
MRI-Based Susceptibility Mapping for In-Vivo Iron and

Blood Oximetry Measurements

by

H. E. Erdevig

Department of Physics

Thesis defense date

April 10th, 2017

Thesis advisor: Dr. Stephen Russek

National Institute of Standards and Technology

Honors Council representative: Prof. John Cumalat

Department of Physics

Third reader: Prof. Corey Neu

Department of Mechanical Engineering

Fourth reader: Prof. Allan Franklin

Department of Physics



ii

Erdevig, H. E.

MRI-Based Susceptibility Mapping for In-Vivo Iron and Blood Oximetry Measurements

Thesis directed by Dr. Stephen Russek

MRI is increasingly used in mapping tissue susceptibility to identify cerebral microbleeds

associated with traumatic brain injury and pathological iron deposits associated with neurode-

generative diseases such as Parkinson’s and Alzheimer’s disease [1, 2]. Accurate measurement is

important for determining oxygen and iron content in blood vessels and tissue in the brain, which

are in turn used for noninvasive clinical diagnosis and treatment assessments. Magnetic field distor-

tions with a resolution of a few parts per billion can be measured using MRI phase maps. The field

distortion map can then be inverted to obtain a quantitative susceptibility map. The primary focus

of this thesis project is to determine the accuracy of these MRI-based susceptibility measurements

and to demonstrate their ability to reliably measure the concentration of oxygenated hemoglobin

in-vitro. The susceptibility of paramagnetic salts in cylindrical containers with varied temperature

and orientation relative to the static MRI field were compared with theoretical predictions. The

MRI susceptibility measurements were compared with SQUID magnetometry. Limitations of these

measurements were investigated with Finite Element Method and Monte Carlo simulations of the

macroscopic and microscopic field shifts in our samples, respectively. Measurements of oxygen

concentration of bovine hemoglobin samples will be tested against optical absorption techniques to

test the potential functionality of MRI oximetry in in-vivo diagnostics.
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Chapter 1

Introduction

1.1 Background and Motivation

Magnetic Resonance Imaging (MRI) is a powerful imaging technique in medicine that uti-

lizes the quantum mechanical spin of protons in the hydrogen atoms of water molecules to create

a proton density map that allows clinicians to visualize tissue inside the human body. Since its

development in the 1980s, MRI has proven to have a wide range of applications in both clinical

diagnoses and image guided therapies. The foundation of the technique having been established,

subsequent research has focused on optimizing MRI for a variety of specific applications. MRI

scanning protocols and post-processing techniques have been developed that can highlight or sup-

press different types of tissues or map a particular disease biomarker. One such biomarker is the

magnetic susceptibility of tissue, which can be mapped using the phase component of the complex

data that MRI collects. Most current MRI research is dedicated to developing MRI techniques for

making quantitative measurements that can be used for objective diagnosis in the clinical setting.

Specifically, Quantitative Susceptibility Mapping (QSM)[3] using MRI is becoming more prevalent

than traditional qualitative techniques, such as susceptibility weighted imaging.[4]

Several promising applications for QSM have provided substantial motivation for producing

measurement methods ready for translational medicine. Such applications include mapping neu-

ral diseases, traumatic brain injuries,[5, 6, 7] blood oxygen content,[8] and iron overload in the
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heart and liver.[9] Neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease, have

been associated with excess iron in the brain.[1, 2] These iron deposits would be quantifiable with

QSM, opening the door for objective sans-autopsy diagnoses and the ability to monitor treatment

prospects. Another application of QSM, relevant to the work in this thesis, is finding and determin-

ing the severity of cerebral microbleeds resulting from traumatic brain injury. For this application,

a reproducible and quantitative method is particularly important. Finally, measurements of iron

overload in the heart and liver, caused by diseases such as hemochromatosis, are important because

iron can catalyze the conversion of hydrogen peroxide into free radicals, causing damage to cell

membranes, proteins, and DNA.[10] MRI has the unique ability to measure oxygen concentration

of deep-lying vessels in the brain, which is necessary for most of these applications. However,

more research is required to validate the accuracy of this technique and of MRI-based susceptibility

measurements in general. The research described in this thesis has contributed to achieving this

validation and paving the way for measurement standards to be developed for clinical QSM.

Accurate in-vivo measurements of magnetic susceptibility, along with the necessary calibra-

tions and post-processing techniques, are required to use magnetic susceptibility as a quantitative

biomarker. Specifically, use of MRI to measure quantitative susceptibility for clinical applications

requires creating a standard scanning protocol, a reconstruction and analysis software package,[11]

and a calibration phantom for comparing data collected from different scanners and data taken

before and after changes to a single system. Creating standard measurement protocols and cali-

bration phantoms would help ensure site-to-site comparability of data and allow QSM to be more

widely and reliably used in clinical applications. With these standards created through advanc-

ing research, in-vivo MRI susceptibility measurements may become the gold standard for tissue

susceptibility quantification in medicine as a whole.

This chapter is designed as an introduction and review of the necessary components to un-

derstand content of the rest of the work presented in this thesis. The following section presents an

overview of MRI susceptometry, an explanation of the theory behind the measurement technique,

and a discussion of MRI’s unique ability to make these measurements. The last section includes



3

an in-depth look at the issues and research gaps delaying the use of this important medical tool

in radiology. Additionally, the ability of the work presented in this thesis to accelerate QSM’s

translation to medicine will be examined.

For quantitative, non-invasive, localized measurements of blood-oxygen saturation MRI may

be the only qualified tool [12]. MRI can potentially map blood-oxygen concentration more pre-

cisely and with higher resolution than current standard techniques because these measurements

come from the proton precession frequency within individual atoms. In-vivo MRI susceptibility

measurements, if done properly, could become the gold standard for tissue susceptibility quantifi-

cation. The development of this technique as a standard requires verification of the accuracy of MRI

susceptibility measurements relative to the aforementioned traditional methods. The foundational

work of the research presented here achieved verification of MRI measurement accuracy through

comparison with current techniques. Verified quantitative susceptibility measurements allow for

the creation of standard reference materials needed for clinical calibration phantoms. The work

presented here establishes that the relative susceptibilities can, in fact, be accurately determined

from local magnetic field shifts for simple geometries and agree with primary measurements of

susceptibility when compared with existing standards.

To further develop the technique of MRI susceptometry, several tasks must be completed.

More suitable primary standards are required to validate MRI susceptibility measurements in com-

plex geometries. More extensive investigation into how the local field depends on microscopic

tissue geometry is required to determine the accuracy of local field models. A standard for MRI

susceptibility mapping is needed that also assesses the best algorithms for the field-susceptibility

inversion among the changing subjects and scanners. Liu et al. state that "Such an assessment

should include sequence parameters, phase unwrapping, background phase removal, and suscepti-

bility inversion algorithms"[11]. Challenges still exist in understanding the field contributions of

tissue when more than one susceptibility source that needs quantification is present. The work

presented here attempts to fulfill the need for standard reference materials for QSM and develop-

ing a deeper understanding of the distortion corrections needed for geometries that mimic tissue



4

structure.

The work of this thesis is to develop a standard model for MRI susceptometry and oximetry

required verification of the accuracy of these measurements via comparison with current standards,

a determination of the limitations of such measurements, and an assessment of the theoretical

models and algorithms on which they are based. The intended product from this work was a cali-

bration phantom designed specifically for quantitative susceptibility mapping, a software package

for standardized reconstruction and analysis of the MRI data, and publications speaking to their

capabilities.

1.2 MRI and MRI-Based Measurements

An MRI scanner is composed of three different magnet systems shown in Figure 1.1; the main

magnet, gradient coils, and a radio frequency coil. The first and largest magnet is cryogenically

cooled with helium, so that it can generate a static field, B0, with a magnetic field strength of up to

7 T, which is the maximum field strength FDA approved for human clinical scanners. A secondary,

gradient magnetic field, G, is produced by a cylindrical shell of conductive sheets surrounding the

bore of the magnet. This linear gradient field varies the total applied field, Ba = B0 + G(x, y, z),

throughout the measurement volume to allow for localization of the proton spin packets.

Figure 1.1: Clinical MRI Scanner Cutaway shown with gradient coils[13]
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A radio frequency coil then applies an oscillating magnetic field with a frequency tuned to the

resonant frequency, ω, of the hydrogen proton in water to excite the proton spins to an excited state.

This resonant frequency is called the Larmor frequency and is dependent on the total magnetic

field applied to the proton and the proton’s gyromagnetic ratio unique to the atom to which the

proton belongs ω = γBa. The gyromagnetic ratio for hydrogen is γ = 42.58 MHz/T.

A pulse sequence manipulates the alignment and dephasing of the spin packets and applies

gradients for slice selection and phase/frequency encoding. The resulting precession induces a

current in the same radio frequency coil that applied the oscillating magnetic field. The magnitude

and phase data is collected from this coil into a complex array called "k-space". This data is

reconstructed into a "real space" magnitude and phase image with a 2-D Fourier transform. Figure

1.2 is a schematic representing the data collected from a lemon and reconstructed into a complex

array in image space with a Fourier Transform (Equation 1.1).

Figure 1.2: Water molecules within a single slice of a lemon, scanned with NIST’s pre-clinical
MRI scanner, are shown to have a magnetic moment interacting with the MRI static field, B0,
and oscillating field, B1, and the gradient field’s slice, frequency, and phase encoding components.
The complex k-space array shows the signal from a single slice organized according to phase and
frequency encoding. A Fourier transform reconstructs the k-space array into an image-space array.
The magnitude component of each complex array is shown in front of its phase counterpart.
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S(x, y) = 4
π2

∫∫
e2πi(kxx+kyy) dkx dky (1.1)

The reconstructed phase image represents the relative phase of the proton magnetic moments

in a sample. Appendices B and C show screenshots and the source code, respectively, of a recon-

struction and data manipulation tool that was developed to support the work presented in this

thesis and is included in the software package called PhantomViewer.

Proton spin precession is modeled by a set of macroscopic differential equations, called Bloch

equations, that calculate the nuclear magnetization vector components as a function of time. These

Equations 1.2, 1.3, and 1.4 model the precessional motion, spin dephasing and relaxation of proton

magnetic moments as they realign themselves with B0 during an MRI scan.

dMx(t)
dt

= γ(M(t)×B(t))x −
Mx(t)
T2

(1.2)

dMy(t)
dt

= γ(M(t)×B(t))y −
My(t)
T2

(1.3)

dMz(t)
dt

= γ(M(t)×B(t))z −
Mz(t)−M0

T1
(1.4)

~M(t) =< Mx(t),My(t),Mz(t) > is the nuclear magnetization, γ is the gyromagnetic ratio,

and ~B(t) =< Bx(t), By(t), B0 + ∆Bz(t) > is the total magnetic field experienced by the proton.

T1 is the time constant for the regrowth of the longitudinal magnetization, Mz, during spin-lattice

relaxation of the proton magnetic moment. T2 is the time constant for the decay of the transverse

magnetization, Mxy, of the proton generally caused by dephasing of the spin packets by static local

field disturbances and spin-spin interactions. Figure 1.3 shows the motion of the proton magnetic

moment during precession. Shown with the proton, is a bar magnet representing the field produced

by the proton magnetic moment.
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Figure 1.3: Diagram showing the precessional motion of a proton magnetic moment and its
magnetic field.

In an MRI system, the total field, ~B, is comprised of the applied magnetic field as well as

the local magnetic field created by neighboring proton magnetic moments as well as any nearby

magnetically susceptible material. This total magnetic field, Bz = B0 +Blocal, is what determines

the proton motion in the above Bloch equations, and consequently the resulting signal collected by

the MRI. The Bloch equations’ dependency on BLocal and the relaxation constants allows MRI to

directly measure parameters such as T1, T2, and local field values. Figure 1.4 shows 3 processed

images from the same axial MRI brain scan. The first image shows a map of T1 values and the

second shows a map of T2 values, measured in milliseconds. The third image is the proton density

map represented with percentage values.

Figure 1.4: Quantitative T1, T2, and proton density maps of an axial brain scan.(syntheticmr.com)
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In this example, it can be seen that the different relaxation constants, that depend on different

mechanics and interactions of the proton spin packets, can highlight different fine structure in the

brain. Using pulse sequences designed to exploit this difference, a T1 map can be generated that

highlights white matter in the brain and a T2 map can be generated that highlights the gray matter

and cerebrospinal fluid. Some T1 or T2 sequences with use of contrast agents can also be used to

distinguish healthy tissue from tumors. Measurement of tissue susceptibility is possible with MRI

because of the sensitivity of proton precession frequency to local field disturbances. Susceptibility

weighted images and quantitative susceptibility maps can then be generated from measurements of

the local field shifts for mapping disease associated with changes in magnetic susceptibility.



Chapter 2

Physics of Magnetic Susceptibility and Traditional Measurement Methods

2.1 Physics of Magnetic Susceptibility

The reconstructed phase image of an MRI scan represents the relative phase of the proton

magnetic moments in the scanned object. Local magnetic fields that are created by paramagnetic

materials exposed to B0, cause a predictable shift in phase of the protons in that material relative

to its surroundings by an amount proportional to its susceptibility. Magnetic susceptibility is a

dimensionless quantity and proportionality constant that indicates the degree of magnetization,M ,

of a material in response to an applied magnetic field, H. Magnetically susceptible materials create

these local fields by adopting a magnetization that either contributes to or opposes the applied field

depending on the type of magnetic susceptibility.

Human tissue is predominately water with a diamagnetic susceptibility of χ = −9.04× 10−6

at 20 ◦C. Among the diamagnetic tissue are small paramagnetic, super-paramagnetic and antifer-

romagnetic components. The work presented in this thesis is only concerned with measuring the

paramagnetic signature of biomimics against a diamagnetic reference. This section will discuss the

physics of the interactions of these types of materials with magnetic fields using only SI units, as

is the case with the rest of the work presented in this thesis.

