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The joint application of tailored optical Point Spread Functions (PSF) and 

estimation methods is an important tool for designing quantitative imaging and 

sensing solutions. By enhancing the information transfer encoded by the optical 

waves into an image, matched post-processing algorithms are able to complete tasks 

with improved performance relative to conventional designs. In this thesis, new 

engineered PSF solutions with image processing algorithms are introduced and 

demonstrated for quantitative imaging using information-efficient signal processing 

tools and/or optical-efficient experimental implementations. 

 The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as 

one solution for three-dimensional, super-resolution fluorescence microscopy. The 

DH-PSF is a tailored PSF which was engineered to have enhanced information 

transfer for the task of localizing point sources in three dimensions. Both an 

information- and optical-efficient implementation of the DH-PSF microscope are 

demonstrated here for the first time. This microscope is applied to image single-

molecules and micro-tubules located within a biological sample. 

 A joint imaging/axial-ranging modality is demonstrated for application to 

quantifying sources of extended transverse and axial extent. The proposed 
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implementation has improved optical-efficiency relative to prior designs due to the 

use of serialized cycling through select engineered PSFs. This system is 

demonstrated for passive-ranging, extended Depth-of-Field imaging and digital 

refocusing of random objects under broadband illumination. 

 Although the serialized engineered PSF solution is an improvement over 

prior designs for the joint imaging/passive-ranging modality, it requires the use of 

multiple PSFs – a potentially significant constraint. Therefore an alternative design 

is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and 

the chromatic behavior of objects under broadband illumination provides the 

necessary information transfer. The matched estimation algorithms are introduced 

along with an optically-efficient experimental system to image and passively 

estimate the distance to a test object. 

 An engineered PSF solution is proposed for improving the sensitivity of 

optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). 

The performance limits of the classical SHWFS design are evaluated and the 

engineered PSF system design is demonstrated to enhance performance. This 

system is fabricated and the mechanism for additional information transfer is 

identified. 
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CHAPTER I 

 

INTRODUCTION 

 

 

 

Optical imaging, in its most general sense, is a tool for the collection and storage of 

an optical signal which has physically interacted with the sample (e.g. emission, 

scattering, reflection, etc.) and is then used to aid the user in interpreting the object 

with subsequent display or post-processing. The capture of this information is 

considered here to be a transfer of data which is utilized in either a qualitative or 

quantitative sense. The qualitative approach to data evaluation leads to 

observations which are not measureable. As one example, the common consumer 

camera will be used to satisfy the capture, storage and display demands which 

invoke a memory or emotion for the user. In contrast, the quantitative application 

common to scientific inquiry will use the signal to generate a data point(s) for 

subsequent analysis – for instance to determine the location of cells in biological 

tissue. Many available methods exist by which to design a quantitative 

imaging/sensing system. In particular, the design methodology of computational 

imaging has focused on exploiting the relationship between object, the scientific 

question being asked and detected signal in order to focus the system design into a 

dedicated unit with improved performance at the cost of requisite signal pre- or 

post-processing. The cheap cost of computational power means that no significant 
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impediment to this design methodology currently exists. However, the demands 

then placed on the correct design, manufacture and execution of the joint optical 

system and signal processing design cannot be dismissed. Therefore, growing 

interest exists within the scientific community to explore the potential of 

computational imaging while developing the tools necessary to aid in the current 

and future design, manufacture and execution of these systems. The use of joint 

Point Spread Function (PSF) design with matched signal processing as a 

computational imaging tool is investigated here with application to problems in 

surveillance and spatial awareness (passive-ranging), 3D biological imaging with 

resolution beyond the diffraction limit, and optical wave-front measurement.  

 

1.1 Motivation 

The earliest forms of imaging used only basic elements such as the mirror and 

spectacle. Hundreds of years ago, these elements were combined into more complex 

optical instruments such as the telescope and microscope – thus enabling the study 

of objects which were previously unknown to mankind or lacked sufficient detail to 

understand and interpret into new observations. As should be expected, optical 

system design has increased in sophistication over the original trial-and-error 

techniques. Today, the propagation of light is understood in terms of Maxwell’s 

equations which treat light as the propagation of electro-magnetic waves. Maxwell’s 

equations natively admit the wave optics solutions which are necessary to 

understand the phenomena of interference fringes. Alternatively, one is also able to 

develop an approximate ray-based model of light propagation when the distances 
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involved are much greater than the size of a wavelength. Today, the availability of 

both ray-tracing and wave-optics software packages allow for precise optical system 

design through the definition of optical and mechanical properties for each element 

in the system to accurately describe the resulting image/signal. 

However, it is argued here and elsewhere (1) (2) (3) (4) (5) that despite this 

precise understanding of light propagation, the advent of digital detectors such as 

CMOS and Charged-Coupled Devices (CCD) represent additional degrees-of-

freedom to optical system design which may not yet be fully exploited. This 

observation is central to the methodology of computational imaging where the 

system design is optimized with respect to the signal collected from the digital 

detector. Within the last 20 years, computational imaging has developed into 

methods which optimize the form of this digitized, intermediate optical signal to 

answer a specific scientific question via the use of pre- or post-processing to produce 

the desired information representation. Through the joint use of optical system 

design and image processing, example solutions have been studied to 

characterize/remove/correct optical aberrations (6) (7) (8) (9) (10), extract depth 

information encoded in the signal (11) (12) (13) (14) (15), improve task-specific 

optical system performance  (2) (16) (17) (18), focus/image through highly-scattering 

materials (19) (20) (21) (22) and resolve spatial features at resolution beyond the 

classical diffraction-based limit (14) (23) (24).  

From this growing list of successful computational imaging techniques one is 

of particular interest to this thesis – the joint design of optical Point Spread 

Functions (PSF) with matched signal-processing algorithms  (2) (6) (7) (11) (12) (13) 
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(14) (15) (16) (17) (18). This method is important because it requires minimal 

physical modification from the classical optical system layout, is entirely passive 

and frequently implemented by the addition of only one optical element. This 

element is designed to functionally alter the fundamental optical response of the 

system – the PSF – in order to generate a signal at the digital detector which 

carries more information relevant to the scientific question being asked. Because 

the new system PSF is no longer the ideal Airy disk which is used in classical 

imaging applications, the relevant signal may be difficult to interpret directly from 

the image and will be subject to a post-processing step to generate the final data 

representation.  

 

1.2 Point Spread Function Engineering in Computational 

Imaging  

The optical concepts applied in the joint design of PSFs and matched post-

processing (hence-forth shortened to engineered PSFs) can be understood from the 

perspective of linear systems theory. This requires that a linear relationship exists 

between the input (object) and the output (image) such that a transfer function 

characterizes what happens to the input as it passes through the linear system 

(here, the optical system). Working in the Fourier domain, where the object is 

decomposed into a representation of spatial frequency components (or plane-waves), 

the transfer function assigns a complex coefficient to each spatial frequency of the 

input to describe what happens at the output of the linear system (Fig. 1.1). To 

allow that the optical system be modeled in this framework, the assumption of 
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transverse shift-invariance must be applied (i.e. the optical system response is not 

dependent upon the transverse position of the object). 

 

 

Fig. 1.1: The linear model of an optical system provides a description of the optics in 
the form of a transfer function, where each component of the transfer function 
describes the complex coefficient acquired by the spatial frequency components of 
the input (object) as it passes through the system to form the output (image). Note 
that � denotes a Fourier transform. 
 

Application of the convolution theorem to the model in Fig. 1.1 shows the 

relationship between the input and output can be written as, 

  ���, �� � :;<��, �� = 	��, ��    (1.1) 

where = denotes the convolution operator. Note that most engineered PSF systems 

operate under incoherent imaging conditions where the object 	��, �� and the image 

���, �� are given in terms of intensity. 

 To define the PSF for an optical system, a number of assumptions are 

commonly employed (25)  (26):  

A. Paraxial assumption: This is the assumption that the maximum propagated 

spatial frequency is limited to be much less than 1/'. Note that generally 

spatial frequencies greater than 1/' will attenuate fast due to evanescent 

decay. Under the wave-optics formulation, this assumption is the 

approximation that the complex-amplitude emitting from a point-source is a 

paraboloid, 

    	��, �; 0� @ !ABCDEF�GCHIC�     (1.2) 
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instead of a spheroid.  

B. Generalized pupil: This assumption is based upon an approximation that the 

lens may be described with an infinitely thin element. Classically, the most 

common form of this includes the size and shape of the aperture enclosing the 

lens with zero phase aberrations (e.g. ���, �� � J�KJ L√NCHOC
P Q, where R is the 

radius of the lens aperture and coordinate system ��, �� is the transverse 

plane within the pupil). One advantage provided by the application of the 

generalized pupil function, ���, ��, is that both the lens (S��, ��) and system 

aberrations (���, �; �%, �%, 
, '�� can be placed into this plane such that the 

generalized pupil function becomes, 

 +��, �� � ���, ��!BT�N,O� � J�KJ L√NCHOC
P Q !BU�N,O�!BT�N,O;GV,IV,W,X�  (1.3) 

where the system aberration dependence on object transverse position 

coordinates �% and �%, axial position 
, and color ' are explicitly included. For 

isoplanatic optical systems, the linear optical system is approximated to be 

transversely shift-invariant. Therefore the pupil plane aberrations are 

independent of the object coordinates  �% and �%. 

C. Scalar wave-functions: This assumption is not critical to the definition of a 

PSF in general but is instead used to simplify the optical system model. For 

applications with low Numerical Aperture (NA) the vector behavior of light 

may be ignored in favor of this simplified description where wave oscillations 

in 1D are assumed. 
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With these assumptions in place, the input-output relationship of the 

incoherent optical system allows the PSF to be defined as, 

    :;<��, �; 
, '� �  Y�Z���, ��!BT�N,O;W,X�[Y#
.   (1.4) 

Therefore the PSF contains all the information about aberration-sensitivities (e.g. 

defocus, spherical, chromatic) when mapping the input source 	��, �� to the output 

image ���, �� in Eq. 1.1.  

Returning to the concept of engineered PSFs, these can now be understood as 

the functional modification of the pupil function ���, �� in order to enhance the 

performance with respect to particular aberrations in ���, �; 
, '� or spatial 

frequency content of the object 	��, ��. This now contrasts with classical design 

parameters where the pupil function was designed to null-out any aberrations in 

order to retain just the amplitude encoding which describes the shape of the lens 

aperture and generate the Airy disc as the PSF. 

A common on-axis aberration is defocus in the generalized pupil function 

where,  

    ���, �; 
, '� � \
X ],

^ � ,
W � ,

_`a ��# � �#�   (1.5) 

and + is the lens focal length, 
 is the object distance, and 0B is location of the 

observation plane. Note that when the imaging condition,  

     
,
W � ,

_` � ,
^      (1.6) 

is satisfied the defocus aberrations are zero and the object and image are considered 

to be conjugates of each other. The design of engineered PSFs for both 3D imaging 

and Extended Depth-of-Field (EDOF) applications is principally concerned with the 
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design of ���, �� in order to impart specific qualities (e.g. some combination of 

shape, size, position, orientation, rotation of an object) to the PSF as the amount of 

defocus, ���, �; 
, '�, is varied as a function of z (2) (11) (14) (15). 

As one example, in refs. (2) (6) (18), the imaging system is modified by a cubic 

phase element given by, 

     ���, �� � !ABbcNdHOde     (1.7) 

which is placed into the pupil of the lens. The result is a modified PSF with a 

transverse profile approximately invariant to defocus for an extended range of z 

when g h 20 assuming that �, � are now in normalized coordinates. Even though 

the resulting image will be heavily distorted due to the introduction of this phase 

aberration, the intermediate signal can be deconvolved by this known and axially-

invariant PSF to generate a diffraction-limited image within an extended Depth-of-

Field relative to the standard optical design. A demonstration of this system is 

reviewed in Fig. 1.2. This phase element is amenable to fabrication by direct-

machining and casting methods due to its smoothly varying spatial profile.  

It was noted in ref. (2) that while the resulting PSF had an approximately 

invariant transverse profile with respect to defocus the centroid position of this PSF 

will translate as a function of axial position. Recently, this observation has been 

exploited for use in a line-of-sight spectrometer with application to the generation of 

plasma channels (27). However, because this transverse translation can be 

problematic for imaging applications an alternative phase mask was proposed using 

cylindrical coordinates, 

     ��i, 2� � !ABjdk1/lm.     (1.8) 
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Despite these advances, the optimum engineered PSF design for restoring defocused 

object information is still a topic of current research (28). 

 

 

Fig. 1.2: Results comparing the images of an object with extended axial features. In 
the first image, the classical lens has a characteristic focal plane which captures 
detailed features of the in-focus object but loses detail for features which are out-of-
focus (e.g. blur). In the second image, a lens is encoded with a cubic-phase 
modulation in the pupil function to generate an image where the level of detail for 
each axial plane is constant but decreased relative to the focused image with a 
classical lens. In the final image, restoration of the second image using 
deconvolution enhances detail of the object for an extended Depth-of-Field compared 
to the classical system. Images taken from ref. (2). 

 

Alternatively, the choice can be made to enhance the sensitivity to defocus 

aberration with proper encoding of ���, �� and subsequent use of signal processing 

as in (11) (12) (14) (15). In one example (Ref. (14)), the pupil function is encoded 

with an astigmatic function (via a cylindrical lens) in order to vary the focusing 

power of the system along the x and y axes of the observation plane and encode the 

axial position of the source. From the collected signal, the axial position is found 

from the unique combination of the Full-Width at Half-Maximum (FWHM) along 

each axes of the detector. This system is reviewed in Fig. 1.3. The axial range 

sensitivity can also be enhanced via use of a Double-Helix PSF (DH-PSF) which 

encodes the axial position of the source via a unique rotational orientation of 

duplicative copies of the object – as shown in Fig. 1.4. The DH-PSF has been 
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realized via use a hologram (11) or a Spatial Light Modulator (SLM) (13) (29) (30) 

(31) (32). 

 

 

Fig. 1.3: A cylindrical lens is used to functionally encode the generalized pupil 
function ���, �� such that the axial position of the source is encoded as a unique 
combination of the engineered PSF FWHM along the x and y axes of the observation 
plane. Images taken from ref. (14). 
 

 

Fig. 1.4: The DH-PSF can be used to encode the axial position of an object by 
measuring the rotational orientation from duplicative copies of the object. 
Experimental implementation has required the use of holograms or Spatial Light 
Modulators (SLM), as shown in A. Using a fluorescent bead as the source, the 
rotational orientation of the DH-PSF is tracked as the bead is moved axially 
through focus in B. The experimental DH-PSF images in C show the two lobe 
characteristic of this engineered PSF. Images taken from ref. (13). 
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1.3 Evaluation of Optical System Design 

While the joint use of engineered PSFs and image processing can enable new 

functionalities such as 3D imaging and EDOF, methods must be used to evaluate 

the degree to which performance can be enhanced relative to alternative designs. 

Common metrics for optical system design include the optical Modulation Transfer 

Function (MTF), Strehl Ratio, Signal-to-Noise Ratio (SNR), and Signal-to-

Background Ratio. In this thesis, this problem is addressed in terms of a task-based 

performance metric using two quantitative approaches: the Cramer-Rao Lower 

Bound (CRLB) (33) and the spectral SNR (28).  

The use of CRLB as an optical system design metric is ideal because it 

comprehensively accounts for all elements present in the system – including the 

pupil function ���, ��, aberrations ���, ��, digital detector properties (e.g. dynamic-

range, dark counts and pixel size) and noise properties to generate a theoretical 

error measure (33). The CRLB is also intuitive as the measure of change in an 

image with respect to the variable to be measured (e.g. x, y and z position) and is 

inversely proportional to the amount of noise in the system. Increasing the change 

in a signal with respect to the variable to be measured will result in better 

measurement precision. In addition, the intuitive expectation that decreasing the 

noise in an image will result in improved measurement precision is supported. 
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Therefore the ideal design of a pupil function ���, �� and in turn the PSF is the one 

which generates the most variation with respect to the parameter to be measured. 

The second measure used here is the spectral SNR of an optical signal (28). 

The spectral SNR reports the average SNR for every spatial frequency of the 

Optical Transfer Function (OTF) across the range of axial object positions which are 

of interest, where the OTF is defined as, 

     pq< � |�A,4:;<8|#.     (1.9) 

The utility of this metric is for evaluating alternative implementations of ���, �� 

and finding which carries the most spatial frequency content across the axial range 

of interest for extended-depth-of-field (EDOF) designs. 

 

1.4 Main Contributions of this Thesis 

In this thesis, the joint design of engineered PSF solutions with matched estimation 

algorithms is investigated and applied to passive-ranging, 3D imaging (including 

super-resolution microscopy) and optical phase measurement. In general, the space 

of possible solutions for optical waves and therefore PSFs has been restricted to 

those which have the property of maintaining their transverse intensity profile, but 

with a scale- and rotation-transformation, as the wave is propagated (34). In 

general, the set defined in ref. (34) is further restricted by the requirement that the 

implementation of these waves must be realizable with a phase-only modulation of 

the pupil function. Example waves which satisfy these criteria are shown in Fig. 

1.5.  
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Fig. 1.5: Four examples of engineered Point Spread Functions which rotate and 
change scale with propagation are presented as a function of defocus given by �. 
Each example can be implemented with a phase-only modification to the optical 
pupil function of a lens.  

 

Another example from this set of waves was introduced earlier as the DH-

PSF – a PSF which is very similar in origin to that shown in the upper-right of each 

panel in Fig. 1.5. This PSF has been demonstrated useful in passive ranging (11) 

and 3D localization-based microscopy (13) (30) (31) (32). However, these DH-PSF 

implementations have failed to realize the full potential of the engineered PSF 

because of a mix of inefficient estimation algorithm design and optical system 

implementation. In this thesis, the DH-PSF is revisited in order to evaluate these 

shortcomings of prior solutions and find methods which are true to matching the 

original intent of the DH-PSF proposal. This requires both the information-efficient 

estimation algorithms which can perform to the limits theorized with the CRLB 

(demonstrated in Chapter 2) and the development of optical elements for photon-

efficient implementation (demonstrated in Chapter 4). These tools are applied 

simultaneously in Chapter 4 for the first realization of an optical- and information-

efficient 3D optical microscopic with diffraction-unlimited resolution of biological 

samples using the DH-PSF.   



 

14  
 

Prior work has demonstrated the use of a DH-PSF for passive ranging of 

extended objects (11). However, this example implemented a hologram for encoding 

the PSF and therefore required quasi-monochromatic illumination. The passive 

ranging of extended objects has an additional complication due to the necessary 

collection or assumption of a signal which provides prior knowledge of the objects 

being imaged. These problems are revisited here in Chapter 3 where the optical 

system implementation is designed to allow for operation with broadband 

illumination. In addition, a dynamic pupil function is introduced to cycle through 

engineered PSF solutions which will improve the signal available for estimating the 

object(s) being imaged. The result is an optical system with an improved SNR for 

both passive-ranging and extended Depth-of-Field imaging relative to prior designs. 

However, this passive-ranging design requires the acquisition of at least two 

images with alternative pupil functions in order to collect enough information for 

the image processing algorithms to operate correctly. In Chapter 5, an alternative 

solution is proposed using a Single-Helix PSF (SH-PSF). Under ideal operating 

conditions, this proposal can collect enough information when using a single pupil 

function to quantitatively estimate the axial position of an object as well as recover 

a high-resolution image through an extended Depth-of-Field. Comparison with 

alternative task-specific designs shows that the SH-PSF can simultaneously 

improve performance for both of these seemingly different tasks. Using methods 

developed in Chapters 2 and 4 as well as new estimation algorithms, an optical 

system is demonstrated which can experimentally generate quantitative passive-

ranging data of random, extended objects under broadband illumination and 
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simultaneously recovers enough information to restore the detail to out-of-focus 

images. 

The final chapters of this thesis are concerned with computational imaging 

methods which can be used to recover the phase or wave-front of an optical signal. 

One example of a phase-recovery technique is demonstrated in Chapter 2 and 

became integral to the development of the estimation algorithm which realizes the 

limits theorized by the CRLB. An alternative method is known as the Shack-

Hartmann Wave-front Sensor (SHWFS). The SHWFS is extensively investigated in 

Chapter 6 in order to define an optimal system design using conventional 

components under various experimental conditions. Using the CRLB approach 

advocated earlier, the optimal SHWFS design is shown for the first time to depend 

on the number of photons available and the transverse characteristic of the optical 

wave-front. In Chapter 7, a modified approach to the SHWFS which uses 

engineered PSFs is proposed and evaluated to demonstrate that the classical 

system design can be improved using the tools developed earlier in this thesis. The 

first example of this modified SHWFS design is fabricated and the mechanism for 

improved information transfer is experimentally demonstrated. A summary of this 

thesis and future work is suggested at the conclusion in Chapter 8.  
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CHAPTER 2 

 

MAXIMUM LIKELIHOOD PATTERN MATCHING FOR 
LOCALIZATION-BASED IMAGING WITH ENGINEERED AND 

ABERRATED POINT SPREAD FUNCTIONS 
 

 

 

2.1    Motivation 

The recent application of information theoretic methods to imaging solutions has 

helped motivate the redesign of optical systems which exploit the concept of 

information in images. This use of information theoretic tools has been central to 

recent task-based system designs in microscopy (11) (35) (36) passive-ranging (12), 

iris recognition (16) and extended depth-of-field (6). Although proven useful, this 

can lead to improper justification if the associated matched post-processing 

algorithms do not efficiently meet the limitations shown by this metric. For 

example, recent work has indicated the optimality of the DH-PSF for volume 

imaging and localization tasks relative to alternative designs (11) (35) (37). 

However, none of the proposed algorithms have actually met these fundamental 

limits. For example, the angle/centroid estimation algorithm originally proposed for 

the DH-PSF has been documented to deviate from the CRLB by a factor of 2x (37). 

An improvement to this algorithm proposed fitting the two peak shapes to 

Gaussians and then calculating the associated angle and mid-point estimate but 
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this was also shown to deviate from the CRLB (32). Therefore there exists some 

divide between the theoretical capabilities of engineered PSF designs and actual 

implementations (algorithms, optics, etc.) that must be addressed in order to realize 

the full potential. For this reason a Maximum Likelihood Estimator (MLE) is 

sought to reach these fundamental limits for localization-based imaging.  

In this chapter, a MLE is designed which optimally works with engineered 

PSFs. In addition to the flexibility of including engineered pupil functions, it will 

also accommodate optical aberrations. Since the ideal pupil function is often known, 

the MLE could potentially operate with this prior knowledge. However, the optical 

aberrations inherent to 3D imaging and imaging in biological samples are 

frequently unknown. Therefore a method is proposed to recover this information in 

experimental situations and incorporate it into the MLE.  

An ideal candidate for demonstrating these methods is localization-based 

microscopy – where the image of a particle will closely resemble the PSF. 

Interestingly, the localization of randomly emitting molecules within a sample has 

recently been demonstrated as a method to yield images which are no longer limited 

by the diffraction-limit of resolution (24) (38) (39). Because of the general demand 

for high-resolution images and this link to particle localization, the MLE is 

demonstrated here experimentally for 3D single-molecule localization. This will 

serve as the estimation algorithm then used in Chapter 4 to produce 3D super-

resolution images with an alternative realization of the DH-PSF.  
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2.2    Background 

Photo-activation localization microscopy is a far-field super-resolution imaging 

technique based on the localization of single-molecules with sub-diffraction limit 

precision. Known under acronyms such as PALM (Photo-Activated Localization 

Microscopy) or STORM (Stochastic Optical Reconstruction Microscopy), these 

techniques achieve super-resolution by allowing only a sparse, random set of 

molecules to emit light at any given time and subsequently localizing each molecule 

with great precision. In this way, the image is not bound by the traditional limit of 

resolution but rather by the localization precision of the individual molecules.     

Ongoing super-resolution microscopy developments are opening up 

opportunities to explore sub-cellular structure and function as well as to visualize 

materials at the nanoscale (23) (24) (38) (39) (40) (41) (42).  In comparison with 

other super-resolution microscopy techniques (23) (40) (41) PALM/STORM is 

attractive because it enables the recording of multiple single-molecules in parallel, 

with each molecule experiencing limited photo-activation cycles.  The technique is 

also appealing for simultaneously tracking individual molecules over time or 

measuring the distance between pairs of molecules (43). Recently, such techniques 

have been extended to three dimensions, opening up unprecedented possibilities to 

explore the structure and function of cells.  Interestingly, proper engineering of the 

three-dimensional (3D) point spread function (PSF) through additional optics has 

been demonstrated to theoretically improve 3D position estimation and ultimately 

resolution. There is a significant current interest in decreasing the data acquisition 

time by engineering new fluorescent proteins and organic fluorophores (44) along 
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with optical improvements in photon collection (30) (45). Significant efforts are also 

underway to reduce systematic errors such as vibrations, drift, and imperfections of 

the detector (43), as well as bias from asymmetric molecular emission (46). 

However, existing methods to improve 3D localization use custom estimation 

algorithms that are not efficient in terms of achieving the fundamental localization 

limits  (13) (14) (31) (32) (47) (48) (49). 

Therefore the newly discovered frontiers of optical resolution and 

functionality - such as quantitative tracking and distance measurement - have not 

been fully realized yet.... Optimal 3D localization procedures are critical to increase 

resolution for a given number of detected photons and to reduce data acquisition 

time for a given target resolution. Another practical problem is optical aberrations 

that distort the single molecule images and negatively affect the localization 

precision. Accordingly, this chapter addresses the problem of optimal 3D 

localization for arbitrary 3D PSFs in the presence of noise while providing a 

solution that rigorously accounts for the inevitable optical system aberrations. 

    

2.3    Current Optical Methods for 3D Single-molecule 

Localization  

Four main techniques are prevalent in far-field 3D single-molecule localization 

microscopy: bi-plane detection (47), astigmatic imaging (14), double-helix (DH) PSF 

(13) (29) (30) (48), and interferometric PALM (45). The first three are of particular 

interest because they require minor modifications of a standard microscope and 

operate over relatively long depth ranges (up to 2-3 µm for DH-PSF). In contrast, 
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interferometric PALM offers superb axial resolution but requires more complicated 

interferometric arrangements and operates over a 200nm range (45) (50).  

To evaluate the performance of each system, the fundamental limit to 3D 

localization precision can be quantified by means of the Cramer-Rao Lower Bound 

(CRLB) (35) (36) (48). The Cramer-Rao Lower Bound (CRLB) is a measure of the 

optical system’s fundamental limit for precisely estimating a set of parameters (2), 

in this case, the 3D position of a particle. The CRLB provides the theoretical lower 

limit of the variance for any unbiased estimator in the presense of noise. It is found 

from the inverse of the Fisher Information matrix rR"s t <u�	v�A, where (33), 

 <uw,x � ∑ ∑ z {
{1| *� �0+�|+��, �; 	v�|#� {

{1} *� �0+�|+��, �; 	v�|#�~���,���,     (2.1) 

pdf is the probability density function, 	v is the object position and 4�, �8 3
4��, ��, �
8. 

The CRLB also serves as a benchmark for estimator implementations, by 

which the realized precision of the estimator should approach this fundamental 

limit. These uses of the CRLB are increasingly relevant in single-molecule imaging, 

where the number of photons is inherently limited. Estimators based upon simple 

geometrical interpretations of the PSF (i.e. centroid (14), rotation angle (13) (30) 

(48), 2D Gaussian-fit (13) (14) (31) (32) (47) (49)) have been implemented and are 

computationally fast but not optimal because they do not reach the fundamental 

limit of precision for a given physical system. The reason these methods are sub-

optimal is because of the coarse approximation of the PSF spatial profile and also 

the lack of specific noise statistics.  The inclusion of explicit statistics into an 

estimation algorithm enables the definition of a most-likely 3D position, i.e. a 
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maximum-likelihood estimator (MLE) (33) (51) (52) (53). Prior demonstrations of 3D 

MLE’s have only included optical systems which can be described with analytical 

solutions. This represents a limitation for the realizable optical design space that 

excludes the benefit of numerically optimized solutions. We point to the CRLB 

analysis demonstrating the 3D performance advantages of one such example, the 

DH-PSF, relative to the analytical designs, as justification for the necessity to 

include optimized PSFs (35). In addition, existing MLEs do not explicitly address a 

method for including inevitable experimental aberrations in the optical system. 

Inclusion of aberrations is critical in 3D methods because microscopes are in 

principle corrected for aberrations only across a single transverse plane. Therefore 

no method has been demonstrated that solves the problems of efficient 3D 

estimation for generalized optical systems or accurately account for the effects of 

aberrations induced by both the sample and object.  In light of this, an information-

efficient algorithm to achieve the CRLB for 3D localization in the presence of 

aberrations and using arbitrary PSFs is proposed and demonstrated here. 

