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Previous approaches to water resources planning under inter-annual climate variability 

combining skillful seasonal flow forecasts with climatology for subsequent years are not skillful 

for medium term (i.e. decadal scale) projections as decision makers are not able to plan 

adequately to avoid vulnerabilities. This research addresses this need by integrating skillful 

decadal scale streamflow projections into the robust decision making framework and making the 

probability distribution of this projection available to the decision making logic. The range of 

possible future hydrologic scenarios can be defined using a variety of nonparametric methods. 

Once defined, an ensemble projection of decadal flow scenarios is generated from a wavelet-

based spectral K-nearest-neighbor resampling approach using historical and paleo-reconstructed 

data. This method has been shown to generate skillful medium term projections with a rich 

variety of natural variability. The current state of the system in combination with the probability 

distribution of the projected flow ensembles enables the selection of appropriate decision 

options. This process is repeated for each year of the planning horizon—resulting in system 

outcomes that can be evaluated on their performance and resiliency. 

The research utilizes the RiverSMART suite of software modeling and analysis tools 

developed under the Bureau of Reclamation’s WaterSMART initiative and built around the 

RiverWare modeling environment. A case study is developed for the Gunnison and Upper 

Colorado River Basins demonstrates the utility of the decision-making framework.  
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CHAPTER 1: INTRODUCTION 

Water managers and decision makers alike are continuously confronted with the 

challenges of climate variability and change, and faced with the uncertainty intrinsic to 

understanding future climate conditions. As variations and changes in climate impact the type 

and quantity of precipitation, the timing of runoff, evaporation rates, water supply reliability, 

demands and the occurrence of extreme hydrologic events, the associated uncertainties have far-

reaching implications on water resources planning and management. The challenges of planning 

under climate change are further exacerbated by how current decision-making paradigms 

incorporate climate change information and deal with the associated uncertainty.     

Under traditional “top down” planning approaches, the effects of climate change on 

streamflow are projected using output from general circulation models (GCMs), which assume 

future levels of greenhouse gases (GHG) and compute a coarse global, three dimensional grid of 

raw climate variables. To make the raw global climate variables relevant to regional spatial 

scales, GCM projections must be bias corrected and “down-scaled” using statistical methods and 

finer resolution regional climate models [Hidalgo et al., 2008; Tebaldi et al., 2005; Wood et al., 

2004]. Once this is accomplished, the downscaled and bias-corrected climate variables may be 

used as input into hydrologic models, ultimately resulting in regional streamflow projections. 

The streamflow projections can then be input into water management models to assess the 

impacts of climate change. 

In light of climate change, the use of top-down planning approaches has become 

irrelevant as the decision-making process relies on the quantification of risk—which proves 

challenging when the uncertainties associated with climate change remain unknown. 

Furthermore, the use of GCM projections to inform water management decisions remains 
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controversial because of significant uncertainties associated with future GHG levels, bias 

corrections, downscaling, and model congruity. Additionally, because top-down approaches use 

GCM projections as a starting point, the associated uncertainties propagate throughout an entire 

study, proving difficult for decision makers to effectively utilize the results [Weaver et al., 2013; 

Brown et al., 2010; Wilby and Desai, 2010; Hallegatte, 2009; Stainforth et al., 2007]. Further, 

like all models, GCM models are based on assumptions that inherently limit the range of results 

and, consequently, underestimate the full range of future climate outcomes [Hallegatte, 2009]. 

This limitation greatly impacts the decision-making process as decision-makers are forced to 

make decisions based on joint probability distributions representing the range of possible future 

climate outcomes [Lempert and Groves, 2010].  

In an effort to better incorporate climate change uncertainty, bottom-up approaches are 

becoming increasingly prevalent. In contrast to top-down approaches, the bottom-up approaches 

begin at the decision-making level and aim to link system vulnerabilities and risk to climate 

[Brown et  al., 2012; Wilby and Desai, 2010; Desai et  al., 2009]. Typically, historical records 

are used to understand how the system behaves under certain climate conditions and, given this 

understanding, decision-makers can identify climate conditions that push the system into 

vulnerable states under a proposed set of management strategies [Weaver et al., 2013; Brown et 

al., 2012; Wilby and Desai, 2010]. System vulnerability is commonly quantified using system 

performance metrics and thresholds that, when violated, signify the need for improved resource 

management. These thresholds are often developed through stakeholder collaboration and must 

be established before the decision-making process can progress. Examples of such system 

performance metrics include minimum fish flows, hydropower generation, water shortages, and 

maximum channel capacity for flood control [U.S. Bureau of Reclamation, 2012].  
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A fundamental concept of bottom-up approaches is the idea of robustness. Unlike top-

down approaches—which focus on choosing optimal management strategies based on best 

estimates of future probability distributions—bottom-up approaches incorporate a robustness 

criterion [Lempert and Groves, 2010]. While there are many different working definitions of 

robustness, robust decisions generally perform reasonably well over a wide range of plausible 

future conditions. The integration of robustness tests a decision’s ability to perform over a wide 

range of plausible future conditions—which cannot be quantified using probability theory 

[Brown et al., 2012; Lempert et al., 2006]. Previous literature notes that system performance is 

often compromised with more robust strategies, while regret under particular future outcomes is 

minimized [Weaver et al., 2013].  

Due to their inherent nature, conventional bottom-up frameworks fail to incorporate 

regional climate information derived from GCM projections. Brown et al. [2012] attempted to 

ameliorate this deficiency by developing a decision scaling framework that links bottom-up 

analysis with the use of top-down GCM projections. In this hybrid framework, bottom-up 

approaches are utilized to identify climate conditions relevant to the decision space, which are 

then linked to climate information derived from GCM projections. The inclusion of the GCM 

climate information helps decision-makers differentiate preferences among various management 

strategies. For more in-depth information on this hybrid approach, the reader is referred to Brown 

et al. [2012].  

While the Brown et al. framework is a crucial first step, decision-makers must also have 

access to the climate-variable information that is used to derive associated streamflow 

projections. Without this important data, decision-makers cannot effectively link management 

strategies to specific climate variables (i.e., temperature and precipitation). By understanding the 
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relationship between climate change and system performance, this research demonstrates that 

decision-makers can implement more flexible and dynamic management strategies that respond 

to changing climates. This approach differs from traditional engineering approaches that focus 

on long-term infrastructure options (e.g., reuse, water importation and new storage)—which 

cannot easily adapt to climate change.  

While it is essential that decision-making frameworks incorporate credible information 

from GCM projections, it is equally important that they consider the impacts of natural 

variability. For example, in the Colorado River Basin, the mean flow for a 10 year moving 

window can vary from 82% (12.4 MAF) to 126% (18.9 MAF) of the full record mean [Nowak et 

al., 2011]. Over a decadal horizon, these variations will likely have an equal, if not larger, impact 

on system reliability and performance compared to slower moving, anthropogenic-induced 

climate change trends [Nowak et al., 2011; Solomon et al., 2011].  

Further, recent research links multi-decadal variability in the Colorado River Basin to 

larger scale climate indicators such as the Pacific Decadal Oscillation and the Atlantic Multi-

Decadal Oscillation [Nowak et al., 2012]. Unfortunately, the GCMs developed thus far do not 

model these process which have been identified as drivers of hydroclimatic variability [Nowak et 

al., 2012; Timilsena et al., 2009; McCabe et al., 2007; Hidalgo and Dracup, 2003; Cayan et al., 

1999; McCabe and Dettinger, 1999; Piechota et al., 1997]. Utilizing projections that incorporate 

teleconnections with decadal scale signals could improve decision-making and aid in more 

flexible and dynamic management, as decision-makers will have the tools to better understand 

how large scale climate indicators may directly impact hydroclimatic variability and 

management strategies.  



5 

 

The importance of natural variability—including the known impact of decadal and mutli-

decadal scale climate indicators on hydroclimatic variability—in the Colorado River Basin 

highlights the need for projections that incorporate information on decadal timescales. While the 

utility for using decadal scale projections has been widely recognized by the climate community, 

research for creating and incorporating decadal scale projections is in its nascent phase [Solomon 

et al., 2011; Mehta et al., 2011; Meehl et al., 2009; Keenlyside et al., 2008].  

Given the existing tools for robust decision-making and an increased understanding of the 

importance of both climate change and natural variability, our research proposes a novel 

framework that incorporates decadal scale projections to inform the decision-making process. 

Similar to Brown et al. [2012], this framework is a hybrid approach that capitalizes on the 

strengths of both “top-down” and “bottom-up” frameworks. We first introduce the methodology 

for developing decadal scale projections that utilize teleconnections and describe the 

methodology for applying these projections in a robust decision-making framework on the Upper 

Colorado and Gunnison River Basins. Lastly we present our results, and a discussion of the 

research implications.  
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CHAPTER 2: DECADAL SCALE PROJECTIONS 

This chapter develops and demonstrates a methodology for creating decadal scale 

projections using quasi-periodic features which have been linked to large scale climate 

indicators. The goal of the projection methodology is to characterize natural variability cycles at 

any timestep, and based on that create projections that can be used to inform the decision-making 

process (Chapter 3). In essence, these projections project future variability based on knowledge 

of current variability cycles. Our methodology expands on two existing frameworks: the Wavelet 

Auto Regressive Method and the Enhanced Wavelet Auto Regressive Method, briefly discussed 

below. The introduction of these frameworks is followed by the motivation for developing our 

methodology, a description of our methodology, the application of the methodology to 

streamflow data at Lees Ferry, AZ, and lastly, a summary of results, conclusions and directions 

for future work.  

 

2.1 Overview of the WARM Framework  

To explore alternative options for modeling and simulating quasi-periodic time series 

data, Kwon et al. developed a Wavelet Auto Regressive Method (WARM) framework that 

combines autoregressive modeling with wavelet decomposition. In this framework, a continuous 

wavelet transform is used to decompose a time series (𝑥𝑡)  into statistically significant periodic 

components, which can then be simulated using linear autoregressive (AR) time series models, 

hence the name WARM. The wavelet transform is defined as:  

 

𝑋(𝑎, 𝑏) =  |𝑎|−1/2 ∫ 𝑥𝑡𝜑∗ (
𝑡−𝑏

𝑎
) 𝑑𝑡

+∞

−∞
     Equation 1 
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where a is a scale parameter, b is the shift parameter and 𝜑∗ is the complex conjugate wavelet 

function that satisfies specific mathematical properties [Torrence and Compo, 1998]. By varying 

the scale and shift parameters, the wavelet function transforms the decomposed time series data 

in both time and space [Torrence and Compo, 1998]. For the purpose of WARM framework, the 

Morlet wavelet function was applied:  

 

𝜑[ƞ] = 𝜋−
1

4𝑒𝑖𝜔0ƞ𝑒
−ƞ2

2      Equation 2 

 

In Equation 2, 𝜔0equals 6, is a non-dimensional frequency domain and ƞ is a non-dimensional 

time domain [Torrence and Compo, 1998]. Additional details describing wavelet analysis 

coupled with the derivation of Equations 1 and Equation 2 can be found in Torrence and Compo 

[1998].  

Equations 1 and 2 were applied to the historical streamflow data at Lees Ferry, AZ (1906-

2005); the results are illustrated in Figure 1C.  
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Figure 1. (A)The time series of the historical streamflow at Lees Ferry, AZ (1906-2005). (B) 

Autocorrelation function of the historical streamflow at Lees Ferry.  (C) Wavelet and 

global spectrum of the historical streamflow at Lees Ferry. 

