
Two Examples of Modeling Practices in Solar System Dynamics and

Plasma Physics

by

Daniel D. Sega

M.St., University of Oxford, 2018

M.Sc., University of Colorado Boulder, 2020

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Astrophysical and Planetary Sciences

2024

Committee Members:

Robert E. Ergun

Glen. R. Stewart

Heather Demarest

Ann-Marie Madigan

Zachory K. Berta-Thompson



ii

Sega, Daniel D. (Ph.D., Astrophysical and Planetary Sciences)

Two Examples of Modeling Practices in Solar System Dynamics and Plasma Physics

Thesis directed by Prof. Robert E. Ergun and Dr. Glen. R. Stewart

Models are an essential part of the scientific practice. However, they often fail to be one-to-one

representations of the physical system studied; they present idealizations and abstractions. By taking two

models developed by me and collaborators as examples—bending waves in Saturn’s rings and acceleration

ions in the Earth’s reconnecting magnetotail—I will argue that approximations and abstractions are not

introduced in models for computational convenience alone but to highlight the explanatory relevant parts of

the physical system in question.
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Chapter 1

Introduction

Scientists aim to describe the world as it is. They do this by constructing models that represent certain

aspects of the world. If a model makes successful predictions, then it seems reasonable to assume that each

part of that model corresponds to a real aspect of the world.

In this thesis, I will argue that this is not always the case. By using test cases of scientific models

developed during my doctoral studies, I will show that scientific modeling does not only concern itself with

one-to-one representations. There are many other things that the practice of science attempts to do, and these

different applications of science condition the types of scientific models that are produced. Specifically, I

will emphasize that, for the purpose of being explanatory, the accuracy of a model can impair—instead of

enhance—the model’s effectiveness. Hence, I will argue that models with certain distortions (idealizations

or abstractions) are necessary for good scientific practice. As a result, distortions are there not only for

computational convenience but also to highlight explanatorily relevant factors.

The study of representations in science aims to make salient the conditions that a model must satisfy

in order to properly represent the target system. What is the nature of the relation that holds between the

model and the target? What makes a good scientific representation? How mathematical equations, and

models in general, manage to represent the real world will be analyzed from the perspective of a theory

of representation in general. I hence start by asking how representations are achieved in the general case

(scientific or otherwise).

We’ll analyze an often-mentioned candidate for the key relation between the model and the real

world: similarity or resemblance—representation is possible by virtue of two things being similar. With the
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aid of van Fraassen’s Scientific Representation we’ll argue that the key feature of scientific representation

is not similarity, but rather the relation that exists between the scientist doing the representing, and the

model. Models are used by scientists to represent part of the world with a specific purpose in mind: maybe

reproducing a set of data to some defined accuracy, making a prediction or providing an explanation, or

allowing for technology building. We’ll conclude that the ability to fulfill the purpose set by the scientist is

the key to a good representation. Similarity can be relevant for fulfilling this purpose, but only in service of

the purpose.

Then, we will explore the distinction between the explanatory and descriptive functions that scientific

models may have, as suggested by Nancy Cartwright. We will then ask two questions about our models. Q.1:

What purpose does our model fulfill and how does it justify the distortions introduced? and Q.2: How do

these models fulfill the explanatory or the descriptive functions of scientific modeling? In this introduction

(Chapter 1) I present the historical development of these questions in the philosophy of science literature.

Then I will present the models in detail: a model of vertical waves in Saturn’s A ring (Chapter 2) and a

model of the motion of ions in the Earth’s magnetotail (Chapter 3). Finally, we will conclude by answering

the question we formulated in the first chapter (Chapter 4).

1.1 Representation and Scientific Representation.

Science provides us with representations that we use to study and predict the behavior of real systems.

Representation is then, at a first attempt to describe it, a relation between at least two objects: the one that

represents, and the one that is represented. I’ll refer to the former as the medium, and the latter as the target.

Models are, in our framework, a type of medium.

One way of looking at the models of science, and their relation to the targeted system, is to think

of them as pictures (extended over time) of a part of the universe. Pictures (and representations more

generally) are about something. This property of being about something is usually called intentionality, and

we’ll explore it to draw some conclusions about representation in general.

The intentional aspect of pictures comes from what Edmond Husserl called intentional content. That

is when something is intended, it is always intended as being in such and such a way. The attributes that we
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add or subtract from the object itself when partaking in the intentional act (the representation) constitute its

intentional content. With intentionality then, also comes the possibility of distorting the object represented.

Husserl writes:

We must distinguish (...) between the object as intended, and the object (period) which
is intended. In each act [representation] an object is presented as determined in this or that
manner, [...and there may be further] objective properties to the same presented object,
properties not in the scope of the intention in question (Husserl, 1913)

In other words, representation of something, an object, say, consists in that object being represented

as being a certain way, which is distinct from the object actually having (or lacking) said properties. This

as/of distinction, as van Fraassen calls it, becomes crucial to him when attempting to explain what makes a

representation accurate and how a medium may fail to represent a target. Distortion and accuracy are often

framed under the possibility of misrepresentation, which is a constraint on a representation theory to admit

bad representations as representations nevertheless.

At first glance, it may occur to us that the relation between the medium and object represented is one

of similarity: for a medium to represent its target it ought to be similar in some respects. A question arises:

in which respects and to what degrees is the similarity required for the medium to count as a representation

of the target? Do dissimilarities always make for misrepresentations? Many authors have argued that at least

for the case of scientific representation this doesn’t seem right: distortions are, in many cases, as important

as similarities when best representing a system.

For the models examined in this dissertation, important distortions are present. On one hand, we have

our model of self-gravity wakes, which are temporary clumps that, in numerical N-body simulations, come

apart and reform in about one orbit around Saturn (Karjalainen & Salo, 2004). However, we model them as

rigid bodies orbiting Saturn’s rings and reacting to the different torques by changing their orientation with

respect to the radial vector. These aggregates are not, strictly speaking, rigid, and yet the model manages

to explain the thus-far-unexplained observations it sets to explain. On the other hand, we build the model

of the plasma in the reconnection region, which is taken to not be self-consistent, by which we mean that

it does not strictly obey Ampere’s Law (one of Maxwell’s Equations). This is a big distortion between the
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medium and the target! Nevertheless, both models do something right, and we’ll argue that their ability to

properly represent the target comes, not in spite of these distortions, but because of them. This will be in

part due to the intended use of a representation. Van Franssen argues:

If we just focus on resemblance in some respect as the core notion in representation,
then it is at best puzzling that distortion might be needed for effective representation. But
if the resemblance is just a means to an end there is no puzzle. The sculptor wants the
object he makes to have a certain use, and he chooses the way in which the proportions of
the object are related to those of the original—the way in which they are like and the ways
they are unlike—so as to make that use possible. (Van Fraassen, 2008)

To evaluate the effectiveness (or goodness) of representation of our models we should focus on what

we are attempting to accomplish with them. One of the purposes of our models is, of course, to reproduce the

phenomena, that is, the value of measurements of physical quantities. Specifically, we want to reproduce the

data measured by Cassini for the Rings model, and the data measured by the Magnetic Multiscale mission

(MMS) for the case of the Earth’s magnetotail plasma model. In more philosophical terms, the models

aim for empirical adequacy. That much they manage to attain. If we want an additional criterion for a

representation to be good that goes beyond just reproducing the data, we must think of what other purposes

our models may have.

A possible answer is that, beyond fitting the data, the models also aim to explain the data. What

precisely counts as an explanation is a philosophical debate of its own, and there are many ways in which

an explanation can be said to explain. For our argument, however, and for our concrete cases of the two

models to be studied, we can rest on the intuitive notion that an explanation involves showing how the

phenomenon in question “comes about.” That is, showing how an initial state of a model—which has

already been explained and lies in agreement with the known properties of the target— evolves into a state

that reproduces the measured quantities that are to be explained. The view that any scientific explanation

ultimately amounts to telling this causal story has been dubbed by philosophers “the causal-mechanistic

account of explanation.” (Salmon, 1984; Peters & Babee, 2020). Giving this causal story is something our

specific models are attempting to do, in the hopes of explaining the data, which is the purpose of our models.

With the purpose of explanation in mind, we can now ask what the relevant similarities between the
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target and the model are given the purpose of our representation. The best model for the job may actually

be one that includes some distortions. Certainly, an attempt to represent every single detail of the targets in

question may be counterproductive when considering what the purpose of our representation is. Jorge Luis

Borges, in his micro story Del Rigor en la Ciencia (On The Rigors of Science), exemplifies the importance

of distortion. The story is short enough to be cited in its entirety (translation in English by the author):

In that Empire, the art of Cartography managed such Perfection that the map of a single
province would occupy an entire City, and the map of the Empire, an entire Province. With
time, these Excessive Maps did not satisfy and the College of Cartographers built a Map
of the Empire that had the same size of the Empire coincided with it point by point.

Lesser Addicts of the Study of Cartography, the Next Generations understood that said
detailed Map was Useless and not without Impiety they delivered it to the Relentlessness
of the Sun and the Winters. In the deserts to the West there are still shredded Ruins of the
Map, inhabited by Animals, and by Beggars; in the whole Country no other relic of the
Geographic Disciplines is left. (Borges, 2018)

This story warns us of the perils of neglecting the purpose of models while focusing on their accuracy.

In an effort to eliminate all the distortions between a map and the region it represents, they made the map

useless.

Are these maps misrepresentations? If accuracy were the only important characteristic they are the

best representations possible since they even forgo the usual distortions of scaling and 2D-projecting. They

are getting something right about the world, even if we cannot use them to navigate due to their unpracti-

cal size. Van Fraassen, on the other hand, would say these are misrepresentations since they don’t have the

relevant distortions for the purpose at hand, namely (presumably) navigation. When evaluating a representa-

tion, we are urged to consider the purpose of the representation in question; without this context, we cannot

properly evaluate a model.

Borges’ story highlights the importance of use in identifying which are the relevant similarities and

distortions, and to what degrees the medium must be similar to the target in order to be useful. Our final goal,

and van Fraassen’s, is not to write a representation theory but to describe how scientific representation does

its job, and van Fraassen, Borges, and I agree that detailed similarity doesn’t necessarily make a scientific

model better. Use, van Fraassen claims, is also what will ultimately determine what is being represented by
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the medium, and as what. That is, the aboutness of the representation is not given by the medium itself but

by the agent using the medium; this shouldn’t surprise us since for something to be intentional, for it to be

about something, requires an agent.

“There is no representation except in the sense that some things are used, made, or taken to represent

something as thus and so” van Fraassen claims (ibid. 23). The word ‘use’ is now being employed in a broad

sense; to account for how the agent A may use a medium M (to represent a target T as being F) vs. how

the same agent may use the representation itself for purpose P. Here’s an example used by van Fraassen

(Van Fraassen, 2008):

Sculptures placed on high ground (say, on the altar of a temple of Athena) are distorted to compensate

for the change in the proportion of the bodies caused by the perspective of the viewers. Because the statue

will be placed on a pedestal, these distortions are relevant for the purpose of the representation. But at the

same time, the sculpture is also ‘using’ the marble to make the sculpture. We may then say that the sculptor

(A) is using a marble statue (M) to represent Athena (T) as being beautiful (F) on the high altar of a temple

(P). The purpose doesn’t only give us the relevance of the similarities, we can also use it to determine the

style of the representation. This final distinction is important for scientific models.

I claim that the most salient and defining characteristic of scientific representation, as opposed to

representation in general, is that it allows for an inference to be made about the behavior of the targeted

system, from premises related to the model. That is, we can use the model to make predictions and formulate

explanations. A question we can ask of our models is:

Q.1: What purpose does our model fulfill and how does it justify the distortions intro-
duced?

We will see in the conclusion that the answer will be:

A.1: Our main objectives are first attempts at reproducing and explaining the phenomena.

While I have stated that the models analyzed in this work have distortions, I still haven’t argued why these

distortions help—rather than detract from—the model’s ability to represent. One easy answer for this is

that of computational convenience: we use approximations to make the models tractable either analytically
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or computationally. But computability aside, are there other reasons to use distortions, idealizations, or

abstractions? How can distortions be a good thing in science? Don’t we want to represent the system

just as it is, as precisely as we can? The example of the Athena statue may be good in showing how

distortions can be positive features for representation in general, but we still need to show it applies to

scientific representation.

The answer is ultimately related to the explanatory role that models have in actual scientific practice.

As van Frasseen reminds us, the distortions can also serve to highlight the model’s intended purpose. In the

case of science, we will see in the next section that as in Borges’ story, when one emphasizes the usefulness

of the model in hand, more precise models tend to be worse than the approximate ones for fulfilling the

model’s purpose.

1.2 Descriptive and Explanatory Models

The claim that scientists must aim for their models to be as precise as they can conveniently make

them has been disputed by philosophers writing on the use of scientific models. A central purpose of our

models, necessary to evaluate their goodness of representation, is that of explaining phenomena. Uncovering

facts about the target and explaining certain phenomena that obtain in the target are two different tasks that

a scientist must do. The distinction between each task is highlighted in Cartwright’s seminal paper: “The

Truth Doesn’t Explain Much”. She starts her essay as follows:

Scientific theories must tell us both what is true in nature, and how we are to explain
it. I shall argue these are entirely different functions and must be kept distinct. Usually,
the two are conflated. The second is commonly seen as a by-product of the first. Scientific
theories are thought to explain by dint of the description they give to reality. Once the job
of describing is done, science can shut down. (...) That is a mistake. (Cartwright, 1980)

She then argues, by using real examples from published work, that the act of explaining (1) involves

distortions from the theoretically best possible description of the target and (2) highlights the “explanatory

relevant” parts of the description. These make explanatory models, according to her, full of strictly false

statements. Nevertheless, they are useful for the purpose of explaining. Therefore, for the case of explana-

tion, more strictly speaking “incorrect” models do a better job than the theoretical perfect description of the
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target. Specifically, she argues that highly idealized models, which may even introduce idealization that is,

strictly speaking, known to be false, is more explanatory than the de-idealized version.

This argument resonates strongly with the previously discussed idea that distortions may make a

representation better, depending on the purpose of the representation in question. In the case of Borges’

story, the use-cases of maps made the perfectly descriptive map useless. There are many uses for a model

to do, not just description. We want it to explain, as Cartwright argues, and we want to be able to compute

with it and make reliable predictions easily.

We emphasized earlier that the purpose of a model is crucial for evaluating how well it represents

the target. However, if Cartwright is right, scientific models can perform two functions that may pull in

opposite directions. This tension can be illustrated in modern scientific discussions around the topic of

N-body simulations:

In theory, in a classical complex system of particles, one could write every particle and the 1/r2 force

this particle experiences, together with the field this particle generates. Computational precision limits and

non-linear dynamics aside, this modeling technique should be able to solve every classical problem regarding

the motion of particles or collection of particles in space, assuming we have enough computational power.

Nevertheless, even if these models reproduce the phenomena we want to explain, they do not give us any

insight into the phenomena, beyond the reconfirmation that the phenomena in question are in accord with

the fundamental particle-per-particle laws of dynamics. As models get more complex, detailed similarity to

the target phenomena comes at the cost of providing insight into what’s actually happening.

Consider the scientific questions: Why is there the Cassini gap in the rings of Saturn? One may an-

swer: because the particles in the solar system obey Newton’s laws (or more precisely, they obey Quantum

Mechanics and General Relativity). That is technically true, but that such macroscopically emerging phe-

nomenon as gaps in rings is consistent with the fundamental laws of our current best theories is something

we already know to be true. On the other hand, if a model with many approximations still manages to

reproduce the gap, much insight can be gained.

Scientific authors that appeal to overly complex simulations tend to still give separate explanations

about what the model “is actually doing,” even after laying out a complete description of the simulation in



9

question. What is usually done, and we will see it is done in the plasma model presented in this work, is

that certain parameters of the model are set to zero, or certain effects in the simulation are “turned off,” to

establish by means of counterfactual dependence1 , a causal relationship between the emerging features in

the simulation. Idealizing N-body computer simulations can therefore be used to highlight the explanatory

relevant aspects of these simulations.

This practice is commonplace nowadays. In Chapter 2 we will offer a simplified model that captures

the results of N-body numerical simulations done by Michikoshi et al. (2015). Likewise, in Chapter 3 we

will see how we will remove parameters from our plasma model in order to expose the causal structure of

the reconnection region plasma. The concept of Idealization is traditionally used in philosophy to mean a

real-world-to-model distortion. But more recently, like in our case, we have been seeing a model-to-model

distortion, where a more simplified model is derived based on another model.

This process of simplifying a model by systematically removing certain parameters goes opposite

to the modeling practice of De-idealization. Morrison and Morgan describe De-idealization as carefully

“adding back” effects that at first were idealized away until the desired phenomena can be reproduced. For

example, bringing back higher-order terms that were originally dropped from a Taylor series expansion in a

De-idealization in this sense. By contrast, I will use the term re-idealization for the methodic “taking away”

of parameters from an all-encompassing computer model to allow for an insightful conclusion.

The practice of re-idealizing shows that analytic or pseudo-analytic treatments, while often even more

distorted than their computational counterparts, can provide more insight at the cost of losing similarity with

the target. This notion of ‘insight’ lies very closely with the philosophic notion of ‘understanding’ and both

are tied to what Cartwright calls the ‘explanatory function’ of models in science.

A conclusion we can draw from Cartwright’s argument is that, given that the two functions of science

can at odds with one another, we need to produce at least two models for each target. One that highlights

the explanatory relevant part, and another that is merely descriptive. The practice of removing parameters
1 A counterfactual is a supposition that entertains things that are counter to the facts; that is, situations that don’t actually obtain.

Imagine evolving the Solar System with all the right parameters for its planets and star, except we don’t include Saturn. This
model’s target is no real system at all, it is a counterfactual. Modelers remove certain causal powers in their simulation, which
are in fact there, to investigate how the behavior of the system depends on such causal powers. Many philosophers believe that
counterfactuals are a key in analyzing and better understanding causation (Peters & Babee, 2020), some going as far as stating that
counterfactual dependence is all that causation is, even arguing against the temporal asymmetry of causation. (Lewis, 1973).
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from N-body simulation to reveal the explanatory relevant parameters in a model is in accord with this idea.

In scientific practice we often see approximations and idealizations introduced uniquely as tools of

computational expediency. Their introductions are commonly framed around making problems solvable

analytically, or making simulations run faster, while their representational role is obscured or deemphasized.

For van Fraassen’s notion of representation simpliciter, however, a distorted model highlights certain aspects

of the model through the distortions. These highlights are necessary for a representation to be good (if the

purpose is to explain), as they highlight the pieces of the model that are doing the explanatory work. In this

sense, van Fraassen and Cartwright agree that the distortions and the highlights go together. The distortions

aid in explaining the phenomena in question.

We want to contrast this positive view of distortions against the commonly held notion that distortions

are there only for computational convenience—an unfortunate necessity stemming from the limited powers

of our computers. However, the common practice of removing parameters to find the explanatory relevant

entity in a complex model shows that regardless of the scientist’s take on distortion (commonly believed to be

a negative thing), the practice of distorting as highlighting is common. But this needs to be brought forth in

the way the models are presented: distortions can, and should, also be used to highlight the relevant aspects

of the target that provide explanatory insight. Therefore, distortions should not be thought of uniquely for

computational convenience alone. The Saturn article in this paper exemplifies this practice.

Another question we will ask of our models is:

Q.2: How do these models fulfill the explanatory or the descriptive functions of scientific
modeling?

We will see in the conclusion that the answer will be:

A.2: Both models aim to be more explanatory than descriptive, and they do so by providing
a causal story of how the relevant phenomenon comes about.

Before fully presenting the models we will be evaluating as scientific representation, we will briefly

introduce their subject of study, namely their targets, and describe the phenomena we are attempting to ex-

plain. The targets are the dynamically perturbed A Ring of Saturn and the ions in the turbulent reconnection

region of Earth’s magnetotail.
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1.3 The A Ring of Saturn

Saturn has 7 main rings, all of them comprised primarily of icy particles ranging from millimeters to

tens of meters, and classified by their observational properties. By order of their proximity to Saturn, these

rings are D, C, B, A, F, G, and E (see Figure 1.1). The A ring sits in the middle of this list and lies at the

outer edge of the large, luminous rings. It starts at 122000 km and ends at 137000 km from Saturn’s center.

The A-ring is dense and optically thicker than all rings but the B ring. A light source emitting normally to

the ring will see that less than half of its emitted photons make it through the ring (the transmission of light

is smaller than 50%). Its density, and moderate distance from Saturn’s center, propitiates particles to clump

temporarily into elongated structures called self-gravity wakes. There are clear observational signatures

that suggest that self-gravity wakes are ubiquitous in the A ring. Self-gravity wakes have been modeled

extensively via n-body simulations (Salo, 1992; Karjalainen & Salo, 2004; Michikoshi et al., 2015).

The radial position of the A-ring makes many of its orbital frequencies resonant with satellite orbital

frequencies, and hence it is dynamically perturbed by satellites. One of their resonances occurs when the

vertical motion of an inclined satellite (a satellite whose orbit significantly deviates from the equator of the

planet) resonates with a ring particle at some distance r. This causes the material to be lifted vertically

and, due to the gravity that the ring particles exert on each other, this perturbation propagates through the

ring forming a bending wave (BW). The theory of bending waves has been developed for a ring of uniform

density: the motion of self-gravity wakes within a waving ring is a complicated problem that has not been

solved. We attempt a solution by treating self-gravity wakes as rigid and then compare our model to the data

collected for the Mimas 5:3 bending wave. For our specific wave, Mimas is the perturbing satellite and the

ratio of the ring to satellite orbital period is 5 to 3 (see Figure 1.2).

There is no unique source that contains all the bits and pieces of the theory of linear bending waves in

a deductive fashion, so we present such an exposition in Appendix C for the reader interested in learning the

theory rigorously. Likewise, we haven’t published a standalone presentation of the rigid self-gravity wake

model for the simpler case of the flat ring (no bending wave), so we include this presentation in Appendix D.

Our model will attempt to combine both models to solve the problem of bending waves in a clumpy medium
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Figure 1.1: Mosaic of the rings of Saturn. The dashed white square encircles the area of the ring which we
will model—which lies in the A ring. A bending wave caused by the satellite Mimas is present in this ringlet
which extends 200 km in the radial direction. Pictures taken by the Imaging Science Subsystem - Narrow
Angle camera. Image credit: NASA/JPL/Space Science Institute
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Figure 1.2: Close-up picture taken by the Cassini visual camera for the Mimas 5:3 bending wave (the target
of our model) and the neighboring Prometheus 12:11 density wave. The A-ring of Saturn is home to many
such waves produced by the gravitational perturbation of satellites that orbit outside of the rings. Image
credit: NASA/JPL/Space Science Institute
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(where the clumps are self-gravity wakes). We will show that adding self-gravity wakes in this manner ex-

plains striking observational features measured by the Cassini spacecraft. Moreover, the approximate nature

of our model serves to provide more insight into the phenomena; specifically, it highlights the importance

of the dynamics of self-gravity wakes within the BW in the explanation.

1.4 The Ions in a Reconnecting Region of Earth’s Magnetotail

Magnetic reconnection occurs when opposite-facing magnetic field lines, which are moving through

space, meet at a point and add up to a net zero (or close to zero) magnetic field. This canceling out of the

magnetic field is the reason the phenomenon is also dubbed magnetic annihilation. When this annihilation

occurs, charged particles that are traveling with such magnetic field lines in helicoidal orbits tend to get

energized as the magnetic energy is transferred into the kinetic energy of electrons or ions.

The Earth’s magnetotail is an ideal spot to study reconnection. Earth naturally has a dipole-like

magnetic field (Figure 1.3, left). Nevertheless, due to interactions with the Solar wind, this magnetic field

gets distorted. The result is that, on the dusk side of Earth (the anti-sunward side), the magnetic field

lines in the Northern hemisphere (roughly, due to the tilt of the Earth) are facing towards the Earth, while

the lines in the Southern side are facing away from the Earth (Figure 1.3, right). At the equatorial region

(roughly the equatorial region, because of the tilt of the Earth) these opposite-facing lines meet, and magnetic

reconnection occurs there continually. This reconnection causes the flow of the plasma coming from the Sun

to be non-laminar, and turbulence emerges in the region. Multiple Spacecrafts in this region have measured

turbulent fields: Geotail (Angelopoulos et al., 1994), ISEE-2 (Borovsky et al., 1997), Cluster (Artemyev

et al., 2010), and, most recently, MMS (Ergun et al., 2018). They have also measured highly energized ions

(moving nearly at 0.02cwhere c is the speed of light). The average speed of ions in the region is: ≈ 0.0001c.

Nevertheless, it is unclear how the ions get accelerated to such high speeds.

The model we use to explain the acceleration of the ions consists of investigating how test-ions re-

act to the fields measured by the MMS spacecraft in that specific region of the Earth’s magnetotail. These

measured fields present a turbulence pattern, that is, locally the magnetotail fields no longer have the or-

dered laminar structure seen in Figure 1.3 (right) but present a range of directions, and magnitudes that
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Figure 1.3: (Left) Diagram of a magnetic dipole. (Right) the Earth’s magnetosphere. Reconnection occurs
when the opposite phasing magnetic field lines meet at the reconnection region; also called the current sheet
region due to the presence of a plasma current in the region due to the electric displacement field that arises
there.
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significantly exceed the background values of the laminar case. We are interested in knowing if test-ions

under these conditions would reach the energies we measure. Test-ions are hypothetical ions that produce

no electromagnetic fields. Such ions do not actually exist. If the turbulent fields are big enough so that the

fields of the ions are small in comparison, we can say that the ions possess a test-charge and treat them as

test-ion. This type of model is common in introductory physics textbooks.

Unfortunately, the ion-generated fields magnetic fields are not small in comparison to those present

in the Earth’s magnetotail. Nevertheless, our model still investigates how an ion population reacts to the

measured fields, and if they get accelerated and how they get accelerated, without including the potentially

important magnetic fields generated by this population. It is possible that the measured fields already “con-

tain” these ion-generated fields, but that is not known with certainty. Even so, it is not how we justify the

distortion of our model. We will argue, after presenting the model, that understanding how a population of

test-ions behaves under the MMS-measured fields is important for understanding how real ions get acceler-

ated. This is true regardless of whether the field of the ions is being accounted for by the applied fields or

not. This is because while our model does not capture all the details of the target, it captures the relevant

details for the purpose of the model. We know that it captures the relevant details because it reproduces

the energies seen in the data. Hence, the behavior of test-ions is a meaningful first step in the overarching

project of solving ion acceleration in the Earth’s magnetotail.

Thus, idealizations and abstractions—like ignoring Ampere’s law for the dynamics of ions, or taking

self-gravity wakes to be rigid in the case of Saturn’s A-ring— greatly aids our ability to explain the phe-

nomena in question. This is the main claim of this work. In the next two chapters we will present with

scrutinous scientific detail the two models in question, and their agreement with the data. After this, we

will be in a position to further argue for this claim by pointing at the specific features of our models that

do the explaining and the describing, respectively; thereby answering the questions we have raised in this

introduction.



Chapter 2

The Dynamics of Self-gravity Wakes in the Mimas 5:3 Bending Wave: Modifying the Linear

Theory

2.1 Preface

This chapter was submitted as a research article to Icarus in December 2022. Since, it has been

through three rounds of suggestions by two anonymous reviewers—the last one consisting mostly of minor

revisions. The conceptualization of the problem was done jointly between Josh Colwell and myself, based on

the puzzles presented in Gresh et al. (1986). The problem-solving strategy was done mostly by myself, with

inputs from coauthors (Glen Stewart, Girish Duvvuri, Richard Jerousek, Josh Colwell, and Larry Esposito).

The majority of the data analysis portion was conducted by myself; Richard Jerousek helped with organizing

the dataset and providing the coordinates for Mimas. The work was funded by the NASA FINESST award

No 80NSSC20K1379.

2.2 Introduction

A bending wave (BW) is a warping of a disk (a circular and thin mass plane) caused by perturba-

tions normal to the disk that propagates due to self-gravity. Warped disks and their propagation are only

understood to a limited extent since the models do not match observations in various aspects (for instance,

see Nelson & Tremaine 1995 for an overview in the context of galaxies). Warped disks are seen in many

fields within astrophysics and can be found around young stars (Epstein-Martin et al., 2022), black holes

(Thomas et al., 2021), and around planets (Shu et al., 1983), for which we have a vast amount of obser-

vations available. In the case of the rings of Saturn, the out-of-the-plane force is produced when satellites
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with inclined orbits perturb the ring particles at a frequency that coincides with a rational multiple of these

particles’ vertical motion at some radial distance from Saturn. Many of these resonances occur in the A ring

of Saturn, where we focus on the 5:3 vertical resonance due to the moon Mimas at 131902 km from Saturn’s

center. A radial cut through an idealized bending wave is shown on the top panel of Figure 2.1.

Shu et al. (1983) (henceforth SCL) were the first to confirm the presence of bending waves in the

rings by adapting the theory of warped galaxies developed by Bertin & Mark (1980) and analyzing images

from Voyager I. While there was general agreement with the SCL theory for weak bending waves, the

Mimas 5:3 BW proved difficult to fit to the SCL theory. Later, Lissauer et al. (1984) focused on this

specific wave and obtained a value for the viscosity by using similar methods. A general study of waves

using occultations from Voyager’s photopolarimeter was then done by Esposito et al. (1983), while Gresh

et al. (1986) did an extensive study focusing on bending waves using low opening angle radio occultations.

Neither managed to explain the shape of the Mimas 5:3 bending wave, and Gresh et al. (1986) suggested

that the damping mechanism from the Mimas 5:3 bending wave needed to be revised. On the theoretical

side, Chakrabarti considered radial shear of particles as a damping mechanism for the Mimas 5:3 BW but it

yielded an inconsistent result for the viscosity (Chakrabarti, 1988, 1989). All of these efforts were based on

the Voyager observations; however, Cassini data has yet to be used to improve the theory of bending waves.

Figure 2.1 shows how stellar occultations (which are photometric measurements of a star as it is

occulted by the rings) can inform us of the local shape of the rings. From looking at Cassini occultations

(Figures 2.2 and 2.3), and by comparing to Gresh et al. (1986), we have identified 3 ways in which the SCL

model fails:

(1) Wave profile.

The poor prediction of the wave’s morphology can be observed in Figure 2.2, where we show a plot of

the optical depth of an occultation of the star γ-Pegasus measured by UVIS compared to SCL theory. The

effective opening angle of an occultation is defined as Beff = tan−1(tanB/ cosϕ) where B is the angle

between the mean ring plane and the incident light rays, and ϕ the angle between the radial direction and

the light rays, projected onto the plane (see Gresh et al. 1986); the lower Beff is, the higher the variations in

the optical depth. The peaks and troughs of this optical depth are created by the inclination, or the slope, of
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Figure 2.1: Radial cut of the Mimas 5:3 bending wave according to Shu et al. (1983) (top panel) and its
predicted optical depth profile (bottom panel). The red rays in the top panel represent light rays that are
being transmitted through the ring, and the corresponding optical depth probed for each light ray is marked
by the red dashed lines in the bottom panel. Because the coordinates don’t have the same scale, the rays
look vertical, but the angle between the mean ring plane and the incident light rays is B = 26◦, and the
angle between the radial direction and the lightrays, projected onto the plane, is ϕ = 0◦. We can see how
the lightrays go through more material when the lightray aligns with a slope (which corresponds to a peak
in optical depth), and through less material when the lightray travels perpendicular to the slope (which
corresponds to a trough in optical depth).
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the ring relative to the line-of-sight to the star, and the observed discrepancies suggest that the SCL theory

overpredicts this inclination. The increase of the optical depth relative to the background in the troughs of

the occultation profile further indicates that there is extra material attenuating the light in the regions where

the theory predicts a higher photon count.

SCL theory also predicts that all variation of the optical depth of the disk relative to the flat ring

is caused only by the inclination of the ring; therefore, in occultations where the line-of-sight is normal

to the rings, no variation of optical depth is expected. In the left panel of Figure 2.3, however, the data

shows otherwise. An approximately normal (to the rings) occultation still shows a symmetric variation of

the optical depth, centered about 80 km inside the point of the perturbation (the location of the resonance),

which suggests an extra layer of material being generated by this perturbation that may be caused by the

fragmentation of particles in the ring (Gresh et al., 1986). The position of the peak and the overall shape of

this optical depth enhancement is correlated with the theoretical prediction for the maximum slope of the

wave instead of the maximum elevation, which further suggests that this fragmentation is higher where the

slope of the ring is steeper (Figure 2.3). In this work we suggest a plausible physical mechanism, derived

from first principles, that explains this extra layer of particles.

