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Abstract

We examine four autoregressive conditional heteroskedasticity (ARCH) type models,

including one long memory and two asymmetric models, to assess their usefulness in Con-

ditional Value at Risk and Conditional Expected Shortfall estimation. Alongside the four

ARCH type models, we consider three additional models: historical simulation, standard

parametric, and RiskMetrics. Estimation is performed on the five foreign exchange rates

of the BRICS (Brazil, Russia, India, China, South Africa) emerging economies. We find

that there is no single best model but that model selection for risk analysis should be done

on an case by case basis. Furthermore, while the four ARCH type models produce similar

results when estimating risk measures, we find that the standard GARCH model typically

outperforms the asymmetric and long memory models when applied to out of sample data.
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1 Introduction

Understanding volatility associated with financial assets plays a crucial role across many

areas of the industry, including but not limited to pricing, asset allocation, and risk man-

agement. Because of this, volatility modeling has been extensively studied by academia,

industry, and policymakers. This work is concerned with the modeling of foreign exchange

rate volatility, and particularly in relation to risk management. Understanding foreign ex-

change rate volatility is critical as it can play a major role in production decisions for firms

[Vania Stavrakeva and Tang, 2023] and foreign direct investment [Goldberg, 2006] among

others. We focus on the foreign exchange rates of the original five emerging economies

making up the BRICS intergovernmental organization – Brazil, Russia, India, China, and

South Africa.

Modeling the volatility of financial assets is in itself a mathematical exercise. Many

methods and models have been proposed, from simple historical simulation models to much

more complex local or stochastic volatility models. Perhaps the most well known models,

which we primarily focus on in this paper, are variants of the autoregressive conditional

heteroskedasticity (ARCH) model of [Engle, 1982]. Specifically, we consider the popular

generalized ARCH (GARCH) model of [Bollerslev, 1986], as well as a long memory and

two asymmetry models. Each aim to build on the short comings of the ARCH model by

incorporating additional stylized facts of the financial time series literature.

In addition to concerning ourselves with the modeling of foreign exchange volatility, we

extend this work to evaluate the performance of certain volatility models in different risk

management frameworks. The global financial crisis of 2008 prompted a wealth of new reg-

ulation related to risk management, including the Basel Accords and the Dodd-Frank Act,

which has increased the need for better risk measures. Generating accurate risk measures

is important both from the viewpoint of both regulators as well as portfolio managers. The

importance of calculating an accurate downside loss is obvious, but making this as tight
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of a bound as possible is desirable as capital reserve requirements are frequently based on

this estimate. We estimate two risk measures, namely Conditional Value at Risk (CVaR)

and Conditional Expected Shortfall (CES), using the four ARCH variants previously men-

tioned as well as the RiskMetrics model [Morgan, 1996] a historical simulation model, and

a standard parametric model. A multitude of other methods, including some based on

extreme value theory (see [Genaçay and Selçuk, 2004] and [Martin Filho et al., 2018]), or

conditional quantile estimation [Engle and Manganelli, 2004] have also been proposed but

are not considered.

The rest of this paper is organized as follows. Section 2 introduces financial time

series. Section 3 formulates the mathematics underlying the considered volatility. Section

4 describes the methods of risk estimation as well as methods used for evaluating their

performance. Section 5 describes the data and presents the results of our exchange rate

risk estimation. Section 6 discusses the results, and section 7 concludes.

2 Financial Time Series

Financial time series often deal with unique phenomena not present in the other time

series data. This required the development of new models compared to traditional uni-

variate time series models such as the Autoregressive Integrated Moving Average (ARIMA)

model. As previously mentioned, this paper utilizes multiple variations of the ARCH

model, each of which succeeds in modeling different portions of the stylized facts below.

All estimations are done on the log returns

rt = 100 ∗ (log rt − log rt−1)

which are scaled by a factor of 100 to assist with model parameter estimation.
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2.1 Volatility

Traditional time series models, like the ARIMA model, assume a constant variance

term over the lifetime of the process. In financial time series though, one need not look

further than the price of the S&P 500 over the last decade to determine constant variance for

financial assets is an unrealistic assumption. Successfully modeling the volatility of financial

returns plays a key role in many areas across the financial industry. This paper is concerned

with the volatility modeling directly related to risk management though volatility modeling

plays an intricate role in other areas of financial mathematics. Due to this importance,

much time has been spent researching different techniques to best capture volatility.