 

 

The wavelet spectrum (left) reveals the time varying spectrum and the strength of the 

various periodicities while the global spectrum (right) highlights the average strength of each 

signal over the entire timeframe. In the Lees Ferry data, the global spectrum shows significant 

peaks in the 8-16 year band, as well as in the 64-year band. The gray lines in the global spectrum 

indicate a 90% and 95% confidence interval while the dashed line in the local spectrum outlines 

the cone of influence. The confidence intervals are based on a AR(1) model which is a 
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conservative null model and widely used in climate studies, as opposed to white noise which is 

prescribed in statistical literature. Regions beyond the cone of influence should be interpreted 

with caution, as they are likely influenced by boundary effects resulting from padding the data 

with zeros to create a cyclic time series necessary for applying the Fourier transform during 

wavelet analysis [Torrence and Compo, 1998]. It is of interest that the auto correlation function 

(Figure 1B) of the streamflow (Figure 1A) exhibits a weak lag-1 autocorrelation, yet it has 

significant low frequency variability.  

Once the statistically significant frequencies of each band are identified, the time series is 

filtered at each frequency and are combined to create a ‘band passed’ time series which is 

obtained as follows:  

 

𝑥𝑡 =
𝛿𝑗𝛿𝑡

1/2

𝐶𝛿𝛹0(0)
∑

ℜ{𝑋𝑡(𝑎𝑗)}

𝑎
𝑗
1/2

𝐽
𝑗=0      Equation 3 

 

where the real parts of the wavelet transform are summed over all scales (i.e., period), 𝑗 = 1: 𝐽, 

and multiplied by a coefficient consisting of the scale averaging coefficient, 𝛿𝑗, the sampling 

period, 𝛿𝑡, and two empirically derived factors, 𝐶𝛿  and 𝛹0(0), specifically related to the Morlet 

wavelet [Torrence and Compo, 1998]. By limiting the scale of the summation, 𝑗, specific “band” 

reconstructions can be computed. Thus obtained band passed series are summed and its 

difference from the original series provides the ‘residual’ series. The band passes and the 

residual series together recover the original flow series.  

For the Lees Ferry flow, based on the wavelet spectrum (Figure 1C) there are two significant 

bands as mentioned above – 8-16 year and 64-80 year. Using all the frequencies in the respective 
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bands, apply Equation 3 the resulting band passed series and the residual series are shown in 

Figure 2.     

 

Figure 2. Band passed time series for the historical Lees Ferry, AZ streamflow. (A) 

Decomposed band for 64-80 year period. (B) Decomposed band for 8-16 year period. (C) 

Noise band. 

 

 

In the WARM framework, these bands are modeled and simulated using traditional 

autoregressive models [Kwon et al., 2007]. Results from the WARM framework include an 

ensemble of streamflows each of which reflects the stationary characteristics of the decomposed 

components.  

 

2.2 Enhancements to the WARM Framework  

While the WARM simulations adequately capture key global spectral properties, they fail 

to capture non-stationary features [Nowak et al., 2011], such as the power in the 8-16 year band 

restricted to recent decades. To improve upon this, Nowak et al. developed an enhanced WARM 

framework that incorporates the Scale Average Wavelet Power (SAWP). The SAWP is the 
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average variance of a decomposed band that can be computed at each time step and is given by 

the following equation:   

 

�̅�𝑡
2 =

𝛿𝑗𝛿𝑡

𝐶𝛿
∑

|𝑋𝑡(𝑎𝑗)|
2

𝑎𝑗

𝑗2
𝑗=𝑗1

      Equation 4 

 

where ji and j2 are the scales over which the average is computed [Torrence and Compo, 1998]. 

Essentially, the SAWP captures the strength of the temporal variability present in the time series 

data. The square root of this is equivalent to the standard deviation at a given time step for the 

band. For illustration purposes, the SAWP corresponding to the 8-16 year period band identified 

in the Lees Ferry historical streamflow data is shown in Figure 3.  

 

 

Figure 3. The decomposed band series for the 8-16 year period for the historical 

streamflow at Lees Ferry, AZ (same as Figure 2B) and (B) the corresponding SAWP. 

 

 

Notice that the band series exhibits higher variability in recent decades (top figure) and the 

SAWP (bottom figure) reflects this very well.  
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In the enhanced WARM framework, the band series are divided by the square root of 

their respective SAWP to transform them into stationary components. Thus obtained stationary 

components can be well modeled using lower order AR models as in the WARM approach. 

Upon simulation, the components are multiplied by the square root of the SAWP to transform 

them back into non-stationary time series, thus capturing the temporal variability present in the 

original decomposed bands.  This process is outlined in Figure 4.  

 

 

Figure 4. Outline of the enhanced WARM framework developed by Nowak et al., 2011. 

 

This reconstruction process is applied to all of the decomposed time series components, 

except for the noise. Similar to the WARM framework, the enhanced WARM framework is 

complete once the noise and the reconstructed bands are summed together, resulting in a 

simulated time series that incorporates temporal variability. Preserving this temporal variability 

is important, as recent research suggests linkage between decadal signals present in Lees Ferry 
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streamflow data and large scale climate indicators [Nowak et al., 2012]. For details on the 

enhanced WARM framework refer to Nowak et al., 2011.  

 

2.3 Improvements to the Enhanced WARM Framework 

While both the enhanced and original WARM frameworks provide a method for 

identifying variability and simulating based on traditional linear time series models, 

nonlinearities are present in time series data. The use of autoregressive models for simulation 

limits our ability to simulate non-stationary data based on specific timestep characteristics. 

Furthermore, the enhanced WARM framework provides a method for simulating the features of 

the historical series, but fails to simulate future periods in which the SAWP remains unknown. 

The goal of this research is to develop a projection methodology that identifies time step-specific 

wavelet characteristic associated with variability cycles, and based on those characteristics, 

create more skillful projections that can be used to inform the decision-making process. Given 

the limitations of both the enhanced and original WARM frameworks coupled with the 

objectives of this research, we developed a new technique that characterizes variability at any 

timestep, and based on that characterization, projects future variability.  

Our methodology modifies the enhanced WARM framework which consists of three 

broad steps (i) wavelet decomposition of the time series to band series, as described in previous 

section, (ii) time varying SAWP and phase angle for each band series and (iii) K-nearest 

neighbor time series resampling for mutlidecadal simulation.       

 

2.3.1 Wavelet Analysis 

In this section we summarize our application of wavelet analysis—which stems from 

both the original and enhanced WARM frameworks previously discussed [Nowak et al., 2011; 
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Kwon et al., 2007]. Using Equations 1 and 2, a time series can be decomposed to identify the 

statistically significant spectral peaks. Although this work incorporates the Morlet wavelet 

(Equation 2), different wavelets can be selected based on individual application and preference 

[Torrence and Compo, 1998]. Once identified, Equation 3 is applied to create filtered ‘band 

passed’ time series, which can be summed and subtracted from the original time series to create a 

‘noise’ band.  

 

2.3.2 SAWP and Phase Angle Computations  

To create skillful projections of each band, properties of the bands that correlate to 

specific time steps, t = 1, …, N must be identified. This methodology uses the SAWP (Equation 

4) and phase angle to accomplish this. As previously discussed, the SAWP is defined as the 

average variance of the signal versus time—thus inherently incorporating frequency modulation 

within a time series [Torrence and Compo, 1998]. For time t, the SAWP is calculated for each of 

the significant spectral peaks identified during the wavelet analysis.  

Similarly, the phase angle of each band for time step t. Because the wavelet transform 

(Equation 1) is complex, we can define it in terms of the real, ℜ{𝑋𝑡(𝑎𝑗)}, and imaginary, 

ℑ{𝑋𝑡(𝑎𝑗)} parts [Torrence and Compo, 1998]. Given these terms, the phase angle equals:  

 

tan−1 (
ℑ{𝑋𝑡(𝑎𝑗)}

ℜ{𝑋𝑡(𝑎𝑗)}
)     Equation 5 

 

Because the bands span many scales (e.g.,  8 to 16 year period), a weighted average of 

the phase angle is computed as the representative phase angle for the band at each time step – the 

SAWP values of each period within the band are used as weights. For example, for the 8-16 year 
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period, the phase angle is calculated for each scale—8, 9.5, 11.3, 13.5, and 16—and a weighted 

average is computed for the respective period and later used during for a K-Nearest-Neighbor 

(KNN) resampling algorithm described below.  

 

2.3.3 K-Nearest-Neighbor (KNN) Resampling Algorithm 

Using the SAWP and phase angle calculations, we implement a KNN algorithm to 

project each of the bands for multiple decades.  In general, the KNN algorithm uses a user-

defined feature vector, 𝑫𝑡, at time step t,  to find the historical nearest neighbors of this current 

feature vector. The k nearest neighbors are determined by calculating the Euclidean distance 

between the feature vectors of the past, 𝑫𝑖, and the current feature matrix, 𝑫𝑚. The Euclidean 

distance is given by:  

 

𝑟𝑖𝑚 = √[∑ (𝑣𝑖𝑗 − 𝑣𝑚𝑗)
2𝑑

𝑗=1 ]     Equation 6 

 

where 𝑣( )𝑗 is the jth component 𝑫[ ] [Rajagopalan and Lall, 1999, Lall and Sharma, 1996].  

Once identified, the set of nearest neighbors  𝑗𝑖,𝑘  are ordered and weighted such that the 

nearest neighbor to the current feature vector has the highest weight and the farthest neighbor the 

lowest weight. A commonly-used weighting metric was developed by Lall and Sharma (1996) 

and given as:  

 

𝐾[𝑗[𝑖]] =
1/𝑗

∑ 1/𝑗𝑘
𝑗=1

     Equation 7 
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where 𝐾[𝑗[𝑖]] is the probability assigned to the specific neighbor, 𝑗[𝑖].  

Using the probability function above, one of the historical neighbors is selected – 

consequently, its time step, say, Ts. The entire series segment starting at Ts up to a desired 

length, say Ts+T, is resampled as the simulated series. This process is repeated to generate 

ensembles. Here, we apply this resampling to each of the band passed series separately. The 

residual series is resampled at random since it has no structure. Thus, simulated series are 

summed to obtain simulations of the original series.   

The feature vector chosen is the   SAWP and phase angle (PA) values. For illustration 

purposes, let time series 𝑥𝑡  be comprised of three different bands: two significant peaks from the 

spectral analysis (𝑦1,𝑡 and 𝑦2,𝑡) and one corresponding noise band (𝑦𝑛,𝑡). The feature vector (f) 

for band 𝑦1,𝑡 is as follows:  

 

f = [𝑆𝐴𝑊𝑃𝑦1,𝑡 , 𝑃𝐴𝑦1,𝑡]     Equation 8 

 

The corresponding feature matrix (F) is comprised of the band’s remaining SAWP and 

phase angle values—excluding those contained in the feature vector (f). For 𝑦1,𝑡 the feature 

matrix would look like:  

 

[

𝑆𝐴𝑊𝑃𝑦1,𝑡=0

⋮
𝑆𝐴𝑊𝑃𝑦1,𝑡=𝑛

     𝑃𝐴𝑦1,𝑡=0  

⋮
     𝑃𝐴𝑦1,𝑡=𝑛  

]     Equation 9 

 

Using the feature vector and matrix, the K nearest neighbors are determined and weighted 

according to the method previously described. The KNN is then used to resample the 
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corresponding decomposed band passed time series. The noise is simulated per the methodology 

described in the WARM approaches [Nowak et al., 2011; Kwon et al., 2007]. 

