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Abstract. We show that for graphs with positive edge weights the
single-source shortest path planning problem (SSSP) can be solved us-
ing a novel partial ordering over nodes, instead of a full ordering, with-
out sacrificing algorithmic correctness. The partial ordering we investi-
gate is defined with respect to carefully chosen (but easy to calculate)
“approximate” level-sets of shortest-path length. We present a family of
easy-to-implement “approximate” priority heaps, based on an array of
linked-lists, that create this partial ordering automatically when used
directly by Dijkstra’s SSSP algorithm. For graphs G = (E, V ) with pos-
itive edge lengths, and depending on which version of the heap is used,
the resulting Dijkstra variant runs in either time O(|E|+ |V |+K) with
space O(|E| + |V | + `max

`min
) or time O((|E| + |V |) logw( `max

`min
+ 1)) with

space O(|E|+ `max
`min

logwd `max
`min
e), where `min and `max are the minimum

(non-zero) and maximum (finite) edge lengths, respectively, and w is the
word length of the computer being used (e.g., 32 or 64 in most cases), and
K is a function of G such that K = O(|E|) for many common types of
graphs (e.g., K = 1 for graphs with unit edge lengths). We also describe
a linear time pre-/post-processing procedure that extends these results
to undirected graphs with non-negative edge weights. Thus, it possible
to solve many instances of SSSP in O(|E| + |V |); for these instances
our method ties the fastest known runtime for SSSP, while having sig-
nificantly smaller constant factor overhead than previous methods. This
work can be viewed as an extension of Dial’s SSSP algorithm that is able
to handle floating point edge weights, yields faster runtime, and is based
on new theoretical results.

1 Introduction

Finding the shortest path through a graph G = (E, V ) of nodes V and edges
E is a classic problem. The variation of the problem known as the “single
source shortest-path planning problem” (or SSSP) is concerned with finding
all of the shortest-paths from a particular node s ∈ V to all nodes v ∈ V , where
each edge ε ∈ E is associated with a length ‖ε‖. The first algorithm that solves
SSSP was presented by Dijkstra in the 1950s using an algorithm that runs in
O(|E|+ |V |2) time for the case of non-negative edge lengths [8]. Over the years,



more sophisticated priority heap data structures have reduced the runtime to
O(|E|+ |V | log |V |) for an algorithm presented by [10], and for which the au-
thors remark is the fastest time bound we can ever hope to achieve for general
SSSP with non-negative edge weights (‖ε‖ ≥ 0). Undaunted, more recent work
has yielded algorithms that boast even faster theoretical performance for subsets
of SSSP.

[5] uses an approximate heap data structure to achieve runtimeO(|E|+ C|V |)
in space O(|E|+C|V |) for the case of non-zero C-bounded integer edge weights
(0 < ‖ε‖ < C <∞). [22] presents an extension of [5] that runs in time O(|V |+
|E| + L), where L is the length of the longest path. [3] extend [5] to require
less space, O(|E| + |V | + C), as well as time O(|E| + |V |(B + C/B)) or time
O(|E + |V |(∆+ C/∆)), where B < C + 1 and ∆ are both user defined parame-
ters .

[19] presents a method for C-bounded integer edge weights (0 ≤ ‖ε‖ < C <∞)
that runs in O(|E| + |V |), and then extends this to C-bounded floating point
edge weights in [20]. While both of the latter methods represent theoretical
milestones, they use Atomic Heaps [11], which has led some to criticize the
O(|E| + |V |) versions of [19, 20] as being impractical [2, 6, 15]. Indeed, Atomic
heaps were created mainly as a theoretical tool and their presentation in [11]

involved a constant factor of 212
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for the sake of readability — the authors
of [11] state “An alternative but less readable method circumvents this require-
ment. However, as already noted we are foregoing any pretense of practicality.”
A second (more practical) variation is also presented in [19] that runs at the
slightly increased time of O(log(C) + α(|E|, |V |)|E|+ |V |), where α(|E|, |V |) is
the inverse Ackermann function using |E| and |V |.

In the current paper we present a new and remarkably simple modification
to Dijkstra’s algorithm that, for SSSP with positive edge weights (‖ε‖ > 0),
yields a runtime of O(|E|+ |V |+K), where K is a constant that depends on
the instance of the problem being solved, and the |V | term is dropped in the
case of connected graphs. In general, K ≤ min{dmax

`min
, `max

`min
|V |}, where dmax

is the length of the longest finite shortest-path in the final solution, `min and
`max are the minimum and maximum finite non-zero edge lengths in the graph,
respectively. Tighter bounds likely exist for particular classes of graphs. Note
that (assuming a finite number of nodes in the graph) infinite length
edges and shortest-paths are allowed ; however they do not directly
influence the runtime. We also present a slightly less-simple version of our
heap that runs in time O((|E|+ |V |) logw( `max

`min
+ 1)), where w is the word size

of the computer being used, e.g., 64. For many classes of graphs and instances
of SSSP one or both of these variations runs in linear time, and in many more
cases they are faster and/or requires significantly less overhead than other known
methods. Finally, we also show how these result can be extended to SSSP with
non-negative edge weights (‖ε‖ ≥ 0) for the special case of undirected graphs.

The contributions of this paper are threefold:



1. Theoretical: The presentation/analysis of a new variant of Dijkstra’s algo-
rithm that ties the fastest known linear O(|E|+|V |) and O(|E|) time bounds
for many instances of SSSP and SSSP over connected graphs, respectively.

2. Practical: The description of a relatively simple data structure and corre-
sponding Dijkstra’s variant that can be implemented by anybody familiar
with arrays and linked-lists.

3. Conceptual: The dissemination of a new insight about the SSSP that in-
spired these heap modifications, and which we hope will enable new and even
better algorithms.

The rest of this paper is organized as follows. Section 2 provides an overview
of the insight that lead to the new modifications of Dijkstra’s algorithm, as well
as a high-level overview of the method. In Section 3 we survey related work. In
Sections 4 and 5 we define our nomenclature and formally introduce the SSSP
problem, respectively. The data structures required for our modifications are pre-
sented in Section 6, and the analysis (of completeness, runtime, and runspace)
of the resulting variant of Dijkstra’s algorithm in Section 7. The extension to
undirected graphs with non-negative edge weights appears in Section 8. We con-
clude with a few remarks in Section 9 and a summary in Section 10. Algorithmic
details of a bit-tree required for the “less-simple” heap modification appear in
the appendix.

2 Intuition

Dijkstra’s algorithm works by incrementally building a “shortest-path-tree” S
outward from s, one node at a time (Dijkstra’s algorithm appears in Algo-
rithm 1). Each node that is not yet part of the growing S refines a “best-
guess” D(v) of its actual shortest-path-length d(v), with the restriction that
d(v) ≤ D(v). Dijkstra’s algorithm guarantees/requires that d(v) = D(v) for the
node in V \ S with minimum D(v). In modern versions of the algorithm, a min-
priority-heap H is used to keep track of D(v) values.

The min-priority-heap H is initialized to empty, best-guesses D(v) are ini-
tialized to ∞, parent pointers p(v) with respect to the shortest path tree S are
initialized to NULL, and the start node s is given an actual distance of 0 from
itself, lines 1-5, respectively.

Each iteration involves “processing” the node v ∈ V \ S with minimum D(v)
lines 8-13. Such a node v is extracted from the heap on line 14 (in the first itera-
tion we know to use s, line 6). Next, each neighbor u of v checks if d(v) + ‖(v, u)‖ < D(u)
(i.e., if the distance from s through the shortest-path-tree to v plus the dis-
tance from v to u through edge (v, u) ∈ E is less than u’s current best-guess).
If so, then u updates its best-guess and parent pointer to reflect the better
path via v, lines 10-13. In other words, all neighbors u of v perform the update
D(u) = min(D(u), d(v) + ‖(v, u)‖). The heap is adjusted to account for changing
D(u) on line 13.

Dijkstra’s original algorithm is provably correct (see [8]), based on guarantees
that the next node v processed at any step has the following properties:



Algorithm 1: Dijkstra(G, s)

Input: A graph G = (E, V ) of node set V and edge set E, and a start node
s ∈ V .

Output: Shortest path lengths d(v) and parent pointers p(v) with respect to
the shortest path-tree S for all v ∈ V .

1 H = ∅ ;
2 for all v ∈ V do
3 D(v) =∞ ;
4 p(v) = NULL ; /* S = ∅ */ ;

5 D(s) = 0 ;
6 v = s ;
7 while v 6= NULL do
8 d(v) = D(v) ; /* S = S ∪ {v} */ ;
9 for all u s.t. (v, u) ∈ E do

10 if d(v) + ‖(v, u)‖ < D(u) then
11 D(u) = d(v) + ‖(v, u)‖ ;
12 p(u) = v ;
13 updateValue(H,u) ;

14 v = extractMin(H) ;

1. v ∈ V \ S.