    

2.4    3D Phase Retrieval for Optimal Estimation 

Optimal estimation requires a faithful model which can be matched to experimental 

calibration. Unfortunately, a detailed and exhaustive calibration of the PSF at 

single nanometer shifts, if possible, is not always practical because of the required 

large data acquisition sets (49) (54), which either become less precise or demand 

longer calibration times. Therefore a phase retrieval (PR) method (8) (55) is 

introduced to accurately recover the 3D PSF at arbitrary coordinates over a 
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continuous 3D domain based on only a few calibration measurements. Phase 

retrieval has been used in microscopy to correct aberrations in classical fluorescent 

imaging using a single pupil function model (30). This model is an approximation 

equivalent to a depth-invariant PSF which leads to residual errors even when the 

vector nature of the fields, the finite size of beads and noise are taken into account 

(30). While this approach has been shown to provide good results in conventional 

(diffraction-limited) deconvolution microscopy, its effectiveness is not guaranteed 

for engineered PSFs and super-resolution imaging, where dimensions are one order 

of magnitude smaller. Therefore, the PR method proposed here assumes a local, 

depth-variant model, and is shown below to be effective both for engineered PSFs 

and for PALM/STORM imaging to improve localization precision and ultimately 

resolution.    

In order to generate a proper model of the imaging system that accounts for 

the presence of aberrations and the arbitrary optical system design, a set of 

calibration images,4uW,, uW#, … , uW�8, and a PR algorithm are used to solve for the 

complex field of the PSF, 

    +W���, �� � Y�uW���, ��Y!B����G,I�              (2.2) 

with zn=z1…zN indicating N axial positions. A diagram of the PR algorithm 

demonstrating a working example for estimating the complex field at an arbitrary 

plane z0 is provided in Fig. 2.1. For any location of the molecule in space, an 

accurate model of the PSF is obtained from the images u � |+�	v�|# by continuously 

propagating along �
 and shifting in ��, �� according to the wave equation that 

governs the evolution of the PSF, 
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+��, �; ∆�, ∆�, ∆
� � � ��A,4+W�8� N
 X^�� , O

X^���!B CDE�����N∆GHO∆I�!ABDE��C��C
���C ��C∆W�.  (2.3) 

 

Fig. 2.1:  The phase retrieval algorithm for PSF recovery and interpolation. (A) A 
sequence of three local calibration images (Iz0-∆z , Iz0 , Iz0+∆z) is used for recovering the 
local depth-variant complex amplitude PSF of the optical system which is associated 
with the aberrated and/or engineered point spread function. The search procedure 
requires five steps (S1 – S5) per iteration until a solution converges at plane z0, 
where the local phase is shown below the intensity image. Comparison of the axial 
dependence for the experimental and interpolated images of the aberrated double-
helix PSF are given in panels (B) and (C), respectively. (B) Projections of the 
experimental images along the x and y axes with axial propagation shows the 
discrete character of the calibration data. (C) The results from the phase-retrieval 
algorithm behave smoothly - indicative of proper interpolation of the expected PSF 
at intermediate image planes to be used for maximum likelihood estimation.  

 

The PR algorithm can be implemented using a minimum of two axial 

positions for calibration images of the PSF, taken at well known coordinates 

	v� � 4���, ���, �
�8 where � � 1,2.  However, increasing the number of calibration 

images for PR has been documented to improve convergence and robustness in the 

presence of noise (56). Prior methods have assumed that these field estimates can 

be averaged across the entire depth of focus to provide a best estimate for the 
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system pupil, but this assumption is overly restrictive for high numerical aperture 

systems as shown in (30), leading to residual errors in the estimated PSFs. While 

these errors can be tolerated in applications such as classical diffraction-limited 

deconvolution imaging, without further modifications they could introduce 

significant errors in localization-based super-resolution microscopy. Hence, a 

method that departs from the single-pupil approximation, which implicitly assumes 

a depth-invariant PSF, is required. It is with this in mind that a depth-variant 

method is implemented, using the PR algorithm with three local and contiguous 

axial calibration images to find the complex-field at each of the N depth positions. 

Hence, in this report we assume each estimate to be the best local representation of 

the associated field and retain this for later use in the MLE.  

Knowledge of the absolute value of the amplitude for +W%A�W,  +W% and +W%H�W is 

provided from the calibration images as �uW%A�W, �uW% and �uW%H�W, respectively and 

is used to find a unique estimate of +W%. Referring to Fig. 2.1A, the propagation of 

��
 in step S1 is described by a defocus operation to calculate +W%A�W, i.e. a shift in 

object position of 	v�� � 4�� � 0, �� � 0, ��
8 (see Eq. 2.3). After this numerical 

propagation, the amplitude constraints of �uW%A�W are enforced and the phase 

component of +W%A�W is kept in step S2 as this represents an improvement in the 

estimation of this function. This new estimate is then forward-propagated to 

provide an updated estimate of +W% as step S3. The forward-propagation is continued 

to 
0 � �
, the constraints again enforced as step S4, followed by a subsequent back-

propagation to the starting point 
0 to complete the algorithm with step S5. Steps 

S1-S5 represent a single iteration of the PR algorithm. Iteration continues until a 
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measure of convergence such as the sum-squared-error shows asymptotic behavior. 

Note that in practice, it has been documented that an optimum ∆
 exists for a given 

noise level of the calibration images (57). In our experiments, an average of 27 

images are taken at each axial position to decrease the noise present in the 

calibration image (where each axial position is taken at 100nm intervals). The PR 

can be further refined – if necessary – using known methods that account for under-

sampling and broadband emission (58). A generalization of the method presented 

here is also possible for non-isoplanatic systems.  

The result of the PR is a rigorous interpolation of the calibration data that 

can be used in the MLE process. Note that this process has incorporated the entire 

optical system into the calibration process without making any significant 

assumptions about amplitude/phase modulation devices or aberrations. Therefore, 

optical PSF design and systematic aberrations can be incorporated seamlessly for 

optimal estimation.  

 

2.5    3D Maximum Likelihood Localization Estimation 

The optical system description given by the experimental PSF and, if needed 

obtained via the PR process, is utilized in the second component of this method. 

Given an experimental image of a single-molecule I���, this optimal estimator 

searches the object space o�v for the most likely PSF match |+�	v�|# using Eq. 2.4, i.e. 

the position 	v���, ��, �
� of the molecule that maximizes the likelihood function, 

   	
���, ��, �
� �  �K� ���1�v3 d ¡¢ ]u£G¤; +�	v�a¥   (2.4) 
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Here, 	
 is the estimate resulting from the maximization and  l is the set of all 3D 

positions, ¢    is a function    representing the likelihood of the match at 	v in the 

presence of random noise processes such as Poisson or Gaussian, 

The MLE algorithm is implemented using custom software developed in the 

MatLab environment (The MathWorks Inc, Natick, MA). The operational details of 

the algorithm are now introduced to highlight specific contributions of the 3D 

Phase-retrieval Maximum Likelihood Estimation (PR-MLE). This section assumes 

the phase retrieval process is complete, and describes how to subsequently use that 

information for particle localization. The localization occurs in two steps: first, a 

coarse estimate is made to decrease the computational burden from the iterative 

MLE search; second, the MLE begins an iterative search for a high-precision 3D 

localization solution.    

The phase retrieval results can be used in the 3D search to begin with an 

initial guess made on the 3D location of the object of interest. The initial, coarse 

estimate is required to obtain a first approximation to the solution in the global 

space to reduce the complexity of the algorithm, accelerate the convergence and 

avoid local maxima for the optimization required to solve Eq. 2.4. In this case, the 

initial estimate is obtained in the spatial frequency domain, using the amplitude 

information of the experimental image and finding the closest match to the phase 

retrieval result at each calibration image in a sum squared error (SSE) sense, 

���∆W3¦A�§¨©�C ∆W,…,�§¨©�C ∆Wª ¡∑ ∑ c|«4|+#|8��, �; ∆
�| � Y«Zu£G¤[��, ��Ye#�¬��,�¬��, ¥   (2.5) 

where N axial calibration images separated by an axial distance ∆
 = 100nm were 

used and the image size is M′xN′. Working in the spatial frequency domain reduces 
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the initial estimation search from three dimensions to only the axial dimension by 

ignoring the linear phase responsible for transverse shifts. After this initial 

estimate is found for the axial location, it is transversely cross-correlated with the 

experimental image to find coarse �, � coordinates.  

Given this set of initial coordinates, an iterative algorithm is then 

implemented to find the optimum 3D coordinate in the object space 	v � 4��, ��, �
8 
that maximizes the probability of matching the experimental pattern to a rigorously 

interpolated PSF crossection in the presence of noise (Eq. 2.4), 

The likelihood function (­) can be selected to suit the appropriate imaging 

conditions under consideration. Examples of common likelihoods include both the 

Poisson and Gaussian distributions, 

­ ]u£G¤��, ��; +��, �; 	v�a � ∏ ∏ c|^��,�;1�v�|Ce¯°±²�³,��
´°±²��,��!�¬��,�¬��, !A|^��,�;1�v�|C

     (2.6) 

and  

­ ]u£G¤��, ��; +��, �; 	v�a � ∏ ∏ ,
¶√#\�¬��,�¬��, !Ac¯°±²�³,��¨|��³,�;·��v�|CeC

C¸C   ,    (2.7) 

respectively.  

Implementation of the MLE component is realized through maximization of 

the argument in Eq. 2.4 with the following gradient-descent iterative search 

algorithm for each axis (33), 

 	w�¤H,� �  	w�¤� � ¹ º� {C
{wC ­ ]u£G¤; +�	v�a�A, {

{w ­ ]u£G¤; +�	v�a»
w�1|�²�

   (2.8) 

where � 3  4��, ��, �
8, p is the iteration number and ¹ is introduced to scale the 

search step size. Typical values for ¹ ranged from 0.1 � ¹ � 1 (0.1 was used for both 
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the simulation and experimental results reported). Iteration is continued until the 

updated localization values are observed to converge. The derivatives along each 

axis are found numerically using central difference methods for the first-order 

derivative, 

   
{

{w ­ ]u£G¤; +�	v�a � ­]´°±²;^c1�vH¼��veaA­]´°±²;^c1�vA¼��vea
#Y¼��vY    (2.9) 

and the second-order derivative, 

  
{C

{wC ­ ]u£G¤; +�	v�a � ­]´°±²;^c1�vH¼��veaA#­]´°±²;^�1�v�aH­]´°±²;^c1�vA¼��vea
Y¼��vYC   (2.10) 

where ½�v is the displacement vector Z½G, ½I, ½W[ with non-zero values only along the 

direction that the derivative is taken.  

 

2.6    Performance with Simulation Data 

The estimation efficiency of this localization method is quantified by simulating a 

DH-PSF microscope with NA = 1.3 and M = 91x, imaging a single-molecule with 

average isotropic emission at '=515nm. The optical configuration is designed to 

match that of the typical experimental implementation, as given in Fig. 2.2. The 

behavior of the DH-PSF image can be approximately described as a pair of intense 

lobes that rotate about the mutual center of mass as the object translates axially, 

shown both in the experimental and PR data of Fig. 2.1B and C, respectively, as 

well as Fig. 2.2.  
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Fig. 2.2:  Optical layout of PSF engineered microscope. The double-helix microscope 
collects the light emitted from the fluorescent sample. A traditional microscope with 
a 1.3NA objective is appended with a 4F optical setup, used to re-image the 
intermediate image plane onto the detector. A spatial light modulator (SLM) is 
placed in the Fourier plane of the 4F setup and is used to code the optical pupil of 
the microscope.  When the double-helix PSF phase mask is present on the SLM, the 
light emission from the sample is encoded for subsequent imaging onto an electron-
multiplying CCD (EM-CCD), located after the second Fourier lens (Lens 2). 
Experimental images are given in the right pane as a nano-particle is translated 
axially through focus.  

 

The PR algorithm uses an average of 100 noisy image realizations, taken at 

three axial positions (z = -100nm, 0nm and +100nm) to form the calibration image 

set in simulation. Note that the PR algorithm can be run initially for system 

characterization and then store the recovered optical system pupil function for later 

use to speed up computation time.  

The PR-MLE performance is tracked as the number of photons detected from 

the emitter is varied across a representative range. Poisson noise is considered the 
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dominant noise process, consistent with ideal experimental conditions, with a 

likelihood function given by, 

 ­ ]u£G¤��, ��; +��, �; 	v�a � ∏ ∏ c|^��,�;1�v�|CH¾e¯°±²�³,��
´°±²��,��!���,���, !A�|^��,�;1�v�|CH¾� (2.11) 

where the image size is MxN and b is a constant background noise level. In order to 

increase the per-pixel SNR, the DH-PSF was sampled at ½ the Nyquist sampling 

rate – consistent with our experimental conditions. Note that precise position 

estimation from a point response does not require full reconstruction of the signal. 

Further, an optimum sampling rate can be calculated for a given system and noise 

level. To isolate the performance under the shot-noise limit, no background noise is 

included in the simulation results presented here. Background noise is included in 

the experimental results of the appropriate section. 

In Fig. 2.3, the MLE performance is compared for two likely scenarios along 

with the associated system CRLB. The first scenario characterizes the performance 

of the MLE algorithm when the optical pupil function was known a priori. This 

establishes the performance limit without introducing any potential errors from the 

PR algorithm. The second scenario characterizes the PR-MLE method using the PR 

results from the calibration images to obtain the pupil function and 3D complex-

valued PSF. About 20 iterations are necessary for the MLE to converge on each 

estimate. A measure of the estimator efficiency is provided as - � ¶°¿À¶ÁÂÃÄ - the ratio of 

the estimator precision (measurement standard deviation) to that of the CRLB. To 

develop a sense for the performance across a broad range of possible conditions, an 

average of the estimator efficiency is taken over a photon count range of 300-1100 
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photons. For a system known a priori, the resulting average efficiency along the x, y 

and z axes is -�ÅÆ,Ç¤��, �, 
� � �1.0 & 0.1, 1.0 & 0.1, 1.1 & 0.1�. Note that an intrinsic, 

random error greater than 0.6�� is associated with the estimation of  É£/Ê due to the 

finite distribution sample size of N = 100 used in the simulation. This random error 

is responsible for the fluctuations of  É£/Ê about the CRLB. Therefore, these results 

demonstrate that the performance of the MLE is efficient. For the PR-MLE the 

efficiency is -�ÅÆ,ËP��, �, 
� � �1.0 & 0.1, 1.5 & 0.1, 1.1 & 0.1�. The minor loss of 

precision for the PR-MLE along the y coordinate is due to both the sub-Nyquist 

sampling conditions and the presence of noise in the calibration images used for the 

PR estimate. The results of Fig. 2.3 imply that the PR-MLE estimator is efficient in 

reaching the performance limit in the shot-noise-limited case.  

 

Fig. 2.3: Localization efficiency tests as measured by applying the MLE to 100 
simulated, noisy images and varying the number of photon counts. The lines 
indicate the theoretical lower bound (Cramer-Rao Lower Bound) of the precision for 
which the x, y and z-axis positions may be localized in the shot-noise limit with an 
emitter in focus (z = 0). The bound increases rapidly as the number of photons 
collected in the image decreases. The colored circles indicate the associated 
Maximum-Likelihood (ML) estimation precision when the pupil function of the 
optical system is well-known and no phase-retrieval is necessary. The colored 
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triangles indicate the ML precision when the phase-retrieval algorithm is 
implemented. 
 
 

In order to test both the quality of the phase-retrieval interpolation and the 

MLE in the regions not bound by constraints given by calibration images, two tests 

are proposed. The first test examines the localization accuracy and precision in the 

axial regions between the calibration planes. The second test examines the precision 

of the PR-MLE for localization when sub-pixel transverse shifts of the PSF are 

present. 

The results of the first test are presented in Fig. 2.4A, showing that the PR-

MLE behaves in a linear fashion between the calibration planes (the vertical shaded 

regions) and that the accuracy and precision are on par with that given in the 

calibration planes. Note that any bias present in this algorithm can be found by 

reference to the known calibration planes. Therefore associated calibration curves 

can be tabulated from the phase-retrieval step and later used to correct the 

experimental localizations and improve accuracy.  

In Fig. 2.4B, the results of the second test concerning transverse localization 

are given for a series of non-integer pixel-spacing transverse shifts (integer-valued 

shifts are highlighted with vertical shaded regions). Again, the PR-MLE results 

behave both linearly and accurately with sub-pixel shifts in the transverse 

dimension. The success of these tests again validates the optimality of the PR-MLE 

procedures highlighed earlier. 
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Fig. 2.4: Phase-retrieval MLE (PR-MLE) results for the estimation with 
interpolated and sub-sampled 3D data. (A) PR-MLE results on simulated data in 
20nm intervals through +/- 160nm of axial translation. The gray bands represent 
the axial planes where the calibration data was taken for phase-retrieval. The 
interpolation of the PR-MLE is seen to behave linearly between the phase-retrieval 
calibration planes, thereby demonstrating proper interpolation accuracy and 
precision in the axial direction. (B) PR-MLE results on simulated data as the source 
is shifted transversely in sub-pixel intervals. The gray bands represent integer 
valued pixel shifts. The interpolation of the PR-MLE is seen to behave linearly 
across multiple pixels thereby demonstrating sub-sampled resolution in the 
transverse direction.  

 

2.7    Performance with experimental data  

The experimental setup shown in Fig. 2.2 was used to image the photo-activatable 

green fluorescent protein label PA-GFP within a sample of Kangaroo Rat Epithelial 

cell (PtK1) which was prepared by Prof. Jennifer DeLuca and Keith DeLuca at 

Colorado State University. The experimental data was collected by Dr. Prasanna 

Pavani during his Ph.D. study at University of Colorado.  

A custom microscope (Zeiss objective Plan-Neo Fluar, 1.3NA) with 

magnification M=91x is used to image the samples. The tube lens is an achromatic 

lens of focal length +ÌÅ = 150mm. The image conjugate to the focal plane of the 

objective is named the intermediate image plane. This intermediate image serves as 
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the focal plane of the 4F optical system located after the microscope stage. The 

sample mount was attached to a piezo-driven stage (Physik Instrument P-615.3CD). 

For the single-molecule imaging in a biological sample, the image acquisition 

time was set to 500ms. The sample was initially bleached using circularly polarized 

488nm illumination (38mW from an Ar+ laser), then re-activated with circularly 

polarized light from a 405nm diode laser (0.5mW). The re-activation illumination 

uses a function generator to produce a 500ms pulse at 0.2Hz. Each beam 

illuminated a 40 micron diameter field on the sample. The data was collected in an 

epi-fluorescence configuration, with a dichroic mirror placed behind the microscope 

objective to block/redirect the excitation/activation light and transmit about 90% of 

the emission from the PA-GFP. Sample prepration is described in Reference (30). 

A reflective Spatial Light Modulator (SLM, Boulder Nonlinear Systems XY-

P512 SLM) is placed in the Fourier plane of the 4F system to encode the incident 

wave field with a double-helix PSF transfer function (29). A pair of achromatic 

lenses (focal length +ÍÎ=250mm) and a linear polarizer make up the rest of the 4F 

system. The linear polarizer is utilized to select polarization parallel to the active 

axis of the liquid crystal modulated by the SLM and in practice was a broadband 

polarizing beam splitter (420-680nm, Edmund Optics). The loss of photons in the 

othogonal polarization state is not necessary and has been solved with the use of 

additional optics (30) or with the use of phase masks (59). The final image is formed 

on the electron-multiplying charge-couple device (Andor iXon EM-CCD), with a 

16µm pixel pitch, located a distance f4F behind the final 4F lens. 
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To maximize the light efficiency of the DH-PALM system, the light from the 

first Fourier lens is obliquely incident on the SLM (at 30 degrees) so that reflected 

light may pass through the second Fourier lens without the use of additional 

beamsplitters. This oblique incidence introduces aberration into the optical system 

from the relative loss in modulation contrast of refractive index seen by the incident 

light as it is modified by the SLM. Additional sources of aberration include the use 

of a tilted camera in this system (30) and those inherent to volume imaging such as 

objectives that are optimized for imaging a single plane with minimal aberration at 

the cost of volume performance. Lastly, imaging sources at varying depths beyond 

the cover slip will be subject to spherical and specimen-induced aberrations.  

Calibration images were taken using samples prepared with 40nm diameter 

fluorescent microspheres (Invitrogen yellow-green carboxylate-modified 

FluoSpheres®). The microspheres were chosen to have similar fluorescent spectrum 

to the PA-GFP in order to minimize performance differences due to chromatic 

effects (excitation peak, 405nm; emission peak, 515nm). The 40nm bead size is well 

below the diffraction limit of the microscope, therefore they were treated as point 

sources.  

The calibration data is generated by images collected as the sample stage is 

translated in 100�� intervals through the focal plane. A series of images are taken 

(26 is typical) at each axial location to form an average to be later used as the 

calibration image for phase retrieval. The axial calibration data was shown earlier 

in Figure 1.1B and the PR results are given in Figure 1.1C. The exposure time for 

each image is 273ms and the EM-CCD is cooled to -90°C. The 3D PSF can be 
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determined by using multiple PSF image planes for Phase-Retrieval (PR) followed 

by averaging, which  implies that a single optical pupil can accurately model the 3D 

behavior of the optical system (55) (56). This approximation requires depth 

invariance of the PSF and appropriately describes the behavior of low-NA systems, 

such as telescopes, to acceptable accuracy. In the new field of precise 3D localization 

with high-NA systems, the single-pupil approximation introduces errors yielding 

non-optimal results. Next, the error generated by a single pupil function model is 

quantified in comparison to the depth-variant model to evaluate which best fits the 

data. 

The calibration images described earlier are used with the PR method 

described in the main text to generate field estimates for each axial plane of the 

calibration measurements. A single optical pupil was obtained by averaging these 

axial estimates (taken here about the typical experimental depth of the single-

molecules, �1000�� � �
 � �400��) after transformation into the Fourier domain 

and addition of the proper phase due to propagation (Eq. 2.3). According to the 

depth-invariant model, this single pupil suffices to represent the 3D-PSF of the 

optical system.  

The relative merit of the depth-invariant model (single pupil function) is first 

compared with the depth-variant model in terms of accurately representing the 

rotational characteristic of the calibration images. The rotation characteristic is 

provided from the orientation of the two lobes relative to the camera frame of 

reference (29). I follow the methods developed in Ref. (29) to characterize this 

orientation. As a review, this method consists of finding the centroid of each of the 
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two DH-PSF lobes and calculating their subtended angle of orientation where the 

origin is defined to be parallel to the y-axis of the camera. As rotation is a definitive 

trait of the DH-PSF, the results in Fig. 2.5A provide one measure of how well the 

depth-variant and depth-invariant models match the calibration data. It is seen 

that the depth-variant model tracks the rotational characteristic of the DH-PSF 

better than the depth-invariant model found from averaging the phase-retrieval 

results.  

 

Fig. 2.5: Experimental estimation performance using a depth-invariant model in 
PR-MLE.  (A) Characterizing the predicted rotation of the DH-PSF as a function of 
depth using the depth-invariant and depth-variant models indicates that the depth-
variant model provides better agreement with the calibration data. (B) The depth-
invariant model results in a single-molecule localization precision of 16nm, 29nm, 
21nm in x, y and z, respectively.  

 

Furthermore, to evaluate the best model for particle localization, we compare 

the precision obtained with each model for a single-molecule. Fig. 2.5B presents the 

localization results of the depth-invariant model to be É�ÅÆÐ´ ��, �, 
� � �16,29,21���. 

Alternatively, the depth-variant treatment in Fig. 2.6 shows that the PR-MLE 
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localized this molecule to É�ÅÆÐÒ ��, �, 
� � �14,10,13���. This demonstrates again how 

the depth-variant model is better suited to the experimental data. 

 

 

Fig. 2.6:  Experimental estimation performance of single-molecule localization. A 
single molecule is identified with an average of 2574+/-309 photons collected per 
image over a series of 25 images. (A) Representative images of the experimental 
data when the minimum, average and maximum number of collected photons are 
present. (B) Histograms of the x, y and z localization of the emitter, demonstrating 
localization precision of 14nm, 9nm, 13nm, respectively. (C) Volume visualization of 
the uncertainty ellipsoid associated with the resulting estimations and the scatter 
of the individual measurements.  

 

Using the results from the phase-retrieval algorithm (the continuous 2D 

projection set in Fig. 2.1C) tracking of the beads used for calibration was 

implemented with the PR-MLE to evaluate performance. Note that the calibration 

data was taken as an average at each stage position of the images used for this 

tracking experiment. The plot in Fig. 2.7 shows the estimation results corrected for 

bias and drift to demonstrate the precision of the MLE, the experimental depth of 

field, the accuracy of the estimator and the true variability of the calibration 

sources. The average performance through the 2.2µm axial range was measured to 
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be É�ÅÆ��, �, 
� � �6.6, 5.0, 5.2��� with an average of .Ó � 8,900 photons collected per 

image.  

 

Fig. 2.7: Tracking of fluorescent beads and calibration data. The fluorescent nano-
particle calibration images are tracked in x, y (A) and z (B) as the piezo-electric 
stage is translated in 100nm intervals. The estimation data has been corrected for 
bias and linear drift. The PR-MLE estimates of the complete data set, centered 
about the mean for each position, are collected and shown as histograms for x (C), y 
(D) and z (E). The associated precision (standard deviation) for the complete data 
set (671 points) through an axial range of 2.2µm is σ (x,y,z) = (6.6, 5.0, 5.2) nm.  

 

A Poisson pdf (Eq. 2.11) was utilized for the PR-MLE algorithm and is 

justified by examination of the image noise statistics shown in Fig. 2.8. A histogram 

of experimental photo-electron counts generated in an area with approximately 

uniform intensity is shown to be well described by a Poisson distribution (red curve, 

Fig. 2.8C).  
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Fig. 2.8:  Experimental noise characteristics. (A) An experimental image of a single 
molecule. (B)  Image morphology returns an area of the image with near uniform 
background level for noise analysis (white region). (C) The distribution of the photo-
electrons within the uniform area follows a Poisson distribution (in red).  
 

 

In order to count the number of photons in a given molecule image, the 

spatially varying background must be accounted for. The opening image-

morphology operation was utilized to analyze the image and estimate the 

background (60). The process is shown in Fig. 2.9 A-D, where a representative 

experimental image is given. This image-opening background calculation algorithm 

searches the image for features that can be approximated as a collection of disk-

shaped elements. By setting the size of the disk-shaped element to the dimension of 

a DH-PSF lobe, the DH-PSF features may be selected out, leaving only the spatially 

varying background in panel B. The morphological opening operation is 

implemented using the imopen command of the MatLab Image Processing Toolbox 

environment (The MathWorks Inc, Natick, MA). As a result, an accurate estimate 

for both the underlying, average background count and the molecule signal (panel 
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C) can be made for the input to likelihood functions used in the PR-MLE. An 

example PR-MLE fit is presented in panel D. 

 

Fig. 2.9: (A-D) Background subtraction algorithm for experimental images. The 
background of the experimental single-molecule image (A) is estimated using an 
image morphology operation with the estimated background presented in panel (B). 
The resulting background subtracted imaged (C) is then treated as the signal used 
for the PR-MLE with addition of a uniform background which is approximated as 
the mean value of (B) in the region of the DH-PSF. The result of applying the PR-
MLE to this data is presented in panel (D). Line-outs across the DH-PSF region are 
given below the respective image to aid in visualizing contrast. (E-G) Method for 
counting the number of photons in an arbitrary PSF. The number of photons 
collected from a single molecule is quantified as the number of counts within the 
spatially distributed PSF. First, a most-likely solution is found using the MLE (E). 
Then a mask is generated representing the regions of the experimental image 
where the intensity is above threshold (panel F, here 80% threshold). Using the PSF 
returned from the PR-MLE algorithm (E), the remaining energy of the PSF outside 
this mask is calculated. The mask is applied to the background-subtracted 
experimental data (panel G) and the number of contained photon counts is scaled by 
the amount of energy remaining outside the mask.  
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The experimental images are collected using an electron multiplying CCD 

(Andor iXon) and the number of photons incident on the detector is calculated as,  

       .Ó � ÅÕÖ×ÕØÙÚ     (2.12) 

where " is the ADU (analog-to-digital units) counts output from the A/D converter,  

ÛÆ� is the electron multiplication gain (100 in our experiments), ÛÜÐ is the number 

of electrons per A/D count (11.4697), and Ý is the quantum efficiency of the detector 

(0.95 @ 515nm).  

The number of photons present in the molecule image PSF is then calculated, 

as shown in Fig. 2.9E-G. Given the most likely match from the PR-MLE, a mask is 

generated which represents the transverse map thresholding 80% of the intensity of 

the experimental PSF. The mask is applied to the background-subtracted 

experimental PSF for an initial photon count. This number is then scaled by the 

ratio of the remaining energy in an ideal PSF to the energy contained in the 80% 

threshold mask in order to estimate the total number of photons. The background 

counts are found by applying the same threshold mask to the background estimate 

and reporting the average number of photons per pixel within the region associated 

with the PSF. 

The PR-MLE is performed on images from the PALM wide-field microscope 

dataset of the PA-GFP labeled biological sample. The total accumulation time was 

over 3.7 hours. Individual molecules were selected from the image by looking for 

areas of high temporal variance of photon counts, indicating that a photo-

activatable source has temporarily fluctuated in intensity. These areas were 

compared with the calibration images, which serve as templates, to determine 
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whether the local fluctuation has an intensity pattern which can be associated with 

the DH-PSF. If the pattern is indeed a match, the PR-MLE is implemented on this 

local region. A confidence measure was assigned to the estimation results according 

to the similarity of the estimated PSF and the experimental image. If the 

transverse overlap of the two patterns contained greater than 45% of the total 

energy, the measurement was kept. A total of 4689 of these measurements are 

reported and used to plot the 3D information in Fig. 2.10, visualizing the volume 

across which the estimator performance has been demonstrated.  

