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Abstract: Defect inspection on lithographic substrates, masks, reticles, and wafers is an impor-
tant quality assurance process in semiconductor manufacturing. Coherent Fourier scatterometry
(CFS) using laser beams with a Gaussian spatial profile is the standard workhorse routinely
used as an in-line inspection tool to achieve high throughput. As the semiconductor industry
advances toward shrinking critical dimensions in high volume manufacturing using extreme
ultraviolet lithography, new techniques that enable high-sensitivity, high-throughput, and in-line
inspection are critically needed. Here we introduce a set of novel defect inspection techniques
based on bright-field CFS using coherent beams that carry orbital angular momentum (OAM).
One of these techniques, the differential OAM CFS, is particularly unique because it does not
rely on referencing to a pre-established database in the case of regularly patterned structures with
reflection symmetry. The differential OAM CFS exploits OAM beams with opposite wavefront
or phase helicity to provide contrast in the presence of detects. We numerically investigated
the performance of these techniques on both amplitude and phase defects and demonstrated
their superior advantages—up to an order of magnitude higher in signal-to-noise ratio—over
the conventional Gaussian beam CFS. These new techniques will enable increased sensitivity
and robustness for in-line nanoscale defect inspection and the concept could also benefit x-ray
scattering and scatterometry in general.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction: scatterometry for defect inspection

Optical and x-ray scatterometry are indispensable tools for metrology critical to modern
nanodevice manufacturing. In particular, the detection of nanoscale defects on photolithographic
substrates, reticles, masks, and wafers is a critical quality control used in all semiconductor
foundries [1,2]. Wafers and reticles are routinely inspected using visible or ultraviolet beams,
both in reflection and transmission, to spot feature size corresponding to the 22 nm technology
node and smaller in the in-line process. Additional tools such as scanning probe or electron beam
imaging are then used off-line to inspect smaller regions of interest, to enhance resolution, and
more precisely locate the defect. Moreover, to support extreme ultraviolet (EUV) lithography
at λ = 13.5 nm, sensitivity to smaller defects is needed. Locating and classifying defects with
in-line measurements is desirable to reduce the need for removal of the wafer from the fabrication
line. Using an ArF excimer laser at 193 nm deep UV wavelength, commercial non-imaging
scatterometry instruments are sensitive to defects as small as 10 nm, corresponding to a resolution
of ∼λ/20 [3]. Incoherent laser-produced plasma sources in the EUV and soft x-ray regions can
also be used as scatterometry reference standards for model-based metrology [4–6].
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Tabletop-scale high harmonic generation (HHG) can be used to create light in the UV, EUV,
and soft x-ray regions, λ ∼1-100 nm [7–9] using an extreme nonlinear optical process that
up-converts photons from a femtosecond laser. In contrast to laser-produced plasma sources,
HHG beams are fully spatially and temporally coherent, and as such, are an ideal short-wavelength
light source for spectroscopy, scatterometry, and coherent imaging. Sub-wavelength resolution
EUV imaging has already been demonstrated using HHG in a full field computational coherent
imaging modality, and furthermore this source has been used to capture the fastest charge and
spin dynamics in materials and other systems, on attosecond to femtosecond timescales [10–15].

Coherent Fourier scatterometry (CFS) is an in-line metrology technique based on far-field
diffraction of a tightly-focused coherent laser beam, that is scanned across a sample. The
presence of a defect will result in changes in the far-field scatter pattern that can be detected.
CFS was originally used to characterize the shape and position of grating structures and has
also been shown to have strong capabilities for detecting nanoparticles on silicon, glass, and
plastic substrates [16,17]. Conventionally, CFS inspection of semiconductor samples uses a
Gaussian laser beam as the illumination. It is a model-based technique that employs a library
search strategy, where a priori knowledge about the sample, as well as of the likely types of
defects, is required. CFS can be implemented in a dark-field or bright-field modality. Dark-field
CFS techniques block the specular reflection and capture only the remaining high-angle scattered
light. These dark-field techniques allow for sensitive detection of deep sub-wavelength scale
defects because large-angle scattering is more affected by the defect than small-angle scattering.
CFS using visible lasers has proven to have sensitivity adequate for the 12 nm technology node
and above [18]. However, the incident illumination power must be very high to achieve the
threshold signal-to-noise ratio (SNR) for confident detection, which in turn may unavoidably
damage the sample due to induced thermal and chemical effects. In contrast, bright-field CFS
techniques, which collect both the specular reflection and high-angle scattering, require much
lower incident power and do not suffer from the radiation damage problem. However, the small
inherent scattering and low-SNR limits the sensitivity, such that sub-100 nm defects are difficult
to detect using visible light alone.

Recently, the generation of laser light with orbital angular momentum (OAM) [19] has attracted
considerable interest because of its potential applications for enhanced optical sensing, imaging,
and high-bandwidth communication [20–22]. Several works have also shown that laser beams
carrying OAM can be upconverted into the EUV using the HHG process, imprinting either
static or time-varying OAM [23–25]. OAM in light corresponds to a macroscopic property
of the scalar field spatial distribution that can impart angular momentum, distinct from field
polarization. OAM beams have a helix-shaped wavefront with an optical vortex at the center and
are characterized by an integer quantum number q, called the OAM charge or topological charge
of light. The sign of q determines the handedness of the helical wavefront. The OAM charge can
be measured using interferometry, diffraction through a triangular aperture, or coherent diffractive
imaging, among other techniques [26–28]. The diffraction of an OAM beam from a sample will
show distinct signatures different from what would be observed using a simple Gaussian beam.
Moreover, the diffraction patterns from a sample with defects illuminated by two OAM beams
with opposite phase front helicity, namely, opposite OAM value, show different signatures. This
allows us to demonstrate differential CFS as a new metrology technique for defect inspection,
where diffraction patterns using two OAM beams of opposite helicity are compared to detect
defects, as opposed to comparing to a reference. In scatterometry, a simple structured illumination
with a binary phase structure was recently used to enhance the detection of nanoscale grating
asymmetry and overlay error [29,30]. Our OAM beam CSF is inspired by structured illumination
microscopy, which enhances imaging performance by utilizing illuminations with specifically
designed amplitude or phase structures. A big advantage of using OAM beams is that OAM
modes are exact propagating solutions—Laguerre-Gaussian modes—to the wave equation in
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a circularly symmetric beam. This property contrasts with arbitrarily structured illumination,
which may not necessarily be an eigen solution to the paraxial wave equation and could lead to
significant wavefront property change right after propagation and diffraction.