2. Either v = s or v has some neighbor u such that u ∈ S.

3. D(v) ≤ D(v′), for all nodes v′ ∈ V \ S.

Thus, as has often been remarked, Dijkstra’s algorithm works by finding an
ordering on d(v) for all v ∈ V . The priority heap data structure enforces (3) and
determines this ordering.

The runtime of the heap is a major contributing factor to the overall runtime
of Dijkstra’s algorithm. Indeed, every reduction in Dijkstra’s theoretical runtime
bounds has been due to the discovery of better heap implementations or heap
implementations that are more amenable to the SSSP. Our paper is no exception
to this trend. Before we describe the implementation details of the particular
heap we use, we start by sharing the insight into the SSSP that lead us to
choose it.

Consider the 4-grids depicted in Figure 1. The start node s is located at the
large black node. Nodes are colored in alternating colors based on the level-set
of d they belong to. Note that all edges either connect nodes within a particular
level-set, or connect the nodes of adjacent level-sets. Recall that Dijkstra allows
us to break ties arbitrarily. This means that any node in a particular level set
may be processed before or after any other node in the same level set without
affecting the correctness of the algorithm. The only thing required for correctness
is that all nodes in the k-th level-set are processed before any of those in the
(k + 1)-th. Thus, for this simple case, we do not need to go through the trouble
of calculating a full ordering on the nodes of V — it turns out that a partial



Fig. 1: A 4-connected grid graph (left) and a subgraph created by removing edges
(right) are used to show the basic intuition behind our method. The start node
s is located at the large black node. Nodes v of the same color and lightness
are in the same level-set with respect to shortest-path length d(v). The origi-
nal Dijkstra’s algorithm processes all nodes from a particular level-set (removes
them from the heap) before any nodes of the next level-set are processed. Also,
all nodes from a particular level-set are processed before any nodes of the same
color but different lightness are added to the heap. We show how this idea can
be generalized such that Dijkstra’s algorithm is still complete when nodes are
processed according to a partial ordering induced by the carefully chosen “ap-
proximate” level-sets (instead of using a full ordering on d(v) as usual).

ordering based on the level-sets of d is sufficient! This is exciting because partial
orderings are much faster and easier to calculate then full orderings.

The aforementioned observation was first documented by [5] and used for the
case where non-negative edge weights fall into a finite number of level sets that
are known a priori. However, this idea can be extended to cases where multiple
nodes do not naturally fall into the same level-sets (the 4-grid is a special case
where nodes fall into level-sets along integers because all edge lengths are 1).
In fact, we show that we can get away with grouping nodes into approximately
the same level-sets, as long as we take a few precautions. In particular, we can
group together nodes u and v such that |d(u) − d(v)| < cu,v, where cu,v is a
constant, as long as cu,v is chosen such that nodes within each group will never
be descendants of each other in any valid shortest-path-tree of the particular
SSSP instance being solved. Taking this precaution allows us to process nodes
in the top-most group in any order. Thus, we are always able to process the first
node in the heap — even if it is not the one with the shortest path estimate!
(This contrasts with [3] which must scan past each node in the top-most group
up to ∆ times).

While there are likely countless ways to choose the aforementioned constant
cu,v (each representing another Dijkstra variant), we choose to use the length of
the shortest edge, cu,v ≡ `min = min(v,u)∈E(‖(v, u)‖). This is a method that is
straightforward to implement and analyze, and has fast theoretical runtime on
many graphs and many instances of SSSP. The use of `min is motivated by the ob-



servation that: while processing v it is impossible for any of its neighbors u to ex-
perience a best-guess update fromD1(u) toD2(u) such thatD2(u) ≤ d(v) + `min
(because the edge between u and v is at least as long as `min). Thus, by defin-
ing the 0-th, 1-th, 2-th, 3-th, etc. group based on d(v) that fall, respectively,
into the ranges [0, 0], (0, `min], (`min, 2`min], (2`min, 3`min], . . ., we can guaran-
tee that the members of a particular group cannot be descendants of each other
in any shortest-path. The members of a particular group may be processed in
any order, but all members of group k must be processed before we move onto
group k + 1. Figure 2 depicts the intuition of this process and a formal proof is
presented in Section 7.

Dijkstra’s algorithm processes nodes in the order of increasing heap-keys, and
so we only need to guarantee that we have placed all of the appropriate nodes
into the k-th approximate level-set before we start processing any nodes from
that k-th approximate level-set. This is exactly what the heap we use does. The
use of `min is also a convenient because it can be found in a single O(|E|) pass
over E.

A related useful insight is that there are no (finite length) edges between
nodes that end up in level sets more distant than the maximum (finite) edge
length `max = max(v,u)∈E s.t. ‖(v,u)‖<∞(‖(v, u)‖). This means that the algorithm

will interact with nodes in a contiguous band of only `max

`min
+ 1 approximate level-

sets at any given time (in addition to the level set at ∞), and the d(v)-values
of the particular band of interest are non-decreasing as the algorithm runs. In
Section 7 we show how this can be used to design a memory efficient version of
the heap that requires space O(|V |+ `max

`min
), allowing Dijkstra’s algorithm to run

in space O(|E|+ |V |+ `max

`min
).

3 Related Work

Dijkstra’s algorithm was originally presented in [8] with a runtime ofO(|E|+ |V |2).
Note that for some disconnected graphs it is possible that |E| < |V |; therefore,
we choose to report runtimes in terms of both |E| and |V |, even though terms
involving |V | are often omitted in the literature due to the fact that |V | = O(|E|)
for connected graphs. A heap by [27] yields O(|E| log(|V |)+ |V |), another by [10]

gives O(|E|+ |V | log |V |). New heaps by [11] yield O(|E|+ |V | log |V |
log log |V | ) but have

the rather large constant factor overhead of 212
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.
With regard to expected running times over randomizations, [12] gives ex-

pected time O(|E|
√

log |V |+ |V |), and heaps by [21] yield the expected times
of O(|E| log(log |V |) + |V |) and O(|E| + |V |(log |V |)(1+ε)/2). More recent heaps
by [16] and [17] give expected times O(|E| + |V |(log |V | log log |V |)1/2) and
O(|E|+ |V |(log |V |)(1+ε)/3), respectively.

The special case of SSSP in which there are z distinct positive edge lengths

can be solved in time O(|E| + |V |) if z|V | ≤ 2|E| and O(|E| log z|V |
|E| + |V |),

otherwise, using [14]. SSSP on planar graphs can be solved in O(|V |
√
|V |) with

a method by [9], note that |E| = O(|V |) for planar graphs.
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Fig. 2: Color depicts approximate level-sets of d (shortest-path lengths) from all
nodes to s. Top: Edges in the shortest path tree are solid, while other edges are
dashed. Bottom: A linear depiction of path length level sets, essentially the result
of dangling the shortest-path tree by s, and then setting it horizontally across the
page (vertical distance in bottom sub-figure is for illustrative purposes only, d is
proportional to horizontal distance from s). We divide nodes into approximate
level-sets (or buckets) Bk, depicted via different colors/repeats. The length of
each bucket is defined by the minimum edge length `min and each run of buckets
(i.e., set of non-repeating colors) is no longer than `max+`min, where `max is the
maximum edge length. By construction, no edge in the shortest path tree travels
between two nodes in the same bucket and no edges travel beyond a single run.

[5] uses an approximate heap data structure to achieve runtimeO(|E|+ C|V |)
in space O(|E| + C|V |) for the subset of SSSP with C-bounded integer edge
weights (0 ≤ ‖ε‖ < C <∞). This is extended by [22] to floating point edge
weights with a runtime of O(|V |+ |E|+L), where L is the length of the longest



path. [5] is also extended by [3] to require less space, O(|E|+ |V |+ C), as well
as time O(|E|+ |V |(B+C/B)) or time O(|E|+ |V |(∆+C/∆)), for user defined
parameters B < C + 1 and ∆. The algorithms of [3,5,22] are arguably the most
similar to our own. Indeed, the idea of using an array of linked-lists appears
in [5], and [3] suggests using a looping structure to save space. The primary
contribution of our work beyond [3, 5, 22] is a principled way to stratify nodes
within the data structures such that: (1) better the time and space bounds are
achieved, (2) user parameters are eliminated, (3) both integer and floating point
edge weights can be handled, and (4) the first node in the top bucket may always
be processed (in contrast to [3] which may scan each node ∆ times). We also
present an additional alternative data structure that yields better runtime when
path-length level sets are sparsely populated.