 

Fig. 2.10:  PR-MLE DH-PSF PALM imaging of PtK1 cells expressing PA-GFP-
tubulin. The distribution of a sparse set of individual molecules throughout an 
imaging volume is shown. 4690 individual localization estimations are color coded 
according to the axial position. Molecules were found to be dispersed within a 
25x25x1.9µm volume.  
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Lastly, from the entire dataset of PA-GFP molecules, a total of 144 individual 

single molecules are identified under the constraint that each one is present in four 

sequential images thus yielding 998 total localization measurements. An average 

collected emission of 2087+/-291 photons per image was collected for this ensemble, 

shown in Figure 2.11B. The molecules were found to be dispersed throughout a 

1.9um axial depth and a 25x25um field of view. The histograms in Figure 2.11C-E 

show estimation results of the PR-MLE on the data-set of single-molecule 

measurements, each position shifted to have a mean located at the origin. 

Significant background is present in the experiment (an average of 349+/-57 photon 

counts per pixel. The PR-MLE estimation precision (standard deviation) on this 

collection of molecules is É�ÅÆ��, �, 
� � �17, 10, 19���.  

 

Fig. 2.11: Localization and photon counting results from 998 estimations of single-
molecule positions in a PALM experiment with a DH-PSF. (A) The three 
dimensional scatter plot of these measurements demonstrate localization within a 
17nm x 10nm x 19nm volume (standard deviation). (B) The distribution of counts 
per image reveals a normal distribution with a mean number of 2087 total photons. 
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(C-E) The individual histograms of the x, y and z-axis estimation from the ensemble 
used in panel A. 
 
 

A sense for the experimental estimator efficiency of the PR-MLE is developed 

by comparison of the reported MLE precision with a representative CRLB by 

assuming average emitter characteristics found from the data set (i.e. positioned at 

the mean axial position, emitting the average number of photons with the average 

background level). This CRLB is found to be ÉßPÅà��, �, 
� � �12,16,23���. The 

average estimator efficiency of all three position estimates is therefore 0.95, 

indicating that, on average, the estimator is indeed efficient at localizing 

experimental emitters within a volume. Note that this is only an estimate of the 

performance limitations for the experimental system and that the non-linear 

relationship with background count levels (~16% measured variation), assumptions 

of a uniform background, the changes of the signal level from the emitter (~14% 

measured ), as well as the averaging of performance across an extended range of 

axial depth, all contribute to real deviations from this CRLB estimate, which in this 

case, should only be taken as indicative of the expected performance of an efficient 

estimator. During the experiments no significant anisotropic effects were noticed 

due to the rotational freedom of the fluorescent proteins.  

In order to further illustrate the applicability of the methods presented 

above, a distance measurement is reported here. Two molecules were identified in 

the PALM experiment and their 3D distance measured as shown in Figure 2.12. 

The first molecule (right-most) is localized to É��,��, �, 
� � �17,16,25��� and the 

second molecule (left-most) is localized to É��#��, �, 
� � �9,19,20���. After 
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propagating the random error in localization of each molecule, the distance 

separating them was determined as 778 +/- 22nm. The experimental data points are 

given as solid dots and each molecule position is visualized as an ellipsoid where the 

semi-axes are given by the respective standard deviation of each localization 

measurement.  

 

Fig. 2.12: Measurement of the distance between two PA-GFP molecules. Nine total 
measurements are used to localize the individual molecules. Because each molecule 
is well-localized a high precision distance measurement can be calculated.  
 
 

2.8    Discussion 

The experimental single-molecule localization performance compares favorably with 

recent 3D localization experiments in PALM/STORM. A rigorous comparison of the 

various experimental techniques is difficult because the available reports relate to 

different samples and fluorophores (13) (14) (30) (45) (47). Furthermore, 3D 

PALM/STORM reports do not always provide complete data (3D precision, number 

of detected photons, background noise level, axial range, etc). Besides, many studies 

use isolated beads rather than single molecules to characterize the system’s 

performance, which, while useful, provide favorable detection conditions with no 
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background noise from other emitters, no auto-fluorescence, and limited 

aberrations. One way around this problem is to consider fundamental assessments 

of the performance limits, which have recently shown the advantages of engineered 

PSFs (35). Another informative approach is to compare actual experimental single-

molecule performances based on quantitative measures of resolution and axial 

range as explained in what follows. 

For the shot-noise limiting case, neglecting for the moment background and 

pixelation noise, the localization precision follows the 1/√. scaling law (36) (61). 

Hence, one can use the photon-normalized geometric mean precision, rlÐ �
√. �ÉGÉIÉWd , as a resolution metric to compare 3D systems.  According to this metric 

the system demonstrated here achieves about 50% better precision than prior 3D 

PALM/STORM demonstrations using astigmatic (14) and bi-plane (47) imaging 

(corresponding to ~3 times smaller minimum resolvable volume) with more than 

twice the depth range. It thus becomes closer to achieving the axial resolution of 

interferometric systems (45) while providing one order of magnitude longer axial 

range with a much simpler system. It should be noted that the current DH-PSF 

experiment was performed with fluorescent proteins and over a long depth range, 

both factors which negatively affect the signal to background noise ratio.   

The astigmatic method (14) achieved a precision of É��, �, 
� � �9,11,22��� 

with 6000 photons, giving rÜ/ÊBálÐ � 1004 . The optimal estimator and the 

experiments reported here lead to rÐâlÐ � 614  and 669 for the individual single-

molecule and the ensemble, respectively. Note that this result was obtained with a 

slightly lower NA, as well as for samples with multiple emitters and lower photon 
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counts, which increase background noise. Still this metric suggests the dramatic 

advantage of optimal estimators combined with tailored PSFs. Ref. (47) reports the 

bi-plane method in a PALM-like experiment with precision of É��, �, 
� �
�30,30,75��� and (apparently) ~500 photons detected, leading to ràËlÐ � 910. Ref. 

(45) reports resolution tested with beads of É��, �, 
� � (9.5,9.5,4.1)nm providing  

ràËlÐ � 250 but with a range of only 225nm. For Ref. (42) the values on the table are 

estimated; the main drawback of this method being the limited field of view in one 

transverse dimension (under 1µm) as opposed to the other methods (>>10 µm). This 

information is summarized in Table 2.1.  

 

Table 2.1: Comparison of resolution and range among 3D PALM/STORM 
experimental results.  

 

These results show that the integration of PSF engineering, photoactivation-

localization imaging, and optimal estimation enables one order of magnitude 
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improvement in resolution along each spatial direction when compared with 

classical fluorescence imaging. This translates into three orders of magnitude 

improvement in the resolvable volume over a wide 3D field of view. In addition, the 

unknown, systematic aberrations may be completely characterized through 

comparison of the PR recovered pupil and that of the expected pupil. This data may 

then be used to provide the user additional information concerning the sources of 

the aberration (e.g. spherical aberrations due to the distance from cover slip), 

representing a useful byproduct of the method.  

 

2.9    Conclusion 

In conclusion, the optimal estimator based on a (PR-enabled) MLE, tailored to 

match the conditions found in single molecule imaging, is efficient in reaching the 

3D localization performance limits with arbitrary PSFs. The rigorous depth-variant 

PR interpolation of calibration data takes into account systematic errors caused by 

unknown and unavoidable 3D optical aberrations. The optimal 3D localization 

algorithm in conjunction with a DH-PSF shows the best 3D localization precision in 

PALM/STORM systems with an extended depth range, enabling a ~1000 fold 

improvement in resolvable volume with respect to classical fluorescence microscopy.  

 

2.10  Appendix A: PR-MLE Algorithm Flowcharts 

In the following an explicit enumeration of the PR-MLE algorithm steps is 

presented for the purposes of reproducing the results presented herein. First, the 

Phase-retrieval algorithm is presented in Fig. 2.13. This algorithm is followed after 
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three calibration images have been collected experimentally. The steps enumerated 

along the right-hand column list the particular equations which are required to 

complete one iteration of the Phase-retrieval algorithm. Once the PR algorithm is 

completed, the results can be stored for later use. 

 The PR results are used in this text as an optical system model to be applied 

for 3D particle localization. The 3D particle localization is accomplished by following 

the flowchart in Fig. 2.14 for Maximum Likelihood Estimation (MLE). 

 

Fig. 2.13: The enumerated steps of the Phase-Retrieval (PR) algorithm used in this 
text. The steps on the right-hand side are followed in order to complete one 
iteration. The assumptions used for successful PR are explicitly identified. 
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Fig. 2.14: The Maximum Likelihood Algorithm (MLE) which is presented in the 
main text. After completion of the Phase-Retrieval algorithm reported earlier, the 
MLE is used to match the 3D location of a point source in an experimental image. 
The post-processing steps which make up the MLE are identified separately. The 
assumptions required are explicitly presented in the left-hand side. 
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CHAPTER 3 

 

2+1D IMAGING WITH ENGINEERED POINT SPREAD FUNCTIONS 

 

 

 

3.1    Introduction 

The use of a Double-Helix shaped engineered Point Spread Function (DH-PSF) was 

introduced and demonstrated for application to quantitative 3D microscopy in 

Chapter 2. In that particular application it was established that the patterned, 

diffraction-based propagation of the DH-PSF design increased the axial position-

related information content in a signal and consequently improved localization 

precision. Whereas the imaging technique of Chapter 2 relied on the precise 

localization of individual molecules with a non-linear response to the incident 

radiation to generate super-resolution images, this chapter will be restricted to 

objects that exhibit a linear response to the intensity of incident illumination. In 

addition, the lessons from that prior analysis will now be applied at the other end of 

the size scale where axial-ranging solutions of macro-sized objects have dominantly 

been designed using geometrical optics.  

Common examples of these geometrical solutions include stereo-vision, which 

uses the disparity of object position in two images from cameras with known, 

different viewpoints (62); and depth-from-defocus, which uses the projected size of 
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the optical pupil in the image plane to estimate depth (63). As opposed to 3D 

imaging and tomography, these examples, are considered 2+1D and are functionally 

similar to profilometry. Due to the relative success experienced at the nano-scale 

with engineered PSF solutions it is worthwhile to examine whether diffraction-

based designs can improve axial-ranging for macro-scale problems and if so, develop 

an intuition on what limits and trade-offs can be expected.  

In this chapter, a system is considered for imaging a random collection of 

objects with extended shape. Therefore one can no longer assume the object being 

imaged to be known a priori. This is a significant departure from the prior 3D 

microscopy work in Chapter 2 – where the object remained a single-molecule and 

was well approximated as a point-like source. For the single-molecule work, this 

simplified the problem of estimating the PSF, and subsequently the 3D position, 

from an experimental image, 

     � � ½�
� = 	 � ã                        (3.1) 

where � is the image, 	 is the object, ½�
� is the axial shift-variant PSF and ã is the 

additive random noise. With a point-like source, the object 	 can be approximated as 

a delta function. Therefore the image and the PSF can be considered exact 

duplicates, i.e. � � ½�
�, and the estimation problem is reduced to the extreme case 

where direct estimation of axial position is feasible with a single image.  

The passive-ranging problem becomes less straightforward immediately after 

removing this prior knowledge and admitting random objects as possibilities. Such 

a scenario will be typical for the application of imaging extended objects found in 

natural scenes, biological samples and surveillance applications. A solution is 
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therefore necessary in order to extend the existing work of diffraction-based 

engineered PSFs to extended object, passive ranging problems. Additionally, it must 

be evaluated whether engineered PSFs provide improved axial-localization 

solutions for the macro-scale problems with random objects, and if so, how the 

localization precision depends upon the specific object under investigation.  

Finally, because the localization is determined from ½�
� the PSF must be 

sampled appropriately on the detector for the estimation algorithm to work 

properly. This places a constraint on the maximum numerical aperture of the 

imaging lens which then imposes a limit on the Field-of-View (FOV). This 

relationship between the Field-of-View and Depth-of-Field for engineered PSF 

solutions is examined in more detail in Appendix A. 

For the purpose of this study, the active use of illumination control (for 

example, time-of-flight and structured-illumination imaging (64) (65)) is excluded 

from consideration in favor of passive solutions which will only require modification 

of optical element design. Passive systems are relevant for solutions where data 

must be collected without leaving any trace of the measurement process in the form 

of emitted radiation - of paramount importance for surveillance applications. 

Passive solutions also provide an advantage in terms of power consumption since 

adequate lighting of a scene is provided from ambient illumination instead of being 

actively controlled. It should be noted that the current goal of incorporating 

engineered PSFs into both of these extended object and macro-scale imaging 

problems will not prevent future solutions from including an active illumination 

component designed to exploit the prior passive system designs. In fact, this is one 
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potential avenue for future growth in the engineered PSF domain. In either case, 

the trade-offs of the passive system design must first be known and demonstrated.  

 

3.2     Background 

For passive ranging systems, a sense of depth is provided from defocus modulation 

of the PSF. This axial-dependence is demonstrated in Figure 3.1A, where the PSF of 

a standard camera is shown as the image of a point is defocused. The result of 

defocus is an enlarged transverse pattern, consistent with the observation that out-

of-focus objects are blurry and carry limited high-spatial frequency information. 

Solutions exploiting this axial variation are attractive for macro-scale ranging 

because they are wide-field imaging solutions which parallelize the data input along 

the transverse dimension of the image in contrast to point-by-point scanning-based 

techniques. The axial-position information of the object is then contained in a 

depth-dependent pattern encoded into the image. Note that in some cases this 

pattern can be ambiguous, with more than one axial-position producing the same 

image (6). This is the case for the standard optical pupil which is found in most 

cameras and reviewed above. For this reason, the depth-from-defocus systems have 

required the use of more than one image via either the active adjustment of focus 

across an image series (66) or the use of multiple-fixed focal planes. Either case will 

provide unique depth discrimination as given by the rate of change of the radius of 

blur (67) (68) (69). Coded pupil functions represent an alternative which can be 

utilized to engineer the PSF for increased depth sensitivity/information (11) (12) 

(15) (70). With suitable coding, it has been demonstrated that these methods can 
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operate under passive and polychromatic illumination (7) (15) (29), thereby making 

them useful for a variety of imaging applications. 

 

 

Fig. 3.1: The dependence of three PSFs is presented as a function of the source axial 
position. The standard camera PSF (panel A) is compared with the Double-Helix 
PSF (panel B) and Cubic-Phase PSF (panel C) through an equivalent range of 
defocus. The standard camera PSF is symmetric about focus, the DH-PSF has a 
unique rotation angle at each position and the cubic-phase PSF has an axially-
invariant PSF. 

 

The advantage of the DH-PSF relative to the clear aperture has been its 

ability to range with enhanced precision when given a priori knowledge of the object 

(11) (35). Rather than encoding with blur, the DH-PSF encodes the axial position of 

the object with the rotational orientation of duplicative object copies in the image. 

For point sources, these images will trace a double-helix pattern as the object is 

moved through focus, as shown in Figure 3.1B. In this chapter, the functionality of 

using a DH-PSF to passively range random, extended and macroscopic objects 

under broadband illumination is investigated for the first time. Prior work (11) 

investigating axial ranging, or alternatively 2+1D imaging, of random, extended 

objects using the DH-PSF has been limited by use of the following: 
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A. a second optical channel with limited optical efficiency (the f/# is increased to 

increase the depth of focus at the cost of reduced aperture size); 

B. low efficiency amplitude holograms for optical encoding;  

C. the use of quasi-monochromatic illumination.  

This chapter expands upon this prior art by addressing each of these effects and 

their influence on the system design. 

 

3.3    2+1D Imaging with Engineered Point Spread Functions    

As discussed earlier, to satisfy the most general imaging applications, one must 

operate without assumptions on the types of objects present in the scene. Because 

the PSF applied to encode ranging information is necessarily axial shift-variant, the 

problem of estimating position from a single image becomes under-determined 

without additional information about the object. This can be seen from the imaging 

equation,  

���, �� �  ä
XC_·_` å ½�� � �, � � �; 
�	��, �; 
�0�0�0
H∞A∞

�  æ          (3.2) 

(71) where ½��, �; 
� is the axial shift-variant PSF, 	��, �; 
� is a planar object or 

scene, ���, �� is the image, 01 is the object distance, 0B is the image distance, ' is the 

wavelength and ç is a constant of proportionality. Noise is addressed in imaging 

with an additive random variable, nnnn, denoted in bold. Here, the measurement ���, �� 

contains no unique information to allow disambiguation of the contribution from 

either the PSF or the object. To address this problem a second optical channel 
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(camera) is proposed to provide unique object information which will be used to 

recover partial information about the PSF.  

The second optical channel solution will be dedicated to the estimation of 

object shape. It must therefore provide uniform imaging performance/resolution 

throughout the same axial working distance as the ranging (DH-PSF) channel. 

Because the DH-PSF has an operational range well outside the traditional Depth-

of-Field (DOF) of a clear circular aperture with equivalent f/# (about a 12x increase 

as defined by Hopkins allowable defocus criteria in ref. (6)), an extended DOF 

(EDOF) channel is required to complement the DH-PSF channel. Prior work has 

utilized a standard optical aperture with higher f/# to accommodate this depth-of-

field requirement with an invariant PSF (11). The increased f/# will reduce the 

aperture size and consequently decrease the optical efficiency. To address this, an 

alternative is investigated using the Cubic-Phase (CP) pupil function (6), 

     ���, �� � !Bb�NdHOd�     (3.2) 

where the CP-PSF is shown in Figure 3.1C. Modulation of the coefficient α is 

required to find an optimum match to the depth-of-field of the DH-PSF channel (72) 

but in general g h 20 (6). The use of a cubic-phase pupil allows the f/# of the two 

optical channels to be matched – thereby optimizing the optical efficiency of the 

design. 

From the CP-PSF channel, an estimate of the diffraction-limited spatial 

frequency content of the source is provided via Wiener deconvolution. The Wiener 

deconvolution filter uses the image  �ÆÐèÎ and the known axial-invariant PSF ½ÆÐèÎ 

to estimate the object as, 
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��, �� � �A, � �4BØ×é�8
�4¼Ø×é�8 ] |�4¼Ø×é�8|C

|�4¼Ø×é�8|CH��P�^�¨©a�   (3.3) 

where � denotes a Fourier transform and the carrot denotes an estimate.  

The axially-dependent DH-PSF is similarly found from,  

    ½êÐâ��, �; 
� � �A, ] �4BØ×é�8ë�4B×ì8
|�4BØ×é�8|CH��P�^�¨© �4½ÆÐèÎ8a.   (3.4) 

The solution ½êÐâ can then be used to estimate z-position through a calibration of the 

DH-PSF rotation angle to axial position, an example of which is given in Figure 3.2. 

Note that each of these filtering operations (Eq. 3.3 and 3.4) have been regularized 

by the spectral SNR in order to account for the presence of noise. In practice, this 

spectral SNR is assumed to be white and found empirically. An axial position 

estimation technique based upon the generic geometrical features of the recovered 

½êÐâ is chosen in lieu of an MLE because the centroid/rotation angle algorithm in 

Fig. 3.2 is expected to be more robust to the noise inherent to deconvolution results. 

 

 

Fig. 3.2: A rotation angle is associated with the DH-PSF image by calculating the 
angle subtended by the centroids of the two lobes and a frame-of-reference on the 
detector plane – here the horizontal axis (Panel A). The DH-PSF rotation angle 
varies as a function of axial position (Panel B). 
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3.4    Theoretical Performance Limitations 

To justify the use of the DH-PSF for this application, the Cramer-Rao Lower Bound 

(CRLB) is analyzed to quantify the theoretical lower limit of precision for axial 

ranging and to aid in comparison with alternative designs (33). In contrast to prior 

analysis (11) (35) (37), the CRLB will also be used to understand the precision 

dependence on object type. Using the imaging model described in Eq. 3.2, the CRLB 

is calculated using two input objects; an ideal point source as well as a sample 

image of a die-cast model car. The sample die-cast model car object is taken from 

the right-hand portion of the experimental image in Fig. 3.6A. The CRLB is 

calculated using, 

 ÉßPÅàA#�
� � ∑ ∑ L ,
¶§ ] {

{W �′¦�, �ªa#Q���,���,    (3.5) 

where �′¦�, �ª í î Ý�'��¦�, �; 
ª0'XCX©  is the broadband, pixilated image, É� is the 

standard deviation of per-pixel Gaussian noise; and ÉßPÅà is the lower limit to 

measurement precision (standard deviation) associated with axial estimation (73). 

Values for the broadband spectrum Ý�'� are selected to match with an 

experimentally characterized filter used later in the experimental section and 

shown in Fig. 3.4.  

The axial-ranging CRLB performance of a single DH-PSF image is compared 

with that of a single, clear circular aperture image in Fig 3.3 as a function of the 

object axial-position. A Gaussian dominated noise process with a SNR of 16 is 

assumed in the CRLB calculation, where SNR is defined as the ratio of maximum 

pixel counts to the standard deviation from noise.  
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These results demonstrate the relative dependence of precision on the object 

under investigation. This dependence is understood by the fundamental observation 

that with engineered PSF methods only the spatial frequency content present in an 

image can be coded. For the point-source, the full advantage of the engineered PSF 

design can thus be exploited. For a random, extended object, the spatial frequency 

content is limited and therefore the relative advantage associated with the 

engineered PSF is decreased. Despite this, the performance of the DH-PSF channel 

is more uniform over the region of interest and generally improved upon the 

performance of the standard camera – justifying use of the DH-PSF for axial 

ranging. 

 

Fig. 3.3: Cramer-Rao Lower Bound (CRLB) analysis of the axial estimation 
precision for a point source (top panel) and a die-cast car (bottom panel). The 
performance of the DH-PSF and standard camera is reported. 
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3.5    Passive Ranging and Extended Depth-of-Field Experiment 

The experimental implementation of an engineered PSF 2+1D camera must be able 

to accommodate the two optical channel design. This can be realized with the 

serialized engineered PSF imaging system shown in Fig. 3.4 which uses a Spatial 

Light Modulator (SLM) to cycle through the appropriate pupil functions. This 

design consists of an imaging lens paired with a chromatic filter (1/e2= 80nm) and 

linear polarizer, which is then followed with a 4F imaging system. A SLM is placed 

in the Fourier plane to allow the manipulation of multiple engineered PSF channels 

as a dynamic, serialized collection of task specific images. The reflective phase-only 

SLM (Boulder Nonlinear Systems XY-P512) has 8-bit dynamic range which controls 

the phase within 0 � 2ï on a 512x512 pixel array. This SLM necessitates the use of 

a polarization analyzer to block the light with polarization orthogonal to the active, 

modulation axis of the SLM. Because the SLM is chromatic, the color filter is chosen 

to coincide within the design range of a calibrated SLM. The angle of incidence to 

the reflective SLM is θ = 18˚. However, the SLM refractive index control is 

optimized for normal incidence and to compensate for the effect of incidence angle 

the DH-PSF mask was linearly scaled by a factor of 0.9 to minimize the DC spot 

observed in the image (Fig. 3.5). The final image is formed a distance +l from the 

last lens. A monochrome detector (Point Grey GRAS-20S4M) with 8-bit dynamic 

range per pixel and a 4.4x4.4µm pitch pixel is used for capturing images. The lenses 

have focal lengths +, = 60mm, +# = 80mm and +l = 100mm. The aperture size of the 

phase mask was limited to ð � 4.19mm by an iris and the object space focal plane 

was located at 0èàñ = 1m. To complement the DH-PSF channel, a cubic phase mask 
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was implemented for EDOF imaging with a cubic coefficient of g = 166 in 

normalized coordinates (6). In-focus experimental PSF images from both optical 

channels are shown in Fig. 3.5. A demonstration scene is created which consists of a 

pair of die-cast cars located at two different axial distances and illuminated by a 

halogen bulb. A representative image taken with a clear, circular pupil function is 

shown in Fig. 3.6A.  

 

 

Fig. 3.4: Experimental configuration of serialized engineered point spread function 
optical imager. The imaging lens (L1) is paired with a color filter (F) and 
polarization analyzer (P). The intermediate image (ii) is re-imaged through a 
Fourier transform lens (L2) such that the phase of the spatial frequency 
components can be modulated with the SLM. An iris (I) is placed before the SLM to 
confine the incident light to the modulated region of the liquid-crystal device. The 
final Fourier transform lens (L3) is used to complete the optical encoding and form a 
signal on the detector (D) which is related to the object and encoded with the 
desired engineered PSF. 
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Fig. 3.5: The experimental DH-PSF image (panel A) and experimental CP-PSF 
(panel B) are shown as measured after L3 in the engineered PSF imaging system. 
 

For 2+1D imaging, axial position estimates are required as a function of 

transverse position. Therefore, a Kaiser window with a damping coefficient ò � 5 is 

applied to local regions of the image (128x128 pixels) and used to estimate the axial 

position within the scene by applying Eq. 3.4. A 128x128 pixel window is taken at 

every 8 pixel interval in the image and deconvolved with the EDOF image in order 

to create a dense array of axial position estimates. The resulting passive-ranging 

image therefore sub-samples the original wide-field image by a factor of 8x.  

As discussed earlier, engineered PSF methods rely on the spatial frequency 

content of the scene, therefore a confidence measure for each axial estimate can be 

made based on the Fourier content within each transverse window. The chosen 

confidence measure provides a normalized indication of the high-spatial frequency 

content in the image as, 

   r� � î î |´�N,O�|C_N_O�³ó±ô��³ó±ô�
î î |´�N,O�|C_N_O�³ó±V�³ó±V

.    (3.6) 

In practice, the selection of õN, õO is found through an iterative search for the best 

results and +�ÇG is determined by the pixel size in the detector plane. The result for 
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an experimental image is shown in Figure 3.6B. This indicates that the detailed 

portions from either car should have axial estimates with the highest confidence. 

 

Fig. 3.6: The experimental image (panel A) contains spatial frequency information 
which is used to provide local confidence measures with regards to the axial 
estimation (panel B). 
 

Histograms of the estimated axial positions in Fig. 3.7 reveal that the front 

and back details for each car can be resolved. The mean distance to the front of the 

cars was 84.15 & 0.52 J� and 98.16 & 0.26J� for the left and right cars of Figure 

3.6A, respectively. The ranging measurement used 169 and 112 independent 

estimates for the left and right car, respectively, resulting in an error of the mean 

estimate of 0.04J� and 0.03J�. The minimum fractional ranging error is therefore 

2.5/104, defined as the ratio of the error of the mean to the mean distance. An image 

segmentation algorithm is used to identify the individual cars and associate a mean 

position as shown in Fig.  3.8. 
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Fig. 3.7:::: Histograms for the dense collection of axial position estimates. Two broad 
distributions, indicative of the locations of the two cars are readily apparent.  

 

Fig. 3.8: The restored object estimate of the scene from the EDOF channel (panel A) 
is used for image segmentation. After segmenting the objects within the scene, an 
average axial distance is assigned to each car (panel B). 
 

Deviation from CRLB performance in this experiment is expected due to 

three factors:  

a) the car has a true three-dimensional profile and not a planar one as 

assumed in the CRLB calculation; 

b) estimators will always trade-off between calculation speed and estimation 

efficiency - in this experiment, calculation speed was emphasized to achieve faster 



 

67  
 

throughput. Note that, as discussed in Chapter 2, work on more efficient DH-PSF 

estimators is also an active area of research (29) (32);  

c) an estimate is given for 8x8 neighborhoods of pixels rather than an 

estimate grid as dense as the pixelated image. This is partially due to the practical 

difficulty of addressing the influence of the axial position dependent transverse bias 

of the cubic phase reference image (27).  The second factor is related to the 

computation time required for estimating such dense arrays. 

 

3.6   Digital Refocusing of Experimental Data 

Given the estimated 
-positions and a digital representation of the restored object, 

	
, the 3D profile of the scene can now be utilized for synthetically generating images 

of functional interest. Focus is used as one example because it can be used to 

emphasize objects with visual cues. It is use of this visual aid that has partially 

motivated renewed research in the light field or plenoptic camera (74). One 

drawback of the plenoptic camera design is a sacrifice of transverse resolution 

necessary to collect the information for refocusing. As an alternative, this system 

can render re-focused images by defining a synthetic camera with alternative DOFs. 

In addition, the object space focal plane can be alternatively shifted to either car to 

generate images which emphasize 3D features of the scene, demonstrated in Fig. 

3.9. This system can therefore realistically emphasize details of the scene while 

requiring minimal user input (only specifying the focal plane is necessary).  
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Fig. 3.9: Digital refocusing of the scene as a post-processing step. The proposed 
system returns a grid of axial estimates associated with the diffraction limited 
information content (panel a) to define function ö÷�ø, ù, ú�. Images can then be 
generated synthetically, emphasizing focus to convey visual information. Panels b 
and c alternatively focus on either object in the scene as a demonstration. 

 
3.7   Conclusions 

In summary, a serialized engineered PSF camera was demonstrated to recover the 

2+1D function describing the scene. The system performance limits were analyzed 

theoretically and compared with a classical method, the standard, clear, circular 

aperture. The experimental implementation was shown to have a fractional ranging 

error of 2.5/104. The recovered scene function is then used to synthesize functional 

images which convey particular information to the user. 
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CHAPTER 4 

 

GRAY-LEVEL LITHOGRAPHIC PHASE MASK FABRICATION  
FOR ENGINEERED POINT SPREAD FUNCTIONS 

 

 

 

4.1    Motivation 

In Chapters 2 and 3, it was shown that the introduction of an engineered Point 

Spread Function (PSF) into the optical system can be used to generate an improved 

solution for sensing and imaging. This chapter presents a method for 

manufacturing phase-modulating optical elements that impart aberrations to create 

an engineered PSF system. Fabrication of the optically-efficient phase masks 

proposed here will create viable replacements for prior implementations which use 

amplitude holograms (11) and Spatial Light Modulators (SLM) (13) (30) (31) (32). 

