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Semantic role labeling (SRL) is the identification of semantic predicates and their participants

within a sentence, which is vital for deeper natural language understanding. State-of-the-art SRL

models require annotated text for training, but those annotations don’t exist for many languages

and domains. The ability to annotate new corpora is hampered by limited time and budget. We

explore two different ways of reducing the annotation required to produce SRL systems for new

domains or languages: active learning and annotation projection.

Active learning reduces annotation requirements by selecting just the most informative train-

ing instances through an iterative process of training and annotation. In this work, we investigate

the use of Bayesian Active Learning by Disagreement, ways of tuning it for SRL, and assessing

its performance across multiple corpora. We study the choices being made by different selection

methods over the course of iterations, examining vocabulary coverage, diversity, predicates selected,

and the shifts in confidence. We also explore the impact of various strategies of selecting the initial

training data. We investigate a number of potentially influential factors within batches of queries,

such as diversity and disagreement scores. In order to reduce the overhead of training time, we

additionally compare the effect of increasing the amount of queries being selected on each iteration.

Abstract Meaning Representations (AMRs) are increasingly popular semantic representations

of whole sentences. Based on our successful results using active learning to assess the informativeness

of annotation instances for SRL, we look into whether the commonalities between these represen-

tations can be leveraged to supply targeted annotation for AMR parsing.

Finally, we explore annotation projection of SRL. This approach attempts to create semantic

annotations in a target language given parallel translations that have been given SRL annotations

through manual or automatic means. We assess the recently developed Russian PropBank and the



iii

feasibility of generating the same semantic annotations by projecting from the English PropBank

annotation. We use both our own system with English-Russian automatic word alignments and the

recent Universal PropBanks 2.0. We examine the types of errors that arise from inconsistencies or

gaps in annotations as well as systemic issues arising from the strong English-bias of the projections.

This analysis leads us to the development of several filtering techniques that improve the precision

of the projections.
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Chapter 1

Introduction

The ability to identify the semantic elements of a sentence (who did what to whom, where,

and when) is crucial for machine understanding of natural language and downstream tasks such as

information extraction [59], question-answering systems [106], text summarisation [64], and machine

translation [79]. The process of automatically identifying and classifying the predicates in a sentence

and the arguments that relate to them is called semantic role labeling (SRL). The current state-

of-the-art semantic role labeling systems are based on supervised machine learning and rely on

large corpora in order to achieve good performance. Large corpora have been created for some

languages such as English [103], but such resources are lacking in most other languages. Additionally,

those corpora may not translate well to other in-language domains due to sentence structure or

domain-specific vocabulary. The creation of annotated corpora requires a significant amount of

time and often the hiring of domain experts. It entails establishing new lexical databases defining

role categories for verbs, creating annotation guidelines, and annotating large amounts of data. This

causes a bottleneck for developing advanced NLP tools for other languages and domains.

In this work, we will be focused on the task of creating new, high-quality corpora for new

domains and languages and two ways to make this process more efficient: active learning and

annotation projection.

Active learning focuses on choosing only the most useful instances to be annotated, thereby

reducing the total annotation requirements to train a supervised model, without sacrificing per-

formance. This is done by iteratively re-training the model and assessing its confidence in its
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predictions (a proxy for "usefulness") in order to choose additional data for annotation that will

have maximal impact on the learning rate. The ideal means by which to choose "useful" instances

is still an open question.

In Chapter 3, we investigate the application of Bayesian Active Learning by Disagreement

(BALD) as a means of identifying training instances with low model confidence. We evaluate

methods of tuning the standard active learning formula to the task of SRL. We will describe our

experiments on different methods of estimating model confidence and aggregating multiple predi-

cates into a single score for ranking sentences by informativeness. We then present our research on

the impact of selecting entire sentences against selecting individual predicates and its varying effect

on multiple corpora.

Furthermore, we seek to better understand the decisions made by active learning for SRL and

identify possible avenues of further improvement. To this end, we analyse the batches of selected

sentences over the course of the process across multiple domains. While performance plateauing

is a straightforward indication of the limited utility of continuing to apply active learning, we also

investigate whether the disagreement scores provided by BALD can shed light on how much further

improvement can be had.

Because the active learning process itself incurs the cost of re-training a model and disruption

to annotation workflow, we examine the impact of selecting differing sizes of batches to annotate

on each iteration. Building on previous work, we also test methods of choosing a starting seed set

with greater diversity and atypical sentences in order to increase efficiency.

Abstract Meaning Representations (AMRs) are graph structures representing the meaning of

a sentence that incorporate PropBank frames along with capturing additional semantic details, such

as named entities, noun modifiers, discourse connectives, and intra-sentential coreference. While

AMRs have been increasingly utilised for many downstream tasks (e.g., machine translation [52],

text summarisation [62], and knowledge base question answering [41]) most of the existing training

data is in the general news domain. Applying BALD to these structures is less straightforward than

for a sequence-labeling task like SRL. Since there is significant overlap between the two semantic



3

representations, we investigate in Chapter 4 whether active learning for SRL can also supply infor-

mative instances to target for AMR annotation and make the development of parsing models more

efficient.

In Chapter 5, we will examine annotation projection for SRL. Annotation projection leverages

parallel corpora, where the source language has automatic or manual semantic roles, to create

annotated corpora in the other target languages. Approaches to this task typically use unsupervised

word alignments, filtering heuristics to improve precision, and bootstrapping an SRL model to

improve recall.

We present our initial results and analysis on projecting English annotations into manually

translated sentences that have been annotated by Russian PropBank, developing language-specific

filtering techniques to improve the results. Through this analysis, we identified issues for cleanup

and expansion of Russian SRL data. We also provide additional context on differences between

Russian and English semantics.

The recent Universal Propbanks 2.0 [40] uses bootstrapping techniques to improve recall and

better handle cases where the parallel sentences are imprecise translations. This framework has

been used to create SRL corpora in 23 languages. We evaluate this system’s projections against

Russian PropBank and examine the errors for systemic issues that can be incorporated into the

existing filtering methods and then evaluate these improvements.

Finally, we will summarise our conclusions from these experiments on expanding semantic

resources to new domains and languages in Chapter 6.



Chapter 2

Background

In this chapter, we first describe semantic representations and the task of semantic role label-

ing. First we will describe two styles of semantic annotations that are relevant to our work and some

of the relevant corpora. Following this, we will discuss active learning broadly as well as the prior

literature that used this technique for semantic role labeling in particular. Next we will describe

another form of semantic representation, Abstract Meaning Representations, and how they relate

to SRL. Finally, we will survey previous work on transferring semantic annotations from English

into other languages.

2.1 Semantic Role Labeling

Semantic role labeling (SRL) is a process of assigning labels to entities in a sentence, indicating

the semantic relations between them. Observe the following two sentences:

• John broke the window.

• The window was broken by John.

Although the syntax of these sentences differs, the underlying event being described is the

same. In both cases, John is the one who performed the action of breaking, and the thing that

was broken was the window. The task can be formulated as 1) identification of predicates [‘break’]

and assignment to a frame denoting sense [break.01: ‘cause to not be whole’], 2) identification of

participants [‘John’, ‘window’] and assignment of role types [‘agent’, ‘patient’, respectively].
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This shallow semantic information from sentences can be fed into systems for many down-

stream NLP tasks, such as information extraction [59][107], question-answering systems [106][24],

natural language inference [109], text summarisation [64], and machine translation [60][79], that

benefit from using semantic features.

Automatic semantic role labeling is evaluated with respect to precision (the percent of auto-

matic predictions that are correct), recall (the percent of correct arguments that were predicted by

the system), and the F-score (the harmonic mean of precision and recall).

2.1.1 Semantic Lexicons

There have been several proposed ways of representing semantic roles and predicates. Propo-

sition Bank and FrameNet provide differing ontologies of predicate frames and semantic roles.

The FrameNet project [6] aims to document semantic frames that group together semantically

related verbs, providing a prototypical representation of the situation. For example, in a sentence

containing “argue”, “banter”, or “debate”, the frame “Conversation” is evoked. For a sentence such

as this, the semantic roles to be used are determined by this frame, and include “Protagonist1”,

“Protagonist2”, and “Topi”. As will be later discussed in section 2.4, some of the prior work done

on cross-lingual projection focused on projecting this style of annotation.

Proposition Bank (PropBank) [74][76] takes a more verb-oriented approach than FrameNet,

while seeking to represent semantics in a more generalisable way. Contrary to FrameNet, the list

of permissable roles is defined by the sense of each verb. Words like “argue” and “banter” aren’t

grouped together, but instead the presence of “argue” invokes a specific roleset that determines the

available arguments. Rather than arguments having specific names such as “Protagonist1”, they

are given generalised numbered labels, ARG0 through ARG5. Typically an ARG0 is similar to a

Proto-agent (per Dowty, 1991 [23]), and is the agent or experiencer, while ARG1 is typically the

patient or theme of the predicate, similarly to a Proto-patient. By generalising the arguments in

this way, automatic semantic role labelers can produce useful information even if they misidentify

the frame. Additionally, there are modifier arguments to incorporate other semantically relevant



6
Roleset id: give.01

transfer
Arg0 giver
Arg1 thing given
Arg2 entity given to

Table 2.1: PropBank roleset for give.01.

information such as location (ARGM-LOC) and direction (ARGM-DIR). PropBank is the type of

semantic annotation that our work on cross-lingual annotation projection and active learning is

concentrated on.

The following is an example of the arguments related to the predicate “give” according to the

roleset in Table 2.1:

[ARG0 She] had [give.01 given] [ARG1 the answers] [ARG2 to two low-ability geography classes].

Sentences may contain several predicates and each predicate has its own arguments. Predi-

cates may consist of only verbs in some annotation schemas, but may also include nominalisations

and predicative adjectives.

Annotations may be span-based and placed in alignment with a constituent parse, or placed

on head words for compatibility with dependency parses.

2.1.2 Corpora

Many large corpora have been annotated in English, such as Ontonotes [103]. Although

Ontonotes has since been retrofitted to unify different parts of speech into the same rolesets based

on sense and given expanded nominalisations, light verb constructions, and other multi-word ex-

pressions [69], an earlier version of it was released as the dataset for the CoNLL-2012 shared task.

This dataset is still frequently used as an evaluation corpus for experimental SRL techniques. Our

active learning experiments in Chapter 3 are performed with the latest version of Ontonotes, version

5.0.
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Additionally, there are many domain-specific SRL corpora, such as clinical records [3] and

the geosciences [25]. These domain-specific annotations are necessary because the vocabulary and

sentence structure may differ too much for models trained on more general text to perform well

[77][3].

Semantic corpora have been manually developed in other languages using PropBank-style

annotations, such as Hindi and Urdu [9]; Arabic [73]; Chinese [104]; and Korean [91].

The Russian FrameBank [58] is a project to develop frames designed for Russian and annotate

examples of those frames from the Russian National Corpus. Their annotation scheme uses 96

distinct semantic roles, such as Result or Beneficiary, similarly to FrameNet (which has over 1k

such roles), and organised in a hierarchical graph. They constructed frames for approximately 4000

target verbs, adjectives, and nouns, and annotated over 50,000 examples of these frames.

The Universal PropBanks (UPB) 1 are a collection of semi-automatically generated corpora

in multiple languages. The first release consisted of 7 languages [2], and has since expanded to 23

languages in the Universal PropBanks 2.0 release [40]. The earlier version created these datasets

from parallel governmental text using word alignments and then were hand-curated, while the

expansion into additional languages was facilitated by using parallel sentences from OPUS [97]. We

will discuss the methodology of its creation further in Chapter 5.

X-SRL [19] is another automatically developed parallel SRL corpus. The authors projected

the English CoNLL-09 dataset to automatic German, French, and Spanish translations. The test

dataset was human-validated. As with UPB, their projection included only verbal predicates.

The Low Resource Languages for Emergent Incidents (LORELEI) project 2 sought to explore

techniques to rapidly develop natural language processing technologies for low-resource languages.

The dataset released as part of this project consists of parallel corpora for 23 low resource languages.

The “core” data consists of approximately 550,000 tokens (in English) of newswire, phrasebook,

social-network, weblog, discussion forum, and elicited text. A portion of the newswire, phrasebook,
1 https://github.com/System-T/UniversalPropositions
2 https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
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and elicited text were manually annotated with SRL.

A subset of this corpus, consisting of newswire and phrasebook sentences in Russian, was

annotated with PropBank-style semantic roles [63]. The Russian PropBank is in active development.

The experiments we will present on annotation projection in Chapter 5 utilise two versions of this

dataset, which we will refer to as Russian PropBank 2020 and Russian PropBank 2023. These will

be described in more detail in Sections 5.2.1 and 5.3.

2.2 Active Learning

Many state-of-the-art NLP systems rely on supervised machine learning models that are

trained on large amounts of hand-annotated data. Creating a sufficiently large training corpus

through human annotation requires significant cost in terms of both time and money.

One way of reducing this burden is by selecting only the most informative instances to anno-

tate. Active learning (AL) allows the learner to choose the data it would like the annotator to label

next, selecting what is thought to be the most informative instances to learn from. Just as a person

who can ask questions will learn faster than if they are simply lectured, a model will too. The

literature shows active learning can produce a model with equal, or sometimes better, performance

with a fraction of the data needed by a model trained on randomly-selected data. [83]

Active learning begins with the selection of a model suitable for the task to be learned, a small

pool of labeled training data (also referred to as a seed set) for the model to initially be trained on,

and a large amount of unlabeled data. AL is an iterative process where the model is trained on the

labeled data and then through some query selection strategy, an instance or instances are chosen

from the available unlabeled data to request an oracle (in practice, a human) to provide a label for.

Most typically, they’re chosen after the model attempts to predict labels for the unlabeled data and

provides feedback about what instances may be the most informative. The newly annotated data

from the oracle is then added to the pool of labeled data that will be used to train the model on

the next iteration. This iteration continues until some stopping criteria are met, such as the model

becoming above a certain threshold of confidence about the remaining unlabeled data, or simply
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until funds or time are exhausted.

L = labeled training data;

U = unlabeled data;

M = a model;

while stopping criteria not met do

Train M on L;

U ′ = select instance(s) from U ;

L′ = annotate U ′;

L = L ∪ L′;

U = U \ U ′;

end
Algorithm 1: Generalized active learning

2.2.1 Active Learning Applied to SRL

While the usefulness of active learning has been demonstrated for numerous NLP tasks [108],

including named entity recognition [84], word sense disambiguation [110], sentiment classification

[53], part of speech tagging [15], and natural language inference [89], research on its use for semantic

role labeling is still in its early stages.

Since probabilities from off-the-shelf NN models may sometimes be inaccessible, Wang et al.

[101] proposed working around this by designing an additional neural model to learn a strategy

of selecting queries. Given an SRL model’s predictions, this query model classifies instances as

requiring human annotation or not. Their approach was a hybrid of active learning and self-training.

The self-training is enacted by accepting the SRL model’s predicted labels into the training pool

for future iterations when the sentence was determined not to require human annotation. This

approach requires 31.5% less annotated data to achieve comparable performance as training on the
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entirety of the CoNLL-2009 dataset.

Koshorek et al. [48] compared data selection policies while simulating active learning for

question-answer driven SRL (QA-SRL). QA-SRL is a form of representing the meaning of a sentence

using question-answer pairs. Rather than annotating spans of text with argument names, such as

PropBank’s ARG0, annotators enumerate a list of questions relating to the actions in a sentence,

such as who is performing an action and when is it happening, along with the corresponding answers

from the original text. This representation provides similar coverage to PropBank, but can also

represent implicit arguments that aren’t directly represented by the syntax.