For the subset of SSSP involving an upper-bound C on non-infinite edge
lengths [19] remarks that O(|E| log(logC)+|V |) runtime can be achieved by run-
ning Dijkstra’s algorithm with the priority heaps presented by [13,23,24]. Subse-
quent heaps by [1], [4], and [17] respectively yield times of O(|E|+|V |

√
logC) and

|E|+V (logC log logC)1/3 (expected) and O(|E|+ |V |(logC)1/4+ε). Finally, [19]
presents a method for the case of C-bounded integer edge weights that runs in
O(|E| + |V |), and then extends this to C bounded floating point edge weights
in [20]; however, as mentioned earlier, these are mainly of theoretical signif-
icance (i.e., instead of practical) due to their use of Atomic Heaps. A varia-
tion of this algorithm achieves the slightly worse theoretical runtime bound of
O(log(C) + α(|E|, |V |)|E| + |V |), where α(|E|, |V |) is the inverse Ackermann
function using |E| and |V |.

[25, 26] present a modifications to [20] that achieve better practical perfor-
mance by removing the necessity of an “unvisited node structure” but do not
change theoretical runtime bounds (or the constant factor). [18] perform an em-
pirical evaluation showing that a simple binary heap outperforms state-of-the
art implementations on many practical problems, despite having worse runtime
bounds.

It worth mentioning that both [19, 20] and [25, 26] capitalize on the insight
that the SSSP can often be solved using a partial orderings over nodes (instead
of full orderings) as long as the groups into which nodes are divided are guar-
anteed not to affect each other during processing. Moreover, they also make
the observation that such a valid partial ordering can be created by requiring
edges between each subset to have length at least δ. The main conceptual dif-
ference between these previous works and our current paper is in the details of
the partial orderings that are used. These differences cause both (A) theoretical
ramifications regarding the subset of SSSP for which a particular algorithm can
achieve linear runtime, and (B) practical differences affecting ease of implemen-
tation and performance (including the fact that we do not suffer from the atomic
heap overhead of [19, 20]). The particular partial ordering used in our current
presentation is grounded in the notion of shortest-path-distance level sets, and
we believe this makes our method much easier to understand and analyze then
the alternative partial orderings used in previous work (e.g., [19, 20] builds a



dependency-tree of groups using a modified spanning-tree algorithm, and then
processes nodes according to the relationships encoded in the dependency-tree).

It is also worth mentioning that our method is only applicable to SSSP with
positive edge weights, as well as undirected graphs with non-negative weights if
pre-/post-processing is used. Directed edges of length 0 currently break the algo-
rithm, although we are optimistic that our method may eventually be extended
to handle them.

4 Nomenclature

A graph G (either directed or underacted) is defined by its edge set E and
vertex set V . We assume that both |E| and |V | are finite. Each edge εij = (vi, vj)
between two vertices vi and vj (or from vi to vj if the edge is directed) is assumed
to have a predefined length (or edge-length or cost) ‖εij‖ = ‖(vi, vj)‖ such that
0 ≤ ‖εij‖ ≤ ∞ iff εij ∈ E. We follow the standard practice of defining ‖εij‖ ≡ ∞
if εij 6∈ E, but also discuss an alternative in which such edges are assumed not
to exist in Section 9.

A path P (vi, vj) is an ordered sequence of edges ε1, . . . , ε` such that ε1 = (vi, v1)
and εk = (vk−1, vk) for all k ∈ {2, . . . , ` − 1} and ε` = (v`−1, vj) and where
{εk ∈ P (vi, vj)} ⊂ V . The shortest path P ∗(vi, vj) is the shortest possible path
from vi to vj . Formally,

P ∗(vi, vj) ≡ arg min
P (vi,vj)

∑
ε∈P (vi,vj)

‖ε‖

We are primarily interested in paths from nodes v to a particular “start-node”
s, and define d(v) to be the length of the shortest possible path from v to s.

d(v) ≡ min
P (v,s)

∑
ε∈P (v,s)

‖ε‖

Each node maintains a non-increasing “best-guess” D(v) of its shortest path
length, where d(v) ≤ D(v). We define the maximum-minimum finite path length
as dmax = maxv∈V \{v′ | d(v′)=∞} d(v′)

Dijkstra’s algorithm works by incrementally building a “shortest-path-tree”
S outward from s. Our variation of Dijkstra’s algorithm relies on knowledge of
two quantities that can be obtained using a single O(|E|) pass over E. Namely,
`max is the length of longest non-infinite edge in E and `min is the length of
shortest non-zero edge in E.

`max = max
ε∈E\{ε′ | ‖ε′‖=∞}

‖ε‖

`min = min
ε∈E\{ε′ | ‖ε′‖=0}

‖ε‖ (1)

The most basic implementations of our method assumes that E contains no
zero-length edges, E ∩ {ε′ | ‖ε′‖ = 0} = ∅ and so `min = minε∈E ‖ε‖. However,



in Section 8 we present an extension to non-negative edge lengths for the case
of undirected graphs, and for which the more general definition of `min from
Equation 1 must be used.

We define β = d `max

`min
e, and use β to pick the circumference of a circular

array that is used in our heap data structures. A particular heap data structure
is denoted H.

The heaps we present allow Dijkstra’s algorithm to solve SSSP inO(|E|+ |V |+K)
and O((|E|+|V |) logw( `max

`min
+1)), respectively. w is the word size of the computer

being used (currently 32 or 64 in most computers). K is a constant depending on
the problem being solved; in particular, it is the number of empty approximate
level-sets of d between the 0-th level-set and the approximate level-set containing
dmax.

We shall often refer to the approximate level-sets, as well as the linked lists
that our heap uses to store them, as “buckets” and denote the k-th bucket Bk.

5 Problem

The shortest path planning problem for positive edge weights is de-
fined as follows:

Given G = (V,E) such that ‖ε‖ > 0 for all ε ∈ E, and a particular node
s ∈ V , then for all v ∈ V , find the shortest path P ∗(s, v).

The shortest path planning problem for undirected graphs with non-
negative edge weights is defined:

Given G = (V,E) such that ‖ε‖ ≥ 0 for all ε ∈ E and for all (u, v) ∈ E there
exists (v, u) ∈ E such that ‖(u, v)‖ = ‖(v, u)‖, and a particular node s ∈ V , then
for all v ∈ V , find the shortest path P ∗(s, v).

By convention, either problem is considered solved once we have produced a
data structure containing both:

1. The shortest-path lengths d(v) for all v ∈ V from s.

2. The shortest path tree that can be used to extract the shortest path from s
to any v (at least for any v such that d(v) <∞).

For example, the latter can be accomplished by storing the parent of each node
with respect to S, allowing each shortest path to be extracted by following back
pointers in the fashion of gradient descent from v to s and then reversing the
result.

The reverse (i.e., sink) search that involves finding all paths to s (instead of
from s) can be solved using basically the same algorithm except that the rolls
played by in- and out- neighbors are swapped and the extracted path is not
reversed.



6 “Approximate-Heap” Data Structure

There are three variants of the heap data structure that we present. The first
is mainly used to provide an introduction of concepts and as an analytical
tool. The second and third yield the time bounds of O(|E|+ |V |+K) and
O((|E|+ |V |) logw( `max

`min
+ 1)), respectively, and are easy and “less easy” to im-

plement, respectively.
All three heap variations are combinations of two or three simple and widely

used data structures. The general idea is to store an array of buckets, where
each bucket is implemented as a doubly-linked list. The basic forms of Heap 1
and Heap 2 have previously been described in [5] and [3], respectively; however,
the particular stratification that is used is unique to our work and is the source
of our method’s benefits.

6.1 Heap 1: an introduction and analytical tool

The first and simplest variant heap H is a standard array of L heads of doubly
linked lists. We shall refer to the corresponding lists as buckets and denote them
B0 through BL−1. We shall also use the convention that nodes that have never
been added to the heap are defined to be an implicit bucket B∞. Heap 1 is useful
as a theoretical tool for analysis, and may have applications outside of SSSP,
but is it not quite space efficient enough for direct use with Dijkstra’s algorithm
(Heap 2, presented in the next section fixes the latter problem).

Let us assume, for the sake of the current discussion, that we are provided
with dmax a priori, where dmax is the length of the longest finite shortest-length
path (i.e., we can ignore any infinite length paths when calculating dmax). The
assumption of a priori knowledge of dmax will be dropped in Heap 2. The array
only needs to store L = ddmax

`min
e+ 1 linked list heads (any node that is ever

supposed to be moved into Bh≥L can remain in B∞, since (by construction
of the heap) that node must eventually receive information about a path short
enough to cause insertion into one of the buckets B0 through BL−1.

Bk holds nodes that currently believe they belong to the k-th approximate
level set, i.e., ∀v ∈ V \ S such that (k − 1)`min < D(v) ≤ k`min. This enforces
a partial ordering of nodes v ∈ V based on D(v) with the convenient property
that it is impossible for edges εji from nodes vj ∈ Bh to decrease D(vi) for
nodes vi ∈ Bk such that k < h (since doing so would require εji < `min , which
is impossible) — as we prove formally in Section 7.

