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Abstract
We investigate the dynamic behavior of lattices with disorder introduced through non-local
network connections. Inspired by the Watts–Strogatz small-world model, we employ a single
parameter to determine the probability of local connections being re-wired, and to induce
transitions between regular and disordered lattices. These connections are added as non-local
springs to underlying periodic one-dimensional (1D) and two-dimensional (2D) square,
triangular and hexagonal lattices. Eigenmode computations illustrate the emergence of spectral
gaps in various representative lattices for increasing degrees of disorder. These gaps manifest
themselves as frequency ranges where the modal density goes to zero, or that are populated only by
localized modes. In both cases, we observe low transmission levels of vibrations across the lattice.
Overall, we find that these gaps are more pronounced for lattice topologies with lower
connectivity, such as the 1D lattice or the 2D hexagonal lattice. We then illustrate that the
disordered lattices undergo transitions from ballistic to super-diffusive or diffusive transport for
increasing levels of disorder. These properties, illustrated through numerical simulations, unveil
the potential for disorder in the form of non-local connections to enable additional functionalities
for metamaterials. These include the occurrence of disorder-induced spectral gaps, which is
relevant to frequency filtering devices, as well as the possibility to induce diffusive-type transport
which does not occur in regular periodic materials, and that may find applications in dynamic
stress mitigation.

1. Introduction

Complex networks describe a wide variety of systems in nature and society. In particular, the small-world
network model proposed by Watts and Strogatz [1] allows the exploration of the space between regular and
random networks. In this model, the vertices of a regular network are re-wired with a probability p to
another randomly selected node. This leads to networks that simultaneously exhibit a high degree of
clustering, which is characteristic of regular networks, and short vertex-to-vertex distances, which
characterizes random networks. Apart from the general characterization of its properties [2–6], the
small-world model has been applied to a variety of scenarios such as in the dynamics of epidemic spreading
[7, 8], and for modeling of brain [9, 10], social [11], and transportation networks [12, 13]. The physics of
condensed matter systems based on small-world networks has also been explored in the form of Ising
models [14], to explore the onset of localization [15, 16] along with transport in quantum lattices [17–19].

In this paper, we investigate the dynamics of simple elastic lattices where non-local connections are
inspired by the small-world network model. In the context of phononics and elastic metamaterials [20], the
role of disorder has attracted considerable interest. For example, rainbow-based materials have been
investigated for band gap widening and energy trapping [21–27], for wave localization [28], to study the
occurrence of topological phase transitions [29] and for signal processing applications [30]. Also, the role of
disorder has been explored in the context of phonon and thermal transport [31, 32], and as part of the
exploration of quasi-periodic lattices [33–41]. So far, most of prior studies have considered disorder
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Figure 1. Schematics of 1D small-world network lattices. Each mass (red) is connected to the nearest neighbors and to the
ground by a spring of constant k0 (black lines) (a). Additional network connections are represented by blue links, which initially
also connect nearest neighbors and are re-wired with probability p to another random node. Examples with N = 20 masses and
p = 0, 0.3, 0.8 are illustrated in (b)–(d).

introduced to local parameters or couplings, and the introduction of disorder through non-local
connections defined by a network model has not yet been explored. To this end, we consider regular
mono-atomic spring-mass lattices in the form of 1D lattices and of 2D hexagonal, square and triangular
topologies, where connections are added based on the small-world model characterized by a chosen level of
disorder. We first investigate the emergence of spectral gaps as a function of disorder through eigenmode
computations performed on large lattices, and for multiple disorder realizations. Robust gaps appear in the
form of frequency regions not populated by any modes, or populated only by localized modes, both
resulting in low transmission levels across the lattice. These gaps appear to be more pronounced for
topologies of lower connectivity, i.e. 1D and 2D hexagonal lattices which exhibit larger gaps than square and
triangular lattices. Also, the analysis of transient wave behavior allows the characterization of the transport
properties and the identification of transitions from ballistic to super-diffusive and diffusive transport.
These are similar to the transitions experienced by quantum and photonic lattices in the presence of on-site
disorder [42, 43]. The investigations presented herein identify a new route for introducing disorder in
metamaterials in the form of non-local connections, which holds potential for the generation of
disorder-resilient spectral gaps and for applications related to impact mitigation that leverage diffusive
transport, as opposed to ballistic spreading observed in periodic materials.