 

4.2    Background 

Engineered PSF solutions improve optical system performance in applications 

where high-precision quantitative measurement is necessary. For example, in 

demanding scenarios such as single-molecule imaging only a few thousand photons 

will enter the objective. Recent work has focused on the design of engineered PSFs 

which enhance the relative information carrying capacity of each photon to improve 

the theoretical precision in a measurement (35) (75). This was the case in Chapter 
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2, where the DH-PSF was employed for 3D super-resolution imaging. However, the 

most photon-efficient DH-PSF implementations have used SLMs and this rejects up 

to 50% of the incident light due to polarization constraints (13) (29) (48). Unless 

great care is taken to control and collect all polarization states of emitted light (30), 

the promised performance gains for applications with limited numbers of photons 

have not yet been realized.  

Alternative engineered PSF designs, such as the astigmatic three-

dimensional microscopy system (14) (76), can be implemented with an optically 

efficient design. For the astigmatic systems, this is realized by incorporating an 

additional cylindrical lens in the system to change the relative focusing power along 

the x and y axes. Another option, the bi-focal system, provides a solution which 

requires a second camera and redirection optics but still operates with minimal 

optical losses (47). Therefore engineered PSFs which require high-order aberrations, 

reduced symmetry and/or the presence of phase dislocations (a class which includes 

the DH-PSF) in the pupil plane of the lens have not been demonstrated with 

optically efficient implementations. This is an important limitation because as 

demonstrated in Chapter 2, image processing algorithms such as the PR-MLE can 

be used to realize the efficient information extraction from photons which arrive at 

the detector. Thus the remaining hurdle to realizing the full potential for DH-PSF 

imaging is the limited optical efficiency available in current implementations.  

The use of fixed phase masks, realized physically as surface relief 

modulations in an optical material, is advocated in this chapter as an optically-

efficient engineered PSF implementation. The phase mask can be considered a 
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Diffractive Optical Element (DOE) where the surface profile relates to phase delay 

of the incident wave by 0 � 2ï. In the paraxial and thin-element limit, these masks 

are approximately insensitive to polarization. They may also be realized using low 

absorption optical materials such as glass, quartz or polymer. Therefore, 

lithographic phase masks represent the most optically efficient option while also 

providing a compact, portable form factor with no power consumption. 

The first implementation of a DH-PSF lithographic phase mask is 

demonstrated in this chapter. This mask will be manufactured using mask-less 

gray-scale lithography. One representative mask is quantified in terms of optical 

efficiency and evaluated in an experimental configuration. Enabled by this photon-

efficient collection of light from single-molecules, an optical 3D super-resolution 

microscopy experiment is performed and the results reported here. Later in the 

thesis, more examples will be given using this lithographic technique to fabricate 

alternative engineered PSF designs.  

 

4.3    Review of Photo-lithography Techniques 

A DOE maps a phase and amplitude transmission function, 

       û��, �� �  ü��, ��!BT �N,O�    (4.1) 

to a pattern of: 

a. variably opaque material for amplitude encoding of ü��, �� 

b. surface height or refractive index modulation for phase encoding of  ���, �� 
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In this chapter, the focus will remain on phase mask fabrication with the amplitude 

encoding limited to a circular aperture described by, 

 ü��, �� �  J�KJ L√NCHOC
P Q    (4.2) 

where R is the radius of the pupil enclosing the surface relief modulation. The phase 

profile of the mask can be transformed into a surface relief given by, 

½��, �� � XV��XV�A,
T�N,O�

#\     (4.3) 

where '% is the wavelength of operation,  ��'%� is the refractive index, the working 

assumptions of the thin-element approximation, that the phase mask is mounted in 

an air environment and a low numerical aperture  (77). 

Phase masks have been realized using fabrication techniques such as direct 

diamond turning of a reflective/transmissive surface (78) (79), the multi-step 

exposure sequence of binary mask exposures (77), Ion beam etching (80), excimer or 

femto-second laser ablation (81), as well as gray-level lithography (82). The 

particular advantages and disadvantages of these methods are discussed in the 

following to aid in the selection of a suitable one.  

The direct diamond turning method works well with smooth continuous 

features such as the cubic phase mask (6) and the aspheric surfaces introduced by 

Polaroid in the 70s (78). A mechanical bit is scanned across the sample and moved 

vertically in order to remove a pre-determined amount of material and create the 

desired surface relief. Recent results have demonstrated ultra-precise fabrication of 

20µm transverse feature sizes with a minimum of 10nm feature sizes in height; 

indicating that the technical hurdles of direct-machining small features are 
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diminishing (83). However, one practical issue remains in that it requires long 

fabrication run-times and is therefore very expensive. 

Multi-level, multi-exposure lithography is the repeated process of applying a 

binary lithographic mask in order to realize 2� levels with M masks, outlined in 

Fig. 4.1 (84) (85) (86). This method is frequently referred to as binary optics. The 

technique has good transverse resolution – typically limited to ~1 micron. 

Unfortunately, the method suffers from a propagation of errors due to the 

tolerances associated with alignment of each mask exposure required in a multi-

level structure.  

 

Fig. 4.1: Multi-level lithography as a multi-step process using binary masks. The 
use of M masks will allow up to 2� levels. 
 
 

In addition, only a discrete number of surface heights are realizable and must 

be used to approximate a continuous surface. This is a known problem and the 

relationship between the number of discrete steps and the quality of the DOE has 

already been studied (84) (87). For example, the quality of the mask may be 

characterized as the diffraction efficiency of a phase grating when using 2� discrete 

levels as, 

     Ý��� � ]/B��\/��
\/� a#

     (4.4) 

where the results given in Fig. 4.2 (25). Based upon this, a minimum of eight levels, 

or three binary masks, would be required to begin approaching acceptable 
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performance. However, as mentioned earlier, the problem of aligning three or more 

binary masks sequentially is not trivial.  

 

 

Fig. 4.2: Diffraction efficiency of a phase grating as a function of the number of 
resolved phase levels. Note that ýþ phase levels are achievable with þ binary 
masks. 

    
Direct-write methods such as ion beam etching (80), excimer/femto-second 

laser ablation (81) and gray-level lithography (82) are options which can avoid the 

non-trivial alignment associated with binary optics. Of these options, gray-level 

lithography presents the only option which is not a scanning-based technology and 

therefore avoids the long fabrications times which are also associated with direct 

machining (84). The gray-level technique requires only one exposure to transfer a 

spatially varying intensity pattern and develop the phase mask. Early gray-level 

lithographic systems were implemented using half-tone masks – where the gray-

level characteristic was generated by the varying density of opaque regions on the 

mask, shown in Fig. 4.3 (84). Alternative gray-level options now exist where the 

optical transmission is controlled by variation of the optical absorption of the mask. 

More recently, gray-level lithography has been introduced using mask-less systems 
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(82). Implementing the same digital micro-mirror device (DMD) which is common to 

projection illumination systems, the permanently fixed gray-level mask can be 

replaced with a projection of the two-dimensional, intensity modulated signal from 

a DMD, illustrated in Fig. 4.4. As with the prior gray-scale methods, the time 

required to record large structures remains short. This makes gray-level 

lithography both inexpensive and simple to realize since fewer steps are necessary 

to fabricate the phase mask. Here, this method is investigated for the first time to 

fabricate optical phase masks to implement engineered PSFs such as the DH-PSF.  

 

 

Fig. 4.3: Use of a half-tone or variable absorption mask allows the projection of 
gray-scale tones for variable surface relief heights. 
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Fig. 4.4: Gray-level, mask-less lithography operates by projecting an intensity-
modulated pattern which is representative of the desired surface/phase modulation. 

 
4.4    Methods 

Gray-level lithography can be implemented with either positive or negative photo-

resist. These two options will develop differently after exposure to light. The 

positive photo-resist removes only the material which has been exposed to light 

whereas the negative photo-resist removes the material which has not been exposed 

– as reviewed in Fig. 4.5. The positive photo-resist Clariant AZ-4210 was selected so 

that less material will be removed during development of the phase mask (88). This 

is believed to improve the fidelity of the transfer of intensity information as well as 

improve the environmental durability of the sample. In addition, this is a common 

photo-resist used in many laboratories – meaning that the processing developed 

here would be applicable to other research labs. Finally, AZ-4210 has the beneficial 

property that it is frequently used as a 2�� thick film. Since the desired surface 
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modulation will be on order of 1�� the AZ-4210 will be able to accommodate phase 

delays between zero and 2ï. 

 

 

Fig. 4.5: Comparison of the development action of a positive versus negative photo-
resist. The positive photo-resist removes material which has been exposed while the 
negative photo-resist removes the material which has not been exposed. 
 

 

However, one practical problem is immediately identified. Photo-resist has 

been traditionally designed to behave non-linearly to incident illumination. This is 

to allow the production of high-contrast regions when performing the more 

traditional binary mask exposure. This high-contrast is necessary for the 

lithographic fabrication of electronic components but not of direct utility for the 

manufacture of quasi-continuous surface profiles. Therefore, gray-level development 

will require modification to the typical photo-resist processing parameters in order 

to calibrate exposure dose to surface relief height.  

The gray-level exposure from the DMD will directly contribute to a surface 

relief modulation in the photo-resist after development. Therefore, the use of the 

resist is explored as an actual phase-mask implementation. This will allow fewer 

necessary processing steps to generate a usable mask and represent a rapid-

prototyping option. Alternatively and more conventionally (77) (84), the mask may 
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be etched directly into a quartz substrate from this patterned photo-resist to 

improve the environmental robustness of the sample.  

The gray-scale lithography is performed in the Colorado Nanofabrication 

Facility (CNL) at University of Colorado, Boulder. A commercial device (Intelligent 

Micro-Patterning SF-100 Xpress) is identified for gray-level mask-less phase mask 

fabrication. The necessary processing steps to use this device and manufacture a 

phase mask are identified as, 

A. Manufacture substrate with integrated chrome aperture 

B. Spin on optical quality photo-resist layer 

C. Alignment of lithographic device to sample 

D. Calibrate energy dose to generate gray-level surface relief 

E. Photo-resist Development 

These steps are discussed individually in the following sub-sections. 

A. Manufacture Substrate with Integrated Chrome Aperture 

The passage of light through the phase mask must be restricted to the area 

associated with the surface profile. Therefore a chrome aperture which is integrated 

into the sample substrate will be necessary to block any unwanted light. The 

modulation of this chrome mask is required only to have two states: opaque and 

transparent. Therefore a binary mask writing system is identified as the solution to 

manufacture the appropriate design.  

Commercial substrates, coated with chrome and finished with a layer of 

photo-resist are readily available in CNL. These are used here for the rapid 
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manufacture of chrome apertures. The substrate (Nanofilm 4x4”, 0.060” thick soda-

lime glass with an additional positive photo-resist layer) can be loaded into a 

binary-mask writing device, here the Heidleberg DWL 66FS available in CNL, and 

a direct-write, laser patterning algorithm will expose the photo-resist layer in 

regions which should be transparent. 

For the current application, the design in Fig. 4.6A is manufactured. This 

pattern consists of an array of chrome apertures such that many substrates may be 

diced out of the sample. The fabrication dimensions of one chrome aperture are 

given in Fig. 4.6B. After exposure and development of the photo-resist layer to 

remove the photo-resist and expose the chrome in the 2.7mm diameter pupils, the 

substrate is placed in chrome etchant to selectively remove the chrome layer and 

reveal the desired pattern. Following this step, the entire substrate is placed in 

photo-resist stripper and washed in de-ionized water to provide a clean surface for 

spin coating the next layer of photo-resist to be used as the phase mask.  

The glass substrate can be scribed and cut into the desired form factor, here a 

10x10mm unit cell. Each chrome aperture is designed to be 2.7mm in diameter in 

order to be consistent with the field size of the mask-less lithography equipment 

(IMP SF-100 Xpress). Note that this aperture size is not a fundamental limitation 

as in the future stitching capabilities of the SF-100 can allow for larger masks. 

Tolerances for that production will be analyzed at the end of this chapter. The top 

left region of the unit cell provides an area where a unique ID is associated with the 

mask. The 2.7mm diameter aperture is placed in the middle of the unit cell. Four 

alignment marks are present near the centers of the edges. The alignment marks 
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are 8mm across from each other and 200 microns in width. These alignment marks 

are used to map the projected pattern to the chrome aperture such that the mask 

may easily be centered onto the sample. 

 

  

Fig. 4.6: Binary mask layout of 81 2.7mm diameter apertures to be recorded using 
the Heidelberg direct mask writer. A close up of the unit cell for each mask is shown 
in panel B. 

 
B. Spin on Optical Quality Photo-resist Layer 

To prepare the substrate for photo-resist, the sample is first spun-coat with HMDS 

(Hexamethyldisilazane) on the side opposite the chrome in order to promote 

adhesion of the photo-resist to the glass layer. The use of the backside of the chrome 

is recommended in order to minimize fluid wakes from the etched edges of the 

chrome/glass interface which were observed when the photo-resist was spun onto 

the same side as the chrome. The positive photo-resist, AZ-4210 is then spun next 

into a uniform film.  

A study was initiated to search for the optimum spin parameters but found 

the quality of the film layer to be independent of spin time, as shown in Fig. 4.7. A 
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slowly-varying surface modulation of up to 50�� was typical of all spin times and 

will contribute to aberrations in the final mask. The 40 second spin-time was chosen 

in practice because it resulted in a profile similar to a linear-ramp. When placed in 

the Fourier plane of an imaging system (a common design), this aberration should 

result in a transverse shift of the image. The spin-rate is determined by the 

manufacturer specifications which relate spin-rate to layer thickness. A typical 40 

second spin of AZ-4210 results in a 2 micron thick layer.  

 

 

Fig. 4.7: The relationship between the spin time and the resulting surface 
modulation. The upper panel in A-D is the absolute measurement and the lower 
panel is the deviation from a smooth fitting of the absolute surface. The standard 
deviation of the surface roughness was measured to be ±1.0nm, 1.6nm, 1.2nm, 
0.9nm as the spin time varied from 20 seconds to 50 seconds, respectively. 

    
C. Alignment of Lithographic Device to Sample 

As shown in Figure 4.6B, the unit cell of the phase mask contains a chrome 

aperture with four, small rectangular windows surrounding it. These windows are 
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used for aligning the relative position and rotation of the substrate to match that of 

the projection system. The mask-less lithographic system is set to project a 200 

micron diameter circle onto the substrate. The sample stage is then translated 

axially until the top, photo-resist layer is in focus. Then the sample is translated 

transversely until the projected circle is centered on one rectangle of the chrome-

substrate. Each alignment mark is separated by 8mm, and an appropriate stage 

translation should yield an aligned projection of the circle to the chrome aperture. 

The sample is rotated until a 1D translation satisfies this criterion. The center of 

the chrome optical aperture for the phase mask can then be found with a 4mm 1D 

translation towards the center of the substrate. The sample is now prepared for 

exposure of the desired phase mask surface relief profile. 

 

D. Calibrate Energy Dose to Generate Gray-Level Surface Relief 

In general, the exposure of the photo-resist to optical radiation has been designed to 

initiate rapid polymerization of the material. Because of the popularity of binary-

step lithography, the photo-resist is optimized to be very sensitive in order to 

generate features of greater contrast or aspect ratio. Fig. 4.8 is an approximate 

characterization of the behavior for single-species depletion which causes the 

polymerization of photo-resist. For gray-scale lithography, the desired outcome is to 

calibrate the exposure dose such that a number of polymerization levels are 

discretely addressable and can translate into a variable surface relief profile.  
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Fig. 4.8: Characterization for the polymerization of photo-resist as a function of 
input optical energy. 

 

In practice, with the mask-less device used at CNL this calibration is 

achieved by generating an image with known, gray-scale values in photo-resist. 

After development, the surface contour can be measured with a profilometer in 

order to quantify the dependence of surface relief height to exposure energy. For 

this reason, the area outside the chrome aperture in Fig. 4.6B is utilized for gray-

scale exposures which provide a run-time calibration of the relationship between 

exposure dose and surface relief.  

 

 

Fig. 4.9: Example gray-level map for phase mask fabrication. The main feature is 
the desired surface profile and it is accompanied by a linear gradient of illumination 
levels along each side of the exposure. These outer regions are used for calibration 
purposes. 
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One example of the projected gray-scale exposure is shown in Fig. 4.9. The 

result of these calibrations is shown in Fig. 4.10, where an approximately linear 

surface profile is generated from variable gray-scale exposure doses within the 

range on the x-axis. The associated energy density of the illumination is measured 

and given for calibration of future experiments. It has been observed that the 

characteristic of this profile can vary significantly from day to day or given different 

batches of photo-resist. Note that with this commercial device 256-discrete 

illumination levels are addressable. However, because of the non-linear optical 

response from polymerization, only a subset seems resolvable using single-dose 

exposure and development procedures.  

 

 

Fig. 4.10: Example calibration of energy dose to surface relief. This relationship can 
be corrected to the different resolvable levels of the DMD.  
 

The DMD in the mask-less system projects a 1024x768 pixel image onto the 

photo-resist sample. The exact projected pixel size is measured here in order to 

match the phase mask pattern to appropriately fill the aperture. To find the feature 

size, a series of checkerboard exposures of varying sizes were recorded. The feature 

size of the checkerboard varied from 8x8 to 4x4, 2x2 and 1x1 DMD pixels. A test 
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sample was prepared, exposed and developed and then examined under a bright-

field microscope to compare the fidelity of the features and establish a minimum 

usable feature size. 

Microscope images of the progression of checkerboard patterns are presented 

in Fig. 4.11. The fidelity of the pattern is seen to fail for the 1x1 pixel checkerboard. 

The exact cause of this failure mechanism remains unknown. One possibility which 

was investigated is related to the relative movement (caused by vibration) of the 

DMD projection and the sample stage. However, one would expect reduced contrast 

at the 2x2 pixel level as well. A line-scan from the 4x4 region reveals that the 

average projected pixel size is 3.4 microns, shown in Fig. 4.12. 

 

        

Fig. 4.11: Test of optical resolution size in the photo-resist patterns by projecting 
checkerboards and imaging with bright-field microscope.  
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Fig. 4.12: A trio of line-outs across the 4x4 super-pixel region. The periodicity of the 
scan is used to calculate that the projected pixel size is 3.4 microns. 
 
 

E. Photo-resist Development  

After the photo-resist has been exposed with the gray-level mask dosage, the next 

process is to develop the resist and remove the exposed regions. Development 

requires a mixture of Clariant developer AZ-400K with deionized water at a 1:4 

ratio. The sample should be mildly agitated in the solution for between 90 and 300 

seconds. Then it is rinsed in de-ionized water for 90 seconds.  

A characteristic of this mask-less lithographic system is that gray-level 

surfaces are not smooth. Instead the surface increases in roughness – a result of the 

discrete, and non-ideal pixels of the DMD which projects a non-uniform incident 

illumination onto the sample. Surface profilometry of a developed, uniform exposure 

in photo-resist reveals that after the development process (including exposure and 

polymerization) the surface roughness of the photo-resist characteristicly adds 

features ~30nm in height, as shown in Fig. 4.13.  
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Fig. 4.13: Surface profilometry results of photo-resist before exposure and after 
development reveals that the mask-less lithographic procedure results in a surface 
with a distinctly different roughness. 
 
 

A final step before use is to photo-bleach the resist such that the optical 

absorption is minimized. A standard UV source is used to bleach the sample in 

minutes. The result is an optically transmissive layer of photo-resist. The refractive-

index of the phase masks after this final step is measured to be ��633��� � 1.635 &
0.002 using ellipsometry.  

 

4.5    Fabricated Phase Masks 

The procedures developed earlier are followed to manufacture phase masks for 

direct system implementation. Each mask can be optimized for the specific 

wavelength required in the experiment through modulating the exposure dose. Two 
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example phase masks are presented in Fig. 4.14. The surfaces are characterized 

using white-light interferometery (Zygo New View).  

 

Fig. 4.14: 2D surface profilometry of two example phase masks produced following 
the recipe discussed in this chapter. The top row is the design mask and the bottom 
row shows the fabricated surface. The left panels are associated with the Double-
Helix PSF. The right panels are associated with the Single-Helix PSF introduced in 
Chapter 5. 
 

 
To aid in device integration, interchangeable sample mounts were fabricated 

for commercial items such as a Zeiss microscope. One example mount is given in 

Fig. 4.15. Placement of the mount into the DIC (Differential Interference Contrast) 

slider of a commercial microscope is approximately similar to encoding the pupil 

plane of the objective to have an engineered PSF profile. The results from imaging a 

ruled line from a microscope adapted with a DH-PSF phase mask in this way are 
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presented in Fig. 4.16 as a function of defocus. Two copies of the single line are 

easily observable and the relative rotation of each line is highlighted with a circle to 

aid in identifying the rotation orientation.  

 

 

Fig. 4.15: Mount designed to fit a phase mask into the DIC slider port for Zeiss 
microscopes. 

 

Fig. 4.16: DH-PSF images from a modified Zeiss microscope after placing the phase 
mask in the DIC slider. The object being imaged is one ruled line from a calibration 
sample and is demonstrated to rotate as a function of defocus in panels A-F. 

 



 

90  
 

The white-light interferometer (Zygo New View) result from an additional 

DH-PSF phase mask, designed to operate at λ � 514nm, is given in Fig. 4.17. For 

the AZ-4210 photo-resist, a 2π phase delay in wavefront corresponds to a thickness 

of 816 nm. Tests to establish the optical efficiency and PSF performance of this 

mask are now performed in order to characterize the quality of the phase mask 

fabrication.  

 

Fig. 4.17: (a) Surface profile of the DH mask design. (b) Measured surface profile of 
the fabricated phase mask. The colormap corresponds to the height relief. The 
diameter of the mask is 2.7 mm. 

 
Qualitatively, the fabricated mask matches the design relief in terms of 

position of phase vortices, phase gradient and location of the extrema. It is 

important to note that phase vortices and their locations are critical for generating 

the desired DH-PSF. The imperfections shown in Fig. 4.17B contribute to some 

scattering, but as shown next, they lead to minor deviations from the ideal DH-PSF 

design.  

The transmission efficiency of this mask and its ability to localize energy into 

the characteristic DH-PSF pattern was measured to determine the deviation from 

ideal performance. The testing setup is shown in Fig. 4.18A. The 514 nm 
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wavelength line of an Ar+ laser (Coherent) is spatially filtered and collimated with 

a lens of 100mm focal length (L1). The resulting collimated beam is apertured right 

after the lens to a 2.7 mm diameter. A second lens (L2) of focal length f = 100 mm 

focuses the beam onto a CCD camera (Point Grey Research, Chameleon CMLN-

13S2M-CS). The fabricated mask is placed at the front focal plane of L2 to generate 

the DH-PSF. The phase mask is mounted on a �, �, 
 translation stage for 

alignment. Alignment is determined via observation of the PSF as the stage is 

adjusted. Images of the standard PSF are acquired by removing the fabricated 

mask. The camera is adjusted to maximize dynamic range using the standard PSF 

and these parameters are stored for later testing of the DH-PSF with the fabricated 

mask in place. Fig. 4.18B and C show the experimental standard PSF and DH-PSF 

images, respectively. Fig. 4.18D and E show the PSFs numerically simulated with 

the same system parameters including noise. The dark regions in the experimental 

PSF images, shown in Fig. 4.18B and C, were characterized and found to have 

single pixel 0/1 noise with density 0.3. This noise was added to the simulated PSF 

images so as to make theoretical efficiency calculations consistent with the 

experimental conditions.  

 



 

Fig. 4.18: (a) Setup for efficiency measurement of the fabricated DH phase mask. 
The 514 nm Ar+ laser line is spatially filtered.  L1 and L2 are achromatic lenses of 
focal length f =100 mm. The phase mask is positioned at the back focal plane of L1 
(front focal plane of L2) using an 
experimental standard PSF and DH
corresponding, numerically simulated, PSFs. The scale bar is 150 µm.

 
 

One method of measuring the 

to observe the reading of an optical power met

with and without the fabricated mask in the beam path, resulting in 

  Alternatively, the CCD measurements shown in Fig. 4.18B

determine the transmission efficiency. The relative energy in the DH

with respect to the energy in the standard PSF image was found to be 83.4% and 

95.8%, for the experimental and theoretical cases, respectively. The transmission 

efficiency of the phase mask is given by the ratio of these numbers leading to 

87%. The theoretical relative energy was used to compensate the experimental 
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(a) Setup for efficiency measurement of the fabricated DH phase mask. 
+ laser line is spatially filtered.  L1 and L2 are achromatic lenses of 

focal length f =100 mm. The phase mask is positioned at the back focal plane of L1 
(front focal plane of L2) using an  translation stage. (b) and (c) show the 

dard PSF and DH-PSF, respectfully,  while (d) and (e) show the 
corresponding, numerically simulated, PSFs. The scale bar is 150 µm.

One method of measuring the transmission efficiency, η, through the mask is 

to observe the reading of an optical power meter placed behind the Fourier plane 

with and without the fabricated mask in the beam path, resulting in   

Alternatively, the CCD measurements shown in Fig. 4.18B-E were used to 

determine the transmission efficiency. The relative energy in the DH

with respect to the energy in the standard PSF image was found to be 83.4% and 

95.8%, for the experimental and theoretical cases, respectively. The transmission 

efficiency of the phase mask is given by the ratio of these numbers leading to 

87%. The theoretical relative energy was used to compensate the experimental 

 

 

(a) Setup for efficiency measurement of the fabricated DH phase mask. 
+ laser line is spatially filtered.  L1 and L2 are achromatic lenses of 

focal length f =100 mm. The phase mask is positioned at the back focal plane of L1 
translation stage. (b) and (c) show the 

PSF, respectfully,  while (d) and (e) show the 
corresponding, numerically simulated, PSFs. The scale bar is 150 µm. 

through the mask is 

er placed behind the Fourier plane 

   = 87%. 

E were used to 

determine the transmission efficiency. The relative energy in the DH-PSF image 

with respect to the energy in the standard PSF image was found to be 83.4% and 

95.8%, for the experimental and theoretical cases, respectively. The transmission 

efficiency of the phase mask is given by the ratio of these numbers leading to  = 

87%. The theoretical relative energy was used to compensate the experimental 
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relative energy for the effects of a finite detector. The transmission efficiency found 

by the two methods described above turned out to be the same. 

The remaining 13% of the energy that is not transmitted is lost in reflection, 

absorption, and scattering. Specular and diffused reflection account for about 11% 

and can be easily reduced using anti-reflection coatings. Absorption and scattering 

can be reduced by improving the optical material quality, for instance, by 

transferring the mask to glass or quartz.  

Another measure of the functional efficiency for the fabricated mask is the 

ratio of the experimental peak intensities for the standard and DH-PSF, 

[ISTD/IDH]EXP, as compared to the theoretical value [ISTD/IDH]THEO. These ratios were 

found to be 8.7 and 7.2 respectively giving a functional efficiency, 

[ISTD/IDH]THEO/[ISTD/IDH]EXP x100=83%. If this efficiency is compensated to take into 

account the transmission loss, it results in a functional efficiency of 83/.87= 95%. 

    

4.6    Optical 3D Super-resolution Imaging 

With this fabrication technique for optically-efficient phase masks available, the full 

potential of three-dimensional, optical super-resolution experiments using the DH-

PSF can now be realized. The results from a localization-based super-resolution 

experiment are briefly reviewed in order to report the first joint implementation of 

the new, optically-efficient phase mask and the information-efficient 3D localization 

algorithm introduced in Chapter 2.  

In contrast to the stochastic emission mechanism employed in Chapter 2 

which required Photo-Activated Green Fluorescent Protein (PA-GFP) as the 
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reporting label (24) (89), this experiment is designed to operate in the STORM 

modality which uses the photo-switchable Alexa 488-Alexa 647 activator/reporter 

molecule pair for labeling (39). The most significant difference between these two 

labeling options is that the PA-GFP will typically be photo-activated and emit only 

once whereas the Alexa 488-Alexa 647 pair can be photo-activated multiple times 

during the image acquisition cycle. 

 

Fig. 4.19: A conventional microscope layout is appended with a 4F optical system for 
3D super-resolution imaging. Experimental integration of the optically-efficient DH-
PSF phase mask (PM) is realized via placement into the Fourier plane of a 4F 
optical system.  
 

 The biological sample was prepared by Prof. Jennifer Deluca and Keith 

Deluca at Colorado State University. The experimental setup was aligned and data 

collection was performed by Ginni Grover. The results reported here have 
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integrated the gray-level, optically-efficient DH-PSF phase mask into the 

experimental system shown in Fig. 4.19. This optical system is similar to that used 

earlier in Chapter 2 but with the Spatial-Light-Modulator replaced by a fixed phase 

mask.  