Likely the simplest method way to define volatility and the center piece of the standard

parametric VaR and CVaR models described later is from the historical variance of returns

yt over the previous n periods

σ2(yt) =
1

n− 1

n∑
i=0

(yt−n − ȳ)2

where ȳ is the average return over the previous n periods. However, a major issue with

this definition of volatility is that as previous periods of high volatility among asset prices

drop out of the n period window, volatility calculations can change significantly even if the

current market conditions appear to remain unchanged. Certain modifications to this his-

torical variance measure, such as adding an exponentially declining weight to the previous

terms have been well studied.

Another common way to calculate volatility is through back-calculation of the famous

Black-Scholes model [Black and Scholes, 1973]. It calculates the price of a European call

option, C, through the following formula

C = N(d1)St −N(d2)Ke−rt

d1 =

ln

(
St

K

)
+
(
r + σ2

2

)
t

σ
√
t

d2 = d1 − σ
√
t
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where St is the current price of the underlying asset, K the options strike price, t the

time left to maturity, σ the underlying asset’s volatility, and N is the standard normal

distribution. At any time, the current market price of the option is readily available, and

all inputs into the equation besides volatility are known. From this, one can solve for

volatility by working backwards from the Black-Scholes pricing equations. This is the basic

idea behind volatility indices such as the VIX.

For the remainder of this paper, we consider the ARCH class of volatility models which

are described in further detail in the following section.

2.2 Fat Tails

Normal distributions have often been used to model the unconditional returns of a

financial asset. This would suggest that nearly all returns fall within three standard de-

viations of the mean, however, empirical results are not in line with this. It has become

a stylized fact in the financial econometrics literature that returns are leptokurtic. This

means that financial returns see large gains or losses more frequently than would be pre-

dicted by a normal. Distributions such as student-t or generalized error distribution are

frequently employed to account for these fat tails. Additionally, conditional heteroskedas-

ticity models, such as the ARCH class models considered in this paper, generate a fat tailed

unconditional, even while sampling from a normal distribution.

2.3 Volatility Asymmetry & Clustering

Volatility asymmetry, also known as the leverage effect, claims that a negative volatility

shock at time t−1 is likely to have a larger effect on the conditional variance at time t than

a positive shock would at time t − 1. This idea was formalized by [Engle and NG, 1993],

who showed negative news, such as a poor inflation report, has a stronger effect on volatility

than positive news.
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The clustering of volatility within financial asset returns is also well documented. High

volatility in previous periods is often associated with higher volatility in the current pe-

riod, and low volatility is often preceded by additional periods of low volatility. Volatility

clustering is possibly the largest benefit of ARCH models in financial time series as the

variance in the current period is conditional on the variance of previous periods.

2.4 Long Memory

In the modeling of volatility in asset returns, long memory relates to the question of

how long a period of low or high volatility will effect the current volatility. The ARCH and

GARCH models have auto correlation functions which follow a power law, so in many cases

this is likely leads to too quick of a decay of past shocks. On the other hand, integrated

models, such as the IGARCH or RiskMetrics model we consider, have indefinite volatility

persistence, which in many cases may seem to extreme. A possible solution considered in

this paper is with fractionally integrated models. In particular, we consider the Fractionally

Integrated GARCH model (FIGARCH) of [Baillie et al., 1996], which allows for a level of

volatility persistence d such that 0 < d < 1, where d = 0 would represent a traditional

GARCH model with no long memory or d = 1 would represent an integrated model with

infinite volatility persistence.
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3 Conditional Heteroskedasticity Models

[Engle, 1982], proposed the autoregressive conditional heteroskedasticity (ARCH) model

to assist with estimating the nonconstant variance process commonly found in asset returns.

Since then, numerous variations of the ARCH model have been introduced to improve the

capturing of the volatility process. Each model successfully captures different elements

commonly found in financial time series, as described in the previous section, and does so

differently, so it is appropriate to test multiple models.

This study explores a total of four variations of the ARCH model. We consider the Gen-

eralized ARCH (GARCH) model [Bollerslev, 1986], the Exponential GARCH (EGARCH)

model [Nelson, 1991], Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model

[Glosten et al., 1993], and finally the Fractionally Integrated GARCH (FIGARCH) model

[Baillie et al., 1996]. The mathematical formulation underlying these models is described

below, where each model assumes a sequence of log returns {rt}nt=0, for rt = µ+ ϵt, where

ϵt = σtzt denotes the residual term at time t, σt is the time varying conditional variance,

and zt is a sequence of I.I.D N(0, 1) random variables.