This paper is organized as follows: following this introduction, section 2 describes the modeling of the
small-world phononic lattices and the associated equations of motion. Next, section 3 describes the spectral
properties of the lattices and the emergence of band gaps through the non-local disordered links. Section 4
then describes the transport properties of the network lattices and characterizes the transition from ballistic
to diffusive transport. Finally, section 5 summarizes the main findings of this work and outlines future
research directions.

2. Small-world phononic lattices: description and equations

Figure 1 illustrates the considered 1D lattices, which consist of equal masses m (in red) connected to nearest
neighbors and to the ground by springs of stiffness k0. These connections form periodic lattices which are
here considered as baselines. Additional connections through springs kn, represented as blue lines, connect
nodes according to the small-network model based on a probability p ∈ [0, 1]. The case of p = 0 defines
additional nearest neighbor connections (figures 1(a) and (b)), while p ∈ (0, 1] in general defines the
probability of rewiring to randomly chosen nodes (figures 1(c) and (d)). The same approach is employed
for the 2D lattices in figure 2, which shows examples of hexagonal, square and triangular lattices with p = 0
((a)–(c)), and with p = 0.2 ((d)–(f)). The presence of an underlying lattice guarantees that all the masses
are connected, which is not enforced by the small-world network (blue) alone for arbitrary values of p [1].
Also, we elect that the spring constants are inversely proportional to the distance, i.e. kn,s = αk0/dn,s, where
dn,s denotes the distance separating masses indexed by n and s, while α defines indicates the strength of
these connections compared to the underlying lattice. This choice is motivated by the desire to retain the
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Figure 2. Two-dimensional hexagonal, square and triangular small-world network lattices with p = 0 ((a)–(c)) and p = 0.2
((d)–(f)). The top and bottom rows respectively display the perspective and top views, with network links represented by blue
lines.

physical behavior of couplings in a mechanical lattice, whereby stiffness terms are typically inversely
proportional to the length of the connection.

The equation of motion for a mass of index n is expressed as:

mün + k0un +
∑

r

k0(un − ur) + α
∑

s

k0

dn,s
(un − us) = fn, (1)

where r runs over the nearest neighbors, and s runs over the network links that connect to that mass, while
un and fn represent the displacement and the force applied to the nth mass. For a finite lattice of N masses,
the equations of motion can be assembled in matrix form:

Mü+Ku = f , (2)

where u = [u1, u2, . . . , uN]T, f = [f1, f2, . . . , fN ]T, and M, K respectively denote the mass and stiffness
matrices. The numerical results presented in this paper rely on standard procedures such as numerical
solution of the eigenvalue problem Ku = ω2Mu for the natural frequencies and mode shapes of the lattice,
and numerical integration of the equations of motion for evaluating the transient behavior under a set of
initial conditions, both in the absence of external forcing. Additionally, we evaluate the lattice response for
assigned harmonic forcing f(t) = f0 eiωt by numerically solving the linear system (−ω2M + K)u = f0, with
f0 being the vector of forcing amplitudes at frequency ω.
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Figure 3. Eigenfrequencies (a) and selected mode shapes (b) of finite lattice with N = 50 masses and free-free boundary
conditions for p = 0 and p = 0.6. The frequencies in (a) are color-coded according to their IPR, signaling whether the modes are
localized or not.

3. Spectral properties and band gap emergence

We first investigate the spectral properties of the network lattices and the emergence of band gaps. Due to
the absence of periodicity, we rely on eigen-mode computations performed on representative finite lattices.
Figure 3(a) illustrates an example for a finite lattice with N = 50 masses and α = 5, and compares the
eigen-frequencies computed for two lattices with p = 0 and p = 0.6 under free-free boundary conditions.
Throughout this paper, we employ Ω = ω/ω0 as a normalized frequency, where ω0 =

√
k0/m. The dots

corresponding to each frequency value are color-coded based on the inverse participation ratio (IPR) of the
corresponding modes, which is defined as:

IPR =

∑
n|un|4(∑

n|un|2
)2 , (3)

where un is the nth component of the eigenvector. The IPR varies from 0 to 1 and signals whether a mode is
localized or not when its value is high or low, respectively. A few modes are marked in figure 3(a) and have
their mode shapes displayed in figure 3(b). When p = 0, the frequencies of the lattice define a continuous
band with only non-localized modes, as expected of a periodic monoatomic lattice [20]. However, the
lattice with p = 0.6 supports a series of localized modes, with two examples displayed in figure 3(b). While
localized modes are expected to appear due to the presence of disorder, we also note that a few frequency
bands are not populated by any modes and may potentially define band gaps. Naturally, these results
correspond to a single realization of the lattice, and are not sufficient to draw conclusions about the
behavior expected of any realization due to the randomness of the non-local connections.

To obtain further insight into the spectral properties of the network lattices, we compute the modes of a
large finite lattice comprising N = 500 masses for p varying from 0 to 1, for multiple realizations and for
multiple values of α, with results summarized in figure 4(a). Each column corresponds to one α value
ranging from 1 to 5: the top row displays the frequencies as a function of p for a single lattice realization,
while the bottom row superimposes the frequencies of 100 different random realizations of each p value. In
both cases, the color is associated with the IPR. The results confirm the existence of frequency bands where
no modes exist, which emerge for increasing values of p, and are more pronounced for larger values of α.
The presence of these spectral gaps is further confirmed by evaluating the harmonic response of a lattice
with N = 200 masses, excited by a harmonic force at the center mass. The harmonic response is computed
as described in section 2, and we define the transmission as the L2 norm of the response along the lattice
divided by the response at the input site n0, i.e. T = ‖u/un0‖2. The transmission is averaged across 100
realizations for varying p and Ω, and is displayed as log-scale colormaps in figure 4(b) for the different α
values. We note that for α = 1 a few gaps appear for a single realization, which are mostly filled by localized
modes characterized by a high IPR when multiple realizations are considered. For α = 3 and α = 5, some
gaps are persist without any existing modes even for multiple realizations, signaling a degree of robustness.
The transmission results in figure 4(b) confirm the existence of the spectral gaps that are not occupied by
any modes, and also of the gaps that are populated by a high density of localized modes. Indeed, localized
modes are not associated with transport along the lattice, and therefore are associated with frequency
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Figure 4. Spectral properties of 1D small-world phononic lattices. Eigenfrequencies of finite lattice with N = 500 masses
computed as a function of p for multiple α values and 1 (top) or 100 (bottom) lattice realizations, color coded by the IPR
(a). Transmission of finite lattice with N = 200 masses when excited at the center as a function of p, averaged along the lattice
and across 100 realizations, for multiple α values (b).

regions of low vibration transmission along the length of the lattice. These results illustrate that the addition
of small-world networks of springs of sufficient strength produce well defined spectral gaps that emerge due
to the disordered network connections, and persist across multiple lattice realizations. We also note the
presence of thin bands of high transmission at fixed frequencies spanning large p intervals, for example at
Ω = 2.5, 3.4 with α = 3, and Ω = 2.8, 4.2 with α = 5, which signal another robust feature emanating from
such disordered lattices.

Next, we investigate the spectral properties of 2D lattices. Results for α = 5 are summarized in figure 5,
which displays the frequencies of 61 × 61 lattices as a function of p. As in previous figures, the spectral
properties are color-coded in terms of the IPR, and are obtained considering 100 different realizations of
hexagonal (a), square (b) and triangular (c) lattices. The bottom panels (d)–(f) display the transmission as
a function of p and Ω, which are obtained for 41 × 41 lattices excited at the center mass and by averaging
the response of 100 lattice realizations. While no regions that are not populated by any modes are found,
there is evidence of regions populated only by localized modes emerging with increasing p. As in the 1D
case, these regions filled by localized modes correspond to regions of low transmission, as confirmed by the
plots in (d)–(f). In the hexagonal case, a couple of regions within the spectrum filled with localized modes
are observed to emerge in figure 5(a), which are confirmed by low transmission regions in (d). The size of
the gaps within the spectrum are diminished in the square lattice case (b) and (e), and become very small in
the triangular lattice case (c) and (f). These results illustrate how the lattice topology plays an important
role in the emergence of bandgaps, and suggest that the progressive increase in connectivity from the 1D
lattice (2 connections per node) to the triangular lattice (6 connections per node) causes a decrease in band
gap occurrence. In particular to the 2D case, we note that low frequency gaps seem to emerge as a function
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Figure 5. Spectral properties of 2D network lattices. Top panels (a)–(c) display the eigenfrequencies of 61 × 61 hexagonal,
square and triangular lattices, considering 100 realizations, and color-coded according to the IPR. The bottom panels (d)–(f)
display the transmission averaged over 100 realizations for 41 × 41 hexagonal, square and triangular lattices.

