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I. INTRODUCTION AND RESULTS

1.7 Let A be a finite alphabet 1nc]udingvthe blank symbol 5 and A*
the set of finite nonempty words over A - i} . For ahy a = a]...aﬁgA* e
put A(a) = n. A set X =A* will be called a problem and a finite
or infinite word P = PP s where P, ¢A will be called a program. ‘Let
T be an ordinary one tape, eras1ng, pr1nt1ng and moving left or right Tur-
ing machwne for the alphabet A with one 1n1t1a1 state So and one jmm0b1114[
state 51. We shall say that T and p are adequate for X if for évery word

aq-..ape A*, whenever T in state So is applied to a tape

o DDa]az .‘nu an Dp]p2, o

with the head of T looking at a], then T will stop (i.e., reach s]) if

and only if acX.

We shall say that the problem X is practically decidable [of polynomial

‘com91exitx1 if there exist T and p adequate for X and a constant ¢ such
that for every aeX T stops after no more than cx(a) steps [(x(a))® steps].

We shall say that X is of maximum complexity if for every T and p adequate

for X there is a constant ¢ > 1 and infinitely many aeX such that T visits
at least ck(a) cells of the tape before stopping.

- The term maximum comp]exwty is justified by the fo]]owing‘proposition:

Proposition 1. For every set X < A* there are T and p'adequate for
X and a c such that for every aeX T stop§ after no more than Cx(a) steps.
Proof: Let p be a Tist of the members of X such that a‘precedesAb if
A(a) < A(b) and separated by single blanks. Then it is routine to define

T and ¢ satisfying Proposition 1.



1.2 It is the purpose of this‘paper to discuss a different inter-
p%etation of the ébove notions of comp]exify (Section 3) and to prove
(Section 2) the following theorem about arithmetic.

Let L‘be a formal language for first order arithmetic with countably
many individual variables and finitely many other symbols among which there
are symbols for 1, for the functions x + y, xy and xy, and for the relatior

<. Let all the symbols of L be coded by words of A* so that justapositiors
of such words are unambigously interpretable as ordered sequehces of sym-
bols of L (it follows from this that A has at ]eaﬁt 2 Tetters different
from O and 2 are of course sufficient).

Let BA (bounded arithmetid) be the set of all words of A* correspond-
ing in this way to sentences (i.e., formulas without free variables) of
L with bounded quantifiers (i.e., only quantifiers of the kind (3x < t)
ork(¥x < t), where t is any ierm) which are true in the natural inter-
pretation of L over the universe {1, 2, ...}. It is well known that BA
is a decidable set. |

Theorem 2. BA is of maximum complexity.

The intuitive meaning of Theorem 2 is that the size of the computer
needed to decide the validity of arithmetical formulas with bounded quanti-
fiers has to grow exponentially with the length of the formulas.

Remark. The fact that A has to have at least 2 letters different
from [} in the above coding of L follows also from Theorem 2 and‘the fol-
lowing easy proposition.

Proposition 3. 1If A = { » a}, then every problem X < A* is of poly-

nomial complexity.



In fact it is easy to define a p and a T adequate for X such that
for every aeX T stops after no more than c(x(a))'2 steps (and visits no
more than 2)(a) + 1 cells of the tape).

1.3 Let us mention the following open questions related to Theo-
rem 2.

Is Theorem 2 valid if BA is substituted by any of the following
problems: (a) this part of BA in which the symbol for exponentiation
does not appear; (b) the set of all equations which belong to BA.

0f course BA contains rather deep theorems of small length (if the
coding is natural) e.g.,

1010

¥ x,y, z<10 [x5 + y5 # 25].

The problems in (a) and (b) seem much simpler.

1.4 One can formulate related notions of complexity in which the
program p no longer appears (or equivalently p = § the empty word). The
questions (a) and (b) are open even now.

With p = @ Proposition 1 is no longer true‘as the following theo-
rem of Albert Meyer [5] shows. Let WMS be the Weak monadic second order
theory of the function x + 1 over the universe {1, 2, ...}, coded simi-
larly as BA was coded above. Let us define t(0, n) = n and t(k +k], n) =

otlk, n)

Theornem {A. Meyer). There exists a constant ¢ > 0 such that for

every T such that p = @ and T are adequate for WMS there are infinitely
many acWMS such that T applied to a as above visits not less than

t([c Tog r(a)], r(a)) cells of the tape before stopping.



We do not know if this theorem is also valid with WMS substituted
by BA nor if WMS is of maximum complexity.