To solve the problem of high-sensitivity, high-throughput, and in-line nanoscale defect detection
with minimal radiation damage, we combine bright-field CFS techniques with OAM beams
and numerically investigate their performance. The paper is organized as follows: Section 2
introduces the new CFS techniques using OAM beams. In Section 3, the sensitivity enhancement
of OAM beam-based CFS is discussed, and two data processing techniques based on the detection
of asymmetry in far-field diffraction patterns are proposed. Numerical simulations are conducted
to compare the performance of CFS techniques using Gaussian and OAM beams. Finally, we
conclude the paper in Section 4.

2. Coherent Fourier scatterometry techniques

We first review conventional bright-field CFS illuminated with a Gaussian spatial profile beam,
which is one of the widely applied methods for defect inspection where radiation, thermal, or and
chemical effects induced damages from high power beams need to be avoided. We then propose
three new bright-field CFS techniques using OAM beams as the illumination.

2.1. Model-based CFS using a Gaussian beam

In conventional model-based CFS using a Gaussian beam (referred to as model-based Gaussian
CFS), a spatially coherent Gaussian beam is scanned across a sample under inspection. The
far-field diffraction patterns, Iq=0(fx, fy), are measured and compared with reference patterns from
a pre-established database, Ir(fx, fy), to determine whether defects are present in the area of
the illumination. Note that a TEM00 Gaussian beam can be regarded as a special OAM beam
with q = 0. Furthermore, it is possible to use the difference between Iq=0(fx, fy) and Ir(fx, fy) to
locate the defect with respect to the beam center without additional measurements. In Fig. 1,
the sample under inspection, represented as either the complex reflectivity or transmissivity,
in the sample plane, O(x, y), can be modeled as the sum of a defect-free sample, S(x, y), and a
small additive defect, D(x, y), i.e., O(x, y) = S(x, y) + D(x, y). The defect-free sample is usually a
uniform planar substrate and the additive defect is one of the most common cases, representing
an unwanted particle or contamination on the planar substrate. Given a coherent Gaussian beam
as the illumination, Pq=0(x, y), the far-field diffraction patterns measured on the detector plane
can be written as:

Iq=0(fx, fy) = |ℑ{[S(x, y) + D(x, y)]Pq=0(x, y)}|2

= |ℑ{S(x, y)Pq=0(x, y)}|2 + |ℑ{D(x, y)Pq=0(x, y)}|2

+ ℑ{S(x, y)Pq=0(x, y)}ℑ{D(x, y)Pq=0(x, y)}∗

+ ℑ{S(x, y)Pq=0(x, y)}∗ℑ{D(x, y)Pq=0(x, y)},

(1)

where * represents the complex conjugate and ℑ represents the Fourier transform operation.
Here we model the light-matter interaction as a single scattering event and treat the light
propagation from the sample plane to the far-field detector plane using Fraunhofer diffraction.
The corresponding reference diffraction pattern from the defect-free sample on the detector plane
is Ir(fx, fy) = |ℑ{S(x, y)Pq=0(x, y)}|2, and the difference between the measured and reference
pattern Ψ(fx, fy) is:

Ψ(fx, fy) = Iq=0(fx, fy) − Ir(fx, fy)

= |ℑ{D(x, y)Pq=0(x, y)}|2

+ ℑ{S(x, y)Pq=0(x, y)}ℑ{D(x, y)Pq=0(x, y)}∗

+ ℑ{S(x, y)Pq=0(x, y)}∗ℑ{D(x, y)Pq=0(x, y)}.

(2)
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Fig. 1. Schematic of coherent Fourier scatterometry techniques using different illumi-
nation beams. (a) Model-based Gaussian CFS. A Gaussian beam illuminates a defect-free
sample O(x, y), which is chosen to be a uniform planar substrate for discussion, with a point
defect D(x, y), marked in red, and the far-field diffraction patterns, Iq=0, are recorded on
the detector plane. The complex wavefront of the Gaussian beam Pq=0(x, y) is plotted with
amplitude and phase being represented as brightness and hue, respectively, as shown in the
color wheel of the inset. The green dashed box shows the center of the diffraction pattern.
(b) Model-based OAM CFS, model-based differential OAM CFS, and model-free OAM
CFS. All three techniques share the same experimental setup but differ in data collection
and processing. When illuminating with a single OAM beam Pq(x, y) with integer OAM
charge q = +1 or q = −1, the resulting diffraction pattern, Iq, is shown in the red or blue
solid boxes, respectively. Note that the diffraction patterns from OAM beams exhibit an
obvious asymmetry, which can be leveraged to perform defect inspection. A Gaussian beam
can be regarded as a special OAM beam with q = 0. All beams share the same complex
field representation.

