Z’)2 (it")

and
G.(z,2',z) = ! 2z — 7) (49)

21(e, +1) (z — )2 + (z — 2/

It computation of the integrals in equations 46 and 47 the two layer Green’s
functions were substituted when |z — 2 |> 10z, resulting in less than a one
percent error and an improvement of a factor of ten in the speed of calculating
the fields.

Figures 5 and 6 show good agreement between our numerical approxima-
tion and the exact solution. Figures 7 and 8 show that the approximation

by Sabatier and Caquot produces very good results, but are not exact. From

19
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Figures 9 and 10, it is obvious that even a very small ~0.3 micron buffer

layer can produce 3 dB of attenuation of the field components.

6 Approximation for Symmetric Electrodes

‘The numerical technique described in the preceding section provides an ex-
cellent tool for accurately analyzing any type of coplanar electrode structure.
Unfortunataly, the computations required to achieve significant results are
extremely lengthy. In the example of the previous section, 350 basis fune-
tions were required on the symmetric electrode structure to converge 1o the
correct charge density. This resulted in a 350 by 350 [L] matrix. Filling up
this dense matrix and inverting it takes approximately one hour on a HP300
workstation. While this is fast enough to analyze single devices, il is pro-
hibitively slow for use in a CAD system where on-line changes in a circuit
can be analyzed and parameters quickly recalulated.

Once the charge distribution on the electrodes is calculated, the followin g
steps of calculating the static capacitance per unit length, and electric fields
in the substrate can be done very quickly using equations 41, 46, and 47.

The problem then was to find an approximation for the charge distribution

23



on the electrodes as a function of buffer layer thickness.

After observing the effect of changing the buffer layer thickness on the
charge distribution, it was obvious that increasing the buffer Jayer thickness
had the effect of decreasing the total charge density while at the same time,
causing a more rapid change in charge density near the edges of the strips,
The point at which the charge density starts to rapidly increase also moves
closer to the edge of the strip as the buffer layer thickness is increased. This
is displayed in figures11 and 12. We then observed that this is the same eflect,
that changing the substrate thickness of a microstrip has en the microstrip
cliarge density as observed by Kobayashi [10]. The dependance of microstrip
charge density vs Width to height ratio is shown in figures 13 and 14.

Kobayashi derives a closed-form expression for the charge distribution
on a microstrip by starting with the charge distribution on a strip in free
space at a fixed potential. Since this gives the general shape of the charge
distribution, he only needs to perturb it slightly to account for the effect
of the substrate thickness and ground plane. Qur approach is very similar,
The total charge distribution on the coplanar electrode structure can be

approximated in closed form by Kuester’s expression for capacitance which is

24
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given in equation 42. It remains then to find an approximation for the shape
of the charge distribution as a function of buffer layer thickness. We start
with the charge distribution on a symmetric coplanar electrode structure in
a two layer system. This expression is derived exactly, in closed form in
Kuester’s report [5]. Since we are only concerned with the shape, we drop

the constant from in front of the expression and are left with

1
V(& = 2 - a?)

oo(z) =

where « = ¢/2 and b= w4 g/2
The next step is to use Kobayashi’s formula describing the change in
charge distribution on a microstrip as W/H changes, but substituting the
expression for the charge distribution on coplanar strips in place of that for
microstrip in free space. The equation for the shape of the charge distribution

then becomes.

o(z) =l+10(1-—%)o%]'(%):—11 (51)

Where z. is the location where the charge distribution starts to rapidly
increase near the edge of the electrodes. The effect of the electrode widtl,

to gap ratio is accounted for in equation 50. The only thing left to do is to
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find X, as a function of the buffer layer thickness. This was accomplished
by finding the charge distribution numerically, then using a least squares
error analysis program, computing the X, which gives the minimum error
for the given geometry. This procedure was done for 20 different buffer layer
thicknesses, then a curve fitting program was used to get X, as a function of
buller Jayer thickness, and electrode width.

The formula obtained is the following

Y, .
== 045504 4 0.10364% v < 95 (52)
{)

~8.9386e — ()7 +3.4427 4(5 ) — 4.9056¢ 6(7)" (53)

2

w

e 0.89679 + 2.3184¢ — 3
w h

%‘:—_ 2> 325 (54)

~6.4321¢ — 3(%)2 +5.9288¢ — 7(%)3 — 2.083¢ — 9(%)" (55)

)

This function is plotted in figure 15.
We now have everything we need to compute the charge density on any
symmetric coplanar electrode structure using equation51 multiplied by a con-
stant to set the total charge distribution equal to that found in equation 42,

Iligurel6 shows the charge distribution on symmetric 10 micron electrodes,

28
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with a 3 micren gap and a 0.3 micron buffer layer, computed numerically us-
ing the technique described earlier and the approximate technique. Although
the approximation is slightly in error in some places, it will be integrated to
find the electric fields, which reduces the error considerably.

Once the charge distribution has been approximated, we use the technique
described in the previous section to compute the fields from this approximate
charge distribution. Figures 17 and 18 show the X and Z components of Elee-
tric field in a ten micron symmetric structure with a 3 micron gap and 0.3

micron buffer layer using the numerical technique from the previous section
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and the approximate technique described above. The errors in the approxi-
mation are very small, much lower than the errors in the charge distribution

due 1o the integration. Figures 18 - 22 Show numerical vs approximation of
liclds for two other geometries, first the gap is changed and then the buffer
layer thickness is changed, Typically buffer layers are made as thin as pos-
sible, and gaps as narrow as possible to produce the strongest electric fields.
This approximation produces very good results for all reasonable buffer tayer

thicknesses and gap widths. buffer layer thicknesses and gap
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Numerical vs. Approx for Fields
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7 Conclusions

Placing a dielectric buffer layer between the electrodes and substrate of an
clectroopic device changes many of the properties of the electrodes. The
electric fields in the substrate are greatly reduced by adding even a very
thin buffer layer. This means that the depth of modulation obtained for a
given voltage is also greatly reduced. Due to this effect it is advantageous
to use ITO electrodes which require no buffer layer when the amount of mi-

crowave power available is a concern. Adding a dielectric buffer layer also
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has the effect of lowering the static capacitance per unit length of the elec-
trode structure. If the capacitance is lowered, the microwave phase velocity
is increased. This could be a solution to the problem of the mismatch in
phase velocity between the microwave and optical signals which limits the

highest operating frequency of these devices.
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8 Future work

Currently, these numerical programs require considerable computer time.
The algorithms could be considerably improved by using mere accurate basis
functions when computing the charge distribution. The more accurate basis
[unctions could also model the charge distribution near the electrode edges
more accurately, giving better results. The procedure outlined abaove can
accurately model any continuous coplanar configuration of electrodes, how-

ever a model is needed for discontinuities in coplanar electrode structures.
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Figure 20: Z component of field, numerical vs approximation, W = 10, G =

5.D =203

The quasistatic approximation used in all the calculations in this paper will
eventually break down if the frequency is increased enough. With the in-
creasing demand for faster electrooptic devices, a full dispersion analysis of

such electrode structures will soon be neccessary.
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