In a diamagnetic material, the electrons circulate in closed orbital shells, allowing the collec-

tion of electron spins in an atomic orbital to act as a current loop. According to Lenz’s Law and

Faraday’s Law, an applied magnetic field will induce a current in an existing current loop in order

to oppose the change in the magnetic field and keep the magnetic flux through the loop constant.
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At the atomic level, this causes the electrons in a diamagnet to reconfigure themselves in response

to an external magnetic field such that the current that arises from the collection of the electrons

creates an opposing magnetic field.

In a paramagnetic material, the magnetic moments of electrons do not completely cancel out

each other because of the presence of unpaired electrons in the valence shell of the atoms within

the material. These unpaired electron spins create a magnetic field that aligns with an applied

external magnetic field in order to minimize the torque on these dipoles created by the magnetic

field. Paramagnetism is temperature dependent according to Curie’s Law.

The deoxygenated hemoglobin present in cerebral microbleeds is paramagnetic having re-

leased its O2 ligand from its original diamagnetic oxyhemoglobin structure, leaving iron in the

ferrous (Fe2+) state. Fe2+ has one paired set of electrons and four unpaired electrons in its outer

3d shell. The spin magnetic moment resulting from these four unpaired electrons is 4.90 bohr

magnetons, which creates a paramagnetic signature measurable with MRI.

The local field created by deoxygenated hemoglobin or any other paramagnetic material

depends on the magnetization of that material. The magnetization (Equation 2.1) of a diamagnetic

or paramagnetic material is linearly dependent on the magnetic field applied to that material with

the material-dependent susceptibility, χ, as a constant.

~M(~r) = χ(~r) ~H(~r) (2.1)

Both the magnetization,M , and the magnetic field strength, H, are measured in amperes/me-

ter (A/m).

For the special case of an infinitely long and uniformly magnetized cylinder aligned with the

static magnetic field, B0, in the z direction (depicted in Figure 2.1), the magnetization, M , can be

viewed as a surface current, I, equivalent to that of an infinitely long solenoid with a current per

unit length equal to M . The average field, B, inside the cylinder is given by Equation 2.2.
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~B = ~B0 + µ0 ~M = B0 + χB0
3 (2.2)

However BLocal is not the same as the average field and a correction needs to be made

determined by Lorentz field. The Lorentz correction to cancel out the local field of a sphere

within the volume of the cylinder is calculated considering a uniformly magnetized sphere with

magnetization opposite to that of the cylinder in order to cancel out the existing field due to a

spherical portion of the cylinder and replace it with its actual microscopic field contribution, which

is assumed to be zero in Equation 2.3.

Figure 2.1: Analytical model for paramagnetic tissue in magnetic field
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2.2 Magnetic Properties of Human Tissue

To understand the magnetic field shifts of a uniform paramagnetic object, we need only

know Maxwell’s equations’ description of the macroscopic magnetic field in matter. An important

assumption made in modeling the local magnetic field of a paramagnet is that the position of

diamagnetic water molecules relative to each other and to the paramagnetic ions. The local field

differs from the macroscopic field and is given by the macroscopic field minus the Lorentz field.

The Lorentz field is a correction to the macroscopic continuum model and attempts to account

for the local microscopic distribution of moments. One of the main approximations in MRI-based

susceptibility measurements is to assume that the local field, BLocal, is given by the average field,

B, minus the Lorentz field shown in Equation 2.3.

BLocal = B − 2
3χB0 (2.3)

This assumes that the local microscopic fields average to zero. A portion of the work presented

in this thesis is dedicated to testing the validity of this assumption.

With Quantitative Susceptibility Mapping, we need to see the response of proton spins to

local magnetic fields created by magnetically susceptible tissue. If we can characterize a tissue’s

magnetic properties, then these field distortions can be used to calculate its susceptibility. When

exposed to an external magnetic field, diamagnetic, paramagnetic, and ferromagnetic materials

develop a weak anti-parallel, parallel, and strong parallel magnetic dipole moment, respectively.

2.3 SQUID Measurements

Magnetic susceptibility, χ, is a dimensionless proportionality constant that indicates the de-

gree of magnetization, M , of a material in response to an external magnetic field, B: M = χ · Bµ0
,

where B is measured in Tesla as opposed to M and H which are measured in amperes per meter.

Being dimensionless, magnetic susceptibility does not have an SI unit standard, but SI standards

do exist for measurements of the magnetic dipole moment of materials. The magnetization of a
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Figure 2.2: Literature values of susceptibility of different types of human tissue. Measured ex-vivo.
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material is defined as the magnetic dipole moment per unit volume. Currently, the most sensitive

measurements of magnetic dipole moments can only be made with a superconducting quantum

interference device (SQUID) magnetometer. SQUID magnetometers can measure extremely small

magnetic fields by detecting magnetic flux through a superconducting ring consisting of two par-

allel Josephson junctions. For a hydrated solution or biological sample, a diamagnetic component

to the local magnetic field will be present. SQUID magnetometers can only measure the total

susceptibility of a sample and the paramagnetic component’s behavior is only observed while it

overshadows this diamagnetic moment at extremely low temperatures. Curie’s Law (χ = C/T ),

with C being the material dependent Curie constant, describes the inverse relation between param-

agnetic susceptibility and temperature that is responsible for this phenomenon. This temperature

requirement restricts the magnetometer’s use to ex-vivo measurements as the human body cannot

survive at temperatures of only a few Kelvin. These ex-vivo measurements would be conducted

on excised tissue. Excision is not only a highly invasive procedure, but the sample itself will have

different properties outside of living tissue. Such inevitable characteristic changes would include:

dehydration that would affect the total volume of the sample as well as the amount of diamagnetic

water that would normally be present while in the body, and blood deoxygenation as the iron in

hemoglobin loses oxygen to the surrounding air thus altering its paramagnetic property. Thus the

SQUID standard is not usable for accurate, room temperature measurements of the paramagnetic

component of tissue.

2.3.1 Tissue Measurements

To test the ability of MRI to accurately measure susceptibility in human tissue, appropriate

biomimic materials with verified susceptibilities were used. Tissue is predominantly diamagnetic

at body temperature 310 K and room temperature 300 K. This is seen in Figure 2.3, which shows

the magnetic moment vs. field for cow liver. The magnetic susceptibility is dominated by the

diamagnetic susceptibilities of water (−9.05× 10−6 ) and fat typically (−10.0× 10−6 ) [14]. All

susceptibility values in this paper are reported in SI units. The complex magnetic structure of
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tissue is seen at lower temperatures. Figure 2.3(a) shows a decrease in the diamagnetic (negative)

slope as the temperature decreases indicating the presence of a paramagnetic component. At

low temperature (1.8 K) there is a deviation in linearity due to paramagnetic and ferrimagnetic

components. The presence of a ferrimagnetic component is seen in Figure 2.3(b), which plots the

moment vs. inverse temperature. If there were only a paramagnetic component, the data would be

linear. For liver, the paramagnetic and ferrimagnetic components are predominantly due to blood

iron in deoxygenated hemoglobin and iron oxide deposits (ferritin).

Figure 2.3: (a) SQUID magnetometer measurements of magnetic moment vs. applied field for a
sample of cow liver. (b) Magnetic moment vs. inverse temperature, upon heating and cooling, of
the same sample.

2.3.2 Tissue Mimics

To mimic the susceptibility properties of tissue, one can use a solution of paramagnetic salts

in water. Figure 2.4(b) shows schematically how water, with a diamagnetic susceptibility, with little

temperature-dependence, and a paramagnetic component can roughly approximate the magnetic

properties of tissue. We present data from GdCl3 solutions, whose magnetic properties are shown in

Figure 2.4(a),(b) for a 5.0 mM solution in deionized water. The SQUID magnetometer is calibrated

with a NIST YIG (yttrium iron garnet) sphere standard reference material (SRM #2852) whose
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room temperature moment is (79.9± 0.3)× 10−6 A m2. The moment, m, vs. applied field, Ba,

data can be fit assuming a diamagnetic component and a paramagnetic component. Equation 2.4

gives the magnetic moment of a gadolinium chloride solution.

Figure 2.4: (a) SQUID magnetometer measurements of the magnetic moment vs. applied field
of the 5.0 mM GdCl3 solution. Also shown is the calibration curve obtained from a NIST moment
standard reference material. (b) Magnetic susceptibility vs. inverse temperature for the same
solution showing paramagnetic behavior. The horizontal dotted line schematically shows the dia-
magnetic susceptibility of water. The arrow indicates the susceptibility contribution from the Gd3+

ions at 300 K.

m = NGdV gµBJ ·BJ
(
gJµBBa
kBT

)
− χwV Ba

µ0
(2.4)

NGd is the concentration of Gd3+ ions, V is the volume of the sample, g is the Landé g-factor

(which is 2.0 for Gd since the angular momentum vanishes), µB is the Bohr magneton, J is the

ion angular momentum quantum number, BJ the Brillouin function, kB is Boltzmann’s constant,

T is the temperature of the sample, and χw is the magnitude of the diamagnetic susceptibility of

water. The susceptibility due to the Gd3+ ions can be calculated from the model (Equation 2.4)

using the best fit parameters and the measured volume. The measured Gd susceptibility for a

5.0 mM solution at 300 K, shown in Figure 2.4 is χGd =(1.58± 0.16)× 10−6 , comparable to the

theoretical value of χth = 1.89× 10−6. Comparing the tissue magnetic properties, shown in Figure
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2.3, to those of the standard Gd solutions, shown in Figure 2.4, one can see that the reference

solutions are a good starting point to mimic the magnetic properties of tissue, although they lack

the full complexity of tissue. The errors in the measured value come from errors in the moment

measurement, the volume measurement and from the extraction of the smaller Gd moment from

the larger diamagnetic moment of water. For comparison, the difference in susceptibility between

deoxygenated and oxygenated blood, as measured by MRI, is (3.43± 0.08)× 10−6 [15].



Chapter 3

MRI Measurements

MRI susceptibility measurements are typically achieved by acquiring magnitude and phase

data from a gradient echo sequence with multiple echo times. Magnitude and phase images of a

phantom are shown in Figure 3.2. The phase image clearly shows distortion of the phase fronts due

to the enhanced susceptibility of the paramagnetic salt solution contained within the vial. The imag-

ing was performed in a 30 cm bore preclinical scanner (Figure 3.1) designed to image at 1.5 T, 3.0 T,

or 7.0 T. The data in this paper were obtained with a static field of B0 = (1.502 102± 0.000 006) T.

The error in the field represents the typical field variation over the active volume with a stan-

dard shimming procedure. The phase image must be unwrapped and the low-spatial frequency

background phase variations, due to an imperfect shimming of the magnet and to susceptibility

discontinuities far from the region of interest, subtracted. These post-processing algorithms are

performed on the collected data with the reconstruction and analysis software package, Phan-

tomViewer. Appendix C contains code written as part of this thesis work for the reconstruction

and distortion correction tools provided in PhantomViewer.

The phantoms used for the MRI measurements of paramagnetic susceptibility presented

were designed to take advantage of the simple analytical model described in Section 2.1. Not

only do cylindrically shaped paramagnetic salt solution containers allow us to measure relative

susceptibility without having to invert the magnetic field profile, but they can approximate the

local field contributions of paramagnetic material in cylindrical blood vessels.
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Figure 3.1: NIST pre-clinical variable field MRI scanner

The difference in proton phase (inside relative to outside the cylindrical vial), δφ, after an

echo time, TE, is proportional to the local induced field, δBL, along the main field direction:

δφ = γp · δBL ·TE , where γp is the shielded proton gyromagnetic ratio. Figure 3.2(b) shows a plot

of the phase shift measured across the vial from scans taken with different echo times (TE). The

slope of this line (δφ/δTE) is proportional to the local field distortion created by the paramagnetic

cylinder and therefore also the susceptibility of the paramagnetic salt solution.

The local field differs from the macroscopic field and is given by the macroscopic field minus

the Lorentz field. The Lorentz field is a correction to the macroscopic continuum model and

attempts to account for the local microscopic distribution of moments. The slope of the measured

phase difference vs. echo time, as shown in Figure 3.2(b), will yield δBL. The magnetic field

distortion is a convolution of the magnetic susceptibility distribution, χ(r), with the magnetic dipole

kernel, d(r): δBL(~r) = d(~r)⊗χ(~r).[16] The susceptibility map can be obtained by inverting the field

profile, although complex methods are required since this inversion is not unique.[17, 18, 19, 20]
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Figure 3.2: (a) Magnitude and phase images of a vial containing 5.0 mM GdCl3. The dark
circle in the MRI magnitude image is a 76 mm diameter polycarbonate support for the vials. The
third image shows the phase after unwrapping and after the long wavelength background has been
subtracted. (b) Phase difference as a function of echo time (TE) taken from phase maps.

This problem is discussed further in Chapter 4. In an effort to avoid this ill-posed inversion problem,

the measurements presented here are limited to simple cylindrical geometries. This allowed for use

of the simple model described in Section 2.1, where the induced local magnetic fields are simply

related to the susceptibility. The analytical formulas in Equations 3.1 and 3.2 below are derived

from Maxwell’s equations to calculate these fields. For a long cylinder the internal and external

field distortion is given by:[20]

Internal: δBL = ∆χB0
6 (3 cos2 θ − 1) (3.1)

External: δBL = ∆χB0a
2

2r2 sin2 θ cos 2φ (3.2)

Where ∆χ is the susceptibility difference between the inside and outside of the cylinder, θ

is the angle of the cylinder axis with respect to the main field, φ is the azimuthal angle of the
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observation point relative to the plane of the main field and cylinder axis, and a is the radius

of the cylinder. For the simple case where the cylinder is aligned with the main field (θ = 0),

the susceptibility difference is given by ∆χ = 3δφ/(γpB0TE). By measuring the slope of δφ vs.