In the case where defects are minuscule in comparison to the beam size, the first term on the
right-hand side of Eq. (2) is negligible, and the defect can be approximated by a δ function, i.e.,
D(x, y) = cδ(x − x0, y − y0), where c is a complex scaling factor and (x0, y0) is the coordinate
of the defect. The inverse Fourier transform of Ψ(fx, fy) yields the defect location map ψ(x, y),
which reads:

ψ(x, y) = ℑ−1{Ψ(fx, fy)}
= c∗S(x + x0, y + y0)Pq=0(x + x0, y + y0)Pq=0(x0, y0)

∗

+ cS(−x + x0,−y + y0)
∗Pq=0(−x + x0,−y + y0)

∗Pq=0(x0, y0).
(3)

Equation (3) consists of two terms. The first term is proportional to the field from the
defect-free sample, S(x, y) · Pq=0(x, y), shifted by (−x0,−y0). The second is proportional to the
complex conjugate of S(x, y) · Pq=0(x, y), rotated by 180◦ and shifted by (x0, y0). Since these two
terms are centered at the defect location and its mirror location about the origin, their centroids
are possible locations of the defect. Consequently, there is an inherent two-fold ambiguity in the
determined defect location.

Figure 2 shows the CFS data recording and processing flow for both Gaussian and OAM
beam based CFS. For model-based Gaussian CFS (the first column of Fig. 2), a Gaussian beam
illuminating a uniform sample with a point defect (the white dot pointed by the red arrow) seen in
the sample plane is shown in Fig. 2(a). All subfigures, including those on the sample plane and
the defect location maps, are plotted with amplitude and phase being represented as brightness
and hue, respectively. The 4-step data recording and process flow include:
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(1) Illuminate the sample with a Gaussian beam,

(2) Record a far-field diffraction pattern,

(3) Subtract the recorded pattern from the reference pattern,

(4) Inverse Fourier transform the difference.

We then obtain the defect location map ψ(x, y) as shown in Fig. 2(b), which contains the two
ambiguous terms introduced in Eq. (3), the two possible defect locations, as indicated by the
orange arrows.

2.2. Model-based CFS using an OAM beam

In the model-based OAM CFS, we use an OAM beam with an OAM value of q to replace the
Gaussian beam as the illumination, as shown in Fig. 1(b). Because of its intrinsic spiral phase
structure, the OAM beam will break the symmetry in diffraction patterns Iq(fx, fy), which can be
leveraged to perform sensitive defect inspection. Note that Eqs. (1-3) are general mathematical
expressions, regardless of the illumination type. Figure 2(c) shows an OAM beam with q = +1
incident onto a uniform sample with a point defect (the white dot indicated by the red arrow). After
performing a similar 4-step data recording and process as described in the previous subsection
2.1, we get the defect location map ψ(x, y) shown in Fig. 2(d). The map appears to have the
same features as in Fig. 2(b), but the two ambiguous terms have opposite handedness in phase.
Therefore, we break the inherent two-fold ambiguity, allowing us to determine the correct defect
localization. As indicated in Eq. (3) and by the orange arrow in Fig. 2(d), the center of the
component that has the opposite handedness to that of the OAM beam indicates the correct defect
location.

To better understand the benefits of using OAM beams, we develop an intuition for why
OAM beams cause symmetry breaking in diffraction patterns by comparing the characteristics of
diffraction patterns from Gaussian and OAM CFS. We consider a uniform substrate, S(x, y), with
a small additive amplitude-only defect, which can be expressed as D(x, y) = rδ(x − x0, y − y0),
where r is the defect amplitude and (x0, y0) is the location of the defect on the sample plane.
The defect amplitude here means the magnitude of the normalized complex reflectivity or
transmissivity of the defect in reflection or transmission geometries, respectively, and thus r
varies between 0 and 1. The sample is illuminated by a coherent Gaussian or OAM beam, Pq(x, y),
while the point defect is assumed to be located to the right of the beam for the discussion. The
far-field diffraction pattern is written in Eq. (1). The first and second terms on the right-hand
side of Eq. (1) are the intensity distribution of the complex electromagnetic fields resulting from
the defect-free substrate and the defect, i.e., ℑ{S(x, y)Pq(x, y)} and ℑ{D(x, y)Pq(x, y)}, which we
will refer to as the substrate field and defect field, respectively. The third and fourth terms denote
the interference intensity pattern between the substrate and defect fields, which is real and we
will refer to as the “interference intensity pattern”. Figure 3 shows these fields individually for
both Gaussian and OAM CFS to better understand the difference in their diffraction patterns.
The simulated Gaussian and OAM beams are set such that their peak intensity and integrated
power are both the same.