The process of identifying spans that are arguments of a predicate and the generation of

questions based on the arguments were treated as independent tasks. To provide an approximate

upper bound on the learning curve, they simulated active learning on the dataset, splitting the

unlabeled candidates into K subsets, each comprised of L examples, and selecting the subset that

improved the model the most on the evaluation data. Against this oracle policy, they compared

the following selection strategies, sampling K random subsets to choose from: selecting a random

subset, selecting the subset with the highest average token count among sentences, and selecting

the subset that has the maximal average entropy over the model’s predictions.

In their experiments detecting argument spans for predicates, they used five subsets of one

example each. The oracle policy reached a 9% improvement above random selection, with a di-

minishing effect as the number of training examples increases. The selection of longer sentences

outperformed the oracle policy. The uncertainty strategy performed worse than random selection

for argument span detection, and was not tested for question generation. Selecting the sentences

with high token counts tended to improve the F-score for argument span detection by 1-3% given

an equal number of training instances (and attaining 60% on the full dataset), while being largely

comparable to random selection for question generation.

Active learning for SRL has also been applied in combination with multi-task learning [35],

using a subset of PropBank roles along with a new “Greet” role. The authors compared single-

and multi-task SRL, both with and without active learning. Under multi-task learning the model
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jointly learns to identify semantic roles, as well as to classify tokens as entities such as “Person”

or “Location”. They introduced a set of semantic roles that accommodate conversational language

and annotated a small corpus of Indonesian chatbot data to provide training and testing data. By

selecting sentences using model uncertainty in the single-task context, F-score was improved by less

than 1% compared to randomly selecting the data.

In order to improve computational efficiency in selecting new labeled instances, Houlsby et al.

[33] proposed Bayesian Active Learning by Disagreement (BALD). Now that neural networks domi-

nate supervised learning, methods based on this have been shown to be effective as an improvement

over using the output layer of the NN to determine the most beneficial new instances [85][88]. We

will provide further background on the application of BALD to SRL in particular in Chapter 3.

2.2.2 Seed Selection

Tomanek et al. [98] showed that a seed set that is biased towards rare class instances will

help avoid the “missed class effect”, a form of the “missed cluster effect” [82], where entire clusters

or classes of data can escape selection due to insufficient exploration of the data space. In their

experiment using AL for NER, these instances were selected with the prior knowledge of the labeled

class of the instances and the class distribution. Since the goal of active learning is to avoid the need

for large amounts of annotation, utilizing this finding in practice relies on obtaining informative rare

class instances through an unsupervised or semi-supervised approach.

Dligach and Palmer [20] trained an unsupervised language model (LM) on the datasets they

were performing active learning for word sense disambiguation (WSD) for, targeting verbs specifi-

cally. The verb itself as well as the surrounding words from both sides within a three-word window

were provided as features to the LM. Once the model is trained, one can calculate the perplexity of a

given instance – or in other words, a measurement of how well the model can predict that instance.

In this way, instances can be ranked from least probable to most probable according to what the

model has seen. The authors showed that rare verb sense classes are more concentrated among

those instances in the half of the rankings with lower probability. Using the least probable instances
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to seed the active learning of a WSD model provided an improvement over choosing those initial

sentences randomly. Commonalities between WSD and the SRL task suggests that this seeding

technique may also be beneficial to our work.

2.3 Abstract Meaning Representations

Abstract meaning representations are rooted, labeled, directed, acyclic graphs that aim to

represent the semantics of a whole sentence [7]. Nodes are comprised of concepts – such as words

from the sentence like “they”, named entities like “country”, or roleset IDs – and are given variable

names for reference. These variables allow for intra-sentential coreference. AMRs primarily use

PropBank frames to capture predications in the sentence. For example:

They live in the south of France.

(l / live-01

:ARG0 (t / they)

:location (s / south

:part-of (c / country :wiki "France"

:name (n / name :op1 "France"))))

In this case, “they” is identified as an ARG0 according to the live.01 PropBank frame. While

PropBank annotation would label ARGMs for any non-core arguments to the predicate, AMRs

have their own set of relation types that replace these (such as :location instead of ARGM-LOC,

:purpose instead of ARGM-PRP, :polarity instead of ARGM-NEG) as well as several additional

ones. AMRs are able to represent additional semantic relations such as :part-of, as well as to

separate concepts into their constituent parts, such as using :day, :month, and :year to connect

nodes representing the sub-components of a date-entity. AMR extends the original LDC Named

Entity tag set substantially and adds Wikipedia links (as in the above example) for well-known

Persons, Locations and Organizations.
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Abstract meaning representations have been valuable for many NLP tasks, such as machine

translation [93], text summarisation [57], and knowledge base question answering [41].

Semantic role labeling can be considered a subtask of AMR parsing and SRL has been suc-

cessfully used as an intermediary task to improve performance on AMR parsing [16].

AMR parsing performance is evaluated by the Smatch score [14], which measures the degree

of overlap between the two semantic structures.

2.3.1 Corpora

Many English AMR corpora have been created. The largest corpus is the AMR Annotation

Release 3.0 [44], consisting of newswire, broadcast conversation, discussion forums, weblogs, Aesop’s

fables, and Wikipedia text from multiple genres. Other available corpora include The Little Prince

3 and a corpus in the biomedical domain 4 .

Additionally, AMRs have been developed in other languages, such as Chinese [51], Spanish

[102], Brazilian Portuguese [90], Korean [17], Vietnamese [55], and Turkish [70].

2.4 Annotation Projection

Annotation projection is the method of transferring annotations from one language to another

using parallel text. This technique has been utilised for numerous other NLP tasks, such as part-

of-speech tagging [105], named entity recognition [27], syntactic dependencies [34][96], and abstract

meaning representations [86]. Prior work on SRL projection has been successfully used for projecting

annotation from English to French [100], German [72], Turkish [1], and a variety of other languages

[38]. Some of the early work in this area, such as Padó and Lapata [72], focused on transferring

FrameNet to other languages, but more recent work has focused on PropBank instead due to

availability of high-performance SRL models, and its more generalised role types that make it

suitable for use in other languages [65].
3 https://amr.isi.edu/download/amr-bank-struct-v3.0.txt
4 https://amr.isi.edu/download/2018-01-25/amr-release-bio-v3.0.txt
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Annotation projection relies on unsupervised word alignments to provide the correspondences

between parallel sentences. In previous work, these alignments have been provided by models such

as GIZA++ [68] (used by Van der Plas et al. [100], Padó and Lapata [72], Aminian et al. [5]),

Berkeley Aligner [54] (used by Abkik et al. [2]), fast_align [26] (used by Fei et al. [29]), and

SimAlign [36] (used by Jindal et al. [40]). The alignment models provide mappings for each word in

a source sentence to zero or more words in a target sentence. Typically, one performs the alignment

from one language to another, then vice versa, and takes only the intersection of the alignments in

order to reduce errors.

The most straightforward way of using these alignments is Direct Semantic Transfer (DST),

which has since become a common baseline for newer projection approaches. This simple method,

described by Van der Plas et al. [100], transfers a predicate or argument label from a source-language

word to a target-language word if the alignment model generated an alignment between the two.

We show an example of this in Figure 2.1.

Figure 2.1: Direct Semantic Transfer of PropBank annotations from an English sentence to a Russian
sentence, along word alignments (shown as dashed lines).

The advent of robust multilingual embeddings has provided a new avenue for determining

these mappings between parallel sentences by enabling a comparison of similarity within a shared

representation space. Daza and Frank [19] projected annotation labels from English into French,

German, and Spanish using cosine similarity of mBERT to determine alignments between words
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and generated the parallel X-SRL corpus. Rather than using the intersection of source-to-target

and target-to-source word alignments, they used only the source word-pieces to target word-pieces,

finding this approach to significantly improve recall. Although it was detrimental to precision, the F-

score on the whole improved by 1.5-9.4% compared to using the alignment intersections, depending

on language.

There has also been related work on using alignments for the task of projecting Abstract

Meaning Representations. This task overlaps significantly with SRL, as AMRs use the same seman-

tic frames. Sheth et al. [86] similarly used embeddings – XLM-R [18] in this case – to provide word

alignments for AMRs using cosine similarity.

Since identification of the correct alignments between parallel sentences is itself a challenging

task, errors in this step can negatively impact the precision of the projections. In order to improve

performance on this, previous work often utilises filtering heuristics and methods to either adjust

the alignments or weed out spurious correspondences. We will provide more in-depth background

on the error analysis and filtering techniques used by related works in Chapter 5.

After the initial annotations have been projected, training an SRL model on them can provide

further improvements and increase recall. The authors of one of the early works on using Direct

Semantic Transfer for cross-lingual SRL, Van der Plas et al. [100], trained a joint syntax-semantic

model on the word-alignment projections from English to French in order to re-label the data, over-

writing the original projections. After this training, the model’s performance improved, resulting

in labeled predicate and labeled argument F-scores only 4% and 9% below the upper bound set by

inter-annotator agreement, respectively.

2.4.1 Bootstrapping

Bootstrapping, or self-training, is a technique where one uses the model’s own predictions to

improve performance. After training on an initial set of labeled data, the model is used to either

predict additional instances to add to the training pool or, in the case where the training data is not

manually annotated, to re-label its own training data. Sometimes the choice of which of the model’s
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predictions should be included in the training data is filtered in some manner to only include high

quality predictions. In the case of cross-lingual SRL, bootstrapping can provide a much-needed

boost to recall caused by inaccurate alignments.

In the process of semi-automatically constructing a multilingual corpus with unified semantic

roles for 7 languages, called the Universal PropBanks, Akbik et al. [2] used an iterative bootstrap-

ping method. Initially, they projected annotations from English into each language using DST of

automatic SRL labels using word alignments and applying a series of filters, which will be described

in more detail in Section 5.1.

The now-labeled target sentences were used to initialise a bootstrapping process, where the

model was successively trained on the target data, though limiting it only to target data above

a certain threshold of “completeness”, where a sufficient number of dependents of the verbs were

given SRL labels. They compared using the model to overwrite the data, as done by Van der Plas

et al. [100], versus supplementing the training data. In the latter method, instead of overwriting

the projected labels, the model’s predictions were used to only add labels for words without pro-

jected labels. They found that the predictions tended to lower precision, while increasing recall, so

supplementing proved more beneficial than overwriting.

For releasing datasets and evaluation on them, they only chose sentences to which the SRL

model had assigned labels for all verbs and their dependents (which reduces the final generated

PropBanks to 3%-19% of the size of the original data, depending on language). Manual evaluation

on 100 sentences in each target language found extremely high performance for all languages other

than Hindi, with precision and recall for predicates being over 95% and 88% respectively and

arguments being over 85% and 66% respectively, when considering partial matches.

Universal PropBanks 2.0 [38] is able to achieve additional performance gains through several

upgrades over their previous system. They update to using more recent SRL and word alignment

models and add several improvements to their bootstrapping approach. They train the bootstrapped

SRL model not only on the target language labels, but also gold English SRL, using multilingual

embeddings. They additionally jointly train the model on both span-based and dependency-based
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labels.

Aminian et al. [4] found the bootstrapping method that only fills in missing SRL decisions to

slightly underperform overwriting the sentence with the new predictions upon each iteration when

projecting from English to German using the CoNLL-2009 shared task dataset. Along with testing

those two bootstrapping methods, the authors proposed a cost-sensitive way of updating the model,

weighting the penalty for mislabeling an instance with various cost functions. They tested three

such measures: 1) As with previous work, the authors consider the completeness of the annotations

of a sentence (i.e. how many verbs and dependents were given a label) indicative of quality of

projection and the likeliness that they contain translation shifts that render it incompatible with

the source semantic frames, 2) whether the dependency label of a target word matches that of the

aligned source word, and 3) both combined. The difference between these three cost functions was

minimal (<1% F1), but the bootstrapping with a combined cost function resulted in an F-score

increase of 1.4% over relabeling bootstrapping without a cost function and 3.5% over using a model

trained only on the original projections.

2.4.2 Data Requirements

The majority of prior work on cross-lingual SRL relies on access to parallel data, with the

source side labeled with semantic annotations. The most common approach [2][99] for procuring

this type of data is to obtain automatic labels on the English side of an existing parallel corpus with

manual translations, such as Europarl [45] or the UN Parallel Corpus [111], using one of the many

available SRL systems. However, automatic systems will always have the potential to mislabel the

data.

Alternatively, given an existing corpus with manual semantic annotations, we can manually

or automatically translate it into our target language, though the automatic approach can introduce

errors through poor translation quality. This translation-based approach has previously been used

for cross-lingual syntactic parsing [95], as well as for SRL more recently [29].

Since both of these methods can suffer from noise at the outset either due to automatic
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SRL or automatic translations, Cai and Lapata [13] de-couple these two aspects of cross-lingual

SRL, and do not require the parallel data to be the same as the data with SRL labels. Instead,

their model simultaneously trains on batches of the annotated source language data in a supervised

fashion, while also training on batches of the unannotated parallel data using the the model’s own

predictions for both source- and target-language sentences.

2.5 Summary

In Section 2.1, we have provided the motivation for and explanation of semantic role labeling.

We have given overviews of the commonly used semantic representations and many of the datasets

commonly used for training and evaluation.

In Section 2.2, we discussed active learning and its usefulness in reducing annotation require-

ments for supervised models and how this has previously been applied to SRL. We will further delve

into the use of Bayesian Active Learning by Disagreement in particular in Chapter 3.

In Section 2.3, we have offered an overview of abstract meaning representations and their

relation to PropBank.

In Section 2.4, we review annotation projection as a means of developing semantic resources

for new languages. We will provide additional background on the filtering techniques used by prior

work in Chapter 5.

In the next three chapters, we will present our work on applying active learning to SRL across

multiple datasets, investigating the cross-task application of SRL AL to developing AMR corpora,

and developing, evaluating, and improving annotation projection using linguistically motivated error

analysis.



Chapter 3

Active Learning for SRL

One of our goals is to further expand research on active learning for the task of semantic role

labeling. In Section 3.1, we will provide background on Bayesian Active Learning by Disagreement

and prior literature applying it to SRL.

In Section 3.2, we will describe the SRL model and experimental framework that we utilise

throughout this chapter.

Motivated by the success of Bayesian Active Learning by Disagreement on previous work, we

explore its application to SRL and ways of tuning it for this task. In Section 3.3, we investigate

ways of aggregating scoring and assessing its performance compared to conventional model output

probabilities with respect to annotation workflow [66].

In Section 3.4, we investigate the impact of selecting and training on individual predicate-

arguments structures. These experiments produce varied results across the four datasets tested. In

Section 3.4.4, we examine some of the differences between the corpora. In Section 3.4.3, we study

the composition of the selections over time with an eye towards vocabulary coverage and sentence

and predicate diversity.

While smaller batches of queries per iteration allow for better utilisation of active learning’s

ability to provide updated assessments of the informativeness of candidate instances, this repeated

training requires additional time and computational resources. In Section 3.5, we investigate the

ideal number of queries to use for each iteration across varied datasets.

Because active learning’s success is largely due to its ability to hone decision boundaries, in
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Section 3.6 we explore methods of addressing the potential issue of failing to sufficiently explore the

data space by enforcing diversity within the initial training seed.

3.1 Bayesian Active Learning by Disagreement

Modern SRL systems utilise deep learning, which poses a challenge to assessing the model’s

certainty in its predictions. The predictive probabilities in the output layer cannot be reliably

interpreted as a measure of model certainty. Gal and Ghahramani [30] proposed using dropout as

a Bayesian approximation for model certainty, estimating it using the variation in multiple forward

passes.

This dropout principle was tested on numerous NLP tasks by Siddhant and Lipton [88],

including SRL. For their SRL experiments, they used a neural SRL model based on the He et

al. [32] model, with modifications to the decoding method (instead using a CRF decoder) and

increasing the dropout rate from 0.2 to 0.25.