TE, as seen in Figure 3.2, the susceptibility can be determined. The susceptibility difference of

the 5.0 mM GdCl3 solution at 300 K, was (1.71± 0.02)× 10−6 , which agrees with the SQUID

magnetometer measurements. The intrinsic errors for the SQUID measurements are larger than

the MRI measurements, although the systematic errors for the MRI measurements have not yet

been determined. Though, in comparing the accuracy of these susceptibility measuring techniques,

we must consider that SQUID measurements of excised tissue susceptibility are also inherently

inaccurate due to inevitable water loss, blood oxidation, and volume changes. All three of these

changes in excised tissue result in significant shifts in the paramagnetic and diamagnetic properties

of the tissue from those that would be measured in-vivo.

3.1 Composition Dependence

To test the efficacy of our technique in measuring susceptibility with MRI and to test the

sensitivity of MRI in making very small phase measurements, a phantom, shown in Figure 3.3, was

constructed. This phantom holds four cylindrical containers of very low concentration solutions

(1 mM, 0.5 mM, 0.2 mM, and 0.1 mM) of aqueous GdCl3. The containers were 12 mm diameter

polypropylene straws with a wall thickness of 0.22 mm (sub-voxel size to avoid regions of no signal).

The magnetization of the 0.5 mM sample was measured on a commercial Superconducting Quan-

tum Interference Device (SQUID) magnetometer to determine the angular momentum quantum

number of the gadolinium ions. All four straws were scanned with a gradient echo sequence in the

NIST MRI scanner at 1.5 Tesla while the phantom’s temperature control system kept the solutions

and surrounding water at 14.80 ◦C, 25.15 ◦C, and 33.00 ◦C. Five scans with echo times of 10, 20,

30, 40, and 50 ms were taken at each temperature in order to obtain a phase shift in relation to a

change in TE
(
δφ
δTE

)
.
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Figure 3.3: Phantom designed to hold solutions in a temperature-controlled water bath for mea-
surement in NIST’s pre-clinical scanner (Figure 3.1).

Figure 3.4 shows the reconstructed magnitude and phase images and the unwrapped phase

image of an axial scan of the phantom pictured in Figure 3.3. The reconstruction and phase

unwrapping was performed using PhantomViewer (see Appendix B for screenshots of the program

in use).

Figure 3.4: Axial magnitude, phase, and unwrapped phase images of Phloe phantom produced
with PhantomViewer reconstruction package.

With the unwrapped phase image, a measurement of the phase inside of each straw can be
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measured relative to the surrounding water. Figure 3.5 is a screenshot from PhantomViewer depict-

ing the signal from the unwrapped phase image along a line scan going through each straw. Phase

"dips" can be seen that show the expected correlation between phase shift and the concentration

of paramagnetic ions in water.

Figure 3.5: Measurement of phase shift within paramagnetic solution containers relative to sur-
rounding diamagnetic water performed with PhantomViewer.

3.2 Temperature Dependence

The temperature dependence of the magnetic susceptibility of GdCl3 was measured with

MRI. Measured values fell within a few ppb of the simplified theoretical values and within 40 ppb

of the SQUID-determined theoretical values. The 40 ppb discrepancy is likely due to a SQUID

system calibration error. The experimental values should exhibit the "1/T " dependence dictated

by Curie’s Law, but the higher temperature data did not lay close to the best fit line despite a

close agreement between the best fit line and the theoretical line. These discrepancies could be a

result of imperfect shimming of the gradient coils and a lower static magnetic field used by the

NIST scanner at the time of measurement.
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Figure 3.6: MRI-measured susceptibility of paramagnetic cylinders at three different temperatures.
Susceptibility was measured for each temperature as ∆χ = 3δφ/(γpB0TE).

3.3 Orientation Dependence

To test the orientational dependence, MRI phase maps were obtained from a phantom with

vials (80 mm long, 5.0 mL volume); oriented along and perpendicular to the B0 field; the vials were

filled with 5.0 mM GdCl3. The main compartment of the phantom was filled with deionized water.

Line scans through the cylinders are shown in Figure 3.7 along with the predicted phase change

and induced fields obtained from Equations 3.1 and 3.2. Good agreement is observed, although

there is some deviation at the edges of the vials, in part due to the loss of signal from the plastic

vial.

To more precisely verify the orientation dependence, a rotating phantom was constructed in

which the 80 mm vials could be continuously rotated while in the MRI scanner. A schematic of the

rotating phantom is shown in the inset in Figure 3.9. Four 80 mm vials filled with 1.0 mM and 5.0

mM GdCl3 solutions were placed in the scanner. A rod extended from the outside of the scanner

to the internal rotation gears; each revolution corresponded to 19-degree mechanical rotation of the

phantom insert. Figure 3.8 shows axial and sagittal magnitude MRI images of the rotating barrel

within the phantom that holds the gadolinium chloride solutions.
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Figure 3.7: Line scans (opaque lines) of phase and corresponding field distortions taken with the
field parallel (blue) and perpendicular (red) to the cylinder axis. When the field was perpendicular
to the cylinder axis, the line scan was taken along B0 (φ = 0). Also shown are the predicted phase
shifts (lighter lines) from Equations 3.1 and 3.2.

Figure 3.8: Axial and sagittal scans of rotating phantom holding five cylindrical vials of different
concentrations of gadolinium chloride solutions.

The change of phase between the center of each vial and the surrounding water was collected

as a function of angle, Figure 3.9. The data were fit using Equation 3.1 yielding ∆χ=(3.24± 0.05)× 10−7 for

the 1.0 mM solution.
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Figure 3.9: Plot of the change of phase with echo time within a cylinder of 1.0 mM GdCl3 as a
function of angle of the cylinder axis relative to the B0 field. Also plotted is a fit using Equation
3.1 (blue line). The inset a schematic of the rotating phantom used for the experiment.

The angle dependent measurements collected agreed with the values predicted by the model

in Equations 3.1 and 3.2. The measured susceptibility values for each of the five different angles

scanned all agreed within 5 parts per billion of the theoretical model.



Chapter 4

Numerical Simulation

Numerical calculations of the field distortions produced by the phantom shown in the inset

in Figure 3.9, with four vials of paramagnetic salt solution with a susceptibility of 3.0× 10−6. The

macroscopic field distribution is plotted, not the local field, since the macroscopic field is what is

calculated using the macroscopic Maxwell equations. The local field is considered separately to test

the assumption that the field contributions from randomly dispersed dipoles will average to zero in

a spherically symmetric shape.

4.1 Complex K-space Inversion to Dipole Kernel

Determining the accuracy of MRI susceptibility measurements requires verifying the suscep-

tibility distribution calculated by inverting the full 3D phase map, where the dipole kernel considers

neighboring voxels throughout the volume instead of just neighboring pixels in the plane. The in-

teractions of dipoles out-of-plane of the MRI scan could have a significant contribution to the field

distortion measured at a particular pixel in-plane, especially when imaging human tissue with com-

plex geometry. The magnetic field variation in each voxel in the imaging volume can be represented

as a convolution of the magnetic susceptibility distribution, χ(r), with the magnetic dipole kernel,

d(r): δBL(~r) = d(~r)⊗ χ(~r).[16] The susceptibility map χ(r) can then be obtained by inverting the

field profile in Equation 4.1.

χ(x, y, z) = FT−1
[
FT

(
φ(x, y, z)
−γ ·B0 · TE

)
· F
]

(4.1)
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Where the dipole kernel is: F =
(

1
3 −

k2
z

k2
x + k2

y + k2
z

)−1

(4.2)

This deconvolution is ill-conditioned[21] due to the fact that null values in k-space occur

when k2
x + k2

y + k2
z = 3k2

z , which allow for multiple non-unique solutions. Complex methods are

thus required to ensure the accuracy of the resulting quantitative susceptibility map.

4.2 Finite Element Method Simulation

A multiphysics finite element simulation with a package for modeling magnetic fields without

currents was used to compute the macroscopic field of the five perpendicular vials, shown in the

inset of Figure 4.2(a). The vials were filled with a solution with a magnetic susceptibility of

3.0× 10−6 relative to the surrounding water to simulate our experiment with 5.0 mM GdCl3. The

geometry of the phantom as represented in the simulation is shown in Figure 4.1 along with planes

through which a field distortion has been calculated to amplify the local field interactions between

the different vials.

Figure 4.1: Magnetic field interactions between the neighboring vials within the rotating phantom
are qualitatively shown in a sagittal slice through the center vial (left) and the three-dimensional
field distortion maps plotted along axial and coronal planes passing through each of the five vials
(right).

The numerical accuracy of the field distortion was estimated to be ±7% by varying degrees

of freedom from 2 to 5 million. Finite element calculations of extremely small field perturbations
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on a very large B0 field gave significant numerical errors. Figure 4.2 show the field distortions when

the B0 field is parallel and perpendicular to the vial axes, respectively. The field profiles within the

vials are not constant, as predicted by the simple models, due to the fields from neighboring vials,

the finite length of the vials, and the phantom structure. Determining the local susceptibility from

the full inversion of the 3-dimensional phase map should account for these distortions.

Figure 4.2: (a) The field distortion calculated by a finite element method when the vial axis is
parallel to B0 field. The inset graph shows the variation within the vial due to neighboring vials
and structures. (b) The field distortion when the B0 field is perpendicular to the axis of the vial
and the line scan is taken perpendicular to both B0 field and the vial axis.

4.3 Monte Carlo Simulation

One of the main approximations in MRI-based susceptibility measurements is to assume that

the local field is given by the macroscopic field minus the Lorentz field: BL = Bm − 2
3χB0. This

assumes that the local microscopic fields average to zero. To determine the local field, precise mi-

croscopic calculations are needed. As a simple test, we performed a Monte Carlo calculation where

2.5× 106 Gd spins were randomly distributed in 2 µm diameter sphere and 300 water molecules
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were allowed to randomly diffuse throughout the volume to simulate Brownian motion. The fields

sensed by the water molecules after a time of 0.15 ms are plotted in Figure 4.3. The Gd density

corresponds to 1 mM concentration and a susceptibility of 3.2× 10−7. The microscopic field calcu-

lated from the simulation is 13.5 nT, which is much smaller than the Lorentz field BL= 320 nT. The

simulation supports the assumption that the microscopic fields due to neighboring spins average

to zero and the local field approximation is valid. For tissues, which may have more complex local

geometry, this local field assumption may not be valid. As an example, the complex geometry of

tissue could invalidate this microscopic field assumption if spherical symmetry is not present, such

would be the case if paramagnetic ions are excluded from cells or trapped in blood vessels amongst

predominately diamagnetic tissue.

Figure 4.3: Monte Carlo simulation generated histogram of microscopic fields experienced by an
ensemble of water molecules diffusing (with a diffusion constant of 2.0× 10−3 mm2 s−1) in a 1.0
mM Gd solution. The geometry is shown in the inset with the red and blue dots representing Gd3+

ions and water, respectively.

The Monte Carlo simulation in Figure 4.3 shows a Gaussian distribution in microscopic fields,
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which had a standard deviation of 249 nT. This field distribution gives rise to a short total dephasing

time T2*. The T2* value can be measured with the same data set as the susceptibility using the

magnitude images and extracting the exponential decrease in the magnitude signal with echo time

TE. The T2* value can be used to obtain measurements of the local iron concentration in tissue.[1]

While the decrease in T2* and the change in phase both arise, in the system studied here, from the

Gd spins, T2* is strongly affected by the local microscopic structure while the phase shift is not.

4.4 Conclusions

The work presented in this thesis has shown that the relative phase shifts and local induced

magnetic fields can be measured very precisely with MRI as compared to established techniques

where measurement standards exist. The relative susceptibilities can be accurately determined from

magnetic field shifts for simple geometries and agree with primary measurements of susceptibility

where standards exist. These findings provide an important first step to developing standard

reference materials and measurement methods necessary for translation to clinical medicine. More

suitable primary standards than that of SQUID magnetometry, however, will be required to validate

MRI susceptibility measurements in complex geometries. More extensive investigation into how the

local field depends on microscopic tissue geometry is required to determine the accuracy of local

field models. Developing standards for QSM will also require investigating the validity of different

algorithms that try to invert the 3D field map to get a quantitative susceptibility map to extend our

measurements to complex geometries that do not allow simple line scan measurements of relative

phase.



Chapter 5

Future Directions

As an extension of the work presented in this thesis, experiments have been planned to test the

ability of MRI to measure blood-oxygen content from susceptibility. This will require simultaneous

measurement of susceptibility and oxygen-content via current standard techniques.

5.1 Blood-Oxygen Concentration vs. Magnetic Susceptibility

Traditional Methods: Pulse Oximetry The current gold standard method of blood

oxygen saturation measurement is optical absorption. The familiar pulse oximeter probe is a

common example of this technology’s implementation in the clinical setting. Oxyhemoglobin and

deoxyhemoglobin absorb red (650 nm) and infrared (950 nm) light in different relative amounts.

The pulse oximeter probe transmits light of each wavelength through a patient’s index finger, to-

ward a detector. This detector compiles a percent oxygen result from the relative absorbance of

each wavelength. These two points on the absorbance vs. wavelength curve of the inhomogeneous

hemoglobin is a superposition of the individual absorbance curves of hemoglobin and deoxyhe-

moglobin. The coefficients of the two terms in this superposition can be interpreted as the relative

concentration of each type. Pulse oximeter probes make oxygen concentration measurements non-

invasive while also being inexpensive and easy to use. However, their convenience does not mitigate

their ineffectiveness when it comes to probing deep tissue. The light used by the pulse oximeter

cannot penetrate the human skull to make accurate measurements of blood oxygen saturation.

Without this accuracy, optical absorbance is not able to measure the oxygen saturation of cerebral
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microbleeds or determine the severity of a traumatic brain injury and the measurement technique

is inherently non-spatial.