For a Gaussian beam at focus, i.e., with a flat wavefront, the complex substrate and defect
fields are shown in Fig. 3(a) and 3(b). The horizontal linear phase in Fig. 3(b) is caused by
the shift of the defect to the right in real space relative to the center of the illumination beam.
Figure 3(c) shows the interference intensity pattern, which is real and symmetric. The final
far-field diffraction pattern is the summation of the intensity of substrate and defect fields and
the interference intensity pattern, which is shown in Fig. 3(d). Similarly, the complex substrate
and defect fields, the interference intensity pattern, and the far-field diffraction pattern from the
OAM beam at focus with q = +1 are shown in Figs. 3(e)–3(h). As clearly shown in the inset of
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Fig. 2. CFS data recording and processing flow, including conventional Gaussian CFS
(first column) and OAM beam based CSF (second, third, and forth columns). On the
sample plane, an illumination incident onto a sample, which is chosen to be a uniform planar
substrate for discussion, with a point defect (the white dot pointed by the red arrow) are
shown in (a) and (c) for a Gaussian and an OAM beam with q = 1, respectively. After the
four-step CFS data processing, we get a defect location map ψ(x, y) as shown the last row. In
(b), the map contains two terms that are centered at two potential defect locations, indicated
by the two orange arrows, and is symmetric about the origin, leading to a two-fold ambiguity.
(d) In model-based OAM CFS, the defect location map appears to be similar to that in the
model-based CFS, however, these two terms have opposite handedness in phase. We thus
can use this unique feature to break the ambiguity and determine the correct defect location,
as indicated by the orange arrow. (e) In model-based Differential OAM CFS, the defect
map again have two ambiguous terms. (f) In model-free Differential OAM CFS, the map
shows four ambiguous terms. Using several symmetric axes and point, as well as the phase
handedness, we can then determine the potential defect locations with just two ambiguous
terms, as indicated by the two orange arrows. In (b, e, f), we can further use other constraints
such as the scanning pattern to break the two-fold ambiguity and determine the final defect
location. All figures are plotted with amplitude and phase being represented as brightness
and hue, respectively.
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Fig. 3. The characteristics of far-field diffraction patterns from Gaussian and OAM
beams illuminating on blank substrate with amplitude-only defects. (a) and (b) show
the complex fields from the defect-free substrate and from the defect, i.e., ℑ{S(x, y)Pq(x, y)}
and ℑ{D(x, y)Pq(x, y)} in Eq. (1), in the far-field from Gaussian CFS. The defect is assumed
to be located to the right of the beam for the discussion. The inset of (b) shows the
amplitude of the defect field for Gaussian CFS along fy axis and it is symmetric. (c)
shows the interference intensity pattern, i.e., ℑ{S(x, y)Pq=0(x, y)}ℑ{D(x, y)Pq=0(x, y)}∗ +
ℑ{S(x, y)Pq=0(x, y)}∗ℑ{D(x, y)Pq=0(x, y)}, and (d) shows the far-field diffraction pattern,
which is the summation of intensity of the substrate and defect fields, and the interference
intensity pattern. Similar plots for OAM ±1 CFS are shown in (e-h). The inset of (f) shows
the amplitude of the complex field from defect for OAM CFS along fy axis, and it is not
symmetric because of the spiral phase of OAM beams. The interference intensity pattern of
OAM CFS in (g) shows significant asymmetry due to the spiral phase of the OAM beam.
This asymmetry further propagates into the far-field diffraction pattern, as shown in (h). The
color wheel for complex field representation is shown in the top right corner of (a), where
amplitude and phase are represented by brightness and hue, respectively. See Visualization
1 and Visualization 2 for using Gaussian and OAM beams to scan the defect phase from 0 to
π, respectively.

Fig. 3(f), the defect field is not centered in fy direction. This is because the small defect sees
the local spiral phase from the OAM beam approximately as a linear phase –– consequently, in
frequency space, the field is shifted away from the center according to the Fourier shift theorem.
Moreover, the interference intensity pattern, shown in Fig. 3(g), shows significant asymmetry in
the vertical direction. It is the locally linear, while the globally spiral phase of the OAM beams
that result in the asymmetry in the complex defect field and the interference intensity pattern,
thus causing significant asymmetry in diffraction patterns as shown in Fig. 3(h). This asymmetry
can also be seen in the diffraction patterns in the red and blue dashed boxes in Fig. 1(b).

In fact, the amplitude and phase of defect have different effects on the defect field and
interference intensity pattern: the defect amplitude scales only the amplitude, i.e., the overall
brightness, of the defect field, while the defect’s phase shifts the phase of the defect field. For
small-sized amplitude-only defects on blank planar substrates, when illuminated by a Gaussian
beam at focus, the substrate field has a Gaussian amplitude distribution with a nearly flat phase,
while the defect field has close to uniform amplitude distribution with a linear phase in an area

https://doi.org/10.6084/m9.figshare.13215497
https://doi.org/10.6084/m9.figshare.13215497
https://doi.org/10.6084/m9.figshare.13215488
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where the substrate field has significant amplitude. The linear phase is caused by the shift of
the defect relative to the beam center. The substrate and defect fields are in-phase around the
origin of (fx, fy) space and the interference intensity pattern is symmetric about both fx and fy, see
Figs. 3(a)–3(c). Moreover, any change in defect amplitude scales the amplitude of the defect field
and interference intensity pattern but does not change their patterns. Consequently, Gaussian
beams at focus illuminating blank planar substrates with amplitude-only defects do not result
in an asymmetry in the far-field diffraction patterns. However, when illuminated by an OAM
beam at focus, the defect field is the same, but the substrate field has a donut-shaped amplitude
distribution with a spiral phase distribution, as shown in Fig. 3(d). They interfere constructively
around the top half of the fy axis, and destructively around the bottom half of the fy axis, resulting
in significant asymmetry, as shown in Fig. 3(g). Notice that if the Gaussian and OAM beams are
out of focus, the additional quadratic phase will cause a very small increase in asymmetry that
is negligible compared to asymmetry from OAM beams. For simplicity, we will focus on the
discussion about Gaussian and OAM beams at focus.

For small-sized phase-only defects on blank planar substrates, when illuminated by a Gaussian
beam at focus, the substrate field is the same as that shown in Fig. 3(a), but the phase of the defect
field is shifted by the amount of the defect phase. As a result, the substrate and defect fields are
in-phase away from the origin of (fx, fy) space, causing an asymmetry in the interference intensity
pattern in the direction of the linear phase of the defect field. However, for OAM beams at focus,
the interference of the donut-shaped substrate field and the phase-shifted defect field is much
more complicated, especially for OAM beams with high q value. In our simulation, we scanned
the defect phase from 0 to π and showed the change in the substrate and defect fields, and the
interference intensity pattern in Supplementary Videos (see Visualization 1 and Visualization 2)
for Gaussian and OAM beams, respectively.