of p as the first mode of the lattice is separated by a gap from the collective of the other modes of the lattice.
The width of this gap increases with the lattice connectivity, i.e. it appears wider in triangular lattices than
in the hexagonal ones. Although the spectral properties of these lattices are largely influenced by the
topology, in the next section we illustrate that the transport properties are qualitatively similar and that
transitions to diffusive transport can be observed in all cases.

4. Transient behavior: from ballistic to diffusive transport

The transient behavior of the small-world lattices is investigated next. We characterized wave motion in
disordered lattices by relying on a approach [43, 44] that considers the dynamic evolution of the lattice
motion resulting from an initial perturbation. Such evolution is quantified by computing the mean square
displacement (MSD), which is defined as

MSD(t) =

〈∑
n

(dn,n0)2|un(t)|2
〉

≈ tγ . (4)

Here, 〈〉 denotes the averaging operation across multiple lattice realizations, n0 is the site where the
initial perturbation is applied, and dn,n0 is the distance between the generic site n and n0. The MSD is found
to scale as tγ , where t denotes time while the exponent γ quantifies the rate of perturbation spreading. Thus,
γ is used to classify the type of transport that occurs along the medium. For example, quantum and
photonic periodic lattices, which are governed by similar equations of motion, exhibit ballistic transport
which is characterized by γ = 2 [43, 44]. In the presence of disorder, decreasing values of γ quantify the
slower spread that occurs in comparison to regular periodic materials. For instance, depending on the
amount of disorder, lattices may exhibit super-diffusive (γ = 1.5) or diffusive (γ = 1) transport, or absence
of transport altogether for γ ≈ 0, which corresponds to the onset of Anderson localization [42, 43, 45]. This
approach has been recently applied to other types of aperiodic systems, for example in fractal lattices where
γ is found to be related to the fractal dimension of the lattice [46], and also for the characterization of wave
packets spreading in disordered non-linear architected materials [47].

Here, we adopt the MSD to characterize the transport in the small-world lattices. Starting from the 1D
case, we consider a large lattice with N = 1000 masses and apply a perturbation to the n0 = 500 site. The
perturbation is in the form of initial conditions un0 (0) = 0, u̇n0 (0) = 1, which are equivalent to an impulse
excitation f(t) = δ(t) applied to the chosen site. This excitation involves the entire spectrum of the lattice
and is similar to the excitation applied to photonic lattices at z = 0, where z is the propagation dimension
[43]. We observe the spreading for a series of 1D lattices of different α values and evaluate its variation in
terms of the disorder parameter p. The simulation time window is adjusted for each α based on the p = 0
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Figure 6. Transport properties of 1D small-world network lattices. Average displacement fields for α = 0.5 (a) and α = 2.5
(b), with p = 0 (left), p = 0.025 (middle) and p = 0.51 (right). The fitting of the corresponding MSD curves is displayed in (c)
and (d), with circles superimposed to the curves corresponding to fitted data. Variation of γ with p for multiple α values (e), with
guidelines for ballistic, super-diffusive and diffusive transport.

case in order to avoid the presence of reflections at the boundaries, which would affect the MSD
computations. For each α, p combination, the MSD is computed by averaging across 200 lattice realizations,
and the resulting γ is extracted by fitting the tail of the corresponding MSD(t) curve in logarithmic scale.

