
Flexible Goal-Directed Abstraction

by

Sam Blackshear

B.A., Williams College, 2010

M.S., University of Colorado Boulder, 2012

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2015



This thesis entitled:
Flexible Goal-Directed Abstraction

written by Sam Blackshear
has been approved for the Department of Computer Science

Prof. Bor-Yuh Evan Chang

Prof. Pavol Černý
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Thesis directed by Prof. Bor-Yuh Evan Chang

Static program analysis is a powerful technique for bug-finding, verification, and program understand-

ing. Yet static analyses remain conspicuously absent from the toolbox of the average developer because they

must abstract away details about concrete program behavior. Designing effective abstractions is tricky busi-

ness: imprecise abstractions are inexpensive, but can be useless because they lose too much information

about the program, whereas conventional wisdom states that precise abstractions are too expensive to scale.

This dissertation considers the problem of goal-directed static analysis, an intriguing domain where

there is hope for defying the conventional wisdom about precise and scalable abstractions. In contrast to

more traditional whole-program approaches that must apply precise abstractions to the entire program, goal-

directed approaches have the potential to be much more tractable because they can focus the effort of the

analysis on a single goal query.

There are two fundamental challenges in goal-directed analysis: (A) designing abstractions that are as

flexible as possible so they can be specialized to the needs of the query and (B) using this flexibility wisely

to achieve a better precision/scalability tradeoff in practice. This dissertation addresses these challenges by

introducing goal-directed abstraction coarsening, a new approach to goal-directed analysis. Our approach

works backward from the goal query using an abstraction that is as precise as possible by default, but can be

coarsened in order to narrow the focus of the analysis and improve scalability. We meet Challenge A by in-

troducing flexible coarsening-based techniques for store abstraction and control-flow abstraction. Our store

abstraction precisely represents a small view of the store relevant to the query by combining a separation

logic-based representation with a flow-insensitive points-to analysis. We present a general framework for

flexible control-flow abstraction that allows the analysis to coarsen the control-flow abstraction by jumping

over irrelevant code. Finally, we meet Challenge B by presenting goal-directed analyses incorporating our

flexible abstractions. Our analyses use programmers’ invariant-based reasoning and the structure of event-
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driven programs to recognize opportunities for coarsening that are likely to enhance scalability without

losing precision. We have implemented these analyses and shown that they can achieve precise and scalable

results for a variety of client analyses than cannot be handled effectively by previous techniques.
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Chapter 1

Introduction

Software quality is becoming increasingly important. Recent software vulnerabilities like the Heart-

bleed1 , Shellshock2 , and FREAK3 bugs demonstrate that even a small mistake in a single piece of software

can have far-reaching consequences. As software becomes both more pervasive and more complex, we need

to support overburdened developers with better automated tools for helping them understand their code and

ensure its correctness.

Static program analysis presents a promising approach to improving the state of developer tooling.

Static analysis is the only technique capable of automatically proving the complete absence of important

classes of errors, yet it is underutilized compared to techniques such as testing, profiling, and manual code

review. The difficulty of static analysis is that proving nontrivial properties about programs is undecidable

in general [Rice, 1953], which means that analyses must resort to abstraction to ensure termination. The

foundational theory of abstract interpretation [Cousot and Cousot, 1977] lays out a general framework for

using sound abstractions (abstractions that overapproximate all possible concrete behaviors of a program)

to perform static analysis of programs. In the first phase, the analysis uses a sound abstraction to compute

an overapproximation of the reachable concrete states of the program. In the second phase, this overap-

proximation can then be used to resolve queries about the concrete behavior program. For example, if the

analysis can prove that a query representing some undesirable behavior (e.g., a crash from dereferencing a

null pointer) never occurs in an overapproximation of the program’s concrete behaviors, we can conclude

1 http://heartbleed.com
2 https://shellshocker.net
3 https://freakattack.com
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that it never occurs in the program’s actual concrete behaviors. However, an abstraction that is too imprecise

may prevent the analysis from proving the absence of the buggy behavior even if the actual program is safe.

The result of this abstraction mistake is a false alarm that is reported alongside the true bugs found by the

analysis. The noise caused by high false alarm rates is a major hindrance to mainstream adoption of static

analysis tools [Bessey et al., 2010; Johnson et al., 2013; McPeak et al., 2013].

Given the problems caused by imprecise abstractions, the obvious suggestion is to use abstractions

that are as precise as possible in our static analyses. This is easier said than done because analyses using pre-

cise abstractions tend to incur scalability issues. For example, understanding which branch of a conditional

that the program may take is frequently important for precision, but the cost of a path-sensitive abstrac-

tion that can distinguish one program path from another can be exponential in the number of conditional

branches in the program. In practical terms, these scalability issues make analysis tools too slow to integrate

into a developer’s workflow [Calcagno et al., 2015; Layman et al., 2007; Sadowski et al., 2015], or (in the

worst case) cause the analysis to take so much time or memory that it effectively does not terminate.

Thus, designing practically effective abstractions is tricky business. The fundamental tension is se-

lecting an abstraction that makes a reasonable tradeoff between precision and scalability. Conventional

wisdom says that we cannot make precise abstractions scale to large programs. However, goal-directed

(also called “demand-driven” [Heintze and Tardieu, 2001; Horwitz et al., 1995; Sridharan and Bodı́k, 2006;

Sridharan et al., 2005], “client-driven” [Guyer and Lin, 2003, 2005], “selective” [Oh et al., 2014], “property-

directed” [Itzhaky et al., 2014], and “counterexample-guided” [Ball et al., 2011; Clarke et al., 2000; Hen-

zinger et al., 2002; Lal et al., 2012; Zhang et al., 2013, 2014]) analyses present a promising approach for

defying this conventional wisdom A goal-directed analysis seeks only to prove the safety of a goal query

rather than performing a precise analysis of the entire program. Although it may not be possible to scale

a very precise abstraction to a large program, it is frequently the case that the safety of a goal query only

depends on a few small fragments of the program. If the analysis can identify the fragments relevant to the

query and focus its effort on these fragments, then there is hope to scale very precise abstractions regardless

of how large the program is.

Focusing the effort of the analysis on a few fragments relevant to the goal query sounds simple, but
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poses several challenges. Since the analysis may be asked to answer hundreds or thousands of queries, it

is not practical to manually design an abstraction for each query. Instead, the analysis must be flexible so

that it can change to suit the needs of a particular goal query, and this specialization must be performed

automatically.

The more flexibility we can give our abstractions, the more closely they can be specialized to the

needs of each query. However, with great power comes great responsibility: more ways to change the

abstraction means more opportunities to make a choice that will lose valuable precision, cause scalability

problems, or both! We must harness the power of flexibility wisely in order to make good choices that yield

better precision/scalability tradeoffs in practice.

1.1 Problem statement

Thus, the problems faced by any goal-directed analysis are:

(A) Making abstractions as flexible as possible so they can be specialized to the needs of the query, and

(B) Automatically using this flexibility wisely to enable better precision/scalability tradeoffs in practice.

In Chapter 2, we will explain each of these challenges in detail. We define a spectrum for the flex-

ibility of abstractions in order to evaluate the success of different approaches to goal-directed abstraction

in meeting this challenge. In relation to Challenge A, we introduce the concepts of dimensionality (Sec-

tion 2.1 and granularity (Section 2.2). Dimensionality describes how the abstraction can be changed to

meet the needs of a query during automated analysis. Our discussion of dimensionality considers both store

abstraction (i.e., how the analysis abstracts locals, globals, and the heap) and the control-flow abstraction

(i.e., how the analysis chooses context-, path-, and flow-sensitivity policies). A maximally flexible goal-

directed abstraction should be able to vary its abstraction along each of these dimensions; for example, it

should be able to precisely abstract a few local variables while ignoring the rest, and it should be able to

switch path-sensitive and flow-insensitive modes.

The concept of granularity (Section 2.2) describes when or how often the abstraction can be changed

during automated analysis. In particular, we consider whether the abstraction can be changed in a coarse-
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grained way (for example, only between distinct analysis stages) or in a more fine-grained way (for example,

after each procedure call). A maximally flexible goal-directed abstraction should be able to change on-the-

fly at any time during analysis.

We characterize the abstractions of previous work using both of these concepts and explain how these

approaches meet Challenge B by wisely using the flexibility that they are capable of. However, we argue

that previous approaches fall short of fully meeting Challenge (A): no single approach allows flexibility

along all of the dimensions defined in Section 2.1 at the fine-grained level described in Section 2.2.

1.2 Thesis statement and contributions

This dissertation presents goal-directed abstraction coarsening, a novel approach to goal-directed

static analysis that meets both challenges outlined in Section 1.1. Our analysis works backward from the

goal query using an abstraction that is as precise as possible by default, but we identify opportunities to

improve scalability by coarsening, or intentionally losing precision. As we will explain in Section 3.1,

this is a very natural approach because coarsening is a fundamental part of any abstract interpretation. We

will show that coarsening the abstraction in various ways allows us to vary the abstraction along all of the

dimensions defined in Section 2.1. This approach is extremely fine-grained because the decision to change

the abstraction by coarsening can be made on-the-fly at any time during analysis.

The more dimensionality and granularity an abstraction has, the more choices the analysis has for

changing the abstraction and thus the more challenging it is for the analysis to use its flexibility wisely.

This means that meeting Challenge B is especially difficult and important for our approach. Our strategy

for meeting this challenge is to make our analysis parametric with respect to a coarsening strategy in order

to allow defining appropriate strategies for different problem domains. We demonstrate that two specific

strategies based on (a) understanding the reasoning patterns of programmers and (b) leveraging the structure

of event-driven programs are effective for precise and scalable analysis for a variety of clients.

The thesis of this dissertation is our approach does indeed meet Challenges (A) and (B):
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On-the-fly abstraction coarsening is a flexible and practical approach to goal-directed static analysis.

By flexible, we mean that coarsening allows the abstraction to be changed along each of the dimen-

sions we have described at any time during analysis. By practical, we mean that we can choose effective

strategies for coarsening that enable better precision/scalability tradeoffs in practice for static analysis of

real-world object-oriented programs. To defend this thesis, we make the following contributions:

(1) We introduce a precise separation logic-based store abstraction that meets our dimensionality and

granularity requirements (Chapter 4) . Our store abstraction can be coarsened each time a trans-

fer function is applied. The heap, local, and global portions of the query are all represented in a

uniform way using separation logic. Our store abstraction overcomes the scalability problems that

aliasing causes for many previous approaches (see Section 2.1.1, “Abstracting the heap: previous

approaches” paragraph) via a novel integration of points-to analysis and separation logic (Sec-

tion 4.3). This combination enables a tractable backward analysis that only represents constraints

relevant to the query precisely.

(2) We present a general framework for control-flow abstraction via jumping (Chapter 5). Jumping

allows the analysis to jump directly to relevant code, skipping irrelevant code in between. We

state soundness conditions for relevance based on data-relevance (detecting which commands may

write to the abstract store) and control-feasibility (detecting which commands are reachable from

the current program location) criteria. We demonstrate that adjusting the precision of these criteria

allows us to vary the path-, flow-, and context-sensitivity of the analysis in a uniform and fine-

grained fashion (in contrast to the previous approaches described in Section 2.1.2).

(3) We show that our store and control-flow abstractions can be combined with effective strategies

for harnessing flexibility to create precise and scalable analyses. In particular, we specialize our

jumping framework to leverage programmers’ invariant-based reasoning (Chapter 6) and to take

advantage of the structure of event-driven programs (Chapter 7). In both cases, we obtain significant

scalability benefits from using the flexibility of our abstractions wisely.
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1.3 Outline of dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we present a spectrum

for characterizing the flexibility of abstractions and use spectrum to place previous work on goal-directed

abstraction in context. Chapter 3 presents a challenge example whose verification requires all of the ma-

chinery that will be introduced in this thesis: an effective store abstraction for the heap, a flexible form

of control-flow abstraction, and a practical approach to harnessing the flexibility of our abstractions to en-

hance scalability without losing precision. Chapter 4 introduces a store abstraction specialized for precisely

representing heap constraints by combining separation logic with points-to analysis. Chapter 5 lays out

a general framework for flexible control-flow abstraction based on jumping from one code region to an-

other. The next two chapters demonstrate how to leverage the flexibility offered by jumping to achieve

better precision/scalability tradeoffs in practice. Chapter 6 shows how to combine jumping with common

forms of invariant-based reasoning used by real programmers to improve scalability during precise analysis

of programs with deep call chains. Our key idea is to recognize when the programmer is relying on a flow-

insensitive invariant and jump directly to the code where the invariant is established, improving scalability

by skipping the irrelevant code in between the establishment and use of the invariant. Chapter 7 describes

how to use jumping to scale analysis of event-driven Android programs when the analysis must consider an

exponential number of possible event orderings in order to be both sound and precise. Our approach is to

identify a small set of events that are both data-relevant to the current query and control-feasible with respect

to the current event and jump directly to these events, improving scalability by avoiding consideration of

large numbers of irrelevant event orderings.



Chapter 2

Prologue: a spectrum for flexible abstraction

In this chapter, we elaborate on the problem statement of flexible abstraction presented in Section 1.1

by presenting a spectrum for describing flexible abstractions. As previously explained, we divide flexibility

into the concept of dimensionality, or how an abstraction can be changed (to be discussed in Section 2.1)

and the concept of granularity, or when/how often an abstraction can be changed. For each sub-topic of

the two main concepts, we first show what the specific abstraction problem is using examples, then discuss

how previous work has addressed the problem. We explain how each piece of work has uses its flexibility

wisely (i.e., meets Challenge B) as part of this discussion.

2.1 Dimensionality: how abstractions can be flexible

In the design of any static analysis, the two key decisions are how to abstract the program store and

how to abstract the control-flow of a program. These are two distinct abstraction challenges that can be

tackled independently from one another. We discuss each of them in turn.

2.1.1 Store abstraction: abstracting locals, globals, and the heap

The program store holds the data written by the program during concrete execution. In modern

programming languages, there are three parts of the store that are important to consider: local variables,

global variables, and the heap. From the perspective of defining flexible abstractions specialized to a query,

the question is which variables and heap cells the abstraction should track precisely at each point in the

program. An ideal goal-directed analysis tracks as few variable and heap cells as possible in order to
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maintain the level of precision required to proved the safety of the query.

Abstracting local variables: the problem. Consider the simple program in Figure 2.2. The goal

query in this example is to prove that the asserted expression c != null can never evaluate to false. The

program has four local variables (a, b, c, and d). Tracking the data flow into all of the variables is potentially

expensive. The bar function must be analyzed to determine what values may flow into d, and all of the call

sites of foo must be analyzed to determine what values may flow into the a and b parameters. However, the

abstraction only needs to track the value of the c variable precisely in order to prove the safety of the query.

The value of all other local variables can be soundly represented with >, an abstract value representing

all possible concrete values. This avoids the cost of tracking irrelevant variables precisely, but without

sacrificing the precision required to prove the query safe.

1 void foo(Object a, Object b) {

2 Object c = new Object();

3 Object d = bar(a, b);

4 assert(c != null);
5 }

Figure 2.1: An abstraction that tracks only the relevant variable c precisely can expend less effort in proving
the query without sacrificing precision.

Abstracting local variables: previous approaches. Existing techniques are effective at finding

abstractions that track only the relevant locals. Counterexample-guided abstraction refinement (CEGAR)-

based analyses (e.g., [Ball et al., 2011; Clarke et al., 2000; Henzinger et al., 2002; Lal et al., 2012; Zhang

et al., 2013, 2014]) are probably the most popular form of goal-directed analysis and have an effective solu-

tion to this problem. The CEGAR approach is to use an coarse abstraction describing the set of predicates

that should be tracked precisely (initially, no predicates), then iteratively refine the abstraction in response

to counterexamples (i.e., abstract execution sequences that falsify the goal query). For the example in Fig-

ure 2.2, a CEGAR-based analysis would initially abstract all variables using >, but would quickly find a

counterexample to the query on the code path where the variable c holds the value null. The analysis would

block this counterexample by choosing a new abstraction where the variable c is tracked precisely. Under
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this more precise abstraction, the analysis can conclude that c is assigned to a non-null value at line 2 and

thus so the assertion at line 4 cannot fail.

The example in Figure 2.2 is quite simple and only required tracking a single predicate to prove

the query, but CEGAR-based analyses can easy handle more complicated examples involving hundreds of

relevant predicates via additional iterations of the abstraction refinement loop. In addition, more modern

CEGAR-based analyses (e.g., [Lal et al., 2012; Zhang et al., 2013, 2014]) use sophisticated counterexample

analysis techniques to learn many important predicates to track from a single counterexample.

Abstracting global variables: the problem. The problem of abstracting global variables in a goal-

directed fashion is similar to the problem of abstracting locals, but the mutability of global variables presents

an additional complication: for mutable variables, the analysis must think about the interval for which

the variable should be precisely tracked (that is, when should the analysis track the variable?). Though

local variables are also mutable in many languages (that is, the same local variable can be assigned to

multiple values), we can transform the program to static single assignment (SSA) [Cytron et al., 1991;

Rosen et al., 1988] form, a representation where each local variable is immutable in that it is assigned

exactly once in the program syntax. Converting to SSA form is inexpensive and can be performed in a

modular fashion for each procedure individually. However, SSA cannot solve the problem of reassignment

for global variables because (as their name indicates), globals do not belong to a single procedure and can

be reassigned anywhere.

When variables are immutable, it is trivial for the analysis to determine the interval in which the value

of a variable must be tracked precisely. Since the value of the variable is assigned once and never changes,

the variable can be tracked precisely for the entire program without worrying about incurring superfluous

expense from tracking irrelevant updates to the variable. If a variable is mutable, it can be updated multiple

times, but a goal-directed analysis only needs to abstract the variable precisely in the interval between the

last write to the variable before the query and the use of the variable in (or before) the query. Abstracting

the variable precisely for a longer interval adds cost to the analysis without improving precision.

To see the problem presented by mutability, consider the program in Figure 2.2. The program in this

example has two global variables, global1 and global2. Precisely abstracting the value of global1 is
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1 static int global1, global2;

2

3 void writeGlobal1() { global1 = 1; }

4

5 void foo() {

6 global1 = complicated();

7 global2 = complicated();

8 writeGlobal1();

9 assert (global1 == 1);

10 global1 = complicated();

11 }

Figure 2.2: An abstraction that tracks the relevant variable global1 precisely only during the interval
between the write to global1 at line 3 and the query at line 9 can expend less effort in proving the query
without sacrificing precision.
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important for proving the safety of the query at line 9, but global2 is irrelevant to the query. However,

precisely tracking global1 for the entire program is wasteful.The write to global1 in the writeGlobal1

is the last write that occurs before the query—the writes at lines 6 and 10 are irrelevant to the query. Line 6

is irrelevant because a different write always occurs before the read in the query, and line 10 is irrelevant

because the write always occurs after the query. Tracking these irrelevant writes is potentially expensive

because determining the value written requires analyzing the suggestively named complicated method.

Abstracting global variables: previous approaches. Most CEGAR-based analyses (e.g., [Ball

et al., 2011; Clarke et al., 2000; Lal et al., 2012]) uses eager abstractions that remain constant for a single

iteration of the main CEGAR loop. Though the abstraction changes on each iteration of the loop, techniques

that use eager abstraction do not change the abstraction within the loop. This lack of flexibility leads to the

problem described above: an CEGAR technique using eager abstraction will correctly determine the need

to track global1 and not global2, but it will do more work than necessary by tracking global1 for the

duration of the analysis rather than just the interval between the last write and the query.

The lazy abstraction technique introduced in the BLAST tool [Henzinger et al., 2002] offers a

clever solution to this problem. With lazy abstraction, the counterexample analysis works backward from

the point of failure (in this case, the query at line 9) until it finds a predicate that can block the path in the

counterexample (in this case, the write to global1 at line 3). The abstraction is then refined to track this

predicate, but (crucially) is refined only for the interval where the predicate is determined to be important

up to the end of the counterexample trace. For this example, lazy abstraction would correctly discover that

the global global1 only needs to be tracked precisely for a small part of the analysis and will thus avoiding

doing extra work by precisely analyzing the irrelevant writes at lines 6 and 10.

Abstracting the heap: the problem. Precisely, yet soundly abstracting the heap is perhaps the

most challenging problem in all of static program analysis. The problem is so challenging that that many

industrial-strength tools that are highly sophisticated in other respects do not even attempt to tackle this

problem. For example, Microsoft’s Clousot [Fähndrich and Logozzo, 2010] verifier for C# CodeContracts

resorts to unsound assumptions1 about aliasing configurations to preserve precision and tractability, and

1 Though it should be noted that these assumptions are often reasonable in practice [Christakis et al., 2015].
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the pioneering Astrée [Blanchet et al., 2003] analyzer cannot handle C programs with dynamic memory

allocation.

The heap adds complexity by stacking the aliasing problem on top of the previously described mu-

tability problem. The core of the aliasing problem is that a write to a single heap cell can update storage

referred to by multiple local variables. To demonstrate, the program in Figure 2.3 writes to the f field of Obj

instances stored in two different local variable a and b. If these local variables are not aliased (e.g., if we

replace the ... at line 3 with new Obj()), then the write at line 4 will update only the Obj instance stored in

b. However, if these local variables are aliased (e.g., if we replace the ... at line 3 with a), then the write at

line 4 will update the Obj instance referred to by both a and b.

The aliasing problem complicates goal-directed analysis by making it difficult to restrict reasoning

to a small portion of the heap relevant to the query. Although the assertion at line 5 of Figure 2.3 only

reads from a.f, this query cannot be proven safe by reasoning about a.f in isolation—the possibility that

a and b may alias forces us to track writes to b.f as well. Note that if we replaced reads/writes of a.f with

reads/writes of a local or global variable, this problem would disappear because a local/global variable can

only be updated by writing to the variable of that name. Aliasing allows the programmer to give multiple

names to the same storage, which challenges a sound analysis by forcing it to consider many possible

associations between names and storage locations.

1 Obj a = ...

2 a.f = 1

3 Obj b = ...

4 b.f = 0

5 assert(a.f != 0)

Figure 2.3: The aliasing problem. If a and b are not aliased, the assertion at line 5 can be proven safe.
However, if a and b may alias, then the assertion cannot be proven safe.

Abstracting the heap: previous approaches. Predicate abstraction-based CEGAR analyses like

SLAM [Ball et al., 2011] and BLAST [Henzinger et al., 2002] have focused on analyzing C device driver

programs that manipulate local and global variables in complex ways, but make minimal use of the heap.
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These approaches resolve aliasing using coarse may-alias analyses and are known to struggle with scalability

of object-oriented programs that use the heap heavily. The problem is that predicate abstraction is not well-

suited for concisely expressing aliasing constraints: the analysis must learn and track explicit inequality

predicates between each pair of local variables whose dis-aliasing is important for proving safety of the

query. The number of inequality predicates that must learned can be exponential in the number of input

pointer variables, hampering scalability (see [Beckman et al., 2008], Figure 4 for a detailed example).

Recent Datalog-based CEGAR approaches [Zhang et al., 2013, 2014] focus specifically on the prob-

lem of efficiently finding minimal abstractions just precise enough to prove the safety of a query. The

state-of-the-art strategy of [Zhang et al., 2014] generalizes a single counterexample found using a particular

abstraction to eliminate all abstractions that will fail for the same reason from consideration, then selects

the cheapest remaining abstraction in the family to try next using MAXSAT. This approach handles aliasing

much more efficiently than classical predicate abstraction-based approaches. The authors demonstrate that

their technique enables a goal-directed variant of the groundbreaking typestate analysis of [Fink et al., 2008]

that requires careful reasoning about aliasing for precision.

However, this more tractable handling of the heap comes at the cost of being less precise than classical

approaches (as we will discuss in the next subsection): predicate abstraction-based approaches to CEGAR

(e.g., [Ball et al., 2011; Henzinger et al., 2002; Lal et al., 2012]) are almost always path-sensitive, whereas

Datalog-based approaches have not yet been applied to the problem of selecting minimal path-sensitive

abstractions.

Summary. In summary, all CEGAR-based techniques implement effective flexible abstractions for

local variables. Lazy abstraction [Henzinger et al., 2002] addresses the mutability problem introduced by

abstracting global variables, but is not flexible enough to abstract the heap in a way that handles aliasing

effectively. Newer Datalog-based approaches to CEGAR handle aliasing in a scalable fashion, but sacrifice

path-sensitivity that older CEGAR techniques can provide. No existing goal-directed approach has the

flexibility to both abstract the heap in a scalable fashion and maintain path-sensitivity.
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2.1.2 Control-flow abstraction: selecting path-, flow-, and context-sensitivity policies

The control-flow of a program dictates what commands are executed and in what order. To avoid

tying ourselves to any particular programming language, let us think of the control-flow of a program as

being representing by a control-flow graph where nodes are commands and a directed edge from node c1 to

node c2 means that command c2 may execute after command c2. The analysis task is to find abstract stores

labeling each edge that overapproximate the concrete stores reachable at that program point. From the

perspective of defining flexible abstractions specialized to a query, the question whether the analysis should

allow a disjunction of abstract store at each program point and (correspondingly) how many disjuncts to

allow. An ideal goal-directed analysis will allow as few stores as possible at each program point while still

retaining sufficient precision to prove the safety of the query.

There are essentially three program constructs that might necessitate allowing multiple abstract stores

at a given program point: procedure calls, command ordering, and conditionals. The commonly used static

analysis terms for introducing additional abstract stores in response to each of these constructs (respectively)

are context-sensitivity, flow-sensitivity, and path-sensitivity. We explain the precision benefits of each *-

sensitivity and discuss how flexible existing goal-directed approaches are with respect to adding *-sensitivity

for a particular query.

Context-sensitivity: the problem of abstracting procedure calls. Context-sensitivity refers to

how the analysis abstracts the call stack of the concrete program under analysis. In concrete execution, the

call stack allows the program to remember which call site that it entered the current procedure from so it can

return to that same call site once it finishes executing the current procedure. In static analysis, we can make

the analysis less expensive by abstracting the call stack less precisely. A fully context-insensitive analysis

only needs to analyze each procedure once, whereas a fully context-sensitive analysis needs to analyze a

procedure in each of its calling contexts.