In comparison to the baseline of random selection, they tested the classic uncertainty measure

of using the output probabilities of the model, normalised for sentence length, with two Bayesian

Active Learning by Disagreement methods for selecting additional instances: Monte Carlo Dropout

Disagreement (DO-BALD) and Bayes-by-Backprop (BB-BALD). The BB-BALD method provides

uncertainty estimation by drawing Monte Carlo samples from a Bayes-by-Backprop neural network

[10]. The DO-BALD method applies dropout during multiple predictions of instances in the un-

labeled pool and selects instances based on how many of those predictions disagree on the most

common label of the entire sequence. The authors treat agreement between predictions as all-or-

nothing, rather than allowing partial agreement based on arguments or predicates. They calculate

disagreement between 100 forward passes per sentence. In our work [66][67], we explore this tech-

nique with additional tuning for SRL, which will be described in Chapter 3.

They tested their methods on both the CoNLL-2005 and CoNLL-2012 datasets, which use

PropBank annotation. While the Bayesian methods were similar to the standard uncertainty selec-

tion method in the case of SRL, these methods resulted in approximately 2-3% increase for F-score
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compared to random selection when training on the same number of tokens. These results were

much more modest than results for other tasks such as NER.

For the two datasets, the authors found that they could obtain the same performance as

training on the entire dataset by randomly selecting only approximately 50% of it. Similar success

of the random selection baseline was reported on other datasets for other tasks in their work, as

well as in other active learning studies [84].

3.2 Experimental Framework

3.2.1 Model

We used AllenNLP’s [31] implementation of a state-of-the-art BERT-based model [87]. Our

training procedure for this model used 25 epochs or stopped early with a patience of 5. Trained

under the same experimental configuration on the full training subsets, this model achieves an

F-score of 83.82 and 83.48 on the OntoNotes and THYME datasets respectively.

After training on the initial seed dataset, each iteration of active learning selected a given

number of sentences or predicates and re-trained from scratch. In the case of the whole-document

baseline that will be tested in Section 3.3, for the creation of each batch, we selected random

documents until the number of sentences selected met or exceeded 100.

3.2.2 Datasets

In this chapter, we will provide a demonstration of active learning for SRL across a variety of

domains and sublanguages [42]. Some knowledge domains exhibit narrow lexical, syntactic, and se-

mantic structures that distinguish them from more general-purpose domains. This can dramatically

lower performance when testing with a model trained on more general text [3]. Special techniques

that take these domain specific-structures into account are needed for adapting NLP tools to these

domains, as illustrated below.

THYME Colon is 522k tokens, comprised of unstructured clinical notes relating to treatment
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of colon cancer [3]. This corpus contains specialised medical vocabulary for a narrow domain and a

large number of formulaic sentences, such as the following example:

Pathology demonstrated a tubular adenoma with moderate dysplasia.

This contains medical terminology (tubular adenoma, dysplasia) as well as a non-standard

use of demonstrate, which includes the shortening of The pathology report to simply pathology. This

particular framing re-occurs frequently in THYME Colon, sometimes with show or reveal instead,

and occasionally including the word report as in pathology report.

We also used two distinct geoscience domains from the ClearEarth project [25]. Earthquakes

consists of 41k tokens of text from Wikipedia and education texts, and a glossary. This text includes

specialised scientific language relating to earthquakes and plate tectonics, but also discussion of the

history of the field at a high school reading level and content related to disasters. An example of

this type of data is the following:

The ways that plates interact depend on their relative motion and whether oceanic
or continental crust is at the edge of the lithospheric plate.

Ecology consists of 83k tokens of text from Wikipedia, educational websites, an ecology glos-

sary, and Encyclopedia of Life. The scientific content covers genetics, evolution, reproduction, and

food chains. For examples:

Anguis fragilis is an example of ovo-viviparity.

Alternatively, transcription factors can bind enzymes that modify the histones at
the promoter.

OntoNotes 5.0 [103] spans multiple genres, largely consisting of news sources, but also in-

cluding telephone conversations, text from the New Testament, weblogs, and Usenet. This popular

corpus serves as a broad purpose corpus for us, as opposed to the other more specialised domains.

We use a version of OntoNotes that does not include files that had no manual PropBank

annotation performed. There still exist sentences within this version of the data that had only

partial annotation, but we consider this to have a relatively small impact on performance.
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Evaluation was performed on the standard test subset for each respective corpus.

3.3 Tuning Bayesian Active Learning by Disagreement for SRL

Traditionally, AL practitioners use the model’s probability distributions for the annotation

candidates to quantify how informative a new training instance would be for the model. However,

state-of-the-art SRL systems rely on deep learning, whose predictive probabilities are not a reliable

metric of uncertainty [30]. As discussed previously in section 3.1, Bayesian Active Learning by Dis-

agreement [33] is a strategy of measuring model uncertainty by calculating the rate of disagreement

of multiple Monte Carlo draws from a stochastic model.

Semantic role labeling for a single sentence is a complicated structural prediction, involving

multiple predicates and varying spans. This complexity makes identifying the training examples

with maximal impact more challenging. In this section, we compare two ways of aggregating con-

fidence scores for individual predicates into a unified score to assess the usefulness of selecting a

sentence for active learning. We test these strategies with two active learning approaches to calcu-

lating certainty for a predicate instance: the model’s output probabilities and a granular DO-BALD

selection method. Additionally, we compare the benefits of these AL approaches with three base-

lines: random sentence selection, random document selection, and selecting sentences with the most

predicates.

3.3.1 Data

We used two corpora for these experiments, as previously described in detail in Section 3.2.2:

The English section of OntoNotes (version 5.0) [103] with the latest frame updates [69] and the

THYME Colon corpus [3].

We simulated active learning on the training subset of each corpus, dividing it into an initial

seed set and a set of sentences to select from. The initial seed sets for sentence-based experiments

were 200 randomly chosen sentences. For the whole-document baseline, the seed set is comprised

either of documents from multiple genres, totalling 200 sentences, in the case of OntoNotes; or a
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single patient (consisting of two clinical notes and one pathology report, totalling 195 sentences) in

the case of the THYME Colon corpus.

In both cases, we utilised validation data to determine early stopping. Due to the excessive

computational time required to predict the standard validation sets for these corpora for every

epoch for every iteration, as well as the fact that a real-world scenario would be unlikely to have

such a disproportionally large validation set to perform active learning, we selected a subset of the

validation data for use. In the experiments involving selecting individual sentences, we used the

same randomly chosen 250 sentences. In the case of the baselines of choosing random documents,

we used validation datasets approximating 250 sentences, comprised of whole documents.

3.3.2 Selection Methods

3.3.2.1 DO-BALD

The model output of neural networks give a poor estimate of confidence, due to their nonlin-

earity and tendency to overfit and be overconfident in their predictions [30][21].

Using Monte Carlo dropout as a Bayesian approximation of uncertainty, as proposed by Gal

and Ghahramani [30], we applied a dropout rate of 10% during the prediction stage. We employ the

Bayesian Active Learning by Disagreement approach by predicting each candidate sentence multiple

times to select sentences based on how often those predictions agree with each other.

The number of predictions used correspondingly increases the time required to select data

upon each iteration. Gal and Ghahramani [30] used between 1000 and 10 forward passes in their

experiments and Siddhant and Lipton [88] used 100 per sentence when applying DO-BALD to

SRL. An ideal solution would minimise this variable for efficiency with as little loss as possible

in the benefit gained by sampling the distribution. In our experiments, we chose to perform 5

predictions per predicate. Due to sentences containing multiple predicates, this typically results in

10-15 predictions per sentence.

From these predictions, agreement was calculated based on entire argument spans. For each
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predicate in the sentence, we considered the percent of predictions for each argument type that

agreed with the most frequent span choice for that type. Referring to the example in Table 3.1, the

most frequently chosen span for ARG0 was “John Smith”, although two of the predictions chose only

the partial match of “John”. In this case, since two out of the five disagree with the most common

prediction, the argument ARG0 has a disagreement rate of 0.4. The rate of disagreement was

calculated for each argument type present in the set of predictions and then averaged to summarise

the consensus for the entire predicate-argument structure.

Prediction 1 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 2 [ARG0 John] Smith [Pred bought] [ARG1 apples].
Prediction 3 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 4 [ARG0 John Smith] [Pred bought] [ARG1 apples].
Prediction 5 [ARG0 John] Smith [Pred bought] [ARG1 apples].

Table 3.1: An example of varying argument predictions for a predicate, bought, by multiple forward-
passes with dropout.

By examining the forward-pass predictions predicate-by-predicate and argument-by-argument

to determine agreement, our approach is more granular than Siddhant and Lipton’s [88] method

of determining disagreement from the mode of the entirety of the sentence’s labels. Our strategy

allows for partial credit when the predictions are in agreement about particular arguments.

3.3.2.2 Combining Predicate Scores

Since sentences often contain multiple predicates, we must aggregate the scores into a single

measure in order to rank sentences by their potential informativeness. We propose two such ways of

combining the predicate scores, which we applied to both the model output and DO-BALD methods

of calculating certainty of a single predicate-argument structure:

• Average of Predicates (AP): The score for all predicate-argument structures in a sen-

tence is averaged. This provides a balance between the predicates in the sentence, but high

confidence for one predicate may diminish the value of a more uncertain predicate.
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• Lowest Scoring Predicate (LSP): The score for a sentence is the lowest score of all the

predicate-argument structures present in the sentence. This strategy prioritises sentences

that contain a predicate that is most likely to have a high impact on learning, although this

may allow selecting for sentences that require annotating additional predicates that have

already been learned well by the model.

In the case of our version of DO-BALD, a sentence with two predicates will have ten total

forward-passes, five for each predicate. In the following example, a sentence contains one predicate

that’s very common and may likely already occur in the dataset, come.01 (motion), and a second

predicate that’s less common, make_it.14 (achieve or arrive at).

[ARG0 The governor] [ARGM-MOD could] [ARGM-NEG n’t] [make_it.14 make it] , so the lieutenant gov-

ernor came instead .

The governor could n’t make it , so [ARG1 the lieutenant governor] [come.01 came] instead .

A plausible scenario is that the predictions of the arguments for the rarer predicate “make

it” will be in higher disagreement compared to the predictions of the arguments for “came”. In this

case, the LSP method will be more likely to select the sentence than AP, since it will rank this

sentence’s likely informativeness based only on the disagreement rate of “make it”, whereas AP will

average between the two disagreement rates.

3.3.2.3 Model Output

We also tested the classic approach of selecting query sentences based on the probability

distribution over labels from the model’s output. For each predicate in a sentence, we summed the

highest probability value for each token and then normalised by sentence length. This results in

a single confidence score for the label sequence. As with the BALD method, we must determine
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a score for the sentence itself, based on potentially multiple predicates. We test both the AP and

LSP methods, either averaging the confidence for all predicates or using only the lowest.

3.3.2.4 Baselines

We include three passive baseline measurements:

• Random Sentences (RandSent): Choose random batches of sentences on each iteration

of active learning.

• Random Documents (RandDoc): Choose random batches of entire documents, until

the chosen sentence batch size is reached.

• Most Predicates (MostPred) Choose batches of sentences, selecting for those with the

highest number of predicates present. Identification of predicates was done automatically

using AllenNLP.

Sentences with a high number of predicates are very information-dense and often contain

interesting lexical items and complicated syntax, which is why we included MostPred as a baseline.

The downside is that because of their complexity, they typically take longer to annotate. The

following is an example of a sentence with 5 predicates, denoted with underlining, which would be

prioritised by the MP selection method:

In an Oct. 19 review of “The Misanthrope” at Chicago’s Goodman Theatre (“Revitalized
Classics Take the Stage in Windy City,” Leisure & Arts), the role of Celimene, played
by Kim Cattrall, was mistakenly attributed to Christina Haag.

3.3.3 Results

Our results are reported as a learning curve across the number of sentences (Figures 3.1, 3.3)

and predicates (Figures 3.2, 3.4) present in the training pool after each iteration. Selected F-scores

for the methods are reported according to number of sentences (Table 3.2) and approximate number

of predicates (Table 3.3) in the training pool at various points.
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# sentences 300 600 900 1200 1500

OntoNotes
RandSent 55.48 64.32 71.00 72.02 74.95
RandDoc 61.26 64.27 70.20 72.31 73.59
MostPred 59.39 74.60 76.13 77.55 77.52
DO-BALD LSP 60.25 73.48 74.80 76.23 78.13
DO-BALD AP 62.26 63.92 66.28 69.83 67.29
Output LSP 61.91 70.29 71.08 73.27 74.87
Output AP 62.12 58.52 64.52 62.28 68.39

THYME
RandSent 64.53 72.07 74.23 75.67 76.88
RandDoc 49.32 64.23 67.11 73.62 75.21
MostPred 66.66 74.61 76.37 77.49 78.66
DO-BALD LSP 58.01 74.66 75.81 76.91 79.03
Output LSP 64.80 72.87 76.24 77.03 78.69

Table 3.2: F-score for number of sentences for each query selection method: random sentences, ran-
dom documents, most predicates, DO-BALD (Lowest Scoring Predicate and Average of Predicates),
model output (Lowest Scoring Predicate and Average of Predicates). Sentence count is approximate
for whole-document selection.

Approx. # predicates 1000 1500 2000 2500 3000
OntoNotes

RandSent 55.48 66.89 64.32 70.79 72.18
RandDoc 61.26 64.27 67.72 70.20 69.73
MostPred - - 59.39 - -
DO-BALD LSP 60.25 68.27 68.26 71.08 73.47
DO-BALD AP 62.43 66.61 69.67 70.12 70.53
Output LSP 61.91 68.83 70.29 71.03 72.28
Output AP 56.68 56.00 62.28 68.39 71.09

THYME
RandSent 66.47 72.06 72.25 76.28 75.67
RandDoc 64.23 67.11 73.32 75.35 76.23
MostPred - - 70.69 72.57 74.60
DO-BALD LSP 58.01 71.63 74.66 75.82 75.81
Output LSP 67.30 72.87 71.57 76.24 76.03

Table 3.3: F-score for approximate number of predicates for each query selection method: random
sentences, random documents, most predicates, DO-BALD (Lowest Scoring Predicate and Average
of Predicates), model output (Lowest Scoring Predicate and Average of Predicates). MostPred takes
too large of selections to always be within range of these numbers.
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Figure 3.1: Learning curve of F-score by number of sentences in OntoNotes training data.

Figure 3.2: Learning curve of F-score by number of predicates in OntoNotes training data.

3.3.3.1 OntoNotes

We can estimate the annotation savings gained by the tested methods by examining the

statistics required for each curve to reach a particular F-score. For this purpose, we will choose

78% as a benchmark of reasonable performance and around the point of performance plateau. This
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particular value was largely chosen for convenience, as most of our experiments were trained long

enough to reach this score.

The passive selection of random sentences attains this score after 3,000 sentences. The DO-

BALD LSP method and MostPred methods achieve this score after 1,400 and 1,200 respectively,

providing a 53%-60% reduction in data. Using the model’s output with LSP provided a more

slight, but still significant, reduction of 10%. When selecting whole documents, this performance

was not achieved until 4,126 sentences were in the training pool. Both of the AP methods, which

averaged the predicates in the sentences, performed significantly worse than the baseline. One

contributing factor for performance degradation may be that the presence of frequent, but easily

learned, predicates (such as copulas) inflates the average confidence of the sentence.

On the other hand, the reduction in predicate annotation offered by active learning was more

modest compared to sentence reduction, but still substantial. The passive strategies of selecting

random sentences and documents required 9,333 and 11,598 predicates, respectively. DO-BALD LSP

required 7,673 predicates (18% fewer). The MostPred strategy, which offered the best performance

on reducing sentences, didn’t achieve this until 11,460 predicates, almost comparable to random

whole-document selection. Output LSP provided a negligible reduction, with 9,073 predicates (3%

fewer).