Dijkstra’s original algorithm requires an initial insertion of all nodes into the
heap. The use of the implicit B∞ means that we can ignore this step (this small
modification does not affect runtime bounds and has been used by others in
the past)1. Thus, membership in B∞ can be determined in O(1) time and does

1In practice, this can be achieved either by allowing nodes to store their status
internally or by using an additional length |V | array of pointers that are initialized to
null, point to the list-node that holds each node that is currently in a linked list, and
reset to ∞ when that node is extracted from the queue.



Algorithm 2: updateValue(H, v) for basic version (Heap 1)

Input: Heap H (of type Heap 1) and a node v.
Output: Updates the position of v within H based on D(v), adding v to H if

necessary.
1 k = currentBucketID(v) ;
2 if k <∞ and (k − 1)`min < D(v) and D(v) ≤ k`min then
3 return;

4 if k <∞ then
5 RemoveFromList(Bk, v) ;

6 k = bD(v)/`minc ;
7 AddToListFront(Bk, v) ;

8 if k < k̂ then

9 k̂ = k ;

not change our results in any fundamental way. We ignore these non-critical
complications for now, but discuss an alternative variation in Section 9.

In general, any priority heap must implement the two functions extractMin(H)
and updateValue(H, v). extractMin(H) is traditionally responsible for extract-
ing the node with the lowest key value. In our case the key value is D(v) and
we design the heap such that it returns node v such that v in the same approxi-
mate level-set as the node u with the lowest key-value, formally extractMin(H)
returns v such that v, u ∈ B and u = arg minv′∈H D(v′). updateValue(H, v)
updates the location of v within H; for example, after D(v) has been modified.

The updateValue(H, v) and extractMin(H) operations for Heap 1 are de-
scribed in Algorithms 2 and 3, respectively. We assume that we are provided with
a doubly-linked-list data structure that is able to add and remove node v to/from
a list B in O(1) time using AddToListFront(B, v) and RemoveFromList(B, v),
and able to remove the front node of a list in time O(1) using PopList(B) (which
returns null if the list is empty). The subroutine currentBucketID(v) returns
the index of the bucket that currently contains v and can be implemented using
either the table described above or by allowing v to store the information inter-
nally; in either case the time of calling it is O(1). The subroutine IsEmpty(B)
return true if the list is empty and false if it is not; this is clearly O(1). Fi-

nally, the heap also maintains the index k̂ of the first nonempty bucket, and k̂
is initialized to 0.

updateValue(H, v) is presented in Algorithm 2. It starts by checking if v
is already in a bucket, and then returns if v is already in the correct bucket
(lines 1-3). If v is in an incorrect bucket, then it is removed from the incorrect
bucket (line 4). Next, the index of the correct bucket for v is calculated, line 6,

and v is added to the appropriate linked list (line 7). Finally, we update k̂ if v
has been placed into an earlier bucket than Bk̂, lines 8-9. In Section 7 we prove

that k̂ is non-decreasing, and so if this heap is used with Dijkstra’s algorithm



Algorithm 3: extractMin(H) for basic version (Heap 1).

Input: Heap H (of type Heap 1).
Output: Node v such that D(v)−minu∈H D(u) < `min.

1 while k̂ < L and IsEmpty(Bk̂) do

2 k̂ = k̂ + 1 ;

3 if k̂ < L then
4 return NULL ;

5 return PopList(Bk̂);

then k < k̂ never evaluates to true. The final check is included here only for the
purpose of presenting a correct data structure, in general.

extractMin(H) is presented in Algorithm 3. It starts by finding the earliest
non-empty bucket (lines 1-2). If no data is contained then it returns null, lines 3-
4, otherwise it removes the node from the front of the earliest non-empty bucket
and then returns that node, line 5.

6.2 Heap 2: a ring array of lists

Let β = d `max

`min
e. We observe that it is impossible for the processing of vi ∈ Bk

to cause any neighbor vj of vi to be moved to any bucket between array index
k and k + h, where 0 < h ≤ β + 1 (since doing so would require ‖εji > `max‖,
which is impossible) — this is formally proved in Section 7.

This means that only β + 1 contiguous bucket levels are ever needed at any
time during the algorithm’s execution. Thus, we can modify the data structure
to be more space efficient by simply defining bucket Bk ≡ Bmod(k,β+1). Another
way of thinking about this is that the array is a loop that overlaps itself every
β + 1 positions.

While the runtimes for extract min and update value remain essentially un-
changed (now requiring an additional modulo operation) we end up using signif-
icantly less space. The fact that we can use Bk ≡ Bmod(k,β+1) is also convenient

given that we do not usually know dmax a priori, but β = d `max

`min
e can be calcu-

lated in time O(E) using a single pass over E.
Readers that dislike assuming modulo and division require time O(1) are

referred to Section 9, where we describe how the modulo and division operations
can be replaced with bit-shift and multiplication operations (and float to integer
conversion in the case that edge lengths are floating point numbers).

Versions of updateValue(H, v) and extractMin(H) that are modified for use
with Heap 2 appear in Algorithms 4 and 5, respectively. The main differences vs.
Heap 1 are obviously related to the looping nature of the algorithm, in particular,
the calculation of k̂ (lines 4.1-4.3), and the check for the next non-empty bucket
(line 5.1-5.4).

Heap 2 is complete when properly used in conjunction with Dijkstra’s algo-
rithm solving SSSP for positive edge weights (this is proved in Section 7), but
may not be in other applications.
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Fig. 3: Node v1 is removed from the heap H using extractMin(H) (left vs.
right). During the processing of v1 its neighbor v7 is added to the heap using
updateValue(H, v7) (right). Both Heap 1 and Heap 2 use an array of doubly-
linked-lists, i.e., buckets B. Heap 2 defines Bk̂ ≡ Bmod(k̂,β+1) such that buckets

at “index” k̂ loop back around (loop arrow). The ‘v’ graphic is used to indicate

the current position where this looping occurs. Note that it moves down as k̂
decreases.
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Fig. 4: Node v1 is removed from the heap H using extractMin(H) (left vs. right).
yellow represents reduced D(v) for v, while light-blue represents movement into
or within the heap. v1 has neighbors v3, v5, v6, v7, v8. Processing v1 cannot
reduce D(v3) when v1, v3 ∈ B and so v3 is not moved (this happens because of
the particular way we have defined the approximate level-set width of buckets).
D(v5) is reduced, however (as we show in Section 7), this reduction will never
be enough to place v5 into the same bucket as v1 (thus, v5 will remain in the
next-lowest bucket B8≡2). D(v6) is reduced such that v6 is moved to B8≡2. Node
v7 is added to H at B9≡0 and v8 is added to H at at B8≡0.

6.3 Heap 3: skipping empty buckets using a bit-tree

We observe that extractMin(H) in Heaps 1 and 2 may end up checking an
excessive number of empty buckets when the distribution of edge lengths is such
that many approximate level-sets of d are empty (lines 3.1-3.2 and 5.2-5.3). For
example, this is likely to happen when `min � `max. Heap 3 takes precautions
to avoid unnecessary checks of empty buckets.

The basic idea is to use a bit-tree to track which buckets are empty and
which are not. A bit-tree is a word-based tree of binary flags. In our case, leaf
nodes are mapped to the empty vs. non-empty status of a particular bucket
(and each bucket has a corresponding leaf node in the bit tree). A ‘1’ located



Algorithm 4: updateValue(H, v) for ring array version (Heap 2).

Input: Heap H (of type Heap 2) and a node v.
Output: Updates the position of v within H based on D(v), adding v to H if

necessary.
1 kold = currentBucketID(v) ;
2 k = mod(bD(v)/`minc, β + 1) ;
3 if kold == k then
4 return;

5 if kold <∞ then
6 RemoveFromList(Bkold , v) ;

7 AddToListFront(Bk, v) ;

Algorithm 5: extractMin(H) for ring array version (Heap 2)

Input: Heap H (of type Heap 2).
Output: Node v such that D(v)−minu∈H D(u) < `min.

1 k̂f = mod(k̂ − 1, β + 1) ;

2 while k̂ < k̂f and IsEmpty(Bk̂) do

3 k̂ = mod(k̂ + 1, β + 1) ;

4 if IsEmpty(Bk̂) then
5 return NULL ;

6 return PopList(Bk̂) ;

in i-th position of the word stored at bit-tree-node τ indicates that one of the
descendants (buckets in our case) of τ ’s i-th child is non-empty. The specific
details of bit-tree implementation are presented in the appendix; however, it is
important to know that the bit-tree provides the following accessing functions:

– markPositionNonEmpty(k) informs the bit-tree that Bk is non-empty in time
O(logw(β + 1)).