Context-sensitivity comes in different varieties depending on how distinct calls to the same procedure

are distinguished (that is, what the “contexts” are). The two most commonly used varieties are call site or

call string-sensitivity [Sharir and Pnueli, 1981] (in which calls to the same procedure are distinguished if
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they occur at different syntactic call sites) and object or allocation site-sensitivity [Milanova et al., 2002,

2005a] (in which calls to the same procedure are distinguished if they have different receiver objects). We

will focus primarily on call site-sensitivity in our discussion, but we refer the reader to two excellent surveys

on pointer analysis [Smaragdakis and Balatsouras, 2015; Sridharan et al., 2013] for further discussion of

allocation site-sensitivity.

To understand the importance of call site-sensitivity for precision, consider performing a flow-insensitive

pointer analysis on the example in Figure 2.4. Proving the safety of the assertion at line 8 requires call-site

sensitivity to distinguish the calls to id at lines 6 and 7. Without using call site-sensitivity, the analysis will

imprecisely conclude that any call to id can return either allocation site A1 or allocation site A2, which

means that the assertion at line 8 reduces to proving { A1, A2 } 6= { A1, A2 }, which cannot be done.

If the analysis creates separates contexts for each call to id (one for the call site at line 6 and one

for the call site and line 7), then the analysis can conclude that only allocation site A1 flows to a and only

allocation site A2 flows to b. Using this more precise abstraction forces the analysis to analyze id twice

instead of just once, but it allows it to prove the assertion at line 8.

1 static Object id(Object o) { return o; }

2

3 void foo() {

4 Object x = new Object(); // allocation site A1
5 Object y = new Object(); // allocation site A2
6 Object a = id(x)

7 Object b = id(y)

8 assert(a != b)

9 Object c = new Object()

10 assert(a != c)

11 }

Figure 2.4: Call site-sensitivity on the calls to id is required to prove the assertion at line 10, but no call
site-sensitivity is required to prove the assertion at line 8.

Context-sensitivity: previous approaches. For most analysis clients, a fully context-insensitive

abstraction is too imprecise (as we saw in the example above), whereas full context-sensitivity is completely

intractable. Because of this problem, significant research effort has focused on identifying limited forms
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of context-sensitivity that make a reasonable tradeoff between precision and scalability. The most common

way to accomplish this is to parameterize the analysis by a constant k and perform k-context-sensitive2

or k-object-sensitive analysis [Milanova et al., 2002, 2005a]. Here, the parameter k roughly corresponds

to the number of concrete call stack frames (note that frames may be abstracted as call sites with call site-

sensitivity, receiver objects with object-sensitivity, or even receiver types with type-sensitivity [Smaragdakis

et al., 2011]) the analysis abstracts, or how “deep” the context-sensitivity goes.

Higher values for k tend to increase precision, but hurt scalability as the cost of the analysis can grow

exponentially with k. In many cases, analysis becomes intractable for reasonably sized programs with k ≥

2. Conventional wisdom states that some call sites need more than 2-context-sensitivity for precise analysis,

but many do not. Parameterized context-sensitivity (originally introduced by Milanova et al. [Milanova

et al., 2002]) introduces a framework to take advantage of this understanding by using different k values

at different call sites. This increase in flexibility provides a more fine-grained precision/scalability tradeoff

than simply varying k. Liang et al. [Liang et al., 2011] demonstrate that this conventional wisdom does

indeed hold (and as a corollary, that an analysis uses this flexibility cleverly can reap significant scalability

benefits): their results indicate that applying a precise context-sensitivity policy at 0.4-2.3% of call sites

gave equal precision to applying the policy uniformly across all call sites, but takes as little time as using

k=0 at all call sites.

In a goal-directed setting, we can be more flexible still by only using precise context-sensitivity call

sites that matter for a particular query. For the example in Figure 2.4, the assertion at line 8 requires call site-

sensitivity on the calls to id (as we have already explained), but the assertion at line 10 does not require any

context-sensitivity. Recent work in goal-directed analysis has focused on automatically recognizing such

facts and refining the abstraction to add context-sensitivity exactly where it is required. The demand-driven

points-to analysis of Sridharan et al. [Sridharan and Bodı́k, 2006] adds context-sensitivity useful for proving

the safety of downcasts in Java programs. The previously mentioned Datalog-based CEGAR technique of

Zhang et al. [Zhang et al., 2014] is quite effective at adding both call site-sensitivity and object-sensitivity

2 This is frequently called k-CFA [Shivers, 1991] in the functional static analysis community. [Might et al., 2010] gives a
very clear explanation of the connection between notions of context-sensitivity in the object-oriented and functional static analysis
communities.
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required to prove a flow-insensitive points-to query (such as the safety of a downcast). As we have explained,

their approach converges on the cheapest abstraction in the chosen space of abstractions (in this case, the

space of k-context- or k-object-sensitive abstractions for all k) precise enough to prove the query.

The approaches we have mentioned thus far refine flow-insensitive pointer analyses with the call site-

or object-sensitivity required to prove a query. Impact pre-analysis [Oh et al., 2014] is unique in that it

enhances a flow-sensitive abstract interpretation (in their case, an interval analysis for proving the absence

of buffer overflows in C) with the call site-sensitivity required to prove a set of queries.

Flow/path-sensitivity: the problem of abstracting instruction ordering and conditionals. A

flow-sensitive analysis visits instructions in the order dictated by the transition relation of the program. By

contrast, a flow-insensitive analysis abstracts away all control flow and assumes that statements can execute

any number of times and in any order. Flow-insensitive abstraction tends to be less expensive than flow-

sensitivity because if the ordering of commands does not matter, a single abstract store can overapproximate

the concrete state at all program points. A flow-sensitive abstraction needs a different abstract store at each

program point in order to precisely represent the changes resulting from each instruction.

To see the difference in precision between a flow-insensitive abstraction and a flow-sensitive abstrac-

tion, consider the example in Figure 2.5. The assertion at line 4 can be proven safe using flow-insensitive

reasoning because the fact x > 0 is a flow-insensitive invariant that holds at every program point. Even

though this abstraction cannot capture the fact that the assignment of the global variable x at line 5 occurs

after the assertion at line 4, this imprecision does not stop the analysis from proving the assertion because

the assignment preserves the key invariant x > 0.

On the other hand, the assertion at line 4 cannot be proven-safe with flow-insensitive reasoning.

Though fact y > 0 holds at the program point of the assertion, it does not hold at every program point (in

particular, it does not hold after the assignment to y at line 6). Thus, flow-sensitive reasoning is required to

prove the safety of this assertion.

Path-sensitive abstraction is a straightforward extension to flow-sensitive abstraction to add additional

precision with respect to conditionals. In order to keep a single store at the program point following a con-

ditional branch, a flow-sensitive and path-insensitive analysis must join the values from the true branch of
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1 static int x = 3, y = 3;

2

3 assert (x > 0)

4 assert (y > 0)

5 x = 1

6 y = 0

Figure 2.5: An example demonstrating the differences between flow-insensitive and flow-sensitive abstrac-
tion. The assertion at 4 can be proven safe using flow-insensitive reasoning, whereas the assertion at line 4
requires flow-sensitivity to prove safe.

the conditional and the false branch of the conditional. This can lose precision in the case that remember-

ing which branch of the conditional is associated with which abstract state is important. A path-sensitive

abstraction can maintain this precision by keeping a disjunction of abstract stores to represent the results of

each conditional branch.

For example, consider the program in Figure 2.6. In order to prove this program safe, the analysis

must understand that on every program path where the assert command at line 4 is executed, the false branch

of the first conditional at line 3 is also executed. If the analysis joins the paths from the then and else branch

of the conditional, it will be uncertain whether the value of y is 2 or 3 at the assertion. A path-sensitive

abstraction can keep two stores after the first conditional and understand that only the store where y holds

the value 3 will enter the true branch of the second conditional and execute the assert command.

1 x = * // nondeterministic choice
2 if (x == 0) y = 2

3 else y = 3

4 if (x != 0) assert (y == 3)

Figure 2.6: An example demonstrating the need for path-sensitive abstraction. The assertion at line 4 can
only be proven safe if the analysis understands the relationship between the values of x and y established by
the conditional structure of the program.

A flow-sensitive analysis can easily become a more precise path-sensitive analysis by choosing to

keep a case split after each conditional branch rather than performing a join. However, this additional

precision comes at a significant cost—the number of case splits than the analysis must perform grows ex-
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ponentially with the number of conditionals in the program. The analysis can try to curb this explosion by

keeping case splits for some conditionals and performing joins for others based on heuristics (for example,

see Section 6.2 of [Mauborgne and Rival, 2005]), but in general it is difficult to predict a priori which

conditionals will be important for precision in a whole-program setting.

Path/flow-sensitivity: previous approaches In a goal-directed setting, we would ideally apply

expensive flow- and path-sensitive abstraction only where the precision of these more expensive kinds of

reasoning is required to prove the query. The predicate abstraction-based CEGAR approaches that we have

already discussed [Ball et al., 2011; Henzinger et al., 2002; Lal et al., 2012] are quite effective in deciding

where to apply path-sensitive reasoning. When the analysis decides to track a predicate that is used in

a conditional expression, the analysis will keep a case split for that conditional but will join paths from

conditional branches whose expressions are not tracked by the analysis. If the counterexample analysis is

clever enough to identify a small number of relevance conditional predicates, then this is approach works

well for adding valuable precision while maintaining tractability.

Early CEGAR tools [Ball et al., 2011; Clarke et al., 2000; Henzinger et al., 2002] handled proce-

dure calls by inlining the body of each procedure call and thus were fully flow- and context-sensitive. This

approach works well enough for small device driver programs like the ones considered by these tools, but

does not scale well to larger programs with thousands of procedure calls. Modern CEGAR tools like COR-

RAL [Lal et al., 2012] deal with this problem by making the policy for inlining procedures a part of the

abstraction. By default, CORRAL inlines no procedures and instead replaces each procedure call with a

coarse flow-insensitive summaries describing the variables and heap cells that the procedure may modify.

As part of abstraction refinement in response to counterexamples, CORRAL uses stratified inlining to select

procedures to inline that may be relevant to the query and will not cost the analysis too much to analyze

precisely. This allows the analysis to vary flow-sensitivity as well as path-sensitivity because all inlined

procedures are treated flow-sensitively, all non-inlined procedures are treated flow-insensitively (using their

summaries), and conditionals in the inlined procedures are treated path-sensitively if their conditional ex-

pressions involve predicates tracked by the analysis.

Though CORRAL’s inlining strategies provide additional flexibility that increases scalability over pre-
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vious CEGAR approaches, it still struggles to scale to large programs (the results from [Lal et al., 2012] only

consider programs up to 2000 lines of code). One problem is that the varying flow-sensitivity of CORRAL

is not flexible enough to handling deep call chains in a tractable way. For example, say that procedure main

calls procedure foo, foo calls another procedure bar, and bar must be analyzed flow-sensitively to prove

the query but foo need not be analyzed flow-sensitively. CORRAL’s inlining-based approach will need to

inline foo in order to have to choice to inline bar, so it cannot choose to analyze bar precisely without

also analyzing foo precisely. In real-world programs with call chains hundreds of calls long, this forces

lots of unnecessary (and expensive) flow-sensitive analysis to perform flow-sensitive analysis of a relevant

callee deep in the chain, hampering scalability. Recent work on checking deep assertions [Lal and Qadeer,

2014] outfits CORRAL with a program transformation that adds extra control-flow edges from the program

entrypoint to each method containing an assertion that is to be posed as a query to the analysis. Though this

makes the inlining approach slightly more flexible and improves the results of CORRAL, it does not solve all

of the problems with inlining. For example, the transformation will not help in the case that two “sibling”

procedures (that is, procedures without a caller/callee relationship) in the separate deep call chain both need

to be analyzed precisely.

Finally, FISSILE type analysis [Coughlin and Chang, 2014] presents an intriguing approach to vary-

ing coarse flow-insensitive analysis and precise path/flow-sensitive analysis. The idea of FISSILE is to

check almost-everywhere invariants that hold at almost every program point by performing flow-insensitive

type checking by default, switching to a precise flow/path-sensitive separation logic-based analysis when a

flow-insensitive type invariant is violated, then switching back to type checking once the precise analysis

proves that the invariant has been restored. Though FISSILE is not a goal-directed analysis in the sense it

only tries to resolve specific queries (like most of the analyses we have discussed thus far), it is goal-directed

in the sense that the switch to a more precise analysis is prompted by the violation of a type invariant. When

a type invariant is violated, FISSILE starts a precise flow-sensitive analysis at the beginning of the basic

block or procedure where the type invariant was violated.

Like CORRAL, the FISSILE approach to control-flow abstraction is not fully flexible. FISSILE only

performs intraprocedural path/flow-sensitive analysis and thus must summarize callees using their types.
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In addition, invariants beyond the global type invariant cannot be maintained across multiple sessions of

path/flow-sensitive analysis. If a fact not captured in the type invariant is established in one code region and

used in another, FISSILE will not be able to preserve the fact and will lose precision while analyzing the

second region.

Summary. Most work on flexible control-flow abstraction has focused on varying the context-

sensitivity policy used at different call sites (e.g., [Oh et al., 2014; Sridharan and Bodı́k, 2006; Zhang et al.,

2014]). With the exception of the work of Oh et al. [Zhang et al., 2014], these works focus on refining

flow-insensitive analyses by adding selective context-sensitivity. However, the work of Oh et al. uses a

fixed flow/path-sensitivity policy and thus is inflexible along this dimension (they mention selective flow-

sensitivity as a topic for future work (Section 9)).

Classical predicate abstraction-based approaches to CEGAR (e.g. [Ball et al., 2011; Clarke et al.,

2000; Henzinger et al., 2002]) are effective at varying path-sensitivity to meet client needs, but not flow-

sensitivity. The exceptions are CORRAL [Lal and Qadeer, 2014; Lal et al., 2012] and FISSILE [Coughlin

and Chang, 2014], which can vary flow-sensitivity by using inlining and interleaved symbolic analysis/type-

checking (respectively), but neither approach can vary its flow-sensitivity in a fine-grained or fully general

way. CORRAL’s ability to vary call site-sensitivity suffers from the same weaknesses as its ability to vary

flow-sensitivity, as it is also implemented via inlining.

No existing approach can vary both context-sensitivity and flow/path-sensitivity in a fine-grained

(e.g., command-level rather than procedure-level) fashion.

2.2 Granularity: when abstractions can change

The previous section (Section 2.1) focused on how abstractions can vary in order to be flexible. In

this section, we discuss another aspect of flexibility: when or how often the abstraction can change. We

refer to an abstraction that can be changed frequently as fine-grained an abstraction that can be changed

infrequently as coarse-grained. Fine-grained abstractions are more flexible (and thus more desirable from

our point of view) because they give the analysis more leeway to specialize to the needs of a query.

Most previous works implement a coarse-grained form of flexible abstraction by expanding a single-
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pass, single abstraction analysis to a staged analysis with a different abstraction at each stage. Rather than

fixing an abstraction and running the analysis a single time, a staged analysis runs the analysis repeatedly

and uses a more precise abstraction in each pass. The analysis decides how to refine the abstraction based

on the failure of the analysis to prove queries in the previous pass. In what follows, we will explain how

specific analyses have utilized staging and discuss the strengths and weaknesses of each approach.

Staged analyses with fixed abstractions. The most basic kind of staging uses a fixed number of

stages with a fixed abstraction at each stage (e.g., [Bodden et al., 2007; Fink et al., 2008; Sinha and Wang,

2010]). The idea is to use cheaper, less precise abstractions in earlier stages to prove the safety of “easy”

queries. Queries that cannot be proven safe by early stages are passed on to progressively more precise and

more expensive stages. In some cases, the last phase of the analysis emits runtime checks and the earlier

static analysis stages serve to prune the number of runtime checks that must be emitted (e.g., [Chugh et al.,

2009; Guarnieri, 2010]).

Though staged analysis with fixed abstractions is more flexible than a fixed single-stage analysis, the

approach leaves much to be desired in terms of flexibility. The abstraction used in each stage is fixed and

thus cannot change to meet the needs of a particular query.

Staged analyses with abstraction refinement. An improvement on basic staged analysis is to

refine the abstraction used at stage n+ 1 based on the failure of the abstraction to prove queries at stage n

(as opposed to fixing the abstraction used at each stage). Successful goal-directed analysis strategies such

as CEGAR, [Ball et al., 2011; Clarke et al., 2000; Henzinger et al., 2002; Lal et al., 2012; Zhang et al.,

2014], impact pre-analysis [Oh et al., 2014], and introspective analysis [Smaragdakis et al., 2014a] can be

viewed in this way. CEGAR is a staged analysis in which the number of stages and the way the abstraction is

refined at each stage is driven by a counterexample consisting of the failure to prove a query in the previous

stage. Both impact pre-analysis and introspective analysis perform two-stage analyses whose first stage

is an imprecise analysis designed to assess where context-sensitivity will be important for precisions [Oh

et al., 2014] or will be intractably expensive [Smaragdakis et al., 2014a]. This pre-analysis is used to select

a context-sensitivity policy to be used in abstraction of the more precise second phase.

The problem with staged abstraction refinement are that the abstraction only changes between stages,
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so it is not flexible enough to exploit opportunities where changing the abstraction during a stage leads to

a better tradeoff. Lazy abstraction [Henzinger et al., 2002] comes the closest to addressing this problem

by refining its abstraction for a restricted interval of the analysis (rather than the whole thing), but is not a

general solution. Lazy abstraction works well for simple goal-directed store abstraction (locals and globals),

but has not been shown to work well for the heap. Lazy abstraction is effective for goal-directed control-

flow abstraction for path-sensitivity in the same way as all CEGAR techniques, but cannot vary its flow- or

context-sensitivity.



Chapter 3

Overview: flexible abstraction via goal-directed coarsening

In this chapter, we present an overview of goal-directed abstraction coarsening and demonstrate how

the flexibility of this approach allows us to create precise and scalable analyses. We first explain our tech-

nique and its philosophy at a high level (Section 3.1). We then present a challenging real-world example

(Section 3.2) and show how it can be effectively verified using goal-directed coarsening (Sections 3.2.2 and

3.2.3). In the process of explaining the example, we highlight three key contributions of this dissertation:

• A framework for goal-directed control-flow abstraction via jumping. The framework is parametric

in (a) a sound store abstraction and (b) a relevance relation that determines when the analysis

performs jumps. We will explain the theory behind this framework in Chapter 5, but in this chapter

we focus on showcasing an effective instantiation of the framework in action.

• A mixed symbolic-explicit store abstraction that precisely and efficiently represents heap depen-

dencies by combining backward separation logic analysis with points-to analysis (as formalized

in Chapter 4). The example in this chapter instantiates (a) with this store abstraction and demon-

strates why such a store abstraction is needed to analyze object-oriented programming languages

that make heavy use of the mutable heap.

• A strategy for using the flexibility of jumping wisely in order to enable tractable analysis of event-

driven Android programs (to be fully described in Chapter 7). This chapter instantiates (b) with

this strategy and shows that jumping using this strategy significantly increases the scalability of the

analysis without losing precision.
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Portions of Sections 3.2.1 and 3.2.3 previously appeared in a paper draft currently under submission

entitled “Selective Control-Flow Abstraction via Jumping”, which was co-authored by Bor-Yuh Evan Chang

and Manu Sridharan.

3.1 Philosophy of goal-directed coarsening

We claim building an analysis that is goal-directed by virtue of coarsening is a very natural approach

because:

Proposition 3.1.1 Overapproximate coarsening is a fundamental part of any abstract interpretation.

Sound overapproximation is the cornerstone of static analysis via abstract interpretation and is thus very

well understood. In order to overapproximate, all static analyses must coarsen (intentionally lose precision)

in order to handle constructs like loops and recursion. Abstract interpretation-based analyses coarsen by

using join and widening operators [Cousot and Cousot, 1977]. These operators are coarsenings that are

extremely important because they preserve the soundness and termination of the analysis. Our goal-directed

coarsening approach expands the usage of coarsening beyond the typical joining at conditions and widening

at loop heads to give the analysis the flexibility to intentionally lose precision that is (a) not likely to prove

useful in resolving a particular query and/or (b) likely to lead to scalability issues.

The basic idea of our approach is that given a query (Q, `) representing an overapproximation of

some undesirable concrete program stores at a program point `, our analysis works backward from the query

maintaining an abstract state that is a necessary [Cousot et al., 2013] precondition for the bad concrete stores

to occur at `. If our analysis can prove that (false, `i) is a necessary precondition for Q at a set of program

points `i that (together) control-dominate the initial program point `, then no concrete trace can end in a

state in the concretization of Q (and thus the bad concrete states are never reachable at runtime). Thus, the

goal of our analysis is to refute the query (prove its safety) by showing that false is a necessary precondition

at each `i in the manner described above. This analysis is a form of proof by contradiction: it computes an

over-approximation of the backward reachable states from the query (Q, `) and refutes the query when it has

proven the unreachability of (Q, `). At any time during backward propagation of the query, the analysis can
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coarsen the abstraction by weakening the current query, as we will explain (and justify) shortly.

3.1.1 The importance of necessary preconditions

The use of necessary preconditions rather than sufficient preconditions is crucial for enabling our

coarsening approach. Other backward analyses for proving the safety of a query or procedure (e.g., [Bar-

nett and Leino, 2005; Blackshear and Lahiri, 2013; Dijkstra, 1976; Flanagan and Saxe, 2001; Flanagan

et al., 2002a]) commonly work by computing the weakest sufficient precondition [Dijkstra, 1976] for the

safety of query, a superficially similar, but fundamentally different process. Given a query representing an

overapproximation of bad concrete program states, these approaches typically negate the query (yielding an

abstract state whose concretization contains good concrete states) and propagate a sufficient precondition for

reaching the good states. Thus, these approaches compute a sufficient precondition for the unreachability

of the bad concrete states, whereas our approach computes a necessary precondition for the reachability of

the bad concrete states.

To intuitively see the difference between sufficient and necessary preconditions, consider the incom-

plete Hoare triple [Hoare, 1969] “{ ? } x := nondet() { x = 5 }”, where nondet() represents a nondeter-

ministic choice, and ? represents a precondition to be filled in. If we want ? to be a sufficient precondition,

our only choice is false because no concrete state will definitely transition to a state in the concretization of

x = 5 by executing the command x := nondet() (because the nondeterminism may choose any value for

x). On the other hand, if we want ? to be a necessary precondition, we can only choose true. The reason

is that any concrete state can possibly transition to a state in the concretization of x = 5 by executing the

command x := nondet() (again, because the nondeterminism may choose any value for x).

As a final illustration of the difference between sufficient and necessary preconditions, let us consider

the statements of soundness for each approach. Let σ represent concrete states, σ̂ represent abstract states,

and γ represent a concretization operator mapping an abstract state to a set of concrete states. Assume that

we have a judgment 〈σ ,c〉 ⇓ σ ′ for concrete execution of a command c and abstract predicate transformers

(that is, functions that take an (command, abstract state) pair as input and produce an abstract state as output)

sp(c, σ̂) and np(c, σ̂) for computing the sufficient and necessary (respectively) preconditions for an abstract
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state σ̂ with respect to the command c. Think of the σ̂ ′ as the initial query for the analysis. Now, the

soundness conditions for these abstract transformers can be stated as:

“If 〈σ ,c〉 ⇓ σ ′ and σ ∈ γ (sp(c, σ̂ ′)), then σ ′ ∈ γ (σ̂ ′)”. (Sufficient precondition soundness)

“If 〈σ ,c〉 ⇓ σ ′ and σ ′ ∈ γ (σ̂ ′), then σ ∈ γ (np(c, σ̂ ′))”. (Necessary precondition soundness)

Though both predicate transformers work backward from the original query σ̂ ′, the soundness condition

satisfied by the sufficient precondition transformer is a “forward” guarantee about the concrete post-state

σ ′, whereas the soundness condition satisfied by necessary preconditions is a backward guarantee about the

concrete pre-state σ . Note that when np(c, σ̂ ′) = false (that is, false is a necessary precondition for the initial

query), we can conclude that every concrete state in γ (σ̂ ′) is unreachable because γ (false) = /0. As explained

in the beginning of Section 3.1, this fact is the logical basis for our approach to goal-directed analysis.

The advantage of using necessary preconditions rather than sufficient preconditions is that overap-

proximate coarsening preserves the necessity of a necessary failure condition (that is, it is always sound to

overapproximate a necessary condition), whereas underapproximation preserves the sufficiency of a suffi-

cient safety condition. It is easy to see this by consulting the soundness conditions above: logically weak-

ening np(c, σ̂ ′) via overapproximation makes it easier to satisfy the soundness condition for np, whereas

logically strengthening sp(c, σ̂ ′) via underapproximation makes it easier to satisfy the soundness condition

for sp (we also refer the reader to Section 7 of [Logozzo et al., 2014] for further discussion of this issue).

Proposition (3.1.1) says that overapproximating necessary conditions is easy because coarsening is a part

of every analysis, whereas underapproximation is an intriguing but less well-understood topic. For weakest

precondition-based analyses, the problem of underapproximation is so challenging that most analyzers han-

dle loops by bounded unrolling of the loop or by requiring manually annotated loop invariants. By contrast,

our technique can use standard overapproximation techniques to implement coarsening. Logically weaken-

ing a necessary precondition (e.g., by dropping conjuncts φi of a CNF formula φ1 ∧ φ2 ∧ true or dropping

sub-heaps Mi of a separation logic formula M0 N M1 N true) always produces another necessary precondition

and thus provides a very natural basis for coarsening.
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3.1.2 Coarsening versus refinement

Most approaches to goal-directed analysis are based on abstraction refinement rather than coarsen-

ing. These approaches typically cannot change their abstractions on-the-fly during analysis; as previously

explained in Section 2.2, they are typically staged analyses that can only change abstractions between stages

(and a stage is usually a full run of the analysis on the entire program).