In terms of assessing the impact of whole-document selection, which is necessary for other

NLP tasks such as coreference, compared to sampling random individual sentences, the difference

between sentences (4,126 vs 3,000, respectively) and predicates (11,598 vs. 9,333) required to reach

our benchmark was significant. Using random sentences rather than whole documents reduces

sentence annotation by 27% and predicate annotation by 20% to reach our benchmark.

3.3.3.2 THYME Colon

Due to the weak performance of the AP aggregation method on the OntoNotes dataset, we

did not perform those experiments on the THYME Colon dataset.

As with our evaluation on the OntoNotes dataset, we can consider the annotation requirements
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Figure 3.3: Learning curve of F-score by number of sentences in THYME training data.

Figure 3.4: Learning curve of F-score by number of predicates in THYME training data.

to reach an F-score of 78.

The baseline sentence selection method obtains this benchmark after 1,600 sentences. Con-

sistent with the results on the OntoNotes dataset, the DO-BALD LSP and MostPred methods are

the most efficient ways of selecting sentences, with both requiring 60% fewer sentences to train

a model with a test F-score of 78. The Output LSP method requires 18% fewer sentences.
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With respect to predicates, once again we see the baseline RandSent performance (4,355

predicates) significantly improved by DO-BALD LSP (20% less - 4,355 predicates) and Output LSP

(16% less - 3,666 predicates), but MostPred is a detriment (30% more annotation - 5,651 predicates).

3.3.4 Conclusions

Between the two proposed methods of aggregating predicate-argument structure scores into

a single value to represent a sentence, either averaging across them (AP) or only considering the

weakest predicate (LSP), our results show the latter to be substantially better.

Both selecting sentences for the most predicates and selecting sentences with the predicate

with the lowest DO-BALD agreement offer a significant 53%-60% decrease in the number of sentences

required to train the model to a viable performance level with limited benefit to continuing. These

findings are consistent for both the broad, general OntoNotes corpus and the niche colon cancer

clinical note domain of the THYME corpus.

We assessed the performance of these selection strategies in terms of reducing both the number

of sentences and number of predicates annotated. Typically, the SRL annotation process of a large

annotation project benefits most from a reduction of predicates, due to presenting annotators with

batches of a specific predicate to annotate, thereby reducing the cognitive load of switching between

different predicate frames. However, in the case of projects attempting to develop new corpora

with significant budget constraints that would most benefit from an active learning approach, the

piecemeal nature of each annotation iteration makes this approach less viable and likely necessitates

presenting annotators with the data sentence-by-sentence. In this case, reducing the number of

sentences may be of more relevance.

While both DO-BALD LSP and the simpler strategy of selecting sentences with high predicate

density provide significant reduction in sentence annotation, only DO-BALD LSP simultaneously

reduced predicate annotation as well.

As previously described, Siddhant and Lipton [88] also used DO-BALD for SRL. Since they

used a different model and slightly different dataset, we cannot directly compare our results, but
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the effect of AL appears to be more pronounced in our experiments. One key difference between our

approaches that may have provided a benefit is that the authors treat agreement between predictions

as all-or-nothing, whereas our calculation for agreement allows for partial agreement based on

arguments. Additionally, we consider each predicate-argument label sequence independently in the

case of LSP.

3.4 Predicate Selection

Since sentences in most domains typically contain multiple predicates, there are often redun-

dancies in choosing predicates to annotate on the sentence level. Although a sentence may contain

a particularly informative predicate, annotating high-frequency verbs such as “be” that co-occur in

the sentence may not be beneficial. We instead use a method to select specific predicate-argument

structures and compare the impact on performance as compared to selecting whole sentences instead.

This method is a natural extension of our previous experiments that allows us to even better

leverage the focused annotation that active learning offers by using a more granular approach. While

we find consistent early benefit in the more domain-specific corpora, this finer-grained approach

proves to be slower for the more diverse OntoNotes.

3.4.1 Methods

As with the previous experiments, we use the OntoNotes and THYME Colon corpora, but

also use the Earthquakes and Ecology corpora from ClearEarth (described in detail in Section 3.2.2).

We partitioned the training subset of each corpus into 200 random sentences for seeding the

learner, with the remainder used as the initial “unlabeled” pool for selection. The initial 200 seed

sentences were the same across the three selection methods tested for each respective corpus.

After initially training on the seed set, we then select a batch of either 100 predicates or a

number of sentences that are comprised of approximately 100 predicates to add to the training pool

using the BALD predicates or BALD sentences strategy described below in Section 3.4.1.1 or

by choosing random predicates to simulate a passive learning approach. We evaluate the model
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on the test subset of the respective corpora and then the model is retrained with the extended

training pool. We continue these iterations of selection and re-training until either all the data has

been selected and moved into the training pool, or the experiment performances have sufficiently

plateaued.

Our training procedure for this model used 25 epochs or stopped early with a patience of 5

based on the validation data for the relevant corpus.

3.4.1.1 Selection Methods

We use the most successful selection method of our previous experiments, the DO-BALD LSP

method described previously in section 3.3.2. For clarity, in this section, we will refer to this method

as BALD sentences.

The new BALD predicates method is a more granular extension of this previous work. We

use the same idea of scoring individual argument spans based on agreement and averaging them

into a single score for a given predicate instance, but we do not do the next step of combining the

scores of all predicates within a given sentence. We instead use the score to choose specific predicate

instances to add to the training pool.

We also compare these two active learning methods against a passive baseline of selecting

random predicate instances.

3.4.2 Results

Natural variability in training the model produces some amount of noise, most prominently

during the early iterations. In order to improve readability of these learning curves, we apply

a Savitzky–Golay filter, which smooths the curves by fitting successive sub-sets of adjacent data

points with a polynomial using linear least squares. We use a window of 15 data points and a cubic

polynomial.

These learning curves are presented in Figures 3.5, 3.6, 3.7, and 3.8. We see consistent benefits

of the BALD predicates method at different points depending on the corpus.
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Figure 3.5: Performance of each selection method by number of predicates in the training pool on
THYME Colon dataset.

Figure 3.6: Performance of each selection method by number of predicates in the training pool on
OntoNotes dataset.

For Colon, Ecology, and Earthquakes we begin to see consistent improvement for the BALD

predicates method over the other methods by approximately 1,500-2,000 predicates. On the other

hand, for OntoNotes, it only catches up to random selection around 4,500 predicates and begins to

improve over it around 7,000 predicates. For this corpus, BALD sentences performs better.
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Figure 3.7: Performance of each selection method by number of predicates in the training pool on
ClearEarth Earthquakes dataset.

Figure 3.8: Performance of each selection method by number of predicates in the training pool on
ClearEarth Ecology dataset.

3.4.3 Analysis of Selections

In order to better understand the differences between the selection processes used and their

variance across datasets, we examine the selections within each batch.
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3.4.3.1 Diversity

By selecting multiple predicates or sentences in each iteration, we expect that there may be

redundancies. For example, if the model has never seen a given predicate, it will likely have low

confidence in its predictions for it. We present a study of the diversity of the selections over time.

We first observe the amount of redundancy within BALD predicates. This method is often

choosing multiple instances of the same predicate lemma, as observed in Figure 3.9. In the two

ClearEarth corpora we have analysed in this regard, which both ran to completion on the training

data, approximately 25 of the 100 predicates chosen in a batch are duplicates in the early phase of

active learning and with redundancy getting worse as the process gets closer to completion. The

results for Colon contain approximately similar amounts of redundancy for the duration we trained

it.

While there may sometimes be value in selecting the same lemma in order to obtain multiple

senses of the same predicate, minimising this could prove beneficial. Future work could be done to

study the effect of limiting the selection batch to unique lemmas.

# predicates

U
ni

qu
e 

pr
ed

ic
at

e 
le

m
m

as
 in

 s
el

ec
tio

n

0

25

50

75

100

2500 5000 7500 10000 12500 15000

Earthquakes Ecology Colon

Figure 3.9: Number of unique predicate lemmas selected in each batch by the BALD predicates
method over iterations.

Additionally, the BALD predicates method is capable of selecting multiple instances from
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the same sentence. While this may be beneficial, it’s also possible that learning from just one

predicate in the sentence will provide information that can improve agreement on other instances

in the sentence.

We have found that for Colon, a randomly selected batch of 100 predicates contains 3 duplicate

sentences on average, while the selections by BALD predicates contain only 1 duplicate on average.

For the Ecology corpus, both methods pick 3 duplicate sentences on average. This appears indicative

that this is not a significant factor that necessitates correction.

Furthermore, we are interested in the sentence-level semantic redundancies within batches.

Using the pre-trained all-mpnet-base-v2 model [92], we can calculate the average pairwise cosine

similarity between the unique sentences within batches. In Figure 3.10, we find that both active

learning methods contain more sentence-level similarity on average (0.26) than what is chosen

through random selection (0.19) from the THYME Colon corpus.
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Figure 3.10: Average pairwise cosine similarity of selected sentences in each batch over iterations
on THYME Colon.

We can see clear signs of the active learner choosing sentences that would be wasteful to have
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annotated. In one such batch, BALD sentences selected 29 out of the 52 sentences where the

sentences were all of the same basic form, but with varying cancer staging designations:

With available material : AJCC ypT1N0MX

With available surgical material [ AJCC pT3N2Mx ] .

On the other hand, the difference in selection diversity is less pronounced on the other datasets.

In Figure 3.11, we show the similarity in the selections on ClearEarth Ecology, where all methods

average 0.20 across the iterations.
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Figure 3.11: Average pairwise cosine similarity of selected sentences in each batch over iterations
on ClearEarth Ecology.

Since the sentences chosen by the two active learning methods seem to have diversity that is

reflective of the distribution of the training data, this is less concerning compared to the results on

THYME Colon, but further reducing sentence similarity to below what we see in random selection

could potentially be advantageous.
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3.4.3.2 Vocabulary Coverage

We hypothesised that a contributor to BALD predicates’s performance may be a rapid cov-

erage of vocabulary, as predicates that involve unseen vocabulary could result in more disagreement.

In Figure 3.12, we show the percentage of the unique vocabulary of the training set that is within

the training pool as selections are made.

Across the datasets, we see varying results in how much BALD predicates expedites vo-

cabulary coverage. We find that BALD predicates is not tending to choose unseen vocabulary

compared to selecting predicates randomly for Ecology. On the other hand, active learning greatly

accelerates this for Ontonotes, even after performance has largely plateaued. For THYME Colon,

active learning provides an initial boost to vocabulary, but around the time that the performance

plateaus, this decelerates below random.

Figure 3.12: Percent coverage of training vocabulary in by number of predicates in training pool.
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3.4.3.3 Disagreement

For BALD predicates, we calculate an average disagreement score for each selected batch.

While early batches primarily contain predicates for which all predictions are in full disagreement,

we see this disagreement trend downwards as performance plateaus. This is presented in Figure

3.13.

# training predicates

Figure 3.13: Average disagreement in selected batches decreases as iterations continue, while F-score
increases and plateaus.

Although performance on OntoNotes has largely plateaued around an F-score of 79 by 7.5k

training predicates, we know that training this model on the full dataset yields another 4 points.

Since the disagreement scores of batches chosen by BALD predicates is still over 70%, this seems

indicative of the additional further performance to be gained, albeit at a slow pace that gets little
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value for the effort. In contrast, Colon plateaued around 82, but the benefits of annotating the

remaining 50k predicates only provides an additional increase of 1 point. With the disagreement

score having fallen below 45%, this points toward an appropriate stopping point.

3.4.4 Corpus Analysis

Although the new predicate selection method offers immediate benefit over BALD sentences

for the three sublanguage corpora, this is inconsistent with the result on OntoNotes, where selecting

BALD sentences is more advantageous until about 7k predicates. In order to better understand the

possible reasons for this, we compare the make-up and distribution of the corpora. These statistics

are presented in Table 3.4.

We use PropBank roleset IDs as our measure of polysemy, since we have gold standard an-

notation for them in all 4 corpora. Note that PropBank sense distinctions are fairly coarse-grained

and were generally only created when there were differences between senses with respect to the

semantic roles. VerbNet [81], FrameNet [6] and WordNet [61] would all give much higher polysemy

counts.

The largest and most diverse corpus in our experiments is OntoNotes, although we find that

in terms of ratio of total tokens to predicates, unique rolesets, and unique tokens, OntoNotes is

statistically more similar to the THYME Colon Cancer corpus than to either of the ClearEarth cor-

pora. OntoNotes and Colon contain approximately one unique roleset per 376-403 tokens, whereas

Earthquakes and Ecology contain one per 39 and 60 tokens, respectively.

Since OntoNotes covers a wider diversity of text types, it’s unsurprising that it contains a

much more diverse set of senses compared to the other corpora. While a lemma like “take” shows

up with 25 different senses in OntoNotes, it only shows up in 8 senses in Colon.

For OntoNotes, only 30% of predicate occurrences are monosemous within the context of the

corpus, whereas this figure is between 54%-61% for the other three corpora. A total of 6% of the

unique predicate lemmas within OntoNotes are seen in 3 or more rolesets, while this is true of only

2% of the lemma types in each of the other corpora.
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We believe this polysemy factor may contribute to the predicate selection method being

disproportionately slower to improve the learning curve on OntoNotes compared to the more focused

domain corpora. The model may be becoming overconfident after selecting many of the most

common senses and failing to choose instances that would help it learn the remaining senses. BALD

predicates may be particularly disadvantaged, since BALD sentences may still incidentally add

these to the training pool.

OntoNotes Colon Earthquakes Ecology
Tokens 2.2 mil 522k 41k 83k
# tokens / # types 44.55 36.88 8.42 10.43
Predicates 301k 57k 7.5k 15k
Tokens per predicate 7.41 9.11 39.63 60.45
Avg sentence length 18.74 11.33 23.39 24.48
Unique rolesets 5535 1389 1046 1376
Tokens per roleset 403 376 39 60
Predicate lemmas
with 1 roleset

3829
(83.33%)

1340
(90.24%)

985
(91.20%)

1416
(92.73%)

Predicate lemmas
with 2 rolesets

494
(10.75%)

112
(7.54%)

73
(6.76%)

80
(5.24%)

Predicate lemmas
with 3+ rolesets

272
(5.92%)

33
(2.22%)

22
(2.04%)

31
(2.03%)

Monosemous predicate
occurences 29.95% 55.02% 53.53% 60.94%

Table 3.4: Statistics about the four corpora.

3.4.5 Conclusions

We’ve demonstrated that active learning can reduce annotation requirements for semantic

role labeling across multiple domains by employing Bayesian Active Learning by Disagreement and

using dropout to provide variability in predictions from the model. These predictions can be used

to estimate the model’s confidence in its predictions and select informative training instances to

annotate.

Selecting predicate instances through the BALD predicates method offers significant im-

provement in efficiency for THYME Colon, ClearEarth Earthquakes and Ecology, which have very
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focused domains. This method does not provide the same performance increase on the more general

OntoNotes over the previous BALD sentences, which selects whole sentences.

We have provided a statistical comparison of these corpora and offered a possible reason for

the divergence in performance: a notable difference in polysemy within OntoNotes compared to the

rest of the corpora.

Additionally, we examined the diversity of the selected predicates and sentences for BALD

predicates. Although these results vary across the different datasets, it indicates a potential avenue

of future improvement. Reducing sentence-level semantic similarity seems of particular relevance to

the THYME Colon corpus. We have also identified redundancies in the predicates chosen in each

batch by BALD predicates, which could be reduced in future work.

We also presented the change in model prediction disagreements over iterations as compared

to model performance, which could be beneficial to determine when the costs of further annotation

outweigh the additional gains that the model can provide.

3.5 Batch Sizes

Each iteration of active learning includes selecting an arbitrary number of instances to query.

The number may be static, or dynamic with larger batches being selected in the early training

process and smaller batches later on.