 

2.4 Application and Data Set  

The utility of this projection methodology  is demonstrated using the paleo reconstructed 

streamflow data at Lees Ferry, AZ (1490-1905) combined with historical natural flow data 

spanning from 1906-2010 [Woodhouse et al., 2006; U.S. Bureau of Reclamation, 2013]. The 

paleo reconstructed data provides a robust view of the past as it spans more than 500 years of 

data and is derived from fitting linear regression models to tree-ring chronologies in the 

Colorado River Basin. Additionally, the observed natural flow data, ranging from 1998-2010, is 

computed by removing anthropogenic impacts—such as reservoir regulation and consumptive 

water use—from the recorded historical flows updated and maintained by the U. S. Bureau of 

Reclamation. For an in-depth discussion on the reconstruction or the naturalized flow 

methodologies, readers are referred to Woodhouse et al. (2006) and U.S. Bureau of Reclamation 

(2013). 

This data set was selected because previous research links large scale climate forcings to 

the hydrologic variability present in the Upper Colorado River Basin. Using annual Lees Ferry 

streamflow data and wavelet spectral analysis, Nowak et al. (2012) identified two dominant 

spectral peaks—a low frequency component occurring around the 64 year period coupled with a 

higher frequency, non-stationary, decadal signal occurring around the 8 to 16 year period (Figure 

1). Further analysis links the decadal signal with precipitation variability coinciding with large 

scale climate forcings occurring in the Pacific Ocean—specifically, the Pacific Decadal 

Oscillation. Similarly, the lower frequency signal shows a weaker correlation to temperature 

variability and the Atlantic Multidecadal Oscillation (AMO). Given the importance of these low 
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frequency periods, we propose that good projections of these periods can enable realistic 

multidecadal projections of streamflow.   

 

2.5 Discussion and Results  

Using the Lees Ferry streamflow record (1490-2010), wavelet spectral analysis reveals 

three significant frequency bands—a low frequency component occurring at the 60-118 year 

period, a moderate frequency component occurring at the 20-52 year period, and a higher 

frequency decadal signal occurring at the 7-14 year period (Figure 5).   

 

  

Figure 5. Wavelet and global spectrum of the streamflow at Lees Ferry, Arizona using the 

paleo reconstructed streamflow (1490-1905) combined with the historical natural flow 

(1906-2010). 

 

Using the equations described earlier, the band passed components and the corresponding SAWP 

are obtained and shown in Figure 6. 
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Figure 6. Decomposed bands and corresponding SAWPs for the streamflow at Lees Ferry, 

AZ (1490-2010). 

 

Notice that the SAWP effectively reflects the variability present in the decomposed time series. 

To validate the proposed methodology, the wavelet analysis was performed on data prior 

to 1906 and using the KNN resampling algorithm with the feature vector of 1905, 500 

simulations were made for the 100-year period (1906-2005) for each band separately and the 

residuals – together providing 500 ensembles of the bands and the streamflow. Figure 7 shows 

boxplots of the decadal band simulations overlaid with the observed band passed time series 

corresponding to the projection period (1906-2005). The ‘observed band’ for this period is 

obtained by performing the wavelet analysis for this period separately. Note, the projection 

methodology can be applied to any time scale greater than five years; however Figure 7 

illustrates 100 year projections.    
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Figure 7. Boxplot of the simulated projected band for the 8-16 year period for Lees Ferry, 

AZ overlaid with the observed band (1906-2005). 

 

 

As illustrated in Figure 7, the simulations effectively capture the observed variability of 

the decadal band. However, the amplitude modulation and the phase are not captured throughout 

the period. Figure 8 illustrates the simulated flows as boxplots along with observed flow. The 

simulated flows capture the overall variability of the observed and they also reproduce the long 

term decreasing trend present in the observed. As with the decadal band simulations, amplitude 

modulation over time and the phase are not well reproduced.  The 100-year simulations are based 

on spectral characteristics at a given year (in this case, 1905) – the phase and amplitude 

modulation of the 100-year simulations will only be captured if the underlying dynamics of 

evolution of the streamflow is close to being periodic. Given this is not the case we do not expect 

the amplitude and phase modulations to be captured in the simulations. However, we could 

expect to capture broadly the statistics and global spectral features. 
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Figure 8. (A) Boxplots of the standard statistics of the simulated projected streamflows at 

Ferry, AZ overlaid with the observed (1906-2005) and (B) Boxplots of the simulated 

projections overlaid with the observed. 

 

 

A suite of basic distributional statistics from the simulations are computed and shown as 

boxplots along with the corresponding stats of the observed flow. The mean and median are 

under simulated while the standard deviation is well captured and so is the interquartile range. 
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The skew and minimum values of the observed are just outside the interquartile range of the 

simulations.  The distributional properties are fairly well reproduced by the simulations.   

To evaluate the spectral features of the simulations, global wavelet spectra of the simulations 

are computed and shown with that of the observed in Figure 9. The simulations have power at 

the decadal and higher periodicities as in the observed. The three dominant periodicities in the 

simulations are those present in the paleo record (Figure 5) used in the simulation. The spectral 

peak at the decadal band is well reproduced (the red and blue lines), however the lower 

frequency bands (i.e. higher periods) are simulated strongly compared to the observations. This 

tends to be the case, because the simulations have the low frequencies in all the simulations—

thus giving them more spectral power, whereas in the observations the low frequencies are 

weakly present. We focus more on the reproduction of the decadal band features than the lower 

frequencies.  

 

Figure 9. Plot of the global spectrum of the projected simulated streamflow for Lees Ferry, 

AZ overlaid with observed (red) and the simulated median (blue). 
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Furthermore, a spectral plot of the median of the simulated flows (Figure 10A) compared to 

the spectrum of the observed historical flow (Figure 1C) for Lees Ferry highlights that the lower 

frequency components, especially the peak in the decadal band is well preserved in the 

projection methodology. However, the non-stationarity of this band present in the observations is 

not reproduced in the simulations. Given that the simulations are made for a 100-year period 

such spectral non-stationarities are not expected to be captured. Considering that these 

simulations are blind for the 100-year period, the ability to reproduce broad spectral features—

such as the decadal band—is noteworthy as these bands can be used to inform the decision-

making process for water resource managers.  

In a typical time series simulation, such as with WARM or enhanced WARM where the 

features of the observed data are incorporated in the model which are then used to simulate, these 

features are all well produced (e.g., Nowak et al., 2011).  
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Figure 10. (A) Wavelet and global spectrum of the median simulated streamflow at Lees 

Ferry, AZ compared to (B) the wavelet and global spectrum of the observed streamflow at 

Lees Ferry, AZ (1906-2005). 

 

 

In addition to the historic record, analysis of three hydrologic epochs—1585 to 1634, 

1780 to 1829 and 1940 to 1989—are made, as they respectively represent high, average and low 

flow epochs. Figures 11-13 illustrate wavelet spectrum, the simulated band projections compared 

to the observed bands, as well as the simulated flow projections compared to the observed flow 

for three different hydrologic epochs. These projections are essentially blind projections in that 

the period of interest (i.e., the projected period) is removed from the paleo record and simulated 

based on the remaining data. 

 

 

 



25 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. (A) Spectrum of the 1585-1634 paleo streamflow data. (B) Boxplot of the 

projected decomposed bands for Lees Ferry, AZ during a high flow epoch compared to the 

observed (1584-1634). (C)Boxplot of the simulated flows compared to the observed (1584-

1634).  
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Figure 12. (A) Spectrum of the 1939-1989 historic streamflow data. (B) Boxplot of the 

projected decomposed bands for Lees Ferry, AZ during an average flow epoch compared 

to the observed (1939-1989). (C) Boxplot of the simulated flows compared to the observed 

(1939-1989).  
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Figure 13. A) Spectrum of the 1779-1829 paleo streamflow data. (B) Boxplot of the 

projected decomposed bands for Lees Ferry, AZ during a low flow epoch compared to the 

observed (1779-1829). (C) Boxplot of the simulated flows compared to the observed (1779-

1829).  
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As evident in Figures 11-13, and similar to simulations for the modern period, the 

simulations capture the variability of the bands but do not capture the amplitude modulation and 

phase. Differences exist in both the amplitude and phase of the projected bands compared to the 

observed bands. This is a typical problem due to boundary issues in any filtering method 

including wavelets [Rajagopalan et al., 1997].  Filtering is done within a window, in this case, 

within the window of the wavelet, thus at the end of the time series the filtering is performed 

with fewer observations – hence, the boundary bias. There are adhoc solutions to the boundary 

problem but none satisfying – thus, the inability to capture the amplitude and phase modulations.  

Therefore, evaluating the simulations for their global spectral properties and over a longer period 

of simulation obviates this issue, but for shorter simulation period this is stark. This is seen in our 

simulation results above, where the distributional and spectral properties are better captured over 

a longer period of simulation – thus, enabling their utility in long term planning.  

To assess how these projections differ from climatology, a rank probability skill score 

(RPSS) was computed. The RPSS is a commonly used verification metric that measure 

performance of ensemble predictions in probabilistic terms and is based on the rank probability 

score (RPS). To estimate the RPS, the prediction variable (i.e., streamflow) is classified into k 

mutually exclusive and exhaustive categories. The forecast and observed probabilities 

corresponding to those categories are then estimated using the following equation:  

 

𝑅𝑃𝑆 =  ∑ [(∑ 𝑝𝑗
𝑖
𝑗=1 − ∑ 𝑑𝑗

𝑖
𝑗=1 )

2
]𝑘

𝑖=1      Equation 10 
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where the forecast probabilities,𝑝𝑗, are the proportion of ensembles falling into each category, 

and the observed probabilities, 𝑑𝑗, equal one if the observation fall into the kth category and 

otherwise zero.  

Given the RPS, the RPSS indicates how the predictions perform relative to climatology 

and is given as:  

 

𝑅𝑃𝑆𝑆 = 1 −
𝑅𝑃𝑆 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

𝑅𝑃𝑆 (𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦)
      Equation 11 

 

The RPSS ranges from negative infinity to positive one. Positive RPSS scores indicate 

the prediction accuracy performs better than climatology; zero indicates the same as climatology; 

and negative values indicate the prediction accuracy performs worse than climatology. For this 

work, 50 year projections were created from 1512 to 1960. Because the projection methodology 

is designed to capture the overall trends—not the annual to inter-annual trends—the mean of 

each 50-year projection period was computed and  compared to the mean of the corresponding 

period in the paleo record. The overall RPSS of the 50-year projections equals 0.18. To capture 

the RPSS values at a more finite resolution, the projections periods were broken into different 

sets—each set containing 15 projection periods (e.g. set one contains the 1512-1526 projections). 

A boxplot of these RPSS values is shown below (Figure 14). 
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Figure 14. Boxplot of the RPSS for the simulated streamflow projections (1512-1960). Red 

dot represents climatology. 

 

The median RPSS value equals 0,27—indicating the projections are skilful at simulating the 

categorical mean flow. Again, this methodology aims at capturing the overall trends of a 

projection period—not the annual to inter-annual trends. The RPSS values indicate these 

projection accomplish this and perform slightly better than climatology.   

 

2.6 Climate Change Application 

Thus far, the proposed methodology uses the paleo reconstructed record to project the 

decomposed bands—making an assumption that future trends and variability mimic historic 

patterns. However, climate research suggests these trends and variability may deviate from 

history. Currently, there is a need for novel projection methods that incorporate both natural 

variability and climate change trends, as projections from general circulation models [GCMs] 

inadequately predict inter-decadal climate signals—which are often drivers of hydroclimatic 

variability [Nowak et al., 2012; Timilsena et al., 2009; McCabe et al., 2007; Hidalgo and 

Dracup, 2003; Cayan et al., 1999; McCabe and Dettinger, 1999; Piechota et al., 1997]. This 

method can be adapted to address this gap.  