This suggested extra layer of particles could be described as a haze, as a comparison between the

Visible and Infrared Mapping Spectrometer (VIMS) and UVIS data (see Table 2.1) show the presence of

a small amount of sub-mm size particles which diffract the infrared light out of the detector increasing the

infrared optical depth (Jerousek et al., 2016). This is an uncommon sight in the A-ring as sub-mm particles

normally are rapidly accreted into bigger particles (Bodrova et al., 2012; Harbison et al., 2013), further

motivating a modification of SCL theory that accounts for the disruption of material in the BW region.

λ [nm] τ̄wave
τ̄bg

[−]

VIMS 2886− 2977 1.520 + 0.026 /− 0.025
UVIS 110− 190 1.352 + 0.028 /− 0.027

Table 2.1: Simultaneous Infrared and Ultraviolet occultations of α-Scorpius taken by the VIMS and UVIS
instruments, respectively. VIMS optical depth is larger by 13% compared to UVIS. For τbg we averaged
from kilometers r = 131862 to r = 131762 (in the flat ring region). For τwave we averaged from kilometers
131600 to 131700.
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Figure 2.2: We compare an occultation of γ-Pegasus (rev 32I, B = 20.3◦, Beff = 26◦) seen by Cassini
(red) to the standard bending wave theory (black). The resonance occurs at a radius of 131902 km and the
wave propagates towards Saturn (left of the plot). We see three major discrepancies: (1) The SCL theory
overpredicts the peaks of the optical depth and underpredicts the troughs. (2) The wavelengths do not match
for the first three cycles. (3) The theory underpredicts how fast the wave damps, as peaks are still predicted
to appear around −150 km, but the observed wave gets buried in the noise before that point. Using the
viscosity of ν = 260 cm2/s from Lissauer et al. (1984)’s analysis of this wave and Tiscareno et al. (2007)’s
analysis of the Prometheus 11:12 density wave.
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(2) Wavelength near resonance.

Figure 2.2 indicates that, while the theoretical wavelength works fairly well at later wave crests (this wave

propagates to the left in the plot), it differs from observed values near resonance, a result seen in Gresh

et al. (1986). These discrepancies in the first cycles suggest an oversimplification in the calculation of the

self-gravity force of a warped disk or that the surface mass density is not uniform across the wave.

(3) Viscosity.

The ring’s viscosity controls the shape and amplitude of the peaks of the optical depth profile seen in Figure

2.2. Viscous interactions reduce the vertical displacement of ring particles; which, in turn, changes the

maximum extinction at the point where the ring’s slope and the line-of-sight coincide. In other words,

the peak amplitude of the optical depth pattern depends on the viscosity. In Figure 2.2 the SCL model

(black line) predicts a highly peaked optical depth profile and a wave that propagates beyond the observed

variations seen in the data (red line). This suggests that the viscous fluid description of the damping is

inadequate, and/or the values suggested by previous Mimas 5:3 BW studies (Lissauer et al., 1984; Gresh

et al., 1986), and Cassini density waves studies (Tiscareno et al., 2007), are too low to describe this wave.

Regardless, the observed peaks of the optical depth and how fast the wave damps indicate that the current

theory underpredicts the amount of energy and momentum diffusion that occurs in the rings.

All three issues can be explored in depth using Cassini ring occultation data. Cassini observed the

Mimas 5:3 bending wave in 217 occultations with the UVIS High Speed Photometer (HSP) (Esposito et al.,

2004) out of which 130 have a signal-to-noise high enough to detect the variations in the data due to the

bending wave. Moreover, using Cassini data, Colwell et al. (2006) confirmed the existence of self-gravity

wakes, which are elongated clumps of particles that periodically disaggregate, and are 10 to 100 times bigger

than a typical A ring particle (∼ 1m). The consequences of adding self-gravity wakes to the SCL theory

are derived in section §2.3 via the assumption that they react to the relevant torques as rigid bodies; here

we derive, from first principles, a plausible mechanism that explains the extra optical depth signal seen in

normal occultations. In section §2.4 we describe the transmission model, our selection criteria for the 60

UVIS occultations used, and how the data were reduced. In section §2.5 we describe the ray-tracing code. In

section §2.6 we compare our bending wave model to the data followed by a discussion in section §2.7, where
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we consider how our model addresses the above problems. In section §2.8 we summarize our conclusions.

2.3 Self-gravity wakes and the Bending wave

Self-gravity wakes are clumps of particles with an elongated structure at an angle θw from the az-

imuthal direction (see Figure 2.4), which are held together by self-gravity against the Keplerian shear, and

whose constituent particles present a resistance to changing their relative distances, ∆rij ≈ 0 (Daisaka &

Ida, 1999; Lu et al., 2018). In other words, they tend to behave like a rigid body, keeping a consistent shape

and orientation over an orbital period. Self-gravity wakes were first hypothesized in the galactic context

(Toomre, 1964) as non-axisymmetric disturbances generated by the interplay of the self-gravity of a Keple-

rian disk and its shear. They were first proposed to exist in the rings by Colombo et al. (1976), and Dones

& Porco (1989) and Dunn et al. (2004) modeled and corroborated their effects on Voyager images and Very

Large Array observations, respectively. They were first numerically modeled for planetary rings by Salo

(1992), and were detected in Saturn’s rings in Colwell et al. (2006) as an azimuthal asymmetry in the optical

depth of UVIS occultations.

The SCL linear bending wave theory takes the rings to be smooth and of uniform density, so the

presence of these structures was not accounted for in the dynamics. To study the effects of self-gravity

wakes we assume that they remain rigid at least during the time it takes the wave to advance one wavelength

in the frame co-rotating with the wake, which is about one orbital period (see Eqn. 2.2 below). Self-gravity

wakes are expected to remain together for at least that long (Karjalainen & Salo, 2004): some simulations

even showing lifetimes of many orbital periods (Michikoshi et al., 2015).

Within the BW the wakes are subjected to different torques that affect their orientation as they oscillate

vertically with the wave, these are computed in section §2.3.1. The equations that couple the orientation (θq′ ,

see Figure 2.5) of the wakes with the elevation of the particle (z) are integrated in section §2.3.2. As the

wakes change their orientation, the regolith at some distance from their center will gain a difference in

vertical speed with respect to the surrounding ring particles (which are assumed to follow the expected SCL

vertical motion), resulting in collisions on the order of 1 cm/s relative velocities which release material

residing on the wake’s surface. The predicted properties of the resultant ‘haze’ are described in section
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Figure 2.3: Left panel: we compare an occultation of β-Centauri (rev85I, B = 66.7◦, Beff = 87◦) (solid
red), to the SCL model (solid back). The error bars are shown by a light red filled curved in the background
of the plot. The SCL theory predicts a uniform optical depth; however, the data shows a symmetric rise
in the optical depth centered at −80 km from resonance. Right panel: The same optical depth profile of
β-Centauri (solid red) is now compared to the theoretical (SCL theory) maximum slope of the wave (solid
black) and the amplitude of the wave (dashed blue) for a viscosity of 566 cm2/s and a ring surface density
of σ = 36.3 g/cm2; these values are the best-fit wave parameters of the model presented in this paper.
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Figure 2.4: Snapshot of self-gravity wakes in a shear-box simulation produced with the shear-sheet
REBOUND example (Rein & Liu, 2012), for visualization purposes only. Circled in red we can see an
oriented self-gravity wake; we can also see they tend to point at an angle θw with the azimuthal.
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Figure 2.5: Bending wave (to scale) and the two frames of reference used in this work. The frame on the
right is centered at resonance (r = 0 at resonance), co-rotating and defined by the unprimed axis (x̂, ŷ, ẑ)
while the Eulerian frame on the wakes (top left) is centered on the center of mass of a self-gravity wake at a
distance r from resonance and it is defined by the primed coordinates (x̂′, ŷ′, ẑ′). We also represent here the
angles θq′ =

∫
ωq′dt where ωq′ is the angular velocity of a rotation about the q′-axis where q′ can be x′, y′,

or z′ (the principal axes of the wake). We set the initial angles to be 0 when prime and unprimed axis are
aligned.
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§2.3.3.

2.3.1 The Coupling Equations

To derive these equations we set the reference frame in the center of mass (CM) of a wake a distance

r from Saturn (see Figure 2.5), and take the time dependence of the vertical coordinate, z, of the CM to act

harmonically in time with a frequency Doppler-shifted by the orbit of the wake:

ω′ = m(ΩM − Ω) + µM (2.1)

where Ω is the Keplerian frequency of the wake’s CM, and ΩM and µM are the Keplerian and vertical fre-

quencies of Mimas, and m is the azimuthal wave number (m = 4 for our case). This is in accord with the

SCL linear BW theory translated to a co-rotating frame represented by the unprimed frame (x, y, z) in Figure

2.5, where x and y are the local radial and azimuthal coordinates respectively. We also introduce angle coor-

dinates which represent rotations about the principal axis of rotation (x′, y′, z′) of the wake and for concrete-

ness consider the wake to be a parallelopiped (or a ‘granola bar’) with sides (W,L,H) = (18m, 232m, 4m)

accordingly. We extract these dimensions from transmission models of the A ring (Hedman et al., 2007;

Jerousek et al., 2016), and numerical simulations (Salo et al., 2018) where H/W ∼ 0.2, L ∼ 4λT and

W ∼ λT /3; λT ≡ 4π2Gσ/Ω2 ∼ 58m is Toomre critical wavelength (Toomre, 1964), where σ is the

surface mass density and Ω the Keplerian frequency.

The motion of a regolith particle at a point (x′, y′, z′) with respect to the unprimed co-rotating frame

will then be given by adding the CM velocity (whose motion is governed by the SCL theory) to the velocity

due to the wake’s rotation, derived below. The equation for the z-coordinate for the CM of a wake a distance

xV from resonance as a function of time t is given by:

z(xV , t) = Re
[
h(xV )e

i(ω′t)
]

(2.2)

where h(xV ) contains a complex Fresnel integral, the wave amplitude, and the damping term e
−(

xV
χD

)−3

— where χD is the damping length which depends on the viscosity ν — and where ω′ is the Doppler-
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shifted forcing frequency. While for kxV >> 1, the wave profile h(xV ) takes a WKBJ form h(xV ) ∼

A(r)e
∫
ikdxV , we will use the exact expressions for the amplitude (

√
hh∗) and slope’s magnitude (

√
dh
dr (

dh
dr )

∗).

In Appendix C, Eqn. (2.2) is derived from first principles.

Note that we have eliminated z’s usual explicit dependence on azimuthal position, Θ, by using the

Doppler-shifted frequency ω′, which amounts to making the substitution Θ = Ωt in Eqn. 26 of SCL. In

other words, we are moving from an Eulerian to a co-rotating Lagrangian description of the rings. Thus,

the Lagrangian derivative used in SCL, D/Dt = ∂/∂t+ Ω∂/∂Θ, becomes the time derivative ∂/∂t in the

co-rotating frame.

Knowing the motion of the CM of a wake at a distance xV from resonance, we proceed to compute

the relevant torques on the wake to find its rotational motion. These torques are: the tidal torque due to

Saturn (τtidal, §2.3.1.1), the torque due to the Keplerian shear (τKep, §2.3.1.2), the acceleration torque due

to the BW (τBWacc, §2.3.1.3), the torque due to the vertical shear of the BW (τBWsh, §2.3.1.4), and the

torque due to the wake to wake gravitational interaction (τwake, §2.3.1.6). All of these torques will be taken

with respect to the principal axes of the wake.

2.3.1.1 Tidal torque

We begin by deriving the torques about the z′-axis, which are also present outside the BW region. We

assume that the wake’s inclination outside the ring’s mean plane remains small, so that θx′ , θy′ < 15◦ and

θz′ represents the pitch-angle of the self-gravity wake (in Appendix A we show the general expression for

an arbitrary wake orientation). The torques about the z′-axis are the the tidal torque—which tends to align

the wake’s long-axis with the radial direction—and the Keplerian shear torque that aligns the wake with the

azimuthal. Later, we will see how the BW torques change this picture.

We start with the tidal force in polar form (Murray & Dermott, 2000)

Ftidal = 3
GMS

a3
y′ ∗ sin θz′ cos θz′dm

where a is the distance from Saturn’s center, G the gravitational constant, Ms the mass of Saturn and y′ the

coordinate along the long-axis of the wake. Using dm = HWρwdy
′ for the differential mass of the wake
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(where ρw is the wake’s density) and integrating with respect to y′ we arrive at the tidal torque:

τtidal;z′ = 2
GMS

a3
sin θz′ cos θz′

(
L

2

)3

∗ ρRocheHW (2.3)

For the density of the wake (ρw) we will use ρRoche, defined as the bulk-density of an object that fills

its Hill sphere (Tiscareno et al., 2013). Aggregates within the rings, such as moonlets, have been shown to

have this density within a 20% margin (Porco et al., 2007), and numerical simulations have shown similar

results for self-gravity wakes (Salo et al., 2018). Notice that this torque is positive when 0 < θz′ < 90◦ and

becomes negative when θz′ > 90◦, causing the pitch-angle to orient radially.

2.3.1.2 Keplerian shear torque: explaining the pitch-angle

To compute the torque due to the collisions of the Keplerian shear we have to consider the 3-Body

Hill’s problem. As done in Morishima & Salo (2004) and Yasui et al. (2014) for the case of embedded

moonlets, we integrate the Hill equations in 3D to find the colliding trajectories of the ring particles:

ẍ− 2ẏ =
∂UH
∂x

ÿ + 2ẋ =
∂UH
∂x

z̈ =
∂UH
∂z

(2.4)

The Hill potential (UH ) consists of the tidal potential (32x
2) plus the potential of a line of mass of

finite size, modified to allow for arbitrary wake orientations. The zero-velocity curves for this potential are

shown in Figure 2.6; once the collisions change the orientation of the wake, the trajectories are recalculated

with the updated potential. The particles that are radially inward orbit faster than the CM of the wake, and

hence they will tend to align the wake with the azimuthal direction; the radially outward particles have the

same effect. To find the colliding trajectories we integrate the Hill equations to then compute the rate of

momentum transfer into the self-gravity wake:

τKep;z′ = 2(1 + ϵ)(x′ × y′)

∫
y′
dp⊥
dt

= 2(1 + ϵ)(x′ × y′)

∫ zmax

zmin

∫ L
2

0
ρs(z)|v⊥|v⊥y′dy′dz′ (2.5)
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Figure 2.6: Zero-velocity curves of the Hill potential of a line of mass oriented 45◦ from the azimuthal. The
self-gravity wake’s potential is modeled as a uniform line of mass of length L.
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where ρs is the space density of the colliding particles and p⊥ and v⊥ are the momentum and velocity

perpendicular to the long axis of the wake, ϵ is the coefficient of restitution. To numerically compute this

integral we create a grid of particles for the incoming impact parameter b and the vertical coordinate z,

where ∆b = ∆z = 0.01rH where rH is the Hill radius that was taken to be W
2 = 9m (which is consistent

with our value for ρRoche). The highest and lowest initial z values of particles that collide with the wake are

zmax and zmin respectively. We use the vertical density profile ρs(z) = e
−( z

z0
)2 where z0 is the rings half

thickness which was taken to be 5m and a temporal resolution of dt = 0.01T where T is the orbital period

at resonance.

We proceed to study the angle at which the torques equilibrate in the case of a single self-gravity

wake as a way to test our framework. The total torque in the z-axis can be written as:

τz′ = τtidal(θz′) + τKep;z′(θz′ , ρs, ϵ) (2.6)

We find that these torques equilibrate stably at θz′ = 25◦ when ρs ≈ 425, 500 kg/m3 for ϵ = 1, 0.5,

respectively. This equilibrium angle is a boundary condition for our problem and any pair (ϵ, ρs) that

achieves it yields the same wake motion inside the wave region. Figure 2.7 show how the pitch-angle

derived by equilibrating the torques matches the one suggested by UVIS occultations (Colwell et al., 2006;

Jerousek et al., 2016), and aligns with the pitch-angles apparent in shear-box simulations conducted with

different shear rates (Michikoshi et al., 2015; Salo et al., 2018). As a reference for these space density (ρs)

values, consider that a preliminary multiwavelength analysis suggests an average space density of 85 kg/m3

in between wakes (Jerousek, 2018); with this density the torques equilibrates at θz′ = 50◦ for ϵ = 1. The

higher value of 425 kg/m3 required by the 25◦ pitch-angle suggests that the material interacting with the

wakes is more abundant than in the middle of the gaps between wakes. This is consistent with Tiscareno et al.

(2010), which states that the density in the gap is better described by a bimodal distribution. Note that ρs is

overestimated by our parallelepiped model for the wake: the lesser inertia of a more realistic ellipsoidal wake

would increase the angular acceleration due to collisions while not affecting the tidal angular acceleration.

This decreases the required ρs by the ratio of the inertia coefficients between the two models, 3/5.



32

Figure 2.7: Relationship between the pitch-angle θw (see Figure 2.4) and the shear rate q = −d lnxΩ
d lnx where

Ω is the Keplerian frequency and x the radial coordinate from Saturn. We calibrate our model to equilibrate
at θw = 25◦ for q = 1.5 which is the case for the Mimas 5:3 BW. The blue triangles corresponds to
equilibrium configuration extracted from a shear-box simulation presented in Figure 16.23 of Salo et al.
(2018). The black square represents the values reported in Jerousek et al. (2016) at the region near the
Mimas 5:3 BW (at a Saturncentric distance of 13.2 Mm) with the error bars representing the range of the
values presented in Figure 7 of that work; the upper error bar given by the pitch-angle derived from UVIS
occultations. Our rigid-body model matches the shear-box simulations’ equilibrium angle within 4◦.
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The computationally intensive nature of integrating the Hill equations self-consistently forces us to

resort to a two-body approximation of the three-body problem. Specifically, a gravitational focusing ap-

proximation common in planet formation (Greenberg et al., 1991; Rafikov, 2004; Armitage, 2020), where

the incoming speed of the scattering event can either be the dispersion velocity or the Keplerian velocity de-

pending on which one dominates in the wave region. Cuzzi et al. (1979) already argued that the dispersion

velocity dominates over the extent of a particle, but we find that both velocities are similar over the extent

of the Hill radius of a wake. Thus, the safest approach for our case is to include 3-body corrections in our

two-body approximation. From Greenberg et al. (1991) and Armitage (2020) we can get an approximate

collision rate for our regime:

dM

dt
(b) = qΩ ∗ b ∗ σ ∗ f ∗ db (2.7)

where f is the fraction of particles that enter the Hill sphere and collide, q is the shear rate q = −d lnxΩ/dx,

Ω is the Keplerian frequency of the particle, b is the impact parameter and σ is the surface mass density of the

disk. To get a torque we use two-body dynamics to find the speed and angle of incidence for the incoming

particles at the moment of impact.

τKep;z′ = 2(1 + ϵ)

∫ bmax

bmin

dM

dt
vθ(b, θz′)r2B(b, θz′)

where vθ(b) = b2 ∗ qΩ/r2B and

r2B(b, θz′) =

(b2qΩ)2

GρRocheWLH

1 + e cos(θz′ −ϖ)

is the two-body orbit equation, where ϖ is the argument of periapsis taken from the azimuthal direction.

We have set the true anomaly to the angular position at which the wake is oriented, which is the point in

the orbit where the collision takes place (valid for the case of small θx′ and θy′). Here we are taking the

angular momentum to be conserved about the CM of the wake, so that for a given impact parameter bwe can

determine a collisional speed vθ at a distance r2B from the CM. Under this approximation the trajectories of

the colliding particles are hyperbolas and the three-body effects are accounted for by using Hill’s equations

to determine the limit of the integral bmin. This and the length of the long axis (L) relative to the Hill radius,
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which guarantees that particles entering the Hill sphere collide with the wake, allow us to do the following

simplification of the Greenberg et al. (1991) formulation:

• f , the fraction of particles that collide after entering the Hill Sphere, is 1.

• Tadpole and horseshoe orbits are excluded from the colliding particles by using the three-body code

to determine bmin. We find that bmin varies from 35m to 43m with the different orientations of the

wake (from radially aligned to the azimuthally aligned), with a mean value of bmin = 38m, which

we use as a constant bmin for the two-body simulation.

• We define bmax as the solution of r2B(bmax, θz′) =
L
2

The collisional torque then becomes:

τKep;z′ = −2(1 + ϵ)

∫ bmax

bmin

|vθ + ωz′r2B| (vθ + ωz′r2B)r2B

∫ H
2

−H
2

ρs(z)dzdb (2.8)

where we have replaced the incoming speed in Eqn. (D.2) (qΩb) with |vθ|, used
∫ H/2
−H/2 ρs(z)dz for σ.

Additionally, by adding ωz′r2B , we allow for the rotation of the wake to affect the incoming relative speed

of the particles. This integral is solved numerically since we have to determine bmax every time the pitch

angle θz′ changes. For a Keplerian shear rate, we find that this formulation equilibrates stably with the tidal

force (Eqn. D.1) at θz′ = 25◦ for ρs = 500 kg/m3 and ϵ = 1. Therefore Eqn. (2.6), with the Keplerean

shear torque given by Eqn. (D.7), meets the boundary condition for the orientation of the wake outside of

the wave. We proceed to explore the torques and the motion of the wake’s inside the BW region.

2.3.1.3 BW acceleration torque

The main torque that causes the wakes’ rotation in the BW region stems from the difference between

the acceleration of the CM and that of a wake particle a radial distance ∆x from the CM; we write this

as z̈CM − z̈(x). Given that all the torques are derived in the frame of the CM of the wake, differences

in acceleration will appear as a force. To compute this force we take two time derivatives of Eqn. (2.2),

which denotes the vertical position of a ring particle as governed by the interactions in SCL theory; namely,
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the self-gravity of the bent ring, the gravitational force of Saturn, and a viscous force. Note that the time

dependence of Eqn. (2.2) lies entirely in the exponential factor eiω
′t, and, given the ∼ 10 km wavelength

and the tighyly-wound nature of the wave, the change of z(x,Θ) over a wake can be approximated linearly

on ∆x. The difference in vertical acceleration can then be expressed as:

z̈CM − z̈ = −ω′2(zCM − z) ≈ −ω′2 dz

dx

∣∣∣∣
CM

∆x (2.9)

Let’s consider the rotation about the long axis (the y′ axis). We need to find the directional derivative

of z̈(x) in the directions perpendicular to y′. Given the flattened nature of self-gravity wakes (Colwell et al.,

2006; Hedman et al., 2007; Jerousek et al., 2016), variation of forces across the vertical axis, H , will be

ignored and only variations along x′ and y′ will be considered. Then for the torque about y′ we only need

the variation of z̈ along the x′ axis. The force then becomes:

Fz(x
′) = −ω′2 dz

dx

∣∣∣∣
CM

(x̂ · x̂′)x′dm (2.10)

where dm is a differential mass a distance x′ from the CM. Projecting it onto ẑ′ and crossing it with the

lever arm we get:

τBWacc,y′ = x′ × Fz′ = −2ω′2 ∂z

∂x′

∣∣∣∣
CM

(ẑ · ẑ′)(x̂′ × ẑ′)

∫ W
2

0
ρRocheHLx

′2dx′ (2.11)

where we substituted dm = ρRocheH ∗ L ∗ dx′ and the directional derivative along x′ defined as

dz

dx

∣∣∣
CM

(x̂ · x̂′) ≡ ∂z

∂x′

∣∣∣
CM

.

2.3.1.4 BW shear torque

The wake’s CM vertical speed will differ from that of the neighboring particles and hence there will

be a collision which will generate a torque. This is similar to the Keplerian torque and for the general case

(see Appendix A) the vertical and horizontal speeds are added to compute a total collisional torque. If θx′

and θy′ are small however, this two torques are independent. To model the BW shear torque we consider the
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shear dż
dr and note that the particles a distance y′ along the long axis will have a relative vertical velocity of

dż
dr (x̂ · ŷ′) with respect to the CM. If these particles have a space density ρs then the amount of mass colliding

with the wake at a distance y′ in a time dt will be:

M(r) = ρs

∣∣∣∣ ∂ż∂y′ ∣∣∣CMy′dt
∣∣∣∣Wdy′

Which causes a momentum transfer of:

dpz′(y
′) = [M ] ∗ [∆vz′ ] = [ρs

∣∣∣∣ ∂ż∂y′ ∣∣∣CMy′
∣∣∣∣ dtWdy′] ∗ [(1 + ϵ)

∂ż

∂y′

∣∣∣
CM

y′]

This momentum transfer corresponds to a force of:

FBWsh;x′ =
dpz′

dt
= (1 + ϵ)ρs

∣∣∣∣( ∂ż∂y′ ∣∣∣CM − ωx′

)
y′
∣∣∣∣ ( ∂ż

∂y′

∣∣∣
CM

− ωx′

)
Wy′dy′ (2.12)

where we have included ωx′ , the angular velocity about the x′-axis, to account for the change in the relative

incoming speed that occurs when the wake rotates. The torque associated with this momentum transfer is:

τBWsh;x′ = 2

∫ L
2

0
y′
dpz′

dt
=

1 + ϵ

2
ρsW

∣∣∣∣ ∂ż∂y′ ∣∣∣CM − ωx′

∣∣∣∣ ( ∂ż∂y′ ∣∣∣CM − ωx′

)(
L

2

)4

(2.13)

where we have taken the wake to be much more massive than the incoming ring particles so that the CM

of the collision is the CM of the wake. Doing the same computation for τvert;y′ , we can arrive at the total

torques about the x′ and y′ axis, now written as a function the angle θz′ and radial distance x. For small

angles θx′ and θy′ we have:

τx′ ≈ −2

3
ρRocheHW

dz̈

dx

∣∣∣∣∣
CM

sin θz′

(
L

2

)3

+ ρsW
1 + ϵ

2

∣∣∣∣∣dżdx
∣∣∣∣∣
CM

sin θz′ − ωx′

∣∣∣∣∣
(
dż

dx

∣∣∣∣∣
CM

sin θz′ − ωx′

)(
L

2

)4

(2.14)

τy′ ≈ 2

3
ρRocheHL

dz̈

dx

∣∣∣∣∣
CM

cos θz′

(
W

2

)3

+ ρsL
1 + ϵ

2

∣∣∣∣∣dżdx
∣∣∣∣∣
CM

cos θz′ + ωy′

∣∣∣∣∣
(
dż

dx

∣∣∣∣∣
CM

cos θz′ + ωy′

)(
W

2

)4

(2.15)

where, in this approximation, θz′ is the angle between the y and y′ axes.
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2.3.1.5 Motion of an isolated self-gravity wake

Inside the BW the wakes are continously perturbed via out-of-the-plane torques; thus, there is no

torque equilibrium. We must integrate the equations of rigid motion:

ω̇x′ =
τx′

Ix′
+
Iy′ − Iz′

Ix′
ωy′ωz′ (2.16)

ω̇y′ =
τy′

Iy′
+
Iz′ − Ix′

Iy′
ωz′ωx′ (2.17)

ω̇z′ =
τz′

Iz′
+
Ix′ − Iy′

Iz′
ωx′ωy′ (2.18)

where Iq′ is the moment of inertia about the principal axis q′. These equations of motion are numerically

integrated with a midpoint method (Press et al., 2007) (note that differential rotation is commutative, so the

order of rotation doesn’t affect the integration). Note that the inertial terms

τinertiak = (Ii − Ij)ωiωj (2.19)

(where i ̸= j ̸= k and i, j, k = x′, y′, z′), are important to understand the wake’s rotation since they couple

the rotations about the different axis (ωx′ , ωy′ , ωz′).

In Figure 2.8 we describe the rotation of the wakes in the BW, for a maximum slope of 14◦. The top

panel shows the change in the wake’s ortientation, the middle panel shows the magnitude of the torques,

and the bottom panel shows that vertical impact speeds. We see in the bottom panel that the rotation of the

wakes generate >1cm/s vertical impact speeds in the wave region. To calculate Figure 2.8 we relaxed the

approximation that θx′ and θy′ are small, which amounts to computing all 4 torques symmetrically for the 3

axes. The full form of the torques is in Appendix A.

In order to describe the orientation of the wake in inertial space, we have introduced the angles

(θx, θy, θz) (upper panel), which correspond to the wakes’ ‘pitch’, ‘roll’, and ‘yaw’, respectively. θx =

cos−1 (x̂′ · ẑ) and θy = cos−1 (ŷ′ · ẑ) increase as the x′ and y′ axes, respectively, point towards the vertical

direction. θz = tan−1 (−ŷ′ · x̂/ŷ′ · ŷ) is 0 when the y′-axis, projected onto the ring’s plane, points at the
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azimuthal and it increases counterclockwise. In the specific configurations of the wakes in Figure 2.5, these

angles are equivalent to their corresponding primed counterparts. Moreover, if θx′ and θy′ are small, then

θz′ ≈ θz .

In the top panel of Figure 2.8 we show the motion of a wake when the slope of the wave is constant and

zero (black line). We find that the wake equilibrates stably at an angle θz = 25◦. However, when the slope is

changing, the orientation of the wake becomes significantly more complex (colored lines in the top panel).

The sole difference causing this divergence in behavior is the introduction of a slope via the BW acceleration

and shear torques—even if this slope is relatively small (|dz/dx|max = tan 14◦). The dependence on the

small slope and the forcing frequency (ω′) makes the BW torques (on average) two orders of magnitude

smaller than the Keplerian and the tidal torques (middle panel), but the inclinations they cause provoke a

non-linear behavior in the angular variables (θx′ ,θy′ , θz′) which are strongly coupled. The coupling mainly

comes from the inertial term.

Since the BW torques are small, the inclination of the wake comes from the action of this inertial term,

but the inertial term is non-zero only due to the prescence of the BW torques. Therefore, the smallest torques

in magnitude, namely the ones introduced by the bending wave, have the biggest effect on the dynamics.

The wakes no longer stay on the plane of the ring simply oscillating about an equilibrium orientation; rather,

they spin full circles and reach inclination of 80◦ from the equatorial plane for the case of a maximum slope

of 14◦ (top panel, vertical dashed line).

The bottom panel of Figure 2.8 shows the relative vertical speed between the wake and the ring

particles. These are computed as

vrel;z′ = [
L

2
(−ωx′ +

dz

dx
) +

W

2
∗ (ωy′ +

dz

dx
)](ẑ′ · ẑ) + L

2
ωx′(x̂

′ · ẑ) (2.20)

where the dominant terms are the projections of the rotational speeds onto the z-axis. These speeds occur

in the > 1 cm/s; thus, the resuting collisions can potentialy lift ejecta vertically. Nevertheless, we are still

to account for the gravitational interactions between self-gravity wakes, which, as we will see, can have a

stabilizing effect on the pitch-angle of the wakes.
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The relative vertical velocities within the wake and the ring particles associated with this motion are

in the cm/s range.