The analysis of the experimental data uses the information-efficient PR-MLE 

algorithm of Chapter 2. First, a continuous representation of the 3D-PSF which 

accounts for the systematic aberrations of the optics must be found for use in the 

MLE algorithm. To this end, a series of calibration images are recorder for 

application to the phase retrieval algorithm. This series of axial calibration images 

are taken in 50�� intervals and shown as x, y projections in Fig. 4.20. After 

analysis by the phase retrieval algorithm, the recovered, continuous representation 

of the 3D-PSF is estimated and presented in Fig. 4.21. Note that because the signal 

is assumed to be band-limited, a continuous representation of the 3D-PSF is 

possible in both the transverse and axial dimensions. This is demonstrated in Fig. 

4.21 where the 3D-PSF was interpolated in the x, y and z dimensions using the 

phase retrieval results. 
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Fig. 4.20: A series of axial calibration images are taken in 50nm intervals from a 
DH-PSF engineered PSF microscope. The transverse intensity profile at each axial 
plane is projected along the x (top panel) and y (bottom panel) axes. The discrete 
measurement of the 3D-PSF is seen from both the missing axial information and 
the pixilation of each measurement which is viewable in the transverse projections. 
 
 

 

Fig. 4.21: The phase retrieval results (PR) from the calibration data in Fig. 4.20. 
Because the recovered signal is band-limited, the PR results can be interpolated in 
both the transverse and axial dimension. This representation of the experimental 
3D-PSF is used for maximum likelihood localization estimation of individual 
molecules in the STORM experiment. 
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This STORM experiment has labeled the micro-tubules found in a Rat 

Kangaroo Epithelial Cell. A standard fluorescence image of these micro-tubules is 

given in Fig. 4.22A. The integrated time-series of stochastic emission and 

subsequent 3D PR-MLE localization from individual molecules is used to generate 

the 3D super-resolution image shown in Fig. 4.22B. This is the first reported DH-

PSF 3D super-resolution image which uses the simultaneous application of the 

optical- and information-efficient methods necessary to realize the promised 

potential predicted by the Cramer-Rao Lower Bound (CRLB). 

 

Fig. 4.22: The typical fluorescence image of micro-tubules in panel A is limited by 
the classical diffraction-limited criteria. A 3D STORM image using a DH-PSF 
microscope reveals the 3D structure of the object with resolution no longer limited 
by the classical diffraction limit. 
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4.7    Photo-stitching Tolerances for Increasing Phase Mask Size 

The maximum size of the single-frame exposure from the IMP SF-100 Express 

mask-less gray-level lithography device is limited to 2.7mm. While this can meet 

the need of many optical applications, some systems will require masks with larger 

diameter. Examples include high numerical aperture microscope objectives with 

large pupil functions and the common, commercially available lenses which have a 

1” diameter form-factor. One solution to this problem involves the sequential tiling 

of the projected lithographic image. In addition, since the projected illumination 

from the IMP SF-100 Xpress is frequently non-uniform, the use of sequential 

stitching can be used to tile a region which has uniform illumination properties. 

Therefore the prospect of stitching multiple frames together into a larger phase 

mask is investigated here via numerical simulation to identify any fundamental 

problems with the technique. 

The dominant source of error in the stitching algorithm is modeled as 

positioning accuracy errors of the sample stage. To provide a generous tolerance for 

stage accuracy – and thereby allow for inexpensive translation-stage equipment - a 

4 pixel random positioning error (equivalent to 14µm for the IMP SF-100) is 

simulated. For the simulation, the phase mask is divided into NxN sub-regions. 

Each sub-region is randomly offset by �4 � � � 4 pixels. The PSF resulting from the 

ensemble mask of the randomly shifted sub-region is quantified in terms of the 

efficiency at which energy is concentrated in the two lobes. Using this measure, the 

phase mask is increasingly divided into sub-regions and the efficiency of the DH-

PSF is calculated. Fifty simulations of random translations are simulated for each 
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NxN phase mask and the average efficiency is given in Fig. 4.23. The results of the 

simulation indicate that the DH-PSF is tolerant to stitching errors when a low 

number of tiles are used. 

 

Fig. 4.23: Simulation of the influence that random positioning error will have on the 
optical efficiency of stitched phase masks. The phase mask is sub-divided into an 
increasing number of regions with the same range of random position errors (Panels 
A-F). The resulting DH-PSF is shown next to each respective mask. The efficiency 
at generating the two lobes characteristic of the DH-PSF is plotted as the number of 
sub-regions is increased. 
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4.8    Conclusions 

The focus of this chapter was to demonstrate and document a successful method for 

fabricating the optical elements which are necessary for engineered PSF system 

implementation. A mask-less gray-level lithography tool (IMP SF-100 Xpress) was 

identified as a candidate for phase mask manufacturing. The necessary processing 

and fabrication steps were identified and reported in order to manufacture an 

optically-efficient phase mask. The first examples of optical phase masks fabricated 

from this DMD-based lithography tool were provided. These DH-PSF phase masks 

were implemented in two different systems – first a commercial microscope 

adaptation and second a custom microscope adaptation. Later in this thesis, this 

tool will be used to fabricate additional devices. 

The efficiency of a representative mask at generating the desired DH-PSF 

was measured to be 87% - a number that can be increased further with the 

introduction of Anti-Reflective (AR) coatings onto the surface of the element. Using 

this fabrication technology, another phase mask was manufactured to demonstrate 

the first optical- and information-efficient implementation of the DH-PSF 

microscope. Results of applying this microscope to 3D super-resolution imaging 

were then reported. 

The success of this method will allow for the continued manufacture of 

engineered PSF phase masks for integration into optical microscopes and cameras 

both in this thesis and elsewhere. Critically, the optical efficiency of using custom 

engineered PSF designs is no longer a limitation for system implementation.  
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CHAPTER 5 

 

A SINGLE-HELIX POINT SPREAD FUNCTION  
FOR IMAGING AND SENSING APPLICATIONS 

 

 

 

5.1    Introduction 

The joint optimization of both the optical element and the image processing algorithm has 

enhanced the task-specific functionality of imaging systems while demonstrating the 

success of a computational imaging approach. Among the variety of computational 

imaging techniques, the modification of the Point Spread Function (PSF) has received 

attention as manufacture of the necessary optical elements has become feasible. Now, 

with the definition of a clear task, PSF engineering has successfully demonstrated 

superior solutions for Passive-Ranging (11) (12) (15), 3D super-resolution microscopy (13) 

(14), Extended Depth-of-Field imaging (6) (7), thermally tolerant infra-red cameras (2) (18) 

and iris recognition (16).  

Here an optical system is presented which is optimized for two simultaneous tasks 

common in the computational imaging literature, Passive-Ranging (PR) and Extended-

Depth-of-Field (EDOF). Whereas prior work  (6) (11) (12) (13) (14) (62) (68) (74) has treated 

each of these tasks independently, this solution seeks to solve these problems jointly. I first 

address PR, where the objective is to measure the distance to an object without emitting 
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optical radiation from the system. The second task is to simultaneously provide an in-focus 

image of the scene to accompany the PR measurement.  

The combination of both range and image brightness complement each other to 

enhance the interpretation of a scene. For this reason, the coupling of solutions which are 

unique to each task (e.g. the Double-Helix PSF for PR and a cubic-phase PSF for EDOF) 

has previously been investigated to realize joint functionality in Chapter 3 (90). However 

in order to maintain a consistent line-of-sight and eliminate image registration issues, that 

prior solution required a Spatial Light Modulator (SLM) to serially cycle through the 

requisite phase masks. While effective, that solution may be considered too expensive, 

power-demanding or optically inefficient (the SLM only encodes one of two, orthogonal 

linear polarization states) for practical field solutions. In addition, the finite cycle time for 

the SLM to serially scan through the requisite phase masks may limit the space of 

relevant applications. Therefore the focus here is on an alternative solution which requires 

only one mask to realize both functionalities.  

This chapter is structured as follows. In Section 5.2 the optical solution is 

introduced as the Single-Helix PSF which is the enabling contribution for this application. 

In Section 5.3, the SH-PSF ranging performance is compared with that of the standard 

optical system. In Section 5.4, the SH-PSF image restorability is compared with the 

standard optical system for EDOF application. In sections 5.5 and 5.6, two different optical 

implementations are demonstrated as well as two alternative estimation algorithms to be 

used for PR and subsequent EDOF. And in Section 5.7, the implications of this system and 

what opportunities exist for future SH-PSF research are discussed. 
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5.2 The Single-Helix Point Spread Function 

The engineered PSF design for joint PR/EDOF tasks requires a solution which satisfies 

the following design criteria.  

A: The PSF must be axially dependent so that algorithms can search an 

experimental image for the unique PSF signatures and generate a distance estimate. 

B: The PSF must allow a high amount of spatial-frequency (spectral) content 

relative to noise to be transferred into the image throughout the volume of interest. This 

will enable the accurate enhancement of image resolution as a post-processing step.  

To solve this problem, a solution is identified which is one example of a scale- and 

rotationally-invariant propagating field (34) and it is implemented as the system PSF. 

Scale- and rotationally-invariant propagating waves can be found using select 

super-positions of Laguerre-Gauss (LG) modes. These super-positions describe the field of 

a scalar, paraxial beam which remains self-similar up to a transverse scaling function 

(which increases/decreases the transverse dimension of the beam) and a rotation function 

(which rotates the transverse profile of the beam as it propagates). One method to realize 

these beams is by placement of the LG super-position into the pupil plane of a lens, 

thereby encoding the optical PSF of the system. However, the amplitude modulation of the 

LG solutions can make these PSFs significantly inefficient to realize in terms of the optical 

transmission. Fortunately, select solutions do retain their propagation invariance without 

the LG amplitude modulation and with only the phase encoding present (29). 

One such example is found with the superposition of LG modes (m,n) = {(1,1), (2,4), 

(3,7), (4,10), (5,13)}, where the modes are equally weighted. Placed in the pupil of a lens to 

encode the PSF, this beam is characterized by a single, intense peak throughout an 
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extended axial range relative to the clear aperture and therefore has potential for EDOF 

imaging (91). A unique functional aspect of this PSF is that as a point source is moved 

through focus, the image of a single peak will shift transversely due to rotation about the 

optical axis. In 3D, this PSF traces a helical pattern through the focal plane and will be 

referred to as the Single-Helix (SH) PSF throughout the rest of the text. This unique 

translational shift encodes the axial position of the object, 01¾w.  

Given this L-G super-position, the phase-mask shown in Fig. 5.1A will be enough to 

generate the desired PSF characteristic. The associated PSF series is presented in Fig. 

5.1B as a function of defocus. For comparison, Fig. 5.1C shows the standard system PSF. 

The defocus parameter Ψ is used to quantify the amount of defocus and defined as, 

Ψ��, �; ', 
� � \
X ��# � �#� ],

^ � ,
W � ,

_�ó³a   (5.1) 

where ' is the wavelength, �, � are the spatial coordinates of the pupil, + is the focal length 

of the lens, z is the object distance and 0kÇ� is the distance to the camera. This quantity 

represents the quadratic phase aberration present in the pupil and is responsible for 

defocus effects in the imaging plane (25). The defocus parameter influences the PSF as, 

    ½��, �; ', 
� � Y�Z���, ��!AB��N,O;X,W�[Y#
   (5.2) 

where ½ is the PSF, � is the forward 2D Fourier transform, and ���, �� is the pupil 

function of the optical system and includes any phase modulations included in the mask. 

Given this PSF the image formation is modeled as,  

� � ½�
, '� = 	 � ã�    (5.3) 

where 	 is the object and the random noise variable is denoted with a bar. 
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Fig. 5.1: The SH-PSF is generated from the pupil plane phase modulation given in 
panel A. The SH-PSF and standard PSF are compared as a function of defocus 
where a point source is translated to generate defocus parameter values of � ��ý�, �	ý.�,
, �	ý.�, �ý� waves in panels B and C, respectively. 

 
 

From the relationship between the transverse position/rotation of the image and 

the axial position of the source, a variety of techniques can be employed to extract axial 

information. Here two alternative algorithms are proposed, the first in Section 5.5 where a 

match is sought of the axially dependent MTF of the PSF and the envelope of the spatial 

frequency content of the image is used in order to estimate range. This implementation 

will ignore any chromatic effects of the PSF. As an alternative, the use of an internal 

reference which will be useful in identification of the axis of rotation and estimating an 

angle is considered. In Section 5.6, one algorithm is demonstrated for realizing this with a 

three-color, RGB detector where the color channels serve as the internal references. This 
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algorithm will exploit the chromatic dependence of the PSF given in Eq. 5.1 and 

characterized in Fig. 5.2, where for one axial position each color exhibits a unique rotation 

of the SH-PSF to uniquely code 
-position.  

 

 

Fig. 5.2: The chromatic dependence on the rotation rate of the SH-PSF as a function 
of defocusing. Focus is at δz = 0mm and is tracked from �ý��� � �ú � �ý���. 
This is approximately the range of defocus values, �ý� � � � �ý�. 

    
    

Yet another single-pupil method exists in the form of the standard optical system. 

Here one can measure the chromatic dependence of the PSF blur radius to find axial 

location and use this to properly restore the lost spatial frequency content of the image. 

Therefore, to justify the use of a SH-PSF for PR and EDOF, a performance comparison of 

these two systems is required.    
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5.3 Passive Ranging Performance Comparison 

A measure of the performance limit for axial position estimates from noisy measurements 

can be found using the Cramer-Rao Lower Bound (CRLB) (33) (35). The CRLB has an 

inverse relationship with the quantity known as Fisher Information (FI) and is written as,  

   rR"s�
� � L∑ ∑ ,
¤
�B��,��|W� ] {

{W �K����, ��|
�a#���,���, QA,
 (5.4) 

where the quantity in the denominator is the FI, ���, �� is the discrete image 

measurement of size MxN and �K is the probability density function for each pixel (33) 

(73). For the special case that each pixel is statistically independent and the noise is 

Gaussian, the CRLB is, 

   rR"s�
� � L∑ ∑ ,
¶C ] {

{W ���, �; 
�a#���,���, QA,
   (5.5) 

where σ is the standard deviation from Gaussian noise (73).  

For this investigation, the CRLB will measure how sensitive the image is to 

variation in axial position. Qualitatively, images with greater change will have higher 

precision, better performance and a lower CRLB. To compare the CRLB across multiple 

systems a standard object must be selected. A point-source is identified as the 

standardized object of choice as it may particularly indicative of performance for images 

with only sparse content. In addition, the point source results will provide a lower-bound 

for the system CRLB performance and an upper-bound on the spectral SNR improvement 

because of its maximum spectral frequency content. 

For the CRLB evaluation, a 4F imaging system is simulated with two lenses of 

focal length + = 100mm, pupil diameter D = 2.7mm and three color channels centered at ' 

= 450, 550 and 650nm. The source is allowed to move within the range –25mm < δz < 
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+25mm of defocus, where δz = 0 is the focal plane. The CRLB of the two systems is 

presented in Fig. 5.3. The SH-PSF system is shown to provide improved ranging 

performance in terms of the theoretical random error from estimation through the entire 

range of focus. The spike of the estimator standard deviation at the focal position of the 

standard optical system is due to the image invariance attributable to the depth-of-focus. 

Because the image is approximately invariant in this region, the measurement precision is 

poor. As the system is defocused, the SH-PSF remains a well-localized peak, relatively 

robust to noise, experiencing a near-constant rate of transverse motion. In contrast, the 

standard PSF slowly increases in blur radius to become relatively sensitive to noise. These 

differences between the SH-PSF and the standard PSF are responsible for the axial 

dependence of the ranging precision. These precision limits are a fundamental statement 

about the ability to measure axial distance. No assumptions are made concerning the 

actual algorithm used other than it be an unbiased estimator. Note that defocus is defined 

to be positive when the object is further away from the optical system, δz = 
 � +. The in-

focus PSF is assumed to use the full dynamic range of the detector (12-bit) and 7.5 micron 

pixels are assumed. The emitter is assumed constant in intensity as it is moved through 

focus and a Gaussian noise of σ = 10 counts per pixel is present.  

 



 

109  
 

 

Fig. 5.3: CRLB plot of the ranging precision limit as a function of the axial position of the 
object. Focus is located at δz = 0mm. The depth precision performance can be seen to 
improve with application of the SH-PSF. 
 

5.4    Extended-Depth-of-Field Performance Comparison  

Spectral SNR is identified as a meaningful measure to evaluate the suitability for EDOF 

application because it directly quantifies the object related spectral information content in 

an image with the presence of noise (28). The average spectral SNR is defined across the 

depth of field as, 

;.R��, �� � ,
#�W ∑ ;.R��, �; �
��WW�A�W    (5.6) 

where �
 = 25mm is an application specific selection for the 4F system and  

    ;.R��, �; �
� � ;.R������  ·�q<��, �; �
�   (5.7) 

where,  

;.R������ � ∑ ∑ ½��, �; 
�/É��, �����,���,    (5.8) 

is the average signal to noise and �q< � |�A,4½8|, where �A, is the reverse 2D Fourier 

transform and the �q< is normalized to one at the DC. Note also that the incoherent PSF 
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½��, �; 
� is scaled to the full dynamic range of the detector. Again, this measure does not 

provide the user with the optimal means to extract information. It is instead, a 

fundamental statement about the object-related information available. 

For an image to be suitable for restoration, it is required that the spectral SNR 

remain high throughout the volume of interest. The spectral SNR from a single color 

channel ('=550nm) for the SH-PSF and the standard optical system is evaluated and the 

ratio of the two as a function of spatial frequency is plotted in Fig. 5.4. Relative to the 

standard PSF, the SH-PSF design provides an increase in spectral SNR capacity, 

indicated as a ratio greater than one in Fig. 5.4. The spectral SNR performance is for one 

only channel of the RGB image but this may be considered indicative of the image quality 

to be found in the additional color channels.  

 

Fig. 5.4: Ratio of the average spectral SNR of the SH-PSF system to the Standard system. 
A ratio greater-than-one indicates that, on average, an improved spectral SNR is available 
for that particular spatial frequency. The ratio across the entire 2D spatial frequency 
plane indicates that the SH-PSF solution can significantly improved spectral SNR. 
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5.5    Experimental Implementation of EDOF Solution 

The first example of SH-PSF imaging is an EDOF imaging solution implemented using a 

Spatial Light Modulator (SLM) (Boulder Non-Linear Systems XY-P512) to encode the 

pupil with the optical configuration shown in Fig. 5.5. Because the 2D-OTF of the SH-PSF 

is axially dependent, an estimation of axial position is proposed using the spatial-

frequency domain in order to restore using the correct deconvolution filter, as reviewed in 

the estimation algorithm flowchart in Fig. 5.6. 

 

Fig. 5.5: Experimental implementation of EDOF experiment with SH-PSF. L1, 
imaging lens; F, color filter (inset); P, linear polarizer; ��, intermediate image plane; 
L2, L3, 4F lenses; BS, 50:50 beam splitter; SLM, spatial light modulator; I, iris; D, 
detector. 
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Fig. 5.6: Image reconstruction algorithm details for EDOF solution. Three distinct 
steps are present; pre-processing, image collection, post-processing. 

 
In the experimental configuration the intermediate image plane, ��, found behind 

the imaging lens (L1, +Å, = 50mm) is optically modified with a 4F imaging system. A color 

filter, F, is placed in the system to so that the wavelength of operation is matched to the 

SLM design wavelength. A SLM with a 7.68mm pupil diameter is placed in the Fourier 

plane to modulate the phase encoding of the optical system. An iris is located before the 

SLM to make the aperture circular and a polarizer is used to reject the non-modulated 

polarization state from the SLM. The lenses of the 4F system (L2 and L3) are both +ÍÎ = 

100mm. A monochromatic detector (Point Grey Chameleon CMLN-1352M) is located in 
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the new image plane behind the 4F system. The object-space focal plane is located at 0èàñ 

= 72cm. An experimental image is taken of a complex scene consisting of a bouquet of 

flowers, shown in Fig. 5.7A, to demonstrate the potential for EDOF imaging. 

A series of calibration images are first taken in 2mm intervals through focus with 

the SH-PSF mask loaded onto the SLM. The calibration object was a 15µm pinhole, 

illuminated from behind with a halogen bulb. A phase-retrieval algorithm (8) (89) is 

implemented to estimate the field associated with the image at each calibration image. 

The image is restored using block processing. A 960x1280 pixel image of the scene 

is subdivided into 64x64 pixel sub-regions which are repeated in 8 pixel intervals such that 

the windows overlap. The spatial frequency content of each sub-region is compared with 

MTFs of the axial-dependent SH-PSF given by the phase-retrieval results. Using Eqs. 5.1 

and 5.2, the field is propagated along 
 to search continuously for the best match of 

�q<�
� with the envelope of the spatial-frequency content of the image where �q<�
� �
|�4½��, �; 
�8| (89). When the best-matched MTF is identified as,  

minW �|�4���, ��8| � �q<�
��#,    (5.9) 

the sub-region is restored with a Wiener-deconvolution filter, 

 	
 � �A, � �4B��,��8
�Z¼���,�;W�[ �

Y�Z¼���,�;W�[YC
Y�Z¼���,�;W�[YCH��P¨©��    (5.10) 

where ½ê��, �; 
� is the solution which minimized Eq. 5.9. The central 8x8 pixel portion of 

this window is stored, and the algorithm moves to the next processing window. The final 

image is a composite of the restored 8x8 pixel regions across the image. The use of 8x8 

pixel frames taken from 64x64 pixel windows was to minimize the ringing artifacts from 

window edges in the final image. 
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The EDOF result is shown in Figure 5.7. An image taken with the standard pupil 

function is compared with the result of a restored EDOF SH-PSF image. Comparison of 

the highlighted region demonstrates the restorative capacity and extended axial range of 

focus available for imaging. Note that this demonstration required only one color channel 

for full restoration of the image.  

 

Fig. 5.7: Experimental comparison of the image from a standard system versus the 
EDOF image from a restored, SHPSF camera. 
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5.6    Experimental Implementation of Joint Passive-

Ranging/Extended Depth-of-Field Device  

In this section an experimental realization for the joint PR/EDOF solution is 

demonstrated by implementation of a lithographically fabricated gray-level SH-PSF phase 

mask in the 4F system to replace the SLM. By implementing a lithographic phase mask, 

this system will not require a polarizer for implementation. The mask is manufactured 

using a commercial gray-scale lithography device (Intelligent Micro-Patterning SF-100 

Express). A glass substrate is first prepared with a 2.7mm diameter chrome aperture. This 

is then spin-coated at 5krpm for 40 seconds with Clariant AZ4210 positive photo-resist 

(refractive index ��' � 633��� � 1.635). The resist is pre-baked at 90C for 90 seconds. A 

bit-map of the SH-PSF phase mask is loaded into the software control package for the 

lithography device and a calibrated dose of 365nm light (i-line) from a Hg source exposes 

the photo-resist. The sample is then developed in AZ400K diluted with de-ionized water at 

a 1:4 ratio for 180 seconds. The result is a surface modulation in photo-resist serving as 

the phase-mask which can be implemented into the compact system of Fig. 5.8.  
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Fig. 5.8: Optical SH-PSF implementation using a lithographic phase mask. ILL is 
the illumination; O is the object; L1, L2 are the 4F lenses; PM is the phase mask; D 
is the detector. 

 

A surface profilometry scan (Zygo New View) of the SH-PSF mask is shown in Fig. 

5.9, where the profile is related to the phase by  

� � #\
X ½�� � 1�.    (5.11) 

 

 

Fig. 5.9: Surface profilometry result of the SH-PSF phase mask. The pair of linear 
features on either side of the mask are used for calibration purposes. 
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The optical system is configured to match with that given in the earlier CRLB 

model. The detector is a color camera (Point Grey Chameleon, CMLN-1352C, 12-bit) with 

a 3.75µm pixel pitch (alternatively, a 7.5µm pitch for each color in the Bayer pattern). The 

spectrum peaks for the RGB detector are at 450, 550 and 650nm with a typical band-

width of 80nm. The phase mask was fabricated to operate in the middle of this color 

spectrum spanned by the detector. The experimental PSFs are taken using a 15µm 

pinhole, illuminated with a halogen bulb and translated in 1mm axial steps through focus. 

The green channel calibration images of both the standard system and the SH-PSF 

system are given in Fig. 5.10 for comparison. 

 

 

Fig. 5.10: Experimental PSF results of the system in Fig. 5.8 with either no phase 
encoding present in the phase mask (Standard PSF) or with the Single-Helix PSF 
mask. 

 
The second joint PR/EDOF restoration algorithm proposed for the SH-PSF treats 

each RGB image as three independent, registered, information channels but each with the 

same object and axial position used to encode the image. Because the PSF is chromatic, 

each color channel can have unique information to use for estimation. These reported 
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results are for an  algorithm which uses just two chromatic channels, and therefore the 

minimum of two equations exist to estimate two unknowns – object distance z and the 

object o,  

��, � ½�
, ',� = 	 � ã�,    (5.12a) 

��# � ½�
, '#� = 	 � ã�#    (5.12b) 

where the random noise variables are denoted with a bar. 

The joint PR/EDOF algorithm is outlined in Fig. 5.11 and begins with a guess for 

axial position, loads the associated SH-PSF (taken from discretely sampled experimental 

calibration images) and uses Richardson-Lucy (R-L) deconvolution to estimate the object 

in each color image. A measure of the similarity between the two object estimates is taken 

(e.g. mean-squared error) and then another axial position is guessed and the algorithm 

repeats. This continues until a maximum for the similarity for the two color channels is 

found and associated with a detection of the axial position. This detection occurs when the 

proper z position is found and the two images are perfectly registered after deconvolution, 

minimizing the mean-squared error. Implicit in this algorithm is the assumption that the 

object is spectrally white in the temporal domain and therefore the deconvolved result is 

independent of the color used.  
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Fig. 5.11: Flowchart outlining the processing steps of the joint ranging and image 
restoration algorithm used in Section 5.6 
 
 

A standard pattern is selected to serve as a test target (Edmund Optics, Negative 

USAF 1951 Resolution Test Pattern on glass). The sample is back illuminated with a 

halogen bulb and diffuse glass is located between the target and the bulb to make the 

illumination uniform. The red and green color images are used for the estimation 

algorithm since they had the highest SNR given the source and spectral filters of the 

camera. Experimental EDOF results are presented in Fig. 5.12A for an object located at 
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three axial positions responsible for moderate defocus and focused imaging. To aid in the 

evaluation of image quality, a vertical line-out of the left-most bar patterns is presented to 

the left of the two images. The PR detection results are given in Fig. 5.12B. Ten 

images/estimates were taken at each axial position. It is seen from the figures that the 

image restoration improves the available detail significantly. In addition, the PR is 

demonstrated to work within an error consistent with the minimum step size of the 

experimental PSFs used. Although the objects are assumed to be spectrally white, this can 

be relaxed and chromatic objects may be treated using alternative methods such as 

matching between the object boundaries.  

 

Fig. 5.12: The restored images are compared to the standard images at different 
ranges of defocus in panel A. The passive ranging results are presented in panel B. 
10 measurements are taken at each position. 
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5.7    Discussion  

One limitation of both algorithms introduced here is that each has required an assumption 

that the object remain at one axial distance for a greater than 1x1 pixel area. In fact, the 

minimum area for which this assumption was applied to was a 64x64 pixel area. Much as 

the sophisticated algorithms for spatially-variant restoration have developed for standard 

pupil systems (e.g. depth-from-defocus, depth-from-diffusion), it is believed possible that 

additional algorithms may be developed to accommodate engineered PSFs such as the SH-

PSF. 

One important outcome which was demonstrated here is that alternative approaches 

exist for EDOF image restoration. While the approach advocated by users of the cubic-

phase mask requires only one deconvolution filter for all axial positions is both sound and 

attractive, the SH-PSF represents the unique opportunity to recover higher-spatial 

frequency content while simultaneously extracting depth information. The additional 

processing steps are considered to be a trade-off for the increased information available 

about the scene being queried. 

 

5.8    Conclusions 

An engineered PSF solution is reported to jointly solve two task-specific problems, both of 

general utility. The proposed SH-PSF solution is justified in terms of the theoretical 

performance limits for each task. Two system implementations were demonstrated as well 

as two estimation algorithms, each particularly suited for different constraints. A compact 

realization of a SH-PSF system was realized and demonstrated to operate for both PR and 

EDOF. The chromatic behavior of the phase mask was exploited here in order to provide 
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an algorithm which simulaneously estimates the range to an object as well as restore the 

image spatial-frequency information. 
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CHAPTER 6 

 

PERFORMANCE BOUNDS OF WAVE-FRONT SENSING  
USING CONVENTIONAL MICRO-LENS ARRAYS 

 

 

6.1 Introduction 

In this chapter the information theoretic bounds of the Shack-Hartmann optical 

phase recovery technique is evaluated in order to find the associated performance 

limitation of wave-front sensing and to identify areas for improvement. It will be 

shown that when the space of possible phase modulations is restricted to a finite set 

of Zernike polynomials, performance trade-offs exist between the number of photons 

in the signal, the number of unknown Zernike polynomial aberration coefficients to 

estimate and the size of the micro-lens array. The implications of these limits are 

discussed as well as whether an optimum number of apertures in the Shack-

Hartmann geometry can exist under specific scenarios.  