The results for the 1D lattices are summarized in figure 6. Figures 6(a) and (b) display the average
displacement field in absolute value for α = 0.5 and α = 2.5, and for increasing values of p. The results
illustrate a decrease in the spreading of the perturbation caused by the increase in disorder from the
baseline p = 0 case (left panels), as p increases to p = 0.025 (middle panels), and up to p = 0.51 (right
panels). The quantification of the spreading using the MSD is illustrated in figures 6(c) and (d) by the plots
in log scale. The circles superimposed to the tail of the MSD curves correspond to the numerically fitted
relationship tγ , allowing for the extraction of γ that quantifies the observed decrease in slope associated
with the decrease in spreading. The exemplified procedure is repeated for multiple lattices resulting in
figure 6(e), where the extracted γ values are directly plotted as a function of p for multiple α values ranging
from 0.5 to 7.5. The figure provides a characterization of the transport properties of the lattice, illustrating
that multiple transport regimes such as ballistic, super-diffusive and diffusive are achieved by different
parameters p,α. In particular, we confirm that for p = 0, ballistic spreading characterized by γ = 2 occurs
regardless of the α value, as expected from periodic lattices. As p increases, γ decreases along different
transitions that are intensified for higher values of α. The results in figures 6(a) and (b) correspond to the
points marked in figure 6(e), chosen to illustrate two transitions types. The one in figure 6(a) corresponds
to a transition from ballistic to super-diffusive transport as γ approaches 1.5 for increasing disorder levels.
The second example in figure 6(b) illustrates the transition from ballistic to diffusive transport as γ
becomes closer to 1.

Next, the transport behavior for the 2D hexagonal, square and triangular lattices is illustrated in figure 7.
The procedure for the 1D case is extended to 2D lattices of sizes 29 × 52, 41 × 41 and 49 × 57, respectively.
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Figure 7. Transport properties of 2D small-world network lattices. Variation of γ with p for hexagonal (a), square (b) and
triangular (c) lattices, and for multiple α values ranging from 0.5 to 6. Examples marked in (a) have their corresponding averaged
displacements displayed in (d) and (e).

The number of cells has been chosen in order to form domains of similar length along the x and y
directions, and which are sufficiently large to observe the spreading of the perturbation applied as initial
conditions to the center mass. Similar to the 1D case, the results are obtained upon averaging again over 200
realizations and extracting γ from the MSD curves for each p,α combination. Figures 7(a)–(c) display the
resulting variation of γ with respect to p for the hexagonal, square and triangular lattices, with α ranging
from 0.5 to 6. As in the 1D case, we again find that periodic lattices for p = 0 are characterized by ballistic
transport properties associated with γ = 2. This is verified for any value of α for all the lattice topologies
considered, and it is expected for periodic lattices in general [44]. The figures also illustrate how multiple
transport regimes are achieved in all lattice topologies by different choices of p,α. Two transitions with
α = 2 and α = 6 are exemplified for the hexagonal lattice, where the points marked in figure 7(a) have their
corresponding averaged displacement fields displayed in panels (d) and (e). The plots show the absolute
value of displacement across the lattice in the x, y plane at 5 subsequent time instants, with time varying
along the vertical axis. The displacement for a sectional x, t plane defined for the center y coordinate is also
plotted to improve the visualization of the wave spreading as a function of time. Also, due to the amplitude
decrease resulting from wave spreading, the color axis in each plot is restricted to a range corresponding to
10% of the maximum displacement value along the entire time history. For α = 2, a transition to
super-diffusive behavior (γ ≈ 1.5) is observed, while α = 6 produces a transition to diffusive transport
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(γ ≈ 1). The associated decrease in the spreading can be clearly observed in the displacement plots by
observing how the wave front propagates shorter distances in the p = 1 cases when compared to the ballistic
p = 0 cases. Overall, the transport transitions are qualitatively similar for all the considered 2D lattice
topologies (all of them exhibit transitions from ballistic to diffusive), but some quantitative differences are
observed in the γ(p) curves at the selected α values. Indeed, the γ(p) curves for α = 0.5, 1, 2 and 3 in the
triangular lattice are overall located at larger γ values when compared to the hexagonal and square lattices.
The α = 6 curves reach the same plateau, although the triangular lattice exhibits slightly higher γ values.
These differences are likely due to the different number of connections in each case, from 3 connections per
node in the hexagonal case, to 6 in the triangular case. This makes the triangular lattice stiffer overall, and
hence one may expect that a larger degree of disorder is necessary to induce the same decrease in γ which
leads to diffusive transport.