Once streamflow projections are developed using the aforementioned methodology, 

climate change trends can easily be applied. To do this, we remove important climatological 
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components from the projections by subtracting the series mean and dividing by the standard 

deviation—resulting is scaled “anomalies” [Rajagopalan et al., 1997]. We then compute the 

mean and standard deviation from 112 downscaled GCM projections for Lees Ferry [IPCC 

Fourth Assessment Report, 2007]. The climate-trended mean and standard deviation are then 

applied to the scaled anomalies, resulting in streamflow projections that contain the inter-annual 

to inter-decadal climate signals as well as climate change trends. Note, any climate trends can be 

applied using this method.  

 

2.7 Conclusion and Future Work   

Generating decadal scale projections is a nascent field, fraught with complex challenges. 

Some of these challenges are evident in this methodology—as it proves difficult to project the 

phase angle and amplitude of each quasi-periodic band. Although the proposed methodology 

attempts to address some of these challenges by integrating phase angle information into the 

prediction process, it does not prove effective enough, as the proposed methodology only 

performs slightly better than climatology.  

Furthermore, while the proposed methodology takes into consideration where we 

currently stand in the quasi-periodic cycle and creates predictions based on that knowledge, the 

irregularity of the cycles presents a grand challenge to the climate community. Tackling the 

challenge from a different angle, future work could focus on understanding the physical 

processes that drive decadal variability and integrating that information into projection 

methodologies. This could include better understanding how decadal variability in ocean 

processes impacts large scale climate indicators. Or, better understanding how anthropogenic 

forcings interact with natural variability—with a focus on decadal time scales [Solomon et al., 

2011].   
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Despite the skill of the proposed methodology, information derived from decadal scale 

projections can be used to inform decision-making logic. Chapter 3 presents a framework that 

integrates this information and demonstrates its utility for aiding in flexible, iterative, adaptive 

management.  
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CHAPTER 3: APPLICATION OF DECADAL SCALE PROJECTIONS TO 

MANAGEMENT IN THE GUNNISON AND UPPER COLORADO RIVER BASINS 

This chapter describes the development of a robust decision-making framework that 

incorporates the decadal projections presented in Chapter 2. This decision-making framework is 

applied to the Upper Colorado River (headwater to the Colorado-Utah state line) and the adjacent 

Gunnison River Basin, a tributary to the Upper Colorado. By applying the framework to two 

different river basins, we hope to demonstrate the utility of incorporating decadal scale 

information in the decision-making process, as well as the role of storage in decadal scale 

planning. The results of this case study are presented in Chapter 4.  

 

3.1 Introduction 

In light of climate change and the associated uncertainties, flexible and adaptive resource 

management strategies are becoming increasingly important by allowing water managers to more 

easily assess and respond to the associated outcomes. While the objectives of flexible 

management vary regionally, in the southwestern United States water supply reliability and 

mitigating shortages are of upmost importance and the primary objective of current adaption 

strategies [Gober and Kirkwood, 2010; Ragajopalan et al., 2009; Miller et al., 1994].  

The importance of system reliability is highlighted in the Bureau of Reclamations’ 

Colorado River Basin Water Supply and Demand Study (Basin Study), which describes the 

challenges and opportunities for managing and mitigating shortages in the Colorado River 

system given the likelihood of increasing demands coupled with reduced supply projections. 

Throughout the Basin Study, signposts were developed to detect system vulnerabilities before 

they occurred. The triggering of a signpost signified the need for implementing various 
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management strategies [Bureau of Reclamation, 2012]. The proposed decision-making 

framework incorporates a different approach to dealing with system vulnerability. Instead of 

using signposts to detect impending vulnerabilities, the decision-making framework links system 

vulnerability to projected ten-year streamflow conditions. Therefore, if water managers 

understand the relationship between hydrologic conditions and system performance, they can use 

this knowledge to drive the decision-making process.  

With a focus on the Upper Colorado River and the Gunnison River Basin, this work 

demonstrates the utility of incorporating decadal scale streamflow projections into a robust 

decision-making framework designed to increase system reliability and reduce basin shortages 

by making the information from these projections available to the decision making logic. The 

proposed framework is based on the fundamental idea that if decision-makers have access to 

more skillful projections—incorporating both natural variability and GCM-informed climate 

change trends— they can use this information to drive the decision-making process, allowing for 

more adaptive and flexible management.  

 

3.2 Gunnison River Basin 

The Gunnison River basin (GRB) is located in southwest Colorado (Figure 16) and drains 

approximately one-quarter of Colorado’s Western slope (7,960 mi2). With basin elevations 

ranging from 4,550-14,300 ft, the Gunnison River originates along the Continental Divide and 

flows west towards Grand Junction, Colorado, where it joins the Colorado River. On average, the 

GRB’s total annual volume of runoff is approximately 1.8 million acre-feet—making it the fifth 

largest tributary of the Colorado River. Like much of the West, the Gunnison River no longer 

flows unimpeded, as it is dammed by the Aspinall Unit which consists of three dams and the 
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associated Blue Mesa, Morrow Point and Crystal reservoirs, and Taylor Park Dam further 

upstream.  

The Aspinall Unit spans 40 miles of the Gunnison River and comprises the basin’s 

primary water resources development. The project provides water for hydroelectric power, flat-

water recreation, agricultural irrigation, instream use (i.e. fish and wildlife), municipal water 

supply, and meeting Colorado River compact requirements [Gunnison Basin Water, 2003].  

The Aspinall Unit’s three reservoirs have a combined storage of approximately 1.1 

million acre-feet and hydropower generation capacity of 287 megawatts.  

 

 

Figure 15. Map of the Gunnison Basin Hydrologic Unit with the black rectangles 

representing the four reservoirs. 
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The Bureau of Reclamation operates the Aspinall Unit to satisfy multiple objectives and 

competing demands. Typically, reservoir storage levels are drawn down during the fall and 

winter months, and re-filled with spring snowpack run-off.  Throughout summer, Reclamation 

attempts to maintain steady reservoir levels to maximize flat water recreation on Blue Mesa 

Reservoir, while simultaneously releasing enough water to meet downstream demands. Further, 

hydropower generation is maximized throughout the year [Gunnison Basin Water, 2003].  

In addition to the Aspinall Unit, Taylor Park reservoir is located upstream of the Blue 

Mesa reservoir on the Taylor River. Taylor Park serves primarily as a storage reservoir, with a 

storage capacity of 106,200 acre-ft. Taylor Park is part of the Uncompahgre Project,  which 

stores water in the Taylor Park and diverts it through the Gunnison Tunnel (located downstream 

of Crystal Reservoir) for delivery to farmers and ranchers in the Uncompahgre Valley. On 

average, the project diverts 325,000 to 365,000 acre-feet of water per year.  

 

3.3 Upper Colorado River Basin  

The Colorado River originates near the Continental Divide (14,000 ft) in Colorado and 

flows southwest towards the Colorado-Utah state line (4,300 ft), eventually reaching the Sea of 

Cortez in Mexico. Often considered the lifeline of the American Southwest, the Colorado River 

supplies water for nearly 40 million people and thousands of farmland acres. For the purposes of 

this study, only the headwaters of the Colorado River to the Colorado-Utah state line are 

included (Figure 17).  
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Figure 16. Map of the Upper Colorado River and significant tributaries. 

 

 

This stretch of the Colorado River remains undammed—naturally flowing through the 

Rocky Mountains to Glenwood Springs where the Gunnison River joins at Grand Junction. The 

lack of storage on this portion of the river proves challenging for both long-term planning and 

mitigating shortages during times of need. Similar to the Gunnison River Basin, the Upper 

Colorado River is fed by snowfall run-off. Dominate consumptive water uses include agriculture, 

municipal, and transbasin diversions. Figure 17 illustrates basin’s cumulative yearly surface 

water diversions in acre-feet by sector for 1999-2004 [CWCB, 2012].  
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Figure 17. Pie chart of the cumulative yearly surface water diversions (acre-feet) by use 

provided by the Colorado Water Conservation Board (2006). 

 

 

As illustrated in Figure 17, irrigation (especially in the lower Grand Valley) accounts for 

the majority of the surface water diversions in the Colorado River basin, followed by transbasin 

and off-channel storage, and municipal and industrial use. Transbasin exports account for more 

than 470,000 acre-feet per year [CWCB, 2006].  

In addition to consumptive water uses (i.e., agricultural, municipal and industrial, and 

transbasin diversions), nonconsumptive uses are important throughout the basin. As of 2010, 

there were more than 400 decreed instream flow rights throughout the Colorado River basin 

[CWCB, 2011].Similarly, the Shoshone power plant holds a nonconsumptive senior water right 

decreeing 1,250 cubic feet per second [Bureau of Reclamation, 2012]. Due to the inherent nature 

of the water uses, some of the nonconsumptive water uses compete with the high consumptive 

demands—proving challenging for water resource management.   

 

3.4 Water Management Challenges and Options for the Upper Colorado and Gunnison 

River Basins  
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The water issues present in the Upper Colorado River and the Gunnison River Basin 

reflect water management challenges prevalent in much of Colorado and the Colorado River 

Basin. These challenges include transbasin diversions, ecosystem sustainability, maintaining 

necessary flows to support thriving tourism and recreation industries, fulfilling water right 

allocations, and meeting downstream demands in light of projected population growth. Over the 

last decade (2000-2010), Colorado experienced rapid population growth, with much of the 

growth occurring in counties dependent on Upper Colorado and Gunnison River Basin water 

(including the Front Range). These trends are illustrated in Figure 18.  

 
 

Figure 18. Population growth in Colorado from 2000-2010, provided by the U.S. Census 

Bureau. 

 

 

Further, if population growth and development patterns continue along recent trends, the 

consumptive water use in the Upper Colorado and Gunnison River Basins are projected to 

increase more than 20% by 2060, with much of this increase occurring on the Upper Colorado 

River where storage is essentially nonexistent. Table 1 outlines the details of the projected 

growth [Bureau of Reclamation, 2012].  
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Table 1. Projected demands (2015-2061) for the Upper Colorado and Gunnison Basins 

provided by U.S. Bureau of Reclamation, 2012. 

 

 

In light of the projected demands and the uncertainty associated with a changing climate, 

managing resources to mitigate shortages and avoid over-investment proves more and more 

challenging. As one possible solution, water managers could implement static management 

strategies—such as water reuse—that go into effect once vulnerability (i.e., shortage) is detected. 

However, decisions such as these have lasting impacts on system infrastructure, operations and 

budget. While they may ameliorate short-term vulnerabilities, long term they may prove both 

unnecessary and inefficient.  

Alternatively, water managers could implement dynamic and flexible management 

strategies that adapt to changing climate conditions. These types of strategies move away from 

traditional infrastructure-based engineering approaches by focusing more on both flexibility and 

adaptability. Once implemented, these types of strategies can be easily adjusted—consequently 

improving water manager’s ability to cope and minimizing regret. These types of strategies yield 
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benefits regardless of the climate conditions and they contain an element of flexibility, thus 

allowing for future adaptation [Wilby and Dessai, 2010]. Examples of such strategies include 

conservation and operational changes.  

To help improve the decision-making process, the following described framework 

integrates decadal scale streamflow projections into a robust decision-making framework, 

allowing for more dynamic and efficient resource management.  

