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We analyze the movement of a starving forager on a one-dimensional periodic lattice, where each
location contains one unit of food. As the forager lands on sites with food, it consumes the food,
leaving the sites empty. If the forager lands consecutively on s empty sites, then it will starve.
The forager has two modes of movement: it can either diffuse, by moving with equal probability
to adjacent sites on the lattice, or it can jump to a uniformly randomly chosen site on the lattice.
We show that the lifetime T of the forager in either paradigm can be approximated by the sum of
the cover time τcover and the starvation time s, when s far exceeds the number n of lattice sites.
Our main findings focus on the hybrid model, where the forager has a probability of either jumping
or diffusing. The lifetime of the forager varies non-monotonically according to pj , the probability
of jumping. By examining a small system, analyzing a heuristic model, and using direct numerical
simulation, we explore the tradeoff between jumps and diffusion, and show that the strategy that
maximizes the forager lifetime is a mixture of both modes of movement. However, when extending
the model to include time penalties for long-range movement, the forager’s lifetime is no longer
typically non-monotonic in pj . Pure jumping is typically optimal when there is an upper bound
on the time-penalty, but pure diffusion is optimal when jumping becomes too perilous. A mixed
jump-diffusion strategy is recovered if a forager is allowed to avoid jumping if they will die mid-jump.

I. INTRODUCTION

Virtually all motile organisms must forage for resources
such as food, habitats, or mates. Optimal foraging theory
typically examines what strategies best balance search
cost with reward [1]. An integral component of foraging is
the balance between exploiting the known and/or nearby
resources versus exploring one’s broader environment for
new resources [2]. Organisms typically deplete resources
in their immediate vicinity over time [3], unless depletion
is slow and resources are renewable [4]. Thus, organisms
often invoke strategies in which they compare the known
yield at their current location with distribution of yields
from distant sites [5].

The predictions of theoretical models of foraging
strongly depend on the information available to the for-
ager. If foragers have partial knowledge of the statistical
distribution of resources, optimal foraging strategies are
usually straightforward to identify and typically balance
an explore/exploit tradeoff [1, 6]. In contrast, foragers
may possess no knowledge of their environment and may
be incapable or unwilling to learn based on their forag-
ing history [7]. Recent models along these lines study
the dynamics of foragers moving in environments orga-
nized on a lattice, according to a random walk. Previ-
ous work has examined the effect of making the forager
more or less likely to pursue food [8], making the forager
wait before consuming food [9], and giving the forager a
chance not to consume encountered food [10]. In partic-
ular, this recent work has studied the added constraint
of starvation, whereby the forager cannot go longer than
s steps without food. Exploration/exploitation tradeoffs
are then determined by how search strategy parameters
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shape the lifetime of the forager, corresponding to the
number of steps until it starves.

Our model is similar to a starving forager executing a
random walk developed in [7, 8]. We consider the move-
ment of a forager on a one-dimensional periodic lattice
with n sites, where each location contains one unit of
food. If the forager lands on a site with food, the forager
consumes the food, leaving the site empty. After the for-
ager lands on s consecutive empty sites, it starves. Since
the food is depleted and never regenerated, the forager
will eventually starve, and can survive at most s ·n steps,
though the mean lifetime T is typically much less than
this upper limit.

Recent analyses have focused on cases in which for-
agers only move locally, according to biased or unbiased
random walks [7–9]. In contrast here, we explore the ef-
fects of allowing the forager to make large jumps. Food
is typically distributed heterogeneously in an environ-
ment, and animals can adapt their foraging strategy as
such [1]. For example, penguins alternate between forag-
ing locally on patches of krill and moving ballistically be-
tween them [11]. One foraging strategy for this situation
is a Lévy-type movement, where animals combine small-
scale movements with long-distance displacements [12–
15]. Our model will emulate this type of movement as
follows.

Our forager has two modes of movement (Fig. 1A):
it can either diffuse, by moving with equal probability to
adjacent points on the lattice (Fig. 1B), or it can jump to
a uniformly randomly chosen site on the lattice (Fig. 1C).
In particular, we examine a hybridized approach, where
the forager jumps with probability pj , or diffuses with
probability 1 − pj (Fig. 1D). Providing our forager with
both types of movement allows us to consider how much
time the forager should spend exploiting a given location,
and how frequently the forager should move to other lo-
cations. We demonstrate that the mean lifetime T of the
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FIG. 1. Jump-diffusion foraging model parametrized by pj
the probability of jumping. A. The forager moves to non-
adjacent sites with probability

pj
n

and to adjacent sites with

probability
pj
n

1−pj
2

, accounting for the possibility of diffu-
sion. B,C,D. Example forager paths (blue lines/dots) for
pj = 0, 1, 0.03. Green represents sites with food, while white
represents empty sites.

forager varies non-monotonically with respect to pj , and
the forager’s lifetime is maximized through a mixture of
jumping and diffusion.

This work extends the recent studies of [7–9] by in-
corporating long-range motion into the dynamics of a
starving forager. Those previous studies were primarily
concerned with how additional considerations like greed
or frugality could affect the lifetime of a starving forager
that moves via local diffusion. Note that in the limit

of pj → 0 our model reduces to the basic form of those
previous models.

Obtaining an explicit formula for the forager lifetime
proves difficult, perhaps even intractable. Thus, we em-
ploy a number of alternative methods for gaining insight
into how the mean forager lifetime T depends on model
parameters. First, we study separately the two boundary
cases of pure diffusion and pure jumping. In both cases,
we can determine an upper bound for the forager lifetime
as the sum of the cover time and survival time, and ex-
plicitly derive formulas for the forager lifetime. This re-
veals that a diffusive strategy is more advantageous when
the survival time s is longer, whereas a jumping strategy
is better for short survival times. Next, we analyze the
jump-diffusion model in a very small environment (with
n = 4 food sites) and short survival time (s = 2), show-
ing mean lifetime is optimized by using a mix of jumping
and diffusion. Finally, we analyze a jump-wait model,
where we replace the diffusive behavior with waiting be-
havior where the forager remains in the same location un-
til jumping. The qualitative performance of this model
is similar to the jump-diffusion model, suggesting that
foragers extend their lifetime by simply not consuming
food when they have recently fed.