3.1 ARCH

[Engle, 1982] introduced the autoregressive conditional heteroskedasticity (ARCH) model

to assist with estimating the nonconstant variance process commonly found in asset returns.

For the sequence of returns {rt}nt=0 previously described, The conditional variance, σt is

formulated as

σ2
t = ω +

q∑
i=1

αiϵ
2
t−i

meaning the variance at period t is conditional on the squared returns of the previous q

periods. ω and αi are assumed to be > 0 to ensure a positive variance. We can solve for

6



the unconditional variance of the ARCH(1) process assuming α1 < 1 for stationarity

V ar(ϵt) = E[ϵ2t ]− E[ϵt]
2

= E[ϵ2t ]

= E[σ2
t z

2
t ]

= E[σ2
t ]

= E[ω + α1ϵ
2
t−1]

Since the process is stationary, V ar(ϵ2t ) = V ar(ϵ2t−1) so substituting in, we recover

V ar(ϵt) =
ω

1− α1

As previously mentioned, for an ARCH(1) model, we have a stationary process and finite

unconditional variance when α1 < 1. This can be extended simply to an ARCH(q) model

when
∑q

i=1 αi < 1. In the case when
∑q

i=1 αi = 1 the process is known as integrated, this

is described in more detail in the following section.

3.2 GARCH & IGARCH

The Generalized ARCH (GARCH) model, [Bollerslev, 1986], builds upon the seminal

work of [Engle, 1982] and allows for both longer memory and a more flexible lag structure

within the process. A GARCH(p, q) process is given by

σ2
t = ω +

q∑
i=1

αiϵ
2
t−i +

p∑
i=1

βiσ
2
t−i

Setting p = 0, the process reduces to the familiar ARCH(q) process. Compared to the

ARCH(q) model, which only treats conditional variance as a linear combination of previ-

ous squared residuals (often referred to as the ARCH terms), the GARCH(p, q) model also

allows for conditional variance to be a function of the previous conditional variances (often

referred to as the GARCH term). This flexibility allows for more accurate volatility mod-

eling. In fact, with minimal work, it can be shown the GARCH(1, 1) process is equivalent

to an ARCH(∞) process
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Proof.

σ2
t = ω + αϵ2t−1 + βσ2

t−1

= ω + αϵ2t−1 + β(ω + αϵ2t−2 + βσ2
t−2)

= ω + αϵ2t−1 + β(ω + αϵ2t−2 + β(ω + αϵ2t−3 + βσ2
t−3))

= ω

∞∑
i=0

βi +
∞∑
i=0

αβiϵ2t−i−1

=
ω

1− β
+

∞∑
i=0

αβiϵ2t−i−1

Let ϕ0 =
ω

1−β
and ϕi = αβi and we recover the the formulation for an ARCH(∞) model.

This paper considers only the GARCH(1, 1) model

σ2
t = ω + αϵ2t−1 + βσ2

t−1

as opposed to a GARCH(p, q) model as previous related work has found p, q = 1 to best

fit financial time series. As can be shown in a similar method as above, the GARCH(1,1)

process is covariance stationary when α+β < 1, and furthermore, a GARCH(p, q) model is

covariance stationary when
∑q

i=1 αi +
∑p

i=1 βi < 1. Bollerslev and Engle also consider the

possibility when the process contains a unit root, α + β = 1, meaning changes in variance

are persistent, which is referred to as the Integrated GARCH (IGARCH) model

σ2
t = ω + βϵ2t−1 + (1− β)σ2

t−1

when β = 0.94, the RiskMetrics model considered in this paper is derived.

3.3 Asymmetric Models

We consider two asymmetric GARCHmodels. First, the Exponential GARCH (EGARCH)

model of [Nelson, 1991], and second, the GJR-GARCH model of [Glosten et al., 1993].

While the GARCH model above succeeds in capturing the well-documented fat tails in
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financial time series, it treats positive and negative shocks to the variance process the

same, failing to capture the asymmetry/leverage effect commonly found in asset returns.

Both the EGARCH and GJR-GARCH models allow for these asymmetries while simulta-

neously capturing the excess kurtosis, though the two of them achieve this through different

methods.