Let us recall also a class of/open questions studied by S. Cook
[1] and R. Karp [3]. They are all equivalent to the problem of time
necessary for checking tantologies of any of the classical formalisms
of propositional calculus. Here not much tape is needed (it grows linearly
with the length of the formula to be checked) but the number of steps
fequired seem to grow exponentially with the length of the formula V
(strictly speaking, the number of variables in the formula) for every
p and T adequate for this problem.

The above examples seem to indicate that the number of steps and
the amouht of tape are relatively independent measures of comp]éxity’
of problems (although the first is not less than the second and the
second is bounded by an exponential function of the first, since other-

wise loops would appear).



Z. PROOF OF THEOREM 2.

2.1 Let o be the number of letters in A and or be the number of inner
states of T. We can assume without loss of generality that o« > 2 (i.e.,

there is a letter different from ). Let A*fn = {acA*:i(a)

n}, and
pfm be the initial segment of p of length m. We shall say that p and

T are n-adequate for X < A* if for every aeA*[n T applied to a and p as
~in Section 1.1 stops if and only if aeX.

Lemma 4. For every h there is a set Xn cz A*fn such that if pﬁn

and T are n-adequate for Xn then
(1) »m > ((o - ])n - a(oT - 1) (1 + 1092(0t0-r)))/]0920¢'

Proog. There are 2(Oc - 1) sets X < A*n, there are o" possible
sequences pfm and there-are (chT)u(OT -1 machines T with states
for the alphabet A.

Therefore if m and o are such that for every X < A*[n there exists

a T with o states and a p such that p[m and T are n-adequate for X then

o= )" yalop = 1)

9

m
< o (ZOLOT

and (1) follows.
Conollary 5. 1f o > 2 then there exists a problem X = A* which is
of maximum complexity.
Proof. Let X be a set as in Lemma 4. We put X = Up.q X,- Let
now p and T be adequate forvX. It follows that for every n there exists
an as,Xn such that T applied to a and p visits all of pfm, where m satisfies

(1). Thus, since a - 1 > 2, m grows exponentially with n, Q.E.D.



2.2 Proof of Theorem 2. Let A0 be an alphabet with 3 letters in-
© cluding . Let us order AO and consider a lexicographical ordering of
all aaAg with a{a) = n and finally a lexicographical ordering of all

the sets X< Agrn. Let Xg be the first set X<;,Agrn satisfying Lemma 4
with A = AO. If we treat the letters in A0 - {g3 } as binary digits then
every word aeA* can be treated as a binary expansion of an integer Zx(a)
+ k(a) where k(a) < Zx(a) from which the leftmost digit was deleted.

Now it is routine (but tedious) to construct (by analyzing the defini-
tion of Xg) a formula @(v) of the language L (see 1.2) with one free
variable v, with bounded quantifiers and the following property:

a[2" + k1, where k < 2", is true if and only if the binary expansion
~of 2" + k with the leftmost digit de]efed belongs to ng. (The only ¢
which we know involves the symbol for the exponential function (2X could
replace y)). Therefore @[ZA(a) + k(a)] is true iff aexg(a) j.e., iff
ae Unoy Xy -

It is also routine to find a constant Co > 0 and a Turing machine

TO such that TO applied to an asAg prints a constant term t(a) in L denot-

ing the number ra) k(a), and such that a(t(a)) gﬂcox(a), where r(t(a))
denotes the length of the BA-code of t(a). Moreover we can assume that
T, does this in no more than cox(a) steps.

Let now q{a) be the BA-code for the formula o(t(a)). Clearly ¢(a) ae

o

iff a U x° . There is a constant ¢y > 0 such that A(¢(a)) j_c1k(a)

n=1 "n

for all agAg and a Turing machine T1 such that T1 applied to a prints

¢{a) in no more than c]x(a) steps. Hence if BA was not of maximum complexity
then U::1 Xg would not be of maximum complexity contrary to the definition

of this set.Q.E.D.



3. A DIFFERENT FORMALISM

The pair T, p used above is not as directly interpretable, say in
biology or computer science, as one may wish for. We shall formulate
now a different formalism which permits more direct interpretations of
this sort. This is related to the concept of k-continuous functions
studied in [2] and [4].

Let A be a finite alphabet with o letters and A" be the set of se-
quences of‘letters of A of length m. A set C<5_Am will be called a k-
cylinder (k < m) if C = {(a1,...;am)e Am:(a11,...aik) = (cysees )}y
for some (c],...,ck)e Ak and 1 <dy< < ik < m.