– markPositionEmpty(k) informs the bit-tree thatBk is empty in timeO(logw(β + 1)).

– nextNonEmptyPosition(k) returns the index h of the next non-empty bucket
after (and including) Bk. If Bk is nonempty then the runtime is O(1), and
otherwise the runtime is O(logw(β + 1)).

See Section 7 for the derivation of the runtimes associated with our application
of the bit-tree, recall that w is the word length of the computer being used.

The versions of updateValue(H, v) and extractMin(H) that are modified for
use with the new data structure appear in Algorithms 6 and 7, respectively. Note
that nextNonEmptyPosition(k) ignores the ability to loop around the array,
which is why it is called a second time on line 7.3.
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Fig. 5: A bit-tree is used to facilitate faster extractMin(H) operations in cases
where K is large (i.e., when there are many empty buckets). Each node in the
bit tree is associated with an integer of w bits, where the i-th significant bit
represents whether or not any of that node’s i-th child’s descendants (self inclu-
sive) are associated with non-empty buckets. In this figure w = 3. This allows
us to find the next non-empty bucket in O(logw( `max

`min
+ 1)) time. The bit-tree is

described in more detail in the appendix.

Algorithm 6: updateValue(H, v) for ring array with bit-tree version
(Heap 3).

Input: Heap H (of type Heap 3) and a node v.
Output: Updates the position of v within H based on D(v), adding v to H if

necessary.
1 kold = currentBucketID(v) ;
2 k = mod(bD(v)/`minc, β + 1) ;
3 if kold == k then
4 return;

5 if kold <∞ then
6 RemoveFromList(Bkold , v) ;

7 AddToListFront(Bk, v) ;

7 Analysis

7.1 Correctness of Heap 1

We now show that Dijkstra’s algorithm is correct (terminates in finite time and
produces a shortest path from all nodes v ∈ V ) when using our heaps. In this



Algorithm 7: extractMin(H) for ring array with bit-tree version (Heap
3)

Input: Heap H (of type Heap 3).
Output: Node v such that D(v)−minu∈H D(u) < `min.

1 k̂ = nextNonEmptyPosition(k̂) ;

2 if k̂ ==∞ then

3 k̂ = nextNonEmptyPosition(0) ;

4 if k̂ ==∞ then
5 return NULL ;

6 v = PopList(Bk̂);
7 if IsEmpty(Bk̂) then

8 markPositionEmpty(k̂);

9 return v ;

subsection we consider Heap 1, and then extend the results to Heap 2 in the
next subsection (the extension to Heap 3 is implied by the extension to Heap 2).
The only significant difference between our version of Dijkstra’s algorithm and
the original is the heap data structure that is used. Therefore, a sufficient proof
for the correctness of our modified Dijkstra’s is to demonstrate that a node v is
removed from the top of our heap only if d(v) = D(v), i.e., the shortest path
from v to s has already been computed.

In order to achieve this, we require a few intermediate results regarding the
way that nodes in different buckets interact.

Lemma 1. If vi and vj are currently in the same bucket Bk, then D(vi) cannot
be decreased via any edge εji from node vj to node vi.

Proof. (by contradiction). If using εji decreasesD(vi) then clearlyD(vi) > D(vj) + ‖εji‖,
which can be rearranged D(vi)−D(vj) > ‖εji‖. By construction ‖εji‖ ≥ `max,
and so it follows that D(vi)−D(vj) > `max. However, vi and vj are in the same
bucket, and thus D(vi) − D(vj) < `max by construction, which is a contradic-
tion. ut

Lemma 2. If vi is in bucket Bk and vj is in bucket Bh, where k < h, then
D(vi) cannot be decreased via edge εji from node vj to node vi.

Proof. By construction D(v) < D(u) for all u, v such that v ∈ Bk and u ∈ Bh
where h > k. Also by construction all edge lengths, including ‖εji‖, are non-
negative. Therefore, D(vi) < D(vj) + ‖εji‖. ut

Recall that “Processing” vi is the act of removing vi from the heap and
updating its neighbors v ∈ {vj | (vi, vj) ∈ E} with respect to any path-length
decreases that can be achieved via edges from vi. Processing vi reduces the path
length of its neighbor vj if and only if D(vi) + ‖εij‖ < D(vj). A reduced path
length at vj may decrease the bucket in which vj resides or moves vj into an



initial bucket if it is not already in a bucket. The reasoning in the following
Lemma is very similar to that in Lemma 1.

Lemma 3. Processing vi ∈ Bk cannot move vj into Bk.

Proof. (by contradiction). In order for vj to move into Bk then its path length
(after processing vi and moving vj into Bk) is D(vj) = D(vi) + ‖εij‖. Rearrang-
ing gives D(vj)−D(vi) = ‖εij‖. By construction ‖εij‖ ≥ `min, and substituting
gives D(vj)−D(vi) ≥ `min. However, vi and vj are in the same bucket Bk, and
thus D(vj)−D(vi) < `max by construction, which is a contradiction. ut

It is important to note that vj may already be in Bk before vi is processed,
Lemma 3 just guarantees that its existence in Bk is not caused by processing vi.

Lemma 4. Processing vi ∈ Bk cannot move vj into Bh, where h < k.

Proof. By construction edges are non-negative, including εij . Moving vj into a
bucket Bh such that h < k and vi ∈ Bk (immediately prior to the processing of
vi) would require εij < 0. ut

Note that Lemmas 3 and 4 together guarantee that we are able to process
buckets in the order of increasing bucket index.

We are now ready to prove our main result.

Theorem 1. v ∈ Bk is removed from Heap 1 only if d(v) = D(v).

Proof. (By induction).

Base case: B0 contains s and nothing else (since all other nodes are at least as far
from s as `min). s has the correct shortest path of d(s) = D(s) = 0 by definition,
and is processed first by construction.

Inductive step on index k: Assuming nodes v′ from buckets B0 through Bk−1
have correctly calculated d(v′) = D(v′), and Bk−1 is now empty, we must prove
that all nodes v in Bk are guaranteed to have d(v) = D(v).

More formally, we must demonstrate that d(v′) = D(v′) for all v′ ∈
⋃
{u | u ∈ Bh ∧ 0 ≤ h < k}

guarantees d(v) = D(v) for all v ∈ Bk.
Lemmas 1 and 2 guarantee that when any v ∈ Bk is processed there are no

nodes in the heap (including Bk) that are currently able to reduce D(v).
Lemmas 3 and 4 guarantee that all future heap additions and reshuffling

involving any node u′ ∈
⋃
{u | u ∈ Bĥ ∧ ĥ ≥ k} cannot move u′ into bucket Bk

or a lower bucket Bh, where h < k. This is necessary for the inductive step to
work, but more importantly guarantees that, for all v ∈ Bk, no combination of
future heap operations will ever yield a node u′ that could have reduced D(v).

Finally, because all nodes v′ ∈
⋃
{v ∈ Bh | 0 ≤ h < k} were processed cor-

rectly (via inductive assumption), we can conclude that all edges from any v ∈ Bk
to v′ ∈

⋃
{v ∈ Bh | 0 ≤ h < k} must have been evaluated and, by construction,

the best of them has been used to calculate D(v). Thus, d(v) = D(v) for all
v ∈ Bk even before any member of Bk is processed. ut



The correctness of Dijkstra’s Algorithm using our data structure is a corollary
that follows from Theorem 1 and the original completeness proof of Dijkstra’s
algorithm.

Corollary 1. Dijkstra’s algorithm using Heap 1 is correct.

7.2 Correctness of Heap 2

When using Dijkstra’s algorithm with Heap 1, during the processing of node
v ∈ Bk it is impossible that any of v’s neighbors will require reshuffling into Bh,
where h > k + β, this is formalized in the following theorem, and implies that
we are able to use the ring-based array of Heap 2 (and by extension Heap 3).

Theorem 2. At most β + 1 levels are needed simultaneously when using Heap
1 with Dijkstra’s Algorithm.

Proof. (by contradiction). If we do need more than β + 1 levels, then at some
point during the algorithm’s execution it must be the case that we are pro-
cessing a node vi with a neighbor vj such that: vi is in bucket Bk (prior to
processing), and vj is in some Bh, where h ≥ β + 1 (after processing). Thus
D(vi) ∈

(
(k − 1)`min, k`min

]
, andD(vj) ∈

(
(k + β)`min,∞

)
, and so ‖εij‖ = D(vj)−D(vi) > β`min.

However, β`min ≥ `max ≥ ‖εij‖ also by construction, which is a contradiction.
ut

Corollary 2. Dijkstra’s algorithm using Heap 2 and Heap 3 is correct.