An EGARCH(p, q) model is formulated as follows

ln(σ2) = ω +

q∑
i=1

(αi(|zt−i| − E(|zt−i|)) + γizt−i) +

p∑
i=1

βi ln (σ
2
t−i)

Similar to the GARCH model, we only consider the EGARCH(1, 1) model

ln(σ2) = ω + α(|zt−1| − E(|zt−1|)) + γzt−1 + β ln (σ2
t−1)

Notice that the residual in the previous period, zt−1 has coefficient α − γ for a negative

shock and coefficient α+ γ for a positive shock. This introduces the previously mentioned

asymmetry in volatility. Furthermore, previous literature frequently finds γ < 0 at a

statistically significant level, which is in line with the news impact curve discussed earlier,

meaning that negative shocks in the previous period have a larger effect on conditional

variance than positive shocks.

On the other hand, the GJR-GARCH(p, q) model assumes the following conditional

volatility structure

σ2
t = ω +

q∑
i=1

(αi + γIt−i)ϵ
2
t−i +

p∑
i=1

βiσ
2
t−i

where I is an indicator variable taking value 1 if the previous return, ϵt−1 < 0, and 0 if

ϵt−1 ≥ 0. Again we consider only the GJR-GARCH(1, 1) model

σt = ω + (α + γIt−1)ϵ
2
t−1 + βσ2

t−1

Compared this to the EGARCH model, which captures asymmetry through the difference

in α − γ and α + γ, the GJR-GARCH model allows for asymmetry by introducing an

additional γ variable when the previous residual, ϵt−1 < 0.
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3.4 Long Memory Models

We consider one long memory model, the Fractionally Integrated GARCH (FIGARCH)

model of [Baillie et al., 1996], and follow their convention for our mathematical formulation.

We first consider the GARCH(1, 1) model expressed as an ARMA(1, 1) process on the

squared residuals ϵ2t , by letting vt = ϵ2t − σ2
t .

σ2
t = ω + αϵ2t−1 + βσ2

t−1

ϵ2t − vt = ω + αϵ2t−1 + β(ϵ2t−1 − vt−1)

ϵ2t − (α + β)ϵ2t−1 = ω + vt − βvt−1

(1− α(L)− β(L))ϵ2t = ω + (1− β(L))vt

Where L is the lag operator, α(L) = α1L + · · · + αnL
n and Lkϵ2t = ϵ2t−k. If the process

contains a unit root, α+β = 1, and therefore is integrated, the process is then represented

as

ϕ(L)(1− L)ϵ2t = ω + (1− β(L))vt

where ϕ(L) = [1 − α(L) − β(L))](1 − L)−1. From this representation, formulating the

Fractionally Integrated, FIGARCH, model is done by adding a fractionally differencing

operator (1− L)d into the previous equation where d ∈ (0, 1).

ϕ(L)(1− L)dϵ2t = ω + (1− β(L))vt

If d = 1, we recover the IGARCH model, and for d = 0, the GARCH model. In order to

acquire a form where the conditional variance σ2
t can easily be estimated, we first substitute

ϵ2t − σ2
t = vt back into the above equation.

ϕ(L)(1− L)dϵ2t = ω + (1− β(L))(ϵ2t − σ2
t )

ϕ(L)(1− L)dϵ2t = ω + (1− β(L))ϵ2t − (1− β(L))σ2
t

(1− β(L))σ2
t = ω + (1− β(L)− ϕ(L)(1− L)d)ϵ2t

σ2
t =

ω

1− β
+ (1− (1− β(L))−1ϕ(L)(1− L)d)ϵ2t
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setting λ(L) = 1 − (1 − β(L))−1ϕ(L)(1 − L)d, we see that the conditional variance of the

FIGARCH model can be represented, similar to a GARCH(1, 1) model, as an ARCH(∞)

model

σ2
t =

ω

1− β
+

∞∑
i=1

λiϵ
2
t−i

. Like previous models, we consider the most basic FIGARCH(1, d, 0) model. , and follow

their convention for our mathematical formulation. We show that for this model, the λ

coefficients required for estimation can be derived as follows

λk =

(
1− β − 1− d

k

)
Γ(k + d− 1)

Γ(k)Γ(d)

where Γ(x) represents the Gamma function. We use this method for our conditional vari-

ance estimation with the fractionally integrated GARCH model.

4 Risk Estimation

Effective risk management in finance is essential from the perspective of all parties in-

volved. Investors and portfolio managers care about the potential losses of their investments

while regulators often use these metrics to determine the required capital reserves should

losses entail. While Many risk methods have been proposed, we focus on two widely used

models, Conditional Value at Risk (CES) and Conditional Expected Shortfall (CES). Both

CVaR and CES, along with the majority of risk measures, are a mathematical exercise in

estimating a potential loss distribution. They differ in how this distribution is evaluated.