These results illustrate how the disorder introduced through the network connections modify the type
of transport for all the considered lattice topologies, causing a transition to super-diffusive or diffusive
transport when the strength of the network connections (α) is sufficiently strong. These transitions are
reminiscent of those experienced by quantum and photonic lattices with on-site disorder [42, 43]. However,
we note that for the considered range of α values, γ reaches a plateau close to 1, and Anderson localization
(γ ≈ 0) does not occur. Higher values α > 7.5 are not considered herein since the network connections
become much stronger and overcome the couplings of the underlying lattice. Our preliminary
investigations showed that the transport in that case was not well captured by the MSD computations,
similarly to findings in quantum lattices with distance-independent coupling and absence of an underlying
lattice [17]. Such high α regime may be further investigated in the future.

5. Conclusions

In this paper, we investigate the dynamics of phononic lattices with small-world network connections. Our
results illustrate the emergence of spectral gaps due to increasing degrees of disorder, which are persistent
across multiple lattice realizations. Lattices of different topologies, such as 1D and 2D hexagonal, square and
triangular lattices were shown to feature transitions from ballistic to super-diffusive or diffusive transport.
These results motivate a new route for the introduction of disorder in metamaterials through network
connections, potentially leading to novel functionalities enabled by disorder such as spectral gaps and
diffusive transport, which could be exploited in impact mitigation applications for example. The initial
investigations presented here may be expanded in multiple directions in future studies. While we considered
mechanical vibrations not coupled to any thermal effect (an assumption valid for macro and meso-scale
metamaterials overall), it would be interesting to explore nanoscale materials where elastic waves are
necessary coupled to thermal effects and temperature [48]. In that context, non-local network couplings
might provide a route for manipulating thermal transport in nanoscale architectures. In addition, a variety
of other network modeling strategies may be considered, along with different underlying lattice topologies,
different statistical modeling of non-local connections instead of random re-wiring, the introduction of
non-linearities, as well as the experimental investigations of the transport properties.

Acknowledgments

The authors gratefully acknowledge the support from the National Science Foundation (NSF) through the
EFRI 1741685 grant and from the Army Research office through Grant W911NF-18-1-0036.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Matheus I N Rosa https://orcid.org/0000-0001-7057-2379
Massimo Ruzzene https://orcid.org/0000-0002-1502-2160

References

[1] Watts D J and Strogatz S H 1998 Collective dynamics of ‘small-world’ networks Nature 393 440–2

9

https://orcid.org/0000-0001-7057-2379
https://orcid.org/0000-0001-7057-2379
https://orcid.org/0000-0002-1502-2160
https://orcid.org/0000-0002-1502-2160
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918


New J. Phys. 24 (2022) 073020 M I N Rosa and M Ruzzene

[2] Moore C and Newman M E J 2000 Exact solution of site and bond percolation on small-world networks Phys. Rev. E 62 7059
[3] Barrat A and Weigt M 2000 On the properties of small-world network models Eur. Phys. J. B 13 547–60
[4] Newman M E J 2000 Models of the small world J. Stat. Phys. 101 819–41
[5] Barthéĺemy M and Amaral L A N 2011 Small-world networks: evidence for a crossover picture The Structure and Dynamics of

Networks (Princeton, NJ: Princeton University Press) pp 304–7
[6] Newman M E J, Walls D J, Newman M, Barabási A-L and Watts D J 2011 Scaling and percolation in the small-world network

model The Structure and Dynamics of Networks (Princeton, NJ: Princeton University Press) pp 310–20
[7] Moore C and Newman M E J 2000 Epidemics and percolation in small-world networks Phys. Rev. E 61 5678
[8] Newman M E J, Jensen I and Ziff R M 2002 Percolation and epidemics in a two-dimensional small world Phys. Rev. E 65 021904
[9] Bassett D S and Bullmore E 2006 Small-world brain networks Neuroscientist 12 512–23