To maximally benefit from the model’s feedback, in an ideal setup, each iteration would

query for only one new instance, thereby minimizing the likelihood of selecting a batch of sentences

with redundant information [80]. Unfortunately, this leads to the process of active learning being

significantly slower due to needing to re-train the model more often. Additionally, annotating a

sentence at a time with long breaks in between may cost additional time on the part of the annotator

due to mental context-switching and needing to load up appropriate software and resources. It would

be more efficient for them to be able to annotate numerous examples in a row.

Our previous experiments testing the BALD predicates method show positive results when

selecting 100 predicates in a batch. This small batch size requires about 60 iterations before the
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learning curve plateaus for the Colon corpus. We examine the effect of larger batches on the learning

curves for the THYME Colon and the two ClearEarth corpora.

3.5.1 Results

We used the BALD predicates selection strategy with varying sizes of 100, 500, and 1000

query instances. These results are presented for three datasets in Figure 3.14, using datapoints on

intervals of 1000 predicates.

Figure 3.14: Performance of using BALD predicates, selecting varying numbers of predicates per
iteration.

Interestingly, changing the batch size has differing impacts on the datasets we examined this

for. The THYME Colon corpus suffers very little from scaling all the way to 1000 predicates per

selection batch. The results on Earthquakes show the clearest need for small batch sizes, while
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Ecology exhibits shifting performance over the course of iterations.

3.5.2 Conclusions

Since the choice of how many selections to take on each iteration cannot be tuned for in

real-world use of active learning, we have attempted to shed light on the levels of impact to expect

on several different corpora, which vary in how sensitive they are to larger batches. We find that

further investigation is needed to determine the most significant factors causing these differences

so that future applications of active learning to SRL can predict the most ideal selection batch size

that balances performance against training time for their target domain.

3.6 Seed Selection

Active learning requires a small number of labeled instances in order to initialise the model.

Conventionally, these are chosen randomly, but this method can lead to issues. The majority of

the popular active learning algorithms concentrate on selecting hard-to-classify instances that help

quickly hone in on decision boundaries. This bias in sampling is what enables such rapid learning

compared to passive learning, but the classifier may become overconfident about the membership

of instances which belong to clusters from which it does not have labeled examples and misclassify

them. If they lie far from a decision boundary, the algorithm may never select them for annotation.

This phenomenon is called the missed cluster effect, and may result in entire classes being missed in

imbalanced data sets where the seed set is chosen randomly. This special case of the missed cluster

effect is called the missed class effect [98].

As mentioned previously, Dligach and Palmer [20] showed that a language model can provide

good seed data for active learning for WSD by assigning low probabilities to rarer verb senses,

which then allows for unsupervised selection of them to provide a better seed set. Peterson et al.

[75] extended this to SRL, investigating the informativeness of low-probability instances for training

an SRL model. The authors found that choosing those atypical sentences as the training data for

an SRL model led to requiring fewer sentences for equivalent performance compared to choosing
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random sentences or the high-probability sentences.

3.6.1 Methods

3.6.1.1 Highest Perplexity

For the THYME Colon corpus, we trained GPT2 [78] on the training subset for 20 epochs.

The model had an accuracy of 52.35% on the development subset. We used this model to rank the

training sentences according to perplexity.

Since these clinical notes contain a significant number of formulaic sentences, simply choosing

the sentences with the highest perplexity would lead to redundancies in the seed set, such as the

following:

Well - healed incision .
Well - healed midline incision .

# 10 Depression
# 6 Depression

In order to prevent this, we applied an additional filter to ensure diversity in the seed set.

We begin by choosing sentences in order of highest perplexity, but reject any sentences that have a

cosine similarity higher than 0.85 with any of the sentences that have already been chosen.

We determined the sentences’ embeddings based on the Colon GPT2 model combined with

a pooling layer.

For THYME Colon, we selected 200 sentences (276 predicates) using this method as our

initial seed data and performed active learning using the previously described BALD predicates

selection method. We also perform the same experiment using 200 sentences (648 predicates) of the

ClearEarth Ecology corpus.
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3.6.1.2 Most Dissimilar

We begin our seed set selection with one random sentence and proceed to iteratively select

additional sentences. Using MPNet-base-v2 1 to generate sentence embeddings, we calculate the

pairwise cosine similarity between all candidate sentences that contain at least one predicate and

the sentences chosen for the seed set so far. With the goal of finding another sentence to add to the

seed set that is the most dissimilar to any already in it, we average the cosine similarity between

each candidate sentence and each seed sentence. The most dissimilar sentence is added to the seed

set and the process is repeated.

3.6.2 Results

In the case of choosing a seed with sentences with the highest perplexity, we present the

learning curves for active learning on THYME Colon in Figure 3.15 and ClearEarth Ecology in

Figure 3.16.

Figure 3.15: Performance of using perplexity to choose the 200 seed sentences vs. random on
THYME Colon.

We find that using a seed set with the most unlikely sentences according to perplexity is
1 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Figure 3.16: Performance of using perplexity to choose the 200 seed sentences vs. random on
ClearEarth Ecology.

significantly detrimental to the performance of active learning on THYME Colon. For ClearEarth

Ecology, we see an early gain, followed by a decrease in performance before the learning curve

matches the version that started with a random seed.

Using the most semantically diverse sentences as the initial seed is far less harmful than using

the perplexity method in the case of Colon, but does not appear to provide a benefit in either

corpora, as seen in Figures 3.17 and 3.18.

3.6.3 Conclusions

We find that both selecting the seed based on high perplexity and using sentence cosine

similarity to choose semantically distant sentences did not provide a performance benefit on the

Colon and Ecology datasets. Although these methods were useful in previous NLP AL applications,

there are many variables that differ between our experiments and prior work. Tomanek et al. [98]

and Dligach and Palmer [20] were performing different NLP tasks, but Peterson and Palmer [75]

found sentences with a low likelihood according to a language model to be more beneficial for

SRL than an equivalent random sample. An important consideration though is that these previous
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Figure 3.17: Performance of using 200 sentences with the least cosine similarity compared to each
other as a seed vs. random on THYME Colon.

Figure 3.18: Performance of using 200 sentences with the least cosine similarity compared to each
other as a seeds vs. random on ClearEarth Ecology.

experiments were not using neural nets and the much more robust modern embeddings from a

large NN language model that we are. These advances in architecture and features may lead to

the previously beneficial tuning of the seed set to become obsolete. Additionally, we tested these

seed selection methods on narrow domains as opposed to more general texts, which may be less
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susceptible to the missed class effect due to their comparative lack of diversity.

3.7 Summary

In this chapter, we have discussed our experiments using active learning to accelerate the

learning of an SRL model on new corpora. We estimate model uncertainty through Bayesian Active

Learning by Disagreement, calculating the rate of disagreement of multiple model predictions, using

dropout to provide variability.

We found that BALD does provide a more useful way of selecting new annotation instances for

the SRL NN model compared to the model’s output layer. By selecting sentences to annotate where

the sentence contains a particularly interesting predicate that the model has high disagreement for,

as opposed to averaging the agreement across all predicates in the sentence, we see even further

benefit.

We also found that for datasets with sublanguage characteristics, it seems more beneficial to

select individual predicate-argument structures to annotate and train on than to select all predicates

in a sentence.

We found through examining the selections by BALD predicates and random sampling that

the comparative rates of vocabulary coverage can vary drastically between datasets. Although the

amount of diversity within the batches of selections can vary between datasets, we have identified

THYME Colon as a corpus that may benefit from introducing more sentence-level diversity. We see

quite a bit of redundancy in the lemmas being chosen by BALD predicates in all of the sublanguage

datasets, which may also be useful to reduce.

We have presented a comparison of using active learning to select differing sizes of batches.

While many of our experiments were performed using 100 sentences or predicates for each iteration,

we find that increasing this to 1000 predicates causes negligible degradation in terms of performance

on the THYME Colon corpus, while significantly reducing the time spent training the model and

disruption to workflow. However, we find this result to vary based on the dataset. Further research

is needed to identify the attributes of a particular domain that influence how detrimental larger
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batch sizes are.

We have found that creating seed sets using both sentences with a high perplexity according to

a language model and sentences that offer a diverse coverage according to sentence embeddings fail

to replicate the improvements seen in previous work for WSD and SRL. Since these prior findings

utilised older models based on traditional ML, such as SVMs, we speculate that the improvements

in SRL models and the word embeddings used as features have made these types of modifications

less beneficial. Our earlier findings on the variations between targeted datasets may also account

for the differences in our results, with the prior work on seed selection being performed on more

diverse, general text.



Chapter 4

Bootstrapping AMR Parsing through SRL Active Learning

Since many SRL corpora do not have Abstract Meaning Representation annotations, in this

chapter, we are investigating whether we can leverage existing SRL annotations using simulated

active learning to provide more focused AMR annotation to efficiently develop AMR models for

these domains. Due to PropBank frames being a vital part of AMR’s logical representation, this

overlap may be indicative that what is informative for an SRL model to learn is also informative

for an AMR model.

4.1 Using BALD SRL for AMRs

As described previously in Chapter 3, model output probabilities are a less reliable mea-

sure of model confidence compared to using dropout as a Bayesian approximation for model cer-

tainty through successive forward passes. Unfortunately, using BALD as we have for SRL is not

as straightforward for AMRs. Since AMRs are graph structures, it would require the development

of an alignment algorithm to score disagreements. It may be possible to use an algorithm such as

those used for Smatch [14] to efficiently identify the correspondences between graphs, but we leave

such experiments as future work.

4.1.1 Data

The THYME Colon corpus consists of clinical notes relating to colon cancer, as previously

described in detail in Section 3.2.2.



54

We additionally test this method on a subset of LORELEI. The LORELEI corpus was previ-

ously described in Section 2.1.2. For both LORELEI and THYME Colon, we extract only the subset

of training sentences that have both gold SRL and AMR annotations. In the case of LORELEI,

this subset only consists of newswire text relating to disasters, and not the phrasebook, elicitation,

or web forum text.

4.1.2 Methods

By performing AL using the BALD predicates selection method (described previously in

Section 3.4.1.1) on the subsets of these two datasets that contain AMRs, we can obtain a list of

sentences in order of their priority to the SRL model. We initialised the active learning process

with a starting seed of 200 random sentences from the respective datasets and select batches of

100 predicates. In the previous chapter, we found this method to increase the learning rate for the

THYME Colon dataset. We verified that this same strategy also improves the SRL learning rate

for LORELEI, which is shown in Figure 4.1.

Figure 4.1: Learning curve of SRL by number of predicates in the LORELEI corpus for active and
passive learning.

We created training sets from the first 1000, 2000, and 3000 gold AMR sentences that were
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deemed informative by the SRL active learner. We then trained the state-of-the-art SPRING AMR

parser [8] on these increments, as well as trained a version of the model on an equal amount of

random AMRs for comparison.

In the case of THYME Colon, we use a SPRING model that was pre-trained on the LDC

AMR 3.0 release [44]. Since this release contains the LORELEI data, we train from scratch for

those experiments.

4.1.3 Results

We report the Smatch [14] scores on the test split for the training increments in Figures 4.2

and 4.3. We find that using the sentences chosen by SRL AL to train the AMR model performs

significantly worse than using random sentences. On the THYME Colon corpus, performance is

reduced by 1-5 points. The effect is more deleterious for LORELEI, reducing performance by 2-6

points.

Figure 4.2: Comparison of training the AMR parser on random sentences vs. the sentences chosen
by SRL AL for the THYME Colon corpus.

4.1.4 Conclusion

Despite AMRs containing SRL as a subset of their representation, we find that using the

sentences that boost an SRL model’s performance does not translate to improving the AMR parser’s
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Figure 4.3: Comparison of training the AMR parser on random sentences vs. the sentences chosen
by SRL AL for the LORELEI corpus.

performance. These sentences chosen by BALD for SRL are detrimental compared to using random

sentences.

One reason for the difference may be due to the SRL active learning being biased towards

picking sentences that have predicates in them. A sentence with no predicates tends to produce fewer

disagreements over multiple predictions since identifying a sentence as not containing a predicate

is quickly learned. The THYME Colon corpus is a unique domain where the author frequently

drops predicates in favour of shorthand. Additionally, many of the formulaic sentences are lacking

in predicates, such as listing medications being taken or vital signs. While these sentences are not

highly valuable for training an SRL model, they are informative for training an AMR parser and

should not be neglected. We can see this in the following example from the vital signs section:

Temperature = 98.78 [ degF ]

(h / have-quant-91

:ARG1 (c / clinical-attribute

:name (n / name :op1 "temperature"))

:ARG2 (t / temperature-quantity

:quant 98.78
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:scale (f / fahrenheit)))

Future work could explore using a random subset of these types of sentences to ensure cover-

age.

Furthermore, AMRs also may contain implicit events. Consider the following sentence:

Fluorouracil [ ADRUCIL ] solution 4,810 mg intravenous [...]

(t / therapy-01 :implicit +

:ARG2 (m / medications-drugs

:name (n / name :op1 "fluorouracil")

:ARG1-of (d2 / dose-entity-91

:ARG2 (s / solution)

:ARG3 (m2 / mass-quantity

:quant 4810

:unit (m3 / milligram))))

:manner (i2 / intravenous-01

:ARG1 m))

Not only does the AMR parser need to learn that Fluorouracil is a medications-drugs entity,

but also that there is an implicit therapy-01 event in this context.

However, since the LORELEI newswire text has very few sentences without predicates and no

:implicit events, the drop in performance cannot be solely explained by this phenomenon. Further

analysis of the differences between the types of sentences being chosen by BALD and the composition

of the corpus may shed light on these results and raise potential strategies of mitigating the problem.

Another consideration is the extent of the differences between SRL and AMR representations.

In order to successfully predict the following example from LORELEI, the AMR parser needs to be

able to extrapolate that “one of those” refers to a single person, the presence of the include-91 frame,

as well as that Hong Kong is a city named entity. PropBank doesn’t need to do these additional

steps when it can simply label “one of those listed” as an ARG1 of the miss.01 predicate.



58

One of those listed missing is from Hong Kong [...]

(b / be-located-at-91

:ARG1 (p / person :quant 1

:ARG1-of (i2 / include-91

:ARG2 (t / that

:ARG1-of (l / list-01

:ARG2 (m / miss-01

:ARG1 t)))))

:ARG2 (c / city :wiki "Hong_Kong"

:name (n / name

:op1 "Hong"

:op2 "Kong")))

4.2 Summary

In this chapter, we investigated whether existing SRL annotations can be used to inform AMR

annotation through the use of simulated Bayesian Active Learning by Disagreement.

Despite sharing predicate frames, we have not found using BALD SRL to choose sentences for

AMR training data to be more efficient than choosing random sentences to annotate AMRs. The

extent of the differences between the representations may simply be to great for this strategy to

work. Future work could test using conventional active learning based on the AMR model’s output

probabilities.



Chapter 5

Annotation Projection

Besides using active learning, we are also interested in using annotation projection techniques

to develop new SRL corpora. As we described in Chapter 2, this approach utilises parallel text

to leverage semantic annotation in a high-resource language to create automatic annotations in a

target language.

In Section 5.1, we continue the review of the previous literature on annotation projection,

which was started in Chapter 2, focusing on the aspects that relate to error analysis and filtering

approaches.

In Section 5.2, we will present our preliminary results projecting SRL annotations from English

to Russian using the Russian PropBank 2020 subset [63] of the LORELEI dataset, and examine

the errors that result from our projection methods.

These findings have led to additional annotations and corrections resulting in a new version

of the dataset, Russian PropBank 2023. In Section 5.3, we describe these recent updates to Russian

PropBank and compare it to English PropBank.