7.3 Runtime and runspace of Heap 1 and Heap 2

We assume a RAM computational model that is similar to the architectures
used by most modern digital computers. We assume that addition, subtraction,
multiplication, division, modulo, comparison, type conversion, and pointer oper-
ations are all O(1). See Section 9 for an alternative version that replaces division
and modulo with integer bit shift (and float to integer casting if edge weights
are floating point numbers).

Finding the values `min and `max can be achieved in time O(|E|) by scanning
all edges.

Each call to updateValue(H, v) requires O(1) time. In particular, we access a
bucket (or skip this step if v is not currently in the heap), calculate a new bucket
index and then add a node to a doubly linked list. The former requires a floating-
point division and conversion (with truncating) of a floating-point number to an
integer. In Heap 2 we also require a modulo operation.

There are two cases for extractMin(v). In the first, there is at least one
element in the current ‘top’ bucket; this requires an array look-up to find the
bucket’s list head and also the removing of a node from the head of a doubly-
linked list. In the second, we must move down the bucket array until we find
a populated bucket. In the worst case, most buckets are empty and over the
entire run of the algorithm look-up operations require a cumulative time of



K = O(dmax

`min
) to move down the array (since there are that many array positions

in Heap 1, and the index of the bucket used for processing is non-decreasing).
Alternatively, we observe that Theorem 2 guarantees that there will never be
any more than β empty buckets in a row, at least until the heap is empty. Thus
we also know that K = O(β|V |) = O( `max

`min
|V |). Together, these observations

provide the following combined bound on K of:

K = O

(
min

{
dmax
`min

,
`max
`min

|V |
})

.

updateValue(H, v) is called at most |E| times, while extractMin(v) is called
at most |V | times. Combining results (and remembering to account for the traver-
sal over empty buckets), we find that the running time for Dijkstra’s algorithm
using either Heap 1 or Heap 2 is O(|E|+ |V |+K).

The total space required by Heap 1 is an array of size ddmax

`min
e plus a collec-

tion of doubly linked lists that cumulatively require no more than |V | storage
containers, for a heap space requirement of O(|V | + dmax

`min
), and thus a total of

O(|E|+ |V |+ dmax

`min
) for the modified version of Dijkstra’s using Heap 1.

Heap 2 reduces this by using a ring array that only requires d `max

`min
e + 1

positions. Thus the total space required for Heap 2 is O(|V |+ `max

`min
), and so the

modified version of Dijkstra’s using Heap 2 requires space O(|E|+ |V |+ `max

`min
).

We note that the number of list containers stored at any particular time is
no greater than the number of nodes in β+1 contiguous level-set buckets, which
could be used to calculated tighter bounds in some special cases.

7.4 Runtime and Runspace of Heap 3

Heap 3 uses a bit-tree which additionally assumes the word operations of ‘shift
by x bits’ and ‘return location of the first non-zero bit’ each run in O(1). It pro-
vides the subroutines markPositionNonEmpty(k), markPositionEmpty(k), and
nextNonEmptyPosition(k). The first two run in time O(logw(β + 1)) (In the
worst case, they each involve moving from a leaf of the bit-tree to its root, flip-
ping one bit at each level, and the depth of the tree is logw(β + 1)). There are
two cases for the third; if Bk is nonempty then the runtime is O(1), and other-
wise the runtime is O(logw(β+1)) (the worst case involves moving from a leaf to
the root and then back down to another leaf). The first two are each called once
in updateValue(H, v), while the latter is called at most twice in extractMin(v).
All together this means that Dijkstra’s algorithm using Heap 3 runs in time
O((|E|+ |V |) logw( `max

`min
+ 1)).

Heap 3 also requires additional space vs. Heaps 1 and 2. In particular,
O( `max

`min
logwd `max

`min
e) words are used to store the word-length tree. For a total

of O(|V |+ `max

`min
logwd `max

`min
e) for the Heap 3 alone and O(|E|+ `max

`min
logwd `max

`min
e)

for Dijkstra using Heap 3.



8 Undirected graphs with non-negative edge weights

In the case of undirected graphs, Dijkstra’s algorithm using any of the aforemen-
tioned heaps can be extended to handle non-negative edges using straightforward
pre-processing and post-processing routines that run in time O(|E|+ |V |). The
key insight is that, for undirected graphs, if there exists a zero-length path be-
tween two nodes v and u, then v and u have the same shortest-path lengths vs.
all nodes in V . Thus, we may treat such v and u as a single node for the purposes
of SSSP, allowing us to solve instead a dual of the original problem that contains
no zero-length edges.

In pre-processing (Algorithm 11 presented in the Appendix) we essentially
combine each v ∈ V with all nodes that it can reach in 0 distance, i.e., all u such
that ‖P ∗(v, u)‖ = 0, into a “meta-node” v̂. The resulting set of meta-nodes is V̂ ,
and the resulting set of edges between such meta-nodes is Ê. This can be done
in both time and space O(|E|+ |V |) by using one level of abstraction that also
adds O(1) operations, vs. the basic version of the algorithm, each time we touch
a meta-node or an edge between meta-nodes (in particular, one or two pointer
operations). Note that |V̂ | ≤ |V | and |Ê| ≤ |E|.

Instead of solving the original problem (V,E), we run Dijkstra’s Algorithm
using either Heap 2 or Heap 3 on the dual problem involving (V̂ , Ê) while simul-
taneously ignoring any edges of the form (v̂, v̂). The latter removes zero-length
edges from consideration without affecting the dual’s solution.

Post-processing (Algorithm 12 presented in the Appendix) involves “unpack-
ing” each v̂ ∈ V̂ by transferring d(v̂) to d(v) for all v that were combined into
v̂ during pre-processing. All sub-paths that moves through a sequence of nodes
v1, v2, . . . , vi, such that v1, v2, . . . vi are all part of the same v̂ ∈ V̂ , have length
0. This fact allows us to recover shortest-path parent pointers with respect to
the original problem in a single O(|E|+ |V |) pass over the original graph and
the dual’s shortest-path tree. For each of the dual’s meta-nodes v̂ ∈ V̂ we per-
form breadth first search restricted to zero-length edges (and thus over only the
sub-graph containing the nodes from which v̂ was created). Even though one (re-
stricted) breadth-first search is performed per each v̂ ∈ V̂ , we only touch each
original edge ε ∈ E once during post-processing, since each v ∈ V is part of ex-
actly one v̂ ∈ V̂ , and so post-processing also takes time and space O(|E|+ |V |).

9 Remarks

9.1 Regarding infinite edge lengths

There are two slightly different notions of “infinite” edge weight that the methods
presented above have conflated for notational convenience and the sake of using
standard practice. In particular, ‘no edge exists between two nodes’ has been
combined with ‘an edge of infinite length exists between two nodes’ due to the
definition of ‖ε‖ ≡ ∞ for ε 6∈ E.

In cases where this distinction is important, we can regain the distinction
by storing two separate “external” buckets B∞ and B∅ instead of just one, and



using instead ‖ε‖ ≡ ∅ for ε 6∈ E. We implicitly assume that un-inserted nodes
reside in B∅. If an infinite-length edge connects v and u, where v ∈ B∅ and u
is processed, then we place v into B∞ (which should now be implemented as
a linked list instead of an array). Finally, after all nodes have been processed
from the normal heap H, we process the nodes in B∞, while moving any newly
connected nodes from B∅ to B∞ (the latter is allowed because all remaining
best-path lengths are either infinite or undefined).

This modification handles infinite length edges as a separate special case
that is guaranteed to run in O(|E|+ |V |) time. Therefore, much of the analysis
is unaffected. The only technical detail worth mentioning (indeed, a convention
we have been using throughout our discussion) is that we must carefully define
`max as the longest finite-length edge, and dmax as the longest finite-length
shortest-path.

9.2 Regarding division and modulo operations

On computational architectures where division takes Ω(1) time, we can store
the reciprocal of `min instead of `min, and then perform multiplication instead
of division. The reciprocal only needs to be calculated once; and so, assuming we
have some way of computing the reciprocal in time O(|E|+|V |), this modification
does not affect our runtime analysis.

On (binary) computational architectures where the modulo operation takes
Ω(1) we can replace the modulo operation with bit-shifting operations by replac-
ing β with β̄ = 2n − 1, where 2n is the smallest power of 2 such that 2n − 1 ≥ d `max

`min
e.

This makes the circular array in Heaps 2 and 3 slightly longer than necessary,
so that it can be a power of two, but causes all modulo operations to have the
form mod(x, 2n), where n is constant. For integers on standard binary architec-
tures mod(x, 2n) can be implemented using the up << and down >> shifting
operations as follows: mod(x, 2n) ≡ (x− ((x >> n) << n)), and which uses O(1)
time, assuming that bit shifts and subtraction are O(1).