Our study concludes by considering several extensions
of our model in which long-range jumps require more
time than diffusion. In this extended model, the non-
monotonicity of the forager lifetime in pj mostly disap-
pears. Typically, the forager does best when enacting a
strategy of pure jumping in these cases. Although, when
time penalties scale linearly with distance, pure diffusion
becomes optimal, as most jumps result in death. In either
case, a forager’s lifetime can be lengthened by allowing a
mixed jump-diffusion strategy whereby the forager only
makes jumps that do not kill them and diffuse otherwise.

II. THE OPTIMAL JUMP RATE

To begin, we consider the full hybrid model, where
the forager can both jump and diffuse. We will numeri-
cally determine the effect of pj on the mean forager life-
time T (n, s, pj), while varying the environment size n
and survival time s. Across a wide range of parame-
ters, a mixture of jumping and diffusion (0 < pj < 1)
leads to higher values of T . For larger s relative to n,
the value of pj that maximizes T becomes smaller. This
trend will be studied in detail by analyzing related mod-
els in subsequent sections. Numerical results are shown
in Fig. 2. As shown in Fig. 2A, T is non-monotonic in
pj for different values of s, so there is an interior pj that
maximizes T . As we demonstrate in subsequent sections,
a larger pj (more jumping) causes the forager to consume
food more rapidly, lowering the odds of starving between
feedings, but depleting the resources more rapidly. Thus,
the optimal pj balances the tradeoff of slowing the rate
of food consumption (decreasing pj) with decreasing the
probability of starving early on (increasing pj). For lower



3

0 0.5 1
p j

0

200

400

600

800
T

A

0 50 100
s

0

0.2

0.4

0.6

0.8

1

p j*

B

FIG. 2. A. Mean survival time T of a starving forager obeying
jump-diffusion with jump rate pj . Forager lifetime T varied
nonmonotonically with pj for s = 320, 160, 80, 40, 20 (top-to-
bottom). The maximal lifetime is marked in black. Environ-
ment size n = 40. Means at each value of pj are generated
using 106 Monte Carlo simulations. B. The jump rate pj that
maximizes the forager lifetime primarily decreases as a func-
tion of s. Shown for n = 400, 80, 20 (top-to-bottom). Maxima
are found using golden-section search [16] using 106 simula-
tions per point.

values of s, there is a broad range of pj values over which
T is relatively unchanged. This suggests that the advan-
tage gained by slowing the rate of food consumption is
roughly counteracted by the increased probability of star-
vation. As the survival time s is increased, the optimal
value of pj decreases, since the forager becomes less likely
to die between feedings (Fig. 2B). Utilizing diffusive mo-
tion (lower pj) more often limits that rate at which food
is consumed. On the other hand, as the size of the envi-
ronment is increased (larger n), the optimal pj increases.
This is because there is more food initially available, so
the forager can afford to increase the rate of food con-
sumption to decrease their probability of starving.

Our interpretations of the mean lifetime T dependence
on pj , s, and n can be analyzed in further detail by con-
sidering a few different limiting cases and approximations
of the jump-diffusion model. We begin by studying the
behavior of the model at the two extremes of pure dif-
fusion (pj = 0: Fig. 1B) and pure jumping (pj = 1:
Fig. 1C). Our two main findings in this analysis are
that (a) a diffusive forager covers the environment more
slowly, decreasing the rate of food consumption as dis-
cussed above; and (b) jumping is a better strategy in
large environments (large n) with lower survival times
(small s). Indeed this is consistent with our numerical
results above. We conclude with an analysis of two sim-
pler models that demonstrate the same nonmonotonicity
of T in pj as shown in Fig. 2.

III. COVER TIMES AT EXTREMES

Considering the boundary cases of pure diffusion pj =
0 and pure jumping pj = 1 allows us to derive explicit
formulas for how model parameters, such as the envi-
ronment size n and starvation time s impact the mean
lifetime T of the forager. This can be approximated first

by calculating the mean cover time E(τcover) of the for-
ager: the time it takes the forager to reach all of the
food sites in the environment. This quantity plus the
starvation time s constitutes an upper bound on the life-
time in general, but for large s it provides a reasonable
approximation of

T (n, s, pj) ≈ s+ E(τcover(n, pj)). (1)

This is because, when s is large, the forager generally
consumes almost all of the food in the domain before
dying, since it will typically have enough time between
feeding to locate remaining food in the environment.

The mean cover time E(τcover) can be computed ex-
plicitly. If tk denotes the time the kth piece of food is
eaten, then τcover = tn, t1 = 0, and by the linearity of
expectation, we have:

E(τcover) =

n∑
k=2

E(tk − tk−1). (2)

In the case of both pure diffusion (pj = 0) and pure jump-
ing (pj = 1), E(tk − tk−1) can be explicitly calculated.

A. Diffusion

We first consider the case where pj = 0, so the forager
moves only to adjacent sites. Following along the lines
of [17], to calculate the cover time, we first consider the
time between eating the kth piece of food and the k−1th

piece of food. The kth piece of food here refers to the
time-ordering of food consumption in a single foraging
realization. Since the forager can only move to adjacent
locations, after eating k− 1 pieces of food, it must be on
the boundary of a contiguous region of k−1 sites with no
food – a desert [8]. If we label the current location of the
forager as site 1, and the opposite end of the desert as
site k−1, then the time to consume the kth piece of food
is simply the hitting time of either site 0 or site k. We
let fi be the average time to hit either state 0 or state k
starting at state i, as described by the recursion relation

fi =
1

2
(fi−1 + 1) +

1

2
(fi+1 + 1) (3)

with f0 = fk = 0. A detailed analysis of the time for
a biased random walk to escape a finite interval is given
in [18], where the lifetime of a starving greedy forager is
studied. In that work, a parameter p determines the
probability of moving towards a site containing food.
Their results (given in Appendix B of [18]) reduce to
ours for the unbiased random walk when p = 1/2. We
can solve Eq. (3) for fi = i(k − i), and note that [19]

E(tk − tk−1) = f1 = k − 1, (4)

so by plugging into Eqs. (1) and (2), we find

T (n, s, pj = 0) ≈ s+
n(n− 1)

2
. (5)
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Note, this approximation is linear in s and quadratic in
n, the size of the environment. Fig. 3A demonstrates
that as s increases, Eq. (5) becomes more accurate, as
the forager generally consumes almost all of the food in
the environment. For this to be true, s must be nearly an
order of magnitude larger than n. When s is too small,
the forager will typically die before it can consume all of
the food, so the cover time approximation breaks down.