2.3.1.6 Torque due to self-gravity wakes

For the gravitational force that self-gravity wakes exert on each other we consider the case of a wake

with variable orientation embedded on a field self-gravity wakes oriented at a constant θz′ = θw. Taking

this field as a set of density plane waves, we can use Pringle and Lyden-Bell equations for the torque of

a spiral arm on a galaxy (Lynden-Bell & Pringle, 1974), which have been applied to self-gravity wakes in

proto-lunar disks in Takeda & Ida (2001). The potential of the spiral arms is given in Binney & Tremaine

(2008) in terms of Saturncentric distance r and longitude Θ as:

Φ′ =
2πG

|k|
σwRe[e

i(mwΘ+krr)] (2.21)

Where k = 2π
λT

andmw and kr are the azimuthal and radial wavenumbers, and σw is the wake surface

density minus the mean surface density of the ring. Following the appendix in Takeda & Ida (2001) we

relate the wavenumbers by mw = kr sin θw and kr = k cos θw, where θw = 25◦ is the pitch-angle. To

compute σw we’ll approximate the wake surface density to be ρRoche

∫∞
−∞ e

−( z
H/2

)2
dzρRoche

√
π
2 H , noting

that the mean surface density σ for the A ring region is about 400 kg/m2 (Tiscareno et al., 2007) and has a

negligible effect on σw. We will now expand the potential (Eqn. 2.21) about the center of a wake located

at (r0,Θ0 = y0/r0) where y0 = 0, similar to what is done in Cook & Franklin (1964). The potential then

becomes:

Φ′ =
2πG

|k|
(ρRoche

√
π

2
H)(1− k2(cos θw(r − r0) + sin θwy)

2) (2.22)

To write the potential in terms of the orientation of the wake θz′ (in the approximation where θx′

and θy′ are small), we consider the distance about the long axis, y′, and write r − r0 = −y′ sin(θz′) and

y = y′ cos(θz′)

This yields the potential
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Figure 2.8: Angular motion (top), torques (middle), and speed relative to the ring (bottom) of a uniform
density self-gravity wake satellite evolved integrating the equations of rigid motion (equations 2.16, 2.17
and 2.18) and the 3D Hill equations (2.4).θz = 0 when the long axis (y′), projected onto the plane, points
to the azimuthal, while θx = 0 and θy = 0 when the x′ and y′ axes are in the rings’ plane and 90◦ when
they point in the vertical direction. The wake has uniform density and dimensions W = 18m, L = 232m
and H = 4m, and the coefficient of restitution ϵ of the collisions and the space density ρs of the ring
particles are set to balance the torques outside of the wave at a pitch-angle is 25◦ (see Figure 2.4 and related
discussion). The maximum slope is set to 14◦ and the slope is 0 at t = 0, and varies harmonically with the
forcing frequency ω′ (see Eqn. 2.1). For comparison, we also show the time evolution of the orientation of a
wake on a flat ring (black dashed line). (Top) The wake inclines back and forth as the wave passes through,
and that its long axis spins around in the plane until it reaches a steady state where the wake oscillates about
the azimuthal direction. Marked with a dashed gray line is the point where the motion becomes too extreme,
given that θx = 80◦, and given that the wake points completely in the radial direction. (Middle) The torques
associated with the displayed motion. The inertial torque becomes very important, and the BW torque is
on average the smallest one by two orders of magnitude. (Bottom) z-component of the relative velocities
between the wake and a particle colliding with the edge of the wake.
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Φ′ =
2πG

|k|
(ρRoche

√
π

2
H)[1− k2y′2 cos2 (θz′ − θw)]

We now apply the − 1
y′

∂
∂θz′

operator to the potential and multiply by the differential mass times the

lever arm (dm ∗ y′ = ρRocheHWdy′ ∗ y′) to get the torque at distance y′ from the center of the wake; we

then proceed to integrate over y′ and get:

τwake;z′ =
4π2

λT
GρRoche

√
π

2
H2W

L3

24
∗ sin 2(θw − θz′) (2.23)

Which changes the equation of the torque about the z-axis to:

τz′ = τtidal;z′(θz′) + τKep;z′(θz′ , ρs) + τwake;z(θz′) (2.24)

The torques in the z-axis now equilibrate at an angle of θz′ = 25◦ for ρs = 390 kg/m3 for the

full Hill equations computation and ϵ = 1. The equilibrium orientation of the wake is now less sensitive

to the surrounding space density since the wake potential creates a minimum when wakes align, and may

explain why the pitch-angle of the wakes is nearly uniform (∼ 25◦) over the rings (Jerousek et al., 2016)

even if the density and the shear rate vary between the A and the B rings. We are assuming the coherent

structure of θw = 25◦ is kept within the wave, but the wakes may not have a coherent orientation or

well-defined wavenumbers, which is suggested by the reduction of the number of coherent gap structure in

UVIS occultations to 25% the outside value (Rehnberg et al., 2017) and by our equations of motion which

predict that the wakes can spin up or oscillate about the azimuthal; in which case Eqn. (2.23) would be

modified by the wakes that are not part of the plane-wave field. While we lack an expression for the case of

neighboring wakes with multiple orientations, we will heuristically extend the case of a single misaligned

wake embedded in a wake field with orientation θw, to the case of a misaligned wake in a the BW region

embedded in the oriented wake field of the A-ring. The total wake potential acting on a wake is then given

by Eqn. (2.21).
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2.3.2 Motion of an embeded self-gravity wake

The relative velocity and orientation of a self-gravity wake embedded on a field of self-gravity wakes

with fixed orientation θw, evolved under equations (2.16), (2.17), (2.18), is plotted in Figure 2.9.

We see a similar non-linear behavior as the isolated wake (Figure 2.8) resulting in cm/s collisional

speeds (Figure 2.9), but the values of θz are more conservative—oscilating about θz = 0 and staying below

90◦ for most of the motion. The restoring force to the equilibrium angle has now increased, and this makes

the vertical collisional speeds — which are coupled to θz′ by the inertial term (Eqn. 2.19) — increase as the

wake swings back into position.

The extreme values for the orientation angles, particularly θz which at times has the long axis pointing

in the radial direction, make us skeptical that the rigidity assumption holds throughout all of the motion. To

remedy this we also computed the motion of a wake with long axis L = 77m, a third of the usual length.

Note that we are not suggesting that self-gravity wakes will shed two thirds of their mass (that would create

a much bigger haze signal than the one observed), rather we are verifying that even if a wake were to shed

the regolith near its edges while rotating, it will still maintain collisional speeds in the cm/s range. Hence,

the process is not self-limiting, nor does it necessitate a wake of long axis L = 232m. The extreme values

of the orientation angles also makes us consider the possibility of the release of material due to the rotation

itself (e.i rotational disruption). Note that in this scenario, the launched regolith itself will exit the wave

at cm/s speeds, hence contributing to the haze. In the next section we will show that both, the rotational

disruption and collisional ejecta scenarios, create a haze with the same observable features.

2.3.3 Haze predicted properties

The relative velocity curves in Figures 2.8 and 2.9 are of the order of 1 cm/s. Microgravity experi-

ments have shown that at cm/s velocities we begin to see ejecta in particle collisions with simulant regolith

aggregates (Brisset et al., 2018). The cm/s range is also important because the characteristic vertical speeds

of the Mimas 5:3 BW are in the cm/s range: a cm/s change in velocity is necessary to have particles reset

their motion into trajectories that are no longer in phase with the wave.
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Figure 2.9: Time evolution of the average velocities of particle collisions with self-gravity wakes within the
bending wave; motion evolved as in Figure 2.8 with the addition of the wake potential. The maximum slope
is set to 14◦ and t = 0 when the slope is 0; the slope varies harmonically with the vertical frequency. Adding
the wake potential increases the maximum relative velocity between the wakes and ring particles. For the
case of L = 232m we see vertical velocities well within the cm/s range, while the L = 77m case peaks at
about 1 cm/s.
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If these collisional speeds increase with slope amplitude, the amount of released material would

change with radial position. Figure 2.10 shows precisely this: the peaks of the relative speed over a period

have a monotonically increasing trend with the amplitude of the slope of the wave. To determine how the

amount of material changes due to this increase in the velocities, we apply a square-root regression to Figure

2.10 and find that:

Figure 2.10: Average maximum relative speed of self-gravity wakes for different slopes. The average is
taken over a range of initial conditions to show that the increase of collisional speed with the slope is robust
to initial conditions. At each value of the slope considered, we start the out-of-phase (at an angle with the
ring) by 0, ±10, ±20, and ±30 degrees, at 15 equidistant points in the wave’s vertical motion, and run the
simulation for 1 period. Therefore, each point is an ensemble average of 105 runs, where the error bars
represent the 1σ of the distributions. We see a clear trend: the bigger the slope amplitude of the bending
wave the bigger the velocity of the collisions between the wakes and the ring particles. We model this
increase with a square-root law.

vrel;z = a

√∣∣∣∣dzdx
∣∣∣∣
max

+f (2.25)

where a = 2.42 cm/s and f = 0.47 cm/s.

Microgravity experiments show the existence of a speed threshold before which the collisions don’t
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lift ejecta (Brisset et al., 2018). Once this minimum threshold has been passed, numerical simulation of col-

lisions in free space (Stewart & Leinhardt, 2009) and drop tower experiments (Colwell et al., 2008) suggest

that the amount of ejected regolith increases linearly with the specific inelastic energy of the impactor; we

represent this by the equation:

Nhaze ∝ H(vimpact − g) · (vimpact − g)2 (2.26)

where Nhaze is the number of haze particles liberated per wake, g is the impact speed threshold, and H is

the Heaviside function whose value is 0 if the argument is negative, 1 otherwise.

We don’t know where this threshold is for the case of wakes in the rings, but it must be higher than

the dispersion velocity (∼ Ωz0 = 0.13 cm/s), since this doesn’t generate sub-mm ejecta outside of the BW

(Table 2.1). From now on we heuristically assume that g = f so that the N is proportional to the slope

amplitude. Misestimating the value for g by a factor of 2 would change the quantity of haze produced at low

slopes (<0.03) by a factor of ∼ 4; however, more than 90% of the wave lies in the high-speed regime where

the square-root trend works well. Given this value of g, and assuming a set number of wakes per area, the

amount of haze particles per area (Σ) has the proportionality of:

Σhaze ∝
∣∣∣∣dzdx

∣∣∣∣
max

(2.27)

Note that the number density of the haze nhaze(r) is given by Σhaze(r)
D(r) where D(r) is the vertical

thickness of the haze. Combining equations (2.25) and (2.27) and the equation for the differential optical

depth dτhaze(r) = nhazeσ̄hazedl, where σ̄haze is the typical cross-section of particles in the haze and dl is a

differential path-length through the haze, we arrive at the relation:

dτhaze(r) =
β

D

∣∣∣∣dzdx
∣∣∣∣
max

dl (2.28)

where β = Σ0σ̄haze is the normal optical depth of the haze when the slope is unity, and a free parameter in

our model; Σ0 is the surface density generated by a slope of unity.

For the case of rotational disruption, we take the number of released haze particles per wake to be
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proportional to the centrifugal force due to the rotation: Nhaze ∝ ω2
x′rp where ωx′ is the angular speed and

rp is the radial distance from the CM. Note that the angular speed and vrel;z are related by ωx′ ≈ vrel;z/rp;

combining this with equation (2.25), we again arrive at equation (2.28). Therefore, given our rigid model

for self-gravity wakes, we predict that in the BW region the extra optical depth must be proportional to the

maximum slope of the wave. Note that β is a dimensionless absorption per slope coefficient related to the

ejecta-generating efficiency of rotation or collisions.

To construct the geometry of the haze we consider the trajectories of the particles after the collision

with the self-gravity wake. Given that in Figure 2.9 >1 cm/s collisional speeds are achieved at many points

during a period, we consider that the collisions with the self-gravity wakes are equally likely to occur at any

point in the vertical motion of the particles, and that the imparted velocity is in equal proportions, radial and

vertical, with a magnitude of a
√
| dzdx |max + f where a and f are defined in Eqn. (2.25). The subsequent

trajectories can be easily computed by taking the CM of the collision to be the center of the self-gravity

wake. Let VCM be the velocity of the CM, then the outgoing speed will be given by

v0 = VCM(1 + ϵ)± ϵ(a

√∣∣∣∣dzdx
∣∣∣∣
max

+ f) (2.29)

the case of ϵ = 1 representing the outgoing speed for the rotational disruption scenario. Relative to a particle

in the wave the ejected particles move vertically with a Doppler shifted frequency of µv ± kbv0x , where µv

is the vertical frequency of the particle and kb is the wavenumber of the BW. The subsequent trajectories

are shown in the left panel of Figure 2.11. In the right panel of Figure 2.11 we show the envelope these

trajectories form over the radial extent of the wave; note that the thickness of the haze varies radially and is

greater at the peaks and troughs than at the equatorial plane. Moreover, the the haze’s thickness varies with

ϵ, and we find it to range from 90− 190m for ϵ = 0.1− 1.

While there’s still some phase dependence in the displayed geometry, the dynamics predict the same

number of particles at any given phase for a given radial location r. Hence the change in the optical depth

profile of a normal occultation can only come from the change of scattered particles in the collisions, which

is related to the change in the slope amplitude with r. We then predict that the phase should not appear
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in the haze signal, which is a desired feature of the model, given that the observed signal of Beff
∼= 90◦

occultations show no correlation with the phase of the wave.

Figure 2.11: Left panel: trajectories in time of the vertical position of haze particles (blue) and the oscillating
ring (red) at −100 km from resonance. Here the trajectories of haze particles start every phase interval of
π
3 during the up-and-down motion (so we are modeling 6 collisions per period). The ring has a continuous
envelope of particles during the period. Right panel: The envelope created in space by the trajectories
of particles post-collision using ϵ = 0.5. By looking at the lower left insert panel one can see the slight
variation of in the the vertical thickness present in the haze profile; the thickness of the haze changes from
113 to 134 m in the overall plot, and the variations in the zoom-in panel are only of 4m (less than a thick
mark). A light-ray has been plotted in dashed gray to visualize the geometry of the occultations.

2.4 Transmission Model and Data Reduction

The transmission of light through the rings is modeled by the radiative transfer equation simplified

by the fact that the opacity κ of the ring particles is insensitive to wavelength. Moreover, we are working

exclusively in the 110− 190 nm spectral bandpass of the High Speed Photometer (HSP) within UVIS and,

given the lower limit in the 100µm range for the particle size in the A-ring (Harbison et al., 2013), there is

no scattering. Thus, we are firmly within the geometrical optics limit. As a consequence of this the intensity

I measured by UVIS is simply:

I(r) = I0e
− τn

µ + b (2.30)

where I0 is the unocculted star signal, b is background light entering the detector that does not come from
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the star, τn is the normal optical depth, and µ = sin(B) where B is the angle between the ring plane and the

light ray. Or, in terms of the transparency T

T =
I − b

I0
(2.31)

We will extract the observed optical depth by using:

ln
I(r)− b

I0
= −τn

µ
(2.32)

In order to isolate the star signal we determine the background signal (b) and the unocculted star

signal (I0) following the methods of Colwell et al. (2010). It is known that the detector becomes more

sensitive over time when the optical depth is close to 0 (Colwell et al., 2010), which introduces a systematic

uncertainty on our measurements of I0 that we are not considering here. Since I0 refers to the star, in order to

eliminate this reference and focus on the properties of the rings themselves, we work with the transparency

(T ) and the optical depth (τ ).

To the 217 occultations of the bending wave region we apply a signal-to-noise filter, or conversely

a τmax filter (Colwell et al., 2010) of τmax > 1.5 so that the variations in τ due to the bending wave are

distinguishable; this reduces the set of occultations to 130 (see Appendix A for the complete list). From this

we select 60 occultations with the following criteria:

First, we maximize the range of geometries probed by our study without oversampling any particular

geometry. For this purpose six subsets are created where B can be low angle, 0◦ to 30◦, intermediate

angle, 30◦ to 60◦, or normal, 60◦ to 90◦. On the other hand, ϕ can be radial (| cosϕ| > 1
2 ) or azimuthal

(| cosϕ| < 1
2 ). We use | cosϕ| to partition the data because it is the physically relevant quantity that appears

in all the models that will be tested. The smallest subset, being the low B radial set, has a total of 10

occultations in the entire dataset, so all other subsets must also contain 10 occultations to not oversample

any geometry, yielding 60 occultations in total.

Secondly, in the subsets with more than 10 occultations we select the highest τmax occultation for

each star, and if there are fewer than 10 unique stars we select the next highest τmax for each star until 10
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are reached. The final dataset is shown in Table 2.2.

Additional critical geometric parameters consist of the longitude of the occultation in the rings relative

to the moon Mimas, the vertical position of Mimas, and the vertical velocity of Mimas. These parameters

were determined using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (Acton,

1996; Acton et al., 2018). These parameters generally depend on the precise determination of Saturn’s pole,

the ring plane radius being the most uncertain parameter with errors of < 10 km for every occultation.

Errors in B and ϕ are generally less than 1◦. Knowing the position and velocity of Mimas enables us to

compute the phase of the wave using equation 47a in SCL:

Φtheory = (4ΩM + µM )t− 4Θ− π

4
(2.33)

where ΩM and µM are the Keplerian and vertical frequencies of Mimas and Θ is the azimuthal position of

the occultation (t = 0 at the ascending node of Mimas). The gravitational moments used to determine the

frequencies were taken from Iess et al. (2019), while the other physical parameters of Saturn and Mimas

(mass, semi-major axis of Mimas, and inclination of Mimas) were taken from Jet Propulsion Laboratory

Horizons database (Jacobson, 2010); these are presented in table 2.3. We find a theoretical value for the

5:3 vertical resonance location of rv = 131902 km and a wave amplitude of Av = 472m√
σ100

where σ100 is the

surface mass density in 100 g/cm2.

An alternative way of computing the phase is through observations. From the position of the optical

depth peaks and troughs in the data a phase can be determined by fixing Gresh et al. (1986)’s best-fit param-

eters of the SCL model—surface density σ and viscosity ν—while letting the phase vary and applying a χ2

minimization scheme. This data-driven value for the phase is reported in Table 2.2 as Φobs.

2.5 Ray-tracing model

The relationship between the slope of the wave and the extinction of starlight in a UV occultation is

non-linear, both in the SCL model and in our model. In SCL the shape of the wave enters into the optical

depth by determining the limits of the optical depth path integral.
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Occultation B [deg] ϕ [deg] Beff [deg] Lon. [deg] Z sign(Ż) Φtheory[deg] Φobs[deg] b I0 τmax

B > 60◦ and | cosϕ| > 1
2 Complete subset size = 10 occultations

AlpCru(100)I 68.2 154.5 70.1 213.6 -5016.5 1 100 - 0.50 434.18 6.0
AlpCru(92)I 68.2 169.6 68.5 114.7 -4232.1 1 160 - 0.50 518.56 6.3
EpsCas(104)I -70 187.8 70.1 152.8 -2034.7 -1 87 - 0.04 4.59 3.8
BetCru(98)I 65.2 192.7 65.7 319 3954.6 -1 248 - 0.23 274.05 7.1
BetCen(104)I 66.7 209.3 69.4 321 -1126.9 -1 303 - 0.31 357.50 6.7
BetCen(105)I 66.7 212.9 70.1 83.1 5023 1 62 - 0.15 313.44 5.2
BetCen(78)E 66.7 45.9 73.3 206.5 -5087.4 -1 295 - 0.38 564.08 7.0
BetCen(77)E 66.7 47.5 73.8 12.6 4961 1 161 - 0.34 593.24 7.4
BetCen(92)E 66.7 55 76.2 75.5 4143.3 -1 318 - 0.23 452.62 6.2
EpsCas(104)E -70 122.3 79 123.6 -4468.4 1 299 - 0.04 4.56 3.6
B > 60◦ and | cosϕ| < 1

2 Complete subset size = 17 occultation
BetCen(77)I 66.7 270.4 89.8 257.3 -1823.4 1 164 - 0.25 587.23 7.7
BetCen(85)I 66.7 277.5 86.8 41.8 -4526.9 -1 210 - 0.71 1066.32 7.6
BetCen(89)I 66.7 278 86.6 322.8 -572.3 1 277 - 0.33 498.23 7.7
AlpCru(100)E 68.2 93.9 88.5 188.8 807.8 1 288 - 0.50 428.76 5.8
BetCen(102)I 66.7 249.1 81.3 0.9 4984.3 -1 53 - 0.33 370.17 7.3
BetCen(104)E 66.7 105.5 83.5 299.7 -3402.1 1 154 - 0.29 342.97 8.6
BetCru(262)I 65.2 257.3 84.2 18 5014.2 -1 343 - 0.19 109.53 6.4
BetCru(253)I 65.2 255.6 83.4 187.3 -4002.7 -1 157 - 0.20 106.17 6.5
GamCas(100)E -66.3 72.5 82.5 93.5 -3408.3 1 259 - 0.09 54.16 6.1
GamAra(37)I 61 248.7 78.6 62.1 4684.1 1 133 - 0.12 53.50 4.2
60◦ > B > 30◦ and | cosϕ| > 1

2 Complete subset size = 35 occultations
EpsCen(65)I 59.6 226.6 68.1 343.1 -1573.5 -1 220 143 0.26 259.43 6.6
ZetCen(60)I 53.6 228.1 63.8 258.7 -4185.7 -1 235 119 0.23 214.36 6.6
DelCen(98)I 55.6 211.3 59.6 54.8 402.3 1 100 16 0.09 34.47 5.8
EpsLup(36)E 51 44.9 60.2 135.3 2840.1 -1 99 125 0.14 65.34 5.7
GamLup(32)E 47.4 33.8 52.6 158.4 5097.4 1 310 333 0.15 145.17 5.4
LamSco(29)E 41.7 148.3 46.3 222.1 -4753.7 -1 35 9 0.32 567.90 4.6
ZetPup(171)I 38.6 202.1 40.8 120.2 2022.7 -1 350 23 0.12 49.51 4.3
EtaLup(34)E 44.5 357.1 44.5 90 -3167.9 -1 353 44 0.17 93.96 4.2
TheAra(40)E 53.9 28.6 57.3 197.2 -2036.3 -1 269 218 0.09 24.98 4.1
KapCen(42)I 48.5 168.5 49.1 237.3 228.4 1 88 62 0.24 82.26 4.1
60◦ > B > 30◦ and | cosϕ| < 1

2 Complete subset size = 37 occultations
ZetCen(112)I 53.6 239.7 69.6 112.5 4393.8 -1 345 216 0.03 37.31 6.4
AlpAra(32)I 54.4 277.9 84.4 258.6 3837.8 -1 311 311 0.15 76.61 6.1
KapCen(35)E 48.5 85.5 86.1 302.8 -5074.8 1 279 305 0.12 92.03 5.8
TheCar(190)I -43.3 252.4 72.2 219.3 -4463.7 1 276 276 0.16 25.33 5.7
ZetCen(62)E 53.6 70.1 75.9 8.9 -4066 1 46 85 0.19 212.18 5.5
TheAra(41)E 53.9 82.4 84.5 205.4 1720.2 -1 193 193 0.09 23.52 5.5
DelCen(64)E 55.6 110.6 76.4 194.3 4773.2 1 327 353 0.09 52.91 5.0
KapCen(36)I 48.5 241.2 67 228.6 -2480.8 -1 329 200 0.24 88.26 5.0
DelPer(37)I -54 264.5 86 145.7 4558.5 -1 28 28 0.08 27.26 5.0
AlpLup(248)E 53.9 111.4 75.1 73.2 4024.3 -1 150 175 0.22 16.97 4.8

Table 2
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Occultation B [deg] ϕ [deg] Beff [deg] Lon. [deg] Z sign(Ż) Φtheory[deg] Φobs[deg] b I0 τmax

B < 30◦ and | cosϕ| > 1
2 Complete subset size = 11 occultations

GamPeg(172)I -20.3 36.7 24.7 283.4 4683.3 1 328 339 0.01 11.49 1.7
AlpCMa(274)E* 13.5 40.4 17.5 188.9 2833.2 -1 245 232 0.07 23.75 1.7
SigSgr(114)I 29.1 330.2 32.6 262.3 -492.7 1 160 133 0.04 33.50 2.7
AlpVir(34)E 17.3 332.9 19.2 259.5 2584 1 207 220 0.50 979.08 1.7
GamPeg(32)I -20.3 138.6 26.2 226.6 2857.3 1 342 342 0.53 149.51 1.8
AlpVir(8)I 17.3 141.1 21.8 162.3 4488.6 -1 144 221 5.00 1000.46 1.8
KapCMa(168)I 29.3 175.9 29.4 268.8 -3886.5 1 270 321 0.04 6.06 1.7
BetCMa(211)I# 14.2 223.4 19.2 67.1 -3637.3 1 1 232 0.05 43.52 1.8
EpsCMa(276)E 26 50.6 37.5 217.7 4192 -1 108 173 0.12 69.53 2.6
AlpVir(210)I# 17.3 311.5 25.1 46 -4015.8 1 259 104 0.04 138.22 2.5
B < 30◦ and | cosϕ| < 1

2 Complete subset size = 20 occultations
DelSco(236)I 28.7 263.2 77.9 10.8 -5022.7 -1 171 168 0.65 22.98 2.8
AlpVir(232)E 17.3 89.3 87.8 316.7 -2068.6 1 284 284 0.46 125.75 2.3
AlpVir(34)I 17.3 232.8 27.2 24 579.6 1 225 186 0.29 1021.26 2.2
SigSgr(244)I 29.1 269.3 88.8 86.6 -1341.1 1 313 313 0.04 16.60 2.1
GamPeg(36)E -20.3 66.8 43.2 343.5 3206.1 1 59 34 0.45 141.95 1.8
GamPeg(211)E -20.3 122.5 34.6 207.2 518.8 -1 200 200 0.02 13.19 1.8
AlpVir(211)I 17.3 267.2 81.2 103.3 -2632.7 1 230 269 0.47 132.50 1.8
AlpVir(8)E 17.3 91.3 85.9 197.2 3679.9 -1 19 45 5.00 1053.60 1.7
KapCMa(168)E 29.3 127.3 42.8 286.8 -1613.5 1 229 284 0.04 6.19 1.7
AlpCMa(281)I* 13.5 230.1 20.5 144.3 3652.3 1 143 195 0.06 27.91 1.7

Table 2 (continued): Dataset for this work. We divided the UVIS data set into 6 subsets comprising different
geometries, each containing 10 occultations. The theoretical phases of the waves were computed using
equation (2.33) and the latest SPICE kernel for the longitude of the occultation relative to Mimas (the
‘Lon’ column). The observed phases were computed by fitting the phase of the wave in each occultation
individually with fixed global parameters (β, ν, σ). Z and Ż are the vertical position of Mimas with respect
to the equator and the sign of its velocity respectively, both are required to compute the phase of the wave.
“#” indicates that the difference between the theoretical and predicted phase is more than 90◦. “∗” indicates
that the dispersion relation, or the predicted distances between peaks of optical depth, are inconsistent with
the data for these occultations.

GM [km
3

s2
] a [km] i [deg]

Mimas 2.50349 185539 1.574
Saturn 37931206.2 - -

Table 2.3: Physical parameters of Mimas and Saturn used in this work. Taken from the JPL Horizons
database (accessed in November 2019).
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τ =

∫ l2

l1

nσ̄ringdl (2.34)

where n is the number density along the lightray, σ̄ring is the average cross-section of absorbers over the

path of the light ray, and l1 and l2 are the ring’s entry and exit points along the light ray.

Since we use SCL theory to trace the wave profile, σ̄ring, n, and the thickness of the ring d are uniform

throughout the wave (Shu et al., 1983; Gresh et al., 1986). The predicted haze is formed by relatively small

particles (see Table 2.1) and hence keeping n uniform is compatible with the haze. A quick calculation

shows that if the haze particles are an order of magnitude smaller than the ring’s they will constitute be 1%

of the mass at the peak of the haze’s optical depth. This allows us to write the product nσ̄ring in terms of the

normal optical depth outside of the wave τn0. Consider an occultation along the wave where the light comes

only from the direction normal to the plane, then

τn0 =

∫ d

0
nσ̄ringdz = nσ̄ringd (2.35)

nσ̄ring =
τn0
d

(2.36)

So we can write

τ =

∫ l2

l1

τn0
d
dl (2.37)

In order to better match the Voyager I radio occultation, Gresh et al. (1986) introduces a Gaussian

enhacement to the optical depth without a physical motivation for producing such an enhacement. We

showed in section §2.3 that a haze (Eqn. 2.28) is generated as a consequence of the rotation of self-gravity

wakes within the BW; adding this haze to Eqn. (2.34) we get:

τ =

∫ l2

l1

τn0
d
dl +

∫ l4

l3

β

D

∣∣∣∣dzdx
∣∣∣∣
max

dl (2.38)

where l3 and l4 are the entry and exit points of the haze along the lightray, β is related to the number of

particles released by the wakes (see section §2.3) and D is the vertical thickness of the haze.
∣∣ dz
dx

∣∣
max

is the
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maximum slope over a period at a given radial coordinate x. To simplify equation (2.38) we make use of

the azimuthal and north-south symmetry of the rings which makes the integrals depend only on the radial

coordinate x. Then, if B is the angle between the rings and the light ray and ϕ is the angle between the

radial direction and the lightray (projected into the ring’s mean plane), we can write:

dl =
dx

cosB cosϕ
(2.39)

We know the cross-section σ̄ring and the column density nring are not isotropic however, due to self-

gravity wakes having a consistent average orientation (Colwell et al., 2006). Thus, the normal optical depth

obtained by simply multiplying the oblique optical depth by sinB is not the true normal optical depth

defined in Eqn. (2.35). Nevertheless, it isn’t the goal of our model to describe the dependence of σ̄ring or

nring on the geometry of the occultation, but only to explain the variation of the optical depth in the wave

with respect to the optical depth outside the wave region. Thus, we define the background slanted optical

depth as:

τ0 =
τn0
sinB

=
nσ̄ringd

sinB
(2.40)

where τ0 is determined by averaging values for the optical depth between r = 131600 km and r =

131700 km, a region just outside of the wave.

By substituting Eqns. (2.39) and (2.40) into Eqn. (2.38) we get the equation for the predicted optical

depth in terms:

τ =

∫ r2

r1

τ0
d
sinB

dx

cosB cosϕ
+

∫ r3

r4

β

D

∣∣∣∣dzdx
∣∣∣∣
max

dx

cosB cosϕ
(2.41)

where the limits of integration r1, r2 and r3, r4 are the radial coordinates of the entry and exit points of

the light ray as it crosses the ring and the haze respectively. These radial coordinates are computed by

numerically finding the intersection of the trajectories of incoming photons,

zphoton = sinB
xphoton − x0
cosB cosϕ

,
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with the curves h(xV ) ± d
2 (for r1 and r2) and the curves delimiting the upper and lower boundary of the

haze depicted by the blue fill in Figure 2.11 (for r3 and r4). Here h(xV ) is the wave profile derived in SCL

(see Eqn. (2.2)). To visualize the ray-tracing, consider the light-ray (dashed gray line) shown in Figure

2.11. The haze’s shape cannot be written in closed form; therefore, in order to trace its upper and lower

boundaries we run the numerical procedure described in section §2.3.3 for each occultation.

Contrasting with Gresh et al. (1986)’s second integral in Eqn. (2.41), their Gaussian enhacement has

three free parameters that vary independently: width, amplitude, and position. In our case we have one free-

parameter for the haze β = Σσhaze, which is related to the number of particles released by the wake as they

rotate and collide with neighboring particles (see §2.3.3); all the spatial information of the haze—shape,

width, and position—is fixed by the wave profile h (Eqn. 2.2) which is also heaviliy constrained by the first

integral in equation (2.41). In Gresh et al. (1986) the combinations of angles tanB
cosϕ lead to the definition of

the angle tanBeff = tanB
cosϕ . Because this combination does not occur in the second term in equation (2.41),

we prefer to leave the angle ϕ explicit.

The shape of the wave itself is a function of the surface mass density σ, the viscosity ν, and the

thickness d which are free parameters. New to our model is free-parameter β. The quantity to be compared

to the data is the transparency, which is the normalized stellar counting rate after background subtraction:

Tmodel = e−τ = exp (−
∫ r2

r1

τ0
d
sinB

dx

cosB cosϕ
−
∫ r3

r4

β

D

∣∣∣∣dhdx
∣∣∣∣
max

dx

cosB cosϕ
) (2.42)

Note that while the thickness d appears directly in the above expression it does not figure as a relevant

predictor in our model. As Gresh et al. (1986) discovered, the effects of increasing d on these ray-tracing

simulations of bending waves are equivalent to increasing the resolution of the simulation. The optical

depth profile becomes smoother in both cases because there are more data points probing the slopes of the

ring. Any difference between a thickness of 10 m to 100 m in the rings would not make a difference in a

dataset that is fixed at a resolution of 400m. Since the BW occultations at these resolutions can’t be used

to determine the thickness of the rings directly, we can fix the value of d for all runs, which we choose to

be 15m. Similarly, the thickness of the haze, which determines the limits of the second integral in Eqn.
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(2.42), is derived from the dynamics in section §2.3 and also has values under the resolution of our data so

by the same argument we choose to fix ϵ (the coefficient of restitution which determines the thickness of the

haze) at two values, 0.5 and 1. We are then left with three free parameters: the viscosity ν, the surface mass

density σ, and the particles released by the wakes per area times their cross-section β.