In cases where we want to remove the modulo operation and there are floating
point edge weights, we need to convert x = bD(v)/`minc to an integer from a
float; thus, this strategy still requires that such a casting operation runs in
time O(1). With the above assumptions, these modifications do not affect our
asymptotic runtime and space bounds because we are simply using an array of
length β̄ < 2d `max

`min
e instead of β = d `max

`min
e.

9.3 Regarding runtime

For the subset of SSSP instances involving strictly positive edge weights, as
well as those involving undirected graphs with non-negative edges Section 8, the
methods we present tie the previous best known bounds on runtime whenever
K ≤ |V |+ |E|. This happens whenever dmax

`min
≤ |V | + |E| and also whenever

`max

`min
|V | ≤ |E| (and other cases may also exist).

The constant factors that affect practical performance are easy to calculate
(or bound) and give direct insight into when the algorithm should be expected



to perform well or poorly. For example, the method will perform better as the
relative difference between `max and `min decreases.

As previously remarked, K is the total number of approximate level sets of d
that turn out to be empty. For many types of graphs K is guaranteed to be small.
The simplest case is when all edge weights are the same, and in which case the
algorithm runs in linear time. This happens for problems in which path length
is defined by the number of edges in the path (e.g., social degrees-of-separation).
It also happens on 4-grids and other uniform lattices, which are frequently used
for path-planning.

In some practical cases of interest (e.g., trajectory library based robotic mo-
tion planning) we also have the power to design the graph that we intend to
plan over. In these cases we can manually enforce that edge lengths are “close-
enough” to each other that the algorithm runs at a desired speed (for example,
within a few orders of magnitude of each other).

On the other hand, there are many types of graphs that are not well suited
(at least theoretically) to our method. For example, using Heap 3 with Graphs
that are created by sampling points in space uniformly at random (e.g., randomly
sampled disc-graphs) will tend to see long-term (but relatively slow) performance
degradation vs. an increasing number of nodes, since the ratio `max

`min
is expected

to increase without bound as |V | approaches infinity in that case. On the other
hand, Heap 1 and 2 will suffer due to decreasing `min but also benefit from the
fact that the chances a particular level set is empty will approach 0, in the limit,
as |V | approaches infinity. A particularly bad case for any version of our heap
happens when a graph simultaneously has relatively few edges but edge lengths
exist at different orders of magnitude.

9.4 Potential for Parallelization

The idea of parallel processing nodes based on any partial ordering that guar-
antees best-path-length independence between subsets of nodes is, in general,
amenable to Parallelization on multi-core architectures. in order to ensure such
a parallel implementation is correct, synchronization between processors is (only)
necessary after each bucket is emptied. For our data structure this will obviously
work best in cases where each bucket contains many nodes and/or `max and `min
are similar.

10 Summary

We have presented a family of new heap data-structures that enable Dijk-
stra’s Algorithm to solve the SSSP with positive edge-weights in either time
O(|E|+ |V |+K) and spaceO(|E|+|V |+ `max

`min
) or timeO((|E|+ |V |) logw( `max

`min
+ 1))

and space O(|E| + `max

`min
logwd `max

`min
e), where `min and `max are problem depen-

dent constants and w is an architecture dependent constant. We derive bounds

K = O(min
{
dmax

`min
, `max

`min
|V |
}

). Thus, our method is able to solve many instances



of SSSP in linear time, e.g., whenever dmax

`min
≤ |V | + |E| and also whenever

`max

`min
|V | ≤ |E|.

The method works because, as we prove in Section 7, it is possible to solve
the positive weight SSSP using only a partial ordering over nodes instead of a full
ordering, as long as we choose that partial ordering carefully. In particular, by
using approximate level-sets based on the shortest-path-lengths of nodes. Even
though shortest-path-lengths are initially unknown for all nodes but the start
node, we can correctly calculate the partial ordering on-the-fly if the widths of
each approximate level set are bounded by the graph’s shortest edge length.
Nodes within an approximate level set can be processed in any order by a stan-
dard implementation of Dijkstra’s algorithm and still yield the correct solution.
The method can be extended to non-negative edges for the special case of undi-
rected graphs using pre-/post-processing to solve a dual of the original problem
that ignores zero-length edges.

The heaps that we present store the approximate level sets in an array of
buckets, where each bucket is a doubly linked list. We show that only a small
and calculable subset of contiguous buckets are only ever used at one time, and
so we can use a looping array that saves considerable space. In particularly
challenging cases many empty buckets exist (which may slow down heap extrac-
tion operations), therefore, the “less-simple” version uses a bit-tree to quickly
determine the next non-empty bucket.

The heaps that we present are easy to implement, and the resulting modifi-
cation of Dijkstra’s algorithm efficient vs. time and space, and easy to analyze.
We hope that the concept of level-set based partial orderings will increase the
overall understanding of the SSSP and perhaps even be useful in other domains.
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Bit-Tree Implementation

Each tree-node τ in the bit-tree portion of the looping word-length based tree
data structure T has the following fields (we shall denote the “field of” relation-
ship using a ‘.’ (dot):

– A flag indicating if the node is a leaf node or not L, with value true or false
respectively.

– A word B of bits of word-length w, where w determined by the computer
hardware being used. We shall denote the i-th bit in B as B[i]. This is only
used in leaf nodes.

– An array C of w pointers to the w children of the current tree-node (these
are to other tree nodes if this node is internal, and to a particular bucket if
the node is a leaf). We shall index into the array using ‘[·]’. This is also only
used in leaf nodes.

– A pointer to the parent of the current tree-node p.
– An integer ip that represents this node’s location in its parent’s C.

– Leaf nodes also store k̂, the index of the bucket they are associated with.

Additionally, we store two arrays A and P that each have one element for every
leaf node in the bit tree. We enforce that A[k] == 1 if Bk is nonempty, and
A[k] == 0 otherwise. P[k] contains a pointer to the leaf node that is associated
with Bk

The tree is designed such that there is one path from the root τ0 of the tree
to each of the β+ 1 buckets B in the bucket array. Let τd,k denote the tree-node
at depth d along the path from the root to bucket Bk. If a particular bucket
Bk is nonempty, then we enforce the condition that τd,k.B[i] = 1, where i is the
position of the pointer to τd+1,k that is stored in τd+1,k.C.

This has the advantage of letting us quickly determine when none of the
descendant buckets of τ have any nodes in them (i.e., because τd,k.B = 0 in
that case). In the event that descendant buckets of τ are nonempty, then it also
allows us to quickly determine the earliest tree-child of τ that also has nonempty
descendant buckets, i.e. �(τd,k.B), using the ‘first non-zero bit’ primitive which we
shall denote ‘�’. Note that we assume bit indexing that starts at 1 (if architecture
indexing starts at 0, then we need only add one to the result, which requires O(1)
time).

Many common architectures (e.g., X86, ARM, SPARC, etc.) implement a
‘count trailing zeros’ primitive, ctz(x), that runs in O(1) time, and which



Algorithm 8: nextNonEmptyPosition(T, k)

Input: Bit-tree T = (A,P,
⋃
{τ}) of bit-word-nodes τ and integer k.

Output: The next non-empty position of T after (and including) k.
1 if A[k] == 1 then
2 return k ;

3 τ = P[k] ;
4 while τ 6= τ0 do
5 inext = �((τ.p.B >> τ.ip) << τ.ip)
6 if inext > 0 then
7 break ;

8 τ = τ.p ;

9 if τ == τ0 then
10 return ∞ ;

11 τ = τ.p.C[inext] ;
12 while τ.L 6= 1 do
13 τ = τ.C[�(τ.B)] ;

14 return τ.k̂ ;

can be used to implement �(x) as follows: �(x) = w − ctz(x). For architectures
that have neither ‘first non-zero bit’ nor ‘count trailing zeros’ primitives the
function �(x) can be implemented in software with runtime O(log2 w), see [7]
for details. In the latter case that �(x) is implemented in software (and not
hardware), the overall runtime of Dijkstra’s algorithm using Heap 3 becomes
O((|E|+ |V |) log2(w) logw( `max

`min
+ 1)). Although this represents a slightly larger

architecture dependent constant, it does not change the overall validity of our
qualitative claim of ‘linear time performance on many graphs with small over-
head’.