B. Jumping

We next study the case in which the forager always
jumps to a uniformly randomly chosen site on each
timestep (pj = 1). The cover time is then precisely the
solution to the ‘coupon collecting problem’ [17]. Assume
the forager has eaten k−1 pieces of food. There are then
n−(k−1) pieces of food remaining, and the time it takes
to eat the kth piece of food is geometrically distributed:

(tk − tk−1) ∼ (k − 1)t−1(n− k + 1)

nt
.

Plugging this result into Eqs. (1) and (2) yields

T (n, s, pj = 1) ≈ s+ n

n−1∑
k=1

1

k
. (6)

Fig. 3B shows the exact lifetime converges to this ap-
proximation as s is increased. Eq. (6) is again linear in
s, but now scales much more slowly in n than in the case
of pure diffusion. In the limit of large n, we can estimate
the scaling in n as follows:

n

n−1∑
k=1

1

k
≤ n

n∑
k=1

1

k
≤ 2n

∫ n

1

dx

x
= 2n log(n).

In particular, if we compare the cover times of the two
boundary cases, we see that τcover(pj = 0) = O(n2) while
τcover(pj = 1) = O(n log(n)). This shows that if the
forager can consume almost all of the food, then for large
n, it will live longer by diffusing rather than jumping.
This suggests that as s increases, the optimal value of pj
goes to 0, and this is indeed the case.

IV. FORAGER LIFETIME AT EXTREMES

We now determine the exact formula for the lifetime of
the forager. While the formula we derive actually applies
to all values of pj ∈ [0, 1], we can only compute its con-
stituent parts explicitly in the boundary cases pj ∈ {0, 1}.
Let Xk denote the time between eating the kth piece of
food and the k−1th piece of food, where X1 = 0, since the
forager immediately consumes food at their initial posi-
tion. The probability the forager, with starvation time
s, consumes k pieces of food before starving thus equals

P(k∗ = k) = P(X1, ..., Xk ≤ s,Xk+1 > s), (7)

FIG. 3. A, B. Forager lifetime computed from Eq. (9) in
the case of pure diffusion (A) and pure jumping (B). Cover
time approximations (dashed lines) computed from Eq. (1)
agree in the limit of large s: n = 15, 10, 5 for black, dark grey,
and grey. Red dots are means computed using 106 numerical
simulations. C,D. Ratio of forager lifetime for pure diffusion
to forager lifetime for pure jumping: Tdiff/Tjump. The contour
on D marks where the ratio is one, marking the boundary
between where jumping vs. diffusion is the better strategy.

so k∗ ∈ {1, ..., n} is a random variable arising from the
stochastic movement and death of the forager. We can
determine the distribution of k∗ by first computing the
cumulative distribution for each Xk:

Fk(s) = P(Xk ≤ s) =

s∑
j=1

P(Xk = j), Fn+1(s) = 0. (8)

Note F1(s) ≡ 1. Thus, Fk(s) is the probability the for-
ager survives long enough to consume the kth piece of
food having consumed the k− 1th piece of food. We also
wish to know the probability that the forager eats exactly
k pieces of food before dying. This is given by

P(k∗ = k) =
(

1− Fk+1(s)
) k∏
j=1

(
Fj(s)

)
.

The forager lifetime in each case can be computed first
by conditioning on consuming exactly k pieces of food,
Tk|k∗ = k, which is simply the time it takes to eat the
k pieces of food, plus s steps more until starvation. The
expected lifetime T is then given by marginalizing over
all possible values of k∗:

T =

n∑
k=1

[Tk|k∗ = k]P(k∗ = k) (9)

= s+

n∑
k=1

(
1− Fk+1(s)

) k∏
j=1

Fj(s)

k∑
i=1

E(Xi|Xi ≤ s).
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For the boundary cases of pj = 0 and pj = 1, we can de-
rive an explicit formula for P(Xk = j) in Eq. (8), allowing
us to explicitly calculate Eq. (9). In the limit of large s,
we can approximate Fj(s) = 1 for all j ≤ n and reduce
Eq. (9) to the sum of the expectations, E(Xi), which is
the cover time upper bound given in Eq. (1).

A. Diffusion

We have a general Eq. (9) for E(T ) that requires know-
ing P(Xk = j), the probability it takes j timesteps be-
tween consumption of the kth and (k − 1)th pieces of
food. In what follows, we demonstrate how to explicitly
compute this probability mass function in the case of a
diffusive forager. In the next subsection, we study the
case of a forager that purely jumps.

When pj = 0, the forager moves by diffusion to carve
out a food desert, a simply connected region without any
food. As before, we label the sites of the desert so that
site 1 is where the forager begins after consuming the
(k − 1)th piece of food, and the other desert boundary
is site k − 1. Following [19, 20], we can determine the
probability mass function of Xk.

Let u`,j be the probability that it takes exactly j steps
to first hit site 0 from site `. We then have the following
recursion relation:

u`,j+1 =
1

2
u`−1,j +

1

2
u`+1,j (10)

u0,0 = 1, uj,0 = u0,j = uk,j = 0,∀j > 0.