CVaR is a measure of the potential loss at some percentile while CES is a measurement

of the expected value of all possible profits or losses below some level α conditioned on all

previous information. Selecting a particular risk measurement is based on preference as

there are pros and cons to calculating and interpreting all models.
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4.1 Conditional Value at Risk

Following the definition given by [Martin Filho et al., 2018] and [Sarykalin et al., 2008],

we define CVaRα for α ∈ [0, 1], as

CVaRα = min{x|FX(x) ≥ α}

where X is a random variable with CDF FX(x). For our work, we assume a normal

distribution of returns for period t ∼ N(µ, σ2
t ) so,

α =

∫ CVaRα

−∞

1

σt

√
2π

exp

(
−1

2

(
x− µ

σt

)2
)
dx

A common issue with CVaR estimates is that many portfolios can sustain large losses

below the confidence level α which make it unrepresentative of the associated risk. Take

for instance, a portfolio containing a single deep out of the money option. This option may

payout $1 99% of the time, and the other 1% of the time, require a payment of $99. A fifth

percentile CVaR would measure this portfolio to contain zero risk, which obviously is not

the case.

4.2 Conditional Expected Shortfall

One solution to this issue is using a Conditional Expected Shortfall as an alternative

risk measure. Similar to CVaR, we integrate over the assumed risk distribution (a normal

for this work) on the interval (−∞,CVaRα). However for CES, we calculate an expected

value by introducing a function p(x) which represents the profit or loss of the portfolio for

an outcome x and adding a normalizing constant 1
α

CESα =
1

α

∫ CVaRα

−∞
p(x)

1

σt

√
2π

exp

(
−1

2

(
x− µ

σt

)2
)
dx

By considering all possible losses below a confidence level α, CES protects against major

losses that are hidden by a single CVaR metric. However, there are many instances where
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CVaR can be a better metric than CES. This ”blindness” to extreme tails of distributions

can lead to better predictions as data surrounding the tails is not readily available and can

end up weighting potential outcomes more heavily than they are in reality leading CES to

take to conservative of a position. Finally, note that as CVaR is only concerned with the

loss at the upper bound of the interval (−∞,CVaRα), it is a lower bound on CES.

4.3 The Historical Simulation Model

The historical simulation model is the simplest of the models we consider, however this

simplicity continues to make it appealing for reasons both computational and conceptual.

The model estimates CVaR and CES based off a selected n previous payouts. This paper

uses n = 252, which corresponds to the 252 trading days in a calendar year. For CVaR,

the historical simulation for a confidence level α is the α-percentile corresponding to the

previous returns being considered. For example, the α = 5% CVaR over the previous

100 periods would simply be the loss incurred on the fifth worst day over the period. As

expected, CES is the average of all returns incurred below α.

Another advantage of the historical simulation model is that it is nonparametric so no

assumptions regarding the shape of the underlying distribution are required. On the other

hand, historical CVaR and CES have no forward looking properties and assumes volatility

in asset returns are related to returns over the previous n periods. Additionally, as data

points drop out of the dataset as time moves on, historical simulation models can produce

greatly varying measurements even in constant market conditions.

4.4 Parametric Models

The remaining estimation techniques considered in this paper all fall under the umbrella

of parametric models, meaning we must make an assumption about the distribution under-

lying data sample. As previously mentioned we assume a normal distribution of returns,
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other works consider ’fat tailed’ distributions such as the Student-t or Generalized Error

Distribution.

The most basic parametric model considered in this paper again uses data over the

previous 252 periods to calculate the CVaR or CES in the next period. This model, known

as the Parametric model, gives equal weights to each data point and uses them to calculate

the parameters (mean and variable in our case) for the assumed underlying distribution.

Similar to the historical simulation model, a shortfall here is that as previous returns fall

out of the window T , this can have large effects on the parameter estimates even if market

conditions remain the same. A common solution to this is adding a exponential weight to

the previous returns so that previous returns are factored in more than older returns, for

this Exponentially Weighted Moving Average (EMWA) model variable for an exponential

decay factor λ ∈ (0, 1), is calculated as follows

σ2
t = (1− λ)

t∑
i=0

λiϵt−i−1

One can follow a the same procedure of the proof demonstrating GARCH(1, 1) is equivalent

to ARCH(∞) to show that the EMWA model is the same as an IGARCH(1, 1) model

as t → ∞. For this reason, we set λ = 0.94 as specified by the RiskMetrics model

[Morgan, 1996] and treat the above EMWA as our RiskMetrics model.