Magnetic Properties of Hemoglobin In the event of a cerebral hemorrhage, diamag-

netic oxyhemoglobin in blood releases its O2 to form deoxyhemoglobin, giving the iron atom four

unpaired electrons. These unpaired electrons are responsible for deoxyhemoglobin’s strong param-

agnetic signature. This change in susceptibility makes it possible to perform oximetry measurements

with magnetic resonance imaging techniques for use in clinical diagnostics.

Figure 5.1: Molecular oxygen reversibly binds to a coordination site for iron in each heme unit
of hemoglobin, resulting in either oxyhemoglobin or deoxyhemoglobin. (Questions and Answers in
MRI - AD Elster, ELSTER LLC)

Some work has already been completed to test the relationship between blood oxygen con-

centration and MR susceptibility measurements. For example, Jain et. al. measured whole-blood

oxygen saturation via the long-cylinder approximation and phase difference method[15]. The future

work following this thesis involves extending these tests to simultaneous optical absorption and MR

susceptibility measurements for real-time validation with the current blood oxygenation measure-

ment standard, as well as investigating the susceptibility of hemoglobin measured by inverting the

full three-dimensional phase map, so that dipole interactions out of plane of the MRI scans are
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Figure 5.2: "Representative phase difference images of cylindrical sample tubes filled with blood
oxygenated to various HbO2 levels, oriented parallel to the B0 field and immersed in distilled water.
Note the change in contrast at different oxygenation levels."[15]

taken into account. Figure 5.2 shows the results from the existing study displayed as the colorized

phase maps of cylindrical sample tubes of blood of varying oxygen concentration.

A clear relationship between the MR-measured susceptibility and the oxygenation levels of

the blood can be seen. In the work following this thesis, this relationship will be examined more

closely to see if the linear relationship remains while considering the other sources of susceptibility

arising through the natural deoxygenation of hemoglobin (oxyhemoglobin → deoxyhemoglobin →

methemoglobin → ferritin/hemosiderin).

Setup Figure 5.3 is a schematic of the existing experimental setup for oxygenating hemoglobin.

This setup allows the hemoglobin sample to be aerated with a combination of oxygen, nitrogen,

and carbon dioxide that will create a biologically accurate mimic of the in-vivo composition of

oxygenated hemoglobin.



35

Figure 5.3: A gas flow system is used to control the aeration a sample of hemoglobin. Real-time
blood-oxygen concentration is monitored by optical absorption while MRI gradient echo scans are
performed for susceptibility map generation.
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Appendix A

Video of rotating phantom presented at APS March Meeting 2016

This short video shows the amplitude and phase scans of a rotating sample in an MRI. These

scans are used to evaluate the accuracy of MRI Susceptibility Mapping, a technique increasingly

being used to evaluate brain microbleeds, traumatic brain injury, and neurological diseases such as

Alzheimer’s and Parkinson’s. Accuracy is important for determining oxygen and iron content in

blood vessels and tissue in the brain, which are in turn used for noninvasive clinical diagnosis and

treatment assessments.

Figure A.1: Accuracy of MRI Susceptibility Mapping: https://youtu.be/JQQKl3puy4U

https://youtu.be/JQQKl3puy4U


Appendix B

PhantomViewer Screenshots

Full software package available at https://github.com/StephenRussek/PhantomViewer
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Appendix C

PhantomViewer Code snippets

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Jun 03 10:56:26 2014
4 Class to reconstruct and manipulate phantom data
5 @author: Hannah Erdevig
6 """
7 import sys
8 import os #operating system file/directory names
9 from PyQt4 import QtGui, QtCore

10 from ReconGUI05 import Ui_ReconGUI # GUI module
11 from ImageList import ImageList # file import and export helper module
12 import numpy as np
13 import scipy
14 import pyqtgraph as pg
15 import pyqtgraph.opengl as gl
16 import pyqtgraph.functions as fn
17
18 class Recon(QtGui.QMainWindow):
19 def __init__(self , parent = None):
20 super(Recon, self).__init__()
21 pg.setConfigOption(’background’, 0.2) #Background on plots 0 = black, 1 = white
22 pg.setConfigOption(’foreground’, ’w’)
23 self.ui = Ui_ReconGUI()
24 self.ui.setupUi(self)
25 self.dataSetIsNew = False
26 #window 1
27 self.imv1 = self.ui.widget_k1
28 #self.imv1.getView().setLabel(’bottom’,"H","mm") # labels that keep the window from sizing properly
29 #self.imv1.getView().setLabel(’left’,"V","mm")
30 self.imv1.ui.normBtn.hide()
31 self.imv1.ui.roiBtn.setText("Line scan")
32 self.imv1.vLine = pg.InfiniteLine(pos=None, angle=90, pen=None, movable=False, bounds=None) #cross hairs
33 self.imv1.hLine = pg.InfiniteLine(pos=None, angle=0, pen=None, movable=False, bounds=None)
34 self.imv1.addItem(self.imv1.vLine, ignoreBounds=True)
35 self.imv1.addItem(self.imv1.hLine, ignoreBounds=True)
36 if self.dataSetIsNew == False:
37 self.proxy = pg.SignalProxy(self.imv1.view.scene().sigMouseMoved, rateLimit=60, slot=self.mouseMoved)
38 #window 2
39 self.imv2 = self.ui.widget_k2
40 #self.imv2.getView().setLabel(’bottom’,"H","mm")
41 #self.imv2.getView().setLabel(’left’,"V","mm")
42 self.imv2.ui.normBtn.hide()
43 self.imv2.ui.roiBtn.setText("Line scan")
44 self.imv2.vLine = pg.InfiniteLine(pos=None, angle=90, pen=None, movable=False, bounds=None)
45 self.imv2.hLine = pg.InfiniteLine(pos=None, angle=0, pen=None, movable=False, bounds=None)
46 self.imv2.addItem(self.imv2.vLine, ignoreBounds=True)
47 self.imv2.addItem(self.imv2.hLine, ignoreBounds=True)
48 if self.dataSetIsNew == False:
49 self.proxy2 = pg.SignalProxy(self.imv2.view.scene().sigMouseMoved, rateLimit=60, slot=self.mouseMoved2)
50 #window 3
51 self.imv3 = self.ui.widget_imag
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52 #self.imv3.getView().setLabel(’bottom’,"H","mm")
53 #self.imv3.getView().setLabel(’left’,"V","mm")
54 self.imv3.ui.normBtn.hide()
55 self.imv3.ui.roiBtn.setText("Line scan")
56 self.imv3.vLine = pg.InfiniteLine(pos=None, angle=90, pen=None, movable=False, bounds=None)
57 self.imv3.hLine = pg.InfiniteLine(pos=None, angle=0, pen=None, movable=False, bounds=None)
58 self.imv3.addItem(self.imv3.vLine, ignoreBounds=True)
59 self.imv3.addItem(self.imv3.hLine, ignoreBounds=True)
60 if self.dataSetIsNew == False:
61 self.proxy3 = pg.SignalProxy(self.imv3.view.scene().sigMouseMoved, rateLimit=60, slot=self.mouseMoved3)
62 #window 4
63 self.imv4=self.ui.widget_iphase
64 #self.imv4.getView().setLabel(’bottom’,"H","mm")
65 #self.imv4.getView().setLabel(’left’,"V","mm")
66 self.imv4.ui.normBtn.hide()
67 self.imv4.ui.roiBtn.setText("Line scan")
68 self.imv4.vLine = pg.InfiniteLine(pos=None, angle=90, pen=None, movable=False, bounds=None)
69 self.imv4.hLine = pg.InfiniteLine(pos=None, angle=0, pen=None, movable=False, bounds=None)
70 self.imv4.addItem(self.imv4.vLine, ignoreBounds=True)
71 self.imv4.addItem(self.imv4.hLine, ignoreBounds=True)
72 if self.dataSetIsNew == False:
73 self.proxy4 = pg.SignalProxy(self.imv4.view.scene().sigMouseMoved, rateLimit=60, slot=self.mouseMoved4)
74
75 self.nImages = 0
76 self.nCurrentImage = 0
77 self.dicomHeader = "DICOM Header"
78 self.ui.lineEdit_nimages.setText((str(self.nImages)))
79 self.ui.label.setText("none")
80 self.dsRe = ImageList() # Use ImageList.py to create list of image data sets
81 self.dsIm = ImageList()
82 self.dsMg = ImageList()
83 self.dsPh = ImageList()
84 self.dsOriginalComplex = ImageList()
85 self.dsComplex = ImageList()
86 self.dsComplexImage = ImageList()
87 self.dsImageMag = ImageList()
88 self.dsImagePhase = ImageList()
89 self.seriesFileNames = []
90 self.windows = [0,0,0,0]
91 self.dataSet = [0,0,0,0]
92 #signals and slots
93 # self.ui.actionNew.triggered.connect(self.NewFile)
94 self.ui.actionOpenRI.triggered.connect(self.OpenFileReIm)
95 self.ui.actionOpenMP.triggered.connect(self.OpenFileMgPh)
96 self.ui.actionSave12.triggered.connect(self.writeDicomFiles12)
97 self.ui.actionSave34.triggered.connect(self.writeDicomFiles34)
98 self.ui.actionClear.triggered.connect(self.ClearImages)
99 self.ui.actionDeleteCurrent.triggered.connect(self.deleteCurrentImage)