We now describe in more detail the subroutines nextNonEmptyPosition(k),
markPositionEmpty(k), and markPositionNonEmpty(k) that are used to inter-
act with the bit-tree that is used in the bit-tree version of our data structure.
The i-th bit of the integer k is denoted k[i]

nextNonEmptyPosition(k) appears in Algorithm 8. A quick check is used
to see if the bucket at index k is empty, and if not then k is returned directly,
line 1. If Bk is empty, then we walk up the tree using parent pointers until we
find a parent that has a later child with non-empty descendants or we reach the
bit-tree-root, lines 7. Note that ‘>>’ and ‘<<’ are the decreasing and increasing
bit-shift operators, respectively. If we have reached the root, then we we know
that there were no nonempty buckets after Bk, and so we return ∞, lines 9-10.
Otherwise, we now move down through the branches of the tree toward the first
non-empty bucket, lines 12-13, and return it on line 14.

markPositionEmpty(k) is presented in Figure 9. A quick check is used to test
if the position k is already marked as empty, and if so then the algorithm returns
immediately (lines 1-2). The position is marked as empty on line 4 (where ‘⊗’ is



Algorithm 9: markPositionEmpty(T, k)

Input: Bit-tree T = (A,P,
⋃
{τ}) of bit-word-nodes τ and integer k.

Output: Marks position k of T as empty.
1 if A[k] == 0 then
2 return;

3 A[k] = 0 ;
4 τ = P[k] ;
5 while τ 6= τ0 do
6 τ.p.B = τ.p.B ⊗ (1 << τ.ip) ;
7 if τ.p.B > 0 then
8 return;

9 τ = τ.p ;

Algorithm 10: markPositionNonEmpty(T, k)

Input: Bit-tree T = (A,P,
⋃
{τ}) of bit-word-nodes τ and integer k.

Output: Marks position k of T as nonempty.
1 if A[k] == 1 then
2 return;

3 A[k] = 1 ;
4 τ = P[k] ;
5 while τ 6= τ0 do
6 if τ.p.B > 0 then
7 τ.p.B = τ.p.B&(1 << τ.ip) ;
8 return;

9 τ.p.B = τ.p.B&(1 << τ.ip) ;
10 τ = τ.p ;

the exclusive or operation) and then we walk up the bit tree to the root of the
largest sub-tree that is now empty due to the removal of Bk, while recording the
latter, lines 4-9. Note that we can stop as soon as we find a parent with other
non-empty descendants (lines 7-8).

markPositionNonEmpty(k) is presented in Figure 10 and is similar to markPositionEmpty(k),
except that we record information marking Bk as full instead of empty. We can
stop walking up the bit-tree as soon as we find a parent with other non-empty
descendants (after marking that the path we have taken up the tree is now
non-empty as well), lines 6-8.

Pre-/post-processing undirected graphs with zero-length edges

This section presents subroutines that can be used to pre-/post-process an undi-
rected graphs with zero-length edges such that a dual problem (without zero-
length edges) can be solved instead of the original problem (with zero-length
edges). These subroutines appear in Algorithms 11 and 12, respectively.



Algorithm 11: preProcess(V,E) for the extension of our method to undi-
rected graphs with non-negative weights.

Input: Node set V and edge set E of the graph G = (V,E) with non-negative
edge weights.

Output: Node set V̂ of a dual problem in which zero-length edges can be
ignored. The dual’s edge set Ê is implicitly defined by V , E, and V̂ .

1 V̂ ; /* array of |V | of linked list heads */ ;
2 n = 0 ;
3 for v ∈ V do
4 n = n+ 1 ;

5 V̂ [n] = 0 ;

6 v.i = 0 ; /* position of V̂ containing v */ ;

7 n = 0 ; /* counts non-empty V̂ elements */ ;
8 QFIFO ; /* FIFO queue */ ;
9 for v ∈ V do

10 if v.i == 0 then
11 n = n+ 1 ;

12 AddToListFront(V̂ [n], v) ;
13 v.i = n ;
14 u = v ;
15 while u 6= NULL do
16 for (u,w) ∈ E do
17 if ‖(v, w)‖ == 0 and w.i == 0 then

18 AddToListFront(V̂ [n], w) ;
19 w.i = n ;
20 PushBack(QFIFO, w) ;

21 u = PopFront(QFIFO) ;

22 V̂ = V̂ [1 to n];

23 return V̂ ;

Each v ∈ V of the original problem is combined, along with all nodes u that it
can reach in 0 distance (all u such that ‖P ∗(v, u)‖ = 0) into a “meta-node” v̂ in
the dual. Each meta-node contains a particular subset of nodes from the original
problem that are zero-distance from each other (and contains all such nodes).
Each node from the original problem is associated with exactly one meta-node
in the dual. We assume that each node v maintains an internal integer field v.i
that stores the (index of) the particular “meta-node” v̂ in the dual problem that
v is associated with.

With some abuse of notation v ∈ v̂ denotes that pre-processing has placed v
into the meta-node v̂ and meta-nodes are stored in an array of linked lists, also
denoted V̂ , such that each linked list V̂ [n] stores all of the (original) nodes in a
particular meta-node v̂.



Algorithm 12: postProcess(V,E, s, V̂ ) for extension of our method to
undirected graphs with non-negative weights.

Input: Node set V and edge set E of the graph G = (V,E) with non-negative
edge weights and start node s of the original problem; the dual
problem’s node set V̂ as calculated in the pre-processing step, and
assuming that the SSSP has been solved for the dual problem.

Output: The solution to the original SSSP problem (the shortest path tree S
and values are stored implicitly in V and E).

1 for all v ∈ V do

2 d(v) = d(V̂ [v.i]) ; /* unpack path-lengths */ ;
3 p(v) = NULL ;

4 unpackParents(s, E) ;

5 for n = 1, . . . , |V̂ | do
6 if s.i == n then
7 continue ;

8 v̂ = V̂ [n] ;
9 v = memberWithBestParent(v̂, E) ;

10 unpackParents(v,E) ;

Pre-processing is accomplished using preProcess(V,E) in Algorithm 11. The
subroutine works by walking the graph (V,E). If a node v is found that is not
yet associated with a meta-node in the dual, then a new meta-node v̂ = V̂ [n] is
created (lines 10-13) and an internal breadth-first search over zero-length edges
(lines 14-21) is performed to find all other nodes that belong in v̂. It is important
to note that each edge in E is touched at most twice during the entire execution
of preProcess(V,E), once each in the (u, v) and (v, u) directions. The latter
property is guaranteed due to the fact that each node v ∈ V can belong to at
most one meta-node v̂ ∈ V̂ , and by construction all nodes associated with a
particular meta-node v̂ are found (using the restricted breadth-first-search) as
soon as any node associated with v̂ is discovered, and each direction of each edge
(v, u) appears in a single restricted breadth-first search.

Post-processing is accomplished using postProcess(V,E, s, V̂ ) in Algorithm 12.
It involves “unpacking” each v̂ ∈ V̂ by transferring d(v̂) to d(v) for all v ∈ v̂ (line
2). All sub-paths that moves through a sequence of nodes v1, v2, . . . , vi, such that
v1, v2, . . . vi ∈ v̂, have length 0. This fact allows us to recover shortest-path parent
pointers with respect to the original problem in a single O(|E|+ |V |) pass over
the original graph and the dual’s shortest-path tree. The details of the latter are
delegated to the subroutines unpackParents(v,E) and memberWithBestParent(v̂, E),
each of which cumulatively touches each edges in E at most twice.

unpackParents(v,E) is called once per meta-node v̂ ∈ V̂ and uses a breadth-
first-search restricted to zero-length edges to find parent pointers among nodes
within the same meta-node v̂. The restriction to zero-length edges means that



Algorithm 13: unpackParents(v,E)

Input: A node v and edge set E of the original problem, assuming path-lengths
have already been unpacked but not parent pointers.

Output: Unpacks the parent pointers for all original nodes in the dual’s
meta-node v̂ such that v was part of v̂.

1 QFIFO ; /* empty FIFO queue */ ;
2 u = v ;
3 while u 6= NULL do
4 for (u,w) ∈ E s.t ‖(u,w)‖ = 0 do
5 if p(w) == NULL then
6 p(w) = u ;
7 PushBack(QFIFO, w) ;

8 u = PopFront(QFIFO) ;

Algorithm 14: v = memberWithBestParent(v̂, E)

Input: A node v and edge set E of the original problem, assuming path-lengths
have already been unpacked but not parent pointers.

Output: The original node v in the dual’s meta-node v̂ such that v was part of
v̂ and v has a parent u within the parent meta-node û = p(v̂). Also
unpacks the parent pointer for v.

1 for v ∈ v̂ do
2 for (v, u) ∈ E do
3 if u.i == p(v̂) then
4 p(v) = u ;
5 return v;

6 return NULL;

each search is is constrained to consider only those nodes associated with a
particular meta-node.

memberWithBestParent(v̂, E) is used to find a particular node v ∈ v̂ that
may use a parent outside of v̂ in a valid shortest-path-tree. In other words, it
finds v such that v ∈ v̂ and (u, v) ∈ E and (û, v̂) ∈ Ê and û = p(v̂). This routine
also “unpacks” the appropriate parent pointer for v (line 4).