Finally, for risk estimation with GARCH models, the variance in calculated by estimat-

ing the model parameters on in sample data and used to forecast volatility (variable) for

the following period.

4.5 Evaluating Risk Estimation Methods

For a multitude of reasons, producing accurate risk measurements is of high importance

for banks, regulators, or portfolio managers. If the goal in risk management was simply

to find a bound such that no returns would fall below it, one could set the bound at zero

and sleep well. However, many regulations set capital reserve requirements among other
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things depends based on the produced risk estimate. It is in the best interest of all parties

to produce as tight of risk measurement as possible. In the following section, we evaluate

CVaR and CES models based on two metrics. First off is how often their risk estimates

are broken, we would expect that a well calculated fifth quantile CVaR would be broken

roughly five percent of the time. If instead the CVaR estimates are broken 10% of the time,

then the estimate was clearly to aggressive. On the other hand, if the CVaR estimate was

only broken 1% of the time, it was to conservative which will harm the financial institution.

The second metric used to evaluate CVaR and CES performance is a goodness of fit or

accuracy test, where models are rewarded for estimating a tight yet accurate bound and

penalized for being overly conservative. This metric, s(xo,t, xα,t) is defined as follows:

s(xo,t, xα,t)


δ(xo,t − xα,t)

2 : xo,t < xα,t

1
δ
(xo,t − xα,t)

2 : xo,t ≥ xα,t

where xo,t is the observed return for an asset in period t, and xα,t is the estimated risk

parameter for a level α in period t and δ is a chosen parameter to best fit a specific

situation, the rest of this paper uses δ = 4. The better a risk metric is, the closer its score

will be to zero. Also notice that the above function punishes metrics which are overly

aggressive more than metrics which are less aggressive. While neither of these risk measure

evaluation metrics are end all be all’s, considering them in tandem can help risk managers

make appropriate choices of differing models.
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5 Data & Empirical Work

The empirical section of this paper focuses on evaluating the performance of Condi-

tional Value at Risk and Conditional Expected Shorfall estimation through four GARCH

methods, RiskMetrics, historical simulation, and a standard parametric model. The analy-

sis is performed on the exchange rates of the five countries making up the BRICS emerging

economies – Brazil, Russia, India, China, and South Africa.

All exchange rate data is retrieved from the Bank of International Settlements (BIS)

over the period from the beginning of 2001 to the end of 2022, with the exception of China,

where data is only considered starting January 1st 2006 as its foreign exchange rate was

fixed until mid 2005. Over this time period we estimated parameters for the GARCH

models on the first 3335 of 4335 measurements and tested their estimation for CVaR and

CES on the final 1000 out of sammple data points. The Data is summarized in the table

below.

Brazil China India Russia South Africa

Mean 0.01397 -0.00789 0.00781 0.01616 0.01143

Minimum -10.93549 -1.20956 -3.08915 -10.06088 -8.15293

Maximum 11.37772 1.84037 4.32598 19.322483 8.52607

Std. Dev. 1.13925 0.141208 0.423510 0.78474 1.09986

Skewness 0.11482 0.70120 0.35608 2.94645 0.42191

Kurtosis 9.90491 117.41076 8.34125 102.15976 4.40992

Jarque-Bera 17730(0.0) 39040(0.0) 12758(0.0) 1891387(0.0) 3641(0.0)

Table 1: Summary of in sample BRICS foreign exchange rate data.

As evident from the Jarque-Bera test for normality (the P-Value for the JB test is in

parenthesis) at the bottom of the table as well as the kurtosis greater than three, none of

the exchange rates fit a normal distribution. We also observe a range of standard deviations

making these assets interesting to investigate the performance of differing CVaR and CES

methods.

We now present estimates for the parameters of the four GARCH models for each
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asset. parameters marked with a * represent significance at 1% level while ** represents

significance at the 5% level.