The precise measurement of optical phase aberrations has enabled the 

development of transformative technology across disciplines such as astronomy (92), 

biology (55) (93) and medicine (94). Solutions including interferometry (95) (96), 

Phase-Retrieval (PR) (8) (56) and the Shack-Hartmann Wave-front Sensor (SHWFS) 

(97) have been utilized to circumvent the temporal sampling limitations of optical 

waves by transforming this phase information into spatial distributions.  
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Here, the focus of attention will remain on one technique particularly suited 

for applications which operate with broadband illumination, does not require 

environmental stability, remain light-weight and is commonly implemented for 

measuring phase aberrations (92) (94). The SHWFS satisfies all these operational 

criteria by using of an array of micro-lenses to transversely sample an incident 

wave-front into localized segments and uses the resulting signal for estimating the 

amplitude/phase modulation (73) (97).  

The system performance is investigated in terms of how much aberration 

information is transferred from the wave-front, 

    ��i, 2� � ü�i, 2�!BCDE ��j,m�      (6.1) 

into the final measurement. This problem is further restricted to wave-front sensing 

where the quantitative measurement of the coefficients for Zernike polynomials (an 

orthonormal basis set defined over the unit circle) are sought, $��. When assuming 

uniform illumination, the optical phase may therefore be represented as, 

     ��i,�� � ∑ $���,� 7���i,��     (6.2) 

where the phase modulation is,  

    7���i,�� � c,H�³,Ve��H,�
\ R���i� � J	 ��    � � 0    �� ��    � � 0 �          (6.3) 

the radial polynomial is given by, 

 R���i� � ∑ �A,�}��A,�!
x!]���³�C Axa!]��¨³�C Axa!

��A��/#x�% i�A#x                  (6.4) 

and 0 � i � 1, 0 � � � 2ï, |�| � �, � � |�| is even (98).  

Note that this investigation focuses on the finite set of what will be 

considered the lower-order aberrations (considered here to be � � 5, where � limits 
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the modulation of the radial component and puts an upper limit to the azimuthal 

variation in Eq. 6.3 and 6.4) as these are easiest to correct with addressable, 

adaptive optics such as deformable mirrors or laser correction surgery and are 

considered in most applications (94) (99) (100) (101) (102). The performance of this 

limited set of aberrations is shown later to be sufficient for understanding the 

performance trends of higher-order aberrations (� � 5). Alternatively the high-order 

aberrations may be included as an extension of this work. 

An Information Theoretic analysis of the wave-front sensing experiment will 

determine the fundamental precision limits to be associated with estimation of each 

Zernike polynomial coefficient when a measurement is made in the presence of 

noise. This analysis can be used to tease out the mechanisms which limit realizable 

precision and identify, when possible, areas of further research to improve system 

performance. The analysis contained herein also reveals whether an optimum 

configuration, such as the number of micro-lenses, exists and how to find it.  

Two typical application scenarios are addressed with numerical simulations 

to understand how the relationship between design parameters such as the number 

of micro-lenses will affect performance. First, the available precision is investigated 

when the full dynamic-range of the detector is utilized. This is named the Dynamic-

Range (DR) limited scenario and implies that as the size of the micro-lens array 

increases, the number of photons in the system will correspondingly increase. The 

second case addresses the performance limitations of a system with only a finite 

number of photons, specifically that the total number of photons is conserved 

regardless of the micro-lens density. This situation is named the Photon-Limited 
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(PH) scenario. The results for these two extremes of system operation effectively 

characterize the limiting capabilities of the optical system design. 

In Section 6.2 of this chapter, the Fisher Information (FI) metric is re-

introduced as applied to investigating estimation and system performance limits for 

the SHWFS. In Section 6.3, the performance of the SHWFS is analyzed under both 

the above operating scenarios. Results for non-ideal conditions which the SHWFS 

may encounter in an adaptive optics setup are provided in Section 6.4. The 

feasibility of realizing the CRLB with a SHWFS is demonstrated by simulation in 

Section 6.5. A side-by-side comparison with an alternative technique known as 

Phase-Retrieval (PR) is evaluated (8) (56) and presented in Section 6.6. A discussion 

of these results and an outline of some future directions for research are given in 

Section 6.7. 

 

6.2 Information content of a wave-front 

The sensitivity to aberration of a phase-recovery solution will depend on factors 

including the design of the optical system, limitations of the electronics (e.g. 

dynamic range, dark-counts, etc.) as well as the implemented estimation algorithm. 

Of these, only the optical system and the associated electronics are considered here 

to make fundamental contributions to the realizable precision bounds. The 

performance using different estimation algorithms can vary greatly and should, in 

practice, be chosen to accommodate user constraints such as computational power, 

time, required precision, and sophistication of the algorithm. Therefore, it is argued 

that in order to determine the performance trade-off of the different system designs, 
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a careful evaluation should omit the effects of algorithm selection, which can be sub-

optimal, and instead seek to determine how sensitive the optical measurement itself 

can be to the sought-after parameters. 

An objective measure which accounts for the information transfer of multi-

parameter systems (e.g. the measurement of more-than-one Zernike polynomial) in 

the presence of noise is the Fisher Information (FI) matrix.  Here the incorporation 

of aberration-related information transfer of the SHWFS into a FI framework is 

sought. A successful model for the FI will provide a statistical measure which 

quantifies the amount of knowledge available in the measured optical signal which 

is useful for estimation of the Zernike polynomial coefficients.  

FI analysis has been successfully applied elsewhere in optics to demonstrate 

the measurement insensitivity/sensitivity to aberrations responsible for extended 

Depth-of-Field imaging (6) as well as three-dimensional localization-based 

microscopy (11) (35). In fact, all these aberrations can be associated with the 

Zernike polynomials 7,A,, 7,H,, 7#% – aberrations which are responsible for transverse 

and axial object shift. Analysis of the current wave-front sensing application will 

require an expansion of this prior work to include a greater number of Zernike 

polynomials in a different optical system configuration. The application of similar 

statistical methods to wave-front sensing has been considered previously however 

these have focused on optimal information extraction instead of quantifying 

performance limitations (73). 

The diagonal values of the FI matrix quantify the degree of influence a 

particular Zernike aberration mode will have on the final measurement, here an 
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image formed by a micro-lens array, as shown in Fig. 6.1. Aberrations which have 

greater impact on the image will have higher FI. This information matrix is found 

from,  

   <u�2B,w� � ∑ ∑ ,
¤�N,O�ÒO�,�N�, {

{m` ���, �; � {
{m| ���, �; �                   (6.5) 

where this form has assumed ideal imaging conditions (i.e that the random 

variation of the signal can be described as a Poisson process from photon-counting 

noise) (73). 2B and 2w are elements from the set of parameters to be measured, here 

2 3 47��; � � 5, |�| � �, � � |�| �  !�!�8, ���, �; � is the signal and   is the vector of 

Zernike polynomial coefficients describing the pupil function of the optical system. 

Note the �Ê¼ index is used here as a unique identification for each 7��. !," are the 

number of pixels along the horizontal and vertical axes of the detector plane which 

incorporates the signal from the entire micro-lens array. The individual pixels are 

each considered as independent measurements (i.e. the noise is not correlated) and 

therefore add linearly to the FI of the system. Off-diagonal terms capture the 

correlated influence of the Zernike polynomials. Omission of the Zernike 

polynomials with � t 6 assumes that these aberrations are identically zero. Note 

that this is not overly restrictive because the dominant phase terms for applications 

in adaptive optics can, in some cases, be reduced to a finite set of lower-order 

aberrations with the higher-order terms deemed insignificant (94) (102). If however, 

higher-order aberrations are present, significant and unaccounted for this can lead 

to different CRLB performance as investigated in Appendix 6A. 
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Fig. 6.1: The imaging system for a Shack-Hartmann Wave-front Sensor (SHWFS). 
An incident wave-front is sampled with micro-lenses distributed spatially in the 
transverse dimension. The resulting image can be used to estimate the incident 
amplitude/phase profile.    

 

Image formation for an individual lens is modeled as, 

    ���, �; � � #� ¡!BCDE ��j,m�¥##          (6.6) 

where ��, �� is the coordinate system of the detector and � is the two-dimensional 

Fourier transform. For a micro-lens array size of LxL lenses, this incident wave-

front is sub-divided accordingly and each micro-lens forms an image from the sub-

sampled optical pupil. The ensemble of these sub-images is then used in Eq. 6.5. 

The FI provides additional insight because of its inverse relationship with the 

bound on achievable precision, known as the Cramer-Rao Lower Bound (CRLB) 

(33). The CRLB is a fundamental quantity and when given knowledge of the noise 

processes in the system is used to quantify the lower limit on the system estimation 

precision (given as a variance) for the parameter set 2. Therefore use of the CRLB 

allows for precise statements to be made about the comparison of optical 
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performance between different systems. The form presented here assumes only that 

an unbiased estimation algorithm be used. The CRLB is the inverse of the Fisher 

Information matrix, 

     rR"s�2� � <uA,�2�               (6.7) 

where the elements of FI are given in Eq. 6.5 and the lower bound for each Zernike 

polynomial is given by the diagonal values of this matrix. The square root of the 

CRLB provides the lower-bound of the standard deviation for each estimated 

parameter (e.g. the coefficient estimation error of each Zernike polynomial) and this 

quantity will be quoted throughout the rest of the chapter.  

 

6.3 Phase recovery from Shack-Hartmann Wave-front Sensors 

FI analysis is applied to the SHWFS in order to understand how performance will 

scale with the micro-lens array density. A model SHWFS system is shown in Fig. 

6.1, where an incident wave-front is divided into "# non-overlapping samples. The 

most common algorithms for recovering phase information from SHWFS data have 

focused on treating the non-overlapping sampling as a piece-wise linear 

approximation to the incident field and to then measure the transverse shift of the 

PSF image in order to calculate the local tip/tilt and reconstruct the wave-front (97) 

(103). However, it is well documented that optical aberrations other than tip/tilt will 

influence the image, here the PSF of a micro-lens, but often these higher-order 

modes are ignored in computational algorithms (73) (97). To reinforce this, a 

pyramid of the images resulting from each additional aberration is presented in Fig. 

6.2, shown for the complete set 2 3 47��; � � 3, |�| � �, � � |�| �  !�!�8. It is therefore 
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observed that an opportunity exists for additional information extraction if the 

proper algorithm existed. This is one justification for why a strict comparison of 

system designs must exclude the particular estimation algorithm implementation.  

 

 

Fig. 6.2: The first ten Zernike polynomials (� � 3, |�| � �, � � |�| �  !�!�) are shown 
in panel A. The associated PSF for a quarter-wave amplitude aberration is shown 
for each aberration of a clear, circular aperture in panel B. 
 
 

The SHWFS is considered here as an increase in the array size of lenses 

(with the numerical aperture of each lens held fixed), "#, which transversely sample 

the wave-front. The diameter of each aperture is fixed at ∅� 300��, with a micro-

lens NA = 0.03, and the total area of the sensor will scale accordingly with larger 

micro-lens array densities. The physical dimensions of the micro-lens array and 

camera simulated here are selected to be consistent with what will be easily 

realizable for practical systems. The unknown field incident to the SHWFS is 

assumed to be band-limited with an associated Nyquist sampling period in the 

detector plane of 5.3�5.3�� when given the micro-lens parameters above. This field 

is sampled in the far-field with a 5�5�� pixel pitch detector in the simulation - 
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slightly greater than Nyquist sampling. Since the choice of pixel size can be 

arbitrary, the dependence of estimation performance versus sampling period was 

investigated in Appendix 6B. There it is demonstrated that the CRLB-related 

estimation error will scale an increased/decreased amount as the signal is sampled 

at a decreased/increased rate and therefore all trends established at a ∆� � 5�� 

pixel pitch will be applicable within the investigated range of 0.5� to 2� the Nyquist 

sampling period. Monochromatic illumination is assumed �' � 633��� and the 

images are simulated with an 8-bit detector. Uniform illumination is also assumed 

across the transverse dimension of the pupil.  

Because most adaptive optics applications attempt to reach a steady-state 

performance which corrects all input aberrations to be nulled, an incident plane-

wave is assumed to quantify the characteristics of this idealized design state. The 

DR-limited performance is given in Fig. 6.3 where the number of photons collected 

is scaled for each micro-lens array size to match the dynamic range of the sensor. 

Note that as documented in prior literature, a single, focused image from one lens is 

relatively insensitive to particular Zernike modes (35) (e.g. defocus from depth-of-

focus invariance of a standard PSF) but that increasing the sampling density from 

" � 1 to " � 2 will rapidly improve the estimation precision for these modes. 

However, further increases in the micro-lens array density are seen to yield little 

improvement and approach an asymptotic value. This statement is analyzed using 

separate arguments in Appendix 6C to independently support the conclusions of 

this simulation analysis. An understanding of this behavior is provided from the 

observation that given a fixed aberration at the entrance to the "�" array and as the 
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array size is increased, each micro-lens will witness a smaller total aberration. 

Perfectly balancing this loss of local sensitivity is the increase in the signal due to 

the additional micro-lenses across the aperture using the full camera dynamic-

range. Together, these effects are coordinated such that as " increases, an 

asymptotic, non-zero limit is reached. 

 

Fig. 6.3: The CRLB limited wave-front precision for the first 14 Zernike polynomials 
using the SHWFS dynamic-range limited geometry. As the sampling density of the 
wave-front is increased, $ý, the precision of the wave-front estimation for each 
aberration polynomial approaches an asymptotic limit. 

 
This observation indicates that with the implementation of an efficient, 

unbiased estimation algorithm, similar precision results can be realized with fewer 

micro-lenses. It is anticipated that current estimation algorithms may be tolerant to 

this diminishing return because they apply an approximation that only linear phase 

aberrations are present at each micro-lens. This piece-wise linear approximation to 

the incident wave-front will result in increased reconstruction errors for systems 

with low micro-lens density (97). However increasing the micro-lens density to 
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compensate for inefficient estimation algorithms is unacceptable for the photon-

limited scenario because, as will be demonstrated next, an optimum micro-lens 

density does exist. These implications are also relevant because a smaller array of 

high-quality micro-lenses will typically have higher fabrication yields than larger 

arrays of high-quality micro-lenses. This may result in decreased costs and/or more 

ideal performance per micro-lens.  

The CRLB precision limits for the photon-limited (PH) SHWFS are given in 

Fig. 6.4 for each of the first 14 Zernike polynomials (� � 4). In this scenario the 

signal is limited to : total photons, which is determined by the maximum number of 

photons in a dynamic-range limited image from an individual micro-lens (L=1). 

Again, the character of this performance is uniquely interesting because it does not 

reach an asymptotic limit but instead depends on the number of micro-lenses L2.  

Comparison of the two limits (dynamic-range vs. photon-limited) is evaluated 

by using the average estimation precision of each case,  

     ÉÇOá�%� í ,
Ì ∑ Ém|Ìw�, �%�    (6.8) 

where q � 14 is the total number of Zernike polynomials. For the PH-case an 

optimal SHWFS can be defined for average wave-front performance from the 

minimum seen to exist between the limits of 1 � " � 32 in Fig. 6.4. Here, the 

optimum number of micro-lenses is " � 4 with ÉÇOáËâ �" � 4� � 5.4��, found when 

estimating the set of Zernike polynomials with � � 4. This performance is justified 

again in Appendix 6C to separately verify the scaling behavior with respect to ". 
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Fig. 6.4: The CRLB limited wave-front precision for the first 14 Zernike polynomials 
in a photon-limited SHWFS configuration. As the number of micro-lenses increases 
past a critical value, the precision declines. An optimum performance is seen to 
exist at L = 4. 

 
Further examination reveals that the photon-limited SHWFS optimum at 

" � 4 can be attributed to the maximum spatial modulation of the Zernike phase 

functions present and to be estimated. Fig. 6.5 presents the average SHWFS 

performance, ÉÇOá, for both the DR and PH cases (panel A and B, respectively) as 

the number of micro-lenses is increased. The index � is associated with the radial 

component of the Zernike polynomial given in Eq. 6.4 - acting to limit both the 

radial and azimuthal spatial modulation frequency. In the simulation, as � is 

increased, � takes all allowed values such that the total number of polynomials 

being present and to be estimated will be increasing. For the DR limited scenario, 

performance similar to Fig. 6.3 is observed but here the rate at which the system 

approaches asymptotic performance is shown to depend on the frequency of spatial 

modulation for the polynomials being estimated. In summary, the higher the spatial 
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modulation frequency, the more micro-lenses it will take to reach the asymptotic 

value. This statement is consistent with requiring a minimum sampling frequency 

for signal reconstruction. A similar trend is associated with the PH scenario where 

the optimum number of micro-lenses is shown to scale with the spatial modulation 

of the Zernike polynomials. Again, as the spatial-frequency modulation of the 

incident aberration increases, the optimum density of micro-lenses for the photon-

limited scenario will increase accordingly.  

 

Fig. 6.5: The average performance bounds of the SHWFS are shown as the number 
of micro-lenses in the array, L,  is increased for the DR (panel A) and PH (panel B) 
scenarios. The performance is reported as estimator variance to aid in visual clarity. 
For both the dynamic-range and photon limited cases, the performance varies 
depending on the number of Zernike polynomials present and to be estimated, given 
by the maximum order of the radial coeffient n. 

 
6.4 CRLB of SHWFS for Random Input Aberrations 

The performance limits of a non-ideal wave-front sensing state (i.e. a wavefront 

different from a plane wave) are now investigated to verify that the prior 

observations are useful under alternative circumstances. Non-ideal wave-front 
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sensing states are meant to address the uncorrected wave-front which is invariably 

present at the start of an adaptive optic feedback algorithm. This case also arrises 

in application of SHWFS to uncorrected optical systems for manufacturing and 

measuring aberrations of the human eye. To test this, the CRLB performance is 

found as above but now with ten random samplings of Zernike aberration 

coefficients taken to represent incident wave-fronts instead of assuming a planar 

wave-front. The Zernike aberration coefficients were randomly selected from a 

uniform distribution limited by – ' � $�� � '. In general, similar trends to those 

reported earlier are observed in Fig. 6.6 – except with the optimum micro-lens 

density potentially shifted upwards.  

    

Fig. 6.6: Average CRLB results for random input wave-fronts as a function of the 
number of micro-lenses. The input wave-front is allowed to have random 
aberrations for all Zernike polynomials limited by � of each line-series. The dynamic 
range limited performance is given in Panel A, the photon-limited performance in 
panel B.  
 
 

Less significant variation of the average CRLB is present with higher density 

micro-lens arrays because the input wave-front becomes better approximated by 

similar looking patterns (e.g. translated Airy patterns) across the array. The lower 
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density micro-lens arrays will see more variation in the individual PSFs of the 

micro-lens which leads to the greater variability of performance. One random input 

wave-front is taken from the simulation of Fig. 6.6 where � � 5, |�| � �, � �
|�| �  !�!� and presented in Fig. 6.7 to visualize what example phase aberrations 

are present at the input (panels A and B) of the SHWFS and what the associated 

image will look like (panel C). It is apparent in panel B that the micro-lens density 

of 8x8 does not always sample the wave-front at a fine enough frequency in order to 

accurately approximate the phase at each lens as purely a linear phase. The 

resulting image consists of individual PSFs which may not be well-approximated by 

a translated Airy disk. Note that the contrast was adjusted in panel C to aid in 

visualization by presenting the amplitude of the field in the detector plane rather 

than the intensity. 
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Fig. 6.7: One example of the random input wave-fronts with � � 5 used in the 
simulation is given in panel A in terms of the coefficients of the Zernike 
polynomials. This wave-front is shown in panel B when input to an 8x8 micro-lens 
array where each micro-lens has a circular aperture. The resulting field in the 
image plane is given in panel C. 
 

6.5 Simulated Verification of CRLB 

To demonstrate that the inclusion of higher-order aberration terms into an 

estimation algorithm can yield estimator performance similar to the CRLB and 

therefore realize the trends discussed above, a multi-parameter direct search 

algorithm (104) is implemented on a simulated SHWFS system where the micro-

lens density is limited to the regime with most performance variation, 1 ≤ L    ≤ 5. The 

flowchart associated with this algorithm is provided in Fig. 6.8. For each micro-lens 
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array size, the direct-search algorithm simulates the signal from a shot noise 

limited system and implements a grid-based search in order to find the aberrations 

which minimize a Poisson cost function. Two-hundred noisy images were simulated 

for each array size.  

To reduce computational complexity and aid in visualization, only the results 

for estimation of the Zernike terms � � 2, |�| � �, � � |�| �  !�!� are presented in 

Fig. 6.9, for both the dynamic-range and photon limited scenarios. The top panels 

show the CRLB performance of each Zernike polynomial as the size of the micro-

lens array is increased. The bottom panels show the direct-search estimation results 

from the simulated images. One failure is noted in that the direct-search algorithm 

seems to have a false precision estimate for parameters to which the image is 

invariant – here the terms associated with � � 2 when L = 1. This failure is due to 

insensitivity of the search algorithm to these parameters and therefore any search 

along these dimensions will not be explored (the direct-search algorithm searches 

near an initial guess and finds the step direction which minimizes the cost function 

– if no benefit to the cost function is found then steps along invariant dimensions 

will not be explored). It is shown here that the same trends reported earlier are 

observable in the Direct-Search estimation results and also that the fundamental 

precision limit can be realized for SHWFS systems through the inclusion of higher-

order aberration terms to the image processing algorithm.  
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Fig. 6.8: Algorithm flowchart for estimating the incident wave-front to a SHWFS 
array. The algorithm begins with a random number of wave-front guesses and picks 
that which possesses the best fitness for further iterative evaluation. Note that local 
assumptions of incident linear phase are never applied to any micro-lens and 
instead the complete wave-front with all local variation is included. 
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Fig. 6.9: The dynamic-range (panel A) and photon- (panel B) limited performance 
given by the CRLB (top row) and from simulated estimation results when given 
Poisson noise limited images (bottom row). The results are tracked as the number of 
micro-lenses increases with L. The estimation results are seen to closely track the 
CRLB performance for each of the Zernike polynomials. The exception is for 
estimation of the ã � ý Zernike polynomials with a single lens, L=1. 

 
6.6 Comparison of SHWFS and Phase-Retrieval methods 

An alternative but common phase-recovery method is investigated to give an idea of 

the relative merits of either technique. We identify the Phase-Retrieval (PR) 

technique as a particularly relevant comparison since the optical system is 

degenerate with a SHWFS when only one micro-lens is assumed. Key, however, to 

the PR technique is the use of one or more images located at different axial planes 

in the far-field. Shown in Fig. 6.10, this technique uses multiple, axially-displaced 

images, and places assumptions on the band-limit of the signal in order to measure 

the amplitude and phase modulations of large telescopes, high numerical aperture 
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microscopes and phase/amplitude objects (8) (55) (56) (57) (89) (105) (106). Some 

algorithms, such as the Gerschberg-Saxon or Fienup (8), will iteratively solve for 

the amplitude/phase function. On the other hand, alternative implementations, 

such as the Transport-of-Intensity Equation (TIE) are available to solve for the 

phase function directly (57) (106). An important characteristic of the PR method is 

that under proper constraints, the solution can be guaranteed to converge and be 

unique.  

 

Fig. 6.10: Signal formation model for Phase-Retrieval algorithm. An incident wave-
front is measured in the far-field by one or more image planes to make up an 
ensemble used later for processing. The defocused images are shown with a defocus 
of  ý
 � &
.�'. 

 
Image formation in the PR system is modeled by,  

    �x��, �; � � #� ¡!BCDE ∑ ∑ (�³)�³�³ ¥##                    (6.9) 

where � denotes the �Ê¼ image of the ensemble. Axial translation from the focal 

plane is simulated by increasing the coefficient of the 7#% polynomial which is 

associated with defocus. If multiple image planes are used (� � 1), the axial 

translation is arbitrarily chosen to be of uniform intervals between �0.5' � $#% �
�0.5'. 

The FI of the PR system, comprising a total of % images in the ensemble is, 
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 <u�2B,w� � ∑ ∑ ∑ ,
¤}��,�����,���, {

{m` �x��, �; � {
{m| �x��, �; �*x�,     (6.10) 

where the only change from Eq. 6.5 is that a summation is taken over all % images. 

As in the case of individual pixels, each image is considered a random, independent 

measurement and therefore adds to the total FI. In all simulations, the incident 

field is assumed to be a perfectly planar wave-front and it is the deviations from 

this ideal that are to be measured.  

The estimation precision limits (CRLB) of the Zernike polynomials for the 

case of a DR limited measurement are given in Fig. 6.11 as a function of the size of 

the image ensemble, %. The precision limit of the wave-front coefficient estimation 

error, É����, for each Zernike polynomial approaches zero as the number of images 

increase. This can be understood by associating the number of images with the total 

signal available for estimation. In the PR method, an increase in the number of 

images results in a directly proportional increase in the signal. As opposed to the 

SHWFS scenario, the wave-front is never divided into smaller samples and 

therefore the sensitivity never decreases per image. In these simulations, a scaling 

law dependence is observed to go approximately as %A%.+. The significant 

improvement of precision noticed at % � 2 is again due to the loss of invariance to 

aberrations such as defocus and typical for a single lens. 
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Fig. 6.11: The CRLB limited wave-front precision for the first 14 Zernike 
polynomials of the PR, dynamic-range limited system. The precision improves as 
the number of images, K, in increased. 

 
Justification of this CRLB performance with respect to K is given in 

Appendix 6D, where it is shown under the weak assumptions that the %Ê¼ image 

contain finite energy and that its derivative with respect to an aberration mode is 

non-zero that the FI will increase indefinitely, yielding a diminishing estimation 

error. 

An examination of the PH scenario reveals significantly different 

characteristics. We analyze the CRLB for the case of : total photons, determined by 

the dynamic-range limited single-image. These : photons are evenly distributed 

across the ensemble of % measurements. The resulting performance, shown in Fig. 

6.12, demonstrates that as % increases, the gains in performance rapidly diminish 

until an asymptotic limit is reached for the measurement precision, independent of 

K.  
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Fig. 6.12: The CRLB limited wave-front precision for the first 14 Zernike 
polynomials of the PR, photon-limited system. The precision approaches a constant 
value as the number of image planes, K, increases. 

 
Comparison of the two limits (dynamic-range vs. photon-conserved) is again 

evaluated by the average estimation precision of each case. This comparison reveals 

that the photon-limited performance of *��*,∞ ÉÇOáËâ � 3.5�� diverges from the 

dynamic-range limited performance after only 2 image planes are used ( ÉÇOáÐP �% �
2� � 3.0�� �. 

Having systematically characterized the SHWFS and PR and wave-front 

sensing techniques according the CRLB of Zernike polynomial estimation, a 

definitive comparison between the two is now possible. Fig. 6.13 and 6.14 compare 

the average wave-front precision from estimating the first 14 Zernike polynomials 

(� � 4, |�| � �, � � |�| �  !�!�) in the dynamic-range limiting and photon-limited 

scenarios, ÉÇOáÐP  and ÉÇOáËâ , respectively. This comparison is significant because it 

serves to reveal the relative limits which may be approached as one reaches the 
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manufacturing tolerances of micro-lenses and must evaluate the trade-off to a PR 

system. In other words, when limited by manufacturing tolerances to a particular 

NA for a micro-lens, what is the SHWFS performance relative to a PR method using 

the same lens characteristics? 

In Fig. 6.13, the asymptotic, DR limited SHWFS is seen to provide an 

improved precision, relative to the PR method, if % � 9. If greater than 9 PR images 

are available, the PR method can out-perform the SHWFS regardless of micro-lens 

array density. 

 

Fig. 6.13: Comparison of the average CRLB limited wave-front precision for both 
the SHWFS and the PR technique when the systems are dynamic range limited. 
The asymptotic value of the SH-WFS outperforms the PR method if the number of 
PR image planes is less than 10. 

 
In Fig. 6.14, the average precision of the two methods is compared for the PL 

scenario. It is seen that the SHWFS is unable to perform better than the PR 

technique for any %. The bend of the SHWFS precision curve discussed earlier is 

easily identified and shows that the optimum " for the micro-lens array is 4 given 

the photon-conserved scenario and estimation of Zernike polynomials of order � � 4. 
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Fig. 6.14: Comparison of the average CRLB limited wave-front precision for both 
the SHWFS and the PR techniques when the number of collected photons is 
conserved. The PR method always out-performs the SH-WFS. However, if one 
chooses to use a SH-WFS, an optimum number of micro-lenses exists for the best 
precision. 

 
6.7 Discussion 

The application of information theoretic tools such as Fisher Information and the 

Cramer-Rao Lower Bound has demonstrated utility for the selection of wave-front 

sensing options. While work has focused on the optimal estimation of linear tip/tilt 

phase at each micro-lens of the SHWFS (73) (103), the incorporation of higher-order 

modes into the estimation/image-processing algorithm is needed in order to 

optimally extract all wave-front information when using lower density micro-lens 

arrays. As demonstrated for the photon-limited scenario, the optimum performance 

is at low micro-lens density and therefore those algorithms will have immediate 

application.  

The most salient point is the surprising potential sensitivity of the SHWFS 

with fewer micro-lenses. To improve system performance along these lines, work on 
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higher-order estimation algorithms and implementing specialized micro-lens arrays 

which highlight particular aberrations would be an area of promising research 

(107). One particular proposal has identified the benefit of using additional 

aberrations for wave-front sensing, specifically those associated with astigmatism, 

and developed a modified SHWFS geometry optimized to increase the 

computational efficiency for extracting these higher-order modes (107). 