Clearly, changing the abstraction on-the-fly is a desirable goal because it allows the analysis to adjust

the abstraction to the needs of the query in a more fine-grained way. So why do refinement-based approaches

choose not to do it? There is obviously no definitive answer to this question, but we believe that the core

reason is that it is difficult to justify the soundness of making an abstraction more precise during analysis

(rather than between stages). Approaches that do switch to a more precise abstraction during analysis

(e.g., [Coughlin and Chang, 2014; Khoo et al., 2010]) require intricate and abstraction-specific “handoff”

proofs that show how soundness preserved when switching to a more precise abstraction. Since these proofs

must be done manually for each abstraction and are difficult to generalize, we posit that it is frequently

easier to start an entirely new analysis with the refined abstraction, as CEGAR and other staged abstraction

refinement approaches do. However, doing so sacrifices the benefits that changing the abstraction on-the-fly

can bring.

By contrast, justifying the soundness of changing to a less precise abstraction during analysis is a

fundamental part of every analysis, as stated in Proposition 3.1.1. Changing an abstraction on-the-fly via

coarsening is obviously sound and is simple to do with machinery already required for analysis. In fact, the

coarsening and on-the-fly aspects of our approach naturally complement one another. It would be foolish to

mirror the structure of staged abstraction refinement by using a precise abstraction for an entire stage, then

coarsening the abstraction after it “failed to scale”—the first stage would either already be precise enough

to prove the query safe (if it can be proven), or the first stage would never finish! The ability to make the

decision to coarsen on-the-fly is necessary in order for our approach to be practical in the first place.
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3.1.3 Why coarsen when we don’t need to?

As we claimed in our discussion of Proposition 3.1.1, the undecidability of program analysis in gen-

eral forces analyses to coarsen in the presence of constructs like loops and recursion in order to ensure

termination and maintain soundness. Coarsening is typically seen as a necessary evil of analysis that forces

the analysis into unwanted false alarms. Losing precision when the analysis is not strictly required to thus

seems like a bad idea.

For analyses that used fixed abstractions, this view is quite reasonable. The analysis designer typically

picks an abstraction just precise enough to reason about the property of interest, so losing precision for any

non-essential reason risks negating the effectiveness of the analysis tool. However, our philosophy in goal-

directed coarsening is to start off with an abstraction that is as precise as possible—one that we expect is

more than precise enough to refute most queries of interest. Since we work backward from the query (rather

than forward from the beginning of the program to the query), it is often the case that we find the information

we need to refute the query by exploring just a few instructions backward from the query or a few callers

backward from the start procedure. In such cases, we do not need to coarsen at all because we do not even

have to analyze enough code to reveal the expensive nature of our precise abstraction. However, in the cases

that we cannot refute the query quickly, we view coarsening as a useful (indeed, essential) tool that allows

us to trade off precision for scalability1 .

As a concrete example of the kind of precision/scalability tradeoffs that we wish to make with coars-

ening, consider the simple Java example in Figure 3.1. The goal here is to prove the safety of the assertion

at line 4. Observe that there are many different reasons why this assertion might be safe (for conciseness,

let p(n) represent the property “n.tag = 1 =⇒ n.value instanceof T” for some Node instance n):

(1) The assertion is safe if the first element of list lst satisfies p(n).

(2) The assertion is safe if lst is always null at line 2 and throws a NullPointerException that prevents the

assertion from being reached.

1 Note that coarsening can cause the analysis to be both less precise and less scalable in general if too much precision is lost,
but our focus here is on carefully choosing coarsenings that allow us to make the desired precision-for-scalability tradeoff.
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1 void foo(List lst) {

2 Node x = lst.getFirst();

3 if (x.tag == 1) {

4 assert (x.val instanceof T);

5 }

6 }

Figure 3.1: A simple example that can be proven safe using many different strategies.

(3) The assertion is safe if x is always null at line 3 and throws a NullPointerException that prevents the

assertion from being reached.

(4) The assertion is safe if no instance of class Node has a tag field that holds the value 1.

(5) The assertion is safe if every element n in list lst satisfies p(n).

(6) The assertion is safe if every instance n of class Node satisfies p(n).

Each of these reasons represents a strategy that an analysis could take in attempting to prove the

query safe. A fully precise analysis would need to account for each possibility or else risk failing to prove

the query safe.

Though an analysis would ideally be able to quickly explore any and all proof strategies, in reality

we may be forced to abandon some strategies in order to scale. Our approach is designed to deal with these

harsh realities: we choose a maximally precise initial abstraction that enables as many proof strategies as

possible, but also specify when the analysis should abandon strategies by coarsening the abstraction in a

way that rules out the strategy. This allows us to leverage the fact that in practice, some proof strategies are

much more likely to be (a) expensive in that they incur scalability problems or (b) impractical in that they

fail to prove the query safe.

For example, strategy (1) falls into category (a) because it requires a very precise abstraction capable

of reasoning about individual elements in a container of unbounded size (e.g., abstractions used in shape

analysis [Chang and Rival, 2008; Sagiv et al., 2002]). Such abstractions are typically quite expensive and

can lead to scalability problems. Strategies like (2)–(3) fall into category (b) because real programmers do
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not frequently try to prevent a crash by guarding it with another crash that is certain to occur! In addition, this

kind of proof strategy is likely to be expensive (i.e., fall into category (a) as well) because every dereference

that occurs before the query can potentially block the reachability of the query by throwing an exception.

Strategy 4 also falls into category (b) because if the fact that this strategy attempts to prove were true, the

true branch of the conditional (line 4) would be dead code.

In contrast, strategies (5)–(6) are much more reasonable from both an expense and practicality per-

spective. Strategy (5) requires reasoning about universal container invariants, which is much less expen-

sive than reasoning about individual elements of a container (for example, generics in languages like C++

and Java allow programmers to express type invariants satisfied by each element of a container). Strat-

egy 6 is reasonable because real programmers frequently use class invariants [Parkinson] or object invari-

ants [Chang and Leino, 2005; Leino and Müller, 2004] that establish relationships like p(n) : “n.tag = 1

=⇒ n.value instanceof T”. In Chapter 6, we will present a goal-directed analysis that focuses on using

strategies like (5)–(6) to prove the safety of queries while ignoring other expensive and impractical strate-

gies. Chapter 7 presents a different analysis that limits the set of strategies it pursues based on the structure

of event-driven programs, and we will demonstrate this strategy in the example of Section 3.2.

Reasoning about the viability of proof strategies in this way is clearly somewhat domain- and query-

specific, but there are general principles in play here: strategies that real-world programmers use to reason

about safety are more likely to be useful, and simpler explanations for safety are frequently both less expen-

sive to reason about and more likely to be correct (i.e., Occam’s razor).

We can rule out bad strategies by coarsening the abstraction in a number of ways. For example,

we can rule out strategies like (1) by handling container writes using weak updates, and we can rule out

strategies (2)–(3) by dropping constraints on nullness of references (or by not adding such constraints in the

first place). Coarsening the abstraction in this way yields less abstract state for the analysis to track precisely

and can significantly increase scalability.

The need to coarsen to rule out bad strategies and isolate good ones reinforces the importance of the

two challenges of goal-directed analysis defined in Section 1.1: Challenge A (flexibility), and Challenge B

(practicality). If our abstraction is not flexible enough, we may not be able to coarsen in a way that rules
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out a bad strategy without also compromising a good strategy. On the other hand, even if our analysis is

maximally flexible in theory, we still need to be able to make good coarsening choices in order to rule out

bad strategies and achieve reasonable precision and scalability in practice.

3.2 Example: verifying dereference safety in event-driven Android applications

In this section, we present an example demonstrating the utility of goal-directed coarsening for ver-

ifying the absence of null dereferences in event-driven Android programs. We begin by motivating the

difficulty and importance of verifying dereference safety in Android (Section 3.2.1). We then walk through

the process of our analysis in trying to prove the safety of the dereferences at lines 7, 8, and 9 in Figure 3.2.

Only the dereferences at lines 7 and 9 can be proven safe; the dereference at line 8 is buggy (inspired by

a real-life bug2 that we found in the ConnectBot3 app). Proving the safety of the query at line 7 shows

how our mixed-symbolic explicit store abstraction can perform precise backward reasoning about the heap

without performing excessive case splits due to aliasing (Section 3.2.2). Proving the safety of the query

at line 9 demonstrates that control-flow abstraction via jumping allows us to soundly analyze event-driven

systems without reasoning about an intractable number of event orderings (Section 3.2.3).

3.2.1 Motivation: verifying dereference safety in Android

Null dereference errors (a Java NullPointerException, or NPE) are a major cause of failures in

Android applications. In a search of the commit logs of the ten open-source Android apps that we will later

analyze in Section 7.5, we found 738 distinct commits containing the string “NPE” or “null,” roughly 3%

of all commits. Further, a recent paper on Facebook’s INFER static analyzer reported that their internal

database of production Android app crashes contained many null dereference errors [Calcagno et al., 2015].

Such errors cause crashes that stop the app and degrade user experience. Unlike crashes in web application

code that can be fixed on the backend and pushed to the user when the page is refreshed, an app crash cannot

be fixed until (1) an update fixing the bug is released and approved by the app store, and (2) the user elects

2 https://github.com/connectbot/connectbot/pull/60
3 https://github.com/connectbot/connectbot
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class HostActivity extends onClickListener {

// in method HostActivity.<init>
1 ManagerService mService = null;
2 HostDatabase mHostDb = null;

MenuItem mLastItem;

MenuItem mSettingsItem;

void onCreate() {

ServiceConnection cxn =

3 new ServiceConnection() {

void onConnected(Service s) {

4 mService = (ManagerService) s;

}

}

bindService(..., cxn);

5 findViewById(...).setOnClickListener(this);
6 mHostDb = new Database();

}

void onCreateOptionsMenu(Menu menu) {

Icon last = Cache.getLastIcon();

if (last != null) {

mLastItem.icon = last;

} else {

mLastItem.icon = new DefaultIcon();

}

Icon settingsIcon = menu.settingsIcon;

mSettingsItem = complicated();

mSettingsItem.icon = settingsItem;

Icon lastIcon = mLastItem.icon;

7 lastIcon.setColor(...) // possible NPE?
}

void onClick(View v) {

8 Host host = mService.getHost(); // possible NPE?
9 mHostDb.saveHost(host); // possible NPE?

}

void onDestroy() {

10 mHostDb = null;
11 mService = null;

}

}

Figure 3.2: A simple Android app with two components (HostActivity and ServiceConnection) whose life-
cycles are shown in Figure 3.3. The programmer uses correct local reasoning to show that the dereference
at line 7 is safe and correct reasoning about the lifecycles to ensure that the dereference at line 9 is safe, but
mistaken assumptions about the lifecycle make the dereference at line 8 unsafe.
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HostActivity.<init>

onCreate

onResume

εonClick

onPause

onDestroy

ServiceConnection.<init>

onConnected

onDisconnected

Figure 3.3: Lifecycle graphs for the HostActivity and ServiceConnection classes of Figure 3.2.
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to download the update, a process that can take weeks or even months [Calcagno et al., 2015]. Below, we

discuss how subtleties of the Android app lifecycle can lead to null deference errors.

Bugs, safety, and lifecycles One reason that null dereferences in Android apps are easy to create

and difficult to reason about is the complicated Android lifecycle. Though most events within the lifecycle

of a single component are ordered, the lifecycles of different components can interleave arbitrarily and cause

unexpected behavior. As a concrete example, Figure 3.3 shows the lifecycle graphs of the HostActivity and

ServiceConnection classes from Figure 3.2. A directed edge from event e1 to e2 means that e1 must execute

before e2 is allowed to execute. The ε event represents a special “skip” event to soundly model the fact

that the user might not trigger user interaction events such as onClick. The edges between onClick and ε

model the fact that the user may click it an arbitrary number of times.

The HostActivity and ServiceConnection components have independent lifecycles, but (as we can see

from the code in Figure 3.2) they share the mService object. This leads to a null dereference at line 8 in the

case that the onClick event fires before the onConnected event (since mService will still be null). This

bug is due to faulty reasoning about the event-driven lifecycle of Android—the developer does not account

for all possible interleavings between the HostActivity and ServiceConnection lifecycles.

On the other hand, the dereference at line 9 is safe because of ordering constraints in the HostActivity

lifecycle. The developer delays initializing the mHostDb field to the expensive Database object until line

6 of the onCreate callback to avoid incurring the memory footprint of this object until it is needed. In

addition, the developer assigns null to mHostDb at line 10 of the onDestroy event in order to relieve memory

pressure as soon as possible (the enclosing HostActivity object may not become unreachable for some time

after this event). These optimizations are safe because the lifecycle for HostActivity dictates not only that

the onCreate event always executes after the constructor and before the onClick event, but also that the

onDestroy event can only execute after all invocations of the onClick event.

Finding lifecycle sensitive bugs via testing is difficult given that (a) real apps have hundreds or thou-

sands of events, (b) the developer must find the right combination of events that lead to a bug, and (c)

exercising the app in a way that triggers the right events in the proper order is a tedious process. Thus, an

effective static approach to this problem has the potential to significantly improve the state of affairs for
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Android app developers.

Challenges of analyzing event-driven Android programs Though numerous static approaches to

proving the absence of null dereferences have been proposed (e.g., [Dillig et al., 2008; Loginov et al., 2008;

Margoor and Komondoor, 2015; Nanda and Sinha, 2009]), the key challenge in analyzing our motivating

example does not concern the client of null dereferences specifically. Even a type-based approach with

programmer-written nullness annotations would likely not work well. In Android, the nullness or non-

nullness of a reference is frequently not a flow-insensitive invariant that holds at every program point or

even an almost-everywhere invariant [Coughlin and Chang, 2014] that holds at nearly every program point.

Instead, non-nullness (along with many other properties) holds during some phases of the lifecycle.

Thus, the challenge for analyses is reason precisely, but tractably at both the intra-event and the inter-

event level. Cost-effective intra-event reasoning is difficult for all the usual reasons for static analysis—each

event is essentially a program that may call thousands of procedures, perform extensive heap manipulation,

and contain loops/recursion. The challenge of inter-event reasoning is to perform precise reasoning about

event orderings within a lifecycle without incurring the cost of reasoning about all event orderings (since

this cost is exponential in the number of lifecycle components, as we explain further in Section 7.1).

In what follows, we use the example in Figure 3.2 to demonstrate how goal-directed coarsening meets

the intra-event challenge using a mixed symbolic-explicit store abstraction (Section 3.2.2) and the inter-event

challenge using control-flow abstraction via jumping (Section 3.2.3). This example has been simplified to

contain only the events and instructions relevant to the three queries, but a real app would have many other

lifecycle components whose methods and event orderings the analysis might need to consider. In essence,

the power of coarsening is that it allows the analysis to soundly reduce a complex real-world program into a

simple program containing only the relevant instructions and events like the one in Figure 3.2.

3.2.2 Taming aliasing path explosion with mixed symbolic-explicit store abstraction

We now demonstrate how our mixed symbolic-explicit store abstraction enables precise and efficient

analysis of heap-manipulating programs in proving the safety of the query at line 7 of Figure 3.2. We

reproduce the code for the onCreateOptionsMenu method containing line 7 in Figure 3.4 in order to show



37

the results from the analysis at each program point. In addition, we give a partial points-to graph for the

heap objects manipulated by this method in Figure 3.5. Nodes in this graph are either program variables

(like this) or syntactic allocation sites (like act1). We assume that each allocation site in the program is

annotated with a unique allocation site name (such as defaultIcon for the allocation at line 9 of Figure 3.4).

A directed edge from a node n1 to node n2 in the graph means that an address in the concretization of n1

may point to an address in the concretization of n2 at some point during concrete execution.

As we explained in Section 3.1, our coarsening-based analysis takes an initial query Q that is a neces-

sary precondition [Cousot et al., 2013] for the bug to occur and attempts to prove safety (refute the query)

by propagating the query backward from its initial program point ` in an attempt to derive a contradiction.

To prove the safety of the dereference at line 22 in Figure 3.4, the initial query is lastIcon 7�null at line 21

(the program point immediately before the dereference). This query expresses a necessary condition for the

dereference at line 22 to fail: the query says that in order for the dereference to fail, the program variable

lastIcon must hold the value null at line 21.

The analysis begins by propagating the initial query backward across the assignment to lastIcon

at line 20. This produces a new query that remains a necessary precondition for the null dereference: the

analysis reasons that for a null dereference to occur, the mLastItem field must point to some object whose

icon field holds the value null4 .

This reasoning is expressed by the query at line 19. In the query, we use hatted variables such as

t̂his and l̂ast to denote existentially qualified symbolic variables whose concretization is a single concrete

object instance5 . Each symbolic variable is associated with an instance-from constraint specifying the set

of syntactic allocation sites that the instance may have been allocated from6 . For example, the constraint

l̂ast from pt(this·mLastItem) says that the symbolic variable must have been allocated from an allocation site

in the points-to set of this·mLastItem. It is these instance-from constraints that make our store representation

mixed symbolic-explicit—they connect symbolic variables involved in separation logic points-to constraints

to the explicit allocation sites in the points-to graph. As we will see shortly, instance-from constraints are

4 We interpret any memory M as M N true in separation logic so that a query always describes the entire heap.
5 We write constraints such as lastIcon 7�null as shorthand for lastIcon 7� v̂∧ v̂ = null (for some v̂).
6 For conciseness, we omit from constraints on some symbolic variables in Figure 3.4 (e.g., t̂his).
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void onCreateOptionsMenu(Menu menu) {

1 Icon last = Cache.getLastIcon();

2 this 7� t̂his N t̂his·mLastItem 7� l̂ast N last 7� v̂∧ v̂ = null∧ v̂ 6= null∧ l̂ast from pt(this·mLastItem) †

3 if (last != null) {

4 this 7� t̂his N t̂his·mLastItem 7� l̂ast N last 7�null∧ l̂ast from pt(this·mLastItem)

5 mLastItem.icon = last;

6 this 7� t̂his N t̂his N âct·mLastItem 7� l̂ast N l̂ast·icon 7�null∧ l̂ast from pt(this·mLastItem)

7 } else {

8 this 7� t̂his N t̂his·mLastItem 7� l̂ast N l̂ast·icon 7� v̂∧ v̂ = null∧ v̂ 6= null∧ l̂ast from pt(this·mLastItem) †

9 mLastItem.icon = newdefaultIcon DefaultIcon();

10 this 7� t̂his N t̂his·mLastItem 7� l̂ast N l̂ast·icon 7�null∧ l̂ast from pt(this·mLastItem)

11 }

12 this 7� t̂his N t̂his·mLastItem 7� l̂ast N l̂ast·icon 7�null∧ l̂ast from pt(this·mLastItem)

13 Icon settingsIcon = menu.settingsIcon;

14 mSettingsItem = complicated();

15 this 7� t̂his N t̂his·mLastItem 7� l̂ast N l̂ast·icon 7�null∧ l̂ast from pt(this·mLastItem)

16
this 7� t̂his N t̂his·mLastItem 7� l̂ast N t̂his·mSettingsItem 7� îtem N l̂ast·icon 7�null∧

l̂ast from pt(this·mLastItem)∧ îtem from pt(this·mSettingsItem)∧ l̂ast 6= îtem

17
this 7� t̂his N t̂his·mLastItem 7� l̂ast N t̂his·mSettingsItem 7� l̂ast N l̂ast·icon 7�null∧

l̂ast from (pt(this·mLastItem)∩pt(this·mSettingsItem))
†

18 mSettingsItem.icon = settingsIcon;

19 this 7� t̂his N t̂his·mLastItem 7� l̂ast N l̂ast·icon 7�null∧ l̂ast from pt(this·mLastItem)

20 Icon lastIcon = mLastItem.icon;

21 lastIcon 7�null

22 lastIcon.setColor(...) // possible NPE?
23 }

Figure 3.4: Proving the safety of the query at line 22 with mixed symbolic-explicit store abstraction.
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defaultIcon

mLastItem mSettingsItem
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Figure 3.5: A partial points-to graph for Figure 3.4.
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the key feature of our store abstraction that allow us to prevent unnecessary aliasing case splits.

Handling an aliasing case split with instance-from constraints Returning to the example, the

analysis proceeds by pushing the query at line 19 across the write at line 18. At this point, the analysis must

perform a case split7 to account for the possibility that mLastItem and mSettingsItem may or may not

be aliased. In general, any backward symbolic analysis will be forced to fork an aliasing case split at each

field write relevant to the current query. This causes a case explosion that is worst-case exponential in the

number of relevant field writes. This case explosion is independent of (but compounded by) the well-known

scalability problems caused by conditional branching in a path-sensitive analysis. In order to scale, our store

abstraction must be able to aggressively prune these aliasing case splits whenever possible. Our solution to

this problem is to use instance-from constraints to combine global, up-front points-to information with local

information in the current query.

The case split at line 17 represents the case where mLastItem and mSettingsItem are aliased. This

is reflected in the query by the constraints t̂his·mLastItem 7� l̂ast and t̂his·mSettingsItem 7� l̂ast; that is, the

two fields hold the same symbolic variable. However, the aliasing fact is also represented in the instance-

from constraints. The analysis determines that if mLastItem and mSettingsItem are aliased, then the

l̂ast symbolic variable must have been allocated from an allocation site in the intersection of the points-to

sets of the two fields. This is represented by the instance-from constraint l̂ast from (pt(this·mLastItem)∩

pt(this·mSettingsItem)). The analysis can use the points-to graph in Figure 3.5 to determine which allocation

sites are in each points-to set and actually compute this intersection. Consulting this graph, the analysis

determines that pt(this·mLastItem) = { item1 } and pt(this·mSettingsItem) = { item2 }, so pt(this·mLastItem)∩

pt(this·mSettingsItem) = /0. The analysis has thus shown that the symbolic variable l̂ast could not have been

allocated from any allocation site in the program, and so the query is infeasible. The analysis then refutes

the case at line 17 (represented by †) and continues analysis of the other cases.

We note that in this case, the result is the same as using an up-front may-alias analysis as an or-

acle to prove that mLastItem and mSettingsItem are not aliased, as many previous tools have done

(e.g., [Ball et al., 2011; Henzinger et al., 2002; Manevich et al., 2004]). However, we generalize this kind

7 We indicate case splits by writing a next to each query box.
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of aliasing check by incrementally restricting the from set for each symbolic variable as we observe it

flowing into and out of local variables and heap locations. If it were not the case that (pt(this·mLastItem)∩

pt(this·mSettingsItem)) = /0, we would still maintain the more constrained from set for l̂ast and would con-

tinue restricting the set as analysis continues. Approaches based on may-alias oracles cannot do this: they

can prune case splits if the alias analysis is precise enough to prove that there is no aliasing, but they can-

not leverage the precision of the symbolic analysis and the points-to analysis together as we can with from

constraints. These constraints provide additional precision at a negligible cost.

Using coarsening to maintain a small store abstraction Having refuted the case at line 17, the

analysis considers the case split at line 16 representing the case where mLastItem and mSettingsItem

are not aliased. This query reflects the dis-aliasing fact through an explicit inequality constraint between

l̂ast and îtem. However, in order to represent this fact, the analysis needs the additional points-to constraint

t̂his·mSettingsItem 7� îtem. The presence of this points-to constraint means that the analysis must track all

writes to mSettingsItem (as well as any other fields that it may be aliased with).

Though keeping this disaliasing constraint is necessary for full precision (e.g., if the analysis later dis-

covers that the current program point is guarded by an if-guard checking mSettingsItem == mLastItem),

it can also cause scalability issues by forcing the analysis to track more state. This is exactly the kind of co-

nundrum that we have previously described in Section 3.1.3. Here, the analysis decides that the disaliasing

fact is not likely to lead to a refutation and thus chooses to coarsen by weakening the query at line 16 to the

one at line 15 (i.e, dropping the constraints t̂his·mSettingsItem 7� îtem, îtem from pt(this·mSettingsItem), and

l̂ast 6= îtem). Note that this weakened query at line 15 is identical to the the query at line 19—the coarsening

makes it as if the analysis never considered an aliasing case split at all.

After coarsening, the instructions at lines 14 and 13 are not relevant to the query8 . The analysis can

simply push the query backward to line 12 without any changes. Note that if the analysis had not chosen

to coarsen, it would have needed to analyze the call to complicated because it would still be tracking the

value of the mSettings field. Though analyzing this method could possibly have led to a refutation (for

8 Here, we assume that a mod analysis computed alongside the points-to analysis is able to show that no instruction in the call
to complicated() writes to fields in the query.
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example, if the body of complicated simply returned mLastItem), the analysis saves effort by skipping

analysis of this method and will still find a refutation even with the weakened query (as we will see).

Refuting the query with path-sensitive reasoning In order to move the query backward from line

12, the analysis must perform a case split to enter both branches of the conditional beginning at line 3. From

the else branch case at line 10, the analysis must move backward across the assignment to mLastItem.icon

at line 9. However, this assignment produces a refutation because the query requires that the value held by

mLastItem.icon is null, but the assignment writes a non-null DefaultIcon object into the field. The field

cannot simultaneously hold both a null and a non-null value, so the analysis refutes the case at line 8.

The analysis continues on the remaining then branch case at line 6. This branch also writes to

mLastItem.icon, but the write at line 5 assigns the field to the last local variable. The analysis pro-

cesses this assignment by updating the query as shown on line 4. Notice that the constraint l̂ast·icon 7�null

has been removed. This is also a form of coarsening—tracking the heap cell is no longer relevant to the

query, so the analysis drops the constraint in order to maintain a small store abstraction. Unlike the pre-

viously described coarsening, this coarsening is lossless: it cannot cause the analysis to lose precision. If

the icon field becomes relevant to the query (e.g., due to a guard involving mLastItem.icon, the analysis

will begin tracking the heap cell again. However, it avoids wasted effort by not tracking the cell when it

is not relevant. This is different than other separation logic-based static analysis approaches (e.g., using

bi-abduction [Calcagno et al., 2009, 2011]), which never stop tracking a heap cell once they begin tracking

it.