Brazil China India Russia South Africa

GARCH

ω 0.0290* 0.3868** 0.0001 0.0004** 0.0138**

α 0.1483* 0.1968* 0.0750* 0.0829* 0.0610*

β 0.8348* 0.6237* 0.9250* 0.9171* 0.9285*

EGARCH

ω 0.0004 0.0108* -0.0169 0.0018 0.0051

α 0.2135* 0.0422** 0.2055* 0.2058* 0.1300*

γ 0.0809* 0.0183** 0.0289** 0.0261** 0.0387*

β 0.9652* 0.995* 0.9853* 0.9918* 0.9841*

GJR-GARCH

ω 0.0278* 0.3487 0.0001 0.0002 0.0139**

α 0.1858* 0.1618* 0.1138** 0.1412* 0.0723*

γ -0.1142* -0.0158 -0.0332 -0.0471** -0.0326**

β 0.8550* 0.6377* 0.8995* 0.8844* 0.9324*

FIGARCH

ω 0.0447* 0.3938 0.0028 0.0013 0.0493**

ϕ 0.1126 0.4233 0.3015** 0.2212* 0.2434*

d 0.5775* 0.1534 0.3971* 0.5576* 0.3754*

β 0.5183* 0.3762 0.5587* 0.6746* 0.5482*

Table 2: Estimates of GARCH Parameters

Different from expected, we observe a positive γ for the EGARCH models and a negative

γ in the GJR-GARCH model, with the exception. This means that positive returns have a

larger effect on volatility than negative returns, thought the effect is minor for all countries

besides Brazil. The γ estimations for both models agree on this. A possible reason for this

is that exchange rates, unlike stock prices, are bilateral so one could also interpret these

coefficients as negative shocks to the US Dollar (the forex denomination) increasing the

volatility in the current period. Again for all currencies except China, we notice a very high

GARCH term β meaning that the conditional variance in period t− 1 has a large effect on

the conditional variance in period t. The ARCH term α is also much different from zero

in all cases so the previous returns play a large role in the current conditional variance.
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Finally, for the FIGARCH models, we observe differencing parameters d loosely around

0.5 for all models except China, who’s lack of data likely contributed to less statistically

significant parameter estimations overall, meaning that volatility persistence was captured

in the returns to a higher degree than considered by GARCH models and a lower degree

than the IGARCH/RiskMetrics model assumes.

With parameters generated for each model, we apply these models to out of sample

data for the following 1000 days to assess their performance in CVaR and CES modeling.

Both CVaR and CES are estimated to confidence levels of 1%, 2.5%, and 5%, all common

levels among practitioners. Each table shows the percentage of time the estimated CVaR

or CES level was broken for the corresponding confidence levels.

GARCH EGARCH GJR FIGARCH Historical Parametric RiskMetrics

α = 1.0%

Brazil 3.6 3.8 4.0 3.5 1.9 2.1 1.2

China 1.9 1.8 1.9 1.4 1.3 1.7 2.2

India 0.9 0.9 0.9 0.9 1.4 1.3 1.2

Russia 0.0 0.0 0.2 0.0 1.4 0.6 1.3

South

Africa

2.9 2.8 3.0 2.6 1.1 1.1 1.1

α = 2.5%

Brazil 5.6 5.1 5.2 4.9 3.3 2.9 2.6

China 2.1 2.1 2.1 1.8 2.4 2.2 2.6

India 1.2 1.2 1.2 1.2 3.0 2.2 1.8

Russia 0.2 0.1 0.3 0.1 2.9 1.8 2.2

South

Africa

5.2 5.1 5.5 5.1 2.4 2.1 2.3

α = 5.0%

Brazil 7.5 6.9 7.3 7.0 5.6 5.1 5.0

China 2.2 2.2 2.2 2.1 4.6 4.2 4.4

India 1.5 1.4 1.6 1.5 6.1 4.2 4.1

Russia 0.3 0.3 0.4 0.3 5.5 3.3 3.3

South

Africa

7.5 7.7 7.7 7.2 5.3 4.1 4.7

Table 3: Conditional Value at Risk Estimation

We save formal discussions of the performances of the differing models but we quickly
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note that there is a large disparity among performance of the same model depending on

the currency being considered. We now present estimation for the CES of each currency

following the same format as above.