We then define the generating function

U`(v) =

∞∑
j=0

u`,jv
j

and multiply Eq. (10) by vj+1, so that by summing over
j we obtain

U`(v) =
v

2
U`−1(v) +

v

2
U`+1(v) (11)

U0(v) = 1, Uk(v) = 0.

The boundary conditions arise from the fact that the
probability of hitting site 0 is u0,0 = 1 if starting there,
but uk,0 = 0 if starting at the opposite food site. Con-
sidering solutions to Eq. (11) of the form U`(v) = λ`(v),
we obtain the characteristic equation

λ(v) =
v

2
+
v

2
λ2(v).

This quadratic equation has two roots:

λ±(v) =
1±
√

1− v2

v
, (12)

assuming 0 < v < 1. Each root is a particular solution
to Eq. (11). It follows that there are some functions
A(v), B(v) so the general solution has the form

U`(v) = A(v)λ`+(v) +B(v)λ`−(v). (13)

We can apply the boundary conditions A(v) +B(v) = 1
and A(v)λk+(v) + B(v)λk−(v) = 0 from Eq. (11) to de-
termine A(v) and B(v). Finally, noting that by their
definition, λ+(v)λ−(v) = 1, we have the explicit formula:

U`(v) =
λk−`+ (v)− λk−`− (v)

λk+(v)− λk−(v)
. (14)

To determine u`,j , we will decompose U`(v) with partial
fractions. To start, we make the change of variables v =
secφ. Applying this to Eq. (12) and Eq. (14), we find

λ±(v) = cosφ± i sinφ, U`(v) =
sin(k − `)φ

sin kφ
.

The denominator of U`(v) is zero for φm = mπ
k , m =

0, ...k, which correspond to vm = secφm. Furthermore,
since the degree of the numerator exceeds the degree of
the denominator by at most 1, U`(v) has a partial fraction
decomposition with the form

sin(k − `)φ
sin kφ

= Av +B +
ρ1

v1 − v
+ ...+

ρk−1

vk−1 − v
. (15)

To determine the value of ρm, we multiply both sides by
vm − v, then take v → vm (and φ→ φm):

ρm =
sin `πm

k sin πm
k

k cos2 πm
k

.

By decomposing each fraction of Eq. (15) into a geometric
series, we find that the coefficient of vj (which is u`,j) is
given by

k−1∑
m=1

ρm

vj+1
m

=
1

k

k−1∑
m=1

cosj−1
(πm
k

)
sin

(
`πm

k

)
sin
(πm
k

)
.

We are interested in two possibilities, associated with the
site the forager hits next, hk ∈ {0, k}. Either, the forager
can start at site 1 and hit site 0 (hk = 0, corresponding
to u1,j), or the forager can start at site 1 and hit site k
(hk = k), which by symmetry is identical to the forager
starting at site k− 1 and hitting site 0 (corresponding to
uk−1,j). The probability it takes j steps from consuming
the (k − 1)th to the kth food site is then the sum over
the joint probabilities P(Xk = j, hk). Thus, we have the
following distribution for Xk:

P(Xk = j) =
∑

hk=0,k

P(Xk = j, hk) = u1,j + uk−1,j

=
1

k

k−1∑
m=1

cosj−1
(πm
k

)
sin
(πm
k

)
(16)

×
(

(1− (−1)m) sin
(πm
k

))
.

We can compute the corresponding conditional expecta-
tions and cumulative distributions in the standard way,
and then use Eq. (9) to compute the expected lifetime
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of the forager. For small values of s, the forager lifetime
is initially super-linear in s, but that as s increases, the
lifetime slowly converges to a linear function of s, as
described by the cover time approximation (Fig. 3A).
Furthermore, the lifetime T (n, s, pj = 0) is generally
insensitive to n for small values of s. This is because
the forager will rarely ever consume all the food in its
environment in these cases.

B. Jumping

For pj = 1, the time Xk between consuming the (k −
1)th and kth food site is geometrically distributed with
success probability [n− (k − 1)] /n. Specifically, P(Xk =
j) is the probability of j − 1 visits to empty sites, each
with probability [k − 1] /n, followed by a visit to a food
site, with probability [n− (k − 1)] /n. Thus,

P(Xk = j) =

(
k − 1

n

)j−1(
n− (k − 1)

n

)
.

We can compute the cumulative distributions and condi-
tional expectations of a geometric random variable in the
typical way, to yield the following formula for the forager
lifetime from Eq. (9):

T (n, s, pj = 1) = s+

n−1∑
k=1

(
k + 1

n

)s k∏
j=1

(
1−

(
j

n

)s)

×
k∑
i=1

[
n

n− i
+ s+

s

(i/n)s − 1

]
.

From Fig. 3B we again see that for small values of s the
forager lifetime T (n, s, pj = 1) is initially super-linear
in s and insensitive to n, but limits to the cover time
approximation as s increases.

To compare the two strategies (pure diffusion vs. pure
jumping), we compute the ratio Tdiff/Tjump of the forager
lifetime for pj = 0 to the forager lifetime for pj = 1. For
sufficiently large s, diffusion leads to longer lifetimes than
jumping (Fig. 3C). This is because the diffusive forager
will cover the environment more slowly than the jumping
forager, so they will not consume food as quickly. Note,
the ratio drops as we change s = 1 to s = 2, since in the
case of pure diffusion (and s = 1) the forager will live at
least two timesteps, whereas the pure jumper may not.
As soon as s = 2, this effect becomes negligible. Further-
more, this drop in the ratio becomes less severe for larger
values of n, since the jumper will almost always live at
least two timesteps. In Fig. 3D, we display the ratio as
a surface plot along both the s and n axis. Increasing
s clearly expands the region (outlined) of n values, for
which diffusion is a better strategy. Note that for very
small values of n (n ≤ 5) the cover time for diffusion is
less than the cover time for jumping, leading to an advan-
tage of jumping over diffusion at those parameter values.