 

3.5 Robust Decision-Making Framework  

Following bottom-up approaches, the decision-making framework begins with a 

vulnerability analysis which helps identify which climate conditions push the system into 

vulnerable states and how different management strategies ameliorate these vulnerabilities. The 

vulnerability analysis begins with identifying system vulnerabilities and performance metrics. 

Once this is completed, decadal-scale, wavelet-based climate projections are generated at annual 

timesteps. These projections account for the current state of the natural variability cycles, and 

based on those, project plausible future conditions that could occur over the next decade. Using 

this information, relationships between system vulnerabilities and decadal-scale climate 

information are derived. This information is then used to develop dynamic and flexible 

management strategies that ameliorate system vulnerabilities. The robustness (i.e., the ability to 

perform well over a range of possible climate conditions) of the methodology is tested by 

applying the framework to a range of widely diverse plausible hydrologic future scenarios.  

We intend that with this integrated process, decision-makers can implement management 

strategies that can be dynamically adjusted and tuned according to varying climate conditions—

thus avoiding large-scale infrastructure projects that may not be needed in the long-term. An in-

depth description of the methodology is presented below.  
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3.6 Methodology 

3.6.1 Identifying System Vulnerabilities and Performance Metrics 

The decision-making framework begins with the identification of system vulnerabilities 

and performance metrics. This process involves stakeholder collaboration to identify thresholds 

for performance metrics that, when violated, cause the system to be vulnerable and signify the 

need for adaptive management. Some thresholds may be derived from legal compacts or water 

rights agreements; for example, the minimum flow required to fulfill instream rights or the 

minimum amount of total power generated from hydroelectric reservoirs. Other thresholds and 

performance metrics could be physical constraints of the system, such as a maximum flood 

control channel capacity. In other cases, thresholds and performance metrics could be 

stakeholder-defined. For example, minimum flows to support threatened and endangered species, 

minimum reservoir pool elevations required for recreational purposes, or 95% reliability of water 

supply delivery.  

For the Upper Colorado River and Gunnison River Basins, the selected performance 

metrics align with basin operations and goals, as well as water uses within the basin (previously 

described). The selected performance metrics span four overarching categories: ecological flows, 

recreation, electricity and water delivery. The thresholds were derived from historical data, 

calculated based on logic from the Basin Study, or taken directly from the Basin Study (which 

had extensive stakeholder involvement). While the thresholds are intended to be as realistic as 

possible, this is an illustrative example developed to demonstrate the utility of this decision-

making framework and should be considered solely within this context.  

Table 2 identifies the resource categories, performance metrics and vulnerability 

thresholds used throughout the case study.  
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Performance Metric  Vulnerability Threshold 

Water Delivery (Resource Category)  

Basin Shortage (X)* 
None 

Low 

Medium 

High 

X < 5% Depletion Requested 

5% Depletion Requested ≤ X < 15% 

Depletion Requested 

15% Depletion Requested ≤ X < 25% 

Depletion Requested 

X ≥ 25% Depletion Requested 

Electric Power Resources 

Total Power 

Generated** 

< 583,644 MWH per year for 3 consecutive 

years 

Recreation Resources 

Shoreline Public Use 

Facility 

(Blue Mesa Pool 

Elevation) 

≤ 7,433 feet msl 

Ecological 

Gunnison River 

below Crystal 

Reservoir 

< 300 cfs 

*Derived from logic implemented in the Basin Study. Basin shortages 

are calculated separately for the Gunnison River Basin and Upper 

Colorado River Basin  

** Derived from historical data provide by the Western Area Power 

Administration (WAPA) 

Table 2. System performance metrics and vulnerability thresholds. 

 

 

Note, some of these performance metrics have competing objectives. For example, power  

generation competes with reducing shortages as management strategies focused on reducing 

shortage vulnerabilities inherently reduce water demands, thus requiring less water to be released 

from hydropower reservoirs, and, consequently, adversely impacting power generation. The 

instream flow right located at the gage below Crystal reservoir also competes with minimizing 

shortages, as instream flow rights require specific reservoir releases—which could be reduced 

my implementing strategies that reduce water demands. Similarly, maintaining Blue Mesa’s pool 
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elevation competes with power generation by reducing reservoir releases, but aligns with 

minimizing shortages (i.e., reducing water demands and the associated reservoir releases) by 

keeping more water in storage. This is important to keep in mind when designing management 

options and strategies that alleviate system vulnerabilities.  

Because performance metrics measure system performance they must be quantifiable. 

Given this requirement, a simulation model of the Upper Colorado and Gunnison River Basins 

was created in RiverWare, a generalized river basin modeling tool widely used to model river 

basin operations [Zagona et al., 2001]. RiverWare enables users to model physical river basin 

features (e.g., river, reservoirs, diversions, canals, water users, and power generators) as objects. 

The operation of these objects is expressed as set of prioritized, logical rules written in 

RiverWare’s unique policy language (RPL). The rule-based RiverWare simulation thus reflects 

operational and management strategies implemented by water managers. The Upper Colorado 

and Gunnison River Basin model was developed directly from the Bureau of Reclamation’s 

long-term planning model, the Colorado River Simulation System (CRSS).  

Similar to the CRSS, the Upper Colorado and Gunnison River Basin model simulates the 

operation of major reservoirs (i.e., the Aspinall Unit) and provides information about key output 

variables such as amount of storage water, reservoir elevations, dam releases, hydropower 

generation, water quantity at specific gages, water user diversions and return flows. While the 

model does not include water rights allocation, the operational logic incorporates two prominent 

senior water right holders on the Upper Colorado mainstem: the Shoshone Power Plant and the 

senior users from the Grand Valley Irrigation Company. In the model, these senior water right 

holders are fulfilled by shorting upstream users. For example, the operational logic ensures the 

Shoshone Power Plant has access to 1,250 cubic feet of water per second by shorting upstream 
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users. Similarly, all of the users above the Grand Valley Irrigation Company (except for 

Shoshone Power Plant) are shorted to ensure the senior demands are met.  

A schematic of the model highlighting the selected performance metrics is presented in 

Figure 19.  

 

 
 

Figure 19.  Schematic of the simulation model for the Gunnison and Upper Colorado River 

Basins developed in RiverWare. 

 

In addition to RiverWare, our case study utilizes the RiverSMART suite of software 

developed under the Bureau of Reclamation’s WaterSMART initiative. Built around the 

RiverWare modeling environment, these tools enable us to develop and import complex demand 

schedules, and spatially and temporally disaggregated streamflow, which can easily be imported 

into the RiverWare model to allow for efficient post-processing of the output variables.  

Gunnison 

Upper Colorado 

Hydropower 
Generation  

Instream Rights 

Recreation 

 

Water User 

Shortages 

Water User 
Shortages 
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In the following step, wavelet-based projections are generated at the annual timestep. 

Eventually, information from these projections is used to better understand system performance 

and vulnerability—allowing for the development of more flexible and dynamic management 

strategies.  

 

3.6.2 Integrating Decadal-Scale Projections  

If water managers have an enhanced understanding of plausible future hydrologic conditions 

occurring over the next decade, they can use this information to inform decision-making logic. 

Given this as the primary goal of the framework, the framework integrates decadal-scale 

projections generated using the wavelet-based methodology presented in Chapter 2. A brief 

overview of the projection methodology integrated into the decision-making framework is given 

below.  

As previously discussed, using a historic or paleo streamflow record, wavelet analysis can be 

used to identify statistically significant spectral peaks which represent various natural variability 

cycles occurring throughout time. The natural variability cycles, at any annual timestep, can be 

characterized by two distinct properties: the scale average wavelet power (SAWP) and phase 

angle. Using the respective SAWP and phase angle, a KNN algorithm can be implemented to 

resample each of the filtered band passed time series—or natural variability cycles—100 times. 

The resampled bands are then aggregated with a modeled residual noise band to create 100 

hydrologic streamflow projections. The projections span ten years in length, resulting in decadal 

hydrologic streamflows. By using this methodology, these projections take into account the 

current state of the natural variability cycles, and use this information to project possible ways 

the future may unfold given a historic or paleo streamflow record.  
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In the decision-making framework, this projection methodology is applied at every annual 

timestep to create decadal streamflow projections that can then be used to inform the decision-

making logic. The idea being, water managers and decision makers do not know how the future 

will unfold; however by applying the aforementioned projection methodology at the current 

timestep t, decadal streamflow projections can be created. Inherent to the methodology, these 

projections are based on the natural variability cycles of the current timestep t—giving water 

managers and decision-makers improved insight into plausible future hydrologic streamflow 

conditions. Information from these projections is then used to inform the decision-making logic. 

One year passes and the water managers find themselves in the same position: not knowing how 

the future unfolds. However, using the observed streamflow for the previous year the historic 

record can be updated to include this data. Using the updated streamflow record, water manager 

can re-apply the projection methodology—now generating decadal-scale streamflow projections 

that account for the current state of the natural variability cycles. Again, water managers use the 

projections to inform the decision-making logic.  A schematic of this concept is illustrated in 

Figure 20. 
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Figure 20. Schematic illustrating the generation of decadal-scale streamflow projections at 

annual timesteps. 

 

This portion of the framework incorporates continuous learning by providing water 

managers and decision makers with decadal-scale streamflow projections that account for the 

current state of the natural variability cycles. These projections can then be used to inform 

decision-making logic—which is rooted in the most up-to-date information regarding the state of 

the natural variability cycles.  

For the case study, the projection methodology was applied to the Lees Ferry, AZ extended 

paleo and historic streamflow record (1490-2010). The projections were spatially disaggregated 

to the seven natural inflow flow sites in the Upper Colorado and Gunnison basins per the 

methodology presented in Nowak et al. (2010). It is important to note previous research [Nowak 

et al., 2012] identified larger scale climate indicators—specifically the Atlantic Multidecadal 
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Oscillation and the Pacific Decadal Oscillation—as prominent drivers of hyroclimatic variability 

in the Colorado River Basin. Using wavelet analysis, these larger scale climate indicators have 

also been identified as statistically significant spectral peaks [Nowak et al., 2011]. This is 

important as an improved understanding of the hydrologic impacts of larger scale climate 

indicators coupled with the aforementioned projection methodology could be used to better 

inform water managers about future hydrologic conditions.  

 

3.6.3 Deriving Relationships between Decadal Projections and System Performance 

To inform the decision-making logic, relationships between the decadal-scale projections and 

system performance were derived. Initially, we envisioned using probability distributions of the 

projections to inform the decision-making logic. Per this methodology, at every annual timestep 

when the 100 projections were generated, a non-parametric probability distribution function 

(PDF) of the projections was fitted and was compared to the probability distribution of the 

historical streamflows. Relative to the historical terciles, we could see how the projected PDF 

shifted, and use this information to inform the decision-making process. For example, if there 

was a 65% chance of being in the lower tercile—indicating a high probability of low flow over 

the next ten years—we could implement strategy A. Alternatively, a 65% chance of being in the 

upper tercile would signify high flow years, and would require alternative action. Figure 21 

highlights two PDFs created from the projection methodology.  
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Figure 21. (A) PDF of the historic record compared to the decadal projections created at 

t=2012. (B) PDF of the historic record compared to the decadal projections created at 

t=2040. 

 

 

Although there is a slight shift in Figure 21B, overall, there were not significant enough 

shifts in the PDFs to draw conclusions that would be informative enough for the decision-making 

logic. The shift in Figure 21B represents the most dramatic shifts observed for the generated 

projections used in the case study—making it difficult to utilize the probabilistic information.  