Note that by taking β to be a constant for all occultations we assume that the product nhazeσhaze does

not depend on the azimuthal viewing angle ϕ. This becomes important in the next section as we compare.

Eqn. (2.42) against the data.

2.6 Comparison with data

The ray-tracing code is used to compute the path integrals in equation (2.42) for 500 lightrays which

are drawn at a radial separation of 400m each, covering a radial distance of 200 km in the wave region,

hence matching the resolution of the data set (the expection to this is EpsCas104E, for which which had one

null value in the data set, which was likewise emulated in the simulation). We use a reduced χ2 minimization

method where we find the best parameter values by comparing the model with the 60 occultations shown in

table 2.2. The reduced χ2 is given by:

χ2
R =

1

Df
Σ

(
T − Tmodel

∆

)2

(2.43)

where ∆ =
√
I−b
Io

and Df is the degrees of freedom. The uncertainty of I0 and b is negligible due to the

small value of b and the amount of data points used to compute them both. Tmodel is given by equations

(2.42), and T is given by equation (2.31). The wave profile predicted by SCL theory has been modified to

include a haze of particles whose shape is computed using the particles’ velocity (Eqn. 2.29) and number

density (Eqn. 2.28) with β as a free parameter. The total free parameters of our model are β, the surface

density σ, and the viscosity ν, while the thickness of the ring d and the coefficient of restitution ϵ have been

fixed at values d = 15m and ϵ = 0.5 and 1.

The best-fit parameters for the haze model and the SCL model (no haze), are in table 2.4. Figures

2.12 and 2.13 plot the best-fit optical depth profile for the haze (black line) and SCL (dashed green line)
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models for 7 occultations.

Table 2.4 shows that the models with the haze (β ̸= 0) fit significantly better than the SCL model

for low Beff occultations. The same can be seen Figure 2.12: the unmodified SCL (dashed green line) has

a significantly lower explanatory power for the dataset (red line). Most notably, Figure 2.12 shows that the

throughs of the optical depth pattern now conincide with the predicted optical depth due to the Gaussian-like

enhacement produced by the haze. Moreover, the bases of the peaks are broader than those of SCL theory

and resemble the observed shape of the optical depth profile. The broadening of the peaks’ bases is caused

by the thickening of the haze at the minima and maxima of the wave (which are evident in Figure 2.11). The

damping length due to the ν = 576 cm2/s viscosity matches the observed length of the wave. An additional

effect of this high viscosity is to increase the predicted value for the slope of the wave which is 17◦ for our

best-fit model.

Table 2.4 shows that using the observed phase instead of the theoretical phase improves the fit, but it

does not change our values for β, ν, and σ significantly. Likewise, changing the coefficient of restitution,

which changes the thickness of the haze (see Figure 2.11), does not alter the agreement with the data.

In Figure 2.13 we present 6 occultations, once for each of the data subsets in Table 2.2. The occultatios

range from higher to lowerB from left to right in the figure. Our model represents a significant improvement

over SCL for both radial (lower row) and azimuthal (upper tow) occultations. For higher Beff occultations,

the SCL theory predicts little change in the optical depth, while the haze model produces the shape of the

optical-depth enhacement seen in the data. Nevertheless, we see in the top row that the scaling with B

for the haze optical depth, which is simply 1/ sinB in our model, fails to reproduce exactly the intensity

Model Phase ϵ [−] χ2
R [−] σ [ g

cm2 ] ν [ cm
2

s ] β [−]

SCL Φtheory − 22.15 36.4± 5 3540± 40 −
Haze Φtheory 1 5.56 37.0± 0.4 623± 3 1.48

Haze Φobs 1 4.46 36.7± 0.3 576± 3 1.39

Haze Φobs 0.5 4.48 36.6± 0.3 576± 3 1.37

Table 2.4: Best fit parameters for the SCL and haze models. There is a significant improvement in the fit of
the haze model over the SCL model. Error bars show the 1σ of the likelihood given by e−χ

2/2. The haze
model has 3 free parameters, so all have Df = 29819 degrees of freedom. SCL has 2 free-paramters and
hence Df = 29879.
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Figure 2.12: We compare an occultation of γ-Pegasus (rev 32I, B = 20.3,Beff = 26◦ ) seen by Cassini
(solid red) to our model (solid black) with the parameters from the 3rd row in Table 2.4, and SCL theory
(dashed green) using the viscosity from Esposito et al. (1983) (ν = 280 cm2/s) and our best-fitted σ (our
σ is used to ensure the peaks between both models better match the data). The error bars in the data are
shown by a light red filled curved in the background of the plot. The underprediction of the troughs in SCL
is addressed in the new model, as the haze layer increases the minimum optical depth of the occultation, and
the peaks fit better due to the shorter damping length. Note that the peaks are now broader in the new model
due to the extended height of the haze, which is something we also see in the data. The discrepancies in the
separation of the initial peaks of the model with respect to the data persist.
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Figure 2.13: The haze model (3rd row of Table 2.4, solid black lines), and the SCL model (dashed green;
same parameters as in Figure 2.12) compared to occultations (red lines) of (a) β-Centauri (rev77I), (b) κ-
Centauri (rev35E) (c) α-Virginis (rev232E), (d) ϵ-Cassiopeiae (e) η-Lupus (rev34E), and (f) κ-Canis Majoris
(rev168I). The error bars are shown by a light red filled curved in the background of the plot. In the top row
we have azimuthal occultations (cosϕ < 1), on the bottom row radial occultaions (cosϕ > 1), at high, mid
and low B angles (from left to right). For high Beff occultaions, the SCL theory predicts an unchanging
optical depth throughout the wave, but instead the data shows a symmetric rise in the optical depth centered
at −80 km from resonance. Our model reproduces both the position of the peak and the width of the
Gaussian-like enhancement. The amplitude of these peaks, however, does not vary with opening angle
B as our model predicts: for azimuthal occultations the scaling with B of the optical depth (which we
model as 1/ sinB) is too rapid—the model underpredicts (a) and slightly overpredicts (c)—while for radial
occultations the scaling works well. The haze model also present a significant improvement when matching
the data of low Beff occultations.
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of this optical depth enhacement for azimuthal occultations. While it fits well for intermediate B (b), for

high (a) and low B (c) angles our haze model underpredicts and overpredicts the maximum optical depth

respectively. This effect is not evident in the radial occultations (bottom row). This is a clear example of a ϕ

dependent optical depth, or what has been called azimuthal brightness asymmetry. In other words, the haze

does not behave an an isotropic absorbing medium. A potential explanation for this is discussed in the next

section.

2.7 Discussion

Discrepancies between the optical depth predicted by the SCL model and those measure by Cassini

UVIS and Voyager I (Gresh et al., 1986) have been partially addressed by our modifications to the theory

(Figure 2.12). The addition of haze of particles released by self-gravity wakes improves the likelihood con-

siderably, with a best value of χ2 of 3.64 for the haze model with observed phases. Most of the explanatory

power in the model comes from the existence of the extra layer of particles.

However, Figure 2.13 shows that the observed haze optical depth presents azimuthal brightness as-

symetry (ϕ-dependence). Given that the haze is hyposized to come from self-gravity wakes, the observed

anisotropy may be inhereted from the self-gravity wakes, which are reponsible for the ϕ-dependence of the

flat ring’s optical depth. To improve our model to explain this anisotropy, a more-in-depth analysis of the

dynamics presented in section §2.3 is called for. If the self-gravity wakes do have a preffered direction

inside the BW, and the haze is coming from said wakes, the haze will present an anisotropy; this can be

compared against the observations as an additional test for the dynamical model. Preliminarely, Figure 2.9

suggests that the azimuthal direction may be a preffered orientation for self-fravity wakes in the BW, but a

chaos analysis needs to be done to determine the attractors in the rotation of wakes in the BW.

Figure 2.12 shows that the haze model’s fit of the observed wave damping length yields a significantly

high kinematic viscosity. It more than doubles the viscosity obtained from neighboring density waves Tis-

careno et al. (2007), and it falls outside the upper error bars in Gresh et al. (1986). We compare our value

with the literature in Figure 2.14 (Lissauer et al., 1984; Esposito et al., 1983; Gresh et al., 1986).

Figure 2.14 shows that Gresh et al. (1986), Lissauer et al. (1984), and Esposito et al. (1983) measured
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Figure 2.14: Measurements of the viscosity of the rings made by various authors around the bending wave
region. The measurements done using the Mimas BW are the ones at 131.9Mm. The values computed in
this paper are the filled triangles. This work’s values are considerably higher than the more recurrent value
of ν = 280 cm2/s. Our measurement lies outside the error bars of Gresh et al. (1986) and Esposito et al.
(1983) (Tiscareno et al. 2007 and Lissauer et al. 1984 didn’t include error bars). When comparing the values
it is important to note that Esposito et al. (1983), Gresh et al. (1986), Tiscareno et al. (2007) and Lissauer
et al. (1984) were fitting at most two occultations (or images) for their estimates, while in this work we use
60 occultations at different geometries to compute our values.
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a lower viscosity than the best-fitted values of our work. Esposito et al. (1983) used one occultation of

δ-Scorpii, while Gresh et al. (1986) used one low-angle radio occultations of the Earth (at two frequencies).

Lissauer et al. (1984) used images of the shadows cast by the elevated ring to estimate where the wave-train

ended. In this work we use 60 occultations at better resolution (400 m vs. 2 km). The signal-to-noise is also

higher on average since we are looking at brighter sources, like γ-Pegasus and β-Centauri.

We see two reasons why their viscosity is lower. The first one pertains to the noise and the spatial

resolution of the data: they didn’t fit all the cycles because they couldn’t see them, so instead of fitting the

complete wave-train to find the viscosity they instead were attempting to fit the damping length ξD, which

is the point at which the amplitude of the wave drops a factor of e. This approach would work if the SCL

theory were adequate for this bending wave, which we see it isn’t in its entirety, as shown in the first row of

table 2.4 and Figures 2.12 and 2.13. This leads us to our second reason, the lack of a proper model for the

extra optical depth. Without the haze our value for the viscosity would underpredict all of the peaks in 2.12.

Moreover, in the case of Gresh et al. (1986), the occultations were so low angle that the optical depth of the

peak was taken to be infinity (the slope of the wave and the viewing angle were almost the same), which

means they mostly fit the troughs and not the peaks and we can see in Figure 2.12 that the underdamping in

Gresh et al. (1986)’s fit is more evident in the peaks than in the troughs. In summary, Gresh et al. (1986),

Lissauer et al. (1984) and Esposito et al. (1983) viscosity values are lower than the ones suggested in this

work because in our occultations the late part of the wave-train can be clearly distinguished from the noise,

and their prediction for the damping length relies on the SCL theory.

Nevertheless, the value Gresh et al. (1986) computed for the region is still higher than what Tiscareno

et al. (2007) calculated from analyzing the 11:12 Prometheus density wave which used Cassini data and

looks at weak bending waves where SCL is adequate (although Tiscareno et al. 2007 points out that the

Prometheus 11:12 shows some non-linearity, it isn’t enough to expect his results to be inaccurate, given

their consistency with other estimates of the viscosity in the region). To be consistent with Tiscareno et al.

(2007) we then have to consider that the bending wave itself increases the viscosity in a way that a density

wave doesn’t.

While a modification of SCL linear theory that accounts for the back-reaction of the wave to the
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wake’s rotation is yet to be done, we can expect that the inclusion of the wake-wave interaction will affect

the damping length of the theory. A way to include this added dissipation is to consider the effects that the

collisional forces (Eqn. 2.12) have on the wakes’ vertical motion. In our current model the collisions are

taken to be north-south symmetric in the frame of the wake: the same amount of particles are hitting the

wake from above and from below, which results in a net vertical force of zero. This is probably not true,

and the inelastic wake-wave collisions would cause a net damping of the the vertical motion of the wakes,

and of the ring particles in general. Since we haven’t included this effect, our model accounts for the extra

dissipation by having a high value in the kinematic viscosity of the SCL term, in which the viscous effects of

vertical collisions are modeled simply by Fvisc/m = νdż/dx (where m is the mass of the affected particle).

However, even our simple collision model suggests a more complex interaction that depends on the slope,

on the mass colliding with the self-gravity wake, and on the wake’s size. The computation of this viscous

force and the subsequent modification to SCL’s wave profile are left to future work.

Angular momentum conservation between the rings and satellites indicates that the viscosity respon-

sible for the spreading of the rings, and that which damps the waves, may not be related in a simple fashion

(Tajeddine et al., 2017). However, if the momentum transport in both cases is dominated by the motions of

self-gravity wakes, as suggested above, a higher damping viscosity will be closely related to a more efficient

momentum transport in that region. Then, while the Mimas 5:3 BW is relatively strong (the 2nd strongest

BW in the rings), self-gravity wakes allow the rings to transport the inflow of energy at resonance and form

a continuous wave. Despite this extra dissipation, the Mimas 5:3 BW still has a slope of ∼ 15◦, hence we

can speculate that without the enhancement in viscosity provided by the self-gravity wakes, the rings would

rift and create a gap similar to the ones seen in the Titan 0:-1 nodal bending wave (Nicholson & Hedman,

2016) and in protoplanetary disks misaligned with their star’s obliquity (Rowther et al., 2022). Without a

theory of when (at what slope and at what efficiency of viscous transport) warped disks break however, this

remains a speculation. An attempt at modeling the Titan 0:-1 nodal bending wave using Cassini data may

shed light on a general theory of rifted warps in disks.

The more efficient angular momentum transport within the wave could also be causing the diffusion

of material into the neighboring regions. Consider the values measured by Tiscareno et al. (2007) of the
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average surface mass density of the Prometheus 12:11 wave, which lies about 100 km closer to Saturn than

the Mimas 5:3 BW. The average measured surface density value is σ = 46.1 g/cm2. This corresponds to

an increase of 25% with respect to our best-fit BW value (and a 24% increase with respect to Gresh et al.

1986’s best-fit value). The non-linear nature of this density wave could be changing the local value of the

surface density (Borderies et al., 1986), but the Prometheus 12:11 is not strong enough for this effect to

change it more than 20%. So why does σ increase in this region? A possible explanation is that density

waves, by their very nature of being density-changing phenomena, are unreliable measures for σ, although

this wouldn’t explain why the measured values are overstimating the BW value. Another more plausible

explanation is that the higher viscosity in the BW region is causing the migration of material. A local

radial increase (decrease) in viscosity has been shown to correspond to a local decrease (increase) in surface

density in protoplanetary disks (Lyra, W. et al., 2015). If the change in viscosity is too abrupt, it can lead to

an instability that can excite the growth of vortices in the disk (Papaloizou & Pringle, 1985). While this is

not the case here, the increase in viscosity in the bending wave region may be causing a decrease in surface

density there, and a corresponding increase in the nearby regions.

Comparing the values of Φtheory and Φobs we see a general agreement for the theoretical phase of the

wave (table 2.2). While there are many waves with a phase difference of ∼ 20◦, this is to be expected con-

sidering that a radial offset of 10 km, either in the radial vector or the resonance position, and an error of 1◦

in the longitude of Mimas translates into a possible phase difference of 25◦ between theory and observation.

Nevertheless, two stars show an offset in the phase greater than 90◦: AlpVir(210)I and BetCMa(276)E. Note

that the dispersion relation works well for these occultations once the offset in the phase is corrected. That

this only occurs in two out of 40 occultations makes us hesitant to propose a mechanism driving such a big

offset. On the other hand, the offset could be due to a bigger systematic error in the radial offset of these

particular occultations.

We also find two low-angle occultations in which the dispersion relation fails not only at the first

cycles but everywhere in the wave-train: AlpCMa(274)E and AlpCMa(281)I. A possible cause of the dis-

persion relation difference can be a radial variation in the surface mass density of the ring. By using the

fitted value for the isotropic model β = 1.39, via equation β = Σ0σ̄haze (§2.3.3), assuming σ̄haze = 1 cm2
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we estimate a maximum haze surface mass density of 0.4 g/cm2 which is about 1% the best-fit for the ring’s

surface mass density. The existence of the haze is therefore consistent with Shu et al. (1983)’s dispersion

relation which assumes a constant surface mass density throughout the wave and by itself is not evidence

that there is a significant change in the ring’s density. Nevertheless, if the average cross-section of haze

particles is bigger (10 cm, although we note this is contrary to what is suggested by table 2.1) and radially

changing (there are bigger particles released when the slope is bigger) there may still be a slow radial change

of 5 to 10% which would affect the dispersion relation appreciably in low Beff angles occultations. Never-

theless, why we only see this in two occultations out of 40 makes the answer to this question more complex.

Note that incorporating the extra wake-wave interaction in the bending wave equation will also change the

dispersion relation of the wave. The extent of this effect in the dispersion is left for future work.

Finally, we suggest how better understanding the Mimas 5:3 BW can help solve current problems in

planetary rings. First, consider the overdamping of the Mimas 5:3 density wave (Borderies et al., 1986).

Local increases in surface density may reduce the local shear-rate at that location, causing wakes to rotate as

they adjust their pitch-angle (see Figure 2.7). While the rotation due to a changing shear-rate will be more

gentle than the one described in this work, it can contribute to the increase in local viscosity seen in this

density wave. Secondly, consider the puzzle set by Tiscareno et al. (2007) for the Iapetus -1:0 BW. This

bending wave propagates outwards through an abrupt increase in optical depth called ‘the inner A-ring edge.’

Historically, researchers have interpreted this increase in optical depth as an increase in σ. However, σ also

affects the dispersion relation of waves, and no such abrupt change is seen in the wavelength of the Iapetus

-1:0 BW. If this edge corresponds to a point where self-gravity wakes start forming, given how unstable

BW are to vertical perturbations within BWs, a haze of particles may contribute to the slanted optical depth

increase. Properly applying the rigid-bar and haze models to these issues is left for future work.

2.8 Conclusion

We have shown that a necessary consequence of introducing rigid self-gravity wakes to the linear

bending wave theory is that bending waves generate an extra layer of particles that is proportional to the

amplitude of the slope. Even if we consider the scenario of the wake’s partial disruption due to the interaction
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with the bending wave, this disruption still creates the same layer of haze particles, given that the relative

vertical velocities between the wakes and the ring are comparable to the characteristic vertical velocities of

the particles as the wave propagates.

Using a ray-tracing code, we tested this additional signal and found that the extra layer of particles

has considerable explanatory power for the Cassini UVIS occultations of the BW compared to Shu et al.

(1983). Our best model explains the most discrepant and surprising features of the Mimas 5:3 BW; namely,

the enhancement of the signal for the cases of normal occultations and a bigger than expected viscosity,

ν = 576 cm2/s, more than two times bigger than the viscosity computed from density waves. This shows

that self-gravity wakes can be especially effective in preventing the opening of gaps in a vertically perturbed

disk.

The rigid-bar model for self-gravity wakes proved to be successful not only in the case of the bending

wave but also in the flat ring, as it showed that wakes tend to align at the same pitch-angle due to their mutual

self-gravity, thus explaining why the average pitch-angle of the wakes is the same throughout the A and B

rings even if the ring properties, like surface mass density and distance from Saturn, change considerably

within them. The rigid-bar model can be used as an analytical tool to investigate the motion of self-gravity

wakes in a perturbed environment, such as density waves.

While improvements have been made in explaining the Cassini UVIS dataset for the Mimas 5:3 BW,

there are still issues with the current bending wave theory and we suggest a path to modify it in a way

consistent with the results of this paper. We find that the theoretical dispersion relation tends to fail in the

first cycles of the wave, and in some cases, it fails through the entire wavetrain. The reason for this may be

the back-reaction that the self-gravity wakes’ motion has on the propagation of the wave. The inclusion of

this effect is suggested as a path to further improve the theory.



Chapter 3

Turbulent Magnetic Reconnection as an Acceleration Mechanism in the Earth’s Magnetotail

3.1 Preface

This chapter is an unedited version of a paper submitted to the The Astrophysical Journal in Septem-

ber 2023. It is currently under review. The conceptualization of the problem was done by Robert Ergun, and

the problem-solving strategy and the analysis of the simulation results were executed jointly between him

and myself.

3.2 Introduction

In a magnetic reconnection region of the Earth’s magnetotail, the Magnetospheric Multiscale (MMS)

mission measured non-Gaussian distributions with accelerated ions (Ergun et al., 2020b); how these acceler-

ated ions are energized is not well understood. Super-thermal ions of energies up to 100 keV have been seen

in previous magnetospheric missions (DeCoster & Frank, 1979; Christon et al., 1991; Keiling et al., 2004;

Grigorenko et al., 2009; Haaland et al., 2010; Artemyev et al., 2010) and theoretical literature followed

proposing acceleration mechanisms. Energizing via the dawn-dusk electric field of magnetic reconnection

has been considered (Speiser, 1965; Zelenyi et al., 2004, 2007) as well as ion jet acceleration (Litvinenko &

Somov, 1993; Zharkova & Gordovskyy, 2004) and interaction with electromagnetic fluctuations (Artemyev

et al., 2009; Perri et al., 2011). An acceleration mechanism that includes stochastic heating and generates

magnetic holes has been shown to explain the energy distribution of electrons (Dolgonosov et al., 2013; Er-

gun et al., 2020a), but the case of energetic ions is more complex due to their slower initial speeds and their

partially unmagnetized orbits (e.g. “serpentine orbits”) (Speiser, 1965; Somov, 2013). When turbulence is
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present, observed ion distributions have a substantial non-thermal tail extending to one hundred times the

initial ion thermal energy.

Development of a power-law distribution generally requires an acceleration mechanism that favors

energetic particles (Blandford & Eichler, 1987). Fermi-like processes, of which there are several flavors, are

often invoked; for example, simulations show that repeated impulses to a set of partially trapped electrons in

magnetic islands can cause a power-law distribution (Drake et al., 2006). Likewise, it has been advanced that

turbulence in the near-Earth magnetotail also favors energetic electrons (Ergun et al., 2020b, 2022; Usanova

& Ergun, 2022). While observations indicate that turbulence plays a role in ion acceleration, it is unclear

what feature of turbulence favors energetic ions.

The MMS observations of strong turbulence suggest that at least three energization mechanisms are

active (Ergun et al., 2018), all necessary to understand the energy balance that occurs in the reconnection

region. These are: stochastic turbulent acceleration, ions jets, and the dawn-dusk electric field, Ey. The

combined effect of the first two mechanisms — stochastic acceleration by turbulent electric fields and bulk

acceleration of ions into opposing jets — carries a significant fraction of the magnetic field annihilation

energy away from the x-line. Likewise, the measured reconnecting electric field (Ey in this article) is suffi-

cient to energize ions to ten times the initial thermal energy, supporting that energization due to advancing

along the Ey dawn-dusk field can also be active (we refer to this energization as “Speiser-like”). An impor-

tant question that needs to be resolved is the relative contribution of these three mechanisms and how they

interact.

Test-particle simulations are often employed to elucidate the acceleration mechanism for ions. They

subject ions in a magnetic field-reversal region to various electromagnetic field models and allow the analysis

of their individual trajectories as well as their statistical behavior. Veltri et al. (1998), Greco et al. (2002)

and Taktakishvili et al. (2003) studied the motions of ions under static magnetic fluctuations, and Greco

et al. (2009) and Perri et al. (2011) included electromagnetic fluctuations as clouds of electromagnetic fields

that oscillate throughout the reconnection plane; this scheme was proposed to suggest a Fermi acceleration

mechanism, which is known to produce power-law tails in the most energetic parts of a distribution (Fermi,

1949; Davis, 1956). Dolgonosov et al. (2013) showed that a power-law of index −4.45 can indeed be
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produced with this mechanism in the relevant energy range (>80 keV) whereas Artemyev et al. (2009)

found a negative result (no power-law tail) by adding the electromagnetic fluctuations as phase-mixed plane-

waves following a power-law spectrum.

The test-particle simulation used in this article is based on measured turbulent magnetic (δB) and

electric (δE) fields and has several advantages over many current self-consistent codes. To properly repro-

duce the measured δB and δE, a self-consistent code must have an enormous range of scales, a represen-

tative large number of particles at the smallest scales, and a correct electron-to-ion mass ratio. To properly

treat ion acceleration a code must have a very large 3D simulation domain, long run times to allow ions to

pass through the system, and, very importantly, fully open boundaries. A test-particle code can incorporate

all of these features at the expense of self-consistent behavior. Moreover, most of the parameters of our

simulation are well constrained by measurements: the particle distributions (densities and temperatures) at

the boundaries, as well as the size of the turbulent region, can be estimated from data (Angelopoulos et al.,

1994; Ergun et al., 2018, 2020b), the only exception being the length of the x-line of magnetic re-connection.

Basing the test-particle simulation on the event described in Ergun et al. (2020b), we find that, while

energization by ion jets from magnetic reconnection and Spieser-like processes have substantial contribu-

tions, the most energetic ions (>80 keV) result from turbulent fields. Dynamically, most of these energetic

ions cross the magnetic null plane multiple times, which results in higher energization by the turbulent

fields, and, as we show, present the highest energization rate at z = 0. By preferentially energizing these

’serpentine’ ions, the turbulence creates a separate population of ions that mostly exits in the dawn direction

of the magnetotail and forms a high-energy, power-law tail in the distribution.

In section §3.3 we briefly overview the MMS observations. In section §3.4 we describe the test-

particle simulation domain. In section §3.5 we show how a simulation with a 2RE-long x-line reproduces

the MMS-measured ion flux and density depletion seen in the turbulent region. We explain the mechanics of

the acceleration by following the trajectories of super-thermal ions and change the amplitude of the turbulent

fields in order to expose the interplay between turbulent, Speiser-like, and ion jet energization. In section

§3.6 we will discuss the implications of our findings for larger-scale regions of magnetic reconnection in

astrophysics and in section §3.7 we end with the conclusions.
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Figure 3.1: MMS 2 observations of a magnetic reconnection event in 2017 July 28th. Panel (a) displays
high-energy ions measured by the Fly’s Eye Energetic Particle Spectrometer (FEEPS); these include ions
with energies >80 keV. Below are the turbulent magnetic fields (b), electric fields (c), and density depletion
in the region (d). Panel (e) shows the ion fluxes extracted from the measurements of the FEEPS instrument.

3.3 MMS observations

A subset of MMS observations of accelerated ions in a turbulent magnetic reconnection event is

displayed in Figure 3.1. The event is in the Earth’s magnetotail roughly 23 RE from Earth. Panel (a)

displays the intensity of energetic ions from 60 keV to 600 keV measured by the Fly’s Eye Energetic Particle

Spectrometer (FEEPS; Blake et al. 2016). Given the nominal ion temperature in the plasma sheet is roughly

4 to 5 keV, these fluxes have been energized by more than a factor of ten. The concurrent magnetic fields,

electric fields, and plasma density are shown in the panels below. The magnetic field signal shows that the

fluctuations (δB) have nearly the same amplitude as the background field (B0) suggesting strong turbulence.

Intense electric fields and a strong density depletion are evident.

Figure 3.1(e) shows the ion intensity averaged over a two-minute period of the turbulent region. The
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blue squares are from the Fast Plasma Investigation (FPI; Pollock et al. 2016) and the red circles are from

FEEPS. The orange line is a power-law fit. A power-law tail can be seen at the highest with an index of −3.7.

The energetic ions appear to be locally accelerated. From arguments elaborated in Cohen et al. (2017), these

high-energy ions are predominantly protons.

3.4 Test Particle Simulation

We design a test-particle simulation after the above event to better understand ion acceleration. The

basic idea is to reproduce realistic background and turbulent electromagnetic fields in order tofollow the ion

trajectories through the region and analyze the kinetic behavior of ions under those fields. The features of the

ion fluxes from the simulation can then be compared to those of the measured ion fluxes. In this section we

describe the simulation domain (§3.4.1), the background fields (§3.4.2), the turbulent fields (§3.4.3) fields,

and the boundary conditions (§3.4.4). More details about the simulation can be found in Appendix B.

3.4.1 Simulation Domain

Figure 3.2 sketches the simulation domain, which contains a smaller turbulent region. Ergun et al.

(2020b) estimated the physical extent of the turbulent region to be roughly (factor of two) 16 RE in the

direction of the reconnecting magnetic fields (the x direction) using an estimated the retreat velocity of

∼ 100 km/s and the fact that the turbulence and accelerated ions are detected for roughly 16 minutes. The

turbulence appears to extend in the z direction (normal to the current sheet) to the plasma sheet boundary

layers (South to North), which gives a z extent of roughly ∼ 1.5RE (Baumjohann et al. 1989). This distance

is in consort with the expected extent of the ion diffusion region of magnetic reconnection normal to the

current sheet of several ion skin depths (di ∼ 1000 km).

The extent along the y direction (x-line of magnetic reconnection) cannot be established given the

close spacing of the MMS spacecraft. Observations from multi-spacecraft missions such as Geotail and

Cluster (Nakamura et al., 2004; Grigorenko et al., 2009; Haaland et al., 2010; Artemyev et al., 2010) indicate

the x-line can be anywhere from 1RE to 3RE . In the simulation, we treat the length of the turbulence along

the x-line as a parameter, 2RE being the value that best reproduces the ion fluxes observed by MMS (Figure
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3.1); the degree of ion energization is sensitive to this dimension.

The dimensions of the simulation domain are 16RE × 4RE × 4RE . The turbulent fields δB and δE

are only present in a smaller region of dimensions 14RE × 2RE × 1.5RE . A no-turbulence buffer zone of

at least 1RE is introduced to allow high-energy particles to re-enter the turbulent region during a gyration.

3.4.2 Background fields

The event in Figure 3.1 occurs in a highly turbulent region of magnetic reconnection. Even though

the turbulence visibly obscures the background fields of magnetic reconnection (B0 and E0), they can be

estimated via data smoothing combined with modeling using well-established properties of magnetic recon-

nection. The background magnetic field in the simulation domain consists of an unperturbed, sign-reversing

component in the x direction modeled after a Harris-like current sheet. The same reversal configuration is

applied in the z direction (the north-south direction) to form a magnetic reconnection region with an 8:1

ratio. The background fields are described as:

B = B0x tanh

(
z

λz

)
ex +B0z tanh

(
x

λx

)
ez (3.1)

where λx = 8λz and λz is the half-thickness of the current sheet, for which we use ion skin depth di = c/ωpi

(where ωpi is the ion plasma frequency and c is the speed of light). From the average measured plasma
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density, the ion skin depth is determined to be ∼ 1000 km (Ergun et al., 2020b). The extent of the simulation

box is ∼ 100di in x by ∼ 25di in z. B0x is set to the measured value of 20 nT (Ergun et al., 2020b) and

B0z is 1/8 of that value, 2.5 nT. The blue lines in Figure 3.2 represent the background magnetic field lines.

Note that the sign-reversing north-south magnetic field makes the total magnetic field at z = 0 non-zero

(except at a point), and hence it plays the role of Bn in Greco et al. (2002) and Perri et al. (2011).

The background electric field is:

E0 = Eyey (3.2)

with Ey set to the measured value of 2.7mVm−1 (Ergun et al., 2020b) within the turbulent region and

reducing to Ey = 1.35mVm−1 in the buffer zone.

3.4.3 Turbulent fields

A chief advantage of a test-particle simulation is that the turbulent electromagnetic fields, δB and

δE, can be designed to closely mimic those in observations. In this effort, we employ a set of pseudo-

randomized electromagnetic and electrostatic waves designed to match the measured properties of δB and

δE including amplitude, wave speeds, coherence times, coherence scales, and the measured power spectra.

δB shows a Kolmogorov (1991)-like turbulent power-law. We reconstruct δB with 200 plane-waves:

δB =
∑
n

An cos (knx− ωnt+ ϕn(x, t)) (3.3)

where An is the amplitude of wave n, kn is its wave number, ωn is the angular frequency, and ϕn is an

arbitrary phase. The amplitudes and directions of An are pseudo-random, biased to match the measured

spectra, ωn and kn are set to mimic the measured speeds (see Appendix B), and ϕn are randomly assigned

(0 to 2π) and vary in time and space to match the measured coherency times and distances as a function of

frequency.

Once δB is determined, the electromagnetic part of δE is constructed directly from Faraday’s law.

An electrostatic component of δE is also developed emphasizing the perpendicular (to B0) component
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using the same procedure. The wave numbers are estimated from measured speeds of δE. A small parallel

contribution is added to match the δE|| spectrum. A comparison of the reproduce δB and δE spectra with

the measured spectra is in Appendix B.