Additionally, when characteristics of the complete adaptive optical system are 

included, such as the use of bi-morph mirrors, it may turn out that the linear tip/tilt 

is not as useful of a measurement as local curvature (108). Therefore, we propose 

that the design of specialized micro-lens arrays be thought as a form of task-based 

sensing – where the systems are optimized to sense a particular number of phase 

aberrations. Given the recent successes of the task-based sensing/imaging 

paradigm, it may be reasonable to conclude that using these tools, further 

improvements may be found for the SHWFS – a proposal which is investigated next 

in Chapter 7. 

This analysis has ignored any measurement to address the spatial 

modulation of intensity profiles other than uniform. This was a simplification to aid 

in the analysis – however it ignores an important practical constraint. For the 

scenario when the illumination cannot be considered uniform across the pupil, the 

possibility exists for further important trade-offs between the SHWFS and PR 

methods. In addition, the SHWFS may have a different optimal micro-lens density – 

for example, one which is related to the expected spatial frequency modulations of 

the intensity profile.   
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6.8 Conclusions 

The relative trade-offs of the PR and SHWFS phase recovery techniques have been 

established. Most surprisingly, the SHWFS has asymptotic behavior which acts to 

limit the available precision while the PR technique is limited only by the number 

of images used under the dynamic-range limited scenario. A method was presented 

for choosing the best design for a SHWFS when given particular constraints such as 

a fixed signal level or a finite number of Zernike aberrations. The CRLB limits and 

performance curves were matched with a Direct-Search algorithm which did not 

place a constraint of linear phase at each micro-lens and instead accounted for all 

possible aberrations at the wave-front sensor input. A discussion accompanied this 

analysis which introduced steps towards improving the SHWFS design from an 

information theoretic perspective.    

 

6.9 Appendix A: Lower-Order Aberration Estimation in the 

Presence of Higher-Order Nuisance Aberrations 

The CRLB values reported in the main text for � � .�ÇG, where .�ÇG limits the 

maximum radial spatial frequency modulation, had required the assumption that 

any higher-order aberration modes (� � .�ÇG) were identically zero. Although this 

may be an appropriately approximate solution for some applications (94) (102), an 

investigation is undertaken here in an attempt to gain insight into how relevant the 
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presence of higher-order, nuisance aberrations are when only lower-order 

aberrations are to be estimated.  

Prior investigation had predicted that if these nuisance aberrations are 

present, the statistics of the wave-front coefficients are important for considering 

the impact on CRLB (73). The statistics used here assume that the set of wave-front 

coefficients are random processes described by a uniform distribution between 

– ' � $�� � '. Ten random instances of the set of coefficients for Zernike polynomial 

aberrations with � � 5, |�| � �, � � |�| �  !�!� are simulated. One example instance 

was shown earlier in Fig. 6.7. The results of the numerical investigation are shown 

in Fig. 6.15 and present different behavior than that reported in Fig. 6.6. The 

performance of these curves is dominated by the maximum radial spatial frequency 

term (here � � 5) of the nuisance aberrations which can be verified by examination 

of the � � 5 curve in Fig. 6.6. 
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Fig. 6.15: The SHWFS CRLB performance is shown when estimating lower-order 
aberrations in the presence of nuisance aberrations. The number of Zernike 
coefficients to be estimated is limited by � for each line series of each plot. The 
maximum radial spatial frequency modulation of the nuisance aberrations in each 
scenario is limited by � � 5. 
 

6.10 Appendix B: SHWFS Performance Bound versus Pixel Size 

The trends reported for the SHWFS in the main text are supported by the insight 

provided in Appendix 6C and 6D as well as the simulated estimator performance 

presented in Section 6.5. However, the remaining question regarding fundamental 

performance bounds as a function of the camera pixel size and therefore the PSF 

sampling rate must be addressed. According to the work of Appendix 6C and 6D, 

the expected behavior should follow similar trends but at a different scale – 

uniquely given by the respective CRLB inherent to a single lens. This is now 

verified by computation of the CRLB as a function of different pixel sizes – 

assuming a fill-factor of unity. The chosen pixel sizes (2.5µm, 5.0µm and 10.0µm) 

are associated with Nyquist sampling the intensity PSF at a rate of 0.53x, 1.06x and 
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2.11x. The results are presented in Figure 6.16, demonstrating that the CRLB 

behavior as the density of micro-lenses has scale-similarity regardless of whether 

the system is DR or PL limited. The maximum order of the Zernike polynomials was 

assumed to be limited to � � 3 in this simulation and the critical sampling density 

is seen to be at " � 3 for both the dynamic-range and photon-limited scenarios – 

regardless of spatial sampling of the PSF. 

 

Fig. 6.16: The CRLB performance of the SHWFS as the density of micro-lenses is 
increased. (A) The dynamic-range limited scenario approaches a limit 
asymptotically at a similar rate - regardless of the camera pixel size. (B) The 
photon-limited scenario has an optimum number of micro-lenses which is held fixed 
and associated with the maximum order of the Zernike polynomial, regardless of 
the camera pixel size.  

    

6.11 Appendix C: Asymptotic behavior of SHWFS with linear 

tip/tilt 

For a SHWFS, assuming that the number of photons in a DR limited aperture is N, 

<uÅ�2B; "� �  .--- 1+.��, �; 2B , "� L //2B +.��, �; 2B , "�Q#�

��,

�

��,

ÅC

.�,
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where +.��, �; 2B� is the sub-image of the SHWFS for microlens * and is normalized 

to have unit energy, i.e. ∑ ∑ +.��, �; 2B� � 1���,���, . In general, as L is increased, 

+.��, �; 2B , "� 0 +.��, �; 2B , " � 1� and 
{

{m` +.��, �; 2B , "� 0 {
{m` +.��, �; 2B , " � 1� as each 

pupil (or micro-lens) will see a different portion of the incident wave-front. However, 

when examining the two linear phase Zernike polynomials, 7,A, and 7,H,, a few 

coarse approximations may be allowed to demonstrate the validity of the limiting 

behavior in Fig. 6.3. 

In what follows, it is assumed that the NA of each micro-lens is fixed. 

Therefore as " is increased the Zernike polynomial is divided into "# subdivisions 

and, ignoring edge effects from the circular aperture, each image +.��, �; 2B� is the 

same for all ", where 2B 3 47,A,, 7,H,8. The second approximation, again ignoring the 

effects from the circular aperture, is that the derivative is scaled by the number of 

apertures along one dimension, 
{

{m` +.��, �; 2B , "� � ,
Å

{
{m` +.��, �; 2B�. This is a statement 

that as a fixed amount of linear tilt is distributed across more apertures, the 

amount of local tilt is scaled and generates a correspondingly scaled, transverse 

shift of the PSF in the image. Applying this scaling behavior of the derivative to the 

diagonals of the Fisher Information matrix results in, 

<u�2B; "� �  . ∑ ∑ ∑ ,
^1��,�;m`� ] {

{m` +.��, �; 2B , "�a#���,���,ÅC
.�, �

�
ÅC ∑ ∑ ∑ ,

^1��,�;m`� ] {
{m` +.��, �; 2B�a#���,���,ÅC

.�, . 

Then applying the assumption that all micro-lens images are equal and are 

influenced by the same amount of input aberration (i.e. the linear phase is constant 

across the micro-lens array) the summation over "# lenses can be found as, 
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<u�2B; "� �  �
ÅC ∑ ∑ ∑ ,

^1��,�;m`� ] {
{m` +.��, �; 2B�a#���,���,ÅC

.�, �
. ∑ ∑ ,

^1��,�;m`� ] {
{m` +.��, �; 2B�a#���,���, , 

proving that the Fisher Information becomes independent of the number of micro-

lenses. This result can be compared with that given in Fig. 6.3 to verify the 

numerical accuracy of the model and the asymptotic behavior of the Fisher 

Information. 

The scenario for a conserved number of photons is addressed by scaling the 

energy of  ∑ ∑ +.��, �; 2B , "� � 1���,���, /"# (energy conservation) and  

{
{m` +.��, �; 2B , "� � ],

Åal {
{m` +.��, �; 2B� (to account for the dependence of wave-front 

slope on micro-lens *). Therefore following the previous treatment will yield,  

<u�2B; "� �  . ∑ ∑ ∑ ,
^1��,�;m`,Å� ] {

{m` +.��, �; 2B , "�a#���,���,ÅC
.�, �

�
ÅC ∑ ∑ ,

^1��,�;m`� ] {
{m` +.��, �; 2B�a#���,���, , 

which describes the limiting photon-limited case behavior for the tip/tilt terms as É 

being proportional to ".  

 

6.12 Appendix D: Asymptotic behavior of PR based phase recovery 

As given in Equation 6.9, the Fisher Information for the PR method using %images 

is, 

<u�2B,w;%� � ∑ ∑ ∑ ,
¤}��,�����,���, {

{m` �x��, �� {
{m| �x��, ��*x�, . 

For the dynamic-range limited scenario, let �x��, �� � .+x��, ��, i.e. the �Ê¼ image 

is normalized to have N photons and therefore finite energy. Then 
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<u�2B,w;%� � . ∑ ∑ ∑ ,
^}��,�����,���, {

{m` +x��, �� {
{m| +x��, ��*x�, . 

Under the condition that  ∑ {
{m` +*H,��, ���,���,,��, 0 0, then 

<uc2B,w;% � 1e � <uc2B,w;%e 

This is a statement that as long as additional image(s) contain information then, 

 *��*,2 <u�2� � ∞, 

which validates the limiting behavior shown in Fig. 6.11. 
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CHAPTER 7 

 

ENGINEERED POINT SPREAD FUNCTION  
MICRO-LENS ARRAYS FOR IMPROVED WAVE-FRONT SENSING 

 

 

 

7.1 Introduction 

In this chapter, the information theoretic bounds of a new wave-front Sensor based 

on phase mask arrays of engineered Point Spread Functions (PSF) are evaluated. 

The individual micro-phase mask/micro-lens characteristic is now investigated for 

the particular task of improving aberration sensitivity. It is shown that when the 

space of possible phase modulations input to the wave-front sensor (WFS) is 

restricted to include a finite set of Zernike polynomials, performance can be 

improved relative to the classical Shack-Hartman wave-front sensor (SHWFS) 

design. The use of an array of Double-Helix Point Spread Functions (DH-PSF) is 

evaluated specifically as one implementation of this proposal. An example array is 

fabricated and tested to demonstrate one operational mode and algorithm which 

exploits the additional aberration sensitivity of individual micro-lenses with phase-

masks.  
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7.2 Background 

The SHWFS has been established as a valuable tool for recovering optical 

amplitude and phase information in applications spanning from biological imaging 

(109) (110) (111) to astronomy (112) as well as manufacturing (113) (114) and vision 

(94) (115).  The SHWFS configuration is simple, it consists of only a micro-lens 

array paired with the image detection device shown in Fig. 7.1. Relative to 

interferometric methods, the SHWFS is a convenient technique for measuring 

optical amplitude/phase due to its relatively small form-factor; limited number of 

components; simplicity to align and robustness to external environmental factors 

such as vibration. A description of the imaging process is given in Chapter 6.  

 

Fig. 7.1: The operational principle of the Shack-Hartmann Wave-Front Sensor. An 
incident wave-front is transversely sampled in segments using a micro-lens array. 
The image formed is used to estimate the wave-front from the ensemble of local 
measurements.  
 
 
 

However, as demonstrated in Chapter 6, fundamental bounds exist which 

limit the measurement precision of the SHWFS geometry. An investigation into 

how these bounds may be lowered is merited in order to improve the performance of 
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the SHWFS relative to alternative phase recovery techniques. Additionally, it may 

be possible to improve the device dynamic range of the SHWFS by increasing the 

maximum resolvable phase aberration before the PSF becomes ambiguous with a 

neighboring micro-lens. This device dynamic range is classically considered to be δ = 

½ D, as shown in Fig. 7.2, since all the neighboring PSFs are identical. 

 

Fig. 7.2: The micro-lens array locally samples the incident wave-front and 
translates the PSF according to the average amount of linear tilt across the pupil. 
The micro-lenses are separated by a pitch equal to D and have a focal length (. A 
tilt of angle θ or peak-to-valley aberration ∆4 results in a shift of the PSF, δ = θ(. 
The dynamic range of the classical SHWFS device is typically considered to be 
limited by the micro-lens separation/diameter, D. 

 

Two limiting scenarios capture the SHWFS performance across a variety of 

applications. The first situation involves applications where the only limit to the 

number of available photons is the dynamic range of the detector for sensing the 

wave-front. For this application scenario, the prior chapter has revealed that under 

practical constraints the SHWFS design will asymptotically reach a bounding 

precision limit and any increase of the number of micro-lenses in the array will 

leave this bound unperturbed. The second limiting situation addresses the case 
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where the number of photons available in the system is fundamentally limited. An 

example of this scenario exists in Astronomy, where the use of adaptive optics is 

employed to maximize the efficiency at forming a diffraction-limited spot in the 

image plane of the telescope. Again, the prior chapter has shown that the 

theoretical limit to this performance is bound by the maximum spatial frequency 

modulation of aberration modes present in the system.  

Therefore in order to improve the measurement sensitivity and device 

dynamic range for quantifying microscopic visual or macroscopic telescope 

aberrations, the concept for an alternative micro-optical element design is 

investigated. This design of the micro-lens pupil must result in an engineered PSF 

which is particularly sensitive to aberrations described with Zernike polynomials 

(107) (116) (117). This investigation will focus on the measurement of phase 

aberration (assuming uniform illumination conditions) and be limited to include no 

more than the lower order Zernike aberrations (considered here to be � � 5, where � 

limits the modulation of the radial component and puts an upper limit to the 

azimuthal variation) as these are easiest to correct with addressable, adaptive 

optics such as deformable mirrors or laser correction surgery (94) (102). The 

material is presented here such that higher order terms (� � 5 )may be included as 

a simple extension of this work.        

This chapter develops as follows. In Section 7.3, the exact engineered PSF for 

this application is introduced. The theoretical tool used to quantify the performance 

limitations of an individual micro-lens design is reviewed and results reported in 

Section 7.4. Evaluation of the engineered PSF micro-lens array under the two 
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illumination conditions highlighted earlier is given in Section 7.5. A discussion of 

these results and future directions of investigation is given in Section 7.6. 

Fabrication and test of a demonstration device is presented in Appendix 7A. 

 

7.3 Engineered Point Spread Function Micro-lens Arrays 

The classical micro-lens array has enabled the development of many new 

applications and opened up the possibility for realizing new imaging modalities (74). 

However, the actual design of an individual micro-lens has traditionally focused on 

reducing the presence of aberrations in order to generate a diffraction-limited spot 

in the focal plane. Despite the vast potential already provided from traditional 

micro-lens arrays, it is now apparent that the design can be improved to expand the 

scope of applications. Alternative solutions to increase estimation precision include 

improving the transverse resolution of the image via super-resolution pupil filters 

(116) (117). The introduction of diffractive optical elements (Fig. 7.2) or intentional 

aberrations to the micro-lens array is discussed next in order to simultaneously 

increase the device dynamic range and improve the aberration mode estimation 

precision.  It is anticipated that such adaptations, which may be directly integrated 

onto the micro-lens, will be useful for alternative applications which have also 

benefitted from micro-lens array implementation. This potential will be revisited in 

the final discussion section. 

To motivate the use of engineered PSFs, the recent activity aimed at 

increasing localization precision in microscopy is highlighted. In particular, the 
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design of optical elements optimally suited to increase three-dimensional 

localization precision has been particularly rich (13) (14). Those designs are 

relatable to the task considered here since they have focused on maximizing the 

information in an image for measuring parameters for transverse location �7,A,, 7,,� 

and defocus �7#%�. Examples, such as the use of astigmatism via cylindrical lenses, 

have been demonstrated both theoretically and experimentally. To further justify 

the similarity of the two tasks, recently a proposal has been made to employ arrays 

of cylindrical lenses in order to increase the curvature sensitivity of the SHWFS and 

optimize the matching of the system response to bi-morph mirrors (107). An 

example which particularly motivates study is research using propagating waves 

with rotation- and scale-invariance (34). From this solution space, the Double-Helix 

Point Spread Function (DH-PSF) is identified. In 3D localization-based super-

resolution microscopy, the DH-PSF has become an important contribution due to its 

enhanced sensitivity to quadratic phase for scenarios with limited numbers of 

photons (35).  

The use of propagating scale- and rotation-invariant waves is promising for 

micro-lens array coding because a) the array of coded apertures may be such that 

each aperture is a rotated or otherwise unique version from neighboring apertures  

thereby increasing the dynamic range of the maximum wave-front aberration 

(introduced later), b) the resulting PSF may natively improve fast estimation 

algorithm precision by including second-order aberration sensitivity through 

measured rotation (11) and c) enhanced first-, second- and higher-order aberration 
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sensitivity may be possible for use with information-efficient estimation algorithms 

to reach a lower CRLB.  

The numerically optimized DH-PSF (29) is analyzed here as one possible 

solution for engineered PSF micro-lens arrays. The DH-PSF is manifest as a 

transverse pattern with two dominant peaks which work in concert to exhibit a 

rotation and scale change as quadratic phase (Zernike polynomial, 7#%) is added to 

the pupil. The 3D-PSF traces out a double-helix pattern in space. Because the 

sensitivity of this mask to defocus has already been documented, we examine the 

sensitivity to higher order aberrations for the first time.  

Because of this documented sensitivity to one second-order Zernike 

aberration, the DH-PSF is investigated as an initial design for estimating higher-

order terms as well. The DH-PSF can be realized via proper coding of a diffractive 

element placed properly with respect to a micro-lens, as shown in Fig. 7.2. The 

Zernike polynomials under investigation here are summarized in Fig. 7.3A. The 

associated PSFs for ¼' aberration with a DH-PSF are shown in Fig. 7.3B. Each 

polynomial produces a pattern indicative of the particular aberration present. One 

can see from the aberration pyramid that the DH-PSF provides a distinct advantage 

in that Zernike polynomials on either half of the vertical axis of the Zernike 

pyramid (corresponding to a rotation of the Zernike aberration) look quite similar 

for the classical micro-lens aperture (see Fig. 6.2 in Chapter 6), whereas the DH-

PSF produces a more unique transverse intensity distribution due to the non-

rotationally symmetric pupil function. 
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Fig. 7.3: Aberration pyramid of Zernike polynomials and the respective influence on 
Double-Helix Point Spread Functions. The Zernike polynomials (panel A) influence 
the Double-Helix PSF uniquely and in a non-rotationally degenerate way. 
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Another important quantity is found by determining the number of 

resolvable phase levels from an incident wave-front due to the individual micro-

lens. This is a function of two variables: the device dynamic range (maximum 

aberration tolerance) and the localization precision. The ratio of the dynamic range 

to the localization precision provides the number of resolvable levels for the micro-

lens. This metric is introduced to provide a measure which accounts for both the 

increased measurement precision and the device dynamic range. Notice that with a 

classical micro-lens array, the device dynamic range can only be increased by 

decreasing the number of local wave-front samples (i.e. micro-lenses). In contrast 

the use of arrays with non-rotationally symmetric point spread functions is of 

interest because the array of coded apertures can be such that each aperture is a 

rotated or otherwise unique version from neighboring apertures. This allows the 

impulse response to overlap with a neighboring group of pixels and be separated 

with signal processing. Whereas the classical dynamic range can be seen from Fig. 

7.2 to be of order ½ the micro-lens pupil size, the introduction of non-symmetric 

PSFs means that neighboring micro-lenses can be distinguishable by introduction of 

a rotation to each pupil function. This rotation of neighboring pupils will scale the 

dynamic range by the number of rotations. It will also be shown to be necessary for 

improving aberration sensitivity performance in Section 7.5A 
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7.4 Performance Quantification with Information Theoretic 

Bounds 

The Cramer-Rao Lower Bound (CRLB) is used to compare aberration estimation 

performance. As implemented here, the CRLB is the lower limit to the variance of 

the estimated quantity (e.g. the aberrations in the Zernike polynomials) when using 

an unbiased estimator. The measurement standard deviation associated with the 

CRLB will be reported for the first 15 Zernike coefficients when the pupil coding is 

present. Note that the CRLB with no pupil coding is reported in Chapter 6. The 

reported values are from estimating the deviation from an ideal plane wave incident 

upon the device. Using this quantity, it is shown in Fig. 7.4 that the theoretical 

limit to measurement precision is improved with the DH-PSF coded pupil function, 

relative to the classical pupil. The DH-PSF is therefore investigated to determine 

whether it can provide a better solution for lens design when implementing an 

array configuration.    
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Fig. 7.4: Single-lens Cramer-Rao Lower Bound (CRLB) of aberration sensitivity.  

 

7.5 Analysis of Performance Bounds 

In what follows, a systematic evaluation of the optimum system design is first 

presented in Section 7.5A. It is shown that simply stamping out a series of DH-PSF 

micro-lenses may not lead to the optimum result. Using a more desirable 

configuration the performance bounds are analyzed when the input wave-front may 

be restricted to be a plane-wave (as explained in Chapter 6) in Section 7.5B. Finally, 

bounds are analyzed when prior knowledge of the input phase is removed and a 

random set of wave-fronts are allowed for measurement with the DH-PSF WFS in 

Section 7.5C to compare with the results of Chapter 6. The dependence of the 

performance of the SHWFS and DHPSF WFS on photon-counts is analyzed in 

Section 7.5D and demonstrates that the DH-PSF can improve performance relative 

to the classical design – even when accounting for photon-limited situations. 
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A. CRLB for DH-PSF Arrays 

Based upon the relative performance gains of a DH-PSF system for Zernike 

polynomial estimation shown in Fig. 7.4, it is proposed to implement an array of 

these pupils into a wave-front sensing system. As seen in Fig. 7.3C, the DH-PSF 

with zero aberrations is not a rotationally symmetric pattern and therefore the x 

and y precision are not equal – as also seen from the CRLB in Fig. 7.4. In order to 

minimize this bias of tip versus tilt, an array of alternating DH-PSF rotations is 

investigated as a micro-lens array, where every other pupil will consist of a 90-

degree rotated version of the original – thereby also increasing the device dynamic 

range by 2x. Note the difference of using a DH-PSF versus two smaller micro-lenses 

pupils - the DH-PSF produces two points which shift in concert to avoid any loss in 

the dynamic range. This is not true when a pupil is simply divided into two. Fig. 7.5 

shows the results of an 8x8 micro-lens array, where the numerical aperture of each 

micro-lens is 0.03 and diameter is 300 microns – the same specifications used in 

Chapter 6. A detector is placed in the focal plane of the array with 5x5 micron 

pixels. The bit-depth of the camera is assumed to be 8-bit. A micro-lens array where 

the DH-PSF mask is sampled discretely with 150x150 pixels (i.e. a pixel pitch of 

2um) is simulated. The mask has 8 discrete levels to modulate a phase delay 

between 0 � 2ï, optimized for the operational wavelength ' � 633��.  It is seen 

that by alternating the DH-PSF mask, the CRLB performance becomes more 

symmetric about aberrations along the x and y-axes.  
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Fig. 7.5: The first micro-lens array design is shown in panel A. An alternative 
design with rotated versions of the mask is shown in panel B. The performance 
bounds, as quantified by the CRLB, are given in panel C. 
 
 

B. CRLB for Planar Incident Wave-fronts 

To address performance specifically related to the application of adaptive optics, an 

ideal scenario is assumed in which an incident wave has been corrected to null-out 
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any aberrations – resulting in an incident plane-wave. The two limits of signal level 

regimes (DR and PH) which were previously described are applicable here and 

therefore investigated. The simulation parameters (e.g. camera pixel size, 

wavelength, etc.) are kept constant with the prior simulation work. The precision 

bounds are analyzed as a function of the density of micro-lenses L2 as well as the 

number of unknown aberration terms to be estimated (given by n). 

Comparison of the two limits (dynamic-range vs. photon-limited) is evaluated 

by using the average estimation precision of each case,  

     ÉÇOá�%� í ,
Ì ∑ Ém|Ìw�, �%�            (7.1) 

where q � 14 is the total number of Zernike polynomials and shown in Fig. 7.6. It 

can be seen that the DH-PSF DR-limited design approaches an asymptotic value as 

L is increased. This is similar to the trends observed with the classical array. 

However, all things equal, the classical SHWFS array has a bound of ÉÇOáÐP �� � 5� �
1.0�� as " , ∞, as shown in Chapter 6. In constrast, the DH-PSF WFS micro-lens 

array is able to improve the average precision bound by 67% to ÉÇOá,ÐâÐP �� � 5� �
0.6�� in the DR scenario. 
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Fig. 7.6: The DR performance is plotted as a function of increasing micro-lens 
density, given by L in panel A. The PH-limited performance is plotted as a function 
of L in panel B. For both cases, the number of estimated aberration modes is 
allowed to vary from 1 � � � 5. The analogous case for a classical SHWFS is 
reported in Fig. 6.5. 
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 For the PH case a surprising observation is made with respect to the 

optimum micro-lens size to measure wave-front aberrations. It is seen that 

regardless of the number of unknown Zernike polynomial aberration modes to 

estimate that a single lens will be the best use of photons. The key difference in 

performance between the DH-PSF and the classical optical pupil is readily apparent 

here. The classical pupil can be relatively insensitive to particular aberrations – 

shown specifically in Fig. 7.4. The DH-PSF does not have particular modes with 

poor precision and instead is uniformly sensitive the first 21 Zernike polynomials, 

therefore improving the average precision at low L. 

    

C. CRLB for Random Incident Wave-fronts 

For applications such as clinical vision quantification for laser correction, the 

measurement device must be able to sense a large number of possibly aberrated 

wave-fronts since these will represent the common distribution of aberrations in the 

eye. In order to evaluate system performance, ten random incident wave-fronts are 

simulated for each micro-lens array density. Additionally, the number of possible 

aberrations in these random incident wave-fronts is increased from � � 1 to � � 5. 

The statistics of these wave-fronts is exactly the same as that used in Chapter 6. An 

example random wave-front is given in Fig. 7.7 along with the associated image 

behind the DH-PSF micro-lens array. 
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Fig. 7.7: A random super-position of Zernike polynomials is present to the input of 
the wave-front sensor. The particular modes and their respective coefficients are 
given in Panel A. The local distribution of the wave-front aberration is seen to be 
poorly approximated with tip/tilt phase aberrations in panel B. The wave-front 
sensor image for an 8x8 DH-PSF micro-lens array to be used for estimating the 
incident phase. 
 

The average performance bounds (CRLB) are presented in Fig. 7.8 for all ten 

instances as a function of micro-lens density. When compared with the results for 

the plane-wave incident CRLB, it is observed that for higher micro-lens density, the 

two results approach the same values. 



 

174  
 

 

Fig. 7.8: The performance bounds of the DH-PSF SHWFS when random incident 
wave-fronts are measured. The camera dynamic-range limited scenario is presented 
in panel A. The photon-limited scenario is presented in panel B. 
 
 

D. The Significance of Available Photons 

Because the behavior of the CRLB showed qualitatively similar behavior with 

simulation of an incident plane-wave versus the average behavior of random 
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incident wave-fronts as " is increased past a threshold (" t 5), only the plane-wave 

scenario is investigated further in this section. For the dynamic-range limited 

scenario, the SHWFS has been demonstrated in Chapter 6 to asymptotically 

approach a limiting value as the micro-lens array density is increased – regardless 

of the particular pupil encoding. The CRLB for each Zernike polynomial is given in 

Fig. 7.9 at micro-lens densities of 8x8 and 16x16 for the classical SHWFS micro-lens 

array to reinforce this conclusion. With DH-PSF pupil encoding, the asymptotic 

CRLB value can be decreased relative to the classical micro-lens design in the 

dynamic-range limited scenario – shown in Fig. 7.9 for 8x8 and 16x16 micro-lenses. 

As seen earlier in Fig. 7.7 and 7.8, the photon-limited performance exhibits 

precision loss relative to the DR case. However, one can show that the DH-PSF can 

still be advantageous.  

 As an example of this, two systems will be evaluated. First, a 16x16 classical 

SHWFS micro-lens array is used in the DR-limited regime with the performance 

reported earlier. The second system is evaluated using an equivalent number of 

photons but instead with a DH-PSF WFS at a 5x5 micro-lens density. This 

effectively increases the SNR relative to the scenarios evaluated earlier in Fig. 7.7 

and 7.8. Because the DH-PSF is more sensitive to aberrations, the 5x5 array is able 

to improve upon the SHWFS performance of a classical design when using the same 

number of photons. This important conclusion demonstrates that encoded micro-

lens arrays can provide improved performance relative to the classical SHWFS 

across all operational conditions if the incident beam is expanded/contracted to be 

used optimally. 
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Fig. 7.9: The performance bounds are analyzed for a variety of micro-lens 
configurations. The classical, clear aperture (CA) micro-lens array performance 
bounds are shown side-by-side with the DH-PSF micro-lens array (DH). It is seen 
that the classical design also approaches an asymptotic value but that the DH-PSF 
system can improve the performance relative to this in the dynamic-range limited 
regime. When conserving the number of photons in a 16x16 dynamic-range limited 
classical micro-lens array, a reduced array of 8x8 DH-PSF micro-lenses can out-
perform the classical system – in the dynamic-range and photon-limited scenarios. 
 