100 self.ui.verticalSlider_slice.valueChanged.connect(self.ImageSlider)
101 self.ui.radioButton_ri.clicked.connect(self.SwitchDisplaytoRI)#(self.dsRe, self.dsIm))
102 self.ui.radioButton_mp.clicked.connect(self.SwitchDisplaytoMP)#(self.dsMg, self.dsPh))
103 self.ui.pushButton_reconstructI.clicked.connect(self.ReconstructImageData)
104 self.ui.pushButton_reconstructK.clicked.connect(self.ReconstructRawData)
105 self.ui.pushButton_reset.clicked.connect(self.ResetData)
106 self.ui.pushButton_apply.clicked.connect(self.EditData)
107
108 # def NewFile (self):
109 # self.dataSetIsNew = True
110 # self.dsRe = ImageList() # Use ImageList.py to create list of image data sets
111 # self.dsIm = ImageList()
112 # self.dsMg = ImageList()
113 # self.dsPh = ImageList()
114 # self.dsOriginalComplex = ImageList()
115 # self.dsComplex = ImageList()
116 # self.dsComplexImage = ImageList()
117 # self.dsImageMag = ImageList()
118 # self.dsImagePhase = ImageList()
119 # self.dsMg.PA.append(np.zeros([256,256]))
120 # self.dsPh.PA.append(np.zeros([256,256]))
121 # self.dsRe.PA.append(np.zeros([256,256]))
122 # self.dsIm.PA.append(np.zeros([256,256]))
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123 # self.dsImageMag.PA.append(np.zeros([256,256]))
124 # self.dsImagePhase.PA.append(np.zeros([256,256]))
125 # self.dataSet = self.dsMg, self.dsPh, self.dsImageMag, self.dsImagePhase
126 # self.windows = [1,1,1,1]
127 # self.nImages = 1
128 # self.ui.lineEdit_nimages.setText(str(self.nImages))
129 # self.ui.verticalSlider_slice.setMinimum(1) #set slider to go from 1 to the number of images
130 # self.ui.verticalSlider_slice.setMaximum(self.nImages)
131 # self.nCurrentImage = 1
132 # self.ui.verticalSlider_slice.setValue(self.nCurrentImage)
133 # self.DisplayCurrentImage(self.imv1, self.dsMg)
134 # self.DisplayCurrentImage(self.imv2, self.dsPh)
135 # self.DisplayCurrentImage(self.imv3, self.dsImageMag)
136 # self.DisplayCurrentImage(self.imv4, self.dsImagePhase)
137 # self.ui.label_k1.setText("K-Space [Magnitude]")
138 # self.ui.label_k2.setText("K-Space [Phase]")
139
140 def OpenFileReIm (self):
141 self.dataSetIsNew = False
142 self.dsRe = ImageList() # Use ImageList.py to create list of image data sets
143 self.dsIm = ImageList()
144 self.dsMg = ImageList()
145 self.dsPh = ImageList()
146 self.dsOriginalComplex = ImageList()
147 self.dsComplex = ImageList()
148 self.dsComplexImage = ImageList()
149 self.dsImageMag = ImageList()
150 self.dsImagePhase = ImageList()
151
152 #REAL FILES
153 self.fileNamesRe = QtGui.QFileDialog.getOpenFileNames(self,"Open Real Image Files", "/home/file",
154 "Image Files (*.dcm *.DCM *.bmp *.tif *.fdf)")
155 if not self.fileNamesRe: #if cancel is pressed return
156 return None
157 self.seriesFileNames.extend(self.fileNamesRe) #concatenate new file list with previous file list
158 for i in range(len(self.fileNamesRe)):
159 fileName = self.fileNamesRe[i]
160 self.dsRe.addFile(fileName)
161 self.dsOriginalComplex.addFile(fileName)
162 self.dsComplex.addFile(fileName)
163 self.dsComplexImage.addFile(fileName)
164 self.dsImageMag.addFile(fileName)
165 self.dsImagePhase.addFile(fileName)
166 self.dsMg.addFile(fileName)
167 self.dsPh.addFile(fileName)
168 self.windows[0] = 1
169 self.dataSet[0] = self.dsRe
170 self.nImages=self.nImages+len(self.fileNamesRe)
171 self.ui.lineEdit_nimages.setText(str(self.nImages))
172 self.ui.verticalSlider_slice.setMinimum(1) #set slider to go from 1 to the number of images
173 self.ui.verticalSlider_slice.setMaximum(self.nImages)
174 self.nCurrentImage=1
175 self.ui.verticalSlider_slice.setValue(self.nCurrentImage)
176 self.DisplayCurrentImage(self.imv1, self.dsRe)
177 self.ui.label_k1.setText("K-Space [Real]")
178
179 #IMAGINARY FILES
180 self.fileNamesIm = QtGui.QFileDialog.getOpenFileNames(self,"Open Imaginary Image Files", "/home/file",
181 "Image Files (*.dcm *.DCM *.bmp *.tif *.fdf)")
182 if not self.fileNamesIm: #if cancel is pressed return
183 return None
184 self.seriesFileNames.extend(self.fileNamesIm) #concatenate new file list with previous file list
185 for i in range(len(self.fileNamesIm)):
186 fileName = self.fileNamesIm[i]
187 self.dsIm.addFile(fileName)
188 self.windows[1] = 1
189 self.dataSet[1] = self.dsIm
190 self.ui.lineEdit_nimages.setText(str(self.nImages))
191 self.ui.verticalSlider_slice.setMinimum(1) #set slider to go from 1 to the number of images
192 self.ui.verticalSlider_slice.setMaximum(self.nImages)
193 self.nCurrentImage=1
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194 self.ui.verticalSlider_slice.setValue(self.nCurrentImage)
195 self.DisplayCurrentImage(self.imv2,self.dsIm)
196 self.ui.label_k2.setText("K-Space [Imaginary]")
197
198 #CREATE COMPLEX ARRAY
199 # self.dsMg = self.dataSet[0]
200 # self.dsPh = self.dataSet[0]
201 # self.dsImageMag = self.dataSet[0]
202 # self.dsImagePhase = self.dataSet[0]
203 for i in range(1, len(self.dsMg.PA)):
204 self.dsOriginalComplex.PA[i] = self.dsRe.PA[i] + 1j*self.dsIm.PA[i]
205 self.dsComplex.PA[i] = self.dsRe.PA[i] + 1j*self.dsIm.PA[i]
206 self.dsMg.PA[i] = np.absolute(self.dsComplex.PA[i])
207 self.dsPh.PA[i] = np.angle(self.dsComplex.PA[i])
208 self.dsComplexImage.PA[i] = np.fft.fft2(self.dsComplex.PA[i])
209 self.dsImageMag.PA[i] = np.absolute(self.dsComplexImage.PA[i])
210 self.dsImagePhase.PA[i] = np.angle(self.dsComplexImage.PA[i])
211
212 def OpenFileMgPh (self):
213 self.dataSetIsNew = False
214 self.dsRe = ImageList() # Use ImageList.py to create list of image data sets
215 self.dsIm = ImageList()
216 self.dsMg = ImageList()
217 self.dsPh = ImageList()
218 self.dsOriginalComplex = ImageList()
219 self.dsComplex = ImageList()
220 self.dsComplexImage = ImageList()
221 self.dsImageMag = ImageList()
222 self.dsImagePhase = ImageList()
223
224 #MAGNITUDE FILES
225 self.fileNamesMg = QtGui.QFileDialog.getOpenFileNames(self,"Open Magnitude Image Files", "/home/file",
226 "Image Files (*.dcm *.DCM *.bmp *.tif *.fdf)")
227 if not self.fileNamesMg: #if cancel is pressed return
228 return None
229 self.seriesFileNames.extend(self.fileNamesMg) #concatenate new file list with previous file list
230 d1Mg= [] #d1 is 3d data stack for 3d images
231 for i in range(len(self.fileNamesMg)):
232 fileName = self.fileNamesMg[i]
233 self.dsMg.addFile(fileName)
234 self.dsOriginalComplex.addFile(fileName)
235 self.dsComplex.addFile(fileName)
236 self.dsComplexImage.addFile(fileName)
237 self.dsImageMag.addFile(fileName)
238 self.dsImagePhase.addFile(fileName)
239 self.dsRe.addFile(fileName)
240 self.dsIm.addFile(fileName)
241 d1Mg.append(self.dsMg.PA[i+1])
242 self.windows[0] = 1
243 self.dataSet[0] = self.dsMg
244 self.nImages=self.nImages+len(self.fileNamesMg)
245 self.ui.lineEdit_nimages.setText(str(self.nImages))
246 self.ui.verticalSlider_slice.setMinimum(1) #set slider to go from 1 to the number of images
247 self.ui.verticalSlider_slice.setMaximum(self.nImages)
248 self.nCurrentImage=1
249 self.ui.verticalSlider_slice.setValue(self.nCurrentImage)
250 self.DisplayCurrentImage(self.imv1,self.dsMg)
251 self.ui.label_k1.setText("K-Space [Magnitude]")
252 self.image3D = np.dstack(d1Mg)
253 # self.msgPrint("image size" + str(d1Mg[0].shape) + "; image3D size" + str(self.image3D.shape)+ os.linesep)
254
255 #PHASE FILES
256 self.fileNamesPh = QtGui.QFileDialog.getOpenFileNames(self,"Open Phase Image Files", "/home/file",
257 "Image Files (*.dcm *.DCM *.bmp *.tif *.fdf)")
258 if not self.fileNamesPh: #if cancel is pressed return
259 return None
260 self.seriesFileNames.extend(self.fileNamesPh) #concatenate new file list with previous file list
261 for i in range(len(self.fileNamesPh)):
262 fileName = self.fileNamesPh[i]
263 self.dsPh.addFile(fileName)
264 self.windows[1] = 1
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265 self.dataSet[1] = self.dsPh
266 self.ui.lineEdit_nimages.setText(str(self.nImages))
267 self.ui.verticalSlider_slice.setMinimum(1) #set slider to go from 1 to the number of images
268 self.ui.verticalSlider_slice.setMaximum(self.nImages)
269 self.nCurrentImage=1 # 0th item is dummy image
270 self.ui.verticalSlider_slice.setValue(self.nCurrentImage)
271 self.DisplayCurrentImage(self.imv2, self.dsPh)
272 self.ui.label_k2.setText("K-Space [Phase]")
273
274 #CREATE COMPLEX ARRAY
275 for i in range(1, len(self.dsMg.PA)):
276 self.dsOriginalComplex.PA[i] = np.multiply(self.dsMg.PA[i],np.exp(1j*self.dsPh.PA[i]))
277 self.dsComplex.PA[i] = np.multiply(self.dsMg.PA[i],np.exp(1j*self.dsPh.PA[i]))
278 self.dsRe.PA[i] = self.dsComplex.PA[i].real
279 self.dsIm.PA[i] = self.dsComplex.PA[i].imag
280 self.dsComplexImage.PA[i] = np.fft.fft2(self.dsComplex.PA[i])
281 self.dsComplexImage.PA[i] = np.fft.fftshift(self.dsComplexImage.PA[i])
282 self.dsImageMag.PA[i] = np.absolute(self.dsComplexImage.PA[i])
283 self.dsImagePhase.PA[i] = np.angle(self.dsComplexImage.PA[i])
284
285 def writeDicomFiles12 (self):
286 fileName = QtGui.QFileDialog.getSaveFileName(parent=None, caption="Dicom File Name")
287 if not fileName: #if cancel is pressed return
288 return None
289 #write current image list in DICOM format to filename+ imagenumber + .dcm
290 self.dataSet[0].writeDicomFiles(fileName + "kmag")
291 self.dataSet[1].writeDicomFiles(fileName + "kphase")
292
293 def writeDicomFiles34 (self):
294 fileName = QtGui.QFileDialog.getSaveFileName(parent=None, caption="Dicom File Name")
295 if not fileName: #if cancel is pressed return
296 return None
297 #write current image list in DICOM format to filename+ imagenumber + .dcm
298 self.dataSet[2].writeDicomFiles(fileName + "rmag")
299 self.dataSet[3].writeDicomFiles(fileName + "rphase")
300
301 def EditData (self):
302 if self.ui.radioButton_setValue.isChecked():
303 val = float(self.ui.lineEdit_setValue.text())
304 if self.ui.groupBox_voxelSelection.isChecked(): #if voxel selection is selected
305 rstart, rend = int(self.ui.lineEdit_voxelRowStart.text()), int(self.ui.lineEdit_voxelRowEnd.text())
306 cstart, cend = int(self.ui.lineEdit_voxelColStart.text()), int(self.ui.lineEdit_voxelColEnd.text())
307 if self.ui.checkBox_w1.isChecked(): # only apply editing to window if corresponding checkBox is checked
308 for i in range(1, len(self.dsMg.PA)): # for each image in the stack (same for all types)
309 for c in range(cstart-1, cend): # user inputs pixels numbered 1:imagesize
310 for r in range(rstart-1, rend):
311 self.dataSet[0].PA[i][c, r] = val
312 self.DisplayCurrentImage(self.imv1,self.dataSet[0])
313 if self.ui.checkBox_w2.isChecked():
314 for i in range(1, len(self.dsMg.PA)): # for each image in the stack (same for all types)
315 for c in range(cstart-1, cend): # user inputs pixels numbered 1:imagesize
316 for r in range(rstart-1, rend):
317 self.dataSet[1].PA[i][c, r] = val
318 self.DisplayCurrentImage(self.imv2,self.dataSet[1])
319
320 if self.ui.groupBox_regionSelection.isChecked(): #if region selection is selected
321 xCenter, yCenter, radius = int(self.ui.lineEdit_Xpos.text()), int(self.ui.lineEdit_Ypos.text()),
322 int(self.ui.lineEdit_radius.text())
323 # selects a circular region in coordinate system where x and y range from [-ImageSize/2, ImageSize/2]
324 if self.ui.checkBox_w1.isChecked(): # only apply editing to window if corresponding checkBox is checked
325 for i in range(1, len(self.dataSet[0].PA)): # iterate through arrays
326 if (self.ui.radioButton_interior.isChecked()): # voxel is inside circle
327 lx, ly = self.dataSet[0].PA[i].shape
328 X, Y = np.ogrid[0:lx, 0:ly]
329 mask = (X - lx/2-xCenter)**2 + (Y - ly/2+yCenter)**2 <= radius**2
330 self.dataSet[0].PA[i][mask] = val
331 elif (self.ui.radioButton_exterior.isChecked()): # voxel is outside circle
332 lx, ly = self.dataSet[0].PA[i].shape
333 X, Y = np.ogrid[0:lx, 0:ly]
334 mask = (X - lx/2-xCenter)**2 + (Y - ly/2+yCenter)**2 > radius**2
335 self.dataSet[0].PA[i][mask] = val
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336 self.DisplayCurrentImage(self.imv1,self.dataSet[0])
337
338 if self.ui.checkBox_w2.isChecked(): # only apply editing to window if corresponding checkBox is checked
339 for i in range(1, len(self.dataSet[1].PA)): # iterate through arrays
340 if (self.ui.radioButton_interior.isChecked()): # voxel is inside circle
341 lx, ly = self.dataSet[1].PA[i].shape
342 X, Y = np.ogrid[0:lx, 0:ly]
343 mask = (X - lx/2-xCenter)**2 + (Y - ly/2+yCenter)**2 <= radius**2
344 self.dataSet[1].PA[i][mask] = val
345 elif (self.ui.radioButton_exterior.isChecked()): # voxel is outside circle
346 lx, ly = self.dataSet[1].PA[i].shape
347 X, Y = np.ogrid[0:lx, 0:ly]
348 mask = (X - lx/2-xCenter)**2 + (Y - ly/2+yCenter)**2 > radius**2
349 self.dataSet[1].PA[i][mask] = val
350 self.DisplayCurrentImage(self.imv2,self.dataSet[1])
351
352 if self.ui.radioButton_addValue.isChecked():
353 val = float(self.ui.lineEdit_addValue.text())
354 if self.ui.groupBox_voxelSelection.isChecked(): #if voxel selection is selected
355 rstart, rend = int(self.ui.lineEdit_voxelRowStart.text()), int(self.ui.lineEdit_voxelRowEnd.text())
356 cstart, cend = int(self.ui.lineEdit_voxelColStart.text()), int(self.ui.lineEdit_voxelColEnd.text())
357 if self.ui.checkBox_w1.isChecked(): # only apply editing to window if corresponding checkBox is checked
358 for i in range(1, len(self.dsMg.PA)): # for each image in the stack (same for all types)
359 for c in range(cstart-1, cend): # user inputs pixels numbered 1:imagesize
360 for r in range(rstart-1, rend):
361 self.dataSet[0].PA[i][c, r] += val
362 self.DisplayCurrentImage(self.imv1,self.dataSet[0])
363 if self.ui.checkBox_w2.isChecked():
364 for i in range(1, len(self.dsMg.PA)): # for each image in the stack (same for all types)
365 for c in range(cstart-1, cend): # user inputs pixels numbered 1:imagesize
366 for r in range(rstart-1, rend):
367 self.dataSet[1].PA[i][c, r] += val
368 self.DisplayCurrentImage(self.imv2,self.dataSet[1])
369
370 if self.ui.groupBox_regionSelection.isChecked(): #if region selection is selected
371 xCenter, yCenter, radius = int(self.ui.lineEdit_Xpos.text()), int(self.ui.lineEdit_Ypos.text()),
372 int(self.ui.lineEdit_radius.text())
373 # selects a circular region in coordinate system where x and y range from [-ImageSize/2, ImageSize/2]
374 if self.ui.checkBox_w1.isChecked(): # only apply editing to window if corresponding checkBox is checked
375 for i in range(1, len(self.dataSet[0].PA)): # iterate through arrays
376 if (self.ui.radioButton_interior.isChecked()): # voxel is inside circle
377 lx, ly = self.dataSet[0].PA[i].shape
378 X, Y = np.ogrid[0:lx, 0:ly]
379 mask = (X - lx/2-xCenter)**2 + (Y - ly/2+yCenter)**2 <= radius**2
380 self.dataSet[0].PA[i][mask] += val
381 elif (self.ui.radioButton_exterior.isChecked()): # voxel is outside circle
382 lx, ly = self.dataSet[0].PA[i].shape
383 X, Y = np.ogrid[0:lx, 0:ly]
384 mask = (X - lx/2-xCenter)**2 + (Y - ly/2+yCenter)**2 > radius**2
385 self.dataSet[0].PA[i][mask] += val
386 self.DisplayCurrentImage(self.imv1,self.dataSet[0])
387
388 if self.ui.checkBox_w2.isChecked(): # only apply editing to window if corresponding checkBox is checked
389 for i in range(1, len(self.dataSet[1].PA)): # iterate through arrays
390 if (self.ui.radioButton_interior.isChecked()): # voxel is inside circle
391 lx, ly = self.dataSet[1].PA[i].shape
392 X, Y = np.ogrid[0:lx, 0:ly]
393 mask = (X - lx/2-xCenter)**2 + (Y - ly/2+yCenter)**2 <= radius**2
394 self.dataSet[1].PA[i][mask] += val
395 elif (self.ui.radioButton_exterior.isChecked()): # voxel is outside circle
396 lx, ly = self.dataSet[1].PA[i].shape
397 X, Y = np.ogrid[0:lx, 0:ly]
398 mask = (X - lx/2-xCenter)**2 + (Y - ly/2+yCenter)**2 > radius**2
399 self.dataSet[1].PA[i][mask] += val
400 self.DisplayCurrentImage(self.imv2,self.dataSet[1])
401
402 #RECREATE COMPLEX ARRAY
403 if self.dataSet[0] == self.dsMg:
404 for i in range(1, len(self.dsMg.PA)):
405 self.dsComplex.PA[i] = np.multiply(self.dsMg.PA[i],np.exp(1j*self.dsPh.PA[i]))
406 self.dsRe.PA[i] = self.dsComplex.PA[i].real
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407 self.dsIm.PA[i] = self.dsComplex.PA[i].imag
408 self.dsComplexImage.PA[i] = np.fft.fft2(self.dsComplex.PA[i])
409 self.dsComplexImage.PA[i] = np.fft.fftshift(self.dsComplexImage.PA[i])
410 self.dsImageMag.PA[i] = np.absolute(self.dsComplexImage.PA[i])
411 self.dsImagePhase.PA[i] = np.angle(self.dsComplexImage.PA[i])
412
413 if self.dataSet[0] == self.dsRe:
414 for i in range(1, len(self.dsMg.PA)):
415 self.dsComplex.PA[i] = self.dsRe.PA[i] + 1j*self.dsIm.PA[i]
416 self.dsMg.PA[i] = np.absolute(self.dsComplex.PA[i])
417 self.dsPh.PA[i] = np.angle(self.dsComplex.PA[i])
418 self.dsComplexImage.PA[i] = np.fft.fft2(self.dsComplex.PA[i])
419 self.dsComplexImage.PA[i] = np.fft.fftshift(self.dsComplexImage.PA[i])
420 self.dsImageMag.PA[i] = np.absolute(self.dsComplexImage.PA[i])
421 self.dsImagePhase.PA[i] = np.angle(self.dsComplexImage.PA[i])
422
423 def ResetData (self):
424 for i in range(1, len(self.dsMg.PA)):
425 self.dsRe.PA[i] = self.dsOriginalComplex.PA[i].real
426 self.dsIm.PA[i] = self.dsOriginalComplex.PA[i].imag
427 self.dsMg.PA[i] = np.absolute(self.dsOriginalComplex.PA[i])
428 self.dsPh.PA[i] = np.angle(self.dsOriginalComplex.PA[i])
429 self.dsComplexImage.PA[i] = np.fft.fft2(self.dsOriginalComplex.PA[i])
430 self.dsComplexImage.PA[i] = np.fft.fftshift(self.dsComplexImage.PA[i])
431 self.dsImageMag.PA[i] = np.absolute(self.dsComplexImage.PA[i])
432 self.dsImagePhase.PA[i] = np.angle(self.dsComplexImage.PA[i])
433 if self.ui.radioButton_mp.isChecked():
434 self.dataSet[0] = self.dsRe
435 self.dataSet[1] = self.dsIm
436 if self.ui.radioButton_ri.isChecked():
437 self.dataSet[0] = self.dsMg
438 self.dataSet[1] = self.dsPh
439 self.dataSet[2] = self.dsImageMag
440 self.dataSet[3] = self.dsImagePhase
441 self.DisplayCurrentImage(self.imv1, self.dataSet[0])
442 self.DisplayCurrentImage(self.imv2, self.dataSet[1])
443 if self.windows[2] == 1:
444 self.DisplayCurrentImage(self.imv3, self.dataSet[2])
445 if self.windows[3] == 1:
446 self.DisplayCurrentImage(self.imv4, self.dataSet[3])
447
448 def ReconstructImageData (self):
449 self.windows[2] = 1
450 self.windows[3] = 1
451 self.dataSet[2] = self.dsImageMag