When s is large relative to n, the diffusive forager bene-
fits from a larger cover time, so for these small values of
n, it is consistently more beneficial to jump rather than
diffuse. On the other hand, when s is small compared to
n, it is better to jump since this will decrease the likeli-
hood of starving before much of the environment’s food
has been consumed.

This concludes our analysis in the case of pure diffu-
sion (pj = 0) or pure jumping (pj = 1). We now turn to
two simpler instantiations of the jump-diffusion model of
the starving forager: one that considers a very small en-
vironment (n = 4) and another that considers replacing
diffusion with waiting. Both of these models exhibit the
same nonmonotonicity of the lifetime T with respect to
pj , and admit some explicit analysis.

V. TRACTABLE MODELS AND
APPROXIMATIONS OF JUMP-DIFFUSION

Given our insights from the extreme cases pj ∈ {0, 1},
we now consider the full hybrid model, where the forager
can both jump and diffuse. We have seen that when s
is large is relative to n, it is more advantageous to dif-
fuse rather than jump. To obtain explicit expressions of
this result, we will consider two simplifications. First, for
a sufficiently small system (small n and s), the forager
lifetime can be explicitly determined either by combi-
natorial methods or by analyzing the probability transi-
tion matrix for the system. Secondly, we will consider
a model that replaces diffusion with waiting. This al-
tered model still yields qualitatively similar results to
the jump-diffusion model, lending credence to our the-
ory that diffusion acts as a way to prevent premature
resource depletion. Both of these models demonstrate
that it is most beneficial for the forager to use a mixture
of jumping and diffusing (or waiting), specifically that
T (n, s, pj) has an interior maximum on pj ∈ [0, 1]. Fur-
thermore, in the case of the jump-wait model, we will see
that the larger s is relative to n, the smaller the optimal
value of pj becomes, consistent with our results for the
jump-diffusion model.

A. Small System

For a system of small enough size, the lifetime of the
forager can be analytically determined, either by enumer-
ating all possible outcomes or by analyzing an associated
discrete-time Markov chain. Here, we consider a lattice
with n = 4 sites, and a starvation time of s = 2. The
combination of food and forager states can be described
as a thirteen state Markov chain (Fig. 4A). State 1 corre-
sponds to timestep 1, in which the starting site’s food has
been eaten. State 13 corresponds to the cemetery state,
in which the forager has starved. Most of the remain-
ing intermediate states are identical to at least one other
state, when considering rotations, so there are only six el-
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FIG. 4. Jump-diffusion model of foraging for small environ-
ment size and survival time (n = 4, s = 2). A. Enumeration
of food/forager geometries for n = 4 and s = 2 system. The
forager is always in the left (bold) site after a rotation of the
system. The arrows denote admissible transitions between
geometries. Note that since s = 2, every geometry can return
to itself once. B. Expected forager lifetime T computed ex-
plicitly as a function of pj , Eq. (17), has an interior maximum
(black dot).

ementary “live” states plus the cemetery state. Note that
the forager can transition from most state geometries to
death, by landing on a site without food more than s = 2
times in a row. The nonzero entries of the associated
transition matrix Q corresponding to the probabilities to
transition from state i to j are given in Appendix A.

To calculate the forager lifetime, we compute the mean
absorption time into the thirteenth state (the cemetery
state) as a passage time problem for Markov chains [21].
Let us denote by v be the vector of all zeroes save the
first entry which is one. Let 1 be a vector of all ones.
Finally, let Q̃ be the sub-matrix of the preceding prob-
ability transition matrix excluding the cemetery state.
The expected forager lifetime is then given by

T (4, 2, pj) = 1T (I − Q̃T )−1v.

We can also determine the expected forager lifetime
T (4, 2, pj) by enumerating outcomes directly (see Ap-
pendix B), yielding the following polynomial:

T (4, 2, pj) =− 3

512
p6
j −

3

256
p5
j +

15

256
p4
j (17)

− 11

128
p3
j −

39

64
p2
j +

25

32
pj +

35

8
, (18)

which can be maximized numerically (Fig. 4B). With ei-
ther method of computation, the maximal forager life-
time is Tmax ≈ 4.612 at pj ≈ 0.598, demonstrating it
is optimal for the forager to both jump and diffuse in
this simple case. Examining Fig. 4A, we expect that the
forager lifetime is lengthened by allowing the system to
dwell in the intermediate states preceding the bottom
cemetery state. This is the same intuition as in the large
system: the optimal forager balances a reduction in their
probability of starving before eating all the food with a
reduction in the rate at which food is consumed.
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FIG. 5. Jump-wait model of foraging. A Forager lifetime as a
function of pj . The maximal lifetime is marked in black: n =
40 and s = 320, 160, 80, 40, 20 top-to-bottom as in Fig. 2A.
Means computed using 106 numerical simulations per point
are given by grey dots. B The value of pj that maximizes
the forager lifetime as a function of s: n = 400, 80, 20 top-to-
bottom as in Fig. 2B. Maxima computed using golden-section
search [16] using 106 simulations per point are given by grey
dots.

B. A Jump-Wait Model

We now consider a modification of our jump-diffusion
model which admits explicit analysis as a function of the
jumping probability pj . In this case, the forager remains
at the same site (rather than diffusing) with probability
1−pj . This mimics diffusion in food ‘deserts,’ which will
generally arise in large domains when pj is not too large.
The forager can thus only consume food and reset their
starvation clock by jumping. As we saw in our discussion
of cover times, a diffusing forager covers the domain more
slowly than a jumping forager. Waiting, just like diffus-
ing, acts to slow the rate at which the forager consumes
the food, providing qualitatively similar non-monotonic
lifetimes in pj (Fig. 5A).

In this case, we can obtain an analytic expression for
the forager lifetime, by noting that the inter-feeding times
Xk are geometrically distributed with success probability

pj
n−(k−1)

n . This can be derived by noting that the prob-
ability that the forager lands on a piece of food is the
probability that the forager jumps at all, pj , multiplied
by the probability that the forager lands on a site with

food, n−(k−1)
n . The probability that Xk = j is thus the

probability of j−1 visits to empty sites multiplied by the
probability of a visit to a site with food:

P(Xk = j) =

(
1− pj

n− (k − 1)

n

)j−1(
pj
n− (k − 1)

n

)
.