Finally, the analysis pushes the query at line 4 across the guard at line 3. In doing so, it conjoins the

guard condition last != null to the query to reflect the fact that the then branch can only be entered if the

guard condition evaluates to true. However, this produces a refutation because the query requires that the

last local variable holds a null value. As before, a variable or heap cell cannot hold both a null value and a

non-null value simultaneously, so the analysis refutes the query. Since this was the last case that the analysis

needed to consider, it has refuted the query along all paths and thus shown that the dereference at line 22 is

safe.

Finally, we note that our store abstraction is effective for representing a small portion of the program
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store and ignoring commands that are not relevant to the abstracted portion. Our example does not emphasize

this aspect of our abstraction because we have minimized the example so that almost every command is

relevant. In a more realistic example when numerous irrelevant instructions are interspersed with the relevant

instructions in Figure 3.4, our store abstraction would still only need to perform the reasoning shown.

3.2.3 Tractable inter-event analysis with jumping

Though the store abstraction we presented in Section 3.2.2 is quite effective for intra-event reasoning

(including interprocedural intra-event reasoning), it does not solve the problem of of tractable inter-event

reasoning. The problem (as we explained in Section 3.2.1) is how to soundly and precisely account for

lifecycle event orderings without paying the cost of considering all possible event orderings. This is a

problem of control-flow abstraction that cannot be solved by any approach to store abstraction, no matter

how effective. In what follows, we show how we use jumping to address this problem by demonstrating

how a jumping analysis can efficiently prove the safety of the dereference at line 9.

Anatomy of a jumping analysis We consider extending an analysis that uses the mixed symbolic-

explicit store abstraction described in Section 3.2.2 with the ability to jump, but jumping can just as easily

be combined with a store abstraction from backward abstract interpretation (e.g., [Bourdoncle, 1993b;

Cousot, 1981; Rival, 2005]) At the intra-event level, the analysis behaves as shown in Section 3.2.2. When

the backward analysis reaches an event boundary (that is, the entry block of an application method that is

invoked by the Android framework), the analysis chooses to compute a set of relevant events to jump to

rather than continuing to follow backward control flow into the complex Android framework code.

From the entry block of the current event ecur, the analysis executes a jump by performing the follow-

ing steps:

(1) Identify important commands using data-relevance For each constraint in the query, the analysis

computes the set of data-relevant program commands whose concrete execution may produce a

configuration in the concretization of the constraint. This process is similar to computing a partial

slice that only considers immediately relevant commands (see Section 7.6 for a full discussion of
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the differences between our technique and slicing). Finding the set of relevant commands makes

use of a global view of the program from a points-to graph computed by an up-front analysis.

(2) Associate relevant commands to events The analysis walks backward in the program’s call graph

from the calling method of each relevant command and stops each time it hits an event boundary.

This yields the set of events that may lead to the execution of relevant commands.

(3) Order relevant events using control-feasibility information. Though it would be sound to jump

to all relevant events or even to jump directly to each relevant command, doing so loses information

about the ordering of relevant events/commands, which is bad for analysis precision. In order to

be precise, the analysis must account for the fact that only certain events are control-feasible with

respect to the current event ecur according to the Android lifecycle.

Our analysis computes control-feasibility information using the lifecycle documentation for An-

droid components that specifies the order in which lifecycle events may occur. The analysis com-

putes a specialized lifecycle graph for the declaring class of ecur that explicates ordering constraints

between ecur and the other relevant events (see Section 7.2 for more details). It then uses this graph

to rule out relevant events that cannot occur between the current method ecur and some other rele-

vant event.

(4) Jump to each control-feasible event. The analysis forks a case split for each event that is both

data-relevant and control-feasible, jumps to the exit block of the event, and continues backward

analysis for each case.

Using jumping to refute a tough query We now demonstrate how our jumping analysis uses

the process described above to prove the safety of the dereference at line 9 and identify the bug at line 8 in

Figure 3.2. As in Section 3.2.2, the analysis proves safety by trying to refute a necessary precondition for the

bug to occur. For the dereference at line 9 to fail, the initial query is âct ·mHostDb 7� null at program point 9.

The diagram in Figure 3.6 visualizes the process of proving the safety of this dereference by refuting the

query. The analysis first uses the mixed symbolic-explicit transfer functions described in Section 3.2.2 to

propagate this precondition backward to the beginning of the onClick event, yielding the necessary bug
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onClick

PRE: this 7� âct N âct ·mHostDb 7� null

onCreate

HostActivity.<init> onDestroy

PRE: this 7� âct N âct ·mHostDb 7� d̂b ∧ d̂b = null ∧ d̂b 6= null †

† †

Figure 3.6: Proving safety of the dereference at line 9 of Figure 6.1 using jumping analysis.

precondition this 7� âct N âct ·mHostDb 7� null shown in the figure.

At this point, the analysis chooses to perform a jump because it has reached an event boundary. The

analysis decides which events to visit next using the four steps outlined above: first, it computes the data-

relevant commands that may change the current bug precondition. This step yields the commands at lines

2, 6, and 10 of Figure 3.2. Second, it uses the call graph to associate these relevant commands with their

calling events, which yields the set of events HostActivity.<init>, onCreate, and onDestroy.

Third, the analysis uses the lifecycle graph for HostActivity in Figure 3.3 to perform control-feasibility

filtering. The analysis determines that onDestroy is not control-feasible with respect to the current event

onClick because onDestroy is not backward-reachable from onClick in the lifecycle graph for HostActivity.

The analysis also determines that HostActivity.<init> is not control-feasible because it is postdominated

by the relevant event onCreate—every feasible concrete execution reaching onClick visits onCreate

between HostActivity.<init> and onClick.

Thus, the analysis concludes that it only needs to jump to onCreate. Figure 3.6 represents the

decision not to jump to the relevant events HostActivity.<init> and onDestroy by marking the edges to

these events with †’s. The directed edge from onClick to onCreate indicates that the analysis performs

a jump from the entry block of onClick to the exit block of onCreate with the precondition shown for

onClick as the abstract state.

When the analysis encounters the assignment at line 6 of the onCreate event, it refutes the query

because there is an inconsistency between this command and the current abstract state: the points-to con-
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onClick

PRE: this 7� âct N âct ·mService7� null

HostActivity.<init>

onConnected

onDestroy

PRE: this 7� âct N âct ·mService7� ŝ ∧ ŝ = null ∧ ŝ 6= null †

PRE: true ♠

†

Figure 3.7: Failed safety proof for buggy dereference at line 8 of Figure 6.1 using jumping analysis.

straint âct ·mHostDb 7� null says that the mHostDb field must hold the value null, but the command assigns a

non-null Database value to this field. The analysis has therefore shown the safety of the dereference at line

9.

Identifying the bug Figure 3.7 shows how the same analysis process (correctly) fails to prove

the safety of the dereference at line 8, revealing a true bug. The analysis determines that the dereference

is safe if the onConnected event executes before onClick and that the relevant event onDestroy is not

control-feasible with respect to onClick, so it marks these paths as refuted (†). However, in the case that

HostActivity.<init> is the last relevant event to fire before onClick, the command mService = null at

line 1 discharges the precondition for onClick, leaving a necessary bug precondition of true. The analysis

cannot hope to find a refutation given this precondition, so it gives up and reports the dereference at line 8

as a possible bug (as indicated by the ♠ symbol).

We note that an analysis that (unsoundly) does not consider the interleaving of events of different

lifecycle components would not find this bug. In order to see this bug, the analysis must account for the fact

that the HostActivity and ServiceConnection lifecycles can interleave.

After the analyzer identified the real-life version of this bug, we submitted two pull requests fixing

the bug along with another similar bug9 to the developers of ConnectBot. The developers accepted both of

our pull requests less than a week after they were submitted.

9 https://github.com/connectbot/connectbot/pull/61



Chapter 4

Mixed symbolic-explicit store abstraction

In this chaper, we present a effective goal-directed store abstraction to form the backbone of the

backward analysis strategy described in Section 3.1. We first state the requirements for an ideal ideal goal-

directed store abstraction, present the challenges of meeting these requirements, and explain our proposed

solution (Section 4.1). We then llustrate the mechanics of our goal-directed store abstraction by showing

how it can refute heap reachability queries to precisely detect a nasty class of Android memory leaks

(Section 4.2). Section 4.3 formalizes our store abstraction and explains how we connect separation logic

to points to analysis with instance-from constraints (Section 4.3.2) and handle loops via on-the-fly loop

invariant inference (Section 4.3.4). Finally, Section 4.4 presents a case study demonstrating that our store

abstraction is effective in precisely detecting memory leaks in real-world Android applications.

Portions of this chapter previously appeared in the PLDI 2013 paper “Thresher: Precise Refutations

for Heap Reachability” [Blackshear et al., 2013], which was co-authored by Bor-Yuh Evan Chang and Manu

Sridharan.

4.1 Requirements for effective goal-directed store abstraction

We want our abstraction to be goal-directed by virtue of coarsening the abstraction along the two

dimensions defined in Section 2.1.1: locals/globals and heap cells. We also desire the capability to coarsen

our abstraction on-the-fly as described in Section 2.2. Finally, we want our store abstraction to be precise

(capable of strong updates on locals, globals, and the heap) and concise (capable of describing a small

portion of the store relevant to the query without being forced to track irrelevant details).
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4.1.1 Meeting the requirements by combining separation logic and points-to analysis

As explained in the “Abstracting the heap” subsections of Section 2.1.1, the primary challenge in

constructing a store abstraction with these requirements is effectively handling the mutable heap. Specifi-

cally, reasoning precisely about strong updates in the presence of aliasing is difficult to achieve in a tractable

fashion.

We can mitigate some of the difficulties of precise heap reasoning by choosing a representation of

the program store that is based on separation logic [O’Hearn et al., 2001; Reynolds, 2002]. However,

building our store abstraction using separation logic does not meet all of our desired requirements on its own.

Complications arise because the analysis that uses our store abstraction works backward from an initial

query (as explained in Section 3.1). There are signficant advantages to working backward: for example,

we can focus only on the state relevant to the query (as we will demonstrate when we explain the example

in Figure 4.1), and we can examine code closest to the query first (since programmers frequently ensure

safety within a small scope of local reasoning [Coughlin et al., 2012]) rather than working forward from

the beginning of the program. Unfortunately, backward analysis and separation logic are difficult to mix

because a purely backward analysis (initially) does not have any information about pointer aliasing and may

be forced to perform case splits to maintain separation.

For example, consider the problem of proving the safety of the query at line 9 of the simple program

in Figure 4.1. A backward separation logic-based analysis can avoid tracking the irrelevant variable z and

consequently, performing a case split based on the conditional at line 4. However, a backward analysis that

lacks information about pointer aliasing would be forced to perform a case split at line 8 to soundly account

for the fact that x and y may be aliased. This case split would not be pruned until the assignment to y at

line 2. The number of case splits that a backward analysis must perform is exponential in the number of

writes through a variable that may-alias with a variable in the query, which can cause significant scalability

problems if the case splits cannot be pruned quickly. This aliasing case split explosion problem is one of

the reasons why existing separation logic-based analyses (e.g., [Berdine et al., 2005; Calcagno et al., 2011])

typically work forward rather than backward.
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1 x = new T()

2 y = new T()

3 z = new V()

4 if (e) z.g = 1

5 else z.g = 2

6 ...

7 x.f = 1

8 y.f = 2

9 assert (x.f != 2)

Figure 4.1: An example comparing and contrasting the capabilities of forward and backward separation
logic-based analysis.

By contrast, a forward separation logic-based analysis would establish separation between the values

pointed to by x and y after processing the allocations at lines 1 and 2. This fact would allow the analysis

to understand that the writes at lines 7 and 8 write to different objects and thus could avoid doing a case

split. However, a forward separation logic-based approach is not very suitable for goal-directed analysis.

The analysis would also need to track the irrelevant local variable z (because it cannot know in advance

what parts of the store may be relevant to the query), which would force it to perform a case split for both

branches of the conditional statement at line 4. As explained, the backward analysis would not need to

perform this case split.

How can we avoid performing aliasing case splits like the backward analysis, yet avoid tracking

irrelevant variables such as z (they may lead to other irrelevant case splits) like the forward analysis? Our

solution is to combine a separation logic representation with facts from a flow-insensitive points-to analysis.

Flow-insensitive points-to analysis (e.g., [Andersen, 1994; Steensgaard, 1996]) is excellent for performing

inexpensive global reasoning about aliasing, but is not very precise (no flow-sensitivity and thus no strong

updates). We combine the two analysis paradigms using special instance-from constraints that connect

symbolic variables from the separation logic representation to allocation sites in the points-to representation.

This gives us the best of both worlds: the backward separation logic-based representation allows us to

precisely reason about only the dependencies of the query, whereas integrating points-to facts frequently

allows us to avoid aliasing case splits.
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4.2 Example: goal-directed store abstraction for precise Android memory leak detection

Here we present a detailed example to illustrate our goal-directed store abstraction. The example is

based on real code from Android applications and libraries.

4.2.1 Motivation: refuting heap reachability queries

Static reasoning about nearly any non-trivial property of modern programs requires effective analysis

of heap properties. In particular, a heap analysis can be used to reason about heap reachability—whether

one heap object is reachable from another via pointer dereferences at some program point. Precise heap

reachability information improves heap-intensive static analyses, such as escape analysis, taint analysis,

and cast checking. A heap reachability checker would also enable a developer to write statically checkable

assertions about, for example, object lifetimes, encapsulation of fields, or immutability of objects.

Our interest in heap-reachability analysis arose while developing a tool for detecting an important

class of memory leaks in Android applications. Every Android application has least one associated Activity

object to control the user interface. All Activity objects go through an operational lifecycle; they are created,

run, and are eventually destroyed. Android development guidelines state that application code should not

maintain long-lived pointers to Activity objects, as such pointers prevent the objects from being garbage

collected at the end of their lifetimes, causing significant memory leaks (we discuss this issue further in Sec-

tion 4.4). To detect such leaks in practice, it is sufficient to verify that Activity objects are never reachable

from a static field via object pointers.

For this client, we found that highly precise reasoning about heap reachability, including flow-,

context-, and path-sensitivity with materialization [Sagiv et al., 1998], was required to avoid emitting too

many spurious warnings. We are unaware of an existing analysis that can provide such precision for heap-

reachability queries while scaling to our target applications (40K SLOC with up to 1.1M SLOC of libraries).

Our goal-directed store abstraction allows us to focus the precision and effort of the analysis on the heap

reachability query at hand without encountering scalability issues.
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4.2.2 Refuting a false leak alarm reported by points-to analysis

Figure 4.2 is a simple application that illustrates the difficulties of precisely checking this heap reach-

ability property (ignore the boxed assertions for now). The Main class initializes and starts the application’s

Activity, the Act class. The Vec class captures the essence of a list data structure, as implemented in An-

droid. This example is free of the leak described above, as the Act object allocated on line 2 is never made

reachable from a static field.

For this example program, flow-insensitive points-to analysis techniques cannot prove the desired

heap (un)reachability property due to the manner in which the Vec class is implemented. In the inset, we

show a heap graph obtained by applying Andersen’s analysis [Andersen, 1994] with one level of object

sensitivity [Milanova et al., 2005b] to the example. Graph nodes represent classes or abstract locations

(whose names are shown at the corresponding allocation site in Figure 4.2), and edges represent possible

values of field pointers. Object-sensitive abstract locations are named appropriately, for example, vec0.arr1

for arr1 instances allocated when Vec.push(−) is invoked on instances of vec0. Each edge indicates a may

points-to relationship, written as a1· f Z⇒ a2, meaning there may be an execution where field f of abstract

location a1 contains the address of location a2. The graph imprecisely shows that Activity object act0 is

reachable from both static fields Act·objs and Vec·EMPTY, hence falsely indicating that a leak is possible.

The root cause of the imprecision in Figure 4.3 is the edge arr0·contents Z⇒ act0, which indicates that

the array assigned to Vec·EMPTY may contain the Activity object. Vec is implemented using the null object

pattern [Woolf, 1997]: rather than allocating a separate internal array for each empty Vec, all Vec objects

initially use Vec·EMPTY as their internal array. The code in Vec is carefully written to avoid ever adding

objects to Vec·EMPTY while also avoiding additional branches to check for the empty case.

But, a flow-insensitive points-to analysis is incapable of reasoning precisely about this code, and

hence it models the statement this.tbl[this.sz] = val on line 23 as possibly writing to Vec·EMPTY,

polluting the points-to graph. Real Android collections are implemented in this way.1

Note that a more precise heap abstraction would not help in this case—because the (concrete) null

1 In fact, we discovered buggy logic in the actual Android libraries that allowed writing to a null object, thereby polluting all
empty containers! The bug was acknowledged and fixed by Google (https://code.google.com/p/android/issues/detail?
id=48055).



52
public class Main {

public static void main(String[] args) {

2 Act a = newact0 Act(); a.onCreate();

3 }

}

public class Act extends Activity {

private static final Vec objs = newvec0 Vec();

public void onCreate() {

4 Vec acts = newvec1 Vec();

5 this 7� t̂his N acts 7� âcts N âcts·tbl 7�arr0 N t̂his 7�act0 N âcts·sz 7� v̂intsz N âcts·cap 7� v̂intcap∧ v̂intsz < v̂intcap

acts.push(this

6 t̂his·sz 7� v̂intsz N t̂his·cap 7� v̂intcap N this 7� vec1 N vec1·tbl 7�arr0 N val 7�act0∧ v̂intsz < v̂intcap

);

7 . . .
8 objs.push("hello"

9 this 7� vec0 N vec0·tbl 7�arr0 N val 7�act0 N t̂his·sz 7� v̂intsz N t̂his·cap 7� v̂intcap∧ v̂intsz < v̂intcap †

);

10 }

}

public class Vec {

private static final Object[] EMPTY = newarr0 Object[1];

private int sz; private int cap; private Object[] tbl;

public Vec() {

11 this.sz = 0;

12 this.cap = -1;

13 this.tbl = EMPTY;

14 this 7� t̂his N t̂his·tbl 7�arr0 Nt̂his·sz 7� v̂intsz N t̂his·cap 7� v̂intcap∧ v̂intsz < v̂intcap †

}

public void push(Object val) {

15 Object[] oldtbl = this.tbl;

16 this 7� t̂his N t̂his·sz 7� v̂intsz N t̂his·cap 7� v̂intcap N t̂his·tbl 7�arr0 N val 7�act0∧ v̂intsz < v̂intcap

if (this.sz >= this.cap) {

17 this.cap = this.tbl.length * 2;

18 this.tbl = newarr1 Object[this.cap];

19 this 7� t̂his N t̂his·tbl 7�arr0 N val 7�act0 †

for (int i = 0; i < this.sz; i++) {

20 this.tbl[i] = oldtbl[i]; // copy from oldtbl

21 }

22 }

23 this 7� t̂his N t̂his·tbl 7�arr0 N val 7�act0

this.tbl[this.sz] = val;

24 arr0·contents 7�act0

this.sz = this.sz + 1;

25 }

}

Figure 4.2: Refuting a false alarm with context-sensitive, path-sensitive witness search. We show witness
queries in the boxes. The † indicate refuted branches of the witness search.
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Figure 4.3: Points-to graph for the program in Figure 4.2. The red edges in the graph are infeasible points-to
edges that can be refuted by our analysis.

object is shared among all instances the Vec class, no refinement on the heap abstraction alone would be

sufficient to rule out this false alarm.

More precise analysis of this example requires reasoning about the relationship between the sz and

cap fields of each Vec. This relationship is established in the Vec’s constructor and must be preserved until

its push method is called. Though there is a large body of work focused on the important problem of refining

heap abstractions (e.g., [Liang and Naik, 2011; Sridharan and Bodı́k, 2006]), this example shows that doing

so alone is sometimes not sufficient for precise results. An analysis that lacks path sensitivity and strong

updates will be unable to prove that Vec’s never write into the shared array and must therefore conflate the

contents of all Vec objects. The witness-refutation technique that we detail in this paper enables after-the-

fact, on-demand refinement to address this class of control-precision issues.

Refinement by Witness Refutation. We refine the results of the flow-insensitive points-to analysis

by attempting to refute all executions that could possibly witness an edge involved in a leak alarm. The term

“witness” is highly overloaded in the program analysis literature, so we begin by carefully defining its use

in our context. We first define a path as a sequence of program transitions. A path witness for a query Q

is a path that ends in a state that satisfies Q. Such a path witness may be concrete/under-approximate/must

in that it describes a sequence of program transitions according to a concrete semantics that results in a state

where Q holds (e.g., a test case execution). Analogously, an abstract/over-approximate/may path witness is

such a sequence over an abstract semantics (e.g., a trace in an abstract interpreter).

Building on the definition of a path program [Beyer et al., 2007], we define a path program witness
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for a query Q as a path program that ends in a state satisfying Q. A path program is a program projected

onto the transitions of a given execution trace (essentially, paths augmented with loops). Note that a path

program witness may be under- or over-approximate in its handling of loops. In this paper, we use the term

“witness” to refer to over-approximate path program witnesses unless otherwise stated, as our focus is on

sound refutation of queries.

Our analysis performs a goal-directed, backwards search for a path program witness ending in a state

that satisfies a query Q. We witness a query by giving a witness that produces it, or we refute a query by

proving that no such witness can exist. Our technique proceeds in three phases.

Obtain a Conservative Analysis Result. First, we perform a standard points-to analysis to com-

pute an over-approximation of the set of reachable heaps, such as the points-to graph in Figure 4.3.

Formulate queries. Second, we formulate queries to refute alarms generated using the points-to

analysis result. For the Activity leak detection client, an alarm is a points-to path between a static field and

an Activity object. For example, the following points-to path from the graph in Figure 4.3 is a (false) leak

alarm:

Act·objs Z⇒ vec0,vec0·tbl Z⇒arr0,arr0·contents Z⇒act0

To refute an alarm, we attempt to refute each individual edge in the corresponding points-to path. If

we witness all edges in the path, we report a leak alarm. If we refute some edge e in the path, we delete

e from the points-to graph and attempt to find another path between the source node and the sink node. If

we find such a path, we restart the process with the new path. If we refute enough edges to disconnect the

source and sink in the points-to graph, we have shown that the alarm raised by the flow-insensitive points-to

analysis is false.

For our client, we wish to show the flow-insensitive property that a particular points-to constraint

cannot hold at any program point. Thus, for each points-to edge e to witness, we consider a query for e at

every program statement that could produce e. This information can be obtained by simple post-processing

or instrumentation of the up-front points-to analysis [Blackshear et al., 2011].

Search for witnesses. Finally, given a query Q at a particular program point, we search for path
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program witnesses on demand.

In Figure 4.2, we illustrate a witness search that produces a refutation for the points-to constraint

arr0·contents 7�act0 holding at program point 24. That is, we prove that the points-to constraint is unrealizable

at that program point. By starting a witness search from each statement that potentially produces the edge,

we will see that arr0·contents 7�act0 is in fact unrealizable at any program point.

Notationally, we use a single arrow 7� to denote an exact points-to constraint, whose source and sink

are symbolic values typically denoting addresses of memory cells, and a double arrow Z⇒ to denote a may

points-to edge between abstract locations (cf., Section 4.3.2). For example, the exact points-to constraint

arr0·contents 7� act0 describes a single memory cell whose address is some instance in the concretization

of arr0 and contents is some instance in the concretization of act0. This distinction is critical for enabling

strong updates in a backwards analysis.

4.2.3 Mixed symbolic-explicit queries

We illustrate the witness search by showing the sub-queries (boxed) that arise as the search progresses.

Moving backwards from our starting point at line 24, the sub-query at program point 23 says that we need

the following heap state at that point:

this 7� t̂his N t̂his·tbl 7�arr0 N val 7�act0 (†)

where t̂his is a symbolic variable that represents the receiver of the method. A symbolic variable (written as

a hatted letter v̂) is an existential standing for an arbitrary instance drawn from some definite set of abstract

locations. Here, t̂his represents some instance drawn from the points-to set of local variable this, which is

{vec0,vec1}. We represent this fact with an instance constraint:

t̂his from {vec0,vec1} (‡)

that we track as part of the query at program point 23. For the moment, we elide such ‘from’ constraints

and discuss them further in Section 4.2.4 and Section 4.3. This sub-query conjoining the heap state from (†)

and the instance constraint from (‡) is an example of a mixed symbolic-explicit state because we introduce
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a fresh symbolic variable for the contents of this, but also have named abstract locations arr0 and act0. We

say that a query is fully explicit if all of its points-to constraints are between named abstract locations from

the points-to abstraction. A named abstract location can be seen as a symbolic variable that is constrained

to be from a singleton abstract location set. This connection to the points-to abstraction in an explicit query

enables our witness search to prune paths that are inconsistent with the up-front points-to analysis result, as

we demonstrate in Section 4.2.4.

Backward path-by-path analysis. Returning to the example, the path splits into two prior to pro-

gram point 23, one path entering the if control-flow branch at point 22, the other bypassing the branch to

point 16. We consider both possibilities and indicate the fork in Figure 4.3 by indenting from the right mar-

gin. For the path into the branch, the loop between program points 19 and 22 has no effect on the query in

question from point 23, so it simply continues backward to program point 19. Observe that because we are

only interested in answering a specific query, this irrelevant loop poses no difficulty. At program point 19,

we encounter a refutation for this path: the preceding assignment statement writes an instance of arr1 to

the t̂his·tbl field, which contradicts the requirement that t̂his·tbl hold an instance of arr0 (underlined). Thus,

we have discovered that no concrete program execution can assign a newly allocated array to this.tbl at

line 18, that is, an instance of arr1 and then place an Activity object in the EMPTY array at line 23 because

this.tbl will point to that newly allocated array by then.