[10] Liao X, Vasilakos A V and He Y 2017 Small-world human brain networks: perspectives and challenges Neurosci. Biobehav. Rev. 77
286–300

[11] Braha D and Bar-Yam Y 2007 The statistical mechanics of complex product development: empirical and analytical results
Manage. Sci. 53 1127–45

[12] Latora V and Marchiori M 2002 Is the Boston subway a small-world network? Physica A 314 109–13
[13] Guida M and Maria F 2007 Topology of the Italian airport network: a scale-free small-world network with a fractal structure?

Chaos Solitons Fractals 31 527–36
[14] Herrero C P 2002 Ising model in small-world networks Phys. Rev. E 65 066110
[15] Monasson R 1999 Diffusion, localization and dispersion relations on ‘small-world’ lattices Eur. Phys. J. B 12 555–67
[16] Zhu C-P and Xiong S-J 2000 Localization–delocalization transition of electron states in a disordered quantum small-world

network Phys. Rev. B 62 14780
[17] Kim B J, Hong H and Choi M Y 2003 Quantum and classical diffusion on small-world networks Phys. Rev. B 68 014304
[18] Mülken O, Pernice V and Blumen A 2007 Quantum transport on small-world networks: a continuous-time quantum walk

approach Phys. Rev. E 76 051125
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[28] Flores J, Gutíerrez L, Méndez-Sánchez R A, Monsivais G, Mora P and Morales A 2013 Anderson localization in finite disordered

vibrating rods Europhys. Lett. 101 67002
[29] Shi X, Kiorpelidis I, Chaunsali R, Achilleos V, Theocharis G and Yang J 2021 Disorder-induced topological phase transition in a

one-dimensional mechanical system Phys. Rev. Res. 3 033012
[30] Zangeneh-Nejad F and Fleury R 2020 Disorder-induced signal filtering with topological metamaterials Adv. Mater. 32 2001034
[31] Wagner M R, Graczykowski B, Reparaz J S, El Sachat A, Sledzinska M, Alzina F and Torres C M S 2016 Two-dimensional

phononic crystals: disorder matters Nano Lett. 16 5661–8
[32] Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J and Chen J 2019 Disorder limits the coherent phonon transport in

two-dimensional phononic crystal structures Nanoscale 11 11839–46
[33] Apigo D J, Qian K, Prodan C and Prodan E 2018 Topological edge modes by smart patterning Phys. Rev. Mater. 2 124203
[34] Rosa M I N, Pal R K, Arruda J R F and Ruzzene M 2019 Edge states and topological pumping in spatially modulated elastic

lattices Phys. Rev. Lett. 123 034301
[35] Apigo D J, Cheng W, Dobiszewski K F, Prodan E and Prodan C 2019 Observation of topological edge modes in a quasiperiodic

acoustic waveguide Phys. Rev. Lett. 122 095501
[36] Ni X, Chen K, Weiner M, Apigo D J, Prodan C, Alu A, Prodan E and Khanikaev A B 2019 Observation of Hofstadter butterfly and

topological edge states in reconfigurable quasi-periodic acoustic crystals Commun. Phys. 2 55
[37] Pal R K, Rosa M I N and Ruzzene M 2019 Topological bands and localized vibration modes in quasiperiodic beams New J. Phys.

21 093017
[38] Xia Y, Erturk A and Ruzzene M 2020 Topological edge states in quasiperiodic locally resonant metastructures Phys. Rev. Appl. 13

014023
[39] Gupta M and Ruzzene M 2020 Dynamics of quasiperiodic beams Crystals 10 1144
[40] Rosa M I N, Guo Y and Ruzzene M 2021 Exploring topology of 1D quasiperiodic metastructures through modulated LEGO

resonators Appl. Phys. Lett. 118 131901
[41] Rosa M I N, Ruzzene M and Prodan E 2021 Topological gaps by twisting Commun. Phys. 4 130
[42] Dunlap D H, Wu H-L and Phillips P W 1990 Absence of localization in a random-dimer model Phys. Rev. Lett. 65 88
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