In Section 5.4, we use the Universal PropBanks 2.0 system to project to the updated Russian

PropBank 2023. We evaluate this state-of-the-art annotation projection system and identify addi-

tional filtering methods, both specific to Russian and applicable broadly, to incorporate into the

system.
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5.1 Background

As described in Chapter 2, annotation projection requires the identification of correspon-

dences between parallel sentences through unsupervised word alignment models or multilingual

embeddings. Because of errors and imprecise translations, these alone are not sufficiently accurate

to create high quality corpora in target languages.

As with other unsupervised models, word alignment models suffer from considerable noise.

Even the most recent word alignment methods result in significant error rates, as we show in our

comparison in Section 5.2.2. In order to reduce the issue of these errors propagating into the

semantic projection, researchers have proposed numerous ways of either deterministically filtering

out poor alignments or using an SRL model to smooth the errors.

Akbik et al. [2] performed a detailed analysis of the types of errors they encountered in the

process of projecting annotations into French for the creation of the Universal PropBanks. Many of

the errors encountered were due to translation shifts between the languages. A common error with

projecting the predicate occurred when the target verb is simply not a semantic equivalent to the

original source English verb. This type of error they corrected by using a translation dictionary to

verify the validity of a predicate alignment. Another common error was aligning an English verb

with a non-verb in the target language, which is indicative of a translation shift. These cases can

be filtered by checking that the POS of the target word is also a verb.

Additionally, they found errors where the projection target was not the syntactic head of the

complement. Rather than removing these projections as mistakes, they corrected them by moving

the label to the nearest node with a verb as its immediate ancestor. Although these techniques

all improved precision, even as much as from 45% to 88% for predicates and 43% to 75% for

arguments, there still remain errors where the English frames are simply incompatible with the

target language. This may be either due to there being no semantic equivalent in the target language

or target language-specific syntactic particularities. Since the authors later remove sentences with

incomplete annotations, they did not prioritise methods to improve recall.
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Fei et al. [29] used fast_align to provide word alignments for their annotation projection from

English PropBank to automatically translated parallel sentences. Each potential projection was

given a score, calculated by a joint probability between word alignment probability and the predicted

part-of-speech probability distribution. They tested multiple values of a threshold hyperparameter

for weeding out low likelihood projections, determining that F1 was most improved by ignoring

projections under the score of 0.4, with the score diminishing if the parameter was set higher.

The authors of X-SRL [19], which we briefly described in Chapter 2, also filtered candidate

projections. They kept only targets which had a verbal POS tag, which had the effect of removing

light verbs. Since alignments were to word pieces in the target sentence using mBERT embeddings,

those were used to ‘vote’ on the correct target word. If they still found multiple potential projections

for a source word, they kept only the one with the highest similarity score. Compared to using only

cosine similarity to perform projection, these filtering methods raised F-scores for both the method of

projecting with alignment intersections or just source-to-target. The F-score on the latter increased

by 4.5-9.2% to 76.9, 85.9, and 81.2 on German, Spanish, and French, respectively.

5.2 Projecting English PropBank to Russian PropBank 2020

We present our preliminary work on word alignment-based projection methods for English-

to-Russian SRL as a baseline for future research. We compare the performance of several word

alignment systems on a small manually aligned subset of the test set. The best performing system

is used to provide word alignments for projection. We analyse the discrepancies between the pro-

jected annotations and the manual annotations, and then compare several filtering and correction

techniques to reduce these errors.

In Section 5.2.5, we perform error analysis to identify 1) where gaps and inconsistencies exist

in the Russian PropBank annotation that need correction, 2) systemic errors that the projection

makes due to English bias, 3) idiosyncratic errors caused by the projection that may be improved

by better filtering or word alignments.
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5.2.1 Data

As previously described in Chapter 2, the Low Resource Languages for Emergent Incidents

(LORELEI) project 1 released parallel corpora for numerous low resource languages, including

Russian. The dataset includes sentence-level alignment between the English and Russian that

can facilitate projection. A subset of the Russian data, consisting of newswire and phrasebook

sentences, was annotated with PropBank-style semantic roles [63], referred to as Russian PropBank.

The phrasebook subsection comprises relatively short sentences with highly parallel (though often

idiomatic) translations, whereas the newswire subsection consists of complex, paraphrased sentences

that are parallel only at the sentence level. A typical phrasebook sentence in English is “Go to bed”,

while a typical newswire sentence may not only include multiple clauses or quotations, but is more

likely to contain predicates of lower frequency, such as subside.01 or crisis.01, which are unlikely

to appear in the phrasebook section. This complexity and broader vocabulary make the newswire

section a much more challenging dataset to project to.

This version of Russian PropBank consists of frames for 96 verbal lemmas. A portion of the

LORELEI corpus was double-annotated and adjudicated with these frames, but coverage of the

remaining predicates, including all predicate adjectives and nominalisations, were added later by

a single annotator. Since official frames were not constructed for these additional predicates, the

arguments were chosen to follow the general format of ARG0 being the prototypical agent, ARG1

being the prototypical patient, etc.

As part of preparing our data for projection, we automatically moved the span-based English

annotations to the headwords. We used UDPipe [94] with a pre-trained model to provide a universal

dependency parse and part of speech tags for the Russian text, which will be used for filtering the

projections.

Additional datasets used in this work are UMC 0.1 [43] and UMC003 [46]. These are news ar-

ticles in Czech, English, and Russian, comprised of 97,000 and 2,750 English sentences, respectively.

These datasets used automatic alignment to provide parallel sentences. We use the English-Russian
1 https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
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sentences to provide additional training data for the word alignment models.

5.2.2 Word Alignment

As discussed in the previous Background section, projection methods depend heavily on un-

supervised word alignments. In order to compare different word aligners and set-ups, we single-

annotated the alignments of a small subset of the LORELEI data (109 sentences), consisting of

both newswire and phrasebook sentences.

We compared several configurations of off-the-shelf word alignment systems. Two of these,

fast_align [26] and efmaral [71], are extensions of the IBM models proposed by Brown et al. [12].

We trained these aligners on the parallel newswire, blog, forum, and phrasebook English-Russian

data from LORELEI and English-Russian portion of UMC 0.1 and UMC003. We compared these

with two recent alignment methods based on embedding similarity: AWESOME [22] and SimAlign

[37]. In both cases, we used the standard pre-trained multilingual cased BERT embedding model.

The metric used to evaluate the aligners was Alignment Error Rate (AER), where 0 would be perfect

alignment accuracy. Our results are reported in Table 5.1.

Aligner Training Data AER
fast_align LORELEI 28.57%
fast_align + lemm. LORELEI 26.78%
efmaral LORELEI 19.62%
efmaral + lemm. LORELEI 17.33%
efmaral LORELEI + UMC 16.33%
efmaral + lemm. LORELEI + UMC 15.64%
SimAlign mwmf mBERT 23.51%
SimAlign mwmf + lemm. mBERT 24.78%
SimAlign inter mBERT 19.50%
SimAlign inter + lemm. mBERT 20.08%
SimAlign itermax mBERT 19.97%
SimAlign itermax + lemm. mBERT 21.29%
AWESOME mBERT 19.27%
AWESOME + lemm. mBERT 20.60%

Table 5.1: Comparison of performance of word alignment setups on aligned Russian-English
LORELEI data subset.
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The performance of efmaral significantly exceeded the performance of fast_align, and slightly

exceeded the two embedding-based word alignment systems. Since Russian is a language with

very rich morphology, word aligners such as efmaral and fast_align may have difficulty learning

alignments for words the occur infrequently in the training data. As discussed in Borisov et al. [11],

automatic word alignment for English-Russian can be improved by lemmatising the Russian text.

We found lemmatisation to improve AER by approximately 2% on both IBM-model-based aligners.

Possibly because the mBERT-based aligners don’t suffer from the same data sparsity issue, using

lemmatisation decreased performance by approximately 1%.

The best performance of the approaches we tested was from efmaral trained on the LORELEI

and UMC corpora with the Russian text lemmatised. We used this configuration to perform the

projection methods described in the next section.

5.2.3 Projection Methods

By using the automatic alignments provided by efmaral trained on LORELEI and UMC, we

were able to map the manual annotations from English to specific words on the parallel Russian

sentences.

Since Russian PropBank does not include annotations for predicates without a verb alias, we

do not project any of the 1,700 English roleset IDs that belong to predicates where none of the

rolesets have a verb alias. This would include eventive nouns such as “cyclone” as well as stative

adjectives such as “good”.

We also did not project the particles in discontinuous verb-particle constructions (labels with

a ‘C-’ prefix), as these tend to be highly specific to English and would not map appropriately. For

example, we ignore the particle out in the following verb particle construction:

Did [you ARG0] [let let.01] the [dog ARG1] [out C-ARG1] ?

The automatic word alignments sometimes align one word in the source language with multiple
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words in the target language, or multiple words in the source language to the same word in the

target language. In the case of an English word going to multiple Russian words, we chose to project

to only the earliest occurring word. In the case of multiple English predicates being aligned with

the same Russian word, we chose the first predicate to occur. In both cases, the choice was made

only after any relevant filtering rules were applied.

Since the automatic alignments do contain inaccuracies, we compared several simple ways of

filtering egregious errors. We first provide a baseline without any filtering:

Direct projection: The most basic form of projection is based on word alignments. Given

two parallel sentences in the source language SL and target language TL and a list of word alignment

pairs of the form (SLi, TLi′), we transfer the predicate label from SLi and TLi′ if there exists a word

alignment between SLi and TLi′ and no previous predicate has yet been transferred to TLi′ . The

semantic relationship R(SLi, SLj) is transferred to R(TLi′ , TLj′) if there exists a word alignment

between SLi and TLi′ and between SLj and TLj′ .

We test four methods of projection filtering, as well as using all of them in tandem:

Reattachment heuristic: Described by Akbik et al. [2], this filtering method aims to reduce

errors caused by the argument in the target language not being the syntactic head. We implement

a slightly modified form of this. If a candidate argument is not the direct child of the verb (or

linked via advcl, xcomp, or dep dependency labels), we ascend the tree and place the argument on

the immediate descendent. Arguments are not projected if the verb is not found in its ancestry. We

do not apply this filter when the Russian predicate is not a verb or when projecting ARGMs.

POS filtering: Filter predicates and arguments if the proposed target is a PART, PUNCT,

PRP, or ADP. We allow an exception for PART if the argument label is ARGM-NEG or ARGM-DIS.

Russian-specific heuristics: We make systematic adjustments according to common trans-

lation conventions and incompatibilities between English and Russian frames.

Although enumerating a thorough list of English-Russian semantic divergences would require

substantial time and expertise, we created a short list of rules to correct for frequent mistakes caused

by significant mismatches between English and Russian frames. We filter the following rolesets:
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• Modal have.02 (e.g. “I have to go”) is typically translated to a form of the adjective

должен, which is not a predicate in the Russian dataset.

• Auxiliary rolesets have.01 (“Have you seen it?”), do.01 (“Don’t leave”), and be.03 (“What

are you doing?”). The latter does have a parallel in Russian that was not annotated in this

version of Russian PropBank.

• The roleset need.01 is typically translated to an adjective (нужно) or adverb (надо) in

Russian, which are not marked as predicates in the Russian dataset. Since verbal predicates

do exist (нуждаться), we filter this predicate only in the case where the target POS is not

a verb.

• Present tense быть (to be) is frequently implicit in Russian, and the word aligner often

mistakenly aligns the English with the wrong word in Russian. Since this verb is so common

in English, we include a rule that checks if the target argument for be.01 (copula) or be.02

(existential) is a form of быть, and filters it if it is not.

Ground-truth fallback: This method attempts to improve recall by using a bilingual dic-

tionary to find the corresponding target word when the automatic word alignments fail to find a

match in the Russian sentence. Since this doesn’t give us which occurrence in the sentence matches

with which word, we do not project the annotation if there are multiple potential matches. In our

experiments, we use MUSE’s English-Russian bilingual dictionary [50], which contains 53,186 word

pairs.

All methods: We combine all of the above techniques together.

5.2.4 Results

Tables 5.2 and 5.3 show the respective results for the newswire and phrasebook sections of

Russian PropBank. Predicates are evaluated as unlabeled, that is, a predicate assigned to the

same token in the predicted data as in the test data evaluates as correct regardless of roleset.

The first three columns show this result. The tables also show scores from evaluating arguments,
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Predicates Arguments of correct

predicates (unlabeled)
Arguments of correct
predicates (labeled)

All arguments
(unlabeled)

All arguments
(labeled)

P R F1 P R F1 P R F1 P R F1 P R F1
Direct 75.4 77.7 76.5 76.3 78.0 77.1 62.4 63.8 63.1 75.9 71.5 73.6 59.5 56.2 57.9
Reattachment 75.4 77.7 76.5 80.6 74.5 77.4 65.6 60.6 63.0 78.3 67.6 72.6 61.3 52.9 56.8
POS filter 83.9 78.1 80.9 78.3 77.2 77.8 63.9 63.1 63.5 80.7 69.2 74.5 63.8 54.7 58.9
Russian heuristics 89.1 75.8 81.9 76.3 79.0 77.6 62.6 64.8 63.6 80.7 69.7 74.8 63.7 55.0 59.9
Ground-truth 76.3 77.1 76.7 76.1 78.6 77.3 62.5 64.5 63.5 76.2 71.1 73.6 60.0 56.0 57.9
All methods 91.1 75.8 82.8 81.3 76.0 78.6 66.0 61.7 63.8 85.2 65.0 73.7 67.0 51.1 58.0

Table 5.2: Results on the phrasebook portion of the Russian PropBank. Argument scores are
calculated for only the predicates that the projection labeled correctly.

Predicates Arguments of correct
predicates (unlabeled)

Arguments of correct
predicates (labeled)

All arguments
(unlabeled)

All arguments
(labeled)

P R F1 P R F1 P R F1 P R F1 P R F1
Direct 72.8 60.8 66.2 47.6 53.5 50.4 36.0 40.5 38.1 59.3 52.3 55.6 42.3 37.3 39.6
Re-attachment 72.8 60.8 66.2 58.5 52.8 55.5 42.3 38.1 40.1 66.9 48.8 56.4 47.1 34.4 39.8
POS filter 79.0 60.8 68.7 48.9 53.3 51.0 37.2 40.5 38.8 62.7 50.0 55.6 44.1 35.1 39.1
Russian heuristics 79.4 59.0 67.7 48.0 55.0 51.3 35.8 41.1 38.3 59.4 50.8 54.8 41.9 35.8 38.6
Ground-truth 73.1 58.7 65.1 48.7 54.1 51.3 37.1 41.1 39.0 60.7 51.4 55.7 43.3 36.7 39.7
All methods 84.5 57.2 68.2 59.0 56.7 57.8 43.1 41.4 42.2 70.9 47.1 56.6 49.4 32.8 39.4

Table 5.3: Results on the newswire portion of the Russian PropBank. Argument scores are calcu-
lated for only the predicates that the projection labeled correctly.

filtering out arguments that belong to predicates that the method did not label correctly. It should

be noted that this results in evaluating on different sets of arguments between the methods, so

scores are not strictly comparable. Scores are presented with and without the argument label itself

(ARG0, etc.) being taken into consideration. The final six columns contain scores on all dataset

arguments, showing the overall coverage that these methods achieve. We also present confusion

matrices showing the argument errors for the direct projection in Tables 5.4 and 5.5.

The results on the phrasebook section consistently surpass those on the newswire, which

can likely be attributed to the difference in length of sentences, breadth of vocabulary, and how

parallel the sentences are on a lexical level. Using all of the filtering methods improves predicate

identification from 76.5 to 82.8 F-score on phrasebook, but the newswire section only increased from

66.2 to 68.7, with the best filtering method (POS alone). The significance of the effect of filtering

was reversed when it comes to arguments – with filtering improving scores for newswire arguments

more than phrasebook arguments. SWhen scoring only the arguments attached to a correct predicate

and with the correct argument label, phrasebook improved from 63.1 to 63.8 and newswire improved



68

from 38.1 to 42.2.