The conditional expectation and cumulative distributions
for a geometric random variable can be computed in the
standard way, giving the forager lifetime from Eq. (9):

E(T ) =s+

n−1∑
k=1

[(
pj(k − n+ 1) + n

n

)s
(19)

k∏
`=1

(1−
(
pj(`− n) + n

n

)s
)
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k∑
i=1

[
s+

n

(n− i)pj
+

s

(
pj(i−n)+n

n )s − 1

]]

Taking a large s limit of this expression, we obtain:

E(T ) ≈ s+
n

pj

n−1∑
k=1

1

k
, (20)

which is exactly the approximation Eq. (1) for the mean
cover time plus the starvation time s. The cover time
is equal to that from the case of pure jumping, Eq. (5),
scaled by 1

pj
. This demonstrates that for sufficiently large

s, the smaller the value of pj , the longer the expected
forager lifetime.

By examining Fig. 5A, we see that the jump-wait
model shares important characteristics with the jump-
diffusion model. The forager lifetime is non-monotonic in
pj and the optimal value of pj decreases as s increases.
Additionally, the optimal pj decreases as a function of
s, but increases as a function of n (Fig. 5B). Similar to
the optimal pj curves for the jump-diffusion model, the
curves have sections of relatively rapid change for inter-
mediate values of s. Thus, our findings for the jump-wait
model again suggest that a starving forager can maximize
their lifetime by balancing a decrease in the rate of food
consumption (by lowering pj) with an increase probabil-
ity of surviving until most of the food is consumed (by
increasing pj).

VI. JUMP-PENALTY MODELS

Up to this point, we have considered a model in
which jumps and diffusive movements both take a sin-
gle timestep. However, foragers exploring distant food
patches typically require more time for these excur-
sions [22]. Thus, we consider the effects of introducing
a cost function associated with the jumps. Specifically,
we consider two different cost functions: (i) a constant
penalty, where each jump takes c timesteps, and (ii) a
distance-based penalty function where each jump takes
c · d timesteps for a distance d. During the jump, the
forager cannot consume any food, and in the simplest
version of this extended model, it may starve mid-jump
if the jump cost is large enough. Thus, we also consider
a model in which the forager only makes jumps if it will
not starve mid-jump. In certain cases, models in which
jumps are penalized have longer survival times, due to
the inclusion of large epochs in which the agent is trav-
eling and not exhausting the finite food supply.

A. Constant Penalty

We begin by considering a constant penalty function.
Any time the forager jumps, it takes c ∈ N timesteps to
do so. This provides a benefit to the forager by limiting
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FIG. 6. Jump-diffusion model of foraging with constant
penalty c where the forager can (A,C,E) and cannot (B,D,F)
starve during a jump. A,B. The expected lifetime of a for-
ager as a function of pj with s = 40. Means are computed
with 106 numerical simulations per point. C,D. The optimal
value of pj as a function of s. Maxima are computed us-
ing golden-section search [16] with 107 simulations per point.
E,F. The expected lifetime of a forager moving with the opti-
mal pj . Means are computed using 106 numerical simulations
per point. n = 40 and blue, red, yellow, and purple corre-
spond to c(s) = 1, 2, s/2, and s.

premature resource depletion, but every jump the forager
makes brings it much closer to starvation. Despite these
additional risks, it is more beneficial for the forager to
jump than to diffuse for c > 1 (Fig. 6A,C). Thus, the
added risk incurred by decreasing the number of jumps
needed to starve the forager is outweighed by the slowing
of food depletion. However, a larger c does not necessar-
ily correspond to a greater lifetime. The forager lives
longer with c = s

2 than for c = s (Fig. 6E). This is be-
cause for c = s, any time the forager makes a jump to
an empty site, it is guaranteed to starve, whereas with
c = s

2 , if the forager lands on an empty site, it can jump
once more, substantially reducing its odds of starving.

In the case of pure jumping (pj = 1) we can calculate
an explicit formula for the forager’s lifetime as long as c
evenly divides s, following along similar lines to Section
IV. Let s = c·q, for c, q ∈ N. Let us define the geometric
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random variable Xk so that

P(Xk = j) =

(
k − 1

n

)j−1(
n− (k − 1)

n

)
. (21)

The equation for the lifetime is fairly similar to Eq. (9)
with some modifications. Now, interfeeding times are
given by c · Xk rather than Xk. Thus, the cumulative
distribution of interfeeding times is computed by sum-
ming over Eq. (21):

Fk(s) = P(c ·Xk ≤ s) =

q∑
j=1

P(Xk = j),

Fn+1(s) = 0, (22)

where q = s/c ∈ N as assumed. It follows that if Fk(s) is
the probability the forager survives long enough to con-
sume the kth piece of food after consuming the (k− 1)th

piece of food, then the probability the forager eats ex-
actly k pieces of food is

P(k∗ = k) =
(

1− Fk+1(s)
) k∏
j=1

(
Fj(s)

)
. (23)

Finally, we calculate the conditional expectation, noting
that E(c · Xk|c · Xk ≤ s) = c · E(Xk|Xk ≤ q). Replac-
ing terms in Eq. (9) as such, and calculating the terms
explicitly, using Eq. (21-23), we have the following result:

T (n, s, pj = 1, c) = s+ c

n−1∑
k=1

(
k + 1

n

)q k∏
j=1

(
1−

(
j

n

)q)

×
k∑
i=1

[
n

n− i
+ q +

q

(i/n)q − 1

]
.

Indeed, the theoretical curves generated from T (n, s, pj =
1, c) match precisely with the results from numerical sim-
ulations in Fig. 6E when pj = 1.