As an alternative approach, we analyzed the performance metrics in relation to the sum of 

the 10 year inflows given by the projections (i.e., each projection spanning 10 years in length 

was summed to create a 10 year inflow). Because the model currently operates to meet water 

user demands, priority was given to basin shortages. A scatter plot of the sum of the basin 

shortages over 10 years compared to the sum of the 10 year inflow shows there is a relationship 

between these two parameters (Figure 22). 
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Figure 22. Scatterplot of the sum of the 10 year inflow compared to the sum of the 10 year 

shortage overlaid with a local polynomial. 

 

 

Overlaid with a local polynomial, we see a nonlinear relationship between these two 

variables (Figure 22). For example, once the sum of the 10 year inflow exceeds 60,000,000 acre-

feet, basin shortages remain relatively small. However, a sum of the 10 year inflow less than 

60,000,000 acre-feet results in a linear relationship between the basin shortages. Thus, as inflow 

decreases, shortages increase.  

Because the sum of the 10 year inflow can be derived from the decadal projections, a link 

between the projections and the primary system goal is created, achieving both water user 

demands and minimized basin shortages. To better understand where the shortages were 

geographically occurring and the flow conditions under which they were occurring, the 10 year 

inflow and the basin shortages were subdivided into finer resolution categories. For example, 

shortages were subdivided into two categories: Upper Colorado shortages, and Gunnison 

shortages; while the sum of the 10 year inflow was divided into nine categories (Table 3).  
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∑ 10 Year 

Inflow                  

(Y, MAF) 

Category 

Y < 40 0 

40 ≤ Y < 45 1 

45 ≤ Y < 50 2 

50 ≤ Y < 55 3 

55 ≤ Y < 60 4 

60 ≤ Y < 65 5 

65 ≤ Y < 70 6 

70 ≤ Y < 75 7 

75 ≤ Y 8 

Table 3. Selected ten year inflow thresholds and the corresponding categories. 

 

The frequency of vulnerability for each category was then analyzed to better understand how 

regularly the shortages were occurring under certain inflow categories.  

For this analysis, vulnerability was based on the thresholds presented in Table 2, and 

computed at the annual timestep. The analysis did not consider the annual frequency for the 

system reaching vulnerability, but rather whether the system became vulnerable in any given 

year. The frequency of a shortage vulnerability occurring on the Gunnison and Upper Colorado 

Rivers over a moving 10 year period was computed (Table 4). 
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A: Gunnison Basin: Frequency of Vulnerability 

∑10 

Year 

Inflow 

Category 

Type of Basin Shortage  

(% Occurrence) Total 

Shortage 
None Low Med High 

0 13 40 8 40 88 

1 43 15 17 26 57 

2 59 11 13 18 41 

3 76 7 5 12 24 

4 87 6 2 5 13 

5 96 2 1 1 4 

6 99 1 1 0 1 

7 100 0 0 0 0 

8 100 0 0 0 0 

 

 

 

B: Upper Colorado Basin: Frequency of 

Vulnerability  

∑10 

Year 

Inflow 

Category 

Type of Basin Shortage  

(% Occurrence) Total 

Shortage 
None Low Med High 

0 30 40 0 30 70 

1 49 23 4 23 51 

2 56 24 4 17 44 

3 69 17 3 11 31 

4 80 14 2 5 20 

5 90 6 2 2 10 

6 94 4 1 1 6 

7 97 3 0 0 3 

8 94 6 0 0 6 

 

Table 4. (A) A moving ten year frequency of vulnerability for the Gunnison Basin (B) 

moving ten year frequency of shortage vulnerability for the Upper Colorado Basin. 

 

An example from Table 4 shows us that for an inflow category equal to zero and over a 

ten year moving period, there was a shortage in the Gunnison River Basin 88 percent of the time.  

Of that shortage, 40 percent of the time the shortage was classified as a low shortage, 8 percent 

as a medium shortage and 40 percent as a high shortage (see Table 1 for shortage definitions).  
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Analysis on this data was taken one step further to identify how the shortages impacted 

different sectors—specifically municipal and industrial (M&I), and agriculture (AG). Table 5 

highlights these results. 

 

∑10 Year 

Inflow 

Category 

Gunnison Basin  
Upper Colorado 

Basin 

% M&I  % AG % M&I  % AG 

0 1 96 43 51 

1 1 97 41 54 

2 1 99 40 55 

3 1 99 44 51 

4 27 73 46 48 

5 20 80 45 49 

6 66 34 52 41 

7 0 0 55 39 

8 0 0 60 32 

Table 5. Given a ten year inflow, the percent of shortage due to M&I and AG for the Upper 

Colorado and Gunnison Basins. 

 

 

Linking the primary objective of the basin to decadal-scale information aids in the decision-

making process because this information can be directly integrated into decision logic. The 

fundamental objective of this step is linking decadal-scale information to system performance, 

and drawing conclusions that can inform the decision-making process. If water managers have 

the ability to better understand basin inflows (provided by the projections) and how these inflows 

impact performance metrics (i.e. shortages) over the next 10 years, strategies targeting specific 

vulnerabilities can be developed and successfully implemented.  

 

3.6.4 Identifying Flexible Management Options and Strategies that Ameliorate System 

Vulnerability 
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With improved understanding of plausible future conditions and the associated impacts on 

system performance, the proposed framework helps integrate this information in order to develop 

policies that mitigate specific vulnerabilities.  Furthermore, the integration of this information 

provides a basis for continued learning, which helps water managers develop dynamic strategies 

that can adapt over time with climate change. This approach implies a new way of thinking about 

resource management, as it moves away from traditional management strategies focused on 

development and maintenance of large-scale infrastructure—which, with updated knowledge, 

may even prove unnecessary.  

For the Gunnison and Upper Colorado case study, the relationships derived from the 

projections and performance metrics were used to develop adaptive management strategies that 

aligned with the primary objective of the basin operations, namely increasing supply reliability. 

In a more realistic case, water managers could develop strategies that balance the tradeoffs 

associated with competing objectives and performance metrics (e.g., reducing basin shortage and 

maintaining instream flows); however, optimization is beyond the scope of this research.  

With flexible and dynamic management in mind, two types of strategies—focused on supply 

reliability—were developed: both M&I conservation and AG conservation. These options are 

feasible to implement and do not require the development of heavy infrastructure. Furthermore, 

the strategies can be amped up or down—depending on the information gleaned from the 

decadal-scale projections. For example, if water managers postulate that low flow is likely over 

the next ten years, they can push conservation approaches, while higher flow years would result 

in more normal operations (i.e., reducing conservation measures).  

The results from section 3.3 further highlight the need for options and strategies that not only 

consider the magnitude of decadal inflow but also consider where the shortages are occurring 
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geographically given a predicted inflow, and what usage sectors contribute most to the overall 

shortage. By integrating all of this information together, the foundation for the conservation 

strategies was developed: For a given predicted 10 year inflow category (0-8), reduce the M&I 

user depletion requested by X% and the AG user depletion requested by Y%.  

The percent reductions were derived from the data presented in Table 4 and 5, with the 

overarching goal of increasing system reliability. Table 6 identifies the percent reductions 

implemented in the study.  

 

∑10 

Year 

Inflow 

Category 

Gunnison Basin Upper Colorado  Basin 

M&I                                 
(% Reduction) 

AG                          
(% Reduction) 

M&I                                 
(% Reduction) 

AG                          
(% Reduction) 

0 2 10 4 6 

1 2 8 4 5 

2 2 6 4 5 

3 1 5 3 4 

4 1 2 3 3 

5 0 0 2 2 

6 0 0 0 0 

7 0 0 0 0 

8 0 0 0 0 

Table 6. Percent reductions for each sector and basin implemented in the decision logic. 

 

 

Again, optimization could be used to fine tune the amount that needs to be conserved 

(i.e., percent reduction) for optimal performance.  However, given the scope of this work, the 

conservation logic effectively accounts for the predicted inflow category and where the shortages 

will most likely occur—resulting in more dynamic and adaptive management capability. Note, 

implementing water reuse would have similar impacts on reducing M&I shortages, however the 

strategy is static in that water managers can not adjust it based on new information—likely 

resulting in over-investment and negating the overarching goal of this framework.  
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The robustness of the framework is testing by applying the decision-making framework to a 

wide range of plausible future hydrologic scenarios. The method for choosing such scenarios is 

described below.  

 

3.6.5 Generation and Selection of Plausible Future Conditions 

To generate a wide range of plausible future outcomes, a set of 1500 hydrologic traces were 

created using three methods: a KNN resampling of the observed historical record, the wavelet-

based decadal projection methodology, and the wavelet-based climate change projection 

methodology (Chapter 2). The KNN resampling of the observed historical record is a standard 

lag-1 KNN resampling method—thus it assumes history repeats itself [U.S. Bureau of 

Reclamation, 2012]. This methodology is commonly used by the Bureau of Reclamation and is 

comparable to the Index Sequential Method [U.S. Bureau of Reclamation, 2012]. Of the 1500 

traces, 500 were created using the standard KNN resampling methodology. Each methodology 

was used to create 500 traces. For an in-depth description of the two wavelet-based projection 

methodologies, the reader is referred back to Chapter 2.  

Note, for the Upper Colorado and Gunnison Basin streamflows, the wavelet-based decadal 

and climate change projections were created using the streamflow record at Lees Ferry, AZ. 

These projections were ultimately spatially and temporally disaggregated to the seven inflow 

sites represented in the simulation model per the methodology described in Nowak et al. (2010). 

While many different stochastic methods could be used to define the range of plausible future 

scenarios, it is important that these realizations contain the quasi-periodic natural variability 

components, as these have the ability to inform the decision-making process.  
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For computational ease, 1 percent [n=15] of the plausible future outcomes were selected. 

Each outcome was treated as plausible hydrologic scenario (“scenario”), in which each scenario 

accurately defines how the future may unfold. The 15 scenarios were selected such that they 

adequately cover the range of plausible future outcomes defined by the 1500 realizations. The 

justification for this selection is that we do not know how the future unfolds; however, we can 

identify specific ways in which the future unfolds, and, combined together, the realizations span 

the range of plausible future outcomes.  

To visually depict the range of plausible future outcomes, two scatter plots of the 1500 

realizations were created. Using these plots, 1 percent of the traces were hand selected such that 

the scope of each plot was adequately covered. The right plot compares the maximum and 

minimum streamflow values of the 1500 realizations (Figure 23A), while the second plot 

compares mean and variance of the realizations (Figure 23B).  
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Figure 23. The 15 scenarios show in color, while the light gray represents the 1500 

simulations. (A) Maximum and minimum of each trace, and (B) the mean and variance of 

each trace. 

 

 

A histogram of the 1500 simulations compared to a histogram of the hand selected 

scenarios illustrates the scenarios adequately capture the overall distribution of the 1500 

plausible future conditions.  
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Figure 24. (A) Histogram of the 1500 simulations compared to (B) a histogram of the 15 

selected scenarios. 

 

 

Furthermore, Figure 25 highlights the selected scenarios (red) relative to the 1500 simulations 

(grey).  

 

 



61 

 

 

Figure 25. Selected scenarios (red) compared to the 1500 plausible future conditions (gray). 

 

Combined together, Figures 23-25 demonstrate the proposed method for selecting the 

scenarios adequately covers the wide range of plausible future conditions. With this method, the 

maximum and minimums, as well as the mean and variance are properly addressed. For more 

robust coverage, more scenarios could be selected; however, with adequate coverage a larger 

sample size may prove unnecessary.   