Resuming the path that bypasses the if branch, the analysis at program point 16 determines that

entering the if branch changed the query and thus adds a control-path constraint to the abstract state

indicating that the value of the this.sz field (i.e., v̂intsz ) must be less than the value of the this.cap field (i.e.,

v̂intcap). As we will see, tracking the path constraint above is critical to obtaining a refutation for the example.

From here, this path reaches the method boundary, leading the analysis to process the possible call

sites at program points 9 and 6. The path at program point 9 can be refuted at this point, as the query

requires that the val parameter be bound to an instance of act0 (underlined), but the actual argument is the

string "hello". Thus, we have identified that this call to push cannot be the reason that an Activity object

is placed into the EMPTY array because it is pushing a string, not an Activity.

The other path from the acts.push call site (i.e., program point 6) can continue. The query at
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program point 5 before the call simply changes the program variables of the callee to those of the caller.

Continuing this path, we enter the constructor of Vec at program point 14. Here, we discover that the

values of the sz and cap fields as initialized in the constructor contradict the control constraint v̂intsz < v̂intcap.

Intuitively, the witness search has observed the invariant that a Vec’s tbl field cannot point to the EMPTY

array after a call to its push method. We have refuted the last path standing, and so we have shown that the

statement at line 24 cannot produced the edge arr0·contents 7�act0.

In the above, we have been rather informal in describing why certain points-to facts can be propagated

back unaffected and why producing certain facts can be done with a strong update-style transfer function.

These properties come from details of our query states that relate to the notions of separation and frame in

separation logic [Reynolds, 2002].

Furthermore, in the example program from Figure 4.2, there is one (and only one) more statement that

could produce the constraint arr0·contents 7�act0, which is the assignment at line 20 inside the copy loop. A

witness search for this query starting at line 20 leads to a refutation similar to the one described above, but to

discover it we must first infer a non-trivial loop invariant. Because we are interested in an over-approximate

path program witness-refutation search, we have to obtain loop invariants. This is in contrast to typical

backwards symbolic executors, which need to unroll loops. We consider these issues further in Section ??.

4.2.4 Taming path explosion from aliasing

In the previous subsection, we focused on how refutations can occur. For example, backwards paths

were pruned at line 18 and at program point 9 because we reach an allocation site that conflicts with our

instance constraints in the query (e.g., we need an arr0 not an arr1 at line 18). In this section, we present

a simple example to explain how our mixed symbolic-explicit representation enables our analysis to derive

such contradictions earlier and thus mitigates the aliasing path explosion problem.

An over-approximate backwards symbolic executor that lacks information about aliasing will be

forced to fork a number of cases to account for aliasing at every field write, quickly causing a case explo-

sion that is worst-case exponential in the number of field writes. This case explosion is independent of (but

compounded by) the well-known scalability problems caused by conditional branching in a path-sensitive



58

1 x 7� ŷ,y 7� ŷ,p 7� ẑ ∧ ẑ from ptG̊(p)∩ptG̊(y.f)∩ r̊, ŷ from ptG̊(x)∩ptG̊(y)

x 7� x̂,y 7� ŷ, ŷ·f 7� ẑ ∧ ẑ from ptG̊(y.f)∩ r̊, ŷ from ptG̊(y) ∧ x̂ 6= ŷ

x.f = p;

2 y 7� ŷ, ŷ·f 7� ẑ ∧ ẑ from ptG̊(y.f)∩ r̊, ŷ from ptG̊(y)

z = y.f;

3 z 7� ẑ ∧ ẑ from r̊

Figure 4.4: An example illustrating how ‘from’ constraints help tame path explosion from aliasing. Note
that the set of abstract locations to which symbolic variable ẑ might belong is restricted each time we observe
ẑ flow through a variable or field.

analysis.

To address this aliasing path explosion problem, the key observation that we make is that contradic-

tions from instance constraints can be derived before the allocation site by exploiting information from the

up-front points-to analysis. In particular, the set of possible allocation sites for any instance can be restricted

as we reason about how they flow into and out of program variables and heap locations. This observation

motivates our mixed symbolic-explicit representation, which we demonstrate with a simple example shown

in Figure 4.4. Our initial query at point 3 asks if program variable z can point to an instance ẑ from some set

of abstract locations r̊—we call this a points-to region. Moving backwards across the statement z = y.f,

we derive a pre-query at point 2 that says our original query can be witnessed if y points to some instance

ŷ and that instance points to ẑ through its f field (i.e., y 7� ŷ, ŷ·f 7� ẑ). Additionally, we now know that the

instance ẑ must be drawn from the intersection of r̊ and the abstract locations in the points-to set of y.f,

which we write as ptG̊(y.f). If we can use the points-to graph G̊ to determine that no such abstract location

exists (e.g., if we had r̊ = {a0,a2} and ptG̊(ŷ.f) = {a1}), then we have refuted this query and can prune this

path immediately.

Assuming r̊ and ptG̊(y.f) are not disjoint (i.e., r̊∩ptG̊(y.f) 6= /0), we proceed with our backwards analy-

sis to the field write x.f = p. We must consider two cases at program point 1: one where x and y are aliased

(the top query) and one where they are not (the bottom query). In the aliased case, we can further constrain

the instance û to be from ptG̊(x)∩ ptG̊(y). Some previous tools have used an up-front, over-approximate
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points-to analysis as an aliasing oracle to rule out aliased cases like this one (e.g., PSE [Manevich et al.,

2004])—if x and y cannot possibly point to the same abstract location (i.e., ptG̊(x)∩ptG̊(y) = /0), this aliased

case is ruled out. Our approach generalizes this kind of aliasing check by explicitly introducing ‘from’ con-

straints that are incrementally restricted. For example, we also constrain ẑ to be from ptG̊(p)∩ptG̊(y.f)∩ r̊,

where the additional restriction is ptG̊(p). This constraint says that the field write x.f = p produced the

query in question only if the instance ẑ is drawn from some abstract location shared by these three sets.

Finally, we consider the case where x and y are not aliased (i.e., x̂ 6= ŷ). Here, the only change to the

query is the addition of the constraints x 7� x̂ and x̂ 6= ŷ. This disequality further constrains the query so that

if we later discover that x and y are in fact aliased, we can refute this query. Accumulation of this kind of

disaliasing constraint is common (e.g., [Chandra et al., 2009]), but expensive (cf., Section 4.3.4).

We remark that the instance ‘from’ constraints can be viewed as a generalization of a fully explicit

representation. To represent ‘from’ constraints explicitly, instead of a symbolic points-to constraint x 7� x̂,

we disjunctively consider all cases where we replace the symbolic variable x̂ with an abstract location from

ptG̊(x) (the points-to set of x) For example, suppose ptG̊(x) = {a1,a2}; then we case split and consider two

heap states: (1) x 7�a1 and (2) x 7�a2. This representation corresponds roughly to a backwards extension of

lazy initialization [Khurshid et al., 2003] over abstract locations instead of types. Note that while PSE-style

path pruning only applies to ruling out the aliased case in field writes, the explicit representation of ‘from’

constraints permits the same kind of flow-based restriction shown in Figure 4.4. However, the cost is case

splitting a separate query for each possible abstract location from which each symbolic variable is drawn

(e.g., |ptG̊(y.f)∩ r̊| · |ptG̊(y)| queries at program point 2).

4.3 A store abstraction and analysis combining points-to analysis and separation logic

In this section, we formalize our goal-directed store abstraction that combines points-to analysis and

separation logic and argue that an analysis build on this abstraction is refutation sound—that we only

declare a query refuted when no concrete path producing that query can exist. We introduce a simple

object-oriented language (Section 4.3.1), explain how we connect points-to analysis to separation logic

queries with instance-from constraints (Section 4.3.2), define a goal-directed backward analysis using our
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statements s ::= c | s1;s2 | s1 8s2 | loops
commands c ::= skip | x := y | x := y.f | x.f := y | x := newa τ() | assumee
expressions e ::= x | · · ·
types τ ::= { f1, . . . , fn} | · · ·
program variables x,y object fields f abstract locations a

Figure 4.5: A simple imperative language with objects and fields.

store abstraction (Section 4.3.3), and show how our analysis handles loops using on-the-fly loop invariant

inference (Section 4.3.4).

4.3.1 A simple imperative language with objects

The language providing the basis for our formalization is defined in Figure 4.5. This language is

a standard imperative programming language with object fields and dynamic memory allocation. Atomic

commands c include assignment, field read, field write, object allocation, and guards.

For the purposes of our discussion, it is sufficient if an object type is just a list of field names.

We leave unspecified a sub-language of pure expressions, except that it allows reading of program vari-

ables. The label a on allocation names the allocation site so that we can tie it to the points-to analysis.

Compound statements include a do-nothing statement skip, sequencing s1;s2, non-deterministic choice

s1 8s2, conditional branching if(e)s1elses2, and looping loops. Standard if and while statements can

be defined in the usual way (i.e., if(e)s1elses2
def
= (assumee;s1)8(assume !e;s2) and while(e)s def

=

loop(assumee;s);assume !e). The concrete semantics of this language are given in Figure 4.6.

For ease of presentation, our formal language is intraprocedural. However, our implementation is

fully interprocedural. We handle procedure calls by modeling parameter binding using assignment and

keeping an explicit abstraction of the call stack. The call stack is initially empty representing an arbitrary

calling context but grows as we encounter call instructions during symbolic execution. If we reach the entry

block of a function with an empty call stack, we propagate symbolic state backwards to all possible callers of

the current function. We determine the set of possible callers using the call graph constructed alongside the

points-to analysis. In the following chapter, Section 5.1 formalizes an unstructured language with procedure

calls that can be combined with the commands from Figure 4.5.
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σ ` s ↓ σ ′

EVALSKIP

σ ` skip ↓ σ

EVALASSIGN
σ ` e ↓ v

σ ` x := e ↓ σ [x � v]

EVALREAD

σ ` x := y.f ↓ σ [x � σ(σ(y)·f )]

EVALWRITE

σ ` x.f := y ↓ σ [σ(y)·f � σ(x)]

EVALNEW
o /∈ σ τ = { f1, . . . , fn}

σ ` x := new τ() ↓ σ [o·f1 � null, . . . ,o·fn � null]

EVALSEQ

σ ` s1 ↓ σ
′

σ
′ ` s2 ↓ σ

′′

σ ` s1;s2 ↓ σ

EVALIFTRUE
σ ` e ↓ true σ ` s1 ↓ σ1

σ ` if(e)s1elses2 ↓ σ1

EVALIFFALSE
σ ` e ↓ false σ ` s2 ↓ σ2

σ ` if(e)s1elses2 ↓ σ2

EVALLOOPTRUE
σ ` e ↓ true σ ` s ↓ σ

′
σ
′ ` loops ↓ σ

′′

σ ` loops ↓ σ
′′

EVALLOOPFALSE
σ ` e ↓ false
σ ` loops ↓ σ

Figure 4.6: A standard big-step operational semantics for the primitive imperative language given in Fig-
ure 4.5.
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4.3.2 Instance-from constraints

Given a program, we first do a standard points-to analysis to obtain a points-to graph G̊ : 〈V̊ , E̊〉

consisting of a set of vertices V̊ and a set of edges E̊ (e.g., Figure 4.3). A vertex represents a set of memory

addresses, which include program variables x ∈ Var and abstract locations a ∈ AbsLoc (i.e., V̊ ⊇ Var∪

AbsLoc). An abstract location a abstracts non–program-variable locations (e.g., from dynamic memory

allocation). We do not fix the heap abstraction, such as the level of context sensitivity, but we do assume

that we are given the abstract location to which any new allocation belongs (via the subscript annotation).

A points-to edge from E̊ is either of the form x Z⇒a or a0· f Z⇒a1. The form x Z⇒a means a concrete

memory address represented by the program variable x may contain a value represented by abstract location

a. We write a0· f Z⇒ a1 to denote that f is the label for the edge between nodes a0 and a1. This edge form

means that a0· f is a field of an object in the concretization of a0 that may contain a value represented by

abstract location a1. A static field in Java can be modeled as a global program variable.

Our analysis permits formulating a query Q over a finite number of heap locations along with con-

straints over data fields, as shown in Figure 4.7. We give a heap location via an exact points-to edge

constraint having one of two forms: x 7� v̂ or v̂· f 7� û. Recall that in contrast to points-to edges that sum-

marize a set of concrete memory cells, an exact points-to constraint expresses a single memory cell. The

first form x 7� v̂ means a memory address represented by the program variable x contains a value represented

by a symbolic variable v̂ (and similarly for the second form for a field). Since we are mostly concerned

with memory addresses for concrete object instances, we often refer to symbolic variables as instances.

The memory any stands for an arbitrary memory. While it is standard in separation logic to write any as

true, here we simply wish to make explicit the memory and pure components and thus reserve true for pure

formulæ. The pure part P are first-order formulæ over symbolic variables that we leave mostly unspecified.

We introduce one non-standard pure constraint form: the instance constraint v̂ from r̊ says the sym-

bolic variable v̂ is an instance of a points-to region r̊ (i.e., is in the set of values described by region r̊). A

points-to region is a set of abstract locations a or the special region data. For uniformity, the region data is

used to represent the set of values that are not memory addresses, such as integer values. As we have seen
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queries Q ::= M∧P | false
memories M ::= any | x 7� v̂ | v̂· f 7� û |M1 N M2
pure formulæ P ::= true | P1∧P2 | v̂ from r̊ | · · ·
points-to regions r̊, s̊ ::= a | data | r̊1d r̊2
instances v̂, û
refutation states R ::= Q | R1∨R2 | ∃v̂.R

Figure 4.7: Queries and analysis state.

in Section 4.2.4, instance constraints enable us to use information from the up-front points-to analysis in

our witness-refutation analysis. As an example, the informal query arr0·contents 7� act0 from Section ?? is

expressed as follows:

v̂1·contents[v̂3] 7� v̂2∧ v̂1 from {arr0}∧ v̂2 from {act0}∧ v̂3 from data

where v̂3 stands for the index of the array. This query considers existentially an instance of each abstract

location arr0 and act0.

When writing down queries, we assume the usual commutativity, associativity, and unit laws from

separation logic [Reynolds, 2002]. Since we are interested in witnessing or refuting a subset of edges

corresponding to part of the memory, we interpret any memory M as M N any (or intuitionistically instead

of classically [Ishtiaq and O’Hearn, 2001; Reynolds, 2002]).

4.3.3 Goal-directed backward analysis with instance-from constraints

As described in Section 4.2, we perform a path-program–by–path-program, backwards symbolic anal-

ysis to find a witness for a given query Q. A refutation state R is simply a disjunction of queries (as shown

in Figure 4.7), which we often view as a set of candidate witnesses. We include an existential binding

of instances ∃v̂.R to make explicit when we introduce fresh instances, but we implicitly view instances as

renamed so that they are all bound at the top-level (i.e., all formulæ are in prenex normal form).

Informally, a path program witness is a query Qwit bundled with a sub-program examined so far swit

and a sub-program left to be explored spre.

Definition 4.3.1 (Path Program Witness) A path program witness for an input statement-query pair 〈s,Q〉
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is a triple 〈spre,Qwit,swit〉where (1) s≡ spre;spost, and (2) swit is a sub-statement of spost such that (a) if an ex-

ecution of spost leads to a store σpost satisfying the input query Q, then it must be from a store σwit satisfying

Qwit and (b) executing swit from σwit also leads to σpost.

Any intermediate state in our backwards analysis is such a path program witness. Intuitively, the statement

swit captures the path sub-program identified by the backwards analysis that is relevant to producing the

input query Q (so far).

A refutation occurs when Qwit is false, that is, we have discovered that it is not possible to end up

in a state satisfying Q. A “full” witness is when Qwit is any; that is, we can no longer find a refutation. A

“partial” witness is a witness where Qwit is a query other than any or false.

We formalize a backwards path program enumeration transforming queries into sub-queries to even-

tually produce an any or a false refutation state. To describe the analysis, we define the judgment form

` {R′ } s {R} in Figure 4.8. This judgment form is a standard Hoare triple, but because our analysis is

backward, we read this judgment form from right-to-left. It says, “Given a post-formula R, we find a

pre-formula R′ such that executing statement s from a state satisfying R′ yields a state satisfying R (up to

termination).” Conceptually, the post-formula R is a (disjunctive) set of queries, and the pre-formula R′ is the

set of sub-queries. we focus on describing the backwards path program enumeration transforming queries

into sub-queries to eventually produce an any or a false witness query Qwit. The path program swit can be

obtained by a simple instrumentation of the rules similar to our prior work [Blackshear et al., 2011].

Deriving refutations. At any point, we can extend the witness-refutation search for some disjunct.

Here, we express this step with WITCASES, which says a disjunctive refutation state R1∨R2 can be derived

by finding a witness for R1 and R2. We make this system algorithmic for an implementation by representing

cases as a disjunctive set of pending queries · · · ∨Qi ∨ ·· · that we extend individually. Rule WITREFUTED

simply says if we have derived false in the post-state for a statement, then we have false in the pre-state as

well. To scale beyond the tiniest of programs, we need to be able to refute queries quickly so that the number

of queries to consider, that is, the number of symbolic execution paths to explore, remains small. We have

three tools for refuting queries: (1) separation (i.e., a query where a single memory cell would need to point
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` {R} s {Q}

WITSKIP

` {any∧ true} s {any∧ true}

WITFRAME

` {
∨

i

M′i ∧P′i } s {M∧P} s must not modify Mfr

` {
∨

i

(Mfr N M′i)∧P′i } s {(Mfr N M)∧P}

` {R′ } s {R}

WITREFUTED

` { false} s { false}

WITCASES
` {R′1 } s {R1 } ` {R′2 } s {R2 }

` {R′1∨R′2 } s {R1∨R2 }

` {R} c {Q}

WITNEW

` {any∧ v̂ from a∩ r̊ ∧P} x := newa τ() {x 7� v̂∧ v̂ from r̊∧P}

WITASSIGN

` {y 7� v̂∧ v̂ from ptG̊(y)∩ r̊ ∧P} x := y {x 7� v̂∧ v̂ from r̊∧P}

WITREAD

P′ = û from ptG̊(y)∧ v̂ from ptG̊(y. f )∩ r̊ ∧P

` {∃û.y 7� û N û· f 7� v̂∧P′ } x := y.f {x 7� v̂∧ v̂ from r̊∧P}

WITWRITE

Mi = x 7� v̂i N y 7� ûi N (N
j 6=i

v̂ j· f 7� û j ∧ v̂ j from r̊ j ∧ û j from s̊ j)

Qi = Mi∧ v̂i from ptG̊(x)∩ r̊i ∧ ûi from ptG̊(y)∩ s̊i ∧ (
∧
j 6=i

v̂ j 6= v̂i)∧P

Q = ∃x̂.x 7� x̂ N (N
i

v̂i· f 7� ûi∧ v̂i from r̊i∧ ûi from s̊i∧ v̂i 6= x̂)∧ x̂ from ptG̊(x)∧P

` {Q∨
∨

i

Qi } x.f := y {(N
i

v̂i· f 7� ûi∧ v̂i from r̊i∧ ûi from s̊i)∧P}

Figure 4.8: Witness-refutation search is a path-program–by–path-program backwards analysis. Boxed terms
emphasize opportunities for refuting paths using instance-from constraints.
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to two locations simultaneously), (2) instance constraints (i.e., a query where an instance cannot be in any

points-to region), and (3) other pure constraints (i.e., a query with pure constraints that are unsatisfiable,

such as, from detecting an infeasible control-flow path). In our inference rules, we assume a refutation state

R is always normalized to false if the formula is unsatisfiable. Since we are interested in sound refutations

and over-approximate witnesses, for scaling, we can also weaken queries at the cost of potentially losing

precision. We revisit this notion in Section 4.3.4.

Instance constraints are pure constraints that tie the exact points-to constraints in the query to the

accumulated information from the up-front points-to analysis and the flow of the symbolic variables as

discussed in Section 4.2.4. They can axiomatized as follows:

v̂ from /0 ⇐⇒ false (1)

v̂ from r̊1∧ v̂ from r̊2 ⇐⇒ v̂ from r̊1∩ r̊2 (2)

true ⇐⇒ v̂ from AbsLoc∪{data} (3)

In particular, we derive a contradiction when we discover an instance that can be drawn from any abstract

location (axiom 1). Though our formalism groups instance constraints and other pure constraints together,

our implementation keeps them separate for simplicity in checking. Instance constraints are checked using

basic set operations and other pure constraints are checked with an off-the-shelf SMT solver, though it

should be possible to encode instance constraints into the solver using this axiomatization.

We include a frame rule on M, WITFRAME, to simplify our presentation, which together with WITSKIP

allow us to isolate the parts of the query that a block of code may affect and to ignore irrelevant statements.

In other words, any statements that cannot affect the memory state in the query can be skipped. We can

thus focus our discussion on an auxiliary judgment form ` {R} c {Q} that describes how the assignment

commands affect a query and its point-to and instance constraints. Informally, it says, “We can witness

a query Q after assignment command c by executing c if we can also witness one of the sub-queries R

before c.” From an algorithmic perspective, we can view ` {R} c {Q} as generating sub-queries that when

combined with a frame may yield additional contradictions. We assume this judgment implicitly has access

to the points-to graph G̊ : 〈V̊ , E̊〉 computed by the up-front analysis. We use the ptG̊(·) function to get the
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points-to set of a program variable via ptG̊(x)
def
= {a | (x Z⇒ a) ∈ E̊} or a field of a program variable via

ptG̊(y. f )
def
= {a j | ai ∈ ptG̊(y) and (ai·f Z⇒a j) ∈ E̊}.

Backward transfer functions and instance-from constraints. Rule WITNEW says that the exact

points-to constraint x 7� v̂ can be witnessed, or produced, by the allocation command x := newa τ() if

instance v̂ may have been created at allocation site a. Following our axiomatization, the instance constraint

v̂ from a∩ r̊ may immediately reduce to false if a /∈ r̊. Or, we can drop it (without loss of precision) because

this instance cannot exist before its allocation at this statement. Such a contradiction is precisely the reason

for refuting the path at the new arr1 allocation (program point 19) in our motivating example (Figure 4.2).

Now, consider rule WITASSIGN: it says that the exact points-to constraint x 7� v̂ can be produced by the

assignment command x := y if y 7� v̂ can be witnessed before this assignment and the instance v̂ can come

from a region common to the points-to set of y and the region r̊. If the points-to set of y and the region r̊ are

disjoint, we can derive a contradiction because the instance v̂ cannot come from any allocation site. Observe

that WITASSIGN leverages the ‘from’ constraint and the up-front points-to analysis result to eagerly discover

that no allocation site satisfies the conditions required for a witness (rather than observing that a particular

allocation site does not satisfy the conditions required for a witness, as in WITNEW). To get a sense for

why these eager refutations are critical for scaling, consider the path refutation due to the binding of val

to "hello" at the objs.push call site (program point 9). In our example, this refutation is via WITNEW

because "hello" is a String allocation, but we can easily imagine a variant where objs.push is called

with a program variable y that can conservatively point-to a large set of non-Activity objects. For such a

program, WITASSIGN would allow us to discover a path refutation at the assignment corresponding to the

binding rather than requiring us to continue exploration across the potentially exponential number of paths

to the allocation sites that flow to y.

The WITREAD rule is quite similar to WITASSIGN except that we existentially quantify over the in-

stance to which y points (i.e., û). We set up an initial points-to region constraint for the fresh symbolic

variable û based on the points-to set of y and narrow the points-to region of v̂ using the points-to set of y. f .

As in WITASSIGN, we can derive a contradiction based on this narrowing if the region r̊ and the points-to set

of y. f are disjoint. Here, we have taken some liberty with notation placing, for example, ‘from’ constraints
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WITASSUME

` {M∧P∧ e[M]} assumee {M∧P}

WITSEQ

` {R′′ } s1 {R′ } ` {R′ } s2 {R}
` {R′′ } s1;s2 {R}

WITCHOICE
` {R1 } s1 {R} ` {R2 } s2 {R}
` {R1∨R2 } s1 8s2 {R}

Figure 4.9: Analysis rules for conditionals, sequencing, and nondeterministic choice.

under the iterated separating conjunctions; we recall that N collapses to ∧ for pure constraints.

In the WITWRITE rule, the post-formula consists of two cases for each edge v̂i· f 7� ûi in the pre-

formula: (1) the field write x.f := y did not produce the edge v̂i· f 7� ûi (the first disjunct Q), or (2) the field

write did produce the edge (the second set of disjuncts over all Qi). If the write x.f := y did produce the

points-to edge v̂i· f 7� ûi, then the points-to regions of v̂i and ûi are restricted based on the points-to sets of

x and y, respectively. The “not produced” case represents the possibility that this write updates an instance

other than a v̂i (as reflected by the x 7� x̂ and v̂i 6= x̂ conditions).

While WITWRITE can theoretically generate a huge case split, we have observed that the combina-

tion of instance constraints and separation typically allow us to find refutations quickly in practice (see

Section 4.4). In particular, the “not written” case can often be immediately refuted by separation. For ex-

ample, we end up with a contradictory query where a local variable x has to point to two different instances

simultaneously (i.e., x 7� v̂ N x 7� û∧ v̂ 6= û).

Guards and control-flow. Except for loops (see Section 4.3.4), the remaining rules mostly relate

to control flow and are quite standard. These rules are given in Figure 4.9. To discover a contradiction on

pure constraints, we state that the guard condition of an assume must hold in the pre-query. We write e[M]

for interpreting the program expression e in the memory state M.

The WITCHOICE rule analyzes each branch independently. Our implementation avoids path explosion

due to irrelevant path sensitivity by adding pure constraints from if-guards only when the queries on each

side of the branch are different (as in previous work [Das et al., 2002; Manevich et al., 2004]), though our

rules do not express this.
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WITLOOP
` {R} s {R}

` {R} loops {R}

WITCOARSEN
R′2 |= R′1 ` {R′2 } s {R2 } R1 |= R2

` {R′1 } s {R1 }

Figure 4.10: Analysis rules for handling loops and coarsening.