452 self.dataSet[3] = self.dsImagePhase
453 self.DisplayCurrentImage(self.imv3, self.dataSet[2])
454 self.DisplayCurrentImage(self.imv4, self.dataSet[3])
455
456 def ReconstructRawData (self):
457 for i in range(1, len(type.PA)):
458 self.dsComplexImage.PA[i] = np.multiply(self.dsImageMag.PA[i],np.exp(1j*self.dsImagePhase.PA[i]))
459 self.dsComplexImage.PA[i] = np.fft.ifft2(self.dsComplex.PA[i])
460 self.dsComplexImage.PA[i] = np.fft.fftshift(self.dsComplexImage.PA[i])
461 self.dsRe.PA[i] = self.dsComplex.PA[i].real
462 self.dsIm.PA[i] = self.dsComplex.PA[i].imag
463 self.windows[2] = 1
464 self.windows[3] = 1
465 self.dataSet[2] = self.dsImageMag
466 self.dataSet[3] = self.dsImagePhase
467 self.DisplayCurrentImage(self.imv3, self.dataSet[2])
468 self.DisplayCurrentImage(self.imv4, self.dataSet[3])
469
470 def SwitchDisplaytoRI (self):#,data1,data2): # updates windows 1&2 to display current k-space pair
471 if (self.windows[0] == 1):
472 self.dataSet[0] = self.dsRe
473 self.DisplayCurrentImage(self.imv1, self.dsRe)#data1)
474 self.ui.label_k1.setText("K-Space [Real]")
475 if (self.windows[1] == 1):
476 self.dataSet[1] = self.dsIm
477 self.DisplayCurrentImage(self.imv2, self.dsIm)#data2
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478 self.ui.label_k2.setText("K-Space [Imaginary]")
479
480 def SwitchDisplaytoMP (self):#,data1,data2): # updates windows 1&2 to display current k-space pair
481 if (self.windows[0] == 1):
482 self.dataSet[0] = self.dsMg
483 self.DisplayCurrentImage(self.imv1, self.dsMg)#data1)
484 self.ui.label_k1.setText("K-Space [Magnitude]")
485 if (self.windows[1] == 1):
486 self.dataSet[1] = self.dsPh
487 self.DisplayCurrentImage(self.imv2, self.dsPh)#data2
488 self.ui.label_k2.setText("K-Space [Phase]")
489
490 def ImageSlider (self):
491 self.nCurrentImage = self.ui.verticalSlider_slice.value()
492 if (self.windows[0] == 1):
493 self.DisplayCurrentImage(self.imv1, self.dataSet[0])
494 if (self.windows[1] == 1):
495 self.DisplayCurrentImage(self.imv2, self.dataSet[1])
496 if (self.windows[2] == 1):
497 self.DisplayCurrentImage(self.imv3, self.dataSet[2])
498 if (self.windows[3] == 1):
499 self.DisplayCurrentImage(self.imv4, self.dataSet[3])
500
501 def DisplayCurrentImage (self,win,dstype): # display the current image from the data "dstype" in window "win"
502 i = self.nCurrentImage
503 self.ui.label.setText(str(self.nCurrentImage))
504 if self.dataSetIsNew == False:
505 self.ui.lineEdit_date.setText(format(dstype.StudyDate[i]))
506 self.ui.textEdit_filename.setText(self.seriesFileNames[i-1]) if i > 0 else self.ui.textEdit_filename.setText("")
507 self.ui.lineEdit_manufacturer.setText(dstype.Manufacturer[i])
508 self.ui.lineEdit_series.setText(dstype.SeriesDescription[i])
509 self.ui.lineEdit_institution.setText(dstype.InstitutionName[i])
510 self.ui.lineEdit_fieldT.setText(str(dstype.MagneticFieldStrength[i]))
511 self.ui.lineEdit_receivecoil.setText(str(dstype.ReceiveCoilName[i]))
512 #self.ui.lblPatient.setText(dstype.PatientName[i])
513 self.ui.lineEdit_protocol.setText(str(dstype.ProtocolName[i]))
514 self.ui.lineEdit_bandwidth.setText(str(dstype.PixelBandwidth[i]))
515 self.ui.lineEdit_TE.setStyleSheet("background-color: white") if (self.checkEqual(dstype.TE))
516 else self.ui.lineEdit_TE.setStyleSheet("background-color: yellow")
517 self.ui.lineEdit_TE.setText(str(dstype.TE[i]))
518 self.ui.lineEdit_TR.setStyleSheet("background-color: white") if (self.checkEqual(dstype.TR))
519 else self.ui.lineEdit_TR.setStyleSheet("background-color: yellow")
520 self.ui.lineEdit_TR.setText(str(dstype.TR[i]))
521 self.ui.lineEdit_imagesize_col.setText(str(dstype.Columns[i]))
522 self.ui.lineEdit_imagesize_row.setText(str(dstype.Rows[i]))
523 self.ui.lineEdit_TI.setStyleSheet("background-color: white") if (self.checkEqual(dstype.TI))
524 else self.ui.lineEdit_TI.setStyleSheet("background-color: yellow")
525 self.ui.lineEdit_TI.setText(str(dstype.TI[i]))
526 self.ui.lineEdit_slicethick.setText(str(dstype.SliceThickness[i]))
527 self.ui.lineEdit_sliceloc.setStyleSheet("background-color: white") if (self.checkEqual(dstype.SliceLocation))
528 else self.ui.lineEdit_sliceloc.setStyleSheet("background-color: yellow")
529 self.ui.lineEdit_sliceloc.setText(str(dstype.SliceLocation[i]))
530 self.ui.lineEdit_pixsize_row.setText(str(dstype.PixelSpacingX[i]))
531 self.ui.lineEdit_pixsize_col.setText(str(dstype.PixelSpacingY[i]))
532 # self.ui.lblFA.setStyleSheet("background-color: white") if (self.checkEqual(dstype.FA))
533 else self.ui.lblFA.setStyleSheet("background-color: yellow")
534 # self.ui.lblFA.setText(str(dstype.FA[i]))
535 self.ui.lineEdit_phasedir.setText(str(dstype.InPlanePhaseEncodingDirection[i]))
536 self.ui.lineEdit_FoVX.setText(str(dstype.FoVX[i]))
537 self.ui.lineEdit_FoVY.setText(str(dstype.FoVY[i]))
538 self.ui.lineEdit_b.setText(str(dstype.bValue[i]))
539 self.ui.textEdit_header.setText(dstype.header[i])
540 data = dstype.PA[i] #not sure why we need to transpose]
541 # xscale = dstype.PixelSpacingX[i] if (dstype.PixelSpacingX[i] > 0.) else 1
542 # yscale = dstype.PixelSpacingY[i] if (dstype.PixelSpacingY[i] > 0.) else 1
543 # xmin = -dstype.FoVX[i]/2 #set origin to center of image, need to upgrade to set by DICOM tag
544 # ymin = -dstype.FoVY[i]/2
545 # textEdit_results was lblUpperLeft in the line below
546 #self.ui.textEdit_results.setText("UL=" + "{:.1f}".format(dstype.ImagePosition[i][0]) + ","
547 + "{:.1f}".format(dstype.ImagePosition[i][1]) + "," + "{:.1f}".format(dstype.ImagePosition[i][2]))
548 # setImage(img, autoRange=True, autoLevels=True, levels=None, axes=None, xvals=None, pos=None, scale=None,
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549 transform=None, autoHistogramRange=True)
550 win.setImage(data, autoRange=True, autoLevels=True, autoHistogramRange=True)#pos = (xmin,ymin),
551 scale = (xscale,yscale), autoHistogramRange=True)
552 # self.imv1.getView().setLabel(’bottom’,self.DirectionLabel(dstype.RowDirection[i]),"mm")
553 # self.imv1.getView().setLabel(’left’,self.DirectionLabel(dstype.ColumnDirection[i]),"mm")
554
555 def checkEqual(self, lst): #returns True if all elemments (except the 0th element) of the list are equal
556 return lst[2:] == lst[1:-1]
557
558 def ClearImages (self): #Deletes all images except default image at index 1
559 self.ds = ImageList() #list of data sets, can be dicom, tiff, fdf
560 self.dsRe = ImageList() # Uses separate module to create list of image data sets
561 self.dsIm = ImageList()
562 self.dsMg = ImageList()
563 self.dsPh = ImageList()
564 self.dsComplex = ImageList()
565 self.dsOriginalComplex = ImageList()
566 self.dsComplexImage = ImageList()
567 self.dsImageMag = ImageList()
568 self.dsImagePhase = ImageList()
569 del self.seriesFileNames[:]
570 self.windows = [0,0,0,0]
571 self.nCurrentImage=0
572 self.nImages=0
573 # self.image3D.zeros[1,1,1]
574 self.DisplayCurrentImage(self.imv1, self.ds)
575 self.DisplayCurrentImage(self.imv2, self.ds)
576 self.DisplayCurrentImage(self.imv3, self.ds)
577 self.DisplayCurrentImage(self.imv4, self.ds)
578 self.ui.lineEdit_nimages.setText(str(self.nImages))
579 self.ui.verticalSlider_slice.setMaximum(0)
580
581 def deleteCurrentImage(self):
582 if self.nCurrentImage > 0:
583 self.dsRe.deleteImage(self.nCurrentImage)
584 self.dsIm.deleteImage(self.nCurrentImage)
585 self.dsMg.deleteImage(self.nCurrentImage)
586 self.dsPh.deleteImage(self.nCurrentImage)
587 self.dsComplex.deleteImage(self.nCurrentImage)
588 self.dsOriginalComplex.deleteImage(self.nCurrentImage)
589 self.dsComplexImage.deleteImage(self.nCurrentImage)
590 self.dsImageMag.deleteImage(self.nCurrentImage)
591 self.dsImagePhase.deleteImage(self.nCurrentImage)
592 self.nImages -= 1
593 self.ui.lineEdit_nimages.setText(str(self.nImages))
594 self.ui.verticalSlider_slice.setMinimum(1) #set slider to go from 1 to the number of images
595 self.ui.verticalSlider_slice.setMaximum(self.nImages)
596 if self.nImages == 0:
597 self.nCurrentImage=0
598 self.windows = [0,0,0,0]
599 self.ds = ImageList()
600 self.DisplayCurrentImage(self.imv1, self.ds)
601 else:
602 self.nCurrentImage = 1
603 self.ui.verticalSlider_slice.setValue(self.nCurrentImage)
604 self.DisplayCurrentImage(self.imv1, self.dataSet[0])
605 self.DisplayCurrentImage(self.imv2, self.dataSet[1])
606
607 def ViewDicomHeader (self):
608 if self.ui.rbViewDicomHeader.isChecked():
609 self.ui.textEdit_header.setHidden(False)
610 dh = str(self.ds.header[self.nCurrentImage])
611 if dh == ’’:
612 dh="DICOM Header"
613 self.ui.textEdit_header.setText(dh)
614 else:
615 self.ui.textEdit_header.setHidden(True)
616
617 # def View3d(self):
618 # w = gl.GLViewWidget()
619 # w.opts[’distance’] = 200
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620 # w.show()
621 # w.setWindowTitle(’3D View’)
622 # g = gl.GLGridItem()
623 # g.scale(10, 10, 10)
624 # w.addItem(g)
625 # data=self.image3D
626 # #positive = np.log(np.clip(data, 0, data.max())**2)
627 # #negative = np.log(np.clip(-data, 0, -data.min())**2)
628 # d2 = np.empty(data.shape + (4,), dtype=np.ubyte)
629 # d2[..., 0] = data * (255./data.max())
630 # d2[..., 1] = data * (255./data.max())
631 # d2[..., 2] = d2[...,1]
632 # d2[..., 3] = d2[..., 0]*0.3 + d2[..., 1]*0.3
633 # d2[..., 3] = (d2[..., 3].astype(float) / 255.) **2 * 255
634 #
635 # d2[:, 0, 0] = [255,0,0,100]
636 # d2[0, :, 0] = [0,255,0,100]
637 # d2[0, 0, :] = [0,0,255,100]
638 #
639 # v = gl.GLVolumeItem(d2)
640 # v.translate(-128,-128,0)
641 # w.addItem(v)
642 # ax = gl.GLAxisItem()
643 # w.addItem(ax)
644
645 def mouseMoved(self,evt): #mouse move event to move crosshairs and display location and values
646 if self.dataSetIsNew == False:
647 if (self.windows[0] == 1):
648 self.ds = self.dataSet[0]
649 pos = evt[0] ## using signal proxy turns original arguments into a tuple
650 if self.imv1.view.sceneBoundingRect().contains(pos):
651 mousePoint = self.imv1.view.mapSceneToView(pos)
652 self.ui.lineEdit_h.setText("{:.2f}".format(mousePoint.x()))
653 self.ui.lineEdit_v.setText("{:.2f}".format(mousePoint.y()))
654 if abs(mousePoint.x()) < self.ds.FoVX[self.nCurrentImage]/2 and abs(mousePoint.y())
655 < self.ds.FoVY[self.nCurrentImage]/2:
656 Xindex = int((mousePoint.x()+self.ds.FoVX[self.nCurrentImage]/2)/self.ds.PixelSpacingX[self.nCurrentImage])
657 #if self.ds.PixelSpacingX[self.nCurrentImage] > 0. else Xindex = int(mousePoint.x())
658 Yindex = int((mousePoint.y()+self.ds.FoVY[self.nCurrentImage]/2)/self.ds.PixelSpacingY[self.nCurrentImage])
659 #if self.ds.PixelSpacingY[self.nCurrentImage] > 0. else Yindex = int(mousePoint.y())
660 value= self.ds.PA[self.nCurrentImage][Xindex,Yindex]
661 self.ui.lineEdit_value.setText("{:.1f}".format(value))
662 rc= self.ReltoGlobal(mousePoint.x(), mousePoint.y(), self.nCurrentImage, self.ds)
663 self.ui.lineEdit_x.setText("{:.2f}".format(rc[0]))
664 self.ui.lineEdit_y.setText("{:.2f}".format(rc[1]))
665 self.ui.lineEdit_z.setText("{:.2f}".format(rc[2]))
666 self.imv1.vLine.setPos(mousePoint.x())
667 self.imv1.hLine.setPos(mousePoint.y())
668
669 def mouseMoved2(self,evt): #mouse move event to move crosshairs and display location and values
670 if self.dataSetIsNew == False:
671 if (self.windows[1] == 1):
672 self.ds = self.dataSet[1]
673 pos = evt[0] ## using signal proxy turns original arguments into a tuple
674 if self.imv2.view.sceneBoundingRect().contains(pos):
675 mousePoint = self.imv2.view.mapSceneToView(pos)
676 self.ui.lineEdit_h.setText("{:.2f}".format(mousePoint.x()))
677 self.ui.lineEdit_v.setText("{:.2f}".format(mousePoint.y()))
678 if abs(mousePoint.x()) < self.ds.FoVX[self.nCurrentImage]/2 and abs(mousePoint.y())
679 < self.ds.FoVY[self.nCurrentImage]/2:
680 Xindex = int((mousePoint.x()+self.ds.FoVX[self.nCurrentImage]/2)/self.ds.PixelSpacingX[self.nCurrentImage])
681 #if self.ds.PixelSpacingX[self.nCurrentImage] > 0. else Xindex = int(mousePoint.x())
682 Yindex = int((mousePoint.y()+self.ds.FoVY[self.nCurrentImage]/2)/self.ds.PixelSpacingY[self.nCurrentImage])
683 #if self.ds.PixelSpacingY[self.nCurrentImage] > 0. else Yindex = int(mousePoint.y())
684 value= self.ds.PA[self.nCurrentImage][Xindex,Yindex]
685 self.ui.lineEdit_value.setText("{:.1f}".format(value))
686 rc= self.ReltoGlobal(mousePoint.x(), mousePoint.y(), self.nCurrentImage, self.ds)
687 self.ui.lineEdit_x.setText("{:.2f}".format(rc[0]))
688 self.ui.lineEdit_y.setText("{:.2f}".format(rc[1]))
689 self.ui.lineEdit_z.setText("{:.2f}".format(rc[2]))
690 self.imv2.vLine.setPos(mousePoint.x())
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691 self.imv2.hLine.setPos(mousePoint.y())
692
693 def mouseMoved3(self,evt): #mouse move event to move crosshairs and display location and values
694 if self.dataSetIsNew == False:
695 if (self.windows[2] == 1):
696 self.ds = self.dataSet[2]
697 pos = evt[0] ## using signal proxy turns original arguments into a tuple
698 if self.imv3.view.sceneBoundingRect().contains(pos):
699 mousePoint = self.imv3.view.mapSceneToView(pos)
700 self.ui.lineEdit_h.setText("{:.2f}".format(mousePoint.x()))
701 self.ui.lineEdit_v.setText("{:.2f}".format(mousePoint.y()))
702 if abs(mousePoint.x()) < self.ds.FoVX[self.nCurrentImage]/2 and abs(mousePoint.y())
703 < self.ds.FoVY[self.nCurrentImage]/2:
704 Xindex = int((mousePoint.x()+self.ds.FoVX[self.nCurrentImage]/2)/self.ds.PixelSpacingX[self.nCurrentImage])
705 #if self.ds.PixelSpacingX[self.nCurrentImage] > 0. else Xindex = int(mousePoint.x())
706 Yindex = int((mousePoint.y()+self.ds.FoVY[self.nCurrentImage]/2)/self.ds.PixelSpacingY[self.nCurrentImage])
707 #if self.ds.PixelSpacingY[self.nCurrentImage] > 0. else Yindex = int(mousePoint.y())
708 value= self.ds.PA[self.nCurrentImage][Xindex,Yindex]
709 self.ui.lineEdit_value.setText("{:.1f}".format(value))
710 rc= self.ReltoGlobal(mousePoint.x(), mousePoint.y(), self.nCurrentImage, self.ds)
711 self.ui.lineEdit_x.setText("{:.2f}".format(rc[0]))
712 self.ui.lineEdit_y.setText("{:.2f}".format(rc[1]))
713 self.ui.lineEdit_z.setText("{:.2f}".format(rc[2]))
714 self.imv3.vLine.setPos(mousePoint.x())
715 self.imv3.hLine.setPos(mousePoint.y())
716
717 def mouseMoved4(self,evt): #mouse move event to move crosshairs and display location and values
718 if self.dataSetIsNew == False:
719 if (self.windows[3] == 1):
720 self.ds = self.dataSet[3]
721 pos = evt[0] ## using signal proxy turns original arguments into a tuple
722 if self.imv4.view.sceneBoundingRect().contains(pos):
723 mousePoint = self.imv4.view.mapSceneToView(pos)
724 self.ui.lineEdit_h.setText("{:.2f}".format(mousePoint.x()))
725 self.ui.lineEdit_v.setText("{:.2f}".format(mousePoint.y()))
726 if abs(mousePoint.x()) < self.ds.FoVX[self.nCurrentImage]/2 and abs(mousePoint.y())
727 < self.ds.FoVY[self.nCurrentImage]/2:
728 Xindex = int((mousePoint.x()+self.ds.FoVX[self.nCurrentImage]/2)/self.ds.PixelSpacingX[self.nCurrentImage])
729 #if self.ds.PixelSpacingX[self.nCurrentImage] > 0. else Xindex = int(mousePoint.x())
730 Yindex = int((mousePoint.y()+self.ds.FoVY[self.nCurrentImage]/2)/self.ds.PixelSpacingY[self.nCurrentImage])
731 #if self.ds.PixelSpacingY[self.nCurrentImage] > 0. else Yindex = int(mousePoint.y())
732 value= self.ds.PA[self.nCurrentImage][Xindex,Yindex]
733 self.ui.lineEdit_value.setText("{:.1f}".format(value))
734 rc= self.ReltoGlobal(mousePoint.x(), mousePoint.y(), self.nCurrentImage, self.ds)
735 self.ui.lineEdit_x.setText("{:.2f}".format(rc[0]))
736 self.ui.lineEdit_y.setText("{:.2f}".format(rc[1]))
737 self.ui.lineEdit_z.setText("{:.2f}".format(rc[2]))
738 self.imv4.vLine.setPos(mousePoint.x())
739 self.imv4.hLine.setPos(mousePoint.y())
740
741 def ReltoGlobal (self, h,v,n, dstype): #given relative coordinate x,y of image n returns np vector of global coordinates
742 rc= ((h+dstype.FoVX[n]/2) * dstype.RowDirection[n]+(v+dstype.FoVX[n]/2)*dstype.ColumnDirection[n])+dstype.ImagePosition[n]
743 return rc
744
745 # UNUSED FUNCTION
746 def GlobaltoRel(self,r,n, dstype): #Given r vector in global coordinates returns h,v in image plane of image n
747 h=np.dot(r-dstype.ImageCenter[n],dstype.RowDirection[n])
748 v=np.dot(r-dstype.ImageCenter[n],dstype.ColumnDirection[n])
749 return [h,v]
750
751 if __name__ == ’__main__’:
752 app = QtGui.QApplication(sys.argv)
753 main = Recon()
754 main.show()
755 sys.exit(app.exec_())
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Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic sus-
ceptibility of tissue to identify cerebral microbleeds associated with traumatic brain
injury and pathological iron deposits associated with neurodegenerative diseases
such as Parkinson’s and Alzheimer’s disease. Accurate measurements of suscepti-
bility are important for determining oxygen and iron content in blood vessels and
brain tissue for use in noninvasive clinical diagnosis and treatment assessments.
Induced magnetic fields with amplitude on the order of 100 nT, can be detected
using MRI phase images. The induced field distributions can then be inverted to
obtain quantitative susceptibility maps. The focus of this research was to deter-
mine the accuracy of MRI-based susceptibility measurements using simple phantom
geometries and to compare the susceptibility measurements with magnetometry mea-
surements where SI-traceable standards are available. The susceptibilities of para-
magnetic salt solutions in cylindrical containers were measured as a function of
orientation relative to the static MRI field. The observed induced fields as a func-
tion of orientation of the cylinder were in good agreement with simple models. The
MRI susceptibility measurements were compared with SQUID magnetometry using
NIST-traceable standards. MRI can accurately measure relative magnetic susceptibil-
ities while SQUID magnetometry measures absolute magnetic susceptibility. Given
the accuracy of moment measurements of tissue mimicking samples, and the need
to look at small differences in tissue properties, the use of existing NIST standard
reference materials to calibrate MRI reference structures is problematic and better
reference materials are required. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4975700]