A function f:A" > A will be called k-continuous if for every acA"
there exists a k-cylinder C with acC and such that f(x) = f(a) for all
xeC. A function f:A" + A" where f = (f],...,fn), will be called k-con-

tinuous if all the functions fi are k-continuous. And f will be called

uniformly k-continuous if every fi depends on k variables at most.

Theorem 6. For every A and k there is a constant « such that, for
every m 3uk,‘every k-continuous function f:A" » A depends on « variables
at most.

Proog. If a = 2 then, by Theorem 15 of [2], exists and
< (2k - 1) (Ekm—}Z). The general case clearly follows from this by
coding the ietters of A with a 2-letter alphabet.

From Theorem 6 we get immediately the fo]!owing corollaries.

Corollany 7. Every k-continuous function £:A" » A" 4s uniformly

k-continuous, where « is as in Theorem 6.



Corollary 8. If m > « then there are no more than'a"uK(S)n uni-
formly «-continuous functions f:A™ - A",

A function £:A™ » A™ can be interpreted as a computer (or an organisw)
in the following way. A sequence (a1,...,am)eAm is the state of the computer
(i.e., the content of its memory). f is the transition function i.e.,
f(a1,...,am) denotes the next state of the computer. The condition that f,
i.e., all fi’ be k-continuous is a very natural one, met by all actually exist-
ing computers and with a very small k if the time scale 1s‘fine enough. The
following propositions show how Boolean nets and Turing machines can be inter-
preted as uniformly k—continuous functions f:{0,1}" - {0,1}m with quite small

k (in the case of Turing machines with an infinite tape m is infinite).

Proposition 9. A Boolean net in which every operation (newron) is

binary and works with a unit delay can be interpreted as a uniformly
2-continuous function f:{0,1}" - {O,]}m, where m is the number of edges
of the net.

This is obvious since the state of each edge at time t depends only
on the state of 2 edges at time t - 1.

| Proposition 10. A Turing machine T with o states for an alphabet

A of a Tetters with a limited tape of length n (n could be infinite too)
can be interpreted as a uniformly [5 + ]ogac]—continuous function
£:A" 5 AT, where m<2n+ log o + 1.

Proof. Interpret the tape as a function from the integers into A
(or else label the tape with integers) such that the square at which the
head of the machine is working has label 0. Then the letter in the k'th
square of the tape at time t depends only on the letters in the squares

Tabeled k -~ 1, k, k + 1 and the state of the machine at time t - 1. If



we code the stateé by means of at most 1ogac + 1 letters, Proposition
10 readily follows.

Let now X< A* as in Section 1.1. We shall identify words in A*¥
with sequences of letters.

We put Xn = {aeX:a(a) = n}. Let n<m, peAm'n, 0 eA and f:A" 5 AT,
We shall say that f and p are adequate for Xn if aexn is necessary and

sufficient for the existence of an integer r such that

r ' .
f (a'|:--°9ana PP-.-aPm_n)—(CI a-u;[:})a

where f1(x) = f(x) and Fs+1(x) = f(f3(x)) for s = 1, 2, ...

Let C,(n, X) [cﬁ(n,/x)] be the minimum m > n for which there exists
a k-continuous [uniformly k-continuous] function f:A" »‘Am which is ade-
quate for X . Clearly Ck(n, X) and Cg(n, X) are measures of complexity
of Xn and their rate of growth, when n -~ =, measures the complexity of X.

We shall prove (Theorem 14) that in terms of these measures we can
define the concepts of polynomial and maximum complexity introduced in
Section 1. First we prove some more basic properties of our functions.

Pnopaéiiion 1. (i) Ck(n, X) g_Ck+](n, X) 5 (ii) Cﬁ(n, X) <
Crsr(ns X) 5 (341) € (ny X) < CP(n, X).

Theonem 12. Cy(n, X) §_ch(n, X), where K is a constant which
depends only on k and a. |
To prove this theorem we need the following fundamental lemma (which

is certainly known but we do not know the right reference).
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Lemma 13. Let ¢(m) be the smallest integer such that every fuiction
£:A™ 5 A can be represented by a word involving at most ¢(m) binary
function symbols. Then there are constants P and Q depending only on
o such that |

m

]0; — < o(m) < Q" form=1, 2, ...