 

7.6 Discussion 

The micro-lens array is a key enabling device for application solutions such as the 

Shack-Hartmann Wave-Front Sensors (SHWFS). Outside of this specialty, it has 

also directly contributed to the development of light-field or plen-optic cameras (74), 

compact imaging systems (118) and parallelized sensors (119). With regards to the 

design and manufacture of the micro-lenses, most research has focused on 

fabrication techniques and the useful application of these classical micro-lens arrays 

(77) (95). However, recently optimal design of micro-lens pupils for particular task-

specific imaging/sensing applications has received more attention (16) (107) (116) 

(117).  

This recent work has verified that modification of the individual pupil 

function for the micro-lenses may be beneficial for performing specific tasks. Much 
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of the prior work has focused on wave-front sensing, where estimation precision and 

dynamic range are the prevailing metrics for sensor performance. It was argued 

here that the estimation precision may be dependent upon the following 

parameters: dynamic range of the image capture device; the number of photons 

collected; the point spread function (PSF) of the associate pupil; the type of noise 

and signal-to-noise ratio. In this work, an engineered PSF solution was evaluated 

using a non-uniform array of DH-PSF masks which addresses how to optimize both 

the device dynamic range and estimation precision for the first time. The wave-front 

sensing application was an interesting candidate to test the proposal of engineered 

PSF micro-lens arrays because it is expected to be sensitive to a larger domain of 

possible aberrations relative to all the prior systems which have been considered 

(11) (35). 

Possible scenarios were simulated which would be typical for specific SHWFS 

applications with/without a DH-PSF pupil to verify that the Cramer-Rao Lower 

Bound (CRLB) can indeed be improved over the documented, classical performance 

limitations. Using the alternating sequence of DH-PSF masks, it is shown that the 

DH-PSF coded pupil micro-lens array can represent up to a 2x improvement in 

device dynamic range and almost a 2x improvement in estimation performance. 

Together, this represents a 4x improvement in the number of resolvable phase 

levels relative to the performance of the clear pupil scenario. This would be 

advantages for applications such as aberration measurement of the eye, where 

aberrations may be large but precision must remain very good.  
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Since the design of the individual pupil function for each micro-lens array is 

similar to the optimal designs for 3D microscopy (35) and passive ranging 

applications (11), it is expected that an engineered PSF array would provide 

advantages in applications where only a subset of wave-front aberrations are 

present. Possible applications include use in a TOMBO configuration to extract 

additional depth resolution information (118); applying to a micro-fluidic device for 

3D sensing of particles in each channel; and finally, since the aberrations are 

inherently chromatic, using a DH-PSF micro-lens array as a parallelized spectral 

imaging device. 

As discussed in Appendix 7A, future work is necessary to reduce the 

aberrations present in the fabrication of these diffractive optical elements when 

coupled with traditional micro-lens arrays. Since the potential applications can be 

rapidly found this represents a fertile opportunity for further research. 

 

7.7. Appendix A: DH-PSF Mask Array and Micro-lens (Fresnel) 

Fabrication 

A demonstration of this system is provided by combining a mix of lithographic 

techniques for manufacturing the array. The phase mask was numerically 

optimized using an established method (29) but for use with a rectangular pupil 

instead of a circular pupil. This was to accommodate the possibility of extreme light 

sensitive applications where the use of chrome circular apertures must be avoided 

as this decreases the optical efficiency of the device. 
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Fig. 7.10: Lithographic design of 8-level phase mask for DH-PSF micro-lens array. 
The first three masks are used sequentially as binary lithographic development 
processes. The result is the 8-level diffractive optic shown in the last panel. 
    

The DH-PSF array is fabricated using three steps of binary mask exposures 

to generate the 8-level diffractive optic in Fig. 7.10. This fabrication technique was 

reviewed in Chapter 4. The mask was manufactured at Ecole Polytechnique 

Federale de Lausanne in Neuchatel, Switzerland in collaboration with Toralf Scharf 

and Hans-Peter Herzig in a micro-optic fabrication lab which has no access to the 

gray-level techniques used earlier in this work. The manufacturing process included 

the coating of a 4x4” quartz substrate with photo-resist, followed by alignment and 

exposure to the first binary mask in Fig. 7.10. The sample is then developed and 

processed using a Reactive-Ion Etch (RIE) in order to transfer the pattern into 

quartz. Then the sample is again coated with photo-resist and the procedure 

repeated for the second and third masks of Fig. 7.10. A white-light interferometric 

surface profilometry scan (Zeiss New View) of the phase-mask is presented  in Fig. 

7.11 to verify the pattern transfer and alternating rotations of the phase-mask. The 

optimum wavelength for this mask is 546nm as given by the maximum difference in 

the surface relief height and assuming that the refractive index of the quartz is 

�=1.4548. 
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Fig. 7.11: Surface profilometry of a 2x2 sub-region from the DH-PSF phase mask 
array.  
 

The focusing element of the micro-lens was fabricated at CNL as a Fresnel 

lens with the same pitch size as the DH-PSF mask. The mask was fabricated on the 

mask-less lithography device (IMP SF-100 Xpress). The processing steps included 

loading the phase mask array onto the spin chuck for spin-coating with the mask 

side down. The top side was coated with an AZ-4210 layer at 5krpm for 40 seconds. 

This sample is then transferred to the lithography device where a binary pattern of 

periodic disks was projected on the sample. This allowed for the proper transverse 

translation and rotation alignment to be set in order to generate an 8x8 micro-lens 

array on the opposite side of the DH-PSF array in quartz. The sample is then 

developed and processed according to the procedures outlined in Chapter 4. The 

resulting surface is shown in Fig. 7.12. The Fresnel lenses are clearly observed 

however significant noisy surface modulation is also present – as earlier 
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documented. The optimum wavelength is calculated to be 700nm – as given by the 

maximum surface relief variation and assuming the photo-resist refractive index to 

be � = 1.635. 

 

Fig. 7.12: Surface profilometry of Fresnel lenses on the backside of the phase mask 
array.  
 

 

Fig. 7.13: Experimental test configuration. An incident beam from a HeNe source is 
spatially filtered using an objective and pinhole. The resulting diverging beam is 
collimated with a lens of focal length +,. The collimated beam is incident to the 
micro-lens array element with the DH-PSF array side facing the beam. The array of 
beams is re-imaged onto a detector with a 4F system. 

 

A wave-front sensing experiment is employed to test the ability of the DH-

PSF micro-lens array for sensing aberrations beyond tip/tilt. The test measures a 
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quadratic phase term by defocusing the collimation lens in Fig. 7.13 by 10cm. This 

additional quadratic phase results in both translation and rotation of the DH-PSF 

in the micro-lens image plane which can be easily measured (11) (32). Note the use 

of a 4F system to relay the image from the micro-lens image plane to the detector 

plane. This was necessary as the focal length of the micro-lens was much shorter 

than the length of the distance between the camera detector plane (Point Grey 

Chameleon CMLN-I3S2M) and its IR filter.  

The focused image is shown in Fig. 7.14. Once the collimation lens is 

translated, a simple estimator is proposed here to increase the local accuracy 

beyond just tip/tilt by measuring the relative rotation change of the DH-PSF in each 

micro-lens (as done in Chapter 3). The tip/tilt terms are still provided from the 

familiar transverse translation of the PSF – exactly as with the classical micro-lens. 

Both the calculated translation and rotation are shown in Fig. 7.15 showing the 

direct sensing of higher-order aberrations locally at each micro-lens. As an 

alternative estimation implementation, a multi-variate search algorithm (such as 

direct-search or genetic algorithm optimization) can be utilized to solve for the 

aberrations globally present across the micro-lens array instead of concentrating on 

using the local measurements.  
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Fig. 7.14: Experimental images from the DH-PSF micro-lens array. The 8x8 array 
which is used for wave-front sensing shows alternating patterns of DH-PSFs (panel 
A). An example DH-PSF is used to demonstrate that the centroid can be easily 
found for measuring transverse shifts (centroid is given with white cross) and that 
the two peaks can be identified to calculate an angle which is related to defocus 
aberrations (panel B). 
 

 

Fig. 7.15: Measurement of quadratic phase aberration with the DH-PSF micro-lens 
array in terms of transverse shift (linear tip/tilt) as well as higher-order local 
aberrations which are quantified locally in terms of the DH-PSF rotation. 
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CHAPTER 8 

 

CONCLUSION 

 

 

 

A review of prior literature firmly establishes the utility of optimization criteria 

such as Fisher Information and the Cramer-Rao Lower Bound (CRLB) as well as 

the capabilities of encoding the pupil function for optical system design. However, 

despite the advantages of these systems, in some cases, missing pieces were still 

necessary to form a complete solution. This was observed with existing techniques 

for scale- and rotation-invariant propagating wave solutions, where two failures had 

stood out: 

a. The lack of estimation algorithms which reach the promised advantages of 

engineered PSF design in 3D super-resolution microscopy 

b. The lack of optical elements which efficiently encode the designed PSF in 

terms of photons 

Therefore tools to satisfy these demands were developed early in thesis and each 

applied individually. For the first time, a comprehensive implementation of the two 

was later demonstrated for 3D super-resolution microscopy in Chapter 4.  

Based upon this, it is believed that 3D localization based super-resolution 

imaging techniques using engineered PSFs can finally realize their full-potential. 
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To this end, a full system should be manufactured which incorporates the tools 

necessary from the point-of-view of biologists. Such tools would include an inverted 

microscope design with tip/tilt control and automatic feedback of the sample stage 

as well as a convenient eye-piece for viewing/alignment. To facilitate rapid signal 

processing and super-resolution image development, the parallel computing 

capabilities of Graphic Processing Units (GPUs) can be paired with the PR-MLE.  

The single-molecule work in this thesis had assumed isotropic emission from 

each fluorophore. While accurate for the 3D super-resolution microscopy studies 

undertaken here, additional physics can be found from measuring how the 

orientation of a dipole changes in different environments (120) (121). Image-based 

techniques have been explored as one solution to estimating dipole orientation from 

the far-field emission pattern  (46) (120) (122) (123). Recently, these proposals have 

been characterized in terms of their respective Information theoretic limits (124). 

Additional work is warranted to search whether an improved solution using 

engineered PSFs exists. If so, an extension to the PR-MLE model could be explored 

for application to this class of imaging.  

Subsequent work was demonstrated here to further exploit the suite of tools 

developed for engineered PSFs. First, a system was demonstrated which can realize 

the promised goals of two individual tasks. This required the use of multiple 

engineered PSFs – each ideal for one of the two tasks. To realize these tasks 

simultaneously, a new pupil-encoding was proposed – the Single-Helix PSF which 

allows for a single-lens/camera implementation. The means to realize this encoding 
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was discussed and the requisite mask was fabricated. The proposed utility of the 

design was also demonstrated in experiment.  

 However, the gains of exploiting the pupil-function have now been 

demonstrated for only a limited set of tasks – tasks which are associated with three 

particular phase aberrations: linear phase tip/tilt (object transverse translation) 

and quadratic phase (object axial location). In order to explore and demonstrate the 

potential of engineered PSFs for new areas, the application of wave-front sensing is 

explored. This application is of particular interest because it involves the direct 

sensing of an arbitrarily larger set of new and additional aberrations. The classical 

Shack-Hartmann Wave-front Sensing design was analyzed in terms of the CRLB, 

quantifying the limiting performance. Using the same tools, a proposal was 

analyzed to use engineered PSFs for wave-front sensing micro-lens arrays. The 

subsequent design was shown to be of theoretical value for most scenarios 

applicable to wave-front sensing applications. The proposed micro-lens device was 

fabricated as a demonstration that such systems are realizable and a straight-

forward algorithm was demonstrated to extract enhanced aberration information 

relative to the classical micro-lens design. 

 The analysis of a wave-front sensor with engineered PSF design 

demonstrates the improvement available to all passive imaging techniques which 

plan to exploit the information transmitted in aberration modes. Additional modes 

included in this analysis have direct applications outside of wave-front sensing. One 

example is the use of spherical aberration in microscopy to estimate the distance of 

a source from the cover slip of a microscope sample. 



 

187  
 

  With the demonstrated success of these tools for engineered PSF design, the 

ability to move forward on finding successful applications should improve. An 

interesting avenue for future work would be to focus on the exploitation of the 

chromatic dependence of optical aberrations in order to develop dense arrays of 

chromatic sensors. Exploitation of chromatic aberrations was already introduced in 

Chapter 5 through the application of SH-PSFs for a joint ranging/extended Depth-

of-Field solution. The advantage of such a design for chromatic sensing is that in 

contrast to the use of diffraction gratings and prisms, the pattern matching 

algorithms and optical elements demonstrated here can be used to reach the 

information theoretic limits for small form factors and engineered PSFs which are 

simple to estimate. One example system can potentially be demonstrated using the 

DH-PSF micro-lens array in Chapter 7 however since aberrations were present in 

the image due to errors in the mask/micro-lens surface, better fabrication 

techniques must be developed. Such a system could be fixed to a micro-fluidic device 

where the fluidic channels are each matched to a micro-lens. When placed at a fixed 

axial distance (any distance which is out-of-focus will do) from the micro-lens, the 

chromatic behavior of the DH-PSF will encode the chromatic content of the fluidic 

channel into a unique rotation of the PSF.   

 



 

188  
 

 

Fig. 8.1: A Venn diagram showing the nested relationship between different optical 
sensing/imaging applications in terms of the aberrations necessary for that 
application. 
 

Each of the applications in this thesis can be traced to the targeted 

exploitation of specific aberration functions. As the task becomes more complicated, 

a greater number of aberrations are necessary to infer the inverse relationship 

between the image and the parameters to be estimated. This nested relationship 

between particular tasks and the set of aberrations necessary to complete them is 

given in Fig. 8.1. The shape of the Venn diagram is not directly indicative of the 

relative difficulty or significance of each particular task. For instance, only three 

aberrations are responsible for the sensing associated with 3D imaging. However it 

does emphasize the relatively small domain of existing applications relative to the 

available number of aberration modes and provide some additional motivation for 

the future study of the ideas investigated here. 
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APPENDIX A 

 

TRADE-OFF OF DEPTH-OF-FIELD VERSUS FIELD-OF-VIEW  
FOR ENGINEERED POINT SPREAD FUNCTION CHANNELS 

 

 

 

A.1 Optical system design 

 

The prior geometrical optic designs discussed in Chapter 3 will operate with a 

different operational axial-depth range and sensitivity than the diffraction-based 

methods. This is because the classical geometrical optics approaches have 

traditionally defined the Depth-of-Field (DOF) by an acceptable increase in the 

transverse spot size of the PSF before image blur become unacceptable. The 

practical reason behind this is to define an axial range where the imaging system 

will approximately behave with invariance. In contrast, the diffractive optics 

approaches described in this thesis have an operational range which is typically 

associated with a range of allowable rotation. In addition, the use of a diffractive 

optics approach will account for the wave-nature of light - particularly relevant for 

when high-accuracy and precision is necessary. Therefore, the diffractive 

engineered Point Spread Function (PSF) design should benefit the application 

where 3D precision within the short range where geometrical optics fails is 

paramount as well as to increase the operational DOF. However, the use of an  
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engineered PSF (such as the Double-Helix PSF) requires trade-offs between the 

necessary spatial sampling of the PSF for estimation purposes and important 

characteristics such as the system Field-Of-View (FOV). This particular trade-off is 

investigated here in order to select the proper system design and understand its 

limits.  

 

A.2 Depth-of-Field versus Field-of-View 

The usable Depth-of-Field (DOF) is defined here as, 

   5p< í 01,�ÇG�+, 0B,Ψ678� � 01,�B��+, 0B ,Ψ69��   (A.1) 

and the Field-of-View (FOV) as, 

     <p" í �û�� �²:;_`      (A.2) 

where 01 is the (variable) object distance and will be developed in more detail later, 

+ is the lens focal length, 0B is the (static) focused image position, .¤ is the number 

of pixels on the camera, Δ= is the pixel size and Ψ678, Ψ69� are the minimum and 

maximum defocus parameter values associated with the operational axial range. 

These defocus values are the number of waves of defocus aberration in the optical 

pupil which is associated with the extremes of the object location and defined as 

(25), 

    Ψ678 � \
X ��# � �#� L ,

_·,³ó± � ,
_` � ,

^Q   (A.3) 

    Ψ69� � \
X ��# � �#� L ,

_·,³`� � ,
_` � ,

^Q   (A.4) 

where ' is the wavelength of operation, 01,�B� and 01,�ÇG take the minimum and 

maximum object positions and �, � are the pupil plane coordinates to define the 
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aperture size of the optical system. An example of this defocus dependence on the 

object distance is given in Fig. A.1 where an example system with ' � 633��, 0 �
�, � � 2.5��, 0B � 55�� and + � 50��.  

 

Fig. A.1: The non-linear dependence of the number of waves of defocus, Ψ, as a 
function of object distance for a representative system. The allowable values of Ψ 
are in the shaded region associated with the maximum values being present at the 
edge of the optical pupil. 
 

This parameter  Ψ influences the Point Spread Function (PSF) of the system 

through the addition of quadratic phase to the pupil function (25), 

    :;<��, �� � ] ,
X_·_`a

# Y�Z���, ��!AB��N,O�[Y#
  (A.5) 

where ���, �� describes the potential complex-valued pupil function of the lens and 

01,�B� � 01 � 01,�ÇG. 

The operational limits of Ψ (e.g. Eqs. A.3, A.4) are chosen to accommodate the 

functional range of the PSF. For example, as previously mentioned, the classical 

definition for the acceptable defocus ranges in a standard optical system can 

correspond with an increase of the Airy disk width (i.e. the transverse distribution 

of the standard PSF shape) by √2 from the focal plane PSF size. Therefore, the 
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choice of Ψ678,Ψ69� will coincide with this constraint on the spatial feature of the 

PSF. In contrast, the DH-PSF has a functional range associated with the 180° 

rotation of its characteristic lobes. It is found that this rotation occurs within the 

range �12 � Ψ � �12 waves of defocus aberration at the pupil perimeter, the same 

range used to plot the images in Fig. 3.1. 

The aperture size in Eq. A.5 can be constrained by definition of a required 

sampling rate in the detector plane to have a maximum resolvable spatial frequency 

of, 

     +B�k1¼ � 2+k1¼ � Í
�¿¿


³ó±X_`     (A.6) 

where .// is a Nyquist sub-sampling factor to account for non-ideal detector pixel-

pitch, +k1¼ is the coherent optical system cut-off frequency, +B�k1¼ is the incoherent 

optical system cut-off frequency and ���, �� � 0 if �, � � K�ÇG. The necessary 

sampling rate here is dictated by the performance and capabilities of the specific 

algorithm being implemented for range estimation with the PSF. For the DH-PSF, 

this has ranged experimentally in the range between 1 � .// � 2. Using these 

constraints the maximum aperture size can be re-written in terms of the detector 

pitch Δk as, 

     K�ÇG � X_`Í:� .//.     (A.7) 

This can be rewritten again using familiar optical parameters such as the 

numerical aperture (NA) as, 

     .ü � X>
Í:� .//       (A.8) 
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where the focused image distance 0B í -+ and - t 1. Using common system values 

for .// � 1 and ∆k� 4��, the relationship between the allowable NA to realize the 

minimum spatial sampling constraints is given in Fig. A.2. 

 

Fig. A.2: The dependence of the maximum allowable numerical aperture (NA) 
versus a scaling factor for the imaging distance given by -. Shaded regions signify 
allowable values which are constrained by requiring the PSF to be sampled at no 
less than 1x Nyquist frequency (.// � 1�. 
 

Using Eq. A.3 and A.7, the object distance satisfying these constraints can be 

found, 

    01,�ÇG � �,?�³`�\X ] :��¿¿_`a
# � ,

^ � ,
_`�

A,
  (A.8) 

and subsequently used to find the DOF defined in Eq. A.1. Implementing the use of 

a scaling factor definition of the focused image distance for convenience, (i.e. 0B í
-+), Eq. A.8 is rewritten,  

    01,�ÇG � @^
©AB³`�DEC� ] D�§¿¿aCH@A,     (A.9) 

In addition to this constraint for object distance, other parameters may be 

used to further define the parameter space. For example, the non-linear, monotonic 

relationship between object distance and defocus in Eq. A.9 and explicitly 
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demonstrated in Fig. A.1, will translate to a variation in object space axial precision 

as a function of position. This is because the variable Ψ is what directly influences 

the rotation of the PSF, as defined by Eq. A.5, and as the object distance increases 

the influence on Ψ wanes - thus resulting in decreased axial estimation precision. 

As a result, a gain factor ¹ is defined for a single-lens imaging system that will limit 

the variation in this object space precision as, 

    ¹ � _·��³`��A_·��³`�H���
_·��³ó±AE��A_·��³ó±�    (A.10) 

where �Ψ is an expected minimum resolvable defocus step of the rotating PSF and 

is dependent on factors such as estimation algorithm, Signal-to-Noise Ratio (SNR), 

the sampling rate .//, etc.. Using the parameters already defined for an optical 

system, a representative gain dependence contour is given in Fig. A.3. Note that one 

must be careful in understanding the role of NA on the gain performance. Here the 

NA scales according to - (Eq. A.8) and not +as would typically be expected. Instead 

as + is varied for a fixed -, the radius of the aperture is scaled in order to maintain a 

constant NA to satisfy the sampling constraints. 
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Fig. A.3: The gain dependence of an optical system (color coded) as a function of the 
focused image position and focal length of the imaging lens. An increase of - is 
equivalent to an increase in NA (Eq. A.8) and it is observed that as the NA 
increases, the DOF decreases. Note that the gain is displayed in a log10 scale in 
order to increase the information conveyed visually. The invalid solution space is 
not color coded in the image (e.g. where a value of + and - yield a negative 01). 
 
 
 In order to begin mapping the relationship between DOF and FOV, a 

numerical study between the two is provided using the same optical configuration 

assumed previously. Using the object space resolution gain criteria of Eq. A.10, a 

solution for the allowable lens focal length given the parameter set 

F 3 Z¹, -, ΨG76, λ,NII, ∆=,N�[ is found where,   

     + � � à
#Ü � √àCAÍÜß

#Ü     (A.11) 

and  

    ü � �-#¹ � 2-¹ � ¹� � �-# � 2- � 1�   (A.12A) 

  s � �- � 1� ,?
\X> ] ���¿¿a# ���¹ � 2�.B�¹ � 2�.B� � ���        (A.12B) 

 r � L ,?
\X> ] ���¿¿a#Q# ����.B��#¹ � ���.B�¹ � ��.B��# � ���.B��.  (A.12C) 

With this solution for +, the relationship between DOF and FOV can be found using 

equations, 

     <p" @ �²:;
>^      (A.13A) 

and  

    5p< � >^
©ABJKLDEC� ] D�§¿¿aCH>A, � >^

©ABJMNDEC� ] D�§¿¿aCH>A,.  (A.13B) 

Constraining the parameter set defining the system to be F 3 Z100, 1 � - �
1.5, ΨG76 � 12, λ � 633nm,NII � 1, ∆= � 4µm,N� � 10248, the relationship between 
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DOF and FOV is numerically solved in Fig. A.4 and fit to a power law with the 

solution, 

5p< � �0.04549�<p"A# 

where DOF is in units of length (meters) and FOV is in units of angle (degrees). 

This relationship follows the inverse square law expected from classical optics. 

 

Fig. A.4: The relationship between Depth-of-Field and Field-of-View for an 
Engineered PSF system is seen to obey the inverse square law. The coefficient of the 
inverse relationship is determined by the required sampling conditions, operational 
defocus parameters, etc.  

 

  



 

197  
 

APPENDIX B 

 

FISHER INFORMATION MATRICES FROM  
NUMERICAL OPTICAL SYSTEM SIMULATION 

 

 

 

B.1 Numerical Calculation 

The use of Fisher Information (FI) matrices and their inverse, the Cramer-Rao 

Lower Bound (CRLB), is prevalent throughout this text. In what follows, an 

introduction into the methods employed for numerically calculating the FI is 

presented for those interested in reproducing existing results or applying FI 

analysis to new problems.  

The FI is used to quantify the amount of information contained in the 

measurement u which is related to the unknown set of random variables, 9. The 

generalized, multi-parameter matrix form is written as (33),  

    <uc2�, 2Oe � P � {
{m` *� +�u; 9� {

{m| *� +�u; 9��  (B.1) 

where . unknown parameters are assumed in    9 3 42B , … , 2�8, P is the expectation 

value, + is the probability density function and the FI matrix is .�..  

In optical applications, the measurement is typically the experimental image 

and examples for the unknown set of random variables can include the object being 

imaged, the intensity of the source, the 3D location of the source, the particular 
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wavefront aberration, etc. Information is transferred to the measurement via a 

change in the signal as the unknown variable is modulated, as seen by the partial 

derivative in Eq. B.1. An example form of the FI matrix for 3D localization is 

presented in Fig. B.1.  

The generalized FI form of Eq. B.1 can be reduced to an approximate form for 

joint Gaussian and Poisson processes in an imaging system as (73), 

  <uc2B , 2we @ ∑ ∑ PC
¶CHPC´��,�;9����, {´��,�;9�

{m`
{´��,�;9�

{m|
���,    (B.2) 

if É/R � 0.5, where É is the standard deviation from Gaussian noise in units of 

[Volts] and R is the pixel responsivity in units of [Volts/photon] and u��, �; 9� is the 

number of photons in the image from pixel �, �. Note that when reduced to pure 

Gaussian �É# h R#u� or pure Poisson �É � 0� noise processes, this expression is 

exact (73). Assumptions used to derive this form are that each pixel is an 

uncorrelated, independently random event and that a uniform standard deviation is 

applicable across the detector array such that the FI will add across all pixels.  

 

Fig. B.1: Example of the optical point spread function (left) used for estimating 3D 
localization. Application of the FI yields the 3x3 matrix shown to the right with 2 3 ¦5, 6, 7ª. Note the matrix values have been normalized. The transverse 
coordinates (X,Y) are shown to have relatively high FI relative to the axial 
coordinate (Z) – indicating that the amount of change in the image is higher for 
transverse shifts. The transverse shift-invariance is responsible for the low cross-
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terms between the parameters X, Y. The axial-invariance of the PSF due to the 
depth-of-focus is responsible for the low FI content of the Z parameter. 
 
 

When given the Fisher Information matrix, the Cramer-Rao Lower Bound 

(CRLB) can be found from the matrix inverse, 

      rR"s t <uA,     (B.3) 

where the CRLB is a matrix providing the lower limit of the realizable estimation 

variance for parameter set 9.  

 The CRLB values along the diagonal provide the estimator variances of each 

independent parameter and are frequently quoted when analyzing system 

performance. In practice, the off-diagonal, correlated terms are left unreported. 

However, these values are relevant as indications of the relationship between 

particular parameters. For example, in 3D localization the cross-correlated terms of 

the �, � axes should indicate that the precision is independent of the location of the 

transverse location, i.e. transverse shift-invariance as shown in Fig. B.2. 

 

 

Fig. B.2: The FI (left) is utilized to provide the lower-limits of estimation precision, 
via the Cramer-Rao Lower Bound (right). The inverse relationship between the two 
matrices means that parameters with higher FI will yield improved estimation 
variances. The axial-invariance from depth-of-focus is responsible for the high 
estimation variance of the Z parameter and its cross-terms.  
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A flowchart for calculating the Fisher Information matrix is given in Fig. B-3. 

In panel (A), the FI matrix calculation algorithm is presented for a generalized form 

of unknown parameters, 9. In panel (B), the FI matrix is found for the example of 

3D localization imaging. 

 

 

Fig. B.3: Example flowcharts for calculating Fisher Information matrices. The 
flowchart for creating a FI matrix for a general set of parameters, 9, is presented in 
panel A. A specific example of FI analysis for the case of 3D localization analysis is 
presented in panel B. Forms of the FI matrix elements are provided for the 
assumption of either Poisson or Gaussian noise. 
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Calculation of the FI matrix requires an accurate system model to generate 

the image u��, �; 9�. Given this, the partial derivatives can be found using central 

difference methods, 

   
{

{G u � ´�GH¼�A´�GA¼�
#¼      (B.4) 

where ½ is the numerical step size. To make this formula more explicit for a 

representative task, the following is an example for calculating the partial 

derivatives for the 3D localization of a target at the position �%, �%, 
%,  

 
{

{Q u��, �; �%, �%, 
%� � ´��,�;GVH∆G,IV,WV�A´��,�;GVA∆G,IV,WV�
#∆G    (B.5) 

  
{

{R u��, �; �%, �%, 
%� � ´��,�;GV,IVH∆I,WV�A´��,�;GV,IVA∆I,WV�
#∆I     (B.6) 

  
{

{) u��, �; �%, �%, 
%� � ´��,�;GV,IV,WVH∆W�A´��,�;GV,IV,WVA∆W�
#∆W    (B.7) 

where care must be taken to chose a value for ∆�, ∆�, ∆
 which accurately provides 

the derivative. In practice, this is achieved by calculating the derivative for many 

values of step size and selecting the step size where the derivative has 

asymptotically approached a limit. Utilizing all the tools now developed an 

algorithm for calculating only the axial Fisher Information of a three-dimensional 

imaging system is presented as an example in Fig. B.4. 
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Fig. B.4: Flowchart for calculating the Fisher Information content in a general 
imaging system to be used for localizing the axial position of the source being 
imaged.  
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