GARCH EGARCH GJR FIGARCH Historical Parametric RiskMetrics

α = 1.0%

Brazil 2.7 2.8 2.8 2.7 0.7 0.8 0.5

China 1.5 1.6 1.5 1.3 0.6 1.0 1.8

India 1.0 0.8 0.9 0.9 0.6 0.7 0.9

Russia 0.0 0.0 0.0 0.0 0.3 0.4 0.7

South

Africa

2.1 2.2 1.9 1.9 0.3 0.4 0.6

α = 2.5%

Brazil 3.4 3.5 3.5 2.9 1.7 1.3 1.1

China 1.8 2.0 1.9 1.7 0.1 1.8 2.3

India 1.2 0.9 1.2 1.1 1.3 1.1 1.1

Russia 0.0 0.0 0.1 0.0 0.8 0.5 0.9

South

Africa

2.5 2.9 2.6 2.3 1.0 0.7 1.0

α = 5.0%

Brazil 4.2 4.2 4.2 3.9 2.4 2.1 1.6

China 2.2 2.1 2.2 1.8 1.7 2.2 2.5

India 1.3 1.1 1.3 1.3 1.9 1.5 1.6

Russia 0.0 0.0 0.1 0.0 1.7 1.3 1.9

South

Africa

4.5 4.5 4.7 4.1 1.7 1.6 1.9

Table 4: Conditional Expected Shortfall Estimation

The final table here provides a summary of overall model performance. The accuracy

row ranks the average position of the models with respect to the goodness of fit score

s(xo,t, xα,t) previously discussed. The coverage column denotes the number of estimates

(out of 15 for both CVaR and CES) in which confidence level was not broken by the

foreign exchange returns. It is important to note that while this data can provide a general

summary of model performance, general performance, particularly among the GARCH

variants was highly dependent on the underlying currency being modeled. We now discuss
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the results.

GARCH EGARCH GJR FIGARCH Historical Parametric RiskMetrics

CVaR

Accuracy 3.2 5.3 4.7 6.3 2.2 3.4 3.1

Coverage 8 8 8 8 3 9 8

CES

Accuracy 2.9 4.8 4.3 5.7 4.3 3.5 2.8

Coverage 11 10 10 11 15 15 15

Table 5: Summary of CVaR and CES Estimates

6 Discussion

In short, the GARCH model and its variants produce widely differing CVaR and CES

results depending on the currency being modeled while the historical simulation, standard

parametric, and RiskMetrics models produce more consistent results across the board. For

example, the GARCH variants produce far to conservative CVaR estimates for Russia and

India while estimating a much to liberal CVaR for Brazil and South Africa. Interestingly,

when the in sample GARCH parameters are used to estimate out of sample CVaR and CES,

the standard GARCH model tends to perform the best of the four variants, though there

is little difference in coverage across the GARCH type models. Because of this though, the

standard GARCH model may be preferred as it has the fewest parameters and therefore

the least likelihood of over fitting. However, since the GARCH model does not perform

significantly better (and often is worse) than the historical simulation, standard parametric,

and RiskMetrics models, we cannot conclude it is the best fit. A potential issue with

GARCH models not faced by the other three is that the underlying market fundamentals

can change so parameters estimated on historical data may not be representative of the

volatility process today. Parameter estimation for GARCH models can also be sensitive

to the number of observations as well as the starting point. When examining the results

between estimation of CVaR and CES, we find CES converge to be higher across the board
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which is inline with what we would expect as CVaR is a lower bound for CES. Another

interesting observation is that risk levels tend to be underestimated for low α levels and

overestimated for higher α levels. A possible reason for this is that the data points which

break a α = 5% level also break α = 1%, which is inline with what we observe in the data.

For example the CES coverage for Indian foreign exchange is relatively similar for both

α = 1% and α = 5%, and the days that they are broken are nearly identical leading to the

close coverage numbers. In summary, there is no definitively best volatility model and one

should be diligent when deciding on a risk measure.

7 Conclusion

In this work we introduce a multitude of autoregressive conditional heteroskedasticity

models and developed the mathematical formulation behind two common practice risk

metrics, Conditional Value at Risk and Conditional Expected Shortfall. With these tools

at our disposal, we produced four different volatility models for the foreign exchange rates

of the BRICS emerging economies. These volatility models allowed us to analyze their

power to estimate both CCVaR and CES and to compare these results against historical

simulation, standard parametric, and RiskMetrics models. Among GARCH type models,

we found a high sensitivity to the underlying asset in risk estimation, which was less

prevalent among the three other models considered. We also found that performance

among the GARCH models was quite similar, which makes the standard GARCH model

an attractive choice due to its simplicity compared to the others. However, there is no

conclusive evidence to their being an overall ’best’ model for estimating CVaR and CES,

specifically for BRICS foreign exchange, and one should be careful when selecting a risk

model.

Future directions for this work could include analyzing a larger basket of currencies and

not limiting ourselves to emerging markets, as well as developing a more robust metric to
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evaluate the overall performance of risk models. Additionally, more complex multivariate

volatility models which account for other factors shown to influence exchange rates, such

as interest rates and the capital account, could be considered.
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