We can also consider an alteration to this model where
the forager will not jump if it can die mid-jump. If the
forager has scurrent steps left until starvation, then if
scurrent < c, the forager will strictly diffuse until it finds
another piece of food or starves. If scurrent ≥ c, the
forager will jump with probability pj and diffuse with
probability 1− pj , exactly as before. This addition does
not affect the optimal value of pj (Fig. 6B,D,F). For c =
1, the inability to die does not matter, since as long as
the forager is alive, scurrent > 1 = c. Furthermore, for
c > 1, the addition of not being able to take a fatal jump
does not make jumping any less favorable, so the optimal
pj continues to be 1.

B. Distance-Based Penalty

We now consider a penalty function for the jump that
depends on the distance traveled d. If we enumerate
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FIG. 7. Jump-diffusion model of foraging with distance based
penalty c · d where the forager can (A,C,E) and cannot
(B,D,F) starve during a jump. A,B. The expected lifetime
of a forager as a function of pj with s = 40. Means are com-
puted with 106 numerical simulations per point. C,D. The
optimal value of pj as a function of s. Maxima are com-
puted using golden-section search [16] with 107 simulations
per point. E,F. The expected lifetime of a forager moving
with the optimal pj . Means are computed using 106 numeri-
cal simulations per point. n = 40 and blue, red, yellow, and
purple correspond to c(s) = 1, 2, s/2, and s.

our sites on the periodic lattice so that site i is adja-
cent to sites i ± 1, for i = 2, ...n and so site 1 and site
n are adjacent, then the distance between sites x and
y are d(x, y) = min(|x − y|, n − |x − y|). The number
of timesteps for a jump from site x to site y is then
given by c · d(x, y). Note that for c large enough, the
average lifetime is a monotone decreasing function of the
jump probability (Fig. 7A). From Fig. 7C, we see that for
small values of s, it is better to solely diffuse, regardless
of c. If s is small compared to the average jump penalty
(≈ c · n/4), the forager will likely starve mid-jump, pos-
sibly even on the first jump. However, for s sufficiently
large compared to the average jump penalty, the bene-
fits of slower food consumption become apparent. As in
the case of constant jump penalties, the perils of dying
mid-jump are outweighed by the slowed rate of food de-
pletion. At this point the optimal strategy flips, and it
is optimal to purely jump, which results in more rapid
growth of the optimal survival time T as a function of s
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(Fig. 7E). However, this never occurs for c = s
2 , s, since

the forager has a very small probability of surviving a
jump, so it is always better to diffuse.

We can calculate the lifetime of the forager in the case
where pj = 1 and c = s explicitly. When c = s, the
forager can only survive jumps if it jumps to an adjacent
site that still contains food. Since it takes zero time to
jump to the site it is currently at, the forager essentially
has n − 1 choices each time it needs to jump. For the
first jump, it can survive if it jumps to either of the two
adjacent sites, with probability 2

n−1 . If it jumps to any

other site with probability n−3
n−1 , it will starve mid-jump

in s timesteps. For the forager to survive s · k steps for
1 < k < n, it must survive the first jump with probability

2
n−1 (by jumping to the either of the two adjacent sites),

it must survive k − 2 jumps with probability 1
n−1 (by

jumping to the one adjacent site with food), and then it
must starve with probability n−2

n−1 (jumping to any site

other than the adjacent site with food). The forager will
live s·n steps if it survives the first jump with probability

2
n−1 , and it survives n − 1 jumps each with probability

1
n−1 . The expected lifetime is

T (n, s, pj = 1, c = s) = s
n− 3

n− 1

+ 2s(n− 2)

n−1∑
k=2

k

(
1

n− 1

)k
+

2sn

(n− 1)n
.

It is clear from Fig. 7C that it is always better to diffuse
for such large values of the penalty scaling c.

We can also consider a modification to the model where
the forager will only execute a jump if it does not starve
mid-jump. In models discussed prior to this one, the
forager jumps by selecting a uniformly randomly dis-
tributed site on the full domain to jump to (Fig. 1A).
In the modified model we consider now, a jumping for-
ager restricts the space of possible next site locations to
the set V = {y : c · d(x, y) ≤ scurrent}, where d(x, y)
is the distance between the current x and next possible
y site. This restriction prevents the forager from dying
mid-jump. If V = {x}, then the forager will only diffuse
until it consumes another piece of food, or it starves.
The inability to die mid-jump substantially alters opti-
mal strategy (Fig. 7B,D). For small values of s, it is now
optimal to strictly jump for c = 1, 2, since the forager
cannot make a jump that it will not survive. Thus, jump-
ing outperforms diffusion for even smaller s. Even more
altered is the optimal strategy for c = s. The forager is
only permitted to move to neighboring sites, which will
typically have a probability 1/2 of containing food, as a
desert is carved out in the forager’s wake. Now that the
forager survives a jump with probability no less than 1

2

instead of 1
n−1 , it is always optimal to jump. Finally, for

c = s
2 , the optimal values of pj look qualitatively similar

to the optimal values of pj in the original model (Fig.
2B). Lifetimes are longer when c is relatively small as
compared to s (Fig. 7F). However, once s becomes large

enough that the forager can comfortably reach the entire
domain, the optimal strategy for c = 2 leads to longer
lifetimes than c = 1.

We can again calculate the forager lifetime in the case
of pure jumping with c = s. The forager is guaranteed to
survive at least the first jump. Every subsequent jump
is survived with probability 1

2 if it jumps to the adjacent
site with food. Otherwise, it will starve upon reaching
the empty adjacent site. Thus, the proability that the
forager lives c · k timesteps is 1

2k−1 for 1 < k < n− 1. To
survive s · n steps, the forager needs to survive the first
jump with probability 1, and n − 2 subsequent jumps
each with probability 1

2 . The expected forager lifetime is

T (n, s, pj = 1, c = s) = s

n−1∑
k=2

k

2k−1
+

sn

2n−2
= s(3− 22−n),

which matches the points generated from numerical sim-
ulations in Fig. 7F.