4.3.4 Loop invariant inference and query simplification

In this section, we finish our description of witness-refutation search by discussing our loop invariant

inference scheme. Roughly speaking, we infer loop invariants by repeatedly performing backwards sym-

bolic execution over the loop body until we reach a fixed point over the domain of points-to constraints. To

ensure termination, we drop all pure constraints affected by the loop body and fix a static bound on the num-

ber of instances of each abstract location to materialize (unlike modern shape analyzers [Distefano et al.,

2006; Sagiv et al., 2002]). In our experiments, a static bound of one has been sufficient for precise results.

We now proceed to our discussion of per-path loop invariant inference using the WITLOOP and

WITABSTRACTION rules defined in Figure 4.10. Because we are interested in an over-approximate path

program witness-refutation search, we have to obtain loop invariants. The WITLOOP rule simply states that

if the loop body has no effect on the query, the loop has no effect on it.

By itself, this rule only handles the degenerate case where a loop can be treated as skip with respect

to the query. For this case, the disjunctive set of queries R is trivially a loop invariant. For more interesting

cases, we use WITCASES to consider each query in the refutation state individually so that we can infer

an over-approximate loop invariant for each one. Thus, we infer a loop invariant on-the-fly for each path

program rather than joining all queries at the loop exit and then inferring an invariant for all backwards

paths into the loop (similar to [Leino and Logozzo, 2005] but with heap constraints).

To preserve refutation soundness, we want to ensure that a contradiction false is only derived when

there does not exist a concrete path witnessing the given query and thus must over-approximate loops.

A sound, backwards over-approximation can be obtained by weakening the post-loop query Qi. Since

an individual query is purely conjunctive, we can weaken it quite easily by “dropping” constraints (i.e.,
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removing conjuncts). Intuitively, dropping constraints is refutation-sound because it can only make it more

difficult to derive a contradiction. This over-approximation is captured by the WITCOARSEN rule. The

rule says that at any program point, we can drop constraints, and doing so preserves refutation soundness

(Theorem 4.3.1).

We write R1 |=R2 for the semantic entailment and correspondingly rely on a sound decision procedure

in our implementation (used in WITABSTRACTION). Entailment between a finite separating conjunction

exact points-to constraints can be resolved in a standard way by subtraction [Berdine et al., 2005]. Without

inductive predicates, the procedure is a straightforward matching. Entailment between the ‘from’ instance

constraints can be defined as follows:

(v̂1 from r̊1) |= (v̂2 from r̊2) iff v̂1 = v̂2 and r̊1 ⊆ r̊2 (§)

As previously mentioned, ‘from’ constraints are represented as sets associated with a symbolic variable and

solved with ordinary set operations. We discharge other pure constraints using an off-the-shelf SMT solver,

so precision of reasoning about those constraints is with respect to the capabilities of the solver.

With these tools, our loop invariant inference is a rather straightforward fixed-point computation. For

a loop statement loops and a post-loop query Q, we iteratively apply the backwards predicate transformer

for the loop body s to saturate a set of sub-queries at the loop head. Let R0 be some refutation state such

that ` {R0 } s {Q}, and let Ri+1 = Ri∨R′ where ` {R′ } s {Ri }. We ensure that the chain of R0 |= R1 |= · · ·

converges by bounding the number of instances or materializations from the abstract locations. Since there

are a finite number of abstract locations, the number of points-to constraints in any particular query is

bounded by the number of edges in the points-to graph (i.e., |E̊|). For the base domain of pure constraints,

widening [Cousot and Cousot, 1977] can be used to ensure convergence. Our implementation uses a trivial

widening that drops pure constraints that may be modified by the loop. We use a simpler approach for

recursive methods. The instance bounding yields a very simplistic widening that has been surprisingly

effective.

In our implementation, we also use a mod/ref analysis derived from the points-to analysis to see if we

can quickly skip a loop or method call because the loop or method call cannot affect the current query.
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Query simplification with disaliasing. The WITABSTRACTION rule captures backwards over-approximation

by saying that at any point, we can weaken a refutation state without losing refutation soundness. Concep-

tually, we can weaken by replacing any symbolic join ∨ with an over-approximate join t. We perform one

such join by replacing the refutation state Q1 ∨Q2 with Q2 if Q1 |= Q2. Note that this join does not lose

precision. Intuitively, for a refutation state R, we are interested in witnessing any query in R or refuting all

queries in R. Here, a refutation of query Q2 implies a refutation of Q1, so we only need to consider Q2.

To enable this join to apply often, we enforce a normal form for our queries by dropping certain kinds

of constraints. As formalized in Figure 4.8, the backwards transfer functions for assignment commands c are

as precise as possible, including the generation of disequality constraints in WITWRITE. These disequality

constraints are needed locally to check for refutations due to separation, as detailed in Section 4.3.3. How-

ever, if this check passes, we drop them before proceeding and instead keep only the disaliasing information

implied by separation and the instance from constraints. While this weakening could lose precision (e.g., if

the backwards analysis would later encounter an if-guard for the aliasing condition), we hypothesize that

this situation is rare and that the most useful disaliasing information is captured by separation and instance

constraints.

In our implementation, we are much closer to a path-by-path analysis than our formalization would

indicate. Refutation states are represented as a worklist of pending (non-disjunctive) queries to explore. To

apply the simplification described above, we must keep a history of queries seen at a given program point:

if we have previously seen a weaker query at this program point, then we can drop the current query. We

keep a query history only at procedure boundaries and loop heads. This simplification has been especially

critical for procedures.

Soundness. We define a concrete store σ be a finite mapping from variables or address-field pairs to

concrete values (i.e., σ : Var] (Addr×Field)⇀fin Val) and give a standard big-step operational semantics

to our basic imperative language The judgment form σ ` s ↓ σ ′ says, “In store σ , statement s evaluates to

store σ ′.” Furthermore, we write σ |= R to say that the store σ is in the concretization of the refutation state

R. The definition of σ |= R is as would be expected in comparison to separation logic. We need to utilize two

other concrete semantic domains: a valuation η that maps instances to values (i.e., η : Instance→Val) and a
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regionalization ρ that maps abstract locations to sets of concrete addresses (i.e., ρ : AbsLoc→ ℘(Addr)).

The regionalization gives meaning to the ‘from’ instance constraint. With these definitions, we precisely

state the soundness theorem.

Theorem 4.3.1 (Refutation Soundness) If ` {Rpre } s {Rpost } and σpre ` s ↓ σpost such that σpost |= Rpost,

then σpre |= Rpre. As a corollary, refutations (i.e., when Rpre is false) are sound.

Interestingly, the standard consequence rule from Hoare logic states the opposite in comparison to

WITABSTRACTION by permitting the strengthening of queries. Doing so would instead preserve witness

precision; that is, any path program witness exhibits some witness path (up to termination).

4.4 Case study: precisely identifying Android Activity leaks

We evaluated our witness-refutation analysis by using it to find Activity leaks, a common class of

memory leaks in open-source Android applications. We explain this client in more detail below.

Our experiments were designed to test two hypotheses. The first and most important concerns the

precision of our approach: we hypothesized that witness-refutation analysis reports many fewer false alarms

than a flow-insensitive points-to analysis. We tried using a flow-insensitive analysis to find leaks, but found

that the number of alarms reported was too large to examine manually. To be useful, our technique needs to

prune this number enough for a user to effectively triage the results and identify real leaks.

Our second hypothesis concerns the utility of our techniques: we posited that (1) our mixed symbolic-

explicit is an improvement over both a fully explicit and a fully symbolic representation, (2) our query

simplification significantly speeds up analysis, and (3) our on-the-fly loop invariant inference is needed to

preserve precision in the presence of loops.

Client: a class of pernicious Android memory leaks Activity leaks occur when a pointer to an

Activity object can outlive the Activity. The operating system frequently destroys Activity’s when configu-

ration changes occur (e.g., rotating the phone). Once an Activity is destroyed, it can never be displayed to

the user again and thus represents unused memory that should be reclaimed by the garbage collector. How-

ever, if an application developer maintains a pointer to an Activity after it is destroyed, the garbage collector
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will be unable to reclaim it. In our experiments, we check if any Activity instance is ever reachable from

a static field, a flow-insensitive property. Though a developer could safely keep a reference to an Activity

object via a static field that is cleared each time the Activity is destroyed, this is recognized as bad practice.

Activity leaking is a serious problem. It is well-documented that keeping persistent references to

Activity’s is bad practice; we refer the reader to an article2 in the Android Developers Blog as evidence.

The true problem is that it is quite easy for developers to inadvertently keep persistent references to an

Activity. Sub-components of Activity’s (such as Adapter’s, Cursor’s, and View’s) typically keep pointers

to their parent Activity, meaning that any persistent reference to an element in the Activity’s hierarchy can

potentially create a leak.

Precision of our techniques: threshing alarms. We implemented our witness-refutation analysis

in the THRESHER tool, which is publicly available.3 Additional details on our implementation are included

at the end of this section. All of our experiments were performed on a machine running Ubuntu 12.04.2

with a 2.93 GHz Intel Xeon processor and 32GB of memory. Though our analysis is quite amenable to

parallelization in theory, our current implementation is purely sequential.

To evaluate the precision of our approach, we computed a flow-insensitive points-to graph for each

application and the Android library (version 2.3.3) using WALA’s 0-1-Container-CFA pointer analysis (a

variation of Andersen’s analysis with unlimited context sensitivity for container classes). For each heap

path from a static field f to an Activity instance A in the points-to graph, we asked THRESHER to witness or

refute each edge in the path from source to sink. If we refuted an edge in the heap path, we searched for a

new path. We repeated this until THRESHER either witnessed each edge in the heap path (i.e., confirmed the

flow-insensitive alarm) or refuted enough edges to prove that no heap path from f to A can exist (i.e., filtered

out the leak report). We allowed an exploration budget of 10,000 path programs for each edge; if the tool

exceeded the budget, we declared a timeout for that edge and considered it to be not refuted. On paths with

call stacks of depth greater than three, we soundly skipped callees by dropping constraints that executing the

call might produce (according to a mod/ref analysis computed alongside the points-to analysis). We limited

2 http://developer.android.com/resources/articles/avoiding-memory-leaks.html
3 https://github.com/cuplv/thresher
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the size of the path constraint set to at most two. Allowing larger path constraint sets slowed down the

symbolic executor without increasing precision. We ran in two configurations: one with the Android library

as-is (first row for each benchmark), and one where we added a single annotation to the HashMap class to

indicate that the shared EMPTY_TABLE field can never point to anything (second row for each benchmark).

We did this because we observed that the use of the null object pattern in the HashMap class was a major

source of imprecision for the flow-insensitive analysis (cf. Figure 4.2), but we wanted to make sure that it

was not the only one our tool was able to handle.

Table 4.1 shows the results of this experiment. We first comment on the most interesting part of the

experiment: the filtering effectiveness of our analysis. As we hoped, our analysis is able to refute many

of the false alarms produced by the flow-insensitive points-to analysis. Overall, we refute 129/457 = 28%

of these false alarms in the un-annotated configuration and 172/196 = 87% of these false alarms in the

annotated configuration. Contrary to our expectations, we found many more refutations in the annotated

configuration, confirming that our technique can indeed remedy imprecision other than the pollution caused

by HashMaps.

Unfortunately, this also means that our analysis is not always able to remedy the imprecision caused

by HashMaps. The major problem is that the unannotated configuration fails to refute many of the HashMap-

related edges due to timeouts. In fact, most of the false alarms that are not common to both configurations

stem from (soundly) not considering timed-out edges to be refuted. We observed that a timeout commonly

corresponds to a refutation that the analysis was unable to find within the path program budget. This is

not surprising; finding a witness for an edge only requires finding a single path program that produces the

edge (which we can usually do quickly), but to find a refutation we must refute all path programs that might

produce an edge (which is slow and sometimes times out, potentially causing precision loss).

For example, the single timeout in the unannotated run of K9Mail occurs on a HashMap-related edge

that is refutable, but quite challenging to refute. As it turns out, refuting this edge is extremely important

for precision—upon further investigation, we discovered that the analysis would have reduced the number

of false alarms reported by over 100 if it had been able to refute it! In the annotated configuration, this edge

disappears from the flow-insensitive points-to graph because it stems from HashMap pollution. We can see
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Benchmark Size Filtering Effectiveness Computational Effort

Benchmark SLOC A RA(%) TruA(%) FalA(%) Fld RFld REdg WEdg TO T (s)

PulsePoint♠ no src 24 16 (67) 8 (33) 0 (0) 3 2 47 40 1 750
16 8 (50) 8 (50) 0 (0) 2 1 40 31 0 95

StandupTimer♣ 2K 25 15 (60) 0 (0) 10 (40) 5 3 18 26 0 1199
25 15 (60) 0 (0) 10 (40) 5 3 18 26 0 1068

DroidLife♠ 3K 3 0 (0) 3 (100) 0 (0) 1 0 0 4 0 1
3 0 (0) 3 (100) 0 (0) 1 0 0 4 0 1

OpenSudoku 6K 7 1 (14) 0 (0) 6 (86) 1 0 2 21 1 1596
0 0 (0) 0 (0) 0 (0) 0 0 0 0 0 0

SMSPopUp♠ 7K 5 1 (20) 4 (80) 0 (0) 1 0 10 24 0 49
5 1 (20) 4 (80) 0 (0) 1 0 10 24 0 46

aMetro♠ 20K 144 18 (12) 36 (25) 90 (63) 8 1 62 66 3 4226
54 18 (33) 36 (67) 0 (0) 3 1 55 24 0 18

K9Mail♠ 40K 364 78 (21) 64 (18) 222 (61) 14 3 141 106 1 1130
208 130 (63) 64 (49) 14 (7) 8 5 124 80 0 374

Total 78K 572 129 (22) 115 (20) 332 (58) 33 9 280 287 6 8991
311 172 (55) 115 (37) 24 (8) 20 10 247 189 0 1602

Table 4.1: This table characterizes the size of our benchmarks, highlights our success in distinguishing false
alarms from real leaks, and quantifies the effort required to find refutations. ♠’s indicate a benchmark in
which we found an observable leak, and ♣ indicates a latent leak. The Size column grouping gives the
number of source lines of code SLOC and the number of bytecodes in the call graph CGB for each app.
The first row for each app gives the results for the annotated configuration, and the second row gives the
results for the unannotated configuration. The Filtering column grouping characterizes the effectiveness
of our approach for filtering false alarms. The first four columns list the number of (static field, Activity)
alarm pairs reported by the points-to analysis A, number of alarms refuted by our approach RA, number
of true alarms TruA, and the number of false alarms FalA. The final two columns of this group give the
number of leaky fields reported by the points-to analysis Fld and the number of these fields RFld that we
can refute (i.e., prove that the field in question cannot point to any Activity). The Effort columns describe
the amount of work required by our filtering approach. We list the number of edges refuted REdg, edges
witnessed WEdg, edge timeouts TO, and the time T (s) taken by the symbolic execution phase in seconds.
This number does not include points-to analysis time, which ranged from 8–46 seconds on all benchmarks.
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that this increases the number of alarms we are able refute from 78 to 130 even though the number of alarms

reported by the flow-insensitive points-to analysis falls from 364 to 208.

We now comment on the computational effort required to refute/witness edges. We first observe that

the number of edges refuted is almost always greater then the number of alarms refuted, indicating that it is

frequently necessary to refute several edges in order to refute a single (source, sink) alarm pair. For example,

in the un-annotated run of aMetro, we refute 62 edges in order to refute 18 alarms. This demonstrates that

the flow-insensitive points-to analysis is imprecise enough to find many different ways to produce the same

false alarm.

We note that the running times are quite reasonable for an analysis at this level of precision, especially

in the annotated configuration. No benchmark other than aMetro takes more than a half hour. Our tool would

be fast enough to be used in a heavyweight cloud service or as part of an overnight build process.

Real Activity Leaks. As hypothesized, our tool’s precision enabled us to ignore most false alarms

and focus on likely leaks. We found genuine leaks in PulsePoint, DroidLife, SMSPopUp, aMetro, and

K9Mail. Many of the leaks we found would only manifest under specialized and complex circumstances,

but a few of the nastiest leaks we found would almost always manifest and are due to the same simple

problem: an inappropriate use of the singleton pattern. We briefly explain one such leak from the K9Mail

app.

In the code in Figure 4.11, the developer uses the singleton pattern to ensure that only one instance of

EmailAddressAdapter is ever created. The leak arises when getInstance() is called with an Activity in-

stance passed as the context parameter (which happens in several places in K9Mail). The Activity instance

is passed backwards through the constructors of two superclasses via the context parameter until it is finally

stored in the mContext instance field of the CursorAdapter superclass. For every Activity act0 that calls

getInstance(), the flow-insensitive points-to analysis reports a heap path EmailAddressAdapter·sInstance

Z⇒ adr0,adr0·mContext Z⇒ act0. When the Activity instance is destroyed, the garbage collector will never be

able to reclaim it because none of the pointers involved in the leak are ever cleared.

We found this leak in a version of K9Mail that was downloaded in September 2011 (all versions of

the benchmarks we used are available in project’s GitHub repository). We looked at the current version and



77

public class EmailAddressAdapter extends ResourceCursorAdapter {

private static EmailAddressAdapter sInstance;

public static EmailAddressAdapter getInstance(Context context) {

if (sInstance == null) {

sInstance = newadr0 EmailAddressAdapter(context);

}

return sInstance;

}

private EmailAddressAdapter(Context context) {

super(context);

}

}

Figure 4.11: A confirmed Activity leak discovered in K9Mail.
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noticed that the EmailAddressAdapter class had been refactored to remove the singleton pattern. We found

the commit that performed this refactoring and asked the developers of K9Mail if the purpose of this commit

was to address a leak issue; they confirmed that it was.4

We also discovered a very simple latent leak in StandupTimer that was also due to a bad use of the

singleton pattern. We noticed that several of the path programs THRESHER produced for a field in this

app would be a full witness for a leak if a single boolean flag cacheDAOInstances were enabled. Our

tool correctly recognizes that this flag cannot ever be set and refutes the alarm report, but a modification

to the program that enabled this flag would result in a leak. The path program witnesses our tool produces

are always helpful in triaging reported leak alarms, but in this case even the refuted path program witness

provided useful information that allowed us to identify an almost-leak. With a less constructive refutation

technique, we might have missed this detail.

Utility of our techniques. To test our second set of hypotheses, we ran THRESHER on the bench-

marks from Table 4.1 without using each of three key features of our analysis: mixed symbolic-explicit

query representation, query simplification, and loop invariant inference. We hypothesized that: (1) using

an alternative query representation would negatively affect scalability and/or performance, (2) not simpli-

fying queries would negatively affect scalability and/or performance, and (3) the absence of loop invariant

inference would negatively affect precision.

To test hypothesis (1), we implemented a fully symbolic query representation. In a fully symbolic

representation, we do not track the set of allocation sites that a variable might belong to. We have up-front

points-to information, but use it only to confirm that two symbolic variables are not equal (i.e., to prevent

aliasing case splits in the style of [Manevich et al., 2004]) and to confirm that a symbolic variable was

allocated at a given site (as in WITNEW). This precludes both pruning paths based on the boxed ‘from’

constraints in Figure 4.8 and performing the entailment check between symbolic variables defined in § in

Section 4.3.4.

Using this fully symbolic representation, our analysis ran slower and timed out more often, but did

not refute any fewer alarms than the run with the mixed representation. We observed several cases where a

4 https://groups.google.com/forum/?fromgroups=#!topic/k-9-mail/JhoXL2c4UfU
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Benchmark Ann? T (slowdown) TO (∆)

PulsePoint N 1237 (1.6X) 7 (+6)
Y 220 (1.9X) 3 (+3)

StandupTimer N 4946 (4.1X) 4 (+4)
Y 4104 (3.8X) 4 (+4)

OpenSudoku N 2984 (1.9X) 4 (+3)
Y - -

SMSPopUp N 95 (1.9X) 0 (+0)
Y 76 (1.7X) 0 (+0)

aMetro N 6863 (1.6X) 5 (+2)
Y 18 (1X) 0 (+0)

K9Mail N 990 (0.9X) 2 (+1)
Y 454 (1.2X) 0 (+0)

Table 4.2: Performance of the fully symbolic representation as compared to the mixed symbolic-explicit
representation.
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timeout caused the fully symbolic representation to miss refuting an edge that the mixed representation was

able to refute, but in each case the edge turned out not to be important for precision (that is, it was one of

many edges that needed to be refuted in order to refute an alarm, but both representations failed to refute all

of these edges).

The results of this experiment are shown in Table 4.2. We omit the results for DroidLife since they

were unaffected by the choice of representation. For every other benchmark, we give the time taken with

a fully symbolic representation, the number of times slower than the mixed representation this was (T

(slowdown)), the number of edges that timed out, and how many timeouts were added over the mixed

representation (TO (∆)).

We can see that in both the annotated and un-annotated configurations, most benchmarks run at least

1.6X slower and time out on at least one more edge than they did with the mixed representation. The

anomalous behavior of K9Mail in the un-annotated configuration occurs because the mixed representation

is able to refute an edge that the fully symbolic representation times out on. Ultimately, this leads the mixed

representation to make more progress towards (but ultimately fail in) refuting a particular alarm. The fully

symbolic representation declares this particular alarm witnessed after the edge in question times out, which

allows it to skip this effort and finish faster.

Thus, hypothesis (1) seems to hold: using a fully symbolic representation negatively affected both

performance and scalability as predicted, but choosing a fully symbolic representation did not ultimately

affect the precision of the analysis in terms of alarms filtered.

To test hypothesis (2), we re-ran THRESHER on our benchmarks using the annotated Android library

without performing any query simplification at all. This significantly hurt the performance of THRESHER on

PulsePoint (102.4X slower), K9Mail (3.2X slower), and SMSPopUp (4.3X slower), but did not change the

number of alarms refuted or witnessed for these benchmarks. On StandupTimer, not performing simplifica-

tion caused the tool to run out of memory before completing the analysis, thus affecting both precision and

performance. The performance of the tool on other apps was not significantly affected. Thus, hypothesis (2)

seems to hold for the benchmarks that require significant computational effort.

Finally, to test hypothesis (3), we implemented a simple loop invariant inference that simply drops all
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possibly-affected constraints at any loop. With only this simple inference, the analysis was unable to refute

some critical HashMap-related edges (using the un-annotated library). This meant that the analysis could

never distinguish the contents of different HashMap objects. This imprecision prevented the analysis from

refuting leak reports involving multiple HashMap’s even on small, hand-written test cases. Our full loop

invariant inference (Section 4.3.4) handled the hand-written cases precisely, but due to unrelated analysis

limitations, it did not achieve any fewer overall refutations on our real benchmarks. Nevertheless, our testing

confirmed hypothesis (3): our loop invariant inference was clearly necessary to properly handle Android

HashMap’s and similar data structures.

Implementation. THRESHER is built on top of the on the WALA5 program analysis framework

for Java and uses the Z3 [de Moura and Bjørner, 2008] SMT solver with JVM support via ScalaZ3 [Köksal

et al., 2011] to determine when path constraints are unsatisfiable.

Like most static analysis tools that handle real-world programs, our tool has a few known sources

of unsoundness. We do not reason about reflection or handle concurrency. We have source code for

most (but not all) non-native Java library methods. In particular, the Android library custom implemen-

tations of core Java library classes (including collections) that we analyze. To focus our reasoning on

Android library and application code, we exclude classes from Apache libraries, java/nio/Charset, and

java/util/concurrent from the call graph. Though we track control flow due to thrown exceptions, we

do not handle the catch() construct; instead, we assume that thrown exceptions are never caught.

Android apps are event-driven and (in general) Android event handlers can be called any number of

times and in (almost) any order. We use a top-level harness that invokes every event handler defined for an

application. Our harness allows event handlers to be invoked in any order, but insists that each handler is

called only once in order to prevent termination issues. In our experiments, we did not observe any unsound

refutations due to these limitations. We will consider a more accurate model for analysis of event-driven

Android programs in Chapter 7.

5 http://wala.sf.net
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4.5 Related work

Dillig et al. present precise heap analyses for programs manipulating arrays and containers [Dillig

et al., 2010, 2011a], with path and context sensitivity [Dillig et al., 2008]. Our analysis introduces path and

context sensitivity via on-demand refinement, in contrast to their exhaustive, summary-based approach. Our

symbolic variables are similar to their index variables [Dillig et al., 2010, 2011a] in that both symbolically

represent concrete locations and enable lazy case splits. Unlike index variables, our symbolic variables

do not distinguish specific array indices or loop iterations, since this was not required for our memory

leak client. Also, our analysis does not require container specifications [Dillig et al., 2011a]; instead, we

analyze container implementations directly. Hackett and Aiken [Hackett and Aiken, 2006] present a points-

to analysis with intra-procedural path sensitivity, which is insufficient for our needs.

Several previous systems focused on performing effective backward symbolic analysis. The pioneer-

ing ESC/Java system [Flanagan et al., 2002b] performed intra-procedural backward analysis, generating

a polyno-mially-sized verification condition and checking its validity with a theorem prover. Snuggle-

bug [Chandra et al., 2009] performed inter-procedural backward symbolic analysis, employing directed

call graph construction and custom simplifiers to improve scalability. Cousot et al. [Cousot et al., 2011]

present backward symbolic analysis as one of a suite of techniques for transforming intermittent assertions

in a method into executable pre-condition checks. PSE [Manevich et al., 2004] used backward symbolic

analysis to help explain program failures, but for greater scalability, it did not represent full path conditions.

Our work is distinguished from these previous systems by the integration of points-to analysis information,

which enables key optimizations like mixed symbolic-explicit states and abstraction for loop handling.

Our analysis can be seen as refining the initial flow-insensitive abstraction of the points-to analy-

sis based on a “counterexample” reachability query deemed feasible by that analysis. However, instead

of gradually refining this abstraction as in, for example, counterexample-based abstraction refinement (CE-

GAR) [Clarke et al., 2003] and related techniques [Cousot et al., 2007] , our technique immediately employs

concrete reasoning about the program, and then re-introduces abstraction as needed (e.g., to handle loops).