INTRODUCTION

Quantitative Susceptibility Mapping (QSM)1 using Magnetic Resonance Imaging (MRI) is
increasingly used instead of qualitative techniques, such as susceptibility weighted imaging,2 to map
neurological conditions,3–5 blood oxygen content,6 and iron overload in the heart and liver.7 Some
neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease, have been associated with
excess iron in the brain.8,9 A reproducible and quantitative method to measure blood-oxygen content
via QSM is particularly important for finding and determining the severity of cerebral microbleeds
resulting from stroke or traumatic brain injury.10 QSM may be important for measuring iron over-
load in the heart and liver, caused by diseases such as hemochromatosis, because iron can catalyze
the conversion of hydrogen peroxide into free radicals, causing damage to cell membranes, pro-
teins, and DNA.11 Tissue property measurements using QSM are also advantageous compared to
SQUID (superconducting quantum interference device) magnetometry measurements since the latter
are done on excised tissue and are inaccurate due to water loss, blood oxidation, and volume changes.
However, there is much left to do to validate the accuracy of QSM and of MRI-based susceptibility
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measurements in general. Accurate in-vivo measurements of magnetic susceptibility, along with the
necessary calibrations and post-processing techniques, are required to use magnetic susceptibility as
a quantitative biomarker. Creating standard measurement protocols and a phantom with NIST veri-
fied susceptibility samples would help ensure site-to-site comparability of data and allow QSM to be
more widely and reliably used in clinical applications. In-vivo MRI susceptibility measurements, if
done properly, may become the gold standard for tissue susceptibility quantification. The first step is
to verify the accuracy of MRI susceptibility measurements relative to other traditional methods.