For the case study, the aforementioned decision-making framework was applied to each 

scenario. The model was simulated using the state’s current demand projections (provided by the 

Bureau of Reclamation). Note, if the scenario originated from the wavelet-based climate change 

method, the projections were scaled accordingly. The results of applying the decision-making 

framework to the case study are presented in Chapter 4.  
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CHAPTER 4: CASE STUDY DISCUSSION AND RESULTS 

This chapter contains results of applying the decision-making framework to the case 

study logic presented in Chapter 3. To better understand the utility and effectiveness of the 

proposed framework, three unique decision-logics were simulated and analyzed. The first 

decision-logic, called the “No Options” logic, is used as the baseline logic; it represents system 

performance if no management options and strategies are implemented. The second decision-

logic, called the “Decadal” logic, uses the decadal projections as described in Chapter 2 to drive 

the decision-making logic developed in Chapter 3. The last decision-logic, “Climatology”, uses 

the same logic as the Decadal Logic; however, the decadal projections are computed with 

climatology.  

For the climatology projection methodology, 100 projections were created for every 

annual timestep by resampling the historic streamflow record with a standard lag-1 KNN 

resampling algorithm. As previously mentioned, this resampling methodology assumes history 

repeats itself and does not take into consideration the current state of the natural variability 

cycles. The climatology projections are independent of the hydrologic scenario.  

Although the RPSS indicates the decadal projections perform only slightly better than 

climatology (Chapter 2), a comparison of the Decadal and Climatology decision-logic highlights 

the impacts these differences have on the decision-making process. For all three decision-logics, 

the hydrologic input consisted of the 15 scenarios described in Chapter 3, with the current state 

projected demands [U.S. Bureau of Reclamation, 2012]. The study was run from January 2012 

through December 2041.  

To assess the accuracy of the decadal projections relative to climatology in the decision- 
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making context, we analyzed the percent of times the decadal projections predicted inflow 

categories lower than, more than, and equal to the observed ten-year inflow. This was computed 

by looking at the mean projected inflow category derived for each scenario and the associated 

projections generated at each timestep. The mean projected inflow category was then compared 

to the observed inflow category (i.e., for each scenario, the ten-year inflow category given at 

each timestep). The results are presented in Table 7.  

 

     (% Projections) 

Projections 

Type 

Lower than 

Observed 

Same as 

Observed 

More than 

Observed 

Decadal  42 21 37 

Climatology 35 18 47 

Table 7. Accuracy of predicting the ten year inflow. 

 

 

These results are consistent with the RPSS presented in Chapter 2. From the 15 scenarios, 

the decadal projections correctly predicted the observed inflow category 21% of the time, 

compared to climatology which correctly predicted the observed inflow category 18% of the 

time. Note, the decadal projections tend to predict lower flow categories, while climatology tends 

to predict higher inflow categories. This is important, as the inflow categories dictate the extent 

of conservation—where low inflow categories push conservation and high inflow categories 

support normal operations. 

Keeping this level of accuracy in mind, the following tables (8-9) highlight the three 

decision-logics’ ability to mitigate shortage vulnerability on both the Gunnison and Upper 

Colorado basins. 
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Gunnison Basin Shortages 

Scenario 

Number of Vulnerabilities Over 30 Years 

No Options Decadal & Options Climatology & Options 

None Low Medium High None Low Medium High None Low Medium High 

1 27 2 0 1 28 1 0 1 28 1 0 1 

2 29 0 0 1 29 0 0 1 29 0 0 1 

3 29 0 1 0 29 1 0 0 29 1 0 0 

4 22 1 3 4 22 1 3 4 22 2 2 4 

5 28 1 1 0 28 2 0 0 28 1 1 0 

6 26 3 0 1 26 3 0 1 26 3 0 1 

7 30 0 0 0 30 0 0 0 30 0 0 0 

8 30 0 0 0 30 0 0 0 30 0 0 0 

9 25 2 1 2 25 2 1 2 25 2 1 2 

10 27 1 1 1 27 2 1 0 27 2 0 1 

11 29 1 0 0 30 0 0 0 30 0 0 0 

12 26 2 0 2 26 2 0 2 26 2 0 2 

13 26 0 0 4 26 0 2 2 26 0 0 4 

14 22 3 2 3 22 3 2 3 22 3 2 3 

15 16 6 5 3 18 6 3 3 17 7 3 3 

Total 392 22 14 22 396 23 12 19 395 24 9 22 

Table 8. For each scenario and decision-logic, the number of vulnerabilities over the entire 

run period (2012-2041).  
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Upper Colorado Basin Shortages 

Scenario 

Number of Vulnerabilities Over 30 Years 

No Options Decadal & Options Climatology & Options 

None Low Medium High None Low Medium High None Low Medium High 

1 23 5 0 2 25 3 0 2 24 4 0 2 

2 27 3 0 0 27 3 0 0 27 3 0 0 

3 28 1 0 1 28 1 0 1 28 1 0 1 

4 21 4 1 4 21 4 1 4 21 4 1 4 

5 26 3 1 0 27 3 0 0 27 3 0 0 

6 25 3 1 1 25 3 1 1 25 3 1 1 

7 30 0 0 0 30 0 0 0 30 0 0 0 

8 30 0 0 0 30 0 0 0 30 0 0 0 

9 24 3 1 2 24 3 1 2 24 3 1 2 

10 24 5 0 1 26 3 1 0 26 3 0 1 

11 27 3 0 0 28 2 0 0 29 1 0 0 

12 24 3 1 2 24 3 1 2 24 3 1 2 

13 20 6 2 2 21 5 2 2 21 5 2 2 

14 19 7 2 2 19 7 3 1 19 7 3 1 

15 20 7 0 3 20 7 0 3 20 7 0 3 

Total 368 53 9 20 375 47 10 18 375 47 9 19 

Table 9. For each scenario and decision-logic, the number of vulnerabilities over the entire 

run period (2012-2041). 

 

On the Gunnison Basin, the decadal decision-logic mitigates more vulnerability compared to 

climatology. Using the decadal projections and management options and strategies, the number 

of high shortages was reduced, resulting in an increase of medium-level shortages. This is to be 

expected, as the high shortages were reduced to less severe shortages (i.e., medium) through 

conservation. By a small margin, the decadal projections do a better job mitigating shortage 

vulnerability relative to climatology.  

Interestingly, on the Upper Colorado Basin the decadal and climatology decision-logics 

perform similarly compared to the no options decision-logic. For example, both the decadal and 
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climatology decision-logics result in the same number of no and low shortages. However, the 

decadal decision-logic results in fewer high shortages. Relative to climatology, the decadal 

decision-logic mitigated more shortages on the Gunnison Basin compared to the Upper Colorado 

Basin—suggesting storage plays a key role in utilizing decadal scale information to increase 

supply reliability. For example, with available storage and dynamic management strategies, 

water managers could implement strategies that store excess water during high flow epochs, 

which can be used to increase supply reliability during low flow epochs. However, the lack of 

storage on the Upper Colorado Basin proves difficult for such planning.  

Table 10 summarizes the overall impacts of each decision-logic in reducing basin-wide (i.e., 

Gunnison and Upper Colorado) shortages. 

 

Combined Shortages 

(Number of Vulnerabilities Over 30 Years) 

Shortage No Options 
Decadal & 

Options 

Climatology & 

Options 

None  760 771 770 

Low  75 70 71 

Medium  23 22 18 

High  42 37 41 

Table 10. Total shortage vulnerabilities for the Upper Colorado and Gunnison Basins given 

all 15 scenarios. 

 

 

Consistent with the previous results, the decadal decision-logic does a slightly better job 

mitigating shortage vulnerability compared to climatology and no options.  

Both decadal and climatology decision-logic results show that the logic integrated into the 

framework is effective. Given that the decadal projections only perform slightly better than 

climatology, the framework considers a predicted ten-year inflow and responds accordingly. 
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Tables 11-12 provide a summary of the overall effects of the framework on both the Gunnison 

and Upper Colorado Basins for the 15 scenarios. 

Impacts of the Framework on the Gunnison 

Basin  

   Decadal  Climatology  

Completely 

Eliminated (%) 
7  5  

Reduced to a Lesser 

Type  

of Shortage (%) 
12  7  

Reduced but Not 

Enough to Change 

the Type of Shortage 

(%) 

64  59  

High (%)  46  44  

Medium 

(%)  16  
24  

Low (%)  38  32  

Unchanged (%)  17  29  

High (%)  30  41  

Medium 

(%)  30  
12  

Low (%)  40  47  

Table 11. Overall impacts of the decision-logic on the Gunnison Basin. 
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Impacts of the Framework on the Upper 

Colorado  

   Decadal  Climatology  

Completely 

Eliminated (%) 
7  9  

Reduced to a 

Lesser Type of 

Shortage (%) 

0  2  

Reduced but not 

Enough to 

Change Type of 

Shortage (%) 

93  89  

High (%)  24  26  

Medium 

(%)  11  
11  

Low (%)  57  63  

Unchanged (%)  0  0  

High (%)  -  -  

Medium 

(%)  -  -  

Low (%)  -  -  

Table 12. Overall impacts of the decision-logic on the Upper Colorado Basin. 

 

 

Overall, on the Gunnison Basin, the decadal decision-logic eliminated more of the shortages 

and had a bigger impact on reducing the severity of the shortages. These results could be biased, 

as the decadal projections often predict the ten year inflow will be less than the observed, 

resulting in increased conservation measures. Similarly, the climatology decision-logic has a 

higher percent of not addressing the shortages—which could be a result of the climatology 

projections predicting the ten year inflow will be more than the observed and, consequently, 

resulting in less conservation.  

On the Upper Colorado, the framework addressed all of the shortages—either reducing them 

to less severe shortages or eliminating them all together. However, as previously discussed, there 

is little difference between the climatology and decadal decision-logics.  
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Although the adaptive management strategies primarily target mitigation of shortage 

vulnerabilities, performance of the other metrics was quantified.   Tables 13-15 show the results 

of individual metrics under each scenario. 

 

 

Energy: Total Power Generated 

 

Number of Vulnerabilities Over 30 

Years 

Scenario 
No 

Options 

Decadal & 

Options 

Climatology & 

Options 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 5 5 5 

5 1 1 1 

6 3 3 3 

7 0 0 0 

8 0 0 0 

9 3 3 3 

10 3 2 3 

11 1 0 1 

12 4 4 4 

13 4 3 4 

14 8 6 6 

15 6 6 6 

Total 38 33 36 

Table 13. Total power generated frequency of vulnerability (2012-2041). 
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Recreation: Blue Mesa Pool Elevation 

 
Number of Violations Over 30 Years 

Scenario 
No 

Options 

Decadal & 

Options 

Climatology & 

Options 

1 10 10 10 

2 9 8 8 

3 3 2 2 

4 17 17 17 

5 11 10 10 

6 16 15 16 

7 2 1 2 

8 2 2 2 

9 9 9 9 

10 12 10 10 

11 12 12 12 

12 14 13 14 

13 12 12 12 

14 22 21 22 

15 19 19 19 

Total 170 161 165 

Table 14. Blue Mesa pool elevation frequency of vulnerability (2012-2041). 
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Instream Right: Flow at Crystal Gage 

 
Number  Violations Over 30 Years 

Scenario 
No 

Options 

Decadal & 

Options 

Climatology & 

Options 

1 2 2 2 

2 2 2 2 

3 0 0 0 

4 9 9 9 

5 4 4 3 

6 6 6 6 

7 0 0 0 

8 0 0 0 

9 4 4 4 

10 4 4 4 

11 0 0 0 

12 5 4 5 

13 5 5 5 

14 9 8 8 

15 7 7 7 

Total 57 55 55 

Table 15. Instream right frequency of vulnerability at Gunnison gage below Crystal 

Reservoir (2012-2041). 