All of the tested filtering methods improve precision for identifying predicates compared to

the direct projection, but tend to suffer slightly on recall. While the ground-truth fallback method

alone had little benefit, it likely enhanced performance more when combined with other filtering

techniques. The automatic alignments do not typically incorrectly predict that a word has no align-

ment in Russian, but the ground-truth method can help in cases where the alignment was incorrect,

but another filtering technique removed it (such as when an ARG0 is placed on punctuation), leaving

the bilingual dictionary to provide a form of recovery.

Both genres had some amount of ARG0/ARG1 and ARG1/ARG2 confusion, some of which

may be due to translation shifts, such as Russian’s use of нравиться/‘to please’ rather than ‘to

like’. For the sake of readability, we collapsed the ARGMs to one column/row in the confusion

matrix. Some of our findings regarding ARGMs were that ARGM-LOC was frequently projected in

newswire, but the Russian PB had no label on those spans. In phrasebook, many of the ARGM-MNR

projections were labeled as ARGM-ADV in Russian PB, which is a more general purpose modifier.

The only previous work on cross-lingual Russian SRL that we are aware of is the construction

of the Universal PropBanks using word alignments, filtering, and bootstrapping to fill in missing

SRL labels on the dependents of verbs [2][40]. Although their techniques resulted in sentences

with high quality annotations, they are not easily compared with our results here. A significant

difference is that they projected only verbal predicates, whereas we include nominalisations and ad-

jectival predicates. Additionally, their method of evaluation was to manually examine only complete

sentences, where every verb and its dependents received a label.

5.2.5 Error Analysis and Discussion

In this section we present the findings of our error analysis, which covers gaps in the Russian

PropBank annotation as well as both systemic and idiosyncratic projection errors.
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Predicted

ARG0 ARG1 ARG2 ARG3 ARG4 ARG5 ARGM Missing

R
us

si
an

P
B

ARG0 408 32 2 - - - 1 55
ARG1 31 414 23 5 2 - 24 152
ARG2 5 17 59 2 2 - 9 34
ARG3 1 4 2 1 10 - 1 2
ARG4 - - 1 - 4 - - -
ARGM 3 13 15 1 6 - 313 151
None 124 113 27 3 5 - 168 3868

Table 5.4: A confusion matrix showing mislabeling of arguments by the direct projection method
on the phrasebook data.

Predicted
ARG0 ARG1 ARG2 ARG3 ARG4 ARGM Missing

R
us

si
an

P
B

ARG0 44 13 1 - - - 41
ARG1 4 65 3 1 - 7 75
ARG2 - 5 14 - 1 4 16
ARG3 - 1 - - - 1 1
ARG4 - - - - 1 - 1
ARGM 5 4 - - - 56 66
None 63 70 10 3 3 104 5440

Table 5.5: A confusion matrix showing mislabeling of arguments by the direct projection method
on the newswire data.

5.2.5.1 Russian PropBank Errors

The English roleset be.03 describes the auxiliary use of be. English annotation guidelines

prescribe annotating this predicate with no arguments. Russian has a highly parallel construction

with the verb быть, but Russian PropBank 2020 marks this usage as the ARGM-MOD of the verb

есть (to eat) in the sentence “What are we going to eat?”:

[что ARG1] [мы ARG0] [будем ARGM-MOD] [есть PRED] ?

Verbs are sometimes missing from the annotation as well, such as the predicate сложилось

(turned out) in the sentence “Все сложилось хорошо” (“Everything worked out fine”).
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Predicates may be misidentified, such as the interjection спасибо/thanks. This particular

word is fairly consistently mislabeled as a predicate in Russian PB, and this allows the projection

to produce false positives when projecting thank.01 from English.

There are a number of mistakes and inconsistencies we found related to arguments:

• Sometimes missing ARGM-DIS labels for да/yes and нет/no

• Inconsistent about marking должен/obligated as ARGM-MOD, ARGM-ADV, or not at all.

• никогда/never is often marked as ARGM-TMP, whereas it should be ARGM-NEG

Examining some of the ARGMs that the evaluation marked as incorrect highlights some of the

challenges inherent in making decisions between them. For instance, English PropBank marks heart

as the ARGM-EXT of the predicate love in the sentence “I love you with all my heart”. Russian

PB chose the more general ARGM-ADV in the equivalent Russian sentence, “я тебя люблю всем

сердцем”.

We find sporadic occurrences of mislabeled arguments as well, such as this case where вас

(you) should be an ARG2 instead of an ARG1 in the sentence (lit. I you not hear):

[я ARG0] [вас ARG1] [не ARGM-NEG] [слышу PRED]

5.2.5.2 Systemic Projection Errors

An interesting semantic divergence between Russian and English is the expression of must,

should, need, or have to. While modal verbs, such as must and should, in English PropBank are

marked as ARGM-MOD arguments to a main verb, these are frequently translated to a construction

with нужно or надо such as in “We should get a new car”:

[нам ARG0] [нужно ARGM-MOD] [купить купить.01] новую [машину ARG1]

The Russian can be translated more literally as “To us it is necessary to buy a new car”. In

this case, the projection matches the gold annotation since should is an ARGM-MOD in English,
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but the same Russian word and construction will be mistakenly marked as a predicate, rather than

ARGM-MOD, when the source is need.01, such as the following example, “we need ice”:

[Нам ARG0] [нужен need.01] [лед ARG1] .

In Russian PropBank, this sentence does not have a predicate. The adjective должен faces

similar issues. This word would be literally translated as obligated, but is a common way of trans-

lating “need to X” or “have to X”. Russian PB most frequently marks this as an ARGM-MOD, but

as with нужно, the English translation sometimes uses a predicate, such as have.02.

Further complicating matters, нужен and должен are short-form adjectives. They share

common roots with verbs нуждаться (to need) and долженствовать (to be required to), respec-

tively, but are not derived from them. Because of this, these are not considered in the current

form of Russian PropBank to be predicative. This means that Russian PB will fail to capture any

information in a sentence like the previous example of “We need ice”. This raises the question of

whether a better representation would be to treat these adjectives as predicates.

Another English modal verb that doesn’t project accurately is can. In English, this is marked

as an ARGM-MOD, but in Russian PropBank it is a verbal predicate, with the co-occurring verb

being its ARG2. In Russian PropBank, there are two predicates in the sentence “I can call her”:

[Я ARG1] [могу PRED] [позвонить ARG2] ей .

Я могу [позвонить PRED] [ей ARG1] .

The one who is can do the action, я (I ), is only attached to the verb могу (can/able), while

the person being called, ей (her), is attached to the verb позвонить (to call). This results in a

substantial re-arrangement of semantic structure, as can be seen by comparing the two predicate-

argument structures annotated by Russian PropBank. Projecting from English PropBank using

accurate word alignments results in only a single predicate and могу being marked as an ARGM-

MOD for it:
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[Я ARG0] [могу ARGM-MOD] [позвонить PRED] [ей ARG1] .

One type of error that is challenging to remedy arises from nominal predicates in the English

PB. The roleset medicate.01, as in “malaria medication”, is projected in the newswire data to the

Russian noun препарат. Although the alignment is correct and the translation is perfectly sound,

this label is marked as incorrect according to Russian PB. The Russian word препарат (medication)

does not derive from a Russian verb corresponding to the assigned predicate as in English (and is,

in fact, a loanword), so would typically not be labeled as a predicate in a Russian SRL corpus.

Identifying cases like this, where the projection fails despite perfect alignment and accurate parallel

translation, presents difficulties for annotation projection.

5.2.5.3 Idiosyncratic Projection Errors

The word aligner frequently struggles with mapping present tense forms of “to be” to the

Russian text, which are usually implicit. Rather than omitting these in the alignment, these are

often incorrectly aligned to punctuation or particles in the Russian text. The POS filtering we used

was designed to remove these spurious alignments.

English newswire texts often use the predicate say.01 to introduce quotations, such as in

[he ARG0] [said say.01]

The Russian text, rather than the equivalent сказать (to say), often uses “по словам ...”

(“According to the words of...”) or “по данным...” (“according to the facts...” as an analogue. These

phrases do not lend themselves to a predicate with a sayer as its ARG0 as in the English text, so

Russian PB does not annotate with a predicate in this situation. Because this translation shift

happens frequently, the alignment model often considers the Russian phrase as aligned with said,

leading to the incorrect projection of say.01 and its arguments.
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5.2.5.4 Future Work

Since the best performance of the word aligners we tested still has an error rate of 15%,

there is room for improvement on the alignments that these projection methods rely on. One of

the embedding-based alignment methods we tested, AWESOME, used the pre-trained multilingual

BERT model for our experiment, but the model allows for fine-tuning on data. Using the par-

allel LORELEI data to fine-tune it may provide improvements for our target dataset. The word

alignments may also be improved by training on additional parallel data, such as ParaCrawl [28],

RusLTC [49], or OpenSubtitles [56].

In our method of using a bilingual dictionary as a fallback in the case of the word aligner

failing to match a word, we’re using the MUSE bilingual dictionary [50]. A shortcoming of this

dictionary is that it does not contain all possible forms for translations. For example, the parallel

entry for the English past-tense verb said only identifies the masculine form of the equivalent past-

tense Russian verb сказал, and not the feminine or neuter. This approach would benefit from the

use of a morphological analysis tool, such as PyMorphy2 [47], to provide additional word forms.

Additionally, this particular dictionary is missing some frequently used words, such as the first

person singular pronoun I /я.

In some cases, we would be better off relying on a bilingual dictionary to choose the appro-

priate target word than to use the word alignment, but the projection method we used only used a

dictionary as a fallback in the case that the word aligner didn’t find a match at all. The off-the-shelf

word aligner we used, efmaral, does not provide insight into the model’s confidence in its predictions,

but other word aligners have more accessible outputs. Being able to assess the trustworthiness of

word alignments could allow us to choose the threshold at which to switch to a different technique,

which may be more beneficial than using the word alignment model alone.

When dealing with a small amount of labeled data, but access to a large amount of unla-

beled data, a popular approach of weakly supervised learning is bootstrapping, or self-training.

Bootstrapping techniques have been shown to improve the quality of projections based on word
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alignments [2][40][4], by providing a way to overwrite erroneous projections or fill in gaps that were

missed by the word alignments.

5.3 Russian PropBank 2023

We consider some of the results of the previous Section 5.2 as preliminary due to data quality

issues. The differences between the test data and our projections have offered insight into both

systemic and idiosyncratic errors. In response, we have done additional annotation and adjudication

to improve the quality of the annotations. Particularly, we have been creating new frames 2 and

expanding double-annotated and adjudicated coverage of the verbs that were added in the secondary

pass, where annotations for predicates without constructed rolesets were added with approximate

roles. While the later versions of English PB extensively annotated nominalisations and predicative

adjectives, the preliminary pass to add these to the Russian PropBank shows that it is challenging

to annotate these consistently and raises complex questions about what is predicative. We have

restricted the focus of development to just verbal predicates, which is a decision also made by the

Universal PropBanks.

We have added a roleset based on auxiliary be.03 (быть.08 ). This usage is typically dropped

in present tense, but frequently serves to provide tense to imperfective verbs, such as in мы будем

есть / we will eat. This use was previously annotated as an ARGM-MOD for the main verb.

5.3.1 Comparison to English PropBank

English PB may miss semantic distinctions present in Russian. For example, the verb

уезжать/уезхать expresses leaving by vehicle/animal, whereas уйти/уходить expresses leaving

by one’s own power. The closest English mapping for this predicate, leave.11, is divided into two

rolesets in Russian: уезжать.01 and уйти.01, with manner is a core argument for уезжать.01.

2 https://github.com/cu-clear/RussianPropbank
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Russian uses 23 verbal prefixes that are used to compose new verbs with changes to the

aspect or semantics of the verb. English would typically add prepositions or other words to form

the equivalent. For example, пройти (to go through) is formed by the verb идти (to go) аnd the

prefix про- (through, or past).

We made the decision to only create new rolesets for prefixed verbs if there is a change

in meaning beyond an aspectual one or if a prefixed verb requires different core arguments. For

example, пить.01 (to drink) can take several prefixes:

• пить - to drink (imperfect)

• выпить - to drink up / to the end

• попить - to drink for a little while / to drink here and there

Because these are aspectual differences, these are all aliases to the same roleset. Russian

PB may capture less information than English in this case, since English may include ARGMs to

provide the additional information.

On the other hand, when a prefix changes core arguments, we construct a new sense. For

instance, сидеть (to sit):

• сидеть - to sit

• просидеть - to sit through

This latter case almost always requires the specification of a temporal event (time or event

sat through), and so is defined as an ARG2 role.

A significant difference between English and Russian is the treatment of modals, as we dis-

cussed earlier in Section 5.2.5.2. In English, modal verbs (can, may, would, etc.) are uninflected

and simply attached to the main predicate as ARGM-MOD.
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In Russian, the verb мочь can serve a similar role as can or may and is typically translated

as such. In English PropBank, can is always treated as an ARGM-MOD and no distinction is

made whether the speaker is using it to convey ability or permission, but we add this distinction in

Russian PropBank 2023. In the former case, we use the roleset мочь.01, which is based on able.01

and is used for ability/capability and usually agentive and physical:

Я могу бежать очень быстро
I can (am able to) run really fast

If мочь is being used solely to mark modality, conveying permission or possibility, we do not

label it as a predicate. This usage is always connected with an ARGM-MOD to the main predicate,

if available.

Вы бы не смогли меня подождать?
Would you be willing to wait for me?

Он так может упасть!
He might fall like that!

The previous version of Russian PropBank considered both senses to be predicative, using

мочь.03 in the modal sense. We also removed the roleset давай(те).09 in this update. This usage

of the verb давать is typically translated as “let’s”. For example:

Давайте попробуем снова.
Let’s try again.

Because this is functioning to mark the main verb as hortative mood, we consider this to be

an ARGM-MOD of the main verb. The English PropBank treats let in this sense as a predicate with

the roleset let.01 (to allow). The result of this is that there is no difference in the representation

compared to “She let me try again”.

The use of the ARGM-MOD in English PropBank is restricted to a finite list of modal verbs:

Shall, will, should, would, may, might, must, can, and could. Other words that may indicate
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modality (e.g. probably, possibly) are often treated as ARGM-ADV, which is used for any adverbial

arguments that don’t fit into any of the other ARGM categories. In some cases, they may be other

types, such as “I really liked it” (ARGM-EXT) as opposed to “It really was true” (ARGM-ADV).

Our goal with this change to Russian PropBank is to avoid using ARGM-ADV when ARGM-

MOD is applicable. This also applies to words such as возможно (possibly).

5.4 Comparing Universal PropBanks 2.0 With Russian PropBank 2023

We used the Universal PropBanks 2.0 system [40] to project the manual PropBank annotation

from the English LORELEI sentences to the parallel Russian translations.

5.4.1 Background

As discussed previously in Chapter 2, Universal PropBanks 2.0 consists of automatically

generated PropBanks for 23 languages. Similarly to version 1.0, their projection system consists

of using a combination of word alignments and filtering techniques to project automatic SRL from

English into the target languages, combined with bootstrapping an SRL model to re-label the

target sentences and successive re-training on the improved labels. The new 2.0 system uses several

improvements compared to their previous version, including utilising more modern syntactic, word

alignment, and SRL models. Additionally, they train the re-labeling SRL model jointly on the

projected annotations in the target language combined with English gold SRL annotations from

OntoNotes to improve the performance. They also jointly train on span-based and dependency-

based labels, providing output in both forms.