The total fields are then given by:

B = B0x tanh

(
z

λz

)
ex +B0z tanh

(
x

λx

)
ez + δB(r, t) (3.4)

E = Eyey + δE(r, t) (3.5)

The equations of motion for protons is mdv/dt = e(E + v ×B).

3.4.4 Boundary Conditions

The particles that enter the plasma sheet from the lobes have a source located somewhere in the

magnetosphere mantle (Russell et al., 2016), and hence historically the temperature of the injected particles

in simulations has been 0.1 − 1 keV (Greco et al., 2002). However, MMS measures a distribution outside

of the turbulent region with a temperature of 4 keV which we employ. The measured distribution can be

described as a shifted Maxwellian with a temperature if vth = 4keV.

The simulation uses the measured number density outside the region of about nsheet = 0.1 cm−3.

The number density varies with the distance from the plasma sheet, reducing by a factor of 4 in the lobes

(nlobe):

n(z) = (nsheet − nlobe) sech
2

(
z

zn0

)
+ nlobe (3.6)

where zn0 is the thickness of the current sheet. Ions are injected at the boundaries to mimic the prescribed

density and temperature. Ions that exit the domain are removed.
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3.5 Results and analysis

In this work, most of the numerical results are obtained by averaging the results of multiple runs.

A “run” starts by initializing 1800 particles in the simulation domain at t = 0 with the density profile

described in Equation (3.6) and a temperature of 4 keV. During a run, one particle is randomly injected at

every time-step of dt = 0.01 s, following the density profile and fixed temperature (4 keV) at the boundary.

Each run advances in time until it reaches a steady-state at t = 100 s (no results used) after which few of

the initialized ions remain. The resulting ion fluxes, temperature, and density are recorded from t = 100

to 300 seconds during which ∼ 20, 000 ions pass through the simulation domain. Each run has a unique

set of 600 pseudorandomly generated waves (δB and δE) as described above. We distinguish a run from

a simulation. A “simulation” is an ensemble of runs where the random variables are regenerated including

δB and δE. To compile distributions, for example, we use an ensemble average of 50 runs during which

roughly 1 million particle pass through the system and 30, 000 waves are generated.

The main goals of section §3.5.1 are to (1) determine the extent of the turbulence in the y (dawn-

dusk) direction, which is not well constrained in the observations, and (2) demonstrate that the test-particle

simulation reproduces MMS observations reasonably well. In section §3.5.2, we examine the acceleration

mechanisms that allow ions to reach the high energies (>80 keV) seen in the data. In the acceleration

study, we show that the motion near z = 0 is most critical and that the majority of the energetic particles

exit through the +y (dusk) face. By analyzing individual and collective trajectories, we determine that

energization favors ions crossing the magnetic reversal plane. Moreover, once energized after crossing the

magnetic reversal, those particles are more likely to further gain energy, which leads to the development

of a power-law tail (acceleration). To demonstrate the impact of turbulence, we compare the results of

simulations with and without turbulence imposed.

We start by showing how our simulation can reproduce the MMS-measured omnidirectional fluxes,

temperatures and densities in the turbulent region.
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3.5.1 Baseline Simulation

The Baseline Simulation employs parameters determined by MMS including B, E, ion bound-

ary temperature and density, and the extent of the turbulent region. The dawn-dusk extent of the x-line

(y−direction) is the only poorly constrained parameter. To determine this distance, the simulation is per-

formed over a range of x-line lengths. The extent in the y direction is then chosen so that ion fluxes best

agree with those observed by MMS.

Figure 3.3 compares the simulated fluxes to the observed fluxes. The simulated ion fluxes are plotted

in physical units by properly weighting ions as they enter the domain. The measured flux distribution

(magenta and red squares) is best matched by the simulation with an x-line distance (turbulent region length

in y) of 2RE . A 4RE x-line length in the simulation increases the energetic (>80 keV) fluxes by more than

a factor of 2, whereas a shorter x-line (not displayed) decreases the energetic fluxes. Since the observed

energetic particle fluxes vary by over a factor of two, we believe that the simulation reproduces the energetic

acceleration well. The measured 15 keV to 27 keV ion fluxes (magenta squares) are somewhat higher but

within the observed variations (factor of two). A better agreement is found if the ion fluxes in the simulation

are measured on the +y side of the domain.

Figure 3.4 (top) shows the ion temperature as a function of run time. The initial transient from t = 0

to 50 seconds shows rapid ion energization. One can see that the test-particle simulation achieves a steady

state before 100 seconds. The resulting steady-state ion temperature of ∼ 14 keV is in good agreement

with that reported in Ergun et al. (2020b). Figure 3.4 (bottom) shows the ion density in the center of the

simulation domain as a function of x. The density inside the turbulent region is roughly 1/4 of its value

outside of the box, which is consistent with the data shown in Figure 3.1 (lower left panel).

As the system enters its steady-state, pressure balance is maintained (within a factor of 2) because

the temperature increases as the density depletion onsets. Deviations from the pressure equilibrium are to

be expected given the magnitude of the turbulent fields. It is also to be expected that the pressure balance

is not exact but remains within a factor of 2 throughout the simulation given the absence of electrons. In

this point we see a similarity to Greco et al. (2002)’s test-particles simulation: while our simulation is not a
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priori self-consistent, we find it is nearly self-consistent a posteriori. An necessary component for achieving

pressure balance in current sheets in Greco et al. (2002), Artemyev et al. (2009), Perri et al. (2011), and in

the present work is the electromagnetic fluctuations themselves.
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Figure 3.3: MMS data compared to the Baseline Simulation. The black dots represent the omnidirectional
ion flux as a function of energy taken in the +y side of the simulation domain, and the yellow line is a
power-law fit of index −4.3. The magenta squares and red squares are MMS observations extracted from
the event in Figure 3.1; the red squares fit a power-law of index −3.9. The blue line represents a Maxwellian
distribution at 8.5 keV which we fit to the ions with energies lower that 2 keV. The dashed green lines show
the ion flux for a simulated x-line twice as long. With respect to the red line, the high-energy flux increases
by more than a factor of 2.

In order to better understand how the energetic tail is generated, we can ask where ions are energized

the most. To do so, we record the instantaneous energization rate at 0.1 second intervals as a function of

position and find that the majority of the energization (and de-energization) occurs near z = 0, where the

background magnetic field is the weakest (see Figure 3.5). The positive and negative changes in energy

reflects the stochastic nature of turbulent energization. Similar results regarding z dependence of the heat-

ing rate were reported in Greco et al. (2002) and Artemyev et al. (2009), and were mostly interpreted as

quasi-adiabatic acceleration due to the dawn-dusk electric field Ey. However, we also find a net positive
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energization that emerges when we sum the negative and positive energy changes produced by the turbulent

fields, which is characteristic of second order stochastic acceleration (Miller et al., 1996; Somov, 2013).

Quasi-adiabatic and stochastic processes are combining and interacting to generate a net energization when

the turbulent is present; a closer analysis is needed to separate and understand the two effects.

The agreement between simulation and observation in the ion fluxes (Figure 3.3), ion temperature

and density (Figure 3.4), and consistency with previous analysis (energization near z = 0) (Greco et al.,

2002; Artemyev et al., 2009) makes the case that the simulation is properly representing the observed ion

acceleration, and can be used to better understand the mechanism behind this energization. To unveil the

role of turbulence versus Speiser-like energization, we take a closer look at individual ion trajectories of ions

with or without the turbulent fields.
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simulation, as a function of their position in z. The vast majority of ions see less than 0.1 keV in 0.1 seconds,
which appears as a horizontal red bar. However, a subset of ions see strong energy changes both positive
and negative, which indicates a strong stochastic contribution from turbulence. When averaged, the net
energization is positive (purple trace).

3.5.2 Ion trajectories and the role of turbulence

Without turbulence, energy gains come uniquely from the electric field Ey, the longer the drift along

y the higher the energy gain. From a 2D magnetic reconnection point of view, most particles forming the

ion jet enter a z face and exit an x face, often accelerated to near-Alfvén speed (Figure 3.6 top left, magenta

trace, “Ion jet”). With no turbulence, we find this “Ion jet” trajectory forms roughly 30% of the ion jet in

the 3D case. “Fermi-reflected ions” (top left, green trace) make a similar contribution to the ion jet. Ions

that enter through the ±x faces can migrate along y with non-adiabatic orbits gaining additional energy and

leave the +y face (bottom left, red trace, “x-entering Speiser”). We also find many ions that enter the −y

face, gain energy with a non-adiabatic motion, then exiting the ±x face (bottom left, blue trace, “Speiser-

enhanced ion jet”). These orbits are also common (likely due in part to the limited y extent of the simulation

domain) and dominate the highest-energy part of the ion jet. Even with no turbulence, we find that the net

energy flux exiting the +y face is only slightly less than that carried by the ±x jets. The most common +y-

exiting trajectory is the purple trace (enters ±z and exits +y, left panel, “Drifting Speiser”). The classical

Speiser orbit (orange trace in the right panel; enter −y exit +y) is relatively rare comprising only about 5%

of the net energy flux exiting the +y face in the no turbulence case.

To study how turbulence changes this picture we do two 1000 seconds runs: one with turbulence and
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Figure 3.6: Orbits in the no turbulence case. Left: Sketch of a drifting trajectory due to E × B drifts
(purple) and a Speiser-like trajectory (orange) moving parallel to the field Ey and crossing the z = 0 plane.
Top Right: Sketch of a common trajectory of an ion jet (magenta), which enters a z face and leaves the
through the x face, and a Fermi reflected ion (green) which enters and exits the +x face, Bottom right: A
x-entering Speiser orbit (red) which penetrates the reconnection region enough to become non-adiabatic and
leave out of the +y face. A Speiser-enhanced ion jet (blue), which enters the −y axis and leaves the +x
face following the magnetic field line.

one without (δB and δE set to zero). For each run we count the ions leaving the +y face while recording

their energy and whether they cross the z = 0 plane. The results are presented in Figure 3.7. In order to

highlight the differences between the plotted energy fluxes, we normalize the result such that the reference

4 keV Maxwellian entering energy flux peaks at unity.

A primary difference between the no turbulence and turbulence case is the dramatic increase in >80

keV fluxes when turbulence is present (Figure 3.7, right panel). In both cases the most energetic ions cross

the z = 0 plane before leaving the +y face (green traces in Figure 3.7), but the turbulence further separates

this energetic population into a secondary population of highly energized ions, effecting a bi-modality in the

flux-energy distribution. We identify a quasi-thermal peak at an energy of 9 keV (red trace, right panel) and

a highly-energetic peak at 85 keV (green trace, right panel).

The peaks in quasi-thermal cores of the exiting fluxes (red traces in Figure 3.7) have nearly the same

energy. The turbulence case has a slightly higher flux level. The increase in energy the quasi-thermal

core of the distribution (from 8 keV to 9 keV) is consistent, roughly, to moving along Ey a distance of
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an ion gyroradious, which is the most likely displacement in the no turbulence case (Russell et al., 2016;

Taktakishvili et al., 2003). However, a displacement along Ey cannot explain the energies gained at the

energetic end in the turbulent case, which is considerably greater than what the Ey field can yield, even

when when considering displacements across the entire simulation domain.

We can further examine the relationship between Speiser-like energization and energization by turbu-

lent fields by plotting energization as a function of the displacement ∆y. In Figure 3.8, the dots represent

the ions that leave the +y face in the same 1000 s run that we use for Figure 3.7. The abscissa and ordinate

values correspond to the ion’s final energy gain and displacement, respectively, and the blue and black dots

correspond to the simulations with and without turbulence. The relationship shown suggests that the accel-

eration process that generates the tail of the energy distribution still has a linear trend with displacement, the

final energization of the ions being a combination of the effects of the Speiser and turbulent fields. Although

it is expected in the no turbulence case to see a monotonically increasing trend between the displacement in

y and the energization of the particle, the slope of this dependence steepens when turbulence in present.

We find the average dwell time of ions to be nearly the same, with and without turbulence. However,

we find a greater net energization in the turbulent case for the +y-exiting ions. This stems from the fact that

ions that cross z = 0 once tend to cross it multiple times, and the energization rate is also significantly larger

for particles near z = 0 (see Figure 3.5). Therefore, ions that get energized due to their proximity to z = 0

tend to have trajectories that favor more subsequent energization, which leads to a runaway that generates

the highly energized population seen in Figure 3.7.

That electromagnetic (EM) and electrostatic (ES) turbulence does not affect the average dwell time

of particles complements earlier results (Veltri et al., 1998; Greco et al., 2002; Taktakishvili et al., 2003),

which show that magnetostatic turbulence, contrastingly, increases the dwell time and the average ∆y of

particles, effecting a net acceleration. The combination of EM & ES turbulence, on the other hand, decreases

and increases the dwell time of individual ions by roughly the same amount on average. Examining the

trajectories in Figure 3.9 we can see both effects on the dwell time at play. We show four trajectories of

ions in runs without (top) and with (bottom) turbulence, the two trajectories shown for each case having the

same initial conditions. The blue-yellow trajectory is a known Speiser orbit with no turbulence: it enters a
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Figure 3.7: Left: Normalized log-linear plot of the exiting energies at the +y face over a 1000 seconds run.
Particles that cross z = 0 tend to partake in Speiser-like orbits and exit with a higher energy than those that
do not cross the magnetic null. Right: The bimodal distribution, results from turbulent δE and δB acting on
the ions that cross z = 0. The green histogram only counts the particles that cross the z = 0 plane at least
once. The magenta histogram counts the particles that cross z = 0 only once. The observed energization of
low-energy peaks (red traces) is from 8 keV to 9 keV. Adding the turbulent results in a a similar low-energy
profile profile, but the extra population of heated particles emerges.

x face, drifts into the current sheet (E ×B drift), then exits the +y face. On the other hand the green-red

orbit contributes to the ion-jet with no turbulence: it enters the −y face, then follows the magnetic field out

of the +x face. The dwell times for these orbits are represented in the color bars at the lower-right corner of

the plots. While the dwell time of the blue-yellow trajectory increases due to turbulence (and its energy), the

green-red trajectory accelerates through the region faster also due to turbulence. We find that when applying

MMS-based EM & ES turbulence the turbulent acceleration exceeds the Speiser energization mechanism,

and together they can energize particles by over a factor of ∼ 20, achieving energies greater than 80 keV.

Figure 3.10 shows the fluxes out of each of the faces of the simulation domain, without turbulence (top

row), and with turbulence (bottom row). The red region highlights the >80 keV energies of the flux-energy

distribution. Fluxes exiting the ±x faces in the no-turbulence case show the expected ion jets common of

magnetotail reconnection (e.g. Angelopoulos et al. 1994). Speiser-enhanced ions, such as the one depicted
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Figure 3.8: Energization of all particles leaving the +y face as a function of their displacement in the y
direction in a 1000 second run. The black and blue dots representing the ions in the no turbulence and
turbulence runs respectively. The linear trend due to the electric field Ey is still present in the energy gained
by the ions affected by turbulence (after Figure 4 in Dolgonosov et al. (2013))

in the green-red trajectory in Figure 3.9 (top), contribute the majority of the ions in the most energetic part

of the jet (>30 keV). Without turbulence we find the expected result that the majority of the energetic ions

leave through the combined ±x faces; however, a substantial number of energetic ions exit the +y face as

well, likely due to the relatively short extent of the turbulence in the y direction. In the no turbulence case,

very few ions are energized to over 80 keV.

Once the MMS-based EM and ES turbulence is applied, the net energy flux out of the ±x faces

increases, but the majority of the energetic ions exit through the +y face (Figure 3.10, bottom row). The net

energy flux out of the +y face dramatically increases. The energetic tail (> 80 keV) forms.

Therefore, as showcased through the trajectories in Figure 3.9, to understand the ion energization

process one needs a 3D simulation with open boundaries, given that the ion jet acceleration and the Speiser

acceleration and turbulence interact and enhance the total current leaving tailward. The inclusions this

feature in our simulation, together with the MMS-measured turbulent field, provide the necessary component

to produce the measured power-law. Comparisons between our scheme and others will be discussed in the
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Figure 3.9: Top: Two simulated ion trajectories without turbulence. Blue-yellow trace: Speiser-like trajec-
tory that drifts towards the magnetic null plane and then is directed towards the +y face. Green-red trace:
A particle that contributes to the ion jet that follows the hyperbolic magnetic field and exits the +x face.
Bottom: the same ions but with turbulence. Blue-yellow trace: A non-thermally accelerated ion. When the
particle crosses the magnetic null plane it engages in a Speiser-like orbit, and the dwell time and energiza-
tion increase. The energized particle is redirected towards the +y face due to the background electric field.
Green-red trace: the ion is redirected toward the +y face due to turbulence, and the dwell time decreases.
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next section.

3.6 Discussion

In modeling an observed turbulent magnetic reconnection event, we have found that accelerated ion

jets, Speiser-like energization, and the turbulence all are necessary ingredients to explain the net acceleration

of ions in the magnetic reconnection current sheet of the magnetotail. Veltri et al. (1998), Greco et al. (2002)

and Taktakishvili et al. (2003) did not include the electric field turbulence because they theorized that the

measured magnetic turbulence by Geotail was due to tearing instabilities. However, MMS measured a

turbulent electrostatic field which is significantly stronger than expected when considering the inductive

field of the magnetic turbulence alone.

The impact of the stronger electric fields is clear when considering Artemyev et al. (2009) where

the only electric component comes from this inductive field and no ions have energies of 100 keV or more.

The main difference between Artemyev et al. (2009) and this work is the introduction of an electrostatic

component of δE to the power-spectrum of the turbulent field. Secondarily, Artemyev et al. (2009) uses a

Cluster-measured spectrum for the plane-waves with a single index of −7
4 , and their turbulence is based on a

measured correlation length. While we are using MMS-measured indices (see Appendix B) and correlation

length and time in our turbulent field reconstruction, we believe the principal difference in the ion’s energies

in these two simulations stems from the inclusion of the electrostatic component of the turbulence.

The effects of the ES-turbulence in the energies also becomes appartent when comparing to the

magnetostatic-only turbulence case studied by Veltri et al. (1998), Greco et al. (2002) and Taktakishvili

et al. (2003). The highest ion energies in our simulation are an order of magnitude higher compared to the

ones obtained in their simulation. Nevertheless, we confirm some of the findings in Veltri et al. (1998) and

Greco et al. (2002): the density depletion centered at at x = 0 and the thickening of the Speiser layer. Un-

like Veltri et al. (1998) and Greco et al. (2002) however, we don’t see a reverse current layer forming on top

and below the quasi-current sheet. Such a structure appears to be hard to maintain in an environment with

high electric field fluctuations (δE). Note that the density depletion has been measured by MMS and other

spacecraft (Artemyev et al., 2010; Ergun et al., 2020b) and while the pressure remains mostly balanced by
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Figure 3.10: Exiting fluxes for each of the faces of the simulation, with and without turbulent fields. The
red shaded region indicate the >80 keV energies of the flux-energy distribution. A tail forms in the +y face
when we apply the turbulent fields. Moreover, the reconnection jets get energized as well.
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the corresponding increase in the temperature within the turbulent region, the existence of extra turbulent

magnetic field pressure is still important to balance the system (this is also consistent with Greco et al. 2002).

The only relatively unconstrained free parameter in our model is the length of the y axis. All other

parameters are constrained by either MMS measurement or theoretical consistency. This prompts the ques-

tion of how the energization changes if we change the size of the turbulent region. The dashed green line

on Figure 3.3 indicates that energization increases significantly with the y dimension. Figure 3.8 suggests a

linear relation can represent the dependence between the displacement and the energization in the turbulent

case, which invites speculation on the energization that can occur in larger regions in other astrophysical

contexts.

There is no theoretical limit on the scale of turbulence. On the other hand, the extent of an x-line

of magnetic reconnection or the dimension of a current sheet could be limited or discontinuous given the

increased pressure from ion acceleration. Nonetheless, widely scattered turbulence could extend overs scales

far greater than that in Earth’s magnetotail. In supernova remnants, the high-energy emission region of has

been estimated to be of the order of 10−2 pc, and the Neumann layer (where turbulence is expected to be

strong) is estimated to extend 10−4 pc (Zhang et al., 2018). Even if strong turbulence has a limited filling

factor in these extensive regions, ion acceleration could plausibly contribute to the solution of what Fermi

called the ‘ion acceleration problem’: ions need to already be accelerated to 200MeV to partake in the

Fermi acceleration mechanism in supernova shock fronts (Fermi, 1949; Davis, 1956).

From MMS observations, it appears that the strong turbulence is enabled by magnetic field annihila-

tion due to magnetic reconnection. The substantial ion energy flux that exits the +y face of the domain also

opens a question in how strong turbulence and the resulting ion energization can influence magnetic recon-

nection. It has been observed that the x-line length in the magnetotail (which extends over 20RE) rarely

exceeds ∼ 3RE (Nakamura et al., 2004). The test-particle simulation results may provide an explanation.

The ion energy density (pressure) is significantly higher on the +y side of the domain (e.g. Figure 3.8). The

increased ion pressure may limit the extent of an x-line in turbulent magnetic reconnection.
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3.7 Conclusions

In this work, we employed a test-particle simulation that recreates an observed turbulent magnetic

reconnection region of the Earth’s magnetotail. The plasma parameters including density profiles, ion tem-

peratures, and magnetic fields are based on measurements. The turbulent electromagnetic and electrostatic

fields are reproduced by taking advantage of the four-spacecraft MMS mission, which allows for estimation

of correlation lengths, correlation time, and waves speeds as well as detailed spectral properties and accurate

parallel and perpendicular amplitudes. The dimensions of the turbulent region are estimated from observa-

tion and/or constrained by theory, the only exception being the extent along the x-line, which is treated as a

open parameter. The test-particle simulation employs fully open boundaries allowing particles to enter and

exit the domain as they would in nature.

The test-particle simulation is able to reproduce the measured ion distributions, density depletion,

and ion temperatures, which corroborates the realistic reproduction of the turbulent magnetic reconnection

region. Even though test-particle simulations are not self-consistent, the boundary conditions are designed

to achieve approximate pressure balance. The ability to reproduce measured ion properties lends support

that one can derive meaningful conclusions on the energization process.

The test-particle simulation in this article focus on a the case of strong turbulence in a magnetic

reconnection region. We found that (1) EM & ES turbulence is largely responsible for the generation of the

power-law tail in the ion distribution. We also found that (2) all acceleration mechanisms (the ion jets, the

Speiser drift, and the turbulence energization) contribute significantly to the overall dynamics of the ions,

the largest energy input comes from the turbulence itself. Comparing to several simulations that have been

done before supports several of their findings, but highlights the necessity of imposing realistic EM and ES

fields and employing open boundaries. Moreover, we found that (3) the presence of turbulence significantly

enhances the number flux and energy flux of ions out of the +y face. The most energetic part of this flux

having crossed z = 0 multiple times, and hence dwelling in the region were we find the highest energization

rates in our simulation.

We speculate the consequence of scaling this picture to a larger reconnection region, specifically,
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those generated by the shocks of supernovae shells. When considering such scales we find that the recon-

nection mechanism described here can accelerate ions to the order of 100’s of MeV, which can contribute to

generating an ion population energetic enough to be further accelerated by Fermi acceleration and generate

the energetic part of the cosmic ray spectrum.



Chapter 4

Conclusions

In this work, we have presented models for two complex situations in astrophysics: bending waves

in Saturn’s rings and ion dynamics in Earth’s magnetotail reconnection region. As models tend to do,

our work partakes in a number of distortions of the systems we study. In the case of the rings, the main

distortion corresponds to the rigid self-gravity wakes. In the case of the ions in the magnetotail reconnection

region, the lack of self-consistency. We established in the Introduction that distortions are not only for

computational convenience, they also highlight the explanatorily relevant part of the models by exposing

the emerging causal structure of the systems in question. As we will see in this final analysis, the distortions

of our models are different in kind. One is an idealization, the other one an abstraction. Margaret Morrison’s

distinction between idealization and abstraction can help us better understand the assumptions in our model.

Where idealizations distort or omits properties that are often not necessary for the
problem in hand, abstractions (typically mathematical in nature) introduce a specific type
of representation that is not amenable to correction and is necessary for explanation/pre-
diction of the target system. What is crucial about abstraction, characterized in this way,
is that it highlights the fact that the process is not simply one of adding back and taking
away as characterized in the literature; instead it shows how certain kinds of mathemati-
cal representation are essential for explaining/predicting concrete phenomena. (Morrison,
2009a)

The processes of “adding back and taking away” are the de-idealization and idealization processes

that were mentioned in the introduction. Idealizations are a specific type of approximation where one ignores

certain terms in an equation, terms one may decide to add back later. In this way the rigidity assumption is

not an idealization but an abstraction. We are not ignoring terms in a Taylor expansion or an equation, rather,
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we are choosing the mathematical representation of torques in order to place the opposing influences on the

self-gravity wakes orientation in balance: the tidal force of Saturn and the Keplerian shear. Likewise, when

the bending wave is included, we can further add torques and study how the orientation changes. There is

no clear way of de-idealization via further complicating the torques or the Euler equations of rigid motion:

rigidity is clearly an abstraction.

Nevertheless, it allows us to make precise predictions: the wakes within the bending wave shed

regolith; a layer of particles taller than 100 meters forms. If the proposed mission, Saturn Skimmer, were

to get funded and study this region of the rings, it will see signatures of the 100 m haze (because it will

have an occultation resolution of about 50 m with the proposed high-speed photometer). These are concrete

explanations/predictions made possible by the abstraction. On the other hand, the plasma model is an

idealization. We are ignoring a particular term in the magnetic field, and that is the one coming from

Amperes’ law. These ions move around, yet they generate no field. Moreover, displacement currents are

present, and their associated magnetic fields are not accounted for. We could, in theory, “add this back,”

but it will make the simulation significantly more complicated. Moreover, studies that have attempted self-

consistent simulation have not been able to reproduce the measured MMS-field (quote). An easier way

of studying how these fields move the ions around is by imposing the fields externally and making them

independent of the ions’ motion.

Regarding the neglect of Coulomb’s law, there is a good argument for why the external electric field

may not be affected by the motion of the plasma: the assumption of quasi-neutrality. The electrons are

moving close enough to the ions that they don’t affect the field much (which is the same reason we don’t

have to model the electrons). This simplification can be made self-consistently. On the other hand, the

effects of the current densities on the magnetic field are affected by the motion of the ions. The model’s

ability to reproduce the data supports the unimportance of the Ampere term for the causal structure of the

omnidirectional flux power-law; this implies that even if these fields can affect the trajectory of individual

ions in the plasma, their presence may not affect the net ion energization in the region.

Even if both models managed to reproduce the phenomena, we said in the introduction that there are

criteria to judge a representation beyond just matching the data, but that we must be mindful of the purpose
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of the models when doing so. We will proceed to make a deeper analysis of our models and answer the

questions we set up in the introduction for each model.

Q.1: What purpose do our models fulfill and how does it justify the distortions introduced?

Q.2: How do these models fulfill the explanatory and descriptive functions of scientific
modeling?

After answering these questions, we will see how the argued-for relation between explanations and

assumptions came to bear in the peer review process of our Chapter 2 article. One referee’s analysis held

that, given the success of the model in matching the phenomena, the causal story given, and hence the

explanatory part of the paper, was plausible even if the assumptions may not hold. These assumptions,

however, are what allowed us to give the casual account of the phenomena, and hence, for the reviewer, it

managed to be explanatory even if they were skeptical of the assumptions made. Finally, we will conclude

by outlining important questions to consider when evaluating a model.

4.1 The Mimas 5:3 Bending Wave

Our haze model has at its core the Shu et al. (1983) bending wave model. Its derivation has several

assumptions which I have outlined in each section of Appendix C. Most SCL assumptions, like the rigidity

assumption, are also abstractions, and we will see that the logic for their introduction in 1983 is the same

as the one appealed to in our model. The most glaring SCL abstractions is the assumption that the surface

density σ varies slowly radially on the scale of the wave’s wavelength such that we can pull it out of the

integral over the radial coordinate x:

∫
f(x)σ(x)dx ≈ σ(x)

∫
f(x)dx

where f is a function of the viscosity and the vertical frequency (see Eqn. C.51 in Appendix C).

While the assumption was stated explicitly in SCL, its lack of realism was not mentioned. By 1983

there was good evidence of self-gravity wakes and the clumpy nature of rings (Colombo et al., 1976), but

they were still omitted in the SCL model Part of the reason for this omission is that more than an idealization,
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taking the rings to be smooth was an abstraction. The strategy was this: let us imagine a smooth ring, for

which we can derive an analytic solution, and let us see if the A ring’s measurable characteristics are like

the ones of this smooth ring. Nowhere did SCL state that the ring was in fact smooth. Moreover, finding that

the ring isn’t smooth doesn’t invalidate SCL’s bending wave treatment, unless their theory is inconsistent

with the phenomena. The success of the SCL model does not depend on its smoothness assumptions being

right, but on its empirical adequacy. By the same token, its being empirically adequate is no guarantee that

the assumptions are descriptively accurate, nor was the model created in order to argue for a smooth ring.

The nature of this assumption is the same as the rigidity assumption introduced in our models of

self-gravity wakes. The model’s successful representation of the target does not hinge on self-gravity wakes

actually being rigid. One may think that given that the model successfully reproduces certain phenomena

measured in the ring, like the attenuation of light in normal optical depth, this is a reason to believe the self-

gravity wakes are (approximately) rigid. But this belief is only weakly supported by the empirical success

of the model.

It would hence be a mistake to speculate how self-gravity wakes may in fact be rigid in order to justify

our model. At most, our claim in Chapter 2 is that self-gravity wakes behave as rigid in the timescale of the

pattern speed of the wave. Or rather, that the rigidity assumption is capturing certain aspects of its behavior,

not that they have the property of rigidity. Rigidity serves as a tool to parametrize the opposing influence that

the tidal force and the shear have on the orientation of the wake. It is a convenient abstraction that allows us

to put these two causes in action and equilibrate them, yielding a highly explanatory equation for the pitch

angle (equation 2.40). Such an equation parametrizes the pitch angle in terms of the relevant parameters.

It is important to see why this abstraction is useful even when there exists an N-body treatment of the

self-gravity wakes’s pitch-angle. Michikoshi et al. (2015) explores the pitch-angle relationship with many of

the ring’s parameters with a shear-box simulation as the one shown in Figure 2.4. They took many measures

to make the model realistic: a velocity-dependent coefficient of restitution is introduced, as well as a high

number of particles, and robust self-gravity effects. The changes of the pitch-angle with local density and

distance from Saturn are studied. In a later study, the change of the pitch-angle with shear-rate was studied

via the same model (Salo et al., 2018). These N-body simulations are descriptive, but lose some explanatory
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power, as the explanations are left as a matter of interpretating the numerical output of the simulation. The

main result of the paper isn’t an explanation but a description of the behavior of the system.

The rigidity abstraction, on the other hand, allows us to analytically relate these parameters in a

concrete way. It allows us to understand with one equation the different pitch-angles that self-gravity wakes

may present. And, importantly, it can be used to predict phenomena. For instance, we know from numerical

simulation that Density Waves can increase the local shear angle of the rings (Lu et al., 2018). With Eqn.

2.6 (also see Eqn. D.15 in Appendix D), we can easily make a prediction on the change of orientation of

the self-gravity wakes given this increase in shear-rate. Moreover, we have an explanation for the change:

the collisional interaction between the shear and the wake weakens and hence the tidal torque causes the

self-gravity wake to point radially. The rigidity assumption is a successful example of an abstraction in

planetary ring dynamics that, while not entirely accurate, is useful and explanatory.