TISSUE SUSCEPTIBILITY AND TISSUE MIMICS

Tissue is predominantly diamagnetic at body temperature 310 K and room temperature 300 K.
This is seen in Fig. 1a, which shows the magnetic moment vs. field for cow liver. The magnetic
susceptibility is dominated by the diamagnetic susceptibilities of water (-9.05 x 10-6) and fat (typ-
ically -10.0 x 10-6).12 All susceptibility values in this paper are reported in SI units. The complex
magnetic structure of tissue is seen at lower temperatures. Fig. 1a shows a decrease in the diamagnetic
(negative) slope as the temperature decreases indicating the presence of a paramagnetic component.
At low temperature (1.8 K) there is a deviation in linearity due to paramagnetic and ferrimagnetic
components. The presence of a ferrimagnetic component is seen in Fig. 1b, which plots the moment
vs. inverse temperature. If there were only a paramagnetic component, the data would be linear.
For liver, the paramagnetic and ferrimagnetic components are predominantly due to blood iron in
deoxygenated hemoglobin and iron oxide deposits (ferritin).

To mimic the susceptibility properties of tissue, one can use a solution of paramagnetic salts in
water. Fig. 1d demonstrates how the diamagnetic susceptibility of water, with minimal temperature-
dependence, and a paramagnetic component can roughly approximate the magnetic properties of
tissue. We present data from GdCl3 solutions, whose magnetic properties are shown in Fig. 1c,d

FIG. 1. (a) SQUID magnetometer measurements of magnetic moment vs. applied field for a sample of cow liver. (b) Magnetic
moment vs. inverse temperature, upon heating and cooling, of the same sample. (c) SQUID magnetometer measurements of
the magnetic moment vs. applied field of the 5.0 mM GdCl3 solution. Also shown is the calibration curve obtained from a
NIST moment standard reference material. (d) Magnetic susceptibility vs. inverse temperature for the same solution showing
paramagnetic behavior. The horizontal dotted line schematically shows the diamagnetic susceptibility of water. The arrow
indicates the susceptibility contribution from the Gd3+ ions at 300 K. Comparing the tissue magnetic properties, shown in
(a) and (b), to those of the standard Gd solutions, shown in (c) and (d), one can see that the reference solutions are a good
starting point to mimic the magnetic properties of tissue, although they lack the full complexity of tissue.
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for a 5.0 mM solution in deionized water. The SQUID magnetometer is calibrated with a NIST
YIG (yttrium iron garnet) sphere standard reference material (SRM #2852) whose room temperature
moment is (79.9 ± 0.3) x 10-6 A·m2. The moment (m) vs. applied field (Ba) data can be fit assuming
a paramagnetic component and a diamagnetic component:

m=NGdVgµBJ · BJ

(
gJµBBa

kBT

)
− χwVBa

µ0
(1)

NGd is the concentration of Gd3+ ions, V is the volume of the sample, g is the Landé g-factor
(which is 2.0 for Gd since the angular momentum vanishes), µB is the Bohr magneton, J is the ion
angular momentum quantum number, BJ is the Brillouin function, kB is Boltzmann’s constant, T
is the temperature of the sample, χw is the magnitude of the diamagnetic susceptibility of water,
and µ0 is the permeability of free space. The susceptibility due to the Gd3+ ions can be calcu-
lated from the model (Eq. 1) using the best fit parameters and the measured volume. The measured
Gd susceptibility for a 5.0 mM solution at 300 K, shown in Fig. 1d is χGd = (1.58 ± 0.16) x 10-6,
comparable to the theoretical value of χth = 1.89 x 10-6. The errors in the measured value come
from errors in the moment measurement, the volume measurement and from the extraction of
the smaller Gd moment from the larger diamagnetic moment of water. For comparison, the dif-
ference in susceptibility between deoxygenated and oxygenated blood, as measured by MRI, is
(3.43 ± 0.08) x 10-6.13

MRI SUSCEPTIBILITY MEASUREMENTS

MRI susceptibility measurements are typically done by acquiring magnitude and phase data from
a gradient echo sequence with multiple echo times. Magnitude and phase images of a phantom are
shown in Fig. 2a. The phase image clearly shows distortion of the phase fronts due to the enhanced
susceptibility of the paramagnetic salt solution contained within the vial. The imaging was done in
a 30 cm bore preclinical scanner designed to image at 1.5 T, 3.0 T, or 7.0 T. The data in this paper
were obtained with a static field of B0 = (1.502102 ± 0.000006) T. The error in the field represents
the typical field variation over the active volume with a standard shimming procedure. The phase
must be unwrapped and the low-spatial frequency background phase variations subtracted (Fig. 2a).
Background phase variations are due to an imperfect shimming of the magnet and to susceptibility
discontinuities far from the region of interest.

The difference in proton phase (inside relative to outside the vial), δφ, after an echo time, TE,
is proportional to the local induced field, δBL, along the main field direction: δφ= γp·δBL ·TE, where
γp is the shielded proton gyromagnetic ratio. The local field differs from the macroscopic field and
is given by the macroscopic field minus the Lorentz field. The Lorentz field is a correction to the

FIG. 2. (a) Magnitude and phase images of a vial containing 5.0 mM GdCl3. The dark circle in the MRI amplitude image is
a 76 mm diameter polycarbonate support for the vials. The third image shows the phase after unwrapping and after the long
wavelength background has been subtracted. (b) Phase difference as a function of echo time (TE) taken from phase maps.
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macroscopic continuum model and attempts to account for the local microscopic distribution of
moments. The slope of the measured phase difference vs. echo time, as shown in Fig. 2b, will yield
δBL. The magnetic field distortion is a convolution of the magnetic susceptibility distribution, χ(r),
with the magnetic dipole kernel, d(r): δBL(~r)= d(~r)⊗ χ(~r).14 The susceptibility map can be obtained
by inverting the field profile, although complex methods are required since this inversion is not
unique.15–18 Here, we limit our measurements to simple cylindrical geometries where the induced
field is simply related to the susceptibility. For a long cylinder the internal and external field distortion
is given by19

Internal : δBL =
∆χB0

6
(3 cos2 θ − 1) (2a)

External : δBL =
∆χB0

2
a2/r2 sin2 θcos2φ (2b)

where∆χ is the susceptibility difference between the inside and outside of the cylinder, θ is the angle of
the cylinder axis with respect to the main field, φ is the azimuthal angle of the observation point relative
to the plane of the main field and cylinder axis, and a is the radius of the cylinder. For the simple case
where the cylinder is aligned with the main field (θ = 0), the susceptibility difference is given by∆χ =

3δφ
γpB0TE . By measuring the slope of δφ vs. TE, as seen in Fig. 2b, the susceptibility can be determined.

The susceptibility difference of the 5.0 mM GdCl3 solution at 300 K, was (1.71 ± 0.02) x 10-6, which,
within error bars, agrees with the SQUID magnetometer measurements. The intrinsic errors for the
SQUID measurements are larger than the MRI measurements, although the systematic errors for the
MRI measurements have not yet been determined.

ANGLE DEPENDENT MEASUREMENTS

To test the orientational dependence, MRI phase maps were obtained from a phantom with vials
(80 mm long, 5.0 mL volume) oriented along and perpendicular to the B0 field. The vials were filled
with 5.0 mM GdCl3; the main compartment of the phantom was filled with deionized water. Line
scans through the cylinders are shown in Fig. 3a along with the predicted phase change and induced
fields obtained from Eq. 2a,b. Good agreement is observed, although there is some deviation at the
edges of the vials, in part due to the loss of signal from the plastic vial.

To more precisely verify the orientation dependence, a rotating phantom was constructed in
which the 80 mm vials could be continuously rotated while in the MRI scanner. A schematic of
the rotating phantom is shown in the inset in Fig. 3b. Four 80 mm vials filled with 1.0 mM and
5.0 mM GdCl3 solutions were placed in the scanner. A rod extended from the outside of the scanner
to the internal rotation gears; each revolution corresponded to 19◦mechanical rotation of the phantom

FIG. 3. (a) Line scans (opaque lines) of phase and corresponding field distortions taken with the field parallel (blue) and
perpendicular (red) to the cylinder axis. When the field was perpendicular to the cylinder axis, the line scan was taken along
B0 (φ = 0). Also shown are the predicted phase shifts (lighter lines) from Eq. 2. (b) Plot of the change of phase with echo
time within a cylinder of 1.0 mM GdCl3 as a function of angle of the cylinder axis relative to the B0 field. Also plotted is a fit
using Eq. 2a (blue line). The inset a schematic of the rotating phantom used for the experiment.
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insert. The change of phase between the center of each vial and the surrounding water was collected
as a function of angle (Fig. 3b). The data were fit using Eq. 2a, yielding ∆χ = (0.324 ± 0.005) x 10-6

for the 1.0 mM solution.

BEYOND THE SIMPLE MODELS

A multiphysics finite element simulation with a package for modeling magnetic fields without
currents was used to compute the macroscopic field of the five perpendicular vials, shown in the
inset of Fig. 3b. The vials were filled with a solution with a magnetic susceptibility of 3.0 x 10-6

relative to the surrounding water. The numerical accuracy of the field distortion was estimated to
be ±7% by varying degrees of freedom from 2 to 5 million. Finite element calculations of extremely
small field perturbations on a very large B0 field gave significant numerical errors. Fig. 4a,b show
the field distortions when the B0 field is parallel and perpendicular to the vial axes, respectively. The
field profiles within the vials are not constant, as predicted by the simple models, due to the fields
from neighboring vials, the finite length of the vials, and the phantom structure. Determining the
local susceptibility from the full inversion of the 3-dimensional phase map should account for these
distortions.

One of the main approximations in MRI-based susceptibility measurements is to assume that
the local field is given by the macroscopic field, Bm, minus the Lorentz field: BL =Bm − 2

3 χB0.
This assumes that the local microscopic fields average to zero. To determine the local field, precise
microscopic calculations are needed. As a simple test, we performed a Monte Carlo simulation where
2.5 x 106 Gd spins were randomly distributed in 2 µm diameter sphere and 300 water molecules were
allowed to diffuse throughout the volume. The fields sensed by the water molecules after a time
of 0.15 ms are plotted in Fig. 4c. The Gd density corresponds to 1.0 mM concentration and an
MRI-measured susceptibility of 0.32 x 10-6. The microscopic field calculated from the simulation
is 13.5 nT, which is much smaller than the Lorentz field BL = 320 nT. The simulation supports the
assumption that the microscopic fields due to neighboring spins average to zero, and the local field
approximation is valid. For tissues, which may have more complex local geometry, this local field
assumption may not be valid.

The Monte Carlo simulation gave a Gaussian distribution in microscopic fields, which had a
standard deviation of 249 nT. This field distribution gives rise to a short total dephasing time T2*.
The T2* value can be measured with the same data set as the susceptibility using the magnitude
images and extracting the exponential decrease in the magnitude signal with echo time TE. The
T2* value can be used to obtain measurements of the local iron concentration in tissue.8 While the

FIG. 4. Numerical calculations of the field distortions produced by the phantom shown in the inset in Fig. 3b, with five vials of
paramagnetic salt solution with a susceptibility of 3.0 x 10-6. The macroscopic field distribution is plotted, not the local field,
since the macroscopic field is what is calculated using the macroscopic Maxwell equations. (a) The field distortion calculated
by a finite element method when the vial axis is parallel to B0 field. The inset graph shows the variation within the vial due to
neighboring vials and structures. (b) The field distortion when the B0 field is perpendicular to the axis of the vial and the line
scan is taken perpendicular to both B0 field and the vial axis. (c) Monte Carlo simulation generated histogram of microscopic
fields experienced by an ensemble of water molecules diffusing (with a diffusion constant of 2.0 x 10-3 mm2/s) in a 1.0 mM
Gd solution. The geometry is shown in the inset with the red and blue dots representing Gd3+ ions and water, respectively.
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decrease in T2* and the change in phase both arise, in the system studied here, from the Gd spins,
T2* is strongly affected by the local microscopic structure while the phase shift is not.

CONCLUSIONS

The relative phase shifts and local induced magnetic fields can be measured very precisely with
MRI. The relative susceptibilities can be accurately determined from these field shifts for simple
geometries and agree with primary measurements of susceptibility where standards exist. More
suitable primary standards, however, will be required to validate MRI susceptibility measurements in
complex geometries. More extensive investigation into how the local field depends on microscopic
tissue geometry is required to determine the accuracy of local field models.
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