 

 

For all performance metrics, implementing this decision-logic improved the overall 

performance of the system by reducing vulnerability. This underscores the utility of this type of 

approach and the importance of using decadal scale projections to inform flexible decision-

making. Furthermore, some of these metrics inherently have competing objectives and, despite 

this, the options and strategies still improved overall performance. For the total power 

generated—a metric that competes with reducing shortages—and the Blue Mesa pool elevation, 

which aligns with the shortage objectives, the  decadal decision-logic improved system 

performance slightly more than climatology. Similarly, instream rights—measured at Gunnison 

gage below the Crystal Reservoir—compete with the shortages objective, and yet the options and 
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strategies still reduce vulnerability. While not perfect, these results illustrate the benefits of 

employing options and strategies that adapt as climate changes.  

A brief cost analysis comparing all three decision-logics is included. This is important as it 

highlights the costs associated with basin shortages, as well as the costs associated conservation. 

These costs associated with conservation could include the costs of not conserving enough (i.e., 

the cost of shortages), the cost of over-conserving, and the associated lost opportunity costs. 

Given the importance of understand all of the costs, this analysis is twofold.  

 The first part of the analysis quantifies the amount conserved under the decadal and 

climatology decision-logics when conservation is not needed (i.e., there is no shortage, yet 

conservation is still implemented). These results highlight the opportunity for implementing 

optimization to fine tune the extent the management options and strategies are implemented 

(Tables 16 and 17).  
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Gunnison Basin  

No Need for Conservation: Quantity Over-Conserved                                                                                                                                         

(acre-feet) 

Scenario 

Decadal Climatology Scenario 

Resulting in 

Most Over-

Conservation 

M&I AG Total M&I AG Total 

1 10 0 10 4 0 4 Decadal 

2 565 23131 23696 281 9999 10280 Decadal 

3 300 6880 7179 25 5813 5837 Decadal 

4 11 588 599 4 5 8 Decadal 

5 10 3 13 5 6422 6427 Climatology 

6 584 15471 16055 296 9422 9719 Decadal 

7 22 0 22 5 3 8 Decadal 

8 17 3 20 7 3 10 Decadal 

9 576 17051 17626 17 3301 3319 Decadal 

10 852 10562 11414 299 8016 8316 Decadal 

11 575 15024 15599 11 4 14 Decadal 

12 576 16147 16723 283 1822 2104 Decadal 

13 315 1969 2284 12 577 589 Decadal 

14 857 18005 18863 849 17344 18193 Decadal 

15 4 0 3 7 0 7 Climatology 

 

Table 16. Quantity that was over-conserved when Conservation was not needed for the 

Gunnison Basin. 
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Upper Colorado Basin  

No Need for Conservation: Quantity Over-Conserved                                                                                                                                         

(acre-feet) 

Scenario 

Decadal Climatology Scenario 

Resulting in 

Most Over-

Conservation 

M&I AG Total M&I AG Total 

1 9892 8783 18675 10324 9191 19515 Climatology 

2 16176 22705 38881 13789 21077 34866 Decadal 

3 11183 9097 20280 10306 8359 18665 Decadal 

4 12124 6637 18761 9153 4787 13940 Decadal 

5 9846 20913 30758 7649 15994 23643 Decadal 

6 15646 12456 28101 14493 11555 26048 Decadal 

7 11359 17084 28443 9437 15302 24740 Decadal 

8 16580 24974 41554 11572 19940 31513 Decadal 

9 8530 17721 26250 9032 16210 25242 Decadal 

10 12053 17424 29477 10569 17943 28512 Decadal 

11 13460 26614 40074 10961 20575 31536 Decadal 

12 17865 34638 52502 13856 26614 40470 Decadal 

13 11673 30027 41700 6918 18090 25009 Decadal 

14 12660 20074 32734 10671 23775 34447 Climatology 

15 10688 35671 46359 11108 28988 40096 Decadal 

Table 17. Quantity that was over-conserved when Conservation was not needed for the 

Upper Colorado Basin. 

 

This analysis is performed within the context of the framework which implements 

management strategies to increase supply reliability. Inherently, the framework implements 

conservation when it may not be needed, and vice versa. For a more efficient framework, further 

analysis quantifying the optimal levels of implementation could be included. However, given the 

framework, in some hyrdrologic scenarios, climatology results in more over-conservation, while 

in others the decadal projections result in more over-conservation. On the Gunnison Basin, 

climatology results in more over-conservation on two out of the fifteen scenarios (scenario 5 and 

15). Similarly, on the Upper Colorado, climatology results in more over-conservation on two out 

of the fifteen scenarios (scenario 1 and 14).  
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The second part of the cost analysis looks at when conservation is implemented, how much 

more needs to be implemented to eliminate shortages under each of the different decision-logics 

(Tables 18 and 19). 

 

Gunnison Basin 

  Conservation Needed: Quantity Should Have Conserved to Eliminate 

Shortages                                      

 (acre-feet) 

Scenario 

No Options Decadal Climatology Scenario that has to 

conserve the least to 

reduce shortages 
M&I AG M&I AG M&I AG 

1 1406 326210 1105 292930 1378 312208 Decadal 

2 1000 145634 1000 145634 979 117236 Climatology 

3 581 63891 257 36809 565 51664 Decadal 

4 7864 1220750 7528 1163694 7468 1166424 Decadal 

5 791 110363 766 66899 778 83443 Decadal 

6 1928 223370 1842 188286 1916 207536 Decadal 

7 - - - - - - - 

8 - - - - - - - 

9 11096 873505 10878 817387 11068 860387 Decadal 

10 2109 218328 1200 152157 2089 209632 Decadal 

11 - 7506 - - - - - 

12 4746 760765 3568 694725 3967 747608 Decadal 

13 5526 1032035 4577 921120 5490 1000464 Decadal 

14 6616 756600 6220 702873 6173 695003 Climatology 

15 8893 1048273 8217 910376 8400 987745 Decadal 

Table 18. The amount that needs to be conserved to eliminate shortages on Gunnison 

Basin. 
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Upper Colorado Basin 

  Conservation Needed: Quantity Should Have Conserved to 

Eliminate Shortages                     

(acre-feet) 

Scenario that 

has to 

conserve the 

least to reduce 

shortages 
Scenario 

No Options Decadal Climatology 

M&I AG M&I AG M&I AG 

 1 798199 884404 759887 829898 763542 826622 Decadal 

2 43380 61943 34800 35521 35854 44714 Decadal 

3 170313 217324 154168 186857 157423 194138 Climatology 

 4 1429383 2003124 1364966 1920835 1356091 1907290 Climatology 

5 101001 160611 84714 135848 82980 131238 Climatology 

 6 475266 644669 438616 586678 453857 609407 Decadal 

7 - - - - - - - 

8 - - - - - - - 

9 1060597 1536004 997905 1425011 1019104 1469896 Decadal 

10 242714 319600 206925 255987 221095 284730 Decadal 

11 48987 4658 41620 0 42024 1480 Decadal 

12 1092726 1684122 1045162 1577937 1063629 1626873 Decadal 

13 1158273 1691536 1082692 1543807 1107906 1608349 Decadal 

14 597371 968853 542624 858965 539633 852266 Climatology 

15 946122 1198188 875833 1085345 894706 1113771 Decadal 

Table 19. The amount that needs to be conserved to eliminate shortages on Upper Colorado 

Basin. 

 

On the Gunnison, where storage is available, the decadal decision-logic does a better job 

conserving, thus requiring less water to increase supply reliability. While the decadal decision-

logic also perform better on the Upper Colorado basin, climatology plays a stronger role.  This 

raises the question of the utility of the decadal projections under different hydrologic conditions 

and the presence of storage. It could be the decadal projections only prove more useful than 

climatology under prolonged dry conditions where storage is available. This could be further 

investigated using synthetic data as none of the selected scenarios show prolonged dry epochs in 

the study period (2012-2041). The dry epochs appear post 2040.  

Throughout the analysis, the decadal decision-logic tends to over-conserve while the 

climatology decision-logic often does not conserve enough. Both of these situations have 
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associated costs—one resulting in inefficient use of resources while the other adversely impacts 

supply reliability. Ideally, with improved decadal projections, the supply reliability targets would 

be met more consistently—resulting in more efficient management. Nonetheless, this framework 

effectively demonstrates the importance of robust decision-making, how decadal scale 

projections can inform the decision-making process, and the importance of adaptive, flexible 

management.  

 

A summary of this work is provided in Chapter 5. 
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CHAPTER 5: CONCLUSION 

This research seeks to demonstrate the value of incorporating decadal scale information into 

water resource decision-making frameworks that integrate dynamic, flexible management 

strategies. Because previous research links decadal variability to water supply reliability—

specifically in the Colorado River Basin—integrating this knowledge into decision-making 

frameworks is of great potential value. Currently, some decision-making frameworks use small 

scale climate variables (i.e., temperature and precipitation) to inform the decision-making 

process; however this overlooks the importance of leading hydroclimatic drivers—such as 

decadal variability. To this end, this research develops a methodology for creating stochastic 

streamflow projections based on non-stationary spectral properties. As described in Chapter 3, 

the methodology uses the wavelet transform to identify statistically significant variability peaks, 

which can be filtered to create band passed timeseries. The current state of the system is then 

characterized by the band’s Scale Average Wavelet Power (SAWP) and phase angle. Built 

around this information, a KNN algorithm creates simulations each band individually, which can 

then be summed together to create streamflow projections. While important statistical measures 

were captured in this methodology (mean, variance, skew, min and max), the methodology fails 

to adequately capture the band’s amplitude and phase—a challenge prevalent in many long-term 

prediction methods. Unfortunately, the methodology does not prove as skillful as we would have 

liked as the RPSS suggests the method produces projections that perform slightly better than 

climatology. Despite this shortcoming, the projections prove useful for informing decision-

making processes.  

In addition to developing a decadal scale projection methodology, this research develops a 

robust decision-making framework that integrates decadal information to inform decision logic. 
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The utility of this framework is presented in Chapter 3, with the results from a case study on the 

Gunnison and Upper Colorado River Basins presented in Chapter 4. The framework is built 

around the idea of incorporating large-scale climate information to drive decision-making 

processes—resulting in more adaptive and flexible management in light of climate change. 

Despite the skill of the proposed decadal projections, the framework effectively demonstrates the 

utility of integrating this information into decision-making.  

Using this approach, the decision-logic for the case study incorporated knowledge about 

decadal scale inflows and system performance to target geographic and sector-based shortages. 

Overall, basin shortages, both on the Upper Colorado and Gunnison Rivers, were mitigated and 

reduced—increasing system reliability and overall system performance. These results suggest 

linking system performance to decadal scale variability proves useful for developing and 

implementing flexible management strategies. With improved projections, this framework has 

the potential to be even more beneficial to water managers.  

For improvements, future work should focus on creating improved decadal scale projections. 

As mentioned in Chapter 2, the physical processes that drive decadal variability need to be better 

understood as well as the interactions between anthropogenic forcings and natural variability. 

With improved projections, future work could assess whether probabilistic information could 

better inform the decision-logic. Furthermore, optimization could be integrated into the 

framework to help identify optimal levels of management implementation—resulting in 

improved efficiency and balance between competing objectives.  
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