These two models, the self-gravity wake model and the SCL bending wave model, come together in

the model in our paper, which is the one we are evaluating as a representation of the Mimas 5:3 bending

wave. To evaluate it properly we must ask what the purpose of the model is. Our paper is focused on

explaining the increase in normal optical depth in the bending wave region with a model that start from first

principles (i.e. the Eulerian equations of rigid motion) Our goal was to provide a dynamical account of why

there would be extra light-attenuation in the region. Once we establish that the signal was generated by the

existence of an extra layer of material, the main goal then becomes to explain why such a structure forms in

the Mimas 5:3 BW. This provides the answer to Q.1:

A.1: The main purpose of our model is to explain the existence of the haze in the bending wave. We

also want to make predictions about the nature of this haze, which was achieved by describing the haze at

the level of particle size, distribution and geometry. We explain why the haze has these properties by virtue

of the rigid-bar model of self-gravity wakes. If the purpose of the model were to describe the interior of

self-gravity wakes or their overall evolution over many orbital periods, our model would be unrealistic and

a misrepresentation of the target. Nevertheless, because our model is focused on the haze, the model is a

good one. With this discussion, we have also answered Q.2: A2: Even if the main goal of the model was to

explain the existence of the haze, it also describes the haze in some detail; the model is both explanatory and
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descriptive. The description of the haze helps to explain the signal. The main explanatory work, however, is

done by the part of the model with the greatest distortion: the rigid self-gravity wake, the description of the

haze being a byproduct of this. Thus, while descriptive, the main role the model plays is explanatory.

4.2 The Ions in the Reconnecting Region of Earth’s Magnetotial

The Plasma physics model is an idealization because it ignores the Ampere contribution to the mag-

netic field, and we can add this contribution back without changing any of the fundamental equations of

the model. It is, however, very convenient computationally to ignore the fields generated by the ions in the

simulation.

We emphasize Chapter 2 that we based the fields of our test-particle simulation on the measured

turbulent magnetic and electric fields. This gives us several advantages over self-consistent models. An

accurate self-consistent code must have a large range of scales, a large number of particles, as well as an

accurate electron-to-ion mass ratio to reproduce the turbulent magnetic and electric fields. Self-consistent

codes must have a large 3D simulation domain, long run times so that ions can pass through the system,

and fully open boundaries to properly handle ion acceleration. A test-particle code can incorporate these

features at the expense of self-consistent behavior. Furthermore, we are well able to constrain most of our

simulation parameters by measurements: particle distributions (densities and temperatures) at boundaries as

well as turbulent region size can be estimated by using data, with the exception of the length of magnetic

reconnection’s x-line.

In the chapter, we uniquely justified the lack of self-consistency as a matter of computational conve-

nience. This is, of course, a frequent motivation of distortions in modeling. When we represent the target as

having (or lacking) certain properties, Cartwright calls these “properties of convenience.”

A model is a work of fiction. Some properties ascribed to objects in the model will
be genuine properties of the objects modelled, but others will be merely properties of con-
venience (. . . ) Not all properties of convenience will be real ones. There are the obvious
idealizations of physics—infinite potentials, zero time correlations, perfectly rigid rods,
and frictionless planes. But it would be a mistake to think entirely in terms of idealiza-
tions—of properties which we conceive as limiting cases, to which we can approach closer
and closer in reality. (Cartwright, 1983)
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Cartwright specifies that these properties can be either idealizations (“limiting cases”) or abstractions.

Again, our distortion in Chapter 3 is an idealization, not an abstraction. This is because it is a limiting case

where we have excluded the Ampere component of the magnetic field.

Distortions, however, also highlight the explanatory relevant aspects of the simulation. What are

the aspects highlighted by ignoring Amperes’ law? The answer to this is hinted at in the discussion of

Chapter 3, and our comparisons with the magnetostatics simulation ran by Veltri et al. (1998) and Greco

et al. (2002). Veltri et al. (1998) and Greco et al. (2002) did not see the power-law in the ion flux develop

in their simulation, they also lacked the electrostatic component of the turbulent field. Our distortions

reinforce this effect: the main explanatory cause for the ion acceleration is the electrostatic turbulent electric

field. Properly computing the Ampere component due to the ion currents can change the magnetic field

significantly, but the magnetic field is not the explanatory relevant cause for the phenomenon the model is

attempting to reproduce. This leads us to the answer of Q.1.

A.1: The purpose of the model is to explain the power-law in the ion flux distribution. Different

simulations, including self-consistent simulations, have failed to produce this power-law (Scholer et al.,

2003; Zhang et al., 2021). The only previously successful studies are Perri et al. (2011) and Dolgonosov

et al. (2013), but they used a highly artificial model for the fields that is not consistent with the Turbulence

spectra measured by MMS and other spacecraft. Our model is hence a first attempt at reproducing an ion

energy-flux power-law based on realistic fields. Since we manage to reproduce the power-law and, provide

a causal account for it—namely that the ions that cross the field-reversal plane get energized preferentially

and in a runaway fashion— our model is a good representation of the target, even if it doesn’t strictly obey

all of Maxwell’s equations.

Fundamentally, the reason the ions get accelerated to such high energies is due to the Lorentz force

and Newtown’s Law (or even more fundamentally, due to Quantum Electrodynamics). This is of course

true, but it doesn’t explain anything. We must establish causal relations between the emerging macroscopic

phenomena: i.e., causal relationships between integrated fluxes and the turbulent fields power spectrum,

causal relationships between the average dwell time of ions and the intensity of the turbulence. To do this, it

is necessary to simplify. In simplifying, we often introduce “properties of convenience” which are, strictly
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speaking, false. It is in this sense that Cartwright claims that “The Truth Doesn’t Explain Much.” Her

framework for explanation is certainly exemplified by Chapter 3. This leads us to the answer to Q.2.

A.2 Hence, the model of the plasma is of the explanatory kind. The explanation is achieved by un-

covering the causal relationship between the statistical phenomena of the flux distribution and the turbulent

field spectra.

4.3 A Philosophical Analysis of a Referee Report

We answered both questions for both of our models and found that both models have an explanatory

purpose. Both models aim to explain how the phenomena in question (the haze and the power-law tail) come

about. For this purpose, they tell a causal story of the mechanism that generates the signal measured by the

spacecraft.

One may think that the conditions for these assumptions to be valid are that the self-gravity wakes

are rigid in the real world and that the Ampere component of the magnetic field is small compared to the

background field. Both of these are probably false, however, so how can they be a reasonable part of the

model?

One of the referees for the paper based on Chapter 2 raised this issue regarding the rigidity assumption

in an earlier version of the manuscript. They say of our attempt to compute the motion of self-gravity wakes

via a series of torques:

While this may be a reasonable idea, the actual calculations in Sections 2.1 and 2.2 are
difficult to follow and involve a number of assumptions and approximations that may not
be valid. (emphasis by the author)

We agreed with the referee that there’s a sense in which the rigidity assumption may not be valid.

The wakes are certainly not perfectly rigid as we assume them to be in Chapter 2; they may not even be

pseudo-rigid. Nevertheless, the rigidity assumption can be applied to situations where these strict validity

conditions do not hold, insofar as they still capture a type of behavior that does hold. Our claim is that

the rigidity assumption, even if false, properly reproduces the interplay between the different influences

affecting the orientation of the self-gravity wake. We claim that these causes are real, even though the
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rigidity is not. Cartwright’s emphasis on the behavior of entities can shine some light on how the rigidity

assumption can be a good one to use even if the wakes themselves are not rigid. The assumption is valid,

in a different sense, if it helps to explain the behavior of certain causal interactions to orient the self-gravity

wake at different angles.

To ascribe a behavior to the nature of a feature is to claim that the behavior is exportable
beyond the strict confinement of the ceteris paribus1 conditions, although usually only as
a “tendency” or a “trying.” (Cartwright, 1999)

Our claim is then not that the wakes are rigid, but that the tidal and shear interactions tend to orient

the wakes radially and azimuthally respectively: the equilibrium pitch angle arising for a balancing of these

tendencies. This statement is not new, it was already suggested by the N-body simulations performed by

Michikoshi et al. (2015). The rigidity assumption allows us to give a simple, analytical expression to that

tendency. Hence, we “ascribe a behavior,” to the “nature” of Tidal forces and shear interactions, which,

for Cartwright, amounts to claiming that we can export the behavior beyond the ceteris paribus conditions

(the rigidity of the self-gravity wakes). In other words, the balance of the tidal and shear interactions can

be exported beyond the rigidity assumption, and hence beyond the assumption used to derive the balance

equation, insofar these interactions still determine the pitch-angle of non-rigid self-gravity wakes.

Our ability to fit the data, however, gave the reviewer confidence that our main thesis was correct.

Let me be clear that I have no reason to doubt the basic result of this paper, that the
observed properties of the Mimas 5:3 bending wave can be reasonably well fit by a model
that includes an extra particle population whose density scales with the slopes of the bend-
ing wave. The authors provide reasonable evidence that this is the case, and this finding
alone would represent a significant advance in our understanding of these waves, since it
provides clear evidence that the wave is having an effect on the ring’s microstructure.

Many of the philosophical discussions in this thesis are encapsulated in this reviewer’s report. A

superficial read of this passage may suggest that the reviewer is justifying the publication of the model

merely by its ability to fit the data. But at the end of the paragraph one can see that we managed to give

some reasonable credence to the idea that this haze of particles came from self-gravity wakes (what he calls
1 Meaning: all other things being equal. That is, that the relevant conditions under which the assumptions hold.
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the “microstructure.”) Moreover, they says that the model represents an advance in our understanding since

it offers this origin story for the signal. Even with the possibly invalid assumption, we managed to make a

good enough explanation for the origin of this haze by providing a causal mechanism based on the dynamics

of rigid bodies. Our causal story, however, cannot be told without the distortions. The important lesson is

that one can believe in the causal mechanism while being skeptical of the rigidity of self-gravity wakes.

4.4 Final Conclusions

This discussion gives a concrete example of the role of models in science, and how abstractions can

be used to produce an understanding that “perfectly” detailed models may fail to do. Nancy Cartwright’s

point in The Truth Doesn’t Explain Much, is that in the case of explanation, too complicated of a model may

obfuscate the explanatorily relevant factors in the system. Due to the explanatory nature of models, hence,

one-to-one, part-by-part representation is not often what we are after when modeling.

Abstractions like the rigid-bar assumption are present in many instances of science. This is the reason

why Margaret Morrison reminds us that the issue of representation “is not simply one of picturing.” In the

case of quantum field theory we model the field as a collection of harmonic oscillators in order to get a

Hamiltonian that give the correct structure to the allowed energies. But, Cartwright points out, this does not

commit us to the existence of a set of objects behaving like springs. (Morrison, 2009b)

Harmonic oscillators are a powerful tool in modeling quantum systems, due to being one of the few

problems we have solved analytically in its entirety and given that many Hamiltonians can be constructed

with it. Using these models doesn’t commit us to believe that what’s really going on in these quantum

systems is that there are quantum harmonic oscillators everywhere in the quantum field. In the same way,

our rigid-bar model does not commit us to the rigidity of the self-gravity wakes.

At first, one may believe that there are only two questions one may ask of a model: Is the model

getting all parts of the system at least approximately right? Is it consistent with the data? While asking these

questions is useful when evaluating the model, one must understand what the main purpose of the model is.

Or, in the language of Reviewer 1, we must always ask: “what is the basic result of the paper?” And then

ask: “and how does the model serve this result?” Models should not be simply evaluated by whether they
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accurately, one-to-one, mirror the targeted system. If we think of models as an image, as we did at the start

of the introduction, then this point was made twenty-five hundred years ago by Plato (Plato, ca. 390 B.C).

Speaking of representation, Socrates attempts to rebut Cratylus’ notion that representation must be

one-to-one in order to be an image of the real object at all. Socrates answers:

SOCRATES: Let us suppose the existence of two objects: one of them shall be Cratylus,
and the other the image of Cratylus; and we will suppose, further, that some God makes
not only a representation such as a painter would make of your outward form and colour,
but also creates an inward organization like yours, having the same warmth and softness;
and into this infuses motion, and soul, and mind, such as you have, and in a word copies
all your qualities, and places them by you in another form; would you say that this was
Cratylus and the image of Cratylus, or that there were two Cratyluses?

CRATYLUS: I should say that there were two Cratyluses.

SOCRATES: Then you see, my friend, that we must find some other principle of truth
in images [other than one-to-one representation], and also in names; and not insist that an
image is no longer an image when something is added or subtracted. Do you not perceive
that images are very far from having qualities which are the exact counterpart of the reali-
ties which they represent?

CRATYLUS: Yes, I see. (Cratylus 432a-d)

We must, hence, find some other “principle of truth” of models other than one-to-one representation, and not

insist that a model is bad just because it lacks certain components we know to be there in the real world, or

because it is unrealistic in a particular way. The goodness and badness of a model must always be evaluated

relative to its purpose and the context in which it was created.
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Appendix A

Full form of the Torques and Complete set of Occultations for the Mimas 5:3 Bending Wave

A.1 Complete Form of the Torques on Self-gravity Wakes

Let µG = GMS
r3

where r is the radial distance from Saturn, MSn is the mass of Saturn and G the

gravitational constant.

τtidal+wake;x′ = 4
( tidal︷︸︸︷
µG −

wake︷ ︸︸ ︷
πGσk2 cos2 θw

)
L3

24WHρH (ẑ′ · x̂) (ŷ′ · x̂)

−2
( tidal︷︸︸︷
µG +

wake︷ ︸︸ ︷
2πGσk2 sin2 θw

)
L3

24WHρH (ẑ′ · ŷ) (ŷ′ · ŷ)
wake︷ ︸︸ ︷

−4πGσk cos θw sin θw
L3

24WHρH

[
(ẑ′ · ŷ)(ŷ′ · x̂) + (ẑ′ · x̂) (ŷ′ · ŷ)

]
(A.1)

τtidal+wake;y′ = −4
( tidal︷︸︸︷
µG −

wake︷ ︸︸ ︷
πGσk2 cos2 θw

)
W 3

24 LHρH (ẑ′ · ẋ) (x̂′ · x̂)

+2
( tidal︷︸︸︷
µG +

wake︷ ︸︸ ︷
2πGσk2 sin2 θw

)
W 3

24 LHρH (ẑ′ · ẏ) (x̂′ · ŷ)

+

wake︷ ︸︸ ︷
4πGσk cos θw sin θw

W 3

24 ρHLH [(ẑ′ · ŷ) (x̂ · x̂) + (ẑ′ · x̂) (x̂′ · y′)]

(A.2)

τtidal+wake;z′ = 4
( tidal︷︸︸︷
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wake︷ ︸︸ ︷
πGσ cos2 θw
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24 ρHHW
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(A.3)

Where W , H and L are the length of the principal axis of the wake. Centered on the center of the

wake we set a coordinate systems along these axis which are x′, y′, z′ respectively. k is the wavenumber of
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the self-gravity wakes which are treated as a plane-wave field. ρH is the density of the self-gravity wake and

σ is its surface density. θw is the angle with respect to the azimuthal of the long axis L of the oriented wake

field.

Consider the direction θ̂, which is the direction of the velocity of a particle colliding using the Hill

equations (see Figure 2.6). Consider moreover, that the space density of colliding particles is given by

ρ(z) = e
−( z

z0
)2 where z0 is the rings’ half-thickness, and note that the z coordinate can be written in terms

of (x′, y′, z′). We can then write the torques due to collisions of particles with a space density ρs, both due

to the BW shear (caused by the slope of the bending wave dz
dx ) and due to the Keplerian shear, as:

τKep+BWsh;x′ =2 ∗ (1 + ϵ)

∫ bmax

bmin

∣∣∣∣
Keplerian︷ ︸︸ ︷
vθ · ẑ′ +(

BW shear︷ ︸︸ ︷
dz

dx
(ŷ′ · x̂)(ẑ′ · ẑ)−ωx′)y′(b)

∣∣∣∣
+

[ Keplerian︷ ︸︸ ︷
vθ · ẑ′ +(

BW shear︷ ︸︸ ︷
dz
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(ŷ′ · x̂)(ẑ′ · ẑ)+ωy′)y′(b)

]
y′(b)

∫ W/2

−W/2
ρs(z(x

′, y′(b)))dbdx′

(A.4)

τKep+BWsh;y′ =− 2 ∗ (1 + ϵ)
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]
y′(b)

∫ H/2

−H/2
ρs(z(y

′(b), z′))dbdz′

(A.6)

Finally the torque caused by the radial gradient of the vertical acceleration due to the bending wave:

τBWg,x′ = −2

3
ω′2 ∂z

∂y′
(ẑ · ẑ′)(ŷ′ × ẑ′)ρHHW

(
L

2

)3

(A.7)

τBWg,y′ = −2

3
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∂x′
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(
W

2

)3

(A.8)
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τBWg,z′ = −2

3
ω′2 ∂z

∂y′
(ẑ · x̂′)(ŷ′ × x̂′)ρHHW

(
L

2

)3

(A.9)

A.2 Table with the UVIS Occultations of the Mimas 5:3 Bending Wave and their Geom-

etry

The below table collects all UVIS occultations with τmax > 1.5 for the Mimas 5:3 bending wave

region.
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Occultation B [deg] ϕ [deg] Beff [deg] Lon. [deg] Z sign(Ż) b I0 τmax Φtheory[deg]
AlpAra(105)E 54.4 77.1 80.9 125.7 -4046 -1 9950 16.94937 3.2 224
AlpAra(105)I 54.4 355.8 54.5 314.9 4072 -1 11381 18.1537 3.5 83
AlpAra(32)I 54.4 277.9 84.4 258.6 3837.8 -1 38303 75.4764 6.1 312
AlpAra(33)I 54.4 278 84.3 12.4 2512 1 36362 84.57951 5.5 115
AlpAra(35)E 54.4 116.1 72.6 343.7 -4739.8 -1 36982 75.47634 3.8 268
AlpAra(63)E 54.4 106.8 78.3 221.1 3969.2 -1 28626 38.80406 5.5 280
AlpAra(79)I 54.4 6.5 54.6 207.1 688.9 1 24713 32.6135 3.6 34
AlpAra(85)E 54.4 93.4 87.6 85.8 5119.7 1 24444 24.13635 3.5 61
AlpAra(85)I 54.4 5.7 54.6 233.9 2256.6 1 24897 28.06419 3.5 306
AlpAra(86)E 54.4 94.1 87 147.2 2714.7 1 21499 26.68124 3.5 118
AlpAra(86)I 54.4 5 54.5 299.1 -2625.6 1 22373 28.52165 3.5 348
AlpAra(90)E 54.4 93.7 87.3 103 4970.2 -1 20224 21.15087 3.6 7
AlpAra(90)I 54.4 5.2 54.5 252.2 3600.4 1 20057 27.9169 3.5 251
AlpAra(96)E 54.4 82.6 84.7 124.1 3156.1 -1 19349 19.06265 3.5 141
AlpAra(96)I 54.4 12.8 55.1 254.8 4942.7 1 19563 41.38505 3.6 271
AlpAra(98)E 54.4 75.4 79.8 110.7 131.2 -1 17371 56.24169 3.6 231
AlpAra(98)I 54.4 8.4 54.7 250.9 4825.8 -1 17202 65.79578 3.6 321
AlpCMa(274)E 13.5 40.4 17.5 188.9 2833.2 -1 23747 68.66385 1.7 246
AlpCMa(281)I 13.5 230.1 20.5 144.3 3652.3 1 27911 57.7524 1.7 143
AlpCru(100)E 68.2 93.9 88.5 188.8 807.8 1 428757 501.3685 5.8 289
AlpCru(100)I 68.2 154.5 70.1 213.6 -5016.5 1 434175 501.3685 6 102
AlpCru(92)I 68.2 169.6 68.5 114.7 -4232.1 1 518555 501.3384 6.3 160
AlpLup(248)E 53.9 111.4 75.1 73.2 4024.3 -1 16967 223.1837 4.8 150
AlpLyr(175)I -35.2 233.8 50.1 318.5 1522.8 -1 8139 21.61554 4 104
AlpLyr(202)E -35.2 35 40.7 191.8 -4393 -1 8139 21.61554 3.7 147
AlpLyr(202)I -35.2 236 51.6 90.2 3092.6 -1 6485 19.1991 2.9 277
AlpLyr(206)I -35.2 252.9 67.4 151.7 -1264.5 -1 6801 17.57583 3.5 82
AlpScoB(13)E 32.2 117.8 53.4 255.1 -831.6 -1 3409 104.8678 1.8 204
AlpScoB(13)I 32.2 195.6 33.1 216.3 2447 -1 3499 123.7631 1.8 321
AlpScoB(29)I 32.2 286.5 65.7 343.9 -2274.3 1 3452 62.04907 2.3 173
AlpVir(116)I 17.3 243.3 34.7 188.8 5001 -1 161196 55.39598 1.7 22
AlpVir(124)E 17.3 123.3 29.5 218.4 -2033.2 1 153398 203.5833 2.2 138
AlpVir(134)I 17.3 284.9 50.4 215.4 -637.2 1 158112 311.6297 2.2 346
AlpVir(173)E 17.3 93 80.4 329.3 -666.8 -1 124007 200.0026 1.7 265
AlpVir(173)I 17.3 31.2 20 71.1 2787.3 -1 124993 200.0026 1.7 358
AlpVir(210)I 17.3 311.5 25.1 46 -4015.8 1 138215 43.22061 2.5 259
AlpVir(211)I 17.3 267.2 81.2 103.3 -2632.7 1 132499 469.4783 1.8 231
AlpVir(232)E 17.3 89.3 87.8 316.7 -2068.6 1 125750 455.5824 2.3 284
AlpVir(30)I 17.3 230.4 26 6.9 -2187.3 1 532397 177.7105 2.5 262
AlpVir(34)E 17.3 332.9 19.2 259.5 2584 1 489542 247.7773 1.7 207
AlpVir(34)I 17.3 232.8 27.2 24 579.6 1 510631 145.8352 2.2 225
AlpVir(8)E 17.3 91.3 85.9 197.2 3679.9 -1 526802 2500.032 1.7 20
AlpVir(8)I 17.3 141.1 21.8 162.3 4488.6 -1 500231 2499.995 1.8 145
BetCen(102)I 66.7 249.1 81.3 0.9 4984.3 -1 370169 329.3598 7.3 55
BetCen(104)E 66.7 105.5 83.5 299.7 -3402.1 1 342974 288.9692 8.6 155
BetCen(104)I 66.7 209.3 69.4 321 -1126.9 -1 357501 312.9495 6.7 304
BetCen(105)E 66.7 100.5 85.5 47 -3710.5 -1 287316 145.6972 6.3 353
BetCen(105)I 66.7 212.9 70.1 83.1 5023 1 313435 151.4026 5.2 61
BetCen(64)E 66.7 101.7 85 282.5 1854.5 1 619944 469.1418 5.6 286
BetCen(75)I 66.7 270.5 89.8 232.9 -934 1 594336 465.1562 7.6 273
BetCen(77)E 66.7 47.5 73.8 12.6 4961 1 593240 336.3192 7.4 160
BetCen(77)I 66.7 270.4 89.8 257.3 -1823.4 1 587228 252.7589 7.7 165
BetCen(78)E 66.7 45.9 73.3 206.5 -5087.4 -1 564075 375.1392 7 293
BetCen(81)I 66.7 275.6 87.6 147.8 4636 -1 550954 281.519 7.1 19
BetCen(85)I 66.7 277.5 86.8 41.8 -4526.9 -1 533158 354.402 7.6 210
BetCen(89)I 66.7 278 86.6 322.8 -572.3 1 498234 330.1721 7.7 277
BetCen(92)E 66.7 55 76.2 75.5 4143.3 -1 452618 230.9221 6.2 319
BetCen(96)I 66.7 271.9 89.2 126.3 -4796.6 -1 444264 229.5003 6.3 239
BetCMa(211)I 14.2 223.4 19.2 67.1 -3637.3 1 43518 50.86847 1.8 1
BetCru(253)I 65.2 255.6 83.4 187.3 -4002.7 -1 106166 202.3216 6.5 157
BetCru(262)I 65.2 257.3 84.2 18 5014.2 -1 109532 185.7413 6.4 345
BetCru(98)I 65.2 192.7 65.7 319 3954.6 -1 274051 232.4198 7.1 248
BetPer(116)E -47.4 143 53.7 216.7 1129.6 1 2135 43.00056 2.7 1
BetPer(116)I -47.4 165.1 48.4 208.1 -79.3 1 2130 43.00056 2.8 22
BetPer(42)I -47.4 229.7 59.2 122.9 -4479.8 -1 20003 43.61236 3 244
ChiCen(39)I 47.6 175.5 47.6 101.6 4977.8 1 13121 59.66402 3.8 345
DelCen(183)E 55.6 149.3 59.5 177.7 3370.9 1 11397 217.076 4.6 5
DelCen(185)E 55.6 150 59.3 44.2 -1532 -1 10924 200.8173 4.5 336
DelCen(191)E 55.6 138.4 62.9 335.4 -1934.9 1 10932 211.6986 4.6 31
DelCen(194)I 55.6 294.7 74 270.1 -5045.4 1 11891 22.14481 4.1 54
DelCen(64)E 55.6 110.6 76.4 194.3 4773.2 1 52909 90.11278 5 327
DelCen(64)I 55.6 124.8 68.6 210.7 3089.3 1 53150 90.11546 4.9 229
DelCen(66)I 55.6 135.4 64 124 3831.5 -1 58632 45.05706 4.7 311
DelCen(98)I 55.6 211.3 59.6 54.8 402.3 1 34467 90.11549 5.8 100

Table A1
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Occultation B [deg] ϕ [deg] Beff [deg] Lon. [deg] Z sign(Ż) b I0 τmax Φtheory[deg]
DelPer(36)E -54 66.5 73.9 296 2858.5 -1 13677 376.012 3.9 357
DelPer(37)I -54 264.5 86 145.7 4558.5 -1 13632 37.60231 5 29
DelPer(39)I -54 264.6 86.1 45 -4744 -1 12741 38.59457 4.2 203
DelPer(41)I -54 238.6 69.3 166.7 -496 -1 12185 63.56438 3.6 14
DelPer(60)I -54 277.2 84.8 192.3 4814.5 -1 11711 20.13449 3.6 16
DelSco(236)I 28.7 263.2 77.9 10.8 -5022.7 -1 22981 647.6574 2.8 171
EpsCas(104)E -70 122.3 79 123.6 -4468.4 1 4557 37.14048 3.6 300
EpsCas(104)I -70 187.8 70.1 152.8 -2034.7 -1 4586 37.14048 3.8 87
EpsCen(65)I 59.6 226.6 68.1 343.1 -1573.5 -1 129715 127.6824 6.6 220
EpsCMa(173)I 26 267 84 187.1 4165.8 1 40005 13.82051 2.8 341
EpsCMa(174)I 26 267.1 84 47.5 -3225.3 -1 44805 15.57652 2.8 344
EpsCMa(276)E 26 50.6 37.5 217.7 4192 -1 69532 117.8264 2.6 109
EpsLup(36)E 51 44.9 60.2 135.3 2840.1 -1 32671 71.62883 5.7 100
EpsLup(37)E 51 359.8 51 356.7 -1132.5 1 31958 72.21977 3.7 135
EtaLup(34)E 44.5 357.1 44.5 90 -3167.9 -1 46980 82.68831 4.2 353
EtaLup(34)I 44.5 296.2 65.7 218.8 2575.6 -1 47613 83.364 3.4 130
GamAra(37)I 61 248.7 78.6 62.1 4684.1 1 26751 58.10375 4.2 133
GamCas(100)E -66.3 72.5 82.5 93.5 -3408.3 1 54160 93.44911 6.1 259
GamCol(173)E -39.9 73.9 71.7 317.7 5020.4 -1 1097 57.81785 1.9 226
GamCol(205)I -42.6 260.4 79.7 269.1 -2977.3 -1 843 44.80865 2 354
GamGru(40)E 35.1 193.1 35.8 187.8 4856.5 -1 7292 122.9506 3.2 32
GamGru(41)E 35.1 204.5 37.7 98.5 -1794.7 -1 7579 158.2192 2.6 122
GamGru(41)I 35.1 282.7 72.6 98.2 4282.8 -1 8154 166.3223 2.2 225
GamLup(30)E 47.4 114.6 69 173.1 -3263.2 1 77667 59.06165 4.6 303
GamLup(32)E 47.4 33.8 52.6 158.4 5097.4 1 72586 72.70017 5.4 306
GamPeg(172)E -20.3 74.1 53.5 209.7 5059.2 -1 12683 12.42252 1.8 295
GamPeg(172)I -20.3 36.7 24.7 283.4 4683.3 1 11491 12.42252 1.7 328
GamPeg(211)E -20.3 122.5 34.6 207.2 518.8 -1 13192 16.91014 1.8 200
GamPeg(32)I -20.3 138.6 26.2 226.6 2857.3 1 74756 265.8262 1.8 343
GamPeg(36)E -20.3 66.8 43.2 343.5 3206.1 1 70975 225.4201 1.8 60
KapCen(35)E 48.5 85.5 86.1 302.8 -5074.8 1 46015 57.75644 5.8 281
KapCen(36)I 48.5 241.2 67 228.6 -2480.8 -1 44129 119.2304 5 330
KapCen(42)I 48.5 168.5 49.1 237.3 228.4 1 41129 119.2288 4.1 88
KapCMa(168)E 29.3 127.3 42.8 286.8 -1613.5 1 6193 43.59726 1.7 229
KapCMa(168)I 29.3 175.9 29.4 268.8 -3886.5 1 6062 43.59726 1.7 270
KapSco(247)I 43.4 273.4 86.4 326.7 4703.2 -1 21356 409.719 3 21
LamSco(248)I 41.7 283.9 75 261.3 585.4 -1 58157 433.8854 3.7 343
LamSco(29)E 41.7 148.3 46.3 222.1 -4753.7 -1 283952 159.058 4.6 35
LamSco(44)I 41.7 235 57.2 62.7 -841.5 -1 252102 136.4883 6.1 254
MuCen(113)I 48.7 239.1 65.8 24.1 -3432.9 -1 9633 23.36014 3.7 81
MuSco(43)E 43.4 27 46.7 303.3 4005.9 -1 86896 441.6879 4 130
PsiCen(38)I 44.3 249.9 70.6 54.2 3180.3 1 1110 58.71554 2.2 137
SigSgr(11)I 29.1 239.5 47.6 111 -2828 -1 118989 995.783 3.4 85
SigSgr(114)I 29.1 330.2 32.6 262.3 -492.7 1 33500 40.79908 2.7 160
SigSgr(244)E 29.1 234.2 43.5 103.7 204.5 1 19555 40.79669 1.9 262
SigSgr(244)I 29.1 269.3 88.8 86.6 -1341.1 1 16595 40.79913 2.1 313
TheAra(40)E 53.9 28.6 57.3 197.2 -2036.3 -1 12489 46.22136 4.1 270
TheAra(40)I 53.9 356.2 53.9 317 4476.6 -1 12490 46.22205 3.7 66
TheAra(41)E 53.9 82.4 84.5 205.4 1720.2 -1 11762 46.22204 5.5 194
TheCar(190)I -43.3 252.4 72.2 219.3 -4463.7 1 25334 159.9588 5.7 277
ZetCen(112)I 53.6 239.7 69.6 112.5 4393.8 -1 37307 34.73377 6.4 346
ZetCen(246)E 53.6 79.3 82.2 254.4 -4100.4 1 22256 232.1636 5.1 144
ZetCen(60)I 53.6 228.1 63.8 258.7 -4185.7 -1 107181 113.7307 6.6 235
ZetCen(62)E 53.6 70.1 75.9 8.9 -4066 1 106091 96.60519 5.5 47
ZetPup(171)E 38.6 117.3 60.1 154.4 -2266.7 -1 46835 141.573 4.5 264
ZetPup(171)I 38.6 202.1 40.8 120.2 2022.7 -1 49506 122.4082 4.3 351

Table A1 (continued): Complete UVIS dataset for occultations with τmax > 1.5 in the Mimas 5:3 bending
wave region.



Appendix B

Description of 3D Test-Particle Simulation and the field reconstruction

We designed the test-particle simulation to recreate an event in the magnetotail of the Earth by impos-

ing observed conditions and tacking ions as they pass through the domain. Importantly, ions can enter and

exit the domain as they would in the magnetotail (fully open boundaries). In treating acceleration, escape is

critical (Blandford & Eichler, 1987). The 3D test-particle code used in this study was based on a 3D quasi-

self-consistent simulation of the Parker Solar Probe interaction with the solar wind done by Ergun et al.

(2010), whose major results were ultimately verified with fully self-consistent simulations (Marchand et al.,

2014). The quasi-self-consistent code also was used to characterize a Maven instrument (Ergun et al., 2021).