Proof. The lower estimate is obtained as follows. Since a word
with s binary function symbols has at most s + 1 variables and thus can
be represented in the bracket-free notation by a sequence of at most

2s + 1 letters and since there are «* functions f:A2 -+ A therefore,

2
(O(,OL o+ 1)2¢(m) + 1 > o

o

m

This yields P.
The upper estimate is obtained as follows. f can be represented

in the form
. - 63
(i) f(x],....,xm) =I5 gi(xl’hi(XZ""’xm))’
where A = {a],...,a 1,
o

- 1y if x = a;
gi(x, y) {ai otherwi%e,

hi(XZ""’Xm) = f(ai, xz,e.n,xm),
and a +x =X Clearly the representation (*) involves o (m-1)-ary

functions and 2a - 1 binary functions.
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Hence

¢(m) < ap(m - 1) + 2a - 1, for m> 2.

This yields Q.

Proof o4 Theorem 12. By Corollary 7 we have a constant « depend-

ing only on k and o such that Ck(n, X) S‘CS(n, X).

By Lemma 13 we can represent every function of « variables as a com-
position of at most Qo binary functions where Q depends only on a. Such
a function can be computed by means of Qo steps the result of each step
being printed on a special place of the tape. Thus given fn:Am + A" with
m E_Cg(ns X) adequate for Xn we can produce f;:Am* > A"thich is uniformly
2-continuous adequate for Xn and with m* < mQa*. Hence

¢, X) < ch(n, X) and Theorem 12 follows.

Theorem 14. (i) X is of polynomial complexity if and only if there

exists a constant ¢ such that C, (n, X) <n®

forn=1, 2, .

(ii) X is of maximum complexity if and only if there exists a con-
stant ¢ > 1 such that Cz(n, X) > c" for infinitely many n's.

To prove this theorem we need the following lemmas.

Lemma 15. For every uniformly k-continuous function f:A" -~ A™ there
exists a sequence of words WieA[c log m] for i =1, ..., mand a Turing

machine T for the alphabet A, where ¢ and T depend only on A and k, such

that T applied to a tape on which a word

(*) agWqagh, ... a W (aieA)

is printed will transform this word into the word
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(**) byw bWy <. b W,
where (b],...,bm) = f(a],...;am), and moreover T does not
visit more than cm log m squares of the tape (if started at the begin—
‘ning of (*)).
Proog. Since f is uniformly k-continuous each bi depends on
A (1,1)7 " * 3 (K, 1) only. Let ws code the sequence s(1,i),...,s(k,i)

and the law of this dependence (a function gi:Ak

+ A). Moreover let W,
have about k + 1ogdm blank spaces (which will be used as mailboxes).
Clearly such W can satisfy A(wi) < ¢ log m. Now the construction of T

satisfying Lemma 15 is routine: T brings the letters a ) into the

s(Jj,i
mailbox bf W then it computes bi and prints it in place of a; s then it
restores W keeping only a; in the mailbox (since it may be needed for
the other bj's) etc., Then T cleans the mailboxes to get (**).

Lemma 16. For every uniformly k-continuous function f:A" -~ A"

Lem Tog m]

there exists a word wmgA and a Turing machine T] where ¢ and T

depend only on A and k such that T applied to any word v where

aeA™, will transform this word into bwm, where b = f(a), and

moreover T will not visit more than [m + cm log m] squares of the tape
(if started at the beginning of -
Proog. Routine in view of Lemma 15.

Proof of Theorem 14. If X is of polynomial complexity (see Section

1.1), [is not of maximum complexity] then by Proposition 10 and Theorem 12

Cz(n, X) < n® for a suitable ¢ [for every ¢ > 1 there exists an N

such that C,(n, X) < ¢" for all n > N]. If C,(n, X) < n® [for every
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¢ > 1 there exists an N such that Cz(n, X) jﬂcn for all n > N] then
by Lemma 16 there exists a program p, namely P=w,O w2 a W3i... and
a Turing machine T, such that T and p are adequate for X and if T ap-
plied to a and p as in Section 1.1 stops then it visits no more than
(x(a))¢ squares of the tape [for every ¢ > 1 there exists an N such that
if A(a) > N then T visits 1essv than cl(a) squares of the tape]. Q.E.D.
NOTE: A first draft of this paper was written in 1967 in the lanqu-
age of k-continuous functions, without using Turing machihes. Theorem 14
stows the original definitions of polynomial complexity and maximum comp1e¥—
“ity. In the proof of Theorem 2 (Lemma 4), instead of an estimate of thé
number of Turing machines, Corollary 8 was used to the same effect. |

The present version of this paper was written recently by Jan Mycielski.
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