VII. DISCUSSION

We have extended the recently-developed starving for-
ager model [7] to account for the possibility of long-
range motion via jumping. The combination of these
two modes of movement is related to Lévy-type motion
often found in the dynamics of motile organisms’ foraging
strategies [12]. By analyzing cover times, we have shown
that jumping consumes food more rapidly than diffusion.
This provides an explanation for why a mixture of jump-
ing and diffusion is optimal: excessive jumping leads to
rapid food depletion, excessive diffusion leads to earlier
starvation of the forager who gets stuck in food ‘deserts.’
In a sense, the forager optimally balances exploration (via
jumping) and exploitation (via diffusion) when using a
mixture of these modes of movement. This explanation
is further validated by the qualitative similarities of the
jump-diffusion and jump-wait models. In either model:
Making s larger or n smaller lead to situations in which
the forager maximizes their lifetime by diffusing more,
while the converse corresponds to more jumping being
optimal.

The non-monotonicity of the forager’s lifetime in
pj breaks down when considering a model with time-
penalized jumping. For constant time penalties, foragers
obtain the longest lifetime by practicing pure jumping.
The advantage formerly gained by diffusing, the slowing
of food consumption, is now accomplished via the time
penalties: No food is consumed while the forager is in the
midst of a jump. When jumps are penalized as a func-
tion of their distance, pure diffusion becomes optimal, as
most jumps will result in sudden death. However, if for-
agers enact a strategy of not jumping if it causes them to
die, the best strategy is then for foragers to make long-
distance jumps unless they will die mid-jump, in which
case they diffuse. This more sophisticated strategy re-
covers an exploration/exploitation tradeoff that depends
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on the the forager’s nearness to starvation.

Our model of a starving forager with a mixture of
movement modes suggests several other possible exten-
sions. Throughout this work, jumping has represented
movement with equal probability to any lattice site.
However, a forager executing a jump may more often se-
lect a site that is further away, to avoid revisiting empty
sites. They may also be less likely to make extremely
large jumps. This would suggest a model where the jump
process is associated with a nonuniform distribution of
jump distances. Our extension to a model that consid-
ers distance-penalized jumping has partially incorporated
such a strategy by only allowing jumps below a certain
distance, when the forager wishes to avoid starvation.
However, we could also consider strategies whereby the
forager only takes jumps above a certain size, to try and
promote movement out of food deserts.

Our work has also only considered a periodic one-
dimensional lattice environment. The behavior of the
forager in higher dimensions is still open, and it would
be interesting to see how the forager lifetime depends
on domain size and geometry in higher dimensions (e.g.,
plane, torus, or sphere). Another relevant extension
would be for the forager to retain some information
about its previous actions. For example, pj could
increase, as the number of steps without food increases.
This would provide a strategy in which the forager
only executes long range movement if they are starving,
which will probably limit the rate at which food is
consumed and increase the overall lifetime T . Our
model could also incorporate greed (or anti-greed) as a
parameter [8]. As shown in previous work, the lifetime
of foragers increases in one-dimensional environments if
their diffusion is biased away from food. This finding
mirrors our own conclusion, that foragers maximize their
lifetime by balancing a reduction in the probability of
early starvation with the conservation of resources.
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Appendix A: Transition matrix for small system

We define the states of the small system with n = 4
sites and survival time s = 2 according to the relative
location of the forager and the arrangement of food sites
remaining. This numbers thirteen distinct states, with
a transition matrix Q for the update of the state vec-
tor St+1 = QTSt where Q1,2 = Q1,3 = Q2,3 = Q2,13 =
Q9,10 = Q9,11 = Q10,11 =

pj
4 , Q1,5 = Q2,5 = Q9,8 =

2−pj
2 , Q3,4 = Q4,13 = Q7,8 =

pj
2 , Q3,9 = Q4,9 = Q7,10 =

Q7,11 = Q8,11 =
2−pj

4 , Q5,6 = Q5,7 = Q6,7 = Q6,13 = 1
2 ,

Q8,13 =
2+pj

4 , Q10,13 =
4−pj

4 , Q11,12 = Q12,13 = Q13,13 =
1. Note that the thirteenth state is the absorbing ceme-
tery state.

Appendix B: Calculating T (4, 2, pj)

With a four site geometry, the forager has two types
of movement. It can either move to the opposite site or
remain at the current site both with probability p+ =

pj
4

or it can move to a specific adjacent site with probability

p− =
2−pj

4 . For brevity, we denote P(T (4, 2, pj) = i) as
pi, and enumerate all possible paths

p2 =p2
+, p3 =

p−
2

+ 4p3
+

p4 =p+p3 + 2(p2
− + p−p+)(2p2

− + 3p−p+ + 4p2
+)+

2(p+p−)(2p2
− + 6p−p+ + p2

+)

p5 =p+(2(p2
− + p−p+)(2p2

− + 3p−p+ + 4p2
+)+

2(p+p−)(2p2
− + 6p−p+ + p2

+))+

2(p3
− + p2

−p+ + p−p
2
+)+

(1/2)p−(2p2
− + 3p−p+ + 4p2

+)

+ 4p−p
2
+(2p2

− + 6p−p+ + p2
+)

p6 =2(p2
− + p−p+)(3p−p+) + 2p−p+(2p2

− + p2
+)+

p+2(p3
− + p2

−p+ + p−p
2
+) + p−(p2

− + p+p−)+

4p3
+p− + p+((1/2)p−(2p2

− + 3p−p+ + 4p2
+)+

4p−p
2
+(2p2

− + 6p−p+ + p2
+))

p7 =(3/2)p2
−p+ + 4p2

+p−(2p2
− + p2

+)+

p+(2(p2
− + p−p+)(3p−p+) + 2p−p+(2p2

− + p2
+))+

p+(p−(p2
− + p+p−) + 4p3

+p−)

p8 =p+((3/2)p2
−p+ + 4p2

+p−(2p2
− + p2

+))

We have E(T (4, 2, pj)) =
∑8
i=2 ipi which yields Eq. (17).
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