As done in this work, Ergun et al. (2020a) and Ergun et al. (2022) employed realistic δB and δE signals (in

1D and 3D) to study electron acceleration in Earth’s magnetosphere. The heart of the code has a relativistic

Boris advancement algorithm (Boris, 1970) that has excellent energy conservation and can accept input of

realistic B and E signals. The code in this article was tested for long simulation periods and displayed less

than a few percent energy change.

B.1 Simulation Domain, Boundary Conditions, and Background Magnetic Field

The simulation domain is shown in Figure 3.2. The conditions at the boundaries, Ti = 4keV, ni =

0.1 cm−3, and |BLobe| = 20nT are based on observations (di ∼ 1000 km; ρi ∼ 320 km). The domain

includes a magnetic reconnection plane that extends 16RE (∼ 120di; ∼ 400ρi) in the x direction (the

direction of the reconnecting magnetic field) and 4RE (∼ 25di;∼ 80ρi)in the z direction (current sheet

normal). The y direction along the nominal magnetic reconnection x-line is adjusted to 2RE ; the simulation
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domain extends 4RE .

The simulation contains a backgroundBx that varies as tanh(z/λz) andBz that varies as tanh(x/λx)

(Eqn. 3.4). The asymptotic value of |Bx| is 20 nT and of |Bz| is 2.5 nT, matching the observations. By = 0

and there is no change in the background B as a function of y. This background B mimics that of magnetic

reconnection (shown in Figure 3.2). The background electric field, Ey, is set to 2.7mVm−1 in the turbulent

region to match observations (Ergun et al., 2022). It is reduced by a factor of two outside of the turbulent

region.

The simulation has open boundaries. Ions routinely enter from all boundaries with fluxes of a 4 keV

Maxwellian distribution with a density of 0.1 cm−3 at z = 0 (nsheet). The density varies as a function of z

(shown in Figure 3.2) so that it lowers to 0.025 cm−3 (nlobe) at z = ±2RE as described in Eqn. 3.6. The

values of nsheet and nlobe are based on observations.

B.2 Turbulent Electromagnetic Fields

The turbulent region is confined in x at ±7RE , in y at ±2RE , and in z at ±0.75RE . The boundaries

of the turbulence region are not abrupt. The turbulence is ramped to full amplitude following a cos2 shape

starting with no turbulence at 0.25RE outside of the turbulent region, reaching full strength 0.25RE inside

of the turbulent region. This sub-domain in the simulation allows for a buffer zone between the simulation

boundaries and the turbulent region of ∼ 1RE .

A chief aspect of the test-particle simulation is that the turbulent electromagnetic fields, δB and δE

are designed to mimic those in observations. As described in Eqn 3.3, we employ a set of pseudo-randomized

electromagnetic and electrostatic waves designed to match the measured properties of δB and δE including

amplitude, spectra (Figures B.1a and B.1b), wave speeds (Figure B.1c), coherence time (Figure B.1c), and

coherence scales (see Ergun et al. 2020a. Wave speeds and correlation times are determined using the four

MMS spacecraft.

Three sets of 200 waves are imposed in the simulation domain. Initially, the wave’s frequencies

are logarithmically spaced (0.01 Hz to 50 Hz), then randomly varied by 0.25 (1 sigma) of the frequency

spacing. The wave amplitudes, An, are initially assigned to match the measured spectrum (Figure B.1a),
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then randomly varied by up to a factor of 2 from the initial value. The directions are random. The wave

numbers, kn, are initially assigned such that ω
|kn| matches the measured wave speed (red line in Figure B.1c)

then randomly varied by up to a factor of 3. The directions of kn are randomly assigned in a plane normal to

An. The phase ϕn is randomly assigned from 0 to 2π, As the simulation progresses, the phase is varied as

a function of time and position to mimic the observed correlation time (redline in Figure B.1d). The phase

also varies in position to mimic the observed correlation distance (not shown).

Once An, ωn, kn, and ϕn are determined for δB, we derive the electromagnetic part of δE directly

from Faraday’s law. We create the electrostatic part of δ$E using the same formula (Eqn. 3.3) to match the

measured perpendicular spectrum (Figure B.1b) when summed with the electromagnetic part of δE. The

directions of the individual waves are randomly assigned in a plane perpendicular to the background B,

but, because of the dramatic changes in the direction of δB, a small E|| can develop. We inject a small

correction using Eqn. (3.3) to better recreate the high-frequency part of the E|| spectrum (Figure B.1b). The

electrostatic part dominates the δE spectrum. The evaluation of the coherence lengths and time of δE from

MMS data was done as described in (Ergun et al., 2020b).

As an additional test, we directly applied the measured δB and δE signals to particles in the simula-

tion domain. Under this method, δB and δE vary in time but not as a function of position. To each particle,

we randomly assign a different position in the measured δB and δE vectors (which are filtered from 0.01

Hz to 50 kHz). Ions dwell in the simulation domain for an average of ∼ 30 s whereas MMS data endure

for ∼ 1000 s. The two methods of reconstructing δB and δE render comparable energization rates and flux

distributions, which lends confidence to the subsequent analysis.
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Figure B.1: (a) The measured (black line) and the reproduced (blue line) δB spectra. (b) The measured
(black line) and the reproduced (red and blue lines) δE spectra. (c) The measured speeds of δB signals
versus frequency derived from time delays from the 4 MMS spacecraft. The blue dots are measurements.
The black squares are the averages; the red line a fit of these averages. The red line’s formula is used in the
simulation. (d) The measured correlation times of δB signals versus frequency derived from the 4 MMS
spacecraft (same legend as in the δE case).



Appendix C

Derivation of Linear Bending Wave Theory for Thin Disks

C.1 Equation of Motion for a Ring Particle

We’ll skip here the derivation of the motion of a particle subjected to the force of a central body,

and its resulting elliptical trajectory. This is the two body problem that can be reviewed in Murray &

Dermott (2000) or any Classical Mechanics textbook. The trajectories considered will be perturbations of

this elliptical motion.

C.1.1 Dynamics: Three Body Problem and the Perturbing Function

From Figure C.1 and Newton’s laws we can get the differential equation of motion for all three bodies.

Here, R̈S , R̈i, and R̈M are position vectors from an inertial frame, and i, and M are position vectors

relative to the center of Saturn. The equations of motion are then written as:

MSR̈S = G
MSmi

3
i

i +
GMSMM

3
M

M

miR̈i =
GmiMM

| i − M |3
( i − M )− GMSmi

3
i

i

MMR̈M =
GmiMM

| M − i|3
( M − i)−

GMSMM
3
M

M

where the M and S subscripts represent Mimas and Saturn. We want to write the interactions in terms of

¨i, which is the acceleration of a ring particle relative to Saturn. So this is a relative coordinate system, but
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Figure C.1: We begin our treatment by considering the three body problem represented here. mi represents
the ring particle for which we want to know the motion.
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it is for all intent and purposes inertial.

¨i = R̈i − R̈S =
GMM

| M − i|3
( − M )− G(MS +mi)

3
i

i −
GMM

3
M

M (C.1)

The first term from the right hand side of Eqn. (C.1) is the relative acceleration of the ring’s particle

due to the satellite (note that the direction of the force is outward). The second represents the acceleration

due to the central body and the third term is the correction concerning the acceleration of the central body

due to the third body. This last term is dropped as Saturn is much more massive than Mimas. The first term

of the right hand side of Eqn. (C.1) is known as the perturbing acceleration.

In this work we mostly use the gravitational acceleration. g = F
m

gM =
GMM

| M − i|3
( i − M ) (C.2)

gS = −G(MS +mi)
3
i

i ≈ −G(MS)
3
i

i (C.3)

where i represents the ith ring particle, and where M and S subscripts represent Mimas and Saturn, respec-

tively. We will also use the gravitational potential of Saturn when convenient

ΦS = −GMS

i
(C.4)

There is an extra term that we have omitted in the equations of motion, and this is the effect of the ring

itself on the ring particle. If we consider the ring as a body, then this would be a 4 body problem. Dealing

with the term is probably the most convoluted aspect of the equation of the bending wave and I’ll do so in

detail later. For the sake of the completeness of the equations of motion presented in this section, however,

we introduce here the expression for the self-gravity of a mass element dm′, located at a ′ exerted at a point

on the ith particle at a point i:

gR = −G
∫
dm′

′ − i

| ′ − i|3
(C.5)
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where we are integrating all the differential mass elements dm′ that form the rings to find their influence

on the ring particle at i. We now write the equation of motion for the ith ring particle, relative to Saturn’s

center:

ï = gM + gS + gR (C.6)

In the case of bending waves, we are interested in the vertical acceleration. We use cylindrical coor-

dinates (r, θ, z) centered at Saturn, where the z-axis is perpendicular to the ring’s mean plane. The vertical

acceleration in then:

d2zi
dt2

= gM · k̂ + gS · k̂ + gR · k̂

where k̂ is the unit vector in the vertical direction. Finally, we wish to change this inertial coordinate system

by a system that is corotating with the ring of Saturn. Let Ω be the mean motion frequency of the ring at

a position i from Saturn. We can transform into a rotating frame by taking a material derivative instead

of the time derivative. This will describe the kinematic effects seen as we ride with the particle’s (circular)

mean motion.

Dzi
Dt

=
dzi
dt

+ (vi · ∇)zi = [(riΩθ̂ + ṙir̂ + żik̂) · ∇]zi

where θ is the azimuthal coordinate. Since the frame in question is the mean motion of the particle, ṙ = 0

and ż vanish. Moreover, the azimuthal component of ∇ is 1
r
d
dθ

Dz

Dt
= (

d

dt
+ rΩ

1

r

d

dθ
)z

where we have dropped the subscript from i and it is implicit that the coordinates refer to a ring particles,

unless it is stated otherwise. Finally we get the equation of motion for the vertical coordinate:

(
d

dt
+Ω

d

dθ
)2z = gMz(r, θ, z, rM , θM , zM ) + gSz(r, θ, z) + gRz(r, θ, z) (C.7)
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This is the equation for the vertical motion of a particle in the ring, described in a frame that co-rotates

with this particle’s unperturbed orbit. To solve this equation we need an expression for the gravitational

terms in the right-hand side of Eqn. (C.7). The place to start are Eqns. (C.2), (C.3), (C.4), and (C.5).

The rest of this section will be dedicated to linearizing these term in z to then have a solvable differential

equation for the vertical coordinate of a ring particle in a bending wave.

C.1.2 List of assumptions made

• The center of Saturn is an inertial frame, i.e. the force of Mimas in Saturn is negligible as well as

the force of the rings on Saturn.

• The rings are smooth enough to be describable with a continuous surface mass density σ which is

azimuthally symmetric.

• The mean motion angular velocity of the rings particle is close to the Keplerian frequency. i.e

particles in the rings move azimuthally approximately at an uniform circular motion rate. The

deviations from the Keplerian frequency of the mean motion of a particle around Saturn is due

to the oblateness of Saturn (the J moments), and we will make this deviation explicit in the next

section.

C.2 Derivation of the gravitational acceleration terms

C.2.1 gSz : Acceleration due to Saturn.

Saturn’s potential (ΦS) is not spherically symmetric, as Saturn significantly deviates from being a

sphere (Jacobson et al., 2006). Because of this a particle that displaces from the equatorial plane will have

an acceleration that differs from the centripetal acceleration of a central force. Particularly, the component

of the gravitational acceleration (gSz) that brings the particle back to the plane will be stronger than that

expected from an spherical body, and hence the speed at which the particle returns to the plane will be

bigger than the expected value of half an orbit. These results will be derived in this section.

We start with start with Eqn. (C.4), the potential of Saturn. If Saturn were spherical:
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ΦS = −GMS

where MS is the total mass of Saturn and i the Saturncentric distance of a ring particle. We now consider

that the distribution of Saturn is not spherical, and hence we have to integrate some density function over

this non-spherical but axisymmetric volume

ΦS = −G
∫

1

R
ρ( ′)dV ′ (C.8)

where R = 2+ ′2− 2 ′ cosϕ, where ϕ is the angle between and ′ which are position vectors whose

origin in the center of Saturn (for our case ′ takes values less or equal to Saturn’s radius and in greater

than Saturn’s radius). The primed variables are the ones to be integrated over the volume V ′. Note that the

potential only depends on the polar angle ϕ which assumes the cylindrical symmetry of the potential ΦS . In

general, 1
R can be expanded as Legendre Polynomials in the variable cos(ϕ) (Griffiths, 2013).

1

R
=

1
∞∑
n=0

(
′
)nPn(cosϕ)

To write this in terms of the latitudes α and α′ weJ use the addition theorem of spherical harmonics

(Arfken & Weber, 2005), which implies for our axisymmetric case that:

Pn(cosϕ) = Pn(sinα′)Pn(sinα)

The potential of Saturn (Eqn. C.8) becomes:

ΦS = −G

[ ∞∑
n=0

1
(n+1)

∫
′nPn(sinα′)ρ( ′)dV ′

]
Pn(sinα) (C.9)

Expanding the Legendre polynomial and writing their coefficients coming from the integrals as

Jn ≡ − 1

MSRnS

∫
′nPn(sinα′)ρ( ′)dV ′

we get
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ΦS = −GMS

[
1−

∞∑
n=2

Jn

(
RS
)n

Pn(sinα)

]
where RS is the radius of Saturn and α is the complement of the polar angle in spherical coordinates (hence

sinα = z ). Expanding up to J4 and keeping terms up to sin2 α:

ΦS ≈ −GMS

[
(1 +

1

2
J2

(
RS
)2

− 3

8
J4

(
RS
)4

)− 3

2
J2

(
RS
)2

sin2 α+
30

8
J4

(
RS
)4

sin2 α

]
(C.10)

To this potential we must add the centrifugal force effects due to the orbiting of the ring’s particle

around Saturn to obtain an effective potential. Assuming centrifugal equilibrium (Ω2 = − 1 ∂ΦS
∂

∣∣∣
α=0

),

which is to say that the orbit around Saturn remains nearly circular, the centrifugal potential is given by:

Φcf =
sin2 α

2

(
∂ΦS
∂

)
α=0

Expanding this up to J4 we get:

Φcf ≈ −GMS sin
2 α
[
−1

2
− 3

4
J2

(
RS
)2

+
15

16
J4

(
RS
)4
]

Adding this to the gravitational potential (Eqn .C.10) we find that:

ΦSeff
≈ −GMS

[
1 +

1

2
J2

(
RS
)2

− 3

8
J4

(
RS
)4

+ sin2 α

(
−1

2
− 9

4
J2

(
RS
)2

+
75

16
J4

(
RS
)4
)]

The acceleration in the z-axis then becomes (up to 2nd order in sinα):

z̈ = −∂ΦSeff

∂z
= − ∂ΦSeff

∂(sinα)

∂(sinα)

dz

z̈ =
GMS sinα

2

[
−1− 9

2
J2

(
RS
)2

+
75

8
J4

(
RS
)4
]

Now, we consider the acceleration of a particle that deviates a distance ξ from the equatorial place

and expand −∂ΦSeff
∂z about z = 0
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z = z0 + ξ = ξ

ξ̈ = −
(
∂ΦSeff

∂z

∣∣∣∣
z=0

+
∂2ΦSeff

∂z2

∣∣∣∣
z=0

)
ξ

The first term in the expansion vanishes, leaving:

ξ̈ = − ∂2ΦSeff

∂z2

∣∣∣∣
z=0

ξ

This describes a simple harmonic oscillator with frequency:

∂2ΦSeff

∂z2

∣∣∣∣
z=0

≡ µ2 =
GMS

r3

[
1 +

9

2
J2(

RS
r

)2 − 75

8
J4(

RS
r

)4
]

(C.11)

where µ is defined as the vertical frequency of the particle at a cylindrical radius r, RS is the radius of

Saturn, and where the J moments can be measured by observing how Cassini’s trajectory differs from that

caused by an spherical potential. In this work I use the values in (Jacobson et al., 2006).

Finally, we will make the assumption that the particle in question will oscillate at the forcing fre-

quency ω provided by the moon Mimas. That is, a single particle in the ring will behave like an forced

oscillator with forcing frequency ω and natural frequency µ. The forcing frequency dominates in the steady-

state solution, and hence we write:

z = Re[h(r)ei(ωt−mθ)] (C.12)

So we can write gSz as:

gSz = Re[−µ2h(r)ei(ωt−mθ)] (C.13)

C.2.2 gMz: Acceleration due to Mimas

We start with Eqn. (C.2) in cylindrical coordinates and dotting with k̂.
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gM = − GMM

[(z − zM )2 + r2 + r2M − 2rrM cos(θ − θM )]
3
2

( − M ) · k̂

where we have dropped the i subscript and now the particle’s coordinates are represented by the variables

(r, θ, z). Moreover, we want to know Mimas’ force on a particle in the ring’s plane, so z = 0:

gMz =
GMM

[(zM )2 + r2 + r2M − 2rrM cos(θ − θM )]
3
2

zM

We make our first assumption, which is that Mimas motion only deviates linearly from circular motion

around Saturn, which corresponds to small displacements on the coordinates about a frame of reference

centered at the position of the circular orbit (this is called the perturbed guiding center approximation)

Eventually, we will replace the coordinates of Mimas by functions of time and hence eliminate them from

Eqn. (C.7), making the equation solvable. In order to do this, we write the coordinates as:

rM = aM + δ

θM = (ΩM + ϵ̇)t

zM = ξ

where t = 0 at the ascending node of Mimas and the θM = 0 at the ascending node. The acceleration up to

second order terms is:

gMz = gMz(aM ,ΩM t, 0)+
∂gMz

∂rM

∣∣∣∣
0

δ+
∂gMz

∂zM

∣∣∣∣
0

ξ+
∂gMz

∂θM

∣∣∣∣
0

ϵ+
∂2gMz

∂zM∂θM

∣∣∣∣
0

ξϵ+
∂2gMz

∂zM∂rM

∣∣∣∣
0

ξδ+O(3)

where the subscript 0 denotes the evaluation of the partial derivative at rM = aM , θM = ΩM t, and zM = 0,

and where we have not written the terms corresponding to ∂2gMz

∂θ2M
, ∂2gMz

∂r2M
, and ∂2gMz

∂θMrM
because they are

third order in smallness (since zM is small, these derivatives are themselves one order in smallness and

when multiplied by the second order displacements the terms become third order in smallness). The final

expression is:
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gMz ≈ GMMξ

∆3/2
− 3GMMξ

∆5/2
∗ [aM − r cos(ΩM t− θ)) ∗ δ − aM ∗ r sin(ΩM t− θ) ∗ ϵ] (C.14)

where ∆ = a2M + r2 − 2aMr cos (ΩM t− θ)

Now we’ll replace θM , zM and rM by their equations of motion, which will be sinusoidal deviations

from a circular orbit similar to equation those implied by Eqn. (C.11). In fact, because the circular orbit

perturbation comes from Saturn’s oblateness, the equation for zM is (Eqn. C.11).

ξ̈ = −µ2Mξ (C.15)

With the same linearization technique used for Eqn. (C.11), we can derive the linear equations for the

rM and θM :

d2rM
dt2

− rM ˙θM
2
= −∂ΦS

∂r

d

dt
(r2M

˙θM ) = 0

By linearizing these equation, and the radial gravitational acceleration due to Saturn as

∂ΦS
∂r

=
∂ΦS
∂r

(aM ) +
∂2ΦS
∂r2

∣∣∣∣
aM

δ,

we arrive at the equations (as done in Chandrasekhar 1942):

δ̈ = (− 3

aM

∂ΦS
∂r

+
∂2ΦS
∂r2

)δ (C.16)

ϵ̇ = −2
δ

aM
ΩM (C.17)

Note that the first equation is a simple harmonic oscillator equation with natural frequency κ2M =

(− 3
aM

∂ΦS
∂r + ∂2ΦS

∂r2
). Solving these equations we find:

δ = −aMeM cos(κM (t− to))
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ϵ = eM2
ΩM
κM

sin(κM (t− to))

ξ = aM sin(iM ) sin(µM t)

where we have written µM instead of µ (from Eqn. C.11) to specify that we speak of Mimas’s vertical

frequency where t0 is chose such that t = 0 at the ascending node (ξ = 0), and κM is given to the fourth

multipole moment by:

κM =
GMS

r3
[1− 3

2
J2(

RS
r

)2 +
45

8
J4(

RS
r

)4]

where RS is the radius of Saturn and MS its mass. Now we can substitute ϵ and δ in Eqn. (C.14) and finally

get:

gMz = aM sin(iM ) sin(µM t)[
GMM

∆3/2
−

3GMMa
2
M

∆5/2
(− r

aM
cos(ΩM t−θ)+1)eM cos(κM (t− to))+

r

aM
sin(ΩM t−θ)eM2

ΩM
κM

sin(κM (t− to))]

(C.18)

The next step is to Fourier expand these ∆ denominators on ΩM t− θ to find the overall frequency of

the force which will depend on a linear sum of the vertical, horizontal and orbital frequencies. The forcing

function will then be a sum of exponentials. This will cause a periodic perturbation in the disk that will

launch a wave. The coefficients of this expansion have a special name: Laplace Coefficients bi (Brouwer &

Clemence, 1961). Specifically, the Laplace coefficients we need are the coefficients of the expansion:

a3M

∆
3
2

=
1

2
b
(0)
3
2

+
∞∑
m=1

b
(m)
3
2

cos[m(ΩM t− θ)] (C.19)

a5M

∆
5
2

=
1

2
b
(0)
5
2

+
∞∑
m=1

b
(m)
5
2

cos[m(ΩM t− θ)]

and they are given by the integrals:
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b(m)
γ (β) ≡ 2

π

∫ π

0
Γ−γ cos(mψ)dψ, m = 0, 1, 2 ...

β ≡ r

aM

Γ ≡ 1 + β2 − 2β cosψ

The strongest vertical resonances in Saturn’s rings still keep the vertical displacements ξ small, such

that keeping the forcing term to first order in smallness has the equation

gMz =
GMM (ξ)

∆3/2
− 3GMM (ξ)

∆5/2
∗ [(−aMr cos(ΩM t− θ) + a2M )δ + aMr sin(ΩM t− θ)ϵ]

become

gMz =
GMMξ

∆3/2
+O(ξ ∗ ϵ) +O(ξ ∗ θ) ≈ GMMξ

∆3/2
=
GMM sin(iM ) sin(µM t)

a2M

(
a3M

∆
3
2

)
Substituting Eqn. (C.19) for ∆ we get:

gMz =
GMM sin(iM ) sin(µM t)

a2M
(
1

2
b
(0)
3
2

+

∞∑
m=1

b
(m)
3
2

cos[m(ΩM t− θ)]) (C.20)

This means that the overall frequency for the strongest vertical force will come from an interaction of

µM and mΩM . Shortly we’ll see that the forcing frequency ω will be given by ω = mΩM ± µM .

The vertical force of the moon describe by Eqn. (C.20) will have an infinite number of frequencies,

but only one will resonate with the rings at a particular radius. In particular, resonance occurs when:

ω −mΩ(rV ) = ±µ(rV ) (C.21)

m(ΩM − Ω(rV )) + µM = ±µ(rV )
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where rV is the radius at which the resonance occurs, and it is defined by Eqn. (C.21).

Eqn. (C.21) states that the condition for resonance is that the forcing frequency ω experienced in the

frame of the particle (that’s why there is a subtraction of mΩ(rV ) in the LHS, it represents a coordinate

transformation into the frame of the particle), has to be equal to its vertical frequency µ(rV ) (the ± sign

just signifies that the subtraction in the LHS can come out negative: this happens when the particle has

an orbit inside the orbit of the moon). For every m we’ll have a different radius that satisfies the above

equation. Only at these resonances do these forces become significant for the dynamics of the rings (Murray

& Dermott, 2000). Therefore, at any given resonant radius we only care about one of the terms of the sum

in Eqn. (C.20): the one with the resonant frequency. Assuming a particular m, we can then write the result

of above’s sum.

gMz =
GMS sin(iM )

(1 + δm0)a2M
b
(m)
3
2

∗ cos(m(ΩM t− θ)) sin(µM t)

where δm0 is the Kronecker delta.

To combine the frequencies we use:

cos(α) sin(β) =
1

2
(sin(α+ β)− sin(α− β)) = Re[

−i
2
ei[m(ΩM t−θ)+µM t] − ei[m(ΩM t−θ)−µM t]]

To subsequently get:

gMz = Re[(−i)GMM sin(iM )

(1 + δm0)2a2M
b
(m)
3
2

ei[m(ΩM t−θ)+µM t] − ei[m(ΩM t−θ)]−µM t]

This corresponds to two frequencies: ω = mΩM ± µM which in turn corresponds to two different

resonances (the inner vertical resonance and the outer vertical resonance; note that µM and µ(rV ) must have

different signature otherwise the condition for resonance becomes rV = rM ). In general, we can write:

gMz = Re[±e−i
π
2
GMM sin(iM )

(1 + δm0)2a2M
b
(m)
3
2

ei[m(ΩM−θ)±µM t]] (C.22)

and since to solve the equation of motion of the wave we will want to write gMz in the form:
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gMz = Re[fMe
i(ωt−mθ)] (C.23)

we compare Eqns. C.23 and C.22 and find that:

fM = ±e−i
π
2
GMM sin(iM )

(1 + δm0)2a2M
b
(m)
3
2

(C.24)

which adds a phase of −π
2 to the forcing frequency with respect to the orbital frequencies. Note that m

is the azimuthal wavenumber since in Eqn. (C.12) we take the response in the rings to be in phase with

the forcing frequency. Apart from indicating the number of times the forcing repeats azimuthally, m also

indicates then the number of times the wave-pattern repeats azimuthally or, in other words, the number

of of spiral arms. Also note that if we replace θ by Ω(rV )t and define ω′ = ω − mΩ(rV ), which is the

forcing frequency as experienced in the frame of the particle, then Eqn. (C.21) (the condition for resonance)

becomes: ω′ = ±µ(rV ).

In the Mimas 5:3 Inner Vertical Resonance (IVR) we take the minus sign for µ(rV ), the plus sign

for µM and m = 4. From this and Eqn. (C.21) we can get the position of the resonance which is rV =

131902 km. We then have for the Mimas 5:3 bending wave.

gMz = Re[e−i
π
2
GMM sin(iM )

2a2M
b
(4)
3
2

ei(ω−mθ)] (C.25)

where b(4)3
2

= 4.12042.

C.2.3 gRz: Acceleration due to the Rings

We begin with the equation:

gR = G

∫
0
dm′

′ −
| ′ − |3

where we are integrating all the area covered by the surface mass density σ to get its influence on the point

r, and where r and r’ are both in the relative coordinate system based at the center of the central body. This

integral was first studied by Hunter and Toomre (Toomre, 1964) in the context of instabilities on disks and
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the below result regarding bent disks was derived, by other means, by Bertin and Mark (Bertin & Mark,

1980).

Note that, on differential form, this look like:

dgR = Gdm′
′ −

| ′ − |3

where dm′ is an the accelerated differential mass; this is just Newton’s law of gravitation. To find the z-

component of this acceleration, we write everything in cylindrical coordinates and take the dot product with

the k vector.

dgRz = Gdm
′ −

| ′ − |3
· k̂ =

Gσ(r′)r′dr′dθ(z′ − z)

(r2 + r′2 − 2rr′ cos(θ′ − θ) + (z′ − z)2)
3
2

F

We saw in the last subsection that the vertical forcing due to Mimas occurs at a temporal frequency ω

and angular wave-number m. Throughout the work we’ll make the linearizing assumption that the response

is at the same frequency. Therefore:

z = Re[h(r)ei(ωt−mθ)] (C.26)

Substituting this into the equation and further linearizing on (z′ − z) (neglecting the (z′ − z)2 term)

we get:

dgRz =
Gσr′dr′dθ′(Re[h(r′)ei(ωt−mθ

′)]− Re[h(r)ei(ωt−mθ))])

(r2 + r′2 − 2rr′ cos(θ′ − θ))
3
2

Now we attempt to write this in the form:

gR(r) = Re[fR(r)e
i(ωt−mθ)] (C.27)

gRz = Re[

∫ ∞

0

∫ 2π

0

Gσr′dr′dθ′(h(r′) cos (m(θ′ − θ))− h(r))

(r2 + r′2 − 2rr′ cos(θ′ − θ))
3
2

ei(ωt−mθ)]

We now use the simplifying substitution: θ′ − θ = ψ
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gRz = Re[

∫ ∞

0

∫ π

−π

Gσr′dr′dψ(h(r′) cos(mψ)− h(r))

(r2 + r′2 − 2rr′ cos(ψ))
3
2

ei(ωt−mθ)] (C.28)

And hence by comparing to Eqn. (C.27) we can deduce that:

fR =

∫ ∞

0

∫ π

−π

Gσr′dr′dψ(h(r′) cos(mψ)− h(r))

(r2 + r′2 − 2rr′ cos(ψ))
3
2

(C.29)

The first approximate solution to this integral came in 1980 by Bertin and Mark (Bertin & Mark,

1980); later, Frank Shu published another way to get to the result (Shu, 1984a). The approximations done in

both papers are also going to be assumed to hold in our case, although there is some observational evidence

that they may be braking down on the Mimas 5:3 bending wave (Sega Neuman et al., 2019). To set up the

approximations used, I start by using the identity cos(mψ) = 1− sin(mψ
2 ) to separate the two integrals.

fR =

∫ ∞

0

∫ π

−π

Gσ(r′)r′dr′dψ(h(r′)− h(r)− h(r) sin(mψ
2 )

(r2 + r′2 − 2rr′ cos(ψ))
3
2

fR =

∫ ∞

0

∫ π

−π

(h(r′)− h(r))Gσ(r′)r′

(r2 + r′2 − 2rr′ cos(ψ))
3
2

dr′dψ −
∫ ∞

0

∫ π

−π

sin(mψ
2 )h(r)Gσ(r

′)r′

(r2 + r′2 − 2rr′ cos(ψ))
3
2

dr′dψ (C.30)

fR =

∫ ∞

0
Gσ(r′)r′dr′(K0(h(r

′)− h(r))− h(r)Nm)

where

K0 =

∫ π

−π

dψ

(r2 + r′2 − 2rr′ cos(ψ))
3
2

Nm =

∫ π

−π

dψ sin(mψ
2 )

(r2 + r′2 − 2rr′ cos(ψ))
3
2

The first approximation is to argue that h(r), in its wave nature, will vary quickly with r, with equal

parts negative (incursion below the ring’s plane) and positive (above the rings plane). The symmetric aspect

of h(r) along the z and r axes then makes the second integral in Eqn. (C.30) vanish. This brakes down close

to resonance where the wavelength is long, and may be responsible for the inadequacy of the dispersion
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relation seen in the first three cycles of the wave (Sega Neuman et al., 2019). Nevertheless this close-to-

resonance correction will not be done here because it escapes the scope of this appendix, and hence we take

Nm to vanish everywhere. To solve the Km integral we consider that most of the self-gravitating effects are

local (due to nearby ring particles), such that r ≈ r′ and cos(ψ) ≈ 1− ψ2

2 and the effects of integrating from

π to −π can be achieved by integrating from δ to −δ, where δ is a small angle such that the cos(δ) ≈ 1− δ2

2 .

K0 =
1

r′3

∫ δ

0

2dψ

( (r−r
′)2

r′2 + r
r′ψ

2)
3
2

where we have used the fact that the integrand is symmetric. We can find this integral in tables.
∫

dx

(a+bx2)
3
2
=

x
a
√
a+bx

K0 =
2

(r′3 (r−r
′)2

r′2 )

δ√
(r−r′)2
r′2 + r

r′ δ
2

By taking r′−r
r′ to be small and r

r′ ≈ 1, δ√
(r−r′)2

r′2
+ r

r′ δ
2

approaches 1 and we get

K0 =
2

r′(r − r′)2
r ≈ r′, δ < 1 (C.31)

Now we have to integrate K0 with respect to the radial coordinate, but we know it diverges at r = r′

so the integral will diverge. Encountering this divergence is common when dealing with 1
r2

laws and we can

side step it by using residue calculus and extending the integral into the complex plane, so to exclude the

diverging point from the integral. First, since r ≈ r′, we can write h(r)/(r − r′) ≈ dh
dr . Second replace the

integrated variable with the complex variable z (not the vertical coordinate in this case). Moreover, we take

σ to be constant or slowly varying so that we can pull it out of the integral. We also note that h(r′) and dh
dr

are not defined in the negative real axis as r′ is a ray, hence we complement h(r′) to be zero when r′ < 0

and trace the contour seen in figure C.2. Finally, we take h(r′) to take a WKBJ form, as it is a wave profile

with slowly varying amplitude (h(r) = A(r)e
∫
(ik)) and to ensure the integrand converges at infinity to 0,

we close the integral either in the upper or lower half of the imaginary plane depending on the sign of k.