2.3. Model-based differential CFS using two OAM beams with opposite charges

OAM beams can have either positive or negative OAM, which makes differential measurements
possible. When used in conjunction with a library of reference patterns, this technique will be
referred to as model-based differential OAM CFS, and the setup is shown in Fig. 1(b). At each
scan point, a sample under inspection is illuminated by two OAM beams with opposite charges,
one at a time. The OAM beams can be expressed as Pq=±1(x, y) = p(x, y)e±iϕ(x,y), where p(x, y)
and φ(x, y) are the amplitude and phase profiles of the OAM beams, respectively. One far-field
diffraction pattern is recorded for each illumination on the detector plane, Iq=±1(fx, fy). One
diffraction pattern is subtracted from the other to form a differential measurement, for example,
M(fx, fy) = Iq=+1(fx, fy) − Iq=−1(fx, fy), which is then compared with the corresponding reference
pattern, Mr(fx, fy), to detect defects. Using the same notation, the counterparts of Eq. (2), with
the first negligible term being dropped, and Eq. (3) are:

Ψ(fx, fy) = M(fx, fy) − Mr(fx, fy)
= ℑ{S(x, y)Pq=+1(x, y)}ℑ{D(x, y)Pq=+1(x, y)}∗

− ℑ{S(x, y)Pq=−1(x, y)}ℑ{D(x, y)Pq=−1(x, y)}∗

+ ℑ{S(x, y)Pq=+1(x, y)}∗ℑ{D(x, y)Pq=+1(x, y)}
− ℑ{S(x, y)Pq=−1(x, y)}∗ℑ{D(x, y)Pq=−1(x, y)},

(4)

and

ψ(x, y) = i2cS(x + x0, y + y0)p(x + x0, y + y0)sin[φ(x + x0, y + y0)]

− i2cS(−x + x0,−y + y0)
∗p(−x + x0,−y + y0)sin[φ(−x + x0,−y + y0)].

(5)

The sine terms in Eq. (5) originate from the subtraction of the two OAM beams with an opposite
charge, i.e., eiϕ(x,y) − e−iϕ(x,y). It consists of the following two components: S(x, y)p(x, y)sinφ(x, y)

https://doi.org/10.6084/m9.figshare.13215497
https://doi.org/10.6084/m9.figshare.13215488
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shifted by (−x0,−y0) and its complex conjugate rotated by 180◦ and shifted by (x0, y0), which are
shown in Fig. 2(e). Similarly, since these two terms are centered at the correct defect location
and its symmetric point about the origin, the correct defect location can be then determined with
a two-fold ambiguity, as indicated by the two orange arrows in Fig. 2(e).

2.4. Model-free differential CFS using two OAM beams with opposite charges

All CFS methods discussed so far require a library of reference patterns. However, in a special
case where the defect-free sample should have a reflection symmetry, the need for a library
can be eliminated. This technique is referred to as model-free differential OAM CFS and its
schematic is also shown in Fig. 1(b). Without loss of generality, we can define the real space
coordinate such that one of these symmetric axes is on the y-axis, i.e., S(−x, y) = S(x, y). Similar
to the model-based differential OAM CFS, at each scan position, the sample under inspection is
illuminated twice by two OAM beams with opposite charges, and then a far-field diffraction pattern
is recorded for each illumination. Importantly, one diffraction pattern, for example Iq=−1(fx, fy), is
first flipped around fy-axis on the detector plane, which is the reciprocal-space counterpart of the
y-axis. Then, the flipped diffraction pattern Iq=−1(−fx, fy) is subtracted from the other diffraction
pattern Iq=+1(fx, fy) to get the differential measurement, Iq=+1(fx, fy) − Iq=−1(−fx, fy). Using the
same notation, the counterparts of Eq. (3) is:

Ψ(fx, fy) = ℑ{S(x, y)Pq=+1(x, y)}ℑ{D(x, y)Pq=+1(x, y)}∗

− ℑ{S(x, y)Pq=+1(x, y)}ℑ{D(−x, y)Pq=+1(x, y)}∗

+ ℑ{S(x, y)Pq=+1(x, y)}∗ℑ{D(x, y)Pq=+1(x, y)}
− ℑ{S(x, y)Pq=+1(x, y)}∗ℑ{D(−x, y)Pq=+1(x, y)}.

(6)

A model-free method is made possible because the reflection symmetry between the two
OAM beams with opposite charges, Pq=+1(−x, y) = Pq=−1(x, y), is the same as that of the sample,
S(−x, y) = S(x, y). Consequently, it is necessary that the beam center is scanned along one of
the axes of the reflection symmetry of the defect-free sample. Considering one-dimensional
grating samples, for example, the beam center should be scanned either perpendicular to the
grating lines, or parallel to the grating lines along the center of grating lines or grooves. The
former scanning scheme is easier to achieve in real experiments. To derive Eq. (6), first of all,
exploiting the symmetry properties of S(x, y) and Pq=±1(x, y) leads to the cancellation of the first
terms of Iq=±1(fx, fy), i.e., |ℑ{S(x, y)Pq=−1(x, y)}|2 − |ℑ{S(−x, y)Pq=+1(−x, y)}|2 = 0. Secondly,
the second term in Eq. (1) for q = ±1 OAM beams, |ℑ{D(x, y)Pq=±1(x, y)}|2, is negligible
because it is many orders of magnitude smaller than other terms. Furthermore, if the defect
is small enough in comparison to the beam size that it can be approximated as a δ-function,
i.e., D(x, y) = δ(x − x0, y − y0), where (x0, y0) is the position of the defect, an inverse Fourier
transform of Ψ(fx, fy) yields:

ψ(x, y) = cS(x + x0, y + y0)Pq=+1(x + x0, y + y0)Pq=+1(x0, y0)
∗

− cS(x − x0, y + y0)Pq=+1(x − x0, y + y0)Pq=+1(−x0, y0)
∗

+ c∗S(−x + x0,−y + y0)
∗Pq=+1(−x + x0,−y + y0)

∗Pq=+1(x0, y0)

− c∗S(−x − x0,−y + y0)
∗Pq=+1(−x − x0,−y + y0)

∗Pq=+1(−x0, y0).