5.4.2 Methods

We provide the gold English PropBank annotations from the LORELEI core data to the UPB

2.0 system to produce PropBank annotations on the parallel Russian newswire and phrasebook

sentences. The internal bootstrapped Polyglot SRL model is trained on these projected annotations

as well as gold English SRL from OntoNotes. Since UPB 2.0 does not project participles, which are
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annotated in Russian PropBank 2023, we do not assess performance on predicates marked as ADJ

by the automatic UDPipe parse.

The UPB 2.0 output consists of two forms of labels: dependency heads and span SRL that

may include additional arguments without head verification. We will refer to these two versions of

projections as Precise and Balanced, respectively. In order to evaluate against the Russian PB,

we determine the dependency heads for the Balanced projections based on the automatic UDPipe

dependency parses. If the span contains multiple possible heads, we simply choose one of them,

although such a solution is not ideal.

5.4.3 Discussion

The UPB 2.0’s SRL re-labeling means that the projection is not limited to using the roleset in

the English sentence. This can greatly improve the projection in cases where the parallel sentences

are not literal translations.

For example, in one pair of parallel sentences, the English is “Could you spell that please?”,

but Russian lacks the verb “to spell (something out with letters)”. This sentence is translated as

“Вы можете продиктовать по буквам?” (lit. “you may dictate by letters?”). The UPB span

projection successfully identifies the Russian verb as the sense dictate.01 and “по буквам” (by

letters) as the manner:

[Вы ARGM-MOD] [можете ARGM-MOD] [продиктовать dictate.01] [по буквам ARGM-MNR] .

On the other hand, this can produce an incorrect result where a direct projection would’ve

worked fine. In the sentence “Is her cell phone not working?” and equivalent “Работает ли ее

мобильный телефон?”, the bootstrapped SRL model re-labels the predicate from work.09 (func-

tion, operate) as use.01 (take advantage of, utilise). This type of error is difficult to correct, but

increased training data for the bootstrapped SRL model may help. It should be noted that this type

of error is not detected by our evaluation metric. Because the arguments have the same ordering

in both rolesets and we cannot automatically assess whether use.01 is a reasonable translation of
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работать.02, this mistake escapes notice.

PropBank annotation guidelines dictate that you may not tag multiple core arguments. If

an argument is not contiguous, they should be marked using a prefixed argument label, such as an

ARG1 with the rest of the argument labeled C-ARG1. We look at the example “You’re just going

to make it worse” (“Вы все делаете еще хуже” (lit. “you everything do even worse”).

In the Precise projection onto dependency heads, UPB 2.0 produces the following arguments

for make.02 (cause [to be]):

[Вы ARG0] [все ARG1] [делаете make.02] еще [хуже ARG1]

The Balanced projection adds yet another ARG1 onto еще/even. According to Russian

PropBank, the correct annotation uses the делать.03 roleset (change state).

[Вы ARG0] [все ARG1] [делаете делать.03] еще [хуже ARG2]

The agent (Вы/you) and patient in the projection (все/everything) are correct.

A class of error that would be easy to remedy using simple rules is where certain parts of

speech are given labels that would never be acceptable in any circumstance, such as on punctuation.

Another example is this case where the pronoun вы (you, formal/plural) is marked as a modal in

the sentence “Could you repeat that?”:

[Вы ARGM-MOD] [можете ARGM-MOD] [повторить repeat.01] ?

This example is also demonstrative of the fact that certain ARGMs can also be considered

closed classes, where any projection onto a token not within that class is rejected. For example, the

particles that convey negation (не, нет, никогда) are the only ones allowed to be ARGM-NEG.

To summarise, we propose two categories of filtering rules. Based on our understanding of

PropBank annotation guidelines and errors made by UPB 2.0, we suggest some rules that can be

applied to any language. We also propose some rules that require a basic understanding of the

target language. We provide these restrictions for Russian, although they can be similarly adapted

for other languages:.
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• Language-independent filters

∗ Remove predicates and arguments if the target is a PUNCT or ADP.

∗ PART can only be an ARGM-NEG, ARGM-DIS, ARGM-ADV, or ARGM-MOD

∗ PRON should never have the following ARGM labels: ARGM-MOD, ARGM-NEG,

ARGM-MNR, ARGM-EXT, ARGM-ADV, ARGM-ADJ, ARGM-PRR

∗ ARGM-COM can only be a PRON, PROPN, or NOUN.

∗ Only use the most likely target for core arguments, rather than duplicating them. Du-

plicate core arguments are against PropBank guidelines. In our current methodology,

we are prioritising direct children of the predicate; if further criteria are necessary we

prioritise NOUN, PROPN, PRON and if there is still ambiguity, we simply choose the

first occurrence.

• Language-specific filters

∗ The only token that is allowed to be ARGM-REC are forms of себя (himself, herself,

itself, yourself ).

∗ Change ARGM-ADV to ARGM-MOD if it’s a form of the following: Мочь/смочь,

можно, бы, должен, нельзя, надо, нужно, возможно. This list is incomplete, but

covers the most frequent cases.

∗ нет, не, and никогда can only be labeled as ARGM-NEG, never as any other argu-

ment. No other tokens can be labeled as ARGM-NEG other than these.

5.4.4 Results

We evaluated the Precise and Balanced projections against both Russian PropBank 2020 and

2023, using PriMeSRL [39] for scoring. The performance of the base system and with using the

proposed filters as a post-processing step are presented in Tables 5.6 and 5.7 for the phrasebook and

newswire genres, respectively. Since we cannot evaluate whether the sense of a predicate is right,
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predicates are correct if they are simply in the correct location. Arguments, on the other hand, are

only considered correct if they are both correctly placed and labeled. In the case of the 2020 dataset,

we evaluate strictly on the gold annotations, not the approximated predicate-argument annotations

that were added in a second pass. Because the 2020 dataset has incomplete annotations for some

sentences, we only evaluate on the predicates that UPB 2.0 identified and were also present in the

gold data, in order not to penalise it for missing gold annotations. For the 2023 dataset, we evaluate

on all predicates.

Table 5.6: Performance of UPB 2.0 (Balanced and Precise) with and without the filtering methods
on two versions of the Russian PropBank phrasebook subset.

(a)

RuPB 2020 Phrasebook
Balanced

P R F
Predicates 100.00 76.87 86.92
Arguments 76.51 66.49 71.15
Arguments
(filtered)

78.95
(+2.44)

66.75
(+0.26)

72.34
(+1.19)

Precise
Predicates 100.00 76.87 86.92
Arguments 77.27 66.75 71.63
Arguments
(filtered)

79.19
(+1.92) 66.75 72.44

(+0.81)

(b)

RuPB 2023 Phrasebook
Balanced

P R F
Predicates 94.44 90.43 92.39
Arguments 74.91 74.63 74.77
Arguments
(filtered)

77.10
(+2.19)

74.26
(-0.37)

75.66
(+0.89)

Precise
Predicates 94.44 90.43 92.39
Arguments 76.14 73.90 75.00
Arguments
(filtered)

77.61
(+1.47) 73.90 75.71

(+0.71)

The base Balanced projected arguments on the short, simple phrasebook sentences attain an

F-score of 71.15% and 74.77% on the 2020 and 2023 datasets respectively, with the filtered version

gaining 1.19% and 0.89% over this score. As we would expect, the Precise projections benefit less,

gaining only 0.81% and 0.71%. The best F-scores are achieved by using filtered Precise projections

for phrasebook. The base Balanced projections to the more complex newswire corpus start at 38.30%

and 50.75% and filtering the arguments reduces the 2020 result by a negligible 0.03%, while the

2023 result gains by 0.38%. For this genre, the filtered Balanced projections are the highest scoring.

These filters consistently improve precision (by 0.79-3.60%) across both genres and versions of

annotation, but their impact on recall is more variable. On the 2020 dataset, they slightly improve
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Table 5.7: Performance of UPB 2.0 (Balanced and Precise) with and without the filtering methods
on two versions of the Russian PropBank newswire subset.

(a)

RuPB 2020 Newswire
Balanced

P R F
Predicates 100.00 57.06 72.66
Arguments 49.69 33.89 40.30
Arguments
(filtered)

53.29
(+3.60)

34.32
(+0.43)

41.75
(+1.45)

Precise
Predicates 100.00 57.06 72.66
Arguments 51.80 30.38 38.30
Arguments
(filtered)

52.59
(+0.79)

30.08
(-0.30)

38.27
(-0.03)

(b)

RuPB 2023 Newswire
Balanced

P R F
Predicates 98.48 66.33 79.27
Arguments 72.38 43.43 54.29
Arguments
(filtered)

75.76
(+3.38)

42.86
(-0.57)

54.74
(+0.45)

Precise
Predicates 98.48 66.33 79.27
Arguments 73.12 38.86 50.75
Arguments
(filtered)

74.73
(+1.61) 38.86 51.13

(+0.38)

recall on the Balanced projections, but slightly detriment it on the 2023 dataset. A contributor

to the detriment to recall may partially lay in the filter incorrectly choosing which extraneous

core arguments to eliminate. Further analysis may provide better heuristics for determining which

argument is most likely to be correct.

Overall, these filters provide a simple and efficient improvement to projection when used as a

post-processing step.

5.5 Summary

In this chapter, we described our investigation into using Russian PropBank to provide a

test dataset for exploring techniques of developing SRL tools for Russian. We tested multiple word

alignment systems on a small manually annotated set of parallel English-Russian sentences. We

explored the effects of different filtering techniques on improving the projection from a subset of

the gold English LORELEI SRL to sentences to their Russian translations, testing against the

annotations from the Russian PropBank project.

We identified a need for manual clean-up of the early version of Russian PB and have revised

existing frames, expanded annotation to all verbal predicates in a subset of the earlier version with
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plans to continue, and further developed framing and annotation guidelines.

The latest version of Universal PropBanks 2.0 provides a strong projection framework that

is capable of improving recall on the target language compared to previous projection methods

through the use of iteratively bootstrapping an SRL model on projected labels. Through our

analysis on its performance on Russian PropBank, we have found that many of the errors affecting

precision can be identified and corrected using simple heuristics and a basic knowledge of the target

language. Although our previous projection method described in Section 5.2 has lower performance

than the more recent UPB 2.0, building off the previously tested filtering methods has been fruitful

in reliably improving this system’s performance across the genres and versions of annotation on

Russian PropBank with little computational cost.



Chapter 6

Conclusion

6.1 Active Learning for SRL

In Chapter 3, we presented successful strategies to reduce annotation requirements for de-

veloping an SRL model for English [66][67]. We found that using Bayesian Active Learning by

Disagreement, as implemented through using dropout during the prediction phase, can reduce the

amount of data required to train SRL models compared to both random selection or selecting

training instances using the model’s output probabilities. We have compared the effect of this in

terms of reducing sentences, predicates, or tokens and have discussed the practical considerations

in prioritising these metrics.

With the goal of improving over our previous success using BALD, we tested whether selecting

individual predicate-argument structures can provide improvements over using all of the predicates

in a selected sentence. This more granular approach improves performance on the three narrow

domain corpora, but decreases on the larger, more general Ontonotes. Given that our aim is

develop semantic resources in new domains, these results support the applicability of our approach

to the types of sublanguage corpora we tested.

We have presented several analyses of the sentence and predicate selections over the course of

active learning and have found the datasets to vary in terms of rate of vocabulary coverage compared

to random selection and the diversity of sentences being chosen. We have also investigated the

impact of varying the number of queries per iteration on the learning rate using BALD predicates,

which appears sensitive to the size of the test dataset. This has highlighted potential areas for
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improvement and study, as well as the importance of tailoring active learning to the target data

source.

We have found that monitoring the disagreement score over the course of BALD, combined

with watching for the performance plateau can potentially be indicative as to how much benefit

can be gained by continuing the process. Each corpus varies in terms of how much disagreement is

within each batch and how quickly it decreases. While there is no one-fit algorithm for determining

the stopping point, these factors may be useful.

We have also tested two methods of providing the most unique training instances in the

initial seed data and also limit redundancy: 1) using sentences with a high perplexity according to a

language model combined with a simple filter for sentence-level redundancy, and 2) using sentences

that offer a diverse coverage according to sentence embeddings. We found neither of these methods

beneficial. While similar techniques have previously been effective for WSD and SRL, we speculate

that the improvements in SRL models and the word embeddings used as features have made these

types of modifications of less benefit compared to the earlier NLP systems.

Overall, our findings demonstrate that active learning remains challenging to apply to new

datasets. While many previous active learning methods were simulated and tested for only a single

corpus, we have observed many differences between our tested datasets that indicate that prior and

future work may not consistently carry over for application to new domains.

In Chapter 4, we investigated whether we can accelerate the training of an AMR parser on

corpora with existing SRL annotations. We hypothesised that the overlap of SRL and AMR could

also be indicative of an overlap in which training instances are most informative. By simulating

active learning on the SRL annotations, we can obtain an ordering of the priority of these instances.

However, we find that the SRL AL instances are less useful to training an AMR model than random

sentences, likely due to factors such as AL for SRL not being interested in sentences without explicit

predicates and the extent to which an AMR parser must learn how to decompose concepts, which

is not required for SRL.

In Chapter 5, we compared various word alignment models for the use of projecting SRL
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annotations from English to Russian. Our evaluation and error analysis of this on Russian PropBank

led to several unsupervised modifications for filtering that improve precision, as well as improve recall

through using a bilingual dictionary. These experiments led to additional expansion and refinement

of Russian PropBank, which is ongoing.

We then examined using the Universal PropBanks 2.0 system to project SRL from English to

Russian and evaluating on both the previous 2020 and latest 2023 versions of Russian PropBank. We

identified several areas of improvements based on a combination of simple language-specific rules

and language-independent filtering for standard PropBank annotation. These filtering methods,

applied as post-processing, provide a consistent improvement to the system.

6.2 Future Directions

Although our work has demonstrated the significant benefits to using active learning for SRL,

many open questions remain. Our experiments were limited to one model architecture and it would

be valuable to test the robustness of these strategies on differing architectures. Our analysis of the

selections being made point towards promising avenues of tuning the algorithm further by enforcing

more diversity in the batches of selected queries. We’ve shed light on some of the variance that may

be encountered when applying active learning to different corpora, but there is more work to be

done on understanding the relevant factors in order to most effectively choose the selection strategy

and parameters for real-world use.

Future work in applying active learning to AMRs could examine using the model’s output

probabilities to select training instances, although the prior literature and our results on SRL

indicate that this would be less beneficial than using a strategy such as BALD. Using BALD in this

context would require aligning graph structures to produce agreement scores, which may be feasible

through existing alignment algorithms (such as Smatch) or new innovations.

Although we have focused on Russian as our target language, Universal PropBanks 2.0 has

been evaluated on manual gold annotations (using English PropBank rolesets) for Polish, Viet-

namese, Portuguese, and French. The language-independent filters can be universally applied, but
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native speakers could supply the lists of words that express negation, modality, and reciprocals in

these languages in order to apply the language-specific filters as well. Additionally, the proposed

filtering rules for UPB 2.0 may further enhance performance as a step before bootstrapping, rather

than as post-processing.

Ultimately, we want to understand whether these projected annotations that are innately

biased towards English are sufficient for input into downstream applications compared to designing

and annotating semantic role labeling frames for the target language. To this end, we must improve

the automatic projections to a point where a fair comparison can be made by testing the results of

both strategies on another task as input.

The recent innovations and availability of large language models offer exciting new avenues to

reach our goal of expanding semantic machine understanding to new areas. Leveraging these new

technologies’ aggregation of large amounts of data and generative capabilities may further improve

the approaches we have used (such as by using them for generating word alignments), and conversely,

applications of LLMs may be benefited by the intermediary use of symbolic representations such

as SRL and AMR in order to provide distillation of information, constraints, and explainability.

The integration of architecture innovations, large-scale training, linguistic reasoning, and symbolic

representations collectively can bring about useful, intelligent systems to both synthesise information

and provide a means of understanding their reliability and trustworthiness.
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