The only contributing part of the contour is effectively the section in the real line from r = 0 to r = ∞, so

we can write:
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Figure C.2: The integral is taken about the drawn contour, where the semi-circle drawn to avoid the singular
point has been exaggerated. In this case the integral is closed in the lower half of the complex plane such
that the function h(r) = A(r) exp[i

∫
k(dx+ idy)] converges to 0 at infinity and remains analytic there.

fR =

∫ ∞

0
Gσ(r′)dr′K0 = Gσ(r)

∮ dh
dz (z)

z − r
dz

where the countour integral transverses the real line and ± complex infinity depending on the sign of k (see

Figure C.2). Then, Cauchy Integral Formula states that for a point a inside a contour C:

2πif(a) =

∮
f(z)

z − a
dz

So the integral becomes

fR = i2πGσ(r)s
dh

dr
(C.32)

where s = sign(k) and it corresponds to closing the contour in the upper half in a counterclockwise path if

k is positive or in the lower half in a clockwise path if k is negative.

C.2.4 List of assumptions made

• The only relevant frequency of the force exerted by Mimas is the one picked out by the particles in

the resonant orbit (just the b(4)3
2

coefficients survives).

• The particles react to the forcing at the same frequency as the forcing function (z = h(r)ei(ωt−mθ)))
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• The WKBJ form for h(r) (h(r) = Re[A(r)ei
∫
kdr]) is valid asymptotically (used in the complex

integral of equation 31).

• To solve the integrals in Km C.30 integral we only consider that most of the self-gravitating effects

are local (due to nearby ring particles), such that r ≈ r′ and cos(ψ) ≈ 1− ψ2

2 .

• The second term in Eqn. (C.30) vanishes because h(r) is equal parts positive and negative along

r, and it varies much quickly than Nmσ(r). Mathematically, this can be express by saying that if

we divide the integral
∫∞
0 Nmh(r

′)dr′ into a piece-wise integral made by each of this recurring

periods of the function h(r).

∫ ∞

0
Nmh(r

′)σ(r′)dr′ =

∫ λ1

0
h(r′)Nmσ(r

′)dr′ +

∫ λ2

0
h(r′)Nmσ(r

′)dr′... (C.33)

At each of these integrals, Nm and σ can be taken to be constant, and the integrals
∫ λi
0 h(r′)dr′ van-

ishes. Hence the whole thing vanishes. This may not hold near resonance where h(r) does not vary slowly

within one wavelength since the wavelength is relatively big (∼ 100 km), and a failure in the dispersion

relation close to resonance may indicate a change in surface density σ over the first cycles of the wave. Nm,

on the other hand can be shown to in fact be slow varying there. We can solve the integral for Nm analyti-

cally by making similar approximations as the ones used for Km to get Eqn. (C.31) (this way of solving the

integrals is vaguely hinted at in Shu (1984b)). That is, take ψ to be small and r ≈ r′.

Nm =

∫ δ

0

dψ4 sin(mψ
2 )

(r2 + r′2 − 2rr′ cos(ψ))
3
2

Nm =

∫ δ

0

dψ(mψ)2

r3( (r−r
′)2

r2
− r′

r ψ
2)

3
2

Nm =
m2

r3

∫ δ

0

ψ2dψ

( (r−r
′)2

r2
− ψ2)

3
2

We can find a solution in a table of integrals or integrating software.
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Nm =
m2

r3
[(ln(

√
(r − r′)2

r2
+ δ2)− ψ√

(r−r′)2
r2

+ δ2
− ln(

√
(r − r′)2

r2
+ 0) +

ψ√
(r−r′)2
r2

+ 0

We take r−r′
r2

≈ 0 and O(δ2) ≈ 0

Nm = −m
2

r3
ln(

√
r

|r − r′|
)

While this diverges at resonance, the small value of m2

r3
and the slowly changing nature of the loga-

rithm assures that this expression can be pulled out of the integrals above.

C.3 The Forced Bending Wave Equation

We return now to the equation of motion (Eqn. C.7) and substitute our expressions for the g’s and z

by using Eqns. (C.13), (C.23) and (C.27).

(
d

dt
+Ω

d

dθ
)2z = gSz(r, θ, z) + gMz(r, θ, z, rM , θM , zM ) + gRz(r, θ, z)

(
d

dt
+Ω

d

dθ
)2Re[h(r)ei(ωt−mθ)] = Re[−µh(r)ei(ωt−mθ)]+Re[fMe

i(ωt−mθ)]+Re[fR(r)e
i(ωt−mθ)] (C.34)

i2(ω −mΩ)2h(r) = −µ2h(r) + fM + fR(r)

where we have canceled out the ei(ωt−mθ) in both sides of the equation. Now we substitute in Eqns. (C.24)

and (C.32):

−(ω −mΩ)2h(r) = −µ2h(r) + e−i
π
2
GMM sin(iM )

2a2M
b
(4)
3
2

+ i2πGσ(r)s
dh

dr
(C.35)

The term e−i
π
2
GMM sin(iM )

2a2M
b
(4)
3
2

is a constant and, in its place, I’ll just leave it as fM from now on. We

further simplify Eqn. (C.35) by writing D = −(ω −mΩ)2 + µ2
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−i2πGσ(r)sdh
dr

+D(r)h(r) = fM (C.36)

This equation describes the wave-profile h(r) of a bending wave given that the assumptions above

hold. Note that the two terms in the LHS are acting as restoring force. In the wave propagating region

D < 0, that is, the vertical frequency of the particle as experienced by an orbiting particle is less than the

forcing frequency; this allows the particles to better propagate the gravitational perturbance of Mimas and

form a wave (we’ll see that if D > 0 the solution becomes exponentially decaying and the wave doesn’t

propagate).

Note that both terms act as restoring forces, but one depends on the slope of the wave, instead of

just on the displacement from equilibrium. The restoring property of the gravitational acceleration terms is

independent of whether we can cancel the exponentials in Eqn. (C.34) or not. That the vertical response of

the particle (z̈(t)) is at the frequency of the forcing function is motivated by interpreting this restoring force

as the cause of harmonic motion; the forcing and the response do not have to be in phase however, since the

amplitude f and h can be complex and will bring phases with them.

Now we are going to non-dimensionalize this equation by making the change of variables r = rV (x+

1). We note that:

dh

dx
=
dh

dr

dr

dx
=
dh

dr
rV

.

Moreover, we linearize the factor D(r) by expanding it about resonance rV . Recall that D = 0 at

resonance:

D ≈����:0
D(rV ) + rV

dD

dr
|rV x = rV

dD

dr
|rV x (C.37)

so the equation of motion becomes:

−i2πGσ(r)sdh
dx

1

rV
+
dD(r)

dr
|rV xrV h(x) = fM (rV )
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I write fM (rV ) to remind the reader that the forcing was derived only at resonance. That is, only at

resonance does all the Laplace coefficient vanish except for the b(4)3
2

term. This is the assumption that the

forcing is only significant close to resonance and that it keeps it’s value all throughout the wave propagating

region.

We can simplify the above equation by writing

D ≡ rV
dD

dr
|rV (C.38)

Then, we divide everything by D and further defining some simplifying constants (as done in Shu

et al. (1983) and Shu (1984a)):

ε ≡ 2πGσ(rV )

DrV
(C.39)

LV ≡ fM (rV )

D
(C.40)

where fM (rV ), given in Eqn. (C.24), is the amplitude of Mimas forcing at the resonance radius rV , and

σ(rV ) is the surface density of the ring at resonance. Substituting Eqns. (C.38), (C.39), and (C.40) into Eqn

(C.35), and recalling that the Mimas 5:3 wave travels inwards (s = −1), we finally get:

iε
dh

dx
+ xh = LV (C.41)

This is the most reduced version of the equation of motion for the bending wave. It is solvable by the

method of integrating factors, by using the factor in question I = e
∫
p(x)dx = e

∫
x
iε
dx = e

x2

2iε and integrating

both sides of the equation, we get:

he
x′2
2iε

∣∣∣∣x
∞

= −
∫ x

∞

iLV
ε
e

x′2
i2ε dx′

h(x)−��
��*0

h(∞) = −e
ix2

2ε

∫ x

∞

iLV
ε
e−

ix′2
2ε dx′ (C.42)

where the lower bound of the integral is given by the boundary condition, which is that h(x) → 0 as x→ ∞
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This requirement comes from the fact that, away from resonance, fM = 0, which yields the equation:

i2πGσs
dh

dr
= [(ω −mΩ)2 − µ2]h(r)

Sufficiently away from resonance we can safely take h(r) as slowly varying in amplitude and wave-

length, and hence it takes its WKBJ form: h ≈ Re[A(r)ei
∫
kdr] ≈ Re[Aei

∫
kdr] and hence:

dh

dr
= ikh(r)

for positive k. Or we can write

dh

dr
= is|k|h(r) ; s = sign(k)

for any k.

So we get for the free bending wave equation:

(ω −mΩ)2 = µ2 + 2πGσ|k| (C.43)

or

−D = 2πGσ|k|

At r → ∞, D will be positive, so the LHS will be negative. In fact, in the case of an inner vertical

resonance, like the Mimas 5:3, D is positive radially away from resonance for a free wave. This is because

the vertical frequency of a particle becomes greater than the forcing frequency as experienced by the particle

in its frame. If one is sufficiently away from resonance such that Eqn. (C.43) holds, and D < 0, then k is

complex. If we don’t impose that h(x) = 0 as x → ∞ then it would diverge. Finally, it is customary to

write Eqn. (C.42) in terms of the variable ξ = −sεx√
2|ε|

with sε ≡ sign(ε) = 1 for the Mimas 5:3 bending

wave.
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h(x) =
iLV√

|ε|
2π

eiξ(x)
2 1√

π

∫ ξ(x)

−∞
e−iξ

′2
dξ′ (C.44)

(note that the change of variables brings out a factor of −
√
2|ε| from the differential which cancels the

minus sign present in the RHS of Eqn. (C.42)). From this expression we can extract the physical amplitude,

which is:

AV =
iLV√

|ε|
2π

which for the Mimas 5:3 and a surface density σ = 363Kg
m2 we get AV = 783.4m or in terms of the surface

mass density:

AV =
14926Kg

1
2

m√
σ

The integral in Eqn. C.44 is called a Fresnel integral and can only be solved numerically. In practice,

this is usually done via the Fresnel Sin (S(u)) and Cosine (C(u)) functions and the identity:

√
π

2
C

(√
2

π
u

)
+ i

√
π

2
S

(√
2

π
u

)
≡
∫ u

0
eiη

2
dη

where

C

(√
2

π
u

)
=

√
2

π

∫ u

0
cos η2dη

S

(√
2

π
u

)
=

√
2

π

∫ u

0
sin η2dη

we hence write Eqn. C.44 as:

h(ξ) =
AV√
π
eiξ

2

(∫ 0

−∞
e−iξ

′2
dξ′ +

∫ ξ

0
e−iξ

′2
dξ′
)

h(ξ) =
AV√
2
eiξ

2

[(
1

2
− i

2

)
+ C

(√
2

π
ξ

)
− iS

(√
2

π
ξ

)]
(C.45)
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Now that we have derived the wave profile for the bending wave, the only thing left to be done is to

consider one last interaction between the affecting ring particles: viscosity.

C.3.1 List of Assumptions Made

• Centrifugal equilibrium of a particle in the ring plane. Namely, that the azimuthal mean motion

frequency arou s given by Ω =

√
− 1 ∂ΦS

∂

∣∣∣
α=0

(if this weren’t true we would observe significant

radial displacement of the rings so the assumption is well warranted)

• The forcing fM is only significant close to resonance and that it keeps the same value throughout

the wave propagating region.

• Eqn. (C.38) is valid for the wave propagating region. That is, D varies slowly in the wave-

propagating region where rV x = (r − rV ) is also small. is like an index as refraction, which

will control the wavelength of the wave as it propagates. This goes back to assuming that the

wavelength varies relatively slowly, or rather, that D varies slowly in one wavelength in the wave

propagating region. Numerically, D is made of frequencies which go as 1
r3

and this fraction be-

comes smaller with higher order derivatives. Since r − rV is about 200 km at most, and r ∼ 105

km, this is a good approximation close to resonance. Far from resonance the wave is damped, and

hence no issues arise. Note that If D is slow-varying over the extent of one wavelength, then taking

the WKBJ form for h(r) may also be justified there.

C.4 Viscosity

C.4.1 Shear Viscosity

The last interaction to be included in Eqn. (C.7) pertains to the contact forces of adjacent particles

within the ring. Through collisions, angular momentum is transferred from the wave to individual particles.

This occurs due to the shear in the vertical velocities along the radial direction. Fluid mechanics yields, for

the force due to this shear:
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gν = ν
∂2ż

∂r2

Adding this to the equation of motion:

(
d

dt
+Ω

d

dθ
)2z = +gSz(r, θ, z) + gMz(r, θ, z, rM , θM , zM ) + gRz(r, θ, z) + ν

∂2ż

∂r2

We now note that ν ∂
2ż
∂r2

= ν = iω′ d2h(r)
dr2

ei(ω
′t−mθ)

We use this to get the new from of Eqn. (C.36).

−i2πGσ(r)sdh
dr

+D(r)h(r) = fM + iνω′d
2h(r)

d2r

Similarly to Shu (1984a), I assume that the WKBJ form holds even close to resonance, but not nec-

essarily at resonance. For this we consider the bending wave to be force-free, and hence fM only exists

near resonance. This is controversial and we do it heuristically, but the slow varying D, and the nature of

resonant forcings (which are very important at resonance and quickly become irrelevant for the dynamics as

one moves away), suggest this might work. Moreover, to further simplify we write ω′ = (ω −mΩ). With

this, we have modification to the free wave dispersion relation (Eqn. C.43):

D + 2πGσsk = −iνω′k2 (C.46)

Damping is associated with an imaginary part of the wave-number. To solve for this imaginary part

we write:

k = kr + iki −→ k2 = (kr + ikZ)
2 = k2r + i2krki − k2i

and Eqn. (C.46) becomes:

D + 2πGσskr + i2πGσki = iνω′k2r(1 + 2i
ki
kr

− k2i
k2r

) (C.47)

Now, if ki where comparable to kr, we would have some propagation in the evanescence region (away

from Saturn), which we don’t observe (Gresh et al., 1986), so ki << kr. We further assume that ν is small
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such that the wave in underdamped (it completes many cycles before dying), which we also observe (Gresh

et al., 1986). The wave being underdamped also shows that ki << kr: the wavelength is much shorter than

the damping length. This implies that
�
���

0

ν kikr and
�
��7

0

k2i
k2r
), then we have:

D + 2πGσskr + i2πGσki = iν(ω −mΩ)k2r (C.48)

Now we group the imaginary and real parts of this equation. First, the real part:

D + 2πGσskr = 0

kr =
D

2πGσ
(C.49)

Inner vertical resonances like the Mimas 5:3 create waves that travel inward, and hence s = −1.

Plugging this in into the equation obtained from grouping the imaginary terms of Eqn. (C.48):

2πGσki = −ν(ω −mΩ)(
D

2πGσ
)2

So we finally get for ki:

ki = −ν(ω −mΩ)D2

(2πGσ2)3
(C.50)

How does this result in a damping factor? Recall that we assume the WKBJ form:

h(r) = A(r)e
i
∫
krdr+

∫
ν ω′D2

(2πGσ)3
dr

Now we concentrate on the integral:∫
ν

ω′D2

(2πGσ)3
dr = ν

1

(2πGσ)3

∫ r

rV

ω′D2dr (C.51)

where we assume that σ3 does not vary significantly with r compared to D2 so that we can pull 1
σ3 out

of the integral. We expand the integrand in a Taylor series about resonance and linearize up to the first

non-vanishing term (recall that ω′|rV = (ω −mΩ)|rV = −µ and D(rV ) = 0):
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(−µ+rV
∂

∂r
x)(����*

0
D2|rV +

���
����*0

2(
∂D

∂r
D)|rV (rV x)+����������:0

(D
∂2D

∂r2
)|rV (rV x)

2+(
∂D

∂r
)2|rV (xrV )

2) ≈ −µ(∂D
∂r

)2|rV (rV x)
2

After doing the change of variables x = r−rV
rV

; dr = dxrV , and recalling Eqn. (C.38), the integral

becomes:

−µrVD2

∫ x

0
x′2dx′ = −µrVD

2

3
x3

Then, the exponential decaying factor becomes:

exp

∫
ν

ω′D2

(2πGσ)3
dr = exp−(

rVD2µν

(2πGσ)33
x3) (C.52)

This is the damping due to the vertical shear in the radial direction, which has a functional dependency

of e−( x
xvis

)3 , where xvis = 3

√
(2πGσ)33
D2rV µν

is the dimensionless damping length. This multiplies Eqn. (C.44) to

yield the final expression for the wave profile:

h(x) =
iLV√

|ε|
2π

exp−(
rVD2µν

(2πGσ)33
x3)e

i( −x√
2ε

)2 2√
π

∫ −x√
2ε

−∞
e−iξ

′2
dξ′ (C.53)

where LV is defined in Eqn. (C.40), D is Eqn. (C.38), ε in Eqn. (C.39), rV is the resonant radius, σ the

surface density, µ the vertical frequency at resonance, ν the kinematic viscosity of the rings, x is the radial

coordinate centered at resonance normalize by the resonant radius (x = r−rV
rV

), and G the gravitational

constant. Multiplying by the propagator ei(ω
′t−mθ) we get the final liner theory expression for the vertical

position, z, of a ring particle as a function of time (t), its azimuthal position (θ) and distance from resonance

(x).

z(t, θ, x) =
iLV√

|ε|
2π

exp−(
rVD2µν

(2πGσ)33
x3)e

i( −x√
2ε

)2
ei(ω

′t−mθ) 2√
π

∫ −x√
2ε

−∞
e−iξ

′2
dξ′ (C.54)
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C.4.2 List of Assumptions Made

• The kinematic viscosity of fluid mechanics (which assumes a smooth ring) is adequate to represent

the effects of collisions in the bending wave.

• The WKBJ form of the wave profile holds everywhere in the wave propagating region, including

near resonance.

• σ3 does not vary significantly with r compared to D2

• The wave in underdamped; the wavelength is significantly shorter than the damping length (ki <<

kr).



Appendix D

Self-gravity Wakes as Rigid Bodies and the Equilibrium Pitch-angle

D.1 The Tidal and Keplerian Torques

We begin by assuming the wakes to be rigid and computing the different torques that may change

their orientation over time. Self-gravity wakes (SGW) are influenced by a tidal torque due to Saturn—which

occurs due to the changes of Saturn’s gravitational field along the length of the wake— and the torque due

to the Keplerian shear. The tidal torque tends to align the long-axis of satellited towards the radial, pointing

at the central body. The Keplerian shear torque occurs due to the collisions of particles with SGW. This

is a necessary consequence of assuming the wakes to be rigid. Since all particles in the wake orbit at the

frequency of the wake’s center of mass (CM), then the particle radially in, and radially out will have a

relative speed with respect to the rest of the flow: the radially in particles orbiting faster, and the others

slower. Hence, the Keplerian shear torque attempts to point the wake in the azimuthal direction. Both

torques will depend on the orientation of the wake θ (the angle between the long axis of the wake and the

azimuthal), and hence at θeq the magnitude of both torques will equilibrate.

We first derive the tidal torque coming from the tidal force on a satellite (Murray & Dermott, 2000):

Ftidal = 3
GMS

a3
y′ ∗ sin θ cos θρRocheHWdy′

where a is the distance from Saturn’s center, G the gravitational constant, MS the mass of Saturn, ρw is the

bulk density of the wake, θ the angle of the long-axis of the SGW with the azimuthal, L is the major-axis of

the wake, H is the vertical axis and W the minor-axis. The integration variable y′ is the distance along the

long-axis taken from the center of mass of the wake. The torque due to self-gravity wakes then becomes:
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τtidal = 2
GMS

a3
sin θ cos θ

(
L

2

)3

∗ ρwHW (D.1)

The Keplerian shear torque requires a more lengthy derivation. The torque arises from the momentum

transfer that the disk particles exert on the wakes; to compute the trajectories and impact velocities of these

particles however, we have to solve the restricted three-body problem. We use Hill’s approximation of

the two-body problem (Hill, 1878), in which the secondary body, the self-gravity wake, is significantly

more massive than the third body, the incoming ring particle. The incoming velocity given by the Hill

equations will govern the momentum transfer into the wakes. We will discuss numerical integration of the

Hill equations in detail later, however, since our goal in this chapter is an analytical model for θeq, we will

only use this method as a point of comparison for our approximations.

In order to derive an analytical solution of θeq that allows us to better understand the system, we

resort to a two-body approximation of the three-body problem, leaving the numerical integration of Hill

equations as a point of comparison. Specifically, we use a gravitational focusing approximation common

in planet formation (Greenberg et al., 1991; Rafikov, 2004; Armitage, 2020), where the incoming speed of

the scattering event can be either the dispersion velocity or the Keplerian differential velocity depending

on which one dominates in the wave region. Cuzzi et al. (1979) already argued that the dispersion velocity

dominates over the extent of a particle. However, we find that both velocities are similar over the extent of the

Hill radius of a wake so the safest approach is to include 3-body corrections in our two-body approximation.

From Greenberg et al. (1991) and Armitage (2020) we can get an approximate collision rate for this regime:

dM

dt
(b) = qΩ ∗ b ∗ σ ∗ f ∗ db (D.2)

Where f is the fraction of particles that enter the Hill sphere that collide, q is the shear rate q =

−d lnΩ
dr , Ω is the Keplerian frequency of the particle, b is the impact parameter and σ is the surface mass

density of the disk. To get a torque we use two-body dynamics to find the speed and angle of incidence

for the incoming particles at the moment of impact. In the hyperbolic scattering case, the specific angular

momentum j can be written in terms of the impact parameter b.
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j = qΩb2 (D.3)

and the energy we take the energy to be all kinetic energy as the scattered particle approaches from

infinity:

E =
1

2
v2 =

1

2
q2Ω2b2 (D.4)

Where v is the incoming speed at infinity. Using Eqn. D.2 the momentum transfer to the wakes as

the particles with it is:

dp

dt
=
dM

dt
∗ vθ (D.5)

where vθ is the speed at the moment of collision with the wake. Considering that r2B is the position

of the particle from the center of mass of the wake, we can write from Eqn. D.5 a torque:

τKep;z′ = 2(1 + ϵ)

∫ bmax

bmin

dM

dt
vθ(b, θ)r2B(b, θ) (D.6)

where vθ(b) = b2 ∗ qΩ/r2B and

r2B(b, θ) =

(b2qΩ)2

GρRocheWLH

1 + e cos(θ −ϖ)

is the two-body orbit Eqn. were the true anomaly has been set at the angular position of the long-

axis of the wake where the collision takes place, and where ϖ is the argument of periapsis taken from the

azimuthal direction. Here we are taking the angular momentum to be conserved about the CM of the wake,

so that for a given impact parameter b we can determine a collisional speed vθ at a distance r2B from the

CM. Under this approximation the trajectories of the particles are simple hyperbolas and the three-body

effects are accounted for by using Hill’s equations to determine the limit of the integral bmin. This and the

length of the long axis L relative to the Hill radius, which guarantees that particles entering the Hill sphere

collide with the wake, allow us to do the following simplification of the Greenberg et al. (1991) formulation

(Eqn. D.2):
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• f , the fraction of particles that collide after entering the Hill Sphere is 1.

• We define bmax as the solution of r2B(bmax, θ) =
L
2

• The surface density σ is taken to by ρH

The collisional torque becomes:

τKep = −2(1 + ϵ)

∫ bmax

bmin

|vθ + ωzr2B| (vθ + ωzr2B)r2BρHdb (D.7)

Where we have replaced the incoming speed in Eqn. (D.2) (qΩb) with |vθ|, have used ρH for σ, and,

by adding ωz′r2B , have included the fact that the rotation of the wake will contribute to the incoming speed

of the particles.

For the case of equilibrium between the torques there is no rotation and hence ωz = 0, and since

vθ > 0 we can write |vθ|vtheta = v2θ . Introducing µ = GρRocheHLW we are left with the integral:

2(1 + ϵ)ρH

∫ bmax

bmin

v2θr2Bdb = 2(1 + ϵ)ρHµ

∫ bmax

bmin

(1 +

√
b6q4Ω4

µ2
+ 1 ∗ cos (θ −ϖ)db (D.8)

Where we have used

e =

√
2E

j2

µ2
=

√
b6q4Ω4

µ2
+ 1

for the eccentricity. The next steps in this approximation requires relations unique to hyperbolic orbits which

we will derive briefly in the next subsection before continuing.

D.1.1 Hyperbolic orbit

Hyperbolic orbits have eccentricities greater than one, and if they are >> 1, they allow for certain

simplifications of above expression in Eqn D.8. In odder to ensure the robustness of this approximation

we must see if all colliding trajectories have a high eccentricity. In general the shorter the b, the shorter

the eccentricity, the shortest b being bmin which limited by the fact that particles with too small b partake is

horseshoe and tadpole orbits. The Hill radiusRHill gives us a length we can used to estimate bmin. Numerical

simulation and analytical estimates (Greenberg et al., 1991; Murray & Dermott, 2000) place bmin at:
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Figure D.1: Schema of an hyperbolic orbit with all the relevant angles denoted.

bmin ≈ 1.75RHill = 1.75
√

ρLWH
3MS

a ∼ 41m

Where a = 128000 km which corresponds to the middle of the A-ring. Using a value for the Kep-

lerian frequency Ω ∼ 10−4 s−1, also corresponding to the middle of the A-ring, and a Keplerian shear rate

q = 1.5, we get:

emin ∼
√
15 + 1 ∼

√
15

Which is equivalent to the approximation:

e≈
b3q2Ω2

µ
(D.9)

Now we use figure D.1 to derive an expression for the argument of pericenter for the encounter, ϖ(b).

We know that θ = π as r → ∞ and hence

1 + e cosπ −ϖ = 1− e cosϖ = 0 (D.10)

Therefore,
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cosϖ =
1

e
≈ µ

b3q2Ω2
(D.11)

Conversely,

sinϖ =

√
e2 − 1

e
=

√
1− µ

b6q4Ω4
≈ 1− 1

2

µ

b6q4Ω4
∼ 1− 1

26
∼ 1

We can rewrite the cos (θ −ϖ) as:

cos (θ −ϖ) = cos θ cosϖ + sin θ sinϖ ≈ cos θ
µ

b3q2Ω2
+ sin θ (D.12)

D.1.2 Balancing the torques

Now we can simplify the integral in Eqn. D.8 as:

τKep = 2(1 + ϵ)ρHµ

∫ bmax

bmin

(1 + cos θ +
b3q2Ω2

µ
sin θ)db (D.13)

τKep = 2(1 + ϵ)ρHµ[(1 + cos θ)(bmax − bmin) +
q2Ω2

4µ
sin θ(b4max − b4min)) (D.14)

Balancing both torques at the equilibrium angle θeq we get:

2
GMS

a3
sin θeq cos θeq

(
L

2

)3

∗ ρwHW = 2(1 + ϵ)ρHµ[(1 + cos θeq)(bmax − bmin) +
q2Ω2

4µ
sin θeq(b

4
max − b4min))

(D.15)

where bmin ≈ 1.75RHill. Note the strong dependece on b for the leading term.

To find bmax we solve the equation r(bmax, θeq) =
L
2 . Namely:

L

2
∗ (1 + cos θeq) +

b3maxq
2Ω2

µ
sin θeq) =

b4maxq
2Ω2

µ
(D.16)

For θeq > 40◦ (the wake’s long-axis pointing more towards the radial direction) one can approximate

the solution to be bmax = L
2 ∗ sin θeq. Compared to using the exact value for bmax, at θeq = 40◦ this ap-

proximation understimates the Keplerian torque by 20%, and effects an overestimation on the pitch angle by



160

13%; for bigger angles, the approximations improves. For smaller angles we default to the exact expression

for bmax which we write by defining the functions:

A =

(
27L2q4µΩ4(L+ L cos(θeq)) Sin(θeq)2 +

√
55296q6µ3Ω6(L+ L cos(θeq))3 + 729L4q8µ2Ω8(L+ L cos(θeq))2 Sin(θeq)4

)1/3

6× 21/3q2Ω2

(D.17)

B =
4× 21/3µ(L+ L cos(θeq))(

27L2q4µΩ4(L+ L cos(θeq)) Sin(θeq)2 +
√

55296q6µ3Ω6(L+ L cos(θeq))3 + 729L4q8µ2Ω8(L+ L cos(θeq))2 Sin(θeq)4
)1/3

(D.18)

C =
1

4
L sin θeq (D.19)

So that the solution can be written as:

bmax =
1

2
C +

1

2

√
C2 +B −A+

1

2

√
2C2 +A−B +

2C3

√
C2 +B −A

(D.20)

Substituting this expression is Eqn. D.15 yields a transcendental equation for the angle θeq which is

hard to interpret given the cumbersome nature of bmax.

If we instead consider θeq > 40◦, bmax = L
2 ∗ sin θeq and we get a simpler equation for the balance:

2(1 + ϵ)ρµ[(1 + cos θeq)(
L

2
∗ sin θeq − 1.75RHill) +

q2Ω2

4µ
sin θeq(

L

2
∗ sin θeq − (1.75RHill)

4)]

= 2
GMS

a3
sin θeq cos θeq

(
L

2

)3

∗ ρwW
(D.21)

This expression represents an equation for the pitch-angle θeq as determined by equilibrating the tidal

torque (left-hand side) with the Keplerian shear torque (right-hand side). The equilibrium angle parameter-

ized by the density of the rings ρs and the wakes ρw, the dimensions of the wake, (H,W,L), the semi-major

axis a, the coefficient of restitution ϵ, the total mass of the wake times G, µ, and the mass of Saturn Ms.
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D.2 Comparison with n-body shear-box simulations

Besides θeq, there are three variables in this equation that don’t have a set value: the coefficient of

restitution (ϵ), the space density of the particles colliding with the wake (ρ) and the shear rate (q). The

contributions of ϵ and ρ to the Keplerian torque are degenerate: increasing both will increase the torque, and

choosing a low ϵ can be counter-weighted by choosing a higher ρ and vice-versa, although ϵ only goes from

0 to 1 and has a small effect on the torque given that it appears in the factor (1 + ϵ).

D.2.1 The shear rate

We compare our model to the shear-box n-body simulations that have been performed at three differ-

ent shear-rates, q = (0, 1, 1.5). The value for ϵ will be set to 0.5 and ρ will be set to best fit the pitch-angles

given by the n-body simulation. In Figure D.2 we compare three models: 1) where we assume that e > 10

and θeq > 40◦, hence bmax = L
2 sin θeq (green dashed line), 2) where we use the full expression for bmax but

still assume the incoming orbits to be highly hyperbolic (purple dashed line), and 3) where no assumptions

about the trajectories of the incoming particles are made, and the Hill equations were numerically integrated

for the systems (black dashed line). These three models are plotted in Figure D.2.

Figure D.2 shows that the hyperbolic approximation overestimates the Keplerian shear at low equilib-

rium angles, and the bmax = sin θeqL/2 approximation underestimates them further. This is to be expected

because, as mentioned above, the hyperbolic approximation is less accurate at small equilibrium angles.

Moreover, this approximation also breaks down at lower shear rate since the incoming particles are closer

to parabolic orbits. By taking the orbits to be hyperbolic we are overestimating the Keplerian shear torque

and hence decreasing the predicted pitch-angle. The bmax = sin θeqL/2 approximation manages to make

a better estimate in this regime because including the shorter bmaxunderestimates the Keplerian torque by

a similar amount and goes opposite to the error introduced my assuming the orbits to be highly hyperbolic

(e > 10).
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Figure D.2: Shear rate vs equilibrium pitch-angle for the rigid wake model for three levels of simplification.
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