In general, the above predicate-abstraction-based approaches have not been shown to work well for proving
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properties of object-oriented programs, which present additional challenges due to intensive heap usage, fre-

quent virtual dispatch, etc. Architecturally, our system is more similar to recent staged analyses for typestate

verification [Dor et al., 2004; Fink et al., 2008], but our system employs greater path sensitivity and more

deeply integrates points-to facts from the initial analysis stage. A path program [Beyer et al., 2007] was

originally defined in the context of improving CEGAR by pruning multiple counterexample traces through

a loop at once. SMPP [Harris et al., 2010] performs SMT-based verification by exhaustively enumerating

path programs in a forward-chaining manner (in contrast to our goal-directed search). The recent DASH

system [Beckman et al., 2008] refines its abstraction based on information from dynamic runs and employs

dynamic information to reduce explosion due to aliasing.

Our witness-refutation search uses the “bounded” fragment of separation logic [Reynolds, 2002] and

thus has a peripheral connection to recent separation-logic–based shape analyzers [Berdine et al., 2007;

Chang and Rival, 2008]. In contrast to such analyzers, we do not use inductive summaries and instead

use materializations from a static points-to analysis abstraction. Shape analysis using bi-abductive infer-

ence [Calcagno et al., 2009] enables a compositional analysis by deriving pre- and post-conditions for meth-

ods in a bottom-up manner and making a best effort to reach top-level entry points. The derivation of

heap pre-conditions is somewhat similar to our witness-refutation search over points-to constraints, but our

backwards analysis is applied on demand from a flow-insensitive query and is refined by incorporating in-

formation from an up-front, whole program points-to analysis. Recent work [Distefano and Filipović, 2010]

has applied bi-abduction to detect real Java memory leaks in the sense of an object that is allocated but never

used again. In contrast, our client is a flow-insensitive heap reachability property that over-approximates a

leak that is not explicit in the code, but is realized in the Android run-time.

Similar to our path program witnesses, other techniques have aimed to either produce a concrete

path witness for some program error or help the user to discover one. Bourdoncle [Bourdoncle, 1993a]

presents a system for “abstract debugging” of program assertions, in which the compiler aims to discover

inputs leading to violations statically. Rival [Rival, 2005] presents a system based on combined forward

and backward analysis for elucidating and validating error reports from the Astrée system [Cousot et al.,

2005]. Work by Ball et al. [Ball et al., 2005] observes that for showing the existence of program errors (as
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opposed to verifying their absence), a non-standard notion of abstraction suffices in which one only requires

the existence of a concrete state satisfying any particular property of the corresponding abstract state (as

opposed to all corresponding concrete states satisfying the property). We observe an analogous difference

between refutation and witness discovery in Section ??. Similar notions underlie the “proof obligation

queries” and “failure witness queries” in recent work on error diagnosis [Dillig et al., 2012].

Previous points-to analyses have included refinement to improve precision. Guyer and Lin’s client-

driven pointer analysis [Guyer and Lin, 2005] introduced context and flow sensitivity at possibly-polluting

program points based on client needs. Sridharan and Bodik [Sridharan and Bodı́k, 2006] presented an ap-

proach for adding field and context sensitivity to a Java points-to analysis via refinement. Recently, Liang

et al. [Liang and Naik, 2011; Liang et al., 2010, 2011] have shown that highly-targeted refinements of a

heap abstraction can yield sufficient precision for certain clients. Unlike our work, none of the aforemen-

tioned techniques can introduce path sensitivity via refinement. A recent study on the precision of Ander-

sen’s analysis [Blackshear et al., 2011] used dependency rules akin to a fully-explicit analog of our mixed

symbolic-explicit transfer functions in a flow-insensitive context.

Finally, more recent work has addressed the problem of discovering Android Context leaks using

dynamic analysis. The LEAKCANARY6 tool from Square watches instances of Activity’s and (optionally)

user-defined types to ensure that all references to such types are destroyed at the end of certain methods

(e.g., the Activity.onDestroy() method). Square developers report that the tool has helped them identify

and eliminate numerous memory leaks, reducing runtime crashes due to OutOfMemoryError’s in the Square

Android app by 94%7 .

6 https://github.com/square/leakcanary
7 https://corner.squareup.com/2015/05/leak-canary.html



Chapter 5

Jumping: a framework for goal-directed control-flow abstraction

Chapter 4 addressed the problem of goal-directed store abstraction. We now turn our attention to

the problem of control-flow abstraction, the second dimension of abstraction defined in Section 2.1. Our

approach to this problem is the primary theoretical contribution of this thesis: a framework for goal-directed

control-flow abstraction via jumping. The framework provides a mechanism by which any overapproximate

backward abstract interpretation can soundly perform jumps over irrelevant code given a relevance relation

that meets certain soundness conditions. This framework reflects our philosophical separation between

the problems of store abstraction and control-flow abstraction. Roughly, we view store abstraction is the

problem of how we soundly process the core commands c of the language (our framework for jumping

is parametric in both these commands and their corresponding transfer functions) and we view control-

flow abstraction as the problem of soundly deciding what commands the analysis should visit next (our

framework is parametric in a relevance relation that chooses such commands up to soundness criteria given

in Section 5.3.2).

In this chapter, we formalize our framework for jumping analyses, prove its soundness, and argue for

its generality in expressing flexible abstractions. Section 5.1 defines a simple unstructured language that

allows uniform reasoning about control-flow. We give inference rules for a jumping analysis parameterized

by a store abstraction and a relevance relation (Section 5.2). Section 5.3 introduces the notions of data-

relevance (what commands are relevant to the current query?) and control-feasibility (what commands

can be executed before the current program point?) as building blocks for thinking about control-flow

abstraction (Section 5.3.1) and use these concepts to define soundness conditions for a relevance relation in



86

Section 5.3.2. Section 5.4 uses this condition to state and prove the soundness of jumping based on a sound

relevance relation.

Portions of this chapter previously appeared in a paper draft currently under submission entitled

“Selective Control-Flow Abstraction via Jumping”, which was co-authored by Bor-Yuh Evan Chang and

Manu Sridharan.

5.1 A simple unstructured programming language

We consider the imperative programming language of commands and unstructured control-flow pre-

sented in Figure 5.1. We choose an unstructured representation because it “flattens” the program by lower-

ing all structured control-flow constructs (e.g. if’s, while’s, switch’s, function calls, etc.) into a uniform

representation: transitions between atomic commands (assignment, allocation, etc.). Since this language

represents all control flow in the same way, reasoning about control-flow and control-flow abstraction is

simple and cleanly separated from reasoning about commands.

A program in our language consists of a finite set of transitions t. We use P for the program of interest

and T for a set of transitions in P. A transition `1−[c]� `2 consists of a pre-label `1, a command c, and a post-

label `2. A well-formed program must contain a no-op initialization transition tinit : `dummy −[skip]� `entry.

5.1.1 Concrete semantics

Our framework for jumping is parametric in a command language for manipulating stores and an

abstraction of concrete states. We assume that the concrete semantics of commands are provided via a

judgment form 〈σ ,c〉 ⇓ σ ′ that specifies how c transforms a concrete state σ to another state σ ′. For

example, we could extend the c production of Figure 5.1 with the commands from Figure 4.5, and use the

concrete semantics for the commands of this language from Figure 4.6. However, we will define the concrete

semantics for the special control-manipulating commands in Figure 5.1 to clarify how conditionals, loops,

and procedure calls are represented in our framework.

Concrete semantics for control-manipulating commands. In Figure 5.2, we define the concrete

semantics for a few special commands (assume, call, return, and skip) that manipulate the program’s
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programs P,T ::= {t1, . . . , tn}

transitions t ::= `1 −[c]� `2

commands c ::= skip | assumee | call ` | return ` | . . .

program labels ` ∈ Label

call strings L ∈ Strings ::= [] | `::L

abstract call strings L̂ ∈ ˆStrings

concrete stores ρ ∈ Store

concrete states σ ∈ Σ ::= (ρ,L)

abstract stores ρ̂ ∈ ˆStore

abstract states R ∈ Σ̂ ::= > | ⊥ | (ρ̂, L̂) | R1∨R2

command semantics 〈σ ,c〉 ⇓ σ ′

abstract semantics ` {Rpre } c {Rpost }

concretization γ : Σ̂→ ℘(Σ)

invariant map I : Label→ Σ̂

Figure 5.1: A language composed of atomic commands connected by unstructured control flow.
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〈σ ,c〉 ⇓ σ ′

C-ASSUME
〈σ ,e〉 ⇓ true

〈σ ,assumee〉 ⇓ σ

C-CALL

〈(ρ,L),call `〉 ⇓ (ρ, `::L)

C-RETURN
`1 = `2

〈(ρ, `1::L),return `2〉 ⇓ (ρ,L)

〈σ , `〉 →t 〈σ
′, `′〉

C-TRANS
t = `−[c]� `′ 〈σ ,c〉 ⇓ σ

′

〈σ , `〉 →t 〈σ
′, `′〉

〈σpre, `pre〉 −→T
∗ 〈σpost, `post〉

C-STEP
〈σpre, `pre〉 −→T

∗ 〈σ ′, `′〉 〈σ ′, `′〉 →t 〈σpost, `post〉
〈σpre, `pre〉 −→T ˆ t

∗ 〈σpost, `post〉

C-STOP

〈σ , `〉 −→/0
∗ 〈σ , `〉

Figure 5.2: Small-step concrete semantics for the simple unstructured language of Figure 5.1.
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control flow rather than the concrete store. These commands are part of the 〈σ ,c〉 ⇓ σ ′ judgement form,

which asserts “The concrete state σ steps to the concrete state σ ′ by evaluating command c”.

Programs in our language encode conditional branching using an assumee command that blocks

unless e evaluates to true (as specified by the C-ASSUME rule). We encode looping using assume along with

back edges in the transition relation.

For example, a structured conditional statement if (e) c1 else c2 would be represented by the

set of transitions { `1 −[assumee]� `2, `2 −[c1]� `4, `1 −[assume¬e]� `3, `3 −[c2]� `4 }. Similarly, the

structured loop statement while (e) c would be represented by the set of transitions { `1 −[assumee]� `2,

`2 −[c]� `1, `1 −[assume¬e]� `3 }.

We represent procedure calls using call and return commands that are linked to (respectively)

callee procedures and caller sites in the program transitions. Both commands manipulate a call string

L composed of program labels. The command call ` (C-CALL) prepends the return label ` onto the

call string, while the return ` command blocks unless ` matches the first label in the call string (`1).

(C-RETURN). Transitions involving these commands have special well-formedness conditions: a transition

`1 −[call `]� `2 is well-formed when ` is the pre-label of the instruction to be executed after the call returns,

and transition `1−[return `]� `2 is well-formed when `= `2 (i.e., ` is the return site). For example, the two-

procedure program foo() { bar(); bar(); skip } bar() { skip; } would be represented by the

sets of transitions { `1 −[call `2]� `5, `2 −[call `3]� `5, `3 −[skip]� `4 } (for foo), and { `5 −[skip]� `6,

`6 −[return `2]� `2, `6 −[return `3]� `3 } (for bar).

For simplicity in presentation, we assume that all variables in the program are globally scoped and

that parameter binding is accomplished via assignment of caller-owned globals to callee-owned globals.

Small-step concrete semantics for transition systems. Figure 5.2 also defines a transition relation

for a small-step operational semantics of transition systems given by the judgment form 〈σ , `〉 →t 〈σ
′, `′〉.

This judgment form is defined by applying the concrete command semantics 〈σ ,c〉 ⇓ σ ′ to transition

t : ` −[c]� `′. A judgment 〈σ , `〉 →t 〈σ
′, `′〉 is well-formed only if the pre- and post-labels of t are ` and

`′, respectively.

The judgment form 〈σ , `〉 →t 〈σ
′, `′〉 asserts “The concrete state σ at label ` steps to a concrete state



90

σ ′ at label `′ by executing transition t”. The judgment form is defined by the single rule C-TRANS, which

simply delegates to the concrete semantics for commands to execute the command attached to the transition

t.

The judgment form 〈σ , `〉 −→T
∗ 〈σ ′, `′〉 is the multi-step transition relation; that is, the reflexive-

transitive closure of the single-step transition relation. This judgment form asserts “The concrete state σ at

label ` steps to a concrete state σ ′ at label `′ by executing each of the transitions in T ”. We overload the

meta-variable T to be sequence of transitions (i.e., a trace) rather than a set, and we write T ˆ t for adding the

transition t to the end of he trace T . We also sometimes abuse the set operator ∈ by lifting it to an operation

on traces with the expected semantics.

The 〈σ , `〉 −→T
∗ 〈σ ′, `′〉 judgment form is defined by the C-STOP and C-STEP rules. The C-STOP rule

expresses the reflexive property of the judgment form; a concrete state σ at ` steps to the same state and

label by executing no transitions. The C-STEP rule says that if the state σpre at label `pre steps to the concrete

state σ ’ and label `’ by executing the transitions in T and then takes a single step across transition t to state

σpost and label σpost, then the state σpre at label `pre steps to σpost and label σpost by executing the transitions

in T ˆ {t}.

5.2 Formalizing jumping analysis

In this section, we explain the (parameterized) abstract state used by our analysis (Section 5.2.1) and

formalize an abstract semantics for a backward abstract interpretation augmented with the ability to jump.

5.2.1 Abstract state

Continuing our discussion of Figure 5.1, we write R for an abstract state that over-approximates a set

of concrete states defined by a concretization γ . Notationally, we use a semantic entailment relation R1 |= R2

defined over concretization as γ (R1) ⊆ γ (R2). We write > for the state such that γ (>) def
= Σ and ⊥ for the

state such that γ (⊥) def
= /0. Otherwise, a state is a finite disjunction of pairs of a store abstraction ρ̂ and a call

string abstraction L̂. We leave the particular store and call string abstractions of interest unspecified.

Our framework takes a sound abstract semantics for commands represented by the judgment form
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` {Rpre } c {Rpost } as a parameter (for example, we could use the abstract semantics from Figure 4.8).

This judgment form is a backward Hoare triple stating that for all concrete post-states in Rpost in which c

terminates for some concrete pre-state, then that concrete pre-state is in Rpre. More formally, the abstract

semantics must satisfy the following soundness condition:

If ` {Rpre } c {Rpost } and 〈σpre,c〉 ⇓ σpost such that σpost ∈ γ (Rpost), then σpre ∈ γ (Rpre). (∗)

As an informal shorthand, we say Rpost is may-witnessed by executing the command c from Rpre. As a

corollary of this soundness condition, if the analysis refutes an input query Rpost (i.e., derives ⊥ on all

backward paths originating from Rpost), then Rpost represents a set of unreachable concrete states. However,

the analysis may over-approximate by failing to refute Rpost even if Rpost is not concretely reachable.

5.2.2 Abstract semantics: control-flow abstraction via jumping

To describe static analysis of transition systems, we define an invariant map I : Label→ Σ̂ that maps

each program label ` to candidate invariants at ` given by an abstract state R. Our jumping refutation analysis

is defined by the judgment form I ` ` that asserts, “I over-approximates the concrete states from which `

can be reached in a state satisfying I(`).” As a shorthand, when the judgment I ` ` holds, we say that I

may-witnesses I(`), or simply I may-witnesses `.

This judgment form relies on an auxiliary judgment form I ` t that asserts, “For a transition t : `1−[c]�

`2, I(`1) overapproximates the concrete states from which executing c yields a state satisfying I(`2).” As

above, we say that I may-witnesses transition t when the judgment I ` t holds.

In Figure 5.3, we define these two judgment forms. The A-TRANSITION rule defines I ` t, which

is analogous to the consequence rule of standard Floyd-Hoare logic. The rule says that I may-witnesses

`1 −[c]� `2 if there is a triple ` {R′ } c {R} that satisfies soundness condition (∗), such that I(`2) is stronger

than R and I(`1) is weaker than R′. This rule is essentially just a wrapper that lifts an abstract semantics for

commands to an abstract semantics for transitions that is constrained by our invariant map I.

The key rule for our jumping analysis is A-JUMP, which decides the transitions that the analysis

should visit next. This rule relies on a relevance relation written using the judgment form 〈R, `post〉 Trel
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I ` `1 −[c]� `2

A-TRANSITION
I(`2) |= R ` {R′ } c {R} R′ |= I(`1)

I ` `1 −[c]� `2

I ` `

A-JUMP
I(`post) |= R 〈R, `post〉 Trel I ` t for all t : `i −[ci j]� ` j ∈ Trel R |= I(` j) for all ` j I ` `i for all `i

I ` `post

Figure 5.3: Jumping analysis. The key A-JUMP rule expresses the ability to skip code based on a relevance
relation.

that asserts, “Given an abstract state R at program label `, the set of relevant program transitions is Trel.”

Intuitively, the rule says to perform a backward jump from the current label `post to the post-label of each

relevant transition in Trel, skipping all transitions in between.

The rule’s first two premises I(`post) |= R and 〈R, `post〉 Trel state that we compute a set of rel-

evant transitions Trel using some weakening of the query I(`post). Allowing this weakening of the state

abstraction is crucial, as weakening of the state may make the set of relevant transitions Trel smaller. The

“R |= I(` j) for all ` j” premise constrains the post-state of each relevant transition to be weaker than the cur-

rent state R. Together, these two premises can be seen as consequence for the transitions skipped by the

jump.

The premise “I ` t for all t : `i −[ci j]� ` j ∈ Trel” checks that I may-witnesses each relevant transition

t ∈ Trel—that is, it uses the auxiliary judgment form to abstractly execute each relevant transition that was

jumped to. Finally, the remaining premise “I ` `i for all `i” recursively continues the backward analysis by

checking that I may-witness the pre-label `i of each relevant transition that was jumped to.

5.2.3 Inference, loops, and recursion

While the judgment form I ` ` is most easily read as a checking system for judging when I may-

witnesses ` for a given I, we can obtain an inference system that computes an invariant map I with a standard
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post-fixed-point computation via abstract interpretation. We begin the abstract interpretation from a map I0

initialized with the initial query at the start label ` and all other labels mapping to ⊥. The analysis applies

the A-JUMP rule to that start label and updates the invariant map with the inferred values for R. A weakening

(as in premise R′ |= I(`1) of A-TRANSITION) corresponds to an update to the invariant map with a join (i.e.,

Ii+1(`1) = Ii(`1)t R′) or widen O as appropriate to break loops in the abstract interpretation. This process

continues with additional labels via the recursive invocation “I ` `i for all `i” in the A-JUMP rule until the

invariant map computation reaches a fixed point.

In the analysis, an arbitrary context- and object-sensitivity policy can be implemented by the choice

of the call string abstraction L̂ ∈ ˆStrings and the state abstraction R ∈ Σ̂.For example, a simple k-callstring

context-sensitivity policy could keep a disjunct for distinct call strings up to length k (joining or widening

abstract stores ρ̂ as needed).

In our implementation, we uniformly handle all sources of looping and recursion by widening at

targets of back edges. Our widening operator bounds the length of the materialized prefix of the abstract call

string L̂ (i.e., program labels `1 :: · · · :: `k :: anystring) and the number of materialized heap locations (i.e.,

7� constraints) in the abstract store ρ̂ .

5.3 Data-relevance, control feasibility, and soundness of a relevance relation

The A-JUMP rule of Figure 5.3 is an extremely general rule that allows a wide variety of strategies

for choosing the transitions that the analysis should jump to. All transitions not jumped to are skipped. But

what transitions can the analysis soundly skip? A-JUMP allows the analysis to skip any transitions except

for the set of transitions Trel returned by the relevance relation, so the burden of ensuring soundness falls

squarely upon this relation. In this section, we will first build intuition for what transitions can and cannot be

skipped (Section 5.3.1) before formally defining the soundness conditions that must imposed on a relevance

relation in order to ensure sound jumping (Section 5.3.2).
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5.3.1 Building intuition for data-relevance and control-feasibility

For a relevance relation to be sound, it must ensure that it does not omit any important transitions

that could be involved in may-witnessing the query of interest. There are many different strategies that the

relevance relation can use to ensure this soundness property. We will show that each of these strategies can

be thought of as (1) choosing a set of data-relevant transitions that would be sound to return on their own,

then (2) soundly filtering this set using control-feasibility information. As a first consideration, consider a

relevance relation that returns all transitions in the program as data-relevant and performs no filtering. This

relevance relation is trivially sound: it cannot skip any important transitions because it does not skip any

transitions at all. This corresponds to a fully flow- and context-insensitive view of the program, as every

transition will be a jump target from every other transition.

Simple control-feasibility: choose the predecessor transitions of the current program label. The

above strategy of taking all program transitions can be improved by considering a simple form of control-

feasibility: postdominance in the control-flow graph. Intuitively, if transition t ′ postdominates transition t,

there is no need to consider both t and t ′ as relevant, as all backward paths to t must go through t ′. Hence,

it is sufficient to only consider t ′ as relevant. Via this reasoning, we can conclude that instead of treating all

transitions in the program as relevant, one can instead use just the immediate predecessor transitions of the

current program label while remaining sound. That is, let us define 〈R, `cur〉 preds(`cur). We have simply

recovered the standard approach taken by flow/path-sensitive analyses—visit all of the predecessor (for a

backward analysis) or successor (for a forward analysis) transitions of the current program label `. This is

the approach taken by the THRESHER tool described in Chapter 4.

Simple data-relevance strategy: choose the transitions that may affect the current query. Treat-

ing just the immediate predecessors as relevant is quite precise, but it does not utilize the key strength of

jumping: the ability to skip irrelevant transitions entirely. We can make better use of jumping by refining

the set of transitions returned by the data-relevance step using information about the program’s data-flow.

We can leverage data-flow information by modifying the data-relevance step to return all transitions that

may affect the query state as data-relevant, then remain sound by performing no filtering during the control-
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feasibility step. For example, if the abstract state R is x ≥ 0 for a program variable x, then writes to any

variable other than x clearly cannot affect the query state and can be soundly skipped. That is, we can define

〈R, `cur〉 mods(R), where mods denotes the commands that may write to the current abstract state R.

An interesting aspect of our framework is that we can actually be a bit more restrictive than the mod-

set by considering only transitions that weaken the abstract state to be relevant. The informal intuition is

that if a transition moves a query closer to being may-witnessed (i.e., weakens the query), then it cannot be

skipped, whereas if a transition moves a query closer to being refuted (i.e., strengthens the query) or does

not change the query, it may be soundly skipped. Consider a simple example to develop intuition for this

fact:

Example 5.3.1 (Relevance) What commands are safe to skip for the query x= 5 at some program point in a

program containing the commands y := 5, x := 3, x := y, and assume y != 5? Informally, we cannot

skip the command x := y, as it may move the query closer to being may-witnessed depending on the value

of y. Skipping the command y := 5 is clearly safe since it will not affect the query. Skipping x := 3 is

also safe because although this command affects the query, it would refute the query rather than moving it

closer to being may-witnessed. Finally, skipping assume y != 5 is safe as well because although it affects

the query, it moves it closer to being refuted. Considering this transition would yield the stronger sub-query

x= 5∧y 6= 5.

Thus, it is sound to choose the subset of modifier commands that weaken the query as relevant; that

is, we can define 〈R, `cur〉 { t : `1 −[c]� `2 | ` {R′ } c {R} and R′ |= R }.

This strategy of taking the set of data-relevant transitions (either modifiers or weakeners) is less pre-

cise than taking the set of the immediate predecessors. An analysis that uses the data-relevance strategy will

lose flow-sensitivity while jumping because it does not take the program’s control-flow into account. On the

other hand, the data-relevance strategy is likely to be more efficient because it considers only the (typically

small) set of transitions that may affect the query without reasoning about any of the other transitions in the

program or the control-flow between them.

Combining data-relevance and control-feasibility A very powerful strategy is combining the
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previous two: first identify a set of data-relevant transitions for the current query, then use control-feasibility

information such as postdominance in the control-flow graph to filter this set as much as possible. Roughly,

we can define 〈R, `cur〉 { t | t ∈ dataRel(R) and controlFeas(t, `cur) }. Doing this allows us to get the

best of both worlds while jumping: we can skip vast swaths of irrelevant code by limiting our consideration

to the data-relevant transitions, and we can maintain flow-, path-, and context-sensitivity while jumping by

filtering away control-infeasible transitions using information about the control-flow between data-relevant

transitions.

5.3.2 Defining relevance soundness

Motivated by the preceding discussion of sound strategies for selecting relevant transitions to explore,

we define our soundness condition for relevance relations in a way that permits all strategies to be thought

of as computing data-relevant transitions, then filtering these conditions using control-feasibility:

Condition 5.3.1 (Relevance soundness)

If 〈R, `post〉 Trel, 〈σ , `pre〉 −→T
∗ 〈σ ′, `post〉, tirrel : `1 −[c]� `2 ∈ P−Trel, and ` {R′ } c {R}, then either

(a) R′ |= R, or (b) ∃ T1, T2 s.t. T = T1 ˆ T2, tirrel /∈ T2 and Trel ∩ T2 6= /0.

We write 〈σ , `〉 −→T
∗ 〈σ ′, `′〉 for the judgment form of multi-step concrete evaluation, that is, the

reflexive-transitive closure of single-step concrete evaluation. This multi-step concrete evaluation records

each transition it visits between `pre and `post in the trace T . We denote trace concatenation with T1 ˆ T2.

Data-relevance condition Condition 5.3.1(a) captures the soundness of returning data-relevant

transitions by imposing restrictions on a transition tirrel that is not returned by the relevance relation. It

states that for any program transition tirrel not included in the set of relevant transitions for state R, the pre-

state R′ with respect to the transition command c is at least as strong as R. From the analysis perspective,

this means that it is sound to exclude tirrel from the jump targets because it cannot possibly move R closer to

being witnessed. This condition ensures that the returned relevant transitions Trel must be a superset of the

transitions that either weaken the input abstract state do not satisfy Condition 5.3.1(b) R.
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This is a very general notion of data-relevance, as it captures relevance based on both modification

and weakening. Changing Condition 5.3.1(a) to Rpre = R would require that all skipped transitions do not

change the query. As previously mentioned, this is also sound, but is less general because does not allow

us to skip transitions such as assume’s and return’s that strengthen the query (by adding path constraints

and constraining the call string, respectively). Skipping these transitions is sometimes desirable: doing so

may lose precision, but enhance scalability by yielding fewer relevant transitions for the analysis to jump to.