(7)

Equation (7) consists of the following four terms: (1) the positive OAM beam incident
onto the defect-free sample, S(x, y)Pq=+1(x, y), shifted by (−x0,−y0); (2) S(x, y)Pq=+1(x, y)
shifted by (x0,−y0); (3) the complex conjugate of S(x, y)Pq=+1(x, y), rotated by 180◦ and
shifted by (x0, y0); and (4) the complex conjugate of S(x, y)Pq=+1(x, y), rotated by 180◦ and
shifted by (−x0, y0). Figure 2(f) shows the corresponding defect location map ψ(x, y), which
contains the four components introduced above. Since they are centered at (±x0,±y0), one
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can figure out the defect location from ψ(x, y) with a four-fold ambiguity. Furthermore, as
indicated by Eq. (7) and shown in Fig. 2(f), the phase of the term that centers at the defect
location has the same handedness as the negative OAM beam if the differential measurement
is performed with M(fx, fy) = Iq=+1(fx, fy) − Iq=−1(−fx, fy), which decreases the ambiguity to
two-fold. It is straightforward to show that if the differential measurement is performed as
M(fx, fy) = Iq=−1(fx, fy) − Iq=+1(−fx, fy), the phase of the component which centers at the defect
location has the same handedness as the positive OAM beam.

3. Simulations and discussions

In this section, we first numerically simulate three CFS techniques on uniform samples with
point defects, including (1) model-based Gaussian CFS, (2) model-based OAM CFS and (3)
model-free differential OAM CFS, and compared the sensitivity of these techniques in detection
of the presence of defects. Once defects are detected using the methods discussed in subsection
3.1, one can then take an inverse Fourier transform of Ψ(fx, fy) to further locate the defects. Since
the sample discussed in this section is symmetric about x and y axes, the model-free differential
OAM CFS is be applied to perform defect detection, and the model-based differential OAM
CFS is not discussed here. However, in cases where defect-free samples do not have reflection
symmetry, the model-based differential OAM CFS may be used, since the model-free differential
OAM CFS does not work.

3.1. Defect detection based on asymmetric far-field diffraction patterns

In this section, we propose two methods to detect asymmetric far-field diffraction patterns from
defects. The first method uses quadrant detectors (QDs), where we found that using OAM beams
is advantageous over the conventional Gaussian CFS, leading to higher QD signal and thus
higher sensitivity. The second method is based on 2D image sensors, such as cameras (CAMs),
and is suitable for all CFS techniques, including both model-based and model-free differential
OAM CFS. Although slower for data acquisition and processing speed, the camera-based method
provides even higher sensitivity in defect detection. As a proof-of-concept demonstration, we
limit our simulations and discussion on additive defects on a planar substrate and 1D gratings.
The size of the defect is set to be 0.02w0, where w0 is the waist radius of the Gaussian beam. In
the case of inspecting a planar substrate, the illumination beam, indicated by the black dashed
circle in the inset (2) of Fig. 4(a), is scanned in a 2D raster pattern across the sample under
inspection. The green dashed lines denote two consecutive scan lines.

The use of QDs has been demonstrated to detect asymmetry in far-field diffraction patterns in
Gaussian CFS, which can enhance SNR by almost two orders of magnitude [16]. To implement
this method, we center far-field diffraction patterns on a detector, either by dividing a 2D image
from a camera into four equal quadrants or by collecting scattered light into a quadrant photodiode.
As shown in the inset (1) in Fig. 4(a), we can then calculate the horizontal asymmetry (QDL−R)
of the total number of photons between left and right quadrants, and vertical asymmetry (QDT−B)
between the top and bottom quadrants, which are defined as:

QDL−R =
∑︁

Q1,Q3 Ψ(fx, fy) −
∑︁

Q2,Q4 Ψ(fx, fy) =
∑︁

fx<0, fy (Ψ(fx, fy) − Ψ(−fx, fy)),

QDT−B =
∑︁

Q1,Q2 Ψ(fx, fy) −
∑︁

Q3,Q4 Ψ(fx, fy) =
∑︁

fx, fy>0(Ψ(fx, fy) − Ψ(fx, −fy)).
(8)

In general, for model-based Gaussian and OAM CFS, Ψ(fx, fy) is the difference between measured
and reference patterns and is defined in Eq. (2). Specifically, for uniform planar substrates, since
the reference pattern is symmetric in both fx and fy directions, Ψ(fx, fy) can be replaced by the
measured diffraction pattern.

The other approach to quantify the asymmetric diffraction patterns is the sum of the absolute
value of the difference between left and right (or top and bottom) quadrants. This requires a 2D
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Fig. 4. CFS signals from asymmetric far-field diffraction patterns in Gaussian CFS,
OAM CFS and differential OAM CFS due to the presence of defects, detected by
quadrant detectors (QDs) or a camera (CAM). (a, b) Given an amplitude-only defect with
r = 0, the vertical asymmetry signals (QDT−B and CAMT−B) are shown in solid and dashed
lines in (a), and horizontal asymmetry signals (QDL−R and CAML−R) are shown in solid
and dashed lines in (b). The defect size is set to be 0.02w0, where w0 is waist radius of the
Gaussian beam, and the defect shift from beam center is normalized to w0. We also varied
r from 0 to 1 in steps of 0.1 and made a video showing QD signals (see Visualization 3).
(c, d) Given a phase-only defect with ϕ0 = 135◦, the vertical and horizontal asymmetry
signals are show in (c) and (d), respectively. Notice that Gaussian CFS has no sensitivity to
amplitude-only defects, while OAM beams have high sensitivity. Furthermore, differential
OAM CFS has twice as much signal as single OAM CFS. Lastly, CAM signals are higher
than QD signals. Inset (1) of (a) shows an example far-field diffraction pattern, grouped
into four equal quadrants, Q1, Q2, Q3, and Q4, of an OAM q = +1 beam illuminating a
planar substrate with a point defect. Inset (2) shows the schematic of the scanning process
for defect detection. The illumination is scanned over the sample in a 2D raster pattern,
where the green dashed lines indicate two consecutive scan lines. A video with varying ϕ0
can be seen in Visualization 4. All subfigures share the legend shown in (a).

image sensor such as a camera and the signal can be defined as follows:

CAML−R =
∑︁

fx<0, fy |Ψ(fx, fy) − Ψ(−fx, fy)|,

CAMT−B =
∑︁

fx, fy<0 |Ψ(fx, fy) − Ψ(fx, −fy)|.
(9)

https://doi.org/10.6084/m9.figshare.13215494
https://doi.org/10.6084/m9.figshare.13215491
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The difference between Eq. (8) and Eq. (9) is the absolute value operation in the summand in
Eq. (9). If we only consider Poisson noise, which is made possible by the state-of-the-art photon
counting detector technology, the noise level of QD and CAM signals is the same given the
noise in all pixels is independent and identically distributed, according to the propagation of
uncertainty in statistics.

In our simulations, we investigated two types of defects, an amplitude-only defect and a
phase-only defect. The substrate is set to be S(x, y) = 0.7 on the sample plane to model a partially
reflecting flat surface. An amplitude-only defect is defined as D(x, y) = r δ(x − x0, y − y0) with r
being the defect amplitude and (x0, y0) being the location of the defect on the sample plane, while
a phase-only defect is defined as D(x, y) = 0.7eiφ0 δ(x − x0, y − y0) with ϕ0 being the relative
phase between the substrate and the defect. For an amplitude-only defect with r = 0, the vertical
and horizontal QD signals from diffraction pattern asymmetries as a function of scan position
normalized to the Gaussian beam waist radius w0 are shown in Fig. 4(a) and 4(b). We also
varied r from 0 to 1 in steps of 0.1 and made a video showing QD signals (see Visualization
3). Gaussian beams at focus have no sensitivity at all to amplitude-only defects because the
diffraction patterns are perfectly symmetric, while OAM beams at focus are very sensitive due to
the spiral phase structure. For a phase-only defect with ϕ0 = 135◦, the vertical and horizontal QD
signals are shown in Fig. 4(c) and 4(d) and a video with varying ϕ0 between 0 and 1 in steps of 5
degrees can be seen in Visualization 4. Even though Gaussian beams are sensitive to phase-only
defects, OAM beams generally have 2-10 times higher signal levels, a significant improvement.
An obvious advantage of using quadrant photodiodes is the high-speed data acquisition and
processing and thus high inspection throughput, at any wavelength from visible light to EUV.

The QD-based method only captures the difference in the total number of photons between
different quadrants, instead of the photon distribution or diffraction patterns within each quadrant.
As a result, the detailed, pixel-by-pixel information about the asymmetry is lost. To overcome
this, we now investigate the camera-based method. The vertical and horizontal CAM signals
of amplitude-only and phase-only defects are shown in Fig. 4(a)–4(d). It is evident that the
camera-based method can further improve the signal level, compared to the QD-based method,
and provides even higher sensitivity in defect detection. However, for higher sensitivity, data
acquisition and processing time will be longer. The speed limit could be relaxed and eventually
overcome given the high-speed CMOS cameras readily available for visible light and just released
commercially for EUV and soft x-ray wavelengths.

3.2. Effect of varying OAM charges on sensitivity

We also studied the effect of varying OAM charge q on QD and CAM signals in model-based
Gaussian and OAM CFS. As shown in Figs. 5(b), 5(e), 5(f), when the OAM charge varies from
q = 0 (Gaussian beams) to q = +5, the QD signals for both amplitude- and phase-only defects
first increase and then decrease. We attribute this phenomenon to the fact that an OAM beam
with larger q diverges faster and the interference between the sample and defect fields may change
accordingly. On the other hand, the CAM signals increase monotonically by a factor of at least 5
as the OAM charge increases from 0 to 5 as shown in Figs. 5(d), 5(g), 5(h). Higher signal gain is
expected if higher OAM charge beams are used. This also indicates that OAM beams with larger
charges result in more asymmetry in photon distribution, but not necessarily in the total number
of photons of each quadrant.

3.3. Generalization of OAM beam-based CFS to 1D gratings

Our simulations so far are limited to uniform planar substrates with additive point defects.
The types of samples that work under this framework are defined by the assumption made in
Sections 2.3 and 2.4: the defect-free sample is symmetric about some axis. It follows that these
techniques can be easily generalized to inspect more complex samples with reflection symmetry

https://doi.org/10.6084/m9.figshare.13215494
https://doi.org/10.6084/m9.figshare.13215494
https://doi.org/10.6084/m9.figshare.13215491
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Fig. 5. Effect of varying OAM charges in both model-based Gaussian CFS and OAM
CFS. Given an amplitude-only defect, (a, b) show the vertical and horizontal QD asymmetry
signals (QDT−B and QDL−R) and (c, d) show the vertical and horizontal CAM asymmetry
signals (CAMT−B and CAML−R) for Gaussian and OAM beams with different charges. Given
a phase-only defect, (e, f) show vertical and horizontal QD asymmetry signals and (g, h)
show the vertical and horizontal CAM signals for Gaussian and OAM beams. All subfigures
share the legend shown in (a). Note that the monotonic signal increases only occur in the
camera-based method, while the signals will get maximized at particular OAM charges in
the QD-based method.
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Fig. 6. The characteristics of far-field diffraction patterns resulting from Gaussian
and OAM beam illumination of 1D line grating structures including amplitude-only
defects. (a) and (b) show the complex field from the defect-free 1D grating and that from
the defect, i.e., ℑ{S(x, y)Pq(x, y)} and ℑ{D(x, y)Pq(x, y)} in Eq. (1), in the far-field from
Gaussian CFS. The defect is assumed to be located to the right of the beam for the discussion.
(c) shows the interference intensity pattern, i.e., ℑ{S(x, y)Pq=0(x, y)}ℑ{D(x, y)Pq=0(x, y)}∗+
ℑ{S(x, y)Pq=0(x, y)}∗ℑ{D(x, y)Pq=0(x, y)}. Similar plots for OAM ±1 CFS are shown in
(d-f). The interference intensity pattern of OAM CFS in (f) shows significant asymmetry due
to the spiral phase of the OAM beam. The color wheel for complex field representation is
shown in the top right corner of (a), where amplitude and phase are represented by brightness
and hue, respectively. (g) shows several example samples that can be inspected using any of
the OAM CFS techniques presented here, including periodic 1D and 2D gratings, ends of
these gratings and aperiodic set of lines. These example samples have reflection symmetry
in at least one direction.

[see Fig. 6(g)], such as 1D and 2D gratings and aperiodic sets of lines that are widely used
in photolithography in semiconductor manufacturing. To support this statement, we briefly
investigate point defects on a 1D granting. We follow a similar analysis from Gaussian and OAM
CFS on uniform planar substrates discussed before in subsection 2.2.

Figure 6(a) shows the complex field from a defect-free 1D grating, and Fig. 6(b) shows a
complex field from an amplitude-only defect, and Fig. 6(c) is the resulting interference intensity
pattern. The defect size is 0.02w0, and it is located 0.43w0 away from the beam center, which is
also where the OAM beam with q = 1 reaches maximum intensity. The horizontal linear phase
in Fig. 6(b) is caused by the shift of the defect to the right in real space relative to the center
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of the illumination beam. Similarly, Fig. 6(d-f) shows these three plots from an OAM beam
with q = 1 illuminating on the same sample. Clearly, the interference intensity pattern from a
Gaussian beam shows little asymmetry in all three diffraction orders, while that from an OAM
beam exhibits significant asymmetry in all diffraction orders. The results in Fig. 6 are presented
the same way as those in Fig. 3. As in the case of planer substrates (Fig. 3), in this case with 1D
gratings (Fig. 6), constructive interference between the substrate and defect fields occurs in the
top half of the field where they are in phase, while destructive interference happens in the bottom
half of the field where they are out of phase. As a result, we can exploit the same QD or CAM
methods to detect the asymmetric patterns and identify the presence and the locations of these
defects on 1D line gratings. Analysis of 2D grating samples can be accomplished in a similar
manner.

3.4. Discussions and outlook

We now consider how noise affects our proposed CFS techniques. Common noise sources
include shot noise, detector noises, sample noises (e.g., surface roughness), etc. One major
challenge in defect detection on blank wafers is to distinguish between defect signals and the
noise generated by pattern roughness, especially for dark-field CFS techniques. The dark-field
CFS techniques block the specular reflection and capture the high-angle scattered light that in
principle exists only in the presence of defects. However, the presence of noises such as those
from surface roughness will also contribute to high-angle scattering, making it challenging to
distinguish real defects from noises. As for our proposed OAM-based CFS techniques, they
are bright-field based and detect defects by measuring asymmetries in the far-field diffraction
patterns. Because the above noise sources are mostly isotropic in the micrometer-size scale, they
introduce limited asymmetries in the far-field diffraction patterns, thus making the proposed
OAM-based bright-field CFS techniques more robust.

In our simulation, we limited our focus to OAM CFS of uniform planar substrates and 1D
gratings with additive point defects. However, we believe that this technique can be generalized
easily to inspect more complex samples. Future efforts should be devoted to modeling light-matter
interaction using more general theories, such as finite element methods or rigorous coupled-wave
analysis [31,32], which can take complex 3D nanostructures or multiple scattering events into
account if needed for some sample types. Further evaluations on the impact of defects on printed
patterns such as the actinic aerial image seen by photolithographic scanners are also needed,
because the volumetric effects could lead to the “self-healing” of certain defects, reducing their
printability. Furthermore, we anticipate the use of machine learning to help rapidly identify
OAM CFS diffraction patterns from different samples under inspection, as they are shown to
be efficient and powerful tools for defect detection and classification [33]. We also envision
the adaption of OAM beams or other phase or wavefront structured beams for general purpose
scatterometry measurements beyond defect inspection such as grazing-incidence, small-angle, or
wide-angle x-ray scattering.

4. Conclusion

In this work, we presented a set of novel optical scatterometry techniques for high-sensitivity
in-line defect inspection by OAM-beam-based bright-field CFS. Our numerical experiments
demonstrated the feasibility of such techniques by studying amplitude and phase point defects
on planar substrates and 1D gratings. Our proof-of-concept demonstrations show that OAM
CFS outperforms conventional model-based Gaussian CFS by up to an order of magnitude.
Moreover, differential OAM CFS techniques using opposite charges make the model-free CFS
possible, eliminating the need for a reference library in cases where the defect-free sample has
reflection symmetry. In terms of the two data acquisition and processing methods we proposed,
the quadrant detector-based method works faster and is less computationally expensive, while
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the camera-based method has the potential to provide higher sensitivity. The concept of our
new techniques is general, and thus we expect that these techniques can be implemented as
next-generation visible, ultraviolet, EUV, x-ray inspection tools. This could address demanding
industrial metrologies such as mask, reticle, and wafer inspection, as the semiconductor industry
marches toward sub-10 nm photolithography-based manufacturing.
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