Using the more general weakening condition in Condition 5.3.1(a) allows a particular relevance relation to

choose to exclude such transitions or not as desired for the requirements of the analysis.

Control-feasibility condition Condition 5.3.1(b) captures the soundness of filtering data-relevant

transitions based on control-feasibility information. It says that if a transition tirrel is not included in the

set of relevant transitions for program point `post, then we can decompose the trace of visited transitions T

into a pre-trace T1 and a post-trace T2 such that the post-trace contains a relevant transition, but does not

contain tirrel. This means then some relevant transition trel ∈ Trel must always happen between tirrel and `post.

From the perspective of our backward analysis, this means that it is sound to exclude tirrel from the set of

jump targets because some relevant transition trel that will be jumped to postdominates tirrel in the program

control-flow.

Our relevance soundness condition is quite general: it permits all of the transition selection strategies

we have discussed so far and opens the door for any strategy whose structure can be described as computing

data-relevant transitions, then filtering using control-feasibility.

5.4 Soundness of jumping analysis

Next, we state and prove a soundness theorem demonstrating that any relevance relation satisfying

this soundness condition can be used to define a sound jumping analysis.

Theorem 5.4.1 (Soundness of jumping analysis)

If 〈σdummy, `dummy〉−→T
∗ 〈σpost, `post〉 and I ` `post such that σpost ∈ γ (I(`post)), then σdummy ∈ γ (I(`dummy)).
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The theorem says that if the concrete state σpost at program point `post is in the concretization of the

abstract state stored at label `post of the invariant map, then σdummy is in the concretization of the abstract

state stored at the pre-entry label `dummy. In the theorem, we write concrete state σdummy for a distinguished

element of Σ that represents the uninitialized, “junk” state before beginning the execution of the program.

Using this concrete junk state as a technical device, our instantiation defines an abstraction such that the

only abstract state that includes σdummy is >. Thus, we obtain a refutation (i.e., we have discovered that the

program configuration 〈σpost, `post〉 is unreachable) whenever I(`dummy) maps to a non-> state.

We present the proof of this theorem in Appendix A.



Chapter 6

Combining jumping with invariant-based reasoning

Chapters 4 and 5 present approaches to flexible store and control-flow abstraction (respectively) based

on the idea of abstraction coarsening. These chapters explain how we meet the challenge of making abstrac-

tions flexible (Challenge A), but the challenge of using flexibility wisely to design practically effective

analyses (Challenge B) remains. In this chapter, we show how to instantiate the control-flow abstraction

framework from Chapter 5 with the store abstraction from Chapter 4 and a relevance relation specialized

for refuting reachability queries in modern object-oriented programs. Our goal is to use the framework to

design an analysis that leverages common forms of invariant-based reasoning used by real-world program-

mers for better scalability. From the perspective of our goal-directed analysis via abstraction coarsening,

we seek to outfit the THRESHER analysis described in Chapter 4 with the ability to coarsen its control-flow

abstraction on-the-fly. The analysis will decide to coarsen the control-flow abstraction and improve scala-

bility (hopefully without losing precision) by choosing to explore data-relevant commands whenever the

analysis guesses that the safety of the query may depend on a flow-insensitive invariant. The hope is that

the analysis will retain the precision to quickly refute the query based on local information if possible, but

will also identify cases where safety relies on an invariant established far away from the program point of

the initial query and improve scalability by jumping directly to the relevant code.

We begin by presenting an example with a query whose safety relies on the kind of programmer

invariant-based reasoning we wish take advantage of (Section 6.1). We explain why programs that use

this sort of reasoning present a scalability challenge for existing approaches and demonstrate how our ap-

proach is able to quickly refute the query (Sections 6.1.1 and 6.1.2). Section 6.2 presents strategies for



100

deciding when to coarsen the control-flow abstraction by exploring data-relevant transitions rather than

control-feasible transitions. The eager relevance checking strategy presented in Section 6.2.1 identifies

coarsening opportunities that are certain to lead immediately to a refutation. The invariant schema strategy

presented in Section 6.2.2 allows the analysis to identify commonly used global invariants (such as object

invariants and container invariants) and directly jump to the code that establishes the invariant in order to

quickly find a refutation. In Section 6.3, we show how to precisely compute data-relevance information for

heap constraints used in our goal-directed store abstraction (Section 6.3.3) and combine this algorithm with

the strategies from the previous section to define a relevance relation (Section 6.3.4). Finally, Section 6.4

demonstrates that using this relevance relation to outfit THRESHER with flexible control-flow abstraction

provides a significant scalability benefit over flexible store-abstraction alone. Our HOPPER tool was able to

refute many tough queries requiring scalable flow-, path, and context-sensitive reasoning that THRESHER

could not handle.

Portions of this chapter appeared in an unpublished draft entitled “Goal-Directed Coarsening of the

Control-Flow Abstraction via Jumping”, which was co-authored by Bor-Yuh Evan Chang and Manu Srid-

haran.

6.1 Example: leveraging object invariants with jumping and invariant schemas

In this section, we explain the challenges of the proving the safety of the downcast at line 8 in

Figure 6.1 and demonstrate how we can use control-flow abstraction via jumping to efficiently refute the

query The code in this figure is a snippet manually and carefully extracted from the antlr1 Dacapo bench-

mark [Blackburn et al., 2006] that isolates exactly the code required for proving the safety of his downcast.

The goal of our jumping analysis is to explore only this relevant code by automatically identifying these

relevant code regions and jumping between them without either exploring the tens of thousands of lines of

irrelevant code that can execute in between or expecting a programmer-written specification that modular-

izes this verification.
1 http://www.antlr.org/
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class Parser {

boolean lex, Grammar gram;

void setGrammar(Grammar g) {

1 this.gram = g;

2
this 7� p̂ N p̂·gram 7� ĝ ∧ type(ĝ)<: LexGrammar

∧ type(ĝ)��<:LexGrammar
†

3 this.lex = (gram instanceof LexGrammar);

4 p̂·gram 7� ĝ N p̂·lex 7� true ∧ type(ĝ)��<:LexGrammar

}

}

class LLkAnalyzer {

void look(Parser p) {

5 p 7� p̂ N p̂·gram 7� ĝ N p̂·lex 7� true ∧ type(ĝ)��<:LexGrammar

6 if (p.lex) {

7 p 7� p̂ N p̂·gram 7� ĝ ∧ type(ĝ)��<:LexGrammar

8 LexGrammar lg = (LexGrammar) p.gram;

}

}

}

Figure 6.1: Jumping analysis avoids path explosion by performing control-flow abstraction. The analysis
collects the key path constraint p̂·lex 7� true and jumps directly to the code that allows the analysis to find
a refutation using this path constraint. In this example, hatted variables represent a single instance of an
object, 7� arrows denote exact points-to, and <: denotes Java subtyping.
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The initial query ρ̂ : p 7� p̂ N p̂·gram 7� ĝ∧ type(ĝ)��<:LexGrammar2 is shown at line 7. This separation

logic formula expresses the conditions under which the cast will fail—local p is a memory cell containing the

object address p̂ whose gram field contains an object address ĝ, and ĝ is not a LexGrammar. As previously

described in Section 3.1, our analysis attempts to prove the safety of the cast by trying to refute this query.

This analysis is a form of proof by contradiction: it computes an over-approximation of the backward

reachable states from ρ̂ on line 7 and refutes the query when it has derived unreachability of (ρ̂, line 7)

(e.g., ⊥—no possible concrete states) at a set of locations that together control-dominate line 7.

At a high level, proving that the cast on line 8 is safe requires showing that the disjunctive invariant

p.lex = true =⇒ p.gram instanceof LexGrammar holds for any p passed to the look method. This

invariant is established by the setGrammar method of the Parser class (assume that it contains the only

writes to the gram and lex fields). Thus, the verification challenge (without a specification of this invariant)

lies in (a) understanding that the predicates involved in this invariant are the important ones to track and (b)

proving that this invariant holds on all control-flow paths reaching look.

Challenge (b) is particularly difficult for existing techniques. In the case where the control flow paths

between calls to setGrammar and look are numerous and complex and the analysis cannot benefit from

pruning paths based on a specification, the scalability of a typical path-sensitive analysis will suffer due to

path explosion. In the original antlr code, there are more than 263 such paths. Though no practical analysis

tool would attempt to verify the example by exploring all of these paths, the complexity of the control flow

between the two methods exacts a toll on the scalability of existing tools. A CEGAR tool like CORRAL

[Lal et al., 2012] needs to inline at least 194 methods just to reach the calls to look and setGrammar

from the entry point of antlr. A backward path-sensitive analysis like THRESHER [Blackshear et al., 2013]

needs to visit at least 161 methods to explore a complete path from look to setGrammar. Proving that the

required invariant holds on all control-flow paths through these methods hurts scalability even when tools

are effective at collapsing redundant paths.

This scalability bottleneck is especially frustrating because path-sensitive analysis of the control-flow

between setGrammar and look is unnecessary—setGrammar contains the key code for proving the cast

2 Our queries should be interpreted as constraining a sub-heap, that is, a formula M means M N true for the whole heap.
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safe (i.e., refuting the query), and other path conditions constraining calls to look are irrelevant. However,

no analysis has a priori knowledge of the property that all of this code is irrelevant, and so it must laboriously

discover this property during analysis.

Our jumping analysis avoids this scalability bottleneck by identifying important code regions using

data-relevance information and jumping directly between them. Jumping is a form of control-flow abstrac-

tion that mitigates the scalability issues described here by avoiding precise analysis of irrelevant control-flow

altogether. This means that the cost of proving the safety of this example will not grow as the complexity

of the control-flow between setGrammar and look grows so long as no relevant instructions occur in the

control-flow. Our analysis addresses challenge (a) by using invariant schemas to decide when a query has

collected enough important path conditions and challenge (b) by performing control-flow abstraction via

jumping between relevant code regions, as we will see.

6.1.1 Invariant-based jumping algorithm

Each time our jumping analysis applies a transfer function on a command that changes the current

query, it performs the following steps:

(1) Match and abstract using invariant schemas. The analysis tries to match the query to an invariant

schema describing the structure of commonly used invariants. For this example, the analysis employs

an object invariant schema that captures relational object invariants by matching queries that have con-

straints on two distinct fields of the same object instance. If an invariant schema matches a query, the

analysis abstracts the query by dropping the points-to constraints that do not match the schema (i.e.,

soundly summarizing those constraints with true).

(2) Find important code using a relevance relation. For each points-to constraint in the query that remains

after abstraction, the analysis computes the set of data-relevant program commands whose execution

may produce a heap configuration in the concretization of the constraint (see Condition 5.3.1(a)). This

process is similar to computing a partial slice that only considers immediately data-relevant commands

rather than a transitive closure (see Section 6.5 for a full discussion of the differences between our
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technique and slicing). Finding the set of data-relevant commands makes use of a global view of the

program from a points-to graph computed by a separate, up-front analysis.

(3) Jump to relevant code. The analysis forks a case split for each relevant command, “jumps” to the

command, and continues analysis for each case. This coarsens the control-flow abstraction used by

the analysis by assuming that each relevant command is backward-reachable from the current program

point. If in step (1), the query did not match an invariant schema, the analysis pushes the query backward

to its predecessor program points rather than jumping (i.e., follows the program transitions backward in

the normal manner).

6.1.2 Refuting the example query

The analysis begins by trying to match the initial query at line 7 against the object invariant schema.

The query does not match the schema, so the analysis pushes the query backward across the if (p.lex)

guard at line 6. This augments the query with the constraint p̂ ·lex7� true and produces the new query at

line 5. This new query matches the object invariant schema described above, as it constrains both the gram

and lex fields of the abstract object instance p̂. The analysis then abstracts the query by dropping points-

to constraints not matched by the schema (pure constraints such as type(ĝ)��<:LexGrammar are always

retained). In this case, only the local constraint p 7� p̂ is dropped.

After abstraction, the analysis computes the relevant constraints for the query, determining that line 1

is relevant for the constraint on gram and line 3 is relevant for the constraint on lex. In this case, since line 3

post-dominates line 1, our analysis reasons that it only needs to jump to line 3, as indicated by the arrow to

line 4 in the figure.

After the jump, the analysis applies the transfer function to move the query across line 3 and rea-

sons that in order to produce the constraint p̂ ·lex7� true, it must be the case that type(ĝ) <: LexGrammar.

But this contradicts the extant query constraint type(ĝ)��<:LexGrammar, and thus the analysis has found a

contradiction and refuted the query (as indicated by the † symbol).
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6.1.3 Challenges of designing a jumping analysis

Our motivating example above illustrates a case where jumping analysis seamlessly mitigates the pre-

viously described scalability issues while preserving precision, but in general crafting an effective jumping

analysis presents several challenges:

(1) Computing sound, yet precise data-relevance information. Imprecise data-relevance information that

includes many irrelevant commands will not enhance scalability because the analysis will have to per-

form too many case splits each time it jumps. However, data-relevance information that leaves out an

important command is unsound because it may cause the analysis to falsely refute the query.

(2) Deciding when to coarsen the control-flow abstraction. Coarsening at the wrong time can lead to de-

creased precision in the analysis if the analysis chooses to jump over code that is important for finding a

refutation. On the other hand, choosing to coarsen at an opportune time can significantly improve scal-

ability. Thus, choosing when to coarsen in a way that enhances scalability without losing the precision

necessary to find a refutation is crucially important.

6.2 Deciding when to coarsen the control-flow abstraction

Coarsening the control-flow abstraction via jumping fundamentally causes the analysis to lose preci-

sion. We only want coarsen the control-flow abstraction when we think that we can trade off superfluous

precision (that is, precision not required to prove the safety of the query) for better scalability by jumping

over irrelevant code. Coarsening at other times may cause the analysis to lose too much precision and fail

to refute the goal query. In this section, we present strategies for deciding when to coarsen based on eager

relevance checking (Section 6.2.1) and invariant schemas (Section 6.2.2). We now describe each of these

strategies and give example use-cases demonstrating why each strategy identifies jumps that are likely to

improve scalability without sacrificing important precision.
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6.2.1 Identifying precision-preserving jumps with eager relevance checking

As discussed previously, choosing when to jump is of the utmost importance for enhancing scala-

bility without sacrificing precision. We craft the first part of our jumping strategy based on the following

observation: if a jump is certain to lead to a refutation, then performing the jump cannot lose precision, and

hence we should always perform such jumps. Eager relevance checking makes use of this observation by

consulting the relevance relation to identify cases when a jump is certain to lead to a refutation. It exploits

the situation when the relevance relation is precise enough to show that some part of the query cannot be

witnessed by any command in the program.

For a query R, eager relevance checking involves two steps. We first compute the relevant transitions

for each constraint in R individually. If a constraint has no relevant transitions except for tinit, then we

weaken R to an abstract state R′ containing only that constraint and apply A-JUMP. Since the only relevant

transition is tinit, the analysis will jump to `entry and find a refutation based on the fact that R 6=> at `dummy

(recall from Section 5.4 that the only abstract state whose concretization includes the initial state σdummy is

>).

Use case for eager relevance checking. We found that eager relevance checking improved the

performance of our analysis by quickly identifying unsatisfiable constraints on pure values. For example,

consider a query containing a points-to constraint v̂·opcode 7� 1, stating that the opcode of instance v̂ must

hold the value 1. These kinds of constraints arise frequently when the programmer defines a small set of

constant integers to tag different kinds of values (for example, final int ADD = 1, SUB = 2;) and then

uses comparisons to these constants as guards. If our relevance relation can determine that all possible

writes to v̂·opcode write a value other than 1, then it will report that only tinit is relevant for this constraint.

Eager relevance checking will then cause the analysis to weaken the query to v̂·opcode 7� 1 before jumping

and immediately finding a refutation.
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6.2.2 Identifying invariant-based reasoning with invariant schemas

When eager relevance checking cannot show that a jump is certain to lead to a refutation, we must

decide when we think the analysis has collected enough constraints to find a refutation after jumping. In-

variant schemas are based on the idea that jumps can be fruitful when the current query seems to rely on a

global invariant. When programmers rely on local reasoning, jumping is likely to lose precision without en-

hancing scalability, as the facts needed to establish safety are available locally. However, programmers also

frequently rely on global reasoning by establishing invariants that hold throughout the program. In cases

where safety relies on a global invariant, it may make sense to abandon local reasoning and jump to the

location where the invariant is established. In doing so, we hope to avoid scalability bottlenecks that result

from continuing precise local analysis while retaining precision by focusing the analysis on the invariant of

interest.

We developed our invariant schemas by manually inspecting Java code and determining where and

why it would be useful for the analysis to switch from local reasoning to global reasoning when trying to

refute a query. Each invariant schema is function that identifies forms of commonly used invariants. We

tried to choose invariant schemas that capture very general kinds of invariants, but we imagine that more

client-specific invariant schemas could also be useful.

We define each invariant schema S as a function that takes an abstract state R as input and (if it

matches) produces a weakened version of the state. The purpose of an invariant schema is twofold: (1)

matching the current query to tell the analysis when it is wise to perform a jump, and (2) abstracting the

query with respect to the schema, reducing the number of possible jump targets. Our schemas only match the

abstract store ρ̂ and choose to lose all information about the abstract call string L̂. In this way, we eliminate

the need to consider any call commands as relevant for our backward analysis, enabling inter-procedural

jumps. This decision is consistent with our design principle of minimizing the number of relevant jump

targets, which increases scalability in practice.

Our analysis currently uses two invariant schemas, an object invariant schema Sobj and a container

invariant schema Scontainer. We describe each schema via an existentially-quantified separation logic for-
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mula that we attempt to match against the query, underlining retained constraints in green. All non-retained

constraints are removed by abstraction.

Object invariant schema. Our object invariant schema Sobj seeks to identify cases where the prop-

erty of interest relies on some relationship between fields of the same object. Sobj searches the query for two

points-to constraints v̂·f0 7� û0 N v̂·f1 7� û1 where f0 6= f1 and then weakens the query by dropping all other

points-to constraints. This schema is quite general: it captures any object invariant that involves a relation-

ship between two fields of the same object instance. Crucially, we do not have to understand the nature of

the relationship between the two fields in order to utilize this schema—we only need to hypothesize that

some relationship exists and preserve this relationship while jumping.

Use case for the object invariant schema. Jumping when Sobj is matched is effective because

object invariants are often established early in program execution (e.g., in a class initializer or constructor)

and then used much later on. In our motivating example in Section ??, the object invariant relating the lex

and gram fields is established when the fields are mutated in setGrammar, but then is used much later in the

program to ensure the safety of the cast. Note that in the example, our analysis never needs to explicitly infer

the actual invariant p.lex = true =⇒ p.gram instanceof LexGrammar. It is sufficient for the analysis to

recognize that there is some relationship between p.lex and p.gram and perform a jump while preserving

this relationship.

Container invariant schema. Our container invariant schema Scontainer seeks to identify invariants

that hold for all elements of a particular container (e.g., “this container contains only integers that are less

than 7”). Scontainer searches the query for an access path of length 2 or greater v̂0·f0 7� v̂1 N v̂1·f1 7� v̂2, and

then weakens the query by dropping all points-to constraints except for the last one in the access path. This

schema abstracts away all constraints on the access path to the container and allows the analysis to focus

only on the contents of the container. In the common case that elements satisfying the invariant are inserted

into a container at one point in the program and accessed via the container later on, this invariant schema

allows the analysis to jump directly from code performing the accesses to the insertion code.

Use case for the container invariant schema. Programmers often ensure that all elements of a

container have a certain property at insertion time via code like
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if (x != null) lst.add(x). Later in the program, the programmer will read an element from the list

and dereference it without checking for null (e.g., lst.get(i).foo()). Without knowing the container

invariant on lst, this dereference is difficult to prove safe. However, our analysis will use the container

invariant schema to jump directly to all locations where elements are inserted into lst and check that the

invariant is maintained for all inserted elements, avoiding analysis of all irrelevant code between the read

and write(s).

6.3 A relevance relation that leverages programmer reasoning

In this section, we define a relevance relation that explores predecessor commands of the current

program point by default, but chooses to coarsen the control-flow abstraction by jumping to data-relevant

commands using the strategies defined in Section 6.2. We motivate the design of our data-relevance rela-

tion (Section 6.3.1), present abstract semantics for procedure calls in Section 6.3.2 (a required preliminary

step), explain how we compute precise data-relevance information for heap constraints (Section 6.3.3), and

formally define our relevance relation (Section 6.3.4).

6.3.1 Design principle: coarsen infrequently, but aggressively

Our strategy for deciding when to coarsen the control-flow abstraction is quite conservative in that

the analysis only chooses to make a jump that may lose precision when the analysis state matches one of

the invariant schemas described in Section 6.2.2. In addition, the analysis coarsens the store abstraction

before jumping; it weakens the query by dropping all constraints not matched by the invariant schema

(including constraints on the call string, meaning that we lose all context-sensitivity when jumping). This is

important because it limits the number of relevant locations that must be jumped to and thereby maximizes

the scalability benefits of jumping.

Thus, though the decision to coarsen is made infrequently, the coarsening that we perform is aggres-

sive in the sense that it loses all information about parts of the query not related to the invariant. We want

our data-relevance relation to be similarly aggressive: our goal is to minimize the number of locations that

need to be jumped to for the maximum scalability benefit. The most important decision point is whether
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the relevance relation should exclude transitions that can strengthen the query and thus make finding a

refutation easier. In order to accomplish this, we seek (1) to be as precise as possible in computing the

relevant commands for a query (as we will explain in Section 6.3.3), and (2) to be deliberately coarse by

not considering strengthening transitions as relevant. The second part of this strategy takes advantage of

relevance soundness Condition 5.3.1(a), which says that for soundness we only need to consider transitions

that weaken the current query state to be relevant. Excluding a strengthening transition such as assume y

!= 5 in Example 5.3.1 may skip a transition that could have led the analysis to derive a refutation, or it may

hamper scalability by forcing the analysis to explore infeasible paths that could have been ruled out by the

path condition. But if this path condition turns out not to be important for deriving a refutation (since there

are typically far more irrelevant conditionals than relevant ones for a given query), then the analysis wastes

time and potentially hurts scalability trying to may-witness an unimportant constraint.

Excluding strengthening transitions that make the query more constrained (such as assume’s that con-

strain by adding path conditions and return’s that constrain by adding to the call string) is likely to improve

scalability by limiting the relevant locations to be jumped to, but can also lose precision. Choosing to exclude

assume’s (resp. return’s) can cause the analysis to lose path-sensitivity (resp. context-sensitivity) while

jumping. However, we found that in the absence of control-feasibility filtering (which the relevance relation

defined here does not use while jumping ), choosing to include these strengthening transitions significantly

increases the number of relevant transitions to be jumped to in practice without increasing precision.

Thus, the data-relevance relation defined Section 6.3.3 in chooses to exclude all strengthening tran-

sitions. The choice to exclude strengthening transitions from our data-relevance relation precludes path-

sensitivity and context-sensitivity, whereas the decision to forego control-feasibility while jumping pre-

cludes flow-sensitivity. This means that jumping corresponds to taking a single step of fully flow-insensitive

analysis. The analysis is fully precise before and after jumping, but during a jump our goal is to compute

the smallest set of relevant transitions allowed by Condition 5.3.1 in hopes that jumping will enhance scala-

bility as much as possible in practice. Stated differently, we rely on underlying store abstraction defined in

Chapter 4 for precision, but rely on our jumping strategy to ensure that this expensive precision is applied

only to relevant code regions.
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` {R′ } c {R}

A-RETURN

` {(ρ̂, `::L̂)} return ` {(ρ̂, L̂)}

A-CALL-OK
`= `1

` {(ρ̂, L̂)} call `1 {(ρ̂, `::L̂)}

A-CALL-REF
` 6= `1

` {⊥} call `1 {(ρ̂, `::L̂)}

A-CALL-ANY

` {(ρ̂,anystring)} call ` {(ρ̂,anystring)}

Figure 6.2: Backward abstract semantics for call and return commands.

6.3.2 Abstract semantics for procedure calls

Before formalizing our data-relevance relation, we must present abstract semantics for the call and

return commands used to represent procedure calls in the jumping analysis framework in Figure 6.2. We

gave the corresponding concrete semantics in Figure 5.2 and explained the meaning of the backward Hoare

triple ` {R′ } c {R} in Section 5.2.1. We gave the abstract semantics for the assume command used to

represent conditionals and looping win Figure 4.9.

The A-RETURN rule says that when the analysis moves backward across the statement return `, the

return label ` is prepended to the abstract call string. This constrains the abstract call string to reflect that

any concrete execution could only have reached this program point if it previously visited a matching call `

instruction that pushed ` onto the call string. The A-CALL-OK rule expresses the case where the analysis

subsequently encounters this matching call. If the label ` on top of the call string matches the label `1 of

the call command, the analysis weakens the state by popping the label off of the call string. By contrast, the

A-CALL-REF rule expresses the case where the analysis subsequently encounters a non-matching calls. If

the label on top of the call string ` does not match the label `1 of the call command, the analysis refutes the

current path (derives⊥) since no concrete state could have a non-`1 label on top of its call string immediately

after executing the command call `1. Finally, the A-CALL-ANY rule says that an unconstrained call string

anystring can be propagated backward across a call command without any changes.
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6.3.3 Computing precise data-relevance information for heap dependencies

In this subsection, we show how to compute precise data-relevance information for the separation

logic-based store representation presented in Chapter 4. The key challenge here is the capability to compute

a precise approximation of relevant writes, i.e., it must precisely identify commands that may write to rele-

vant portions of the heap. If the relevance relation is not effective at precisely identifying such commands,

it will report too many commands as relevant and lessen the scalability benefits of jumping.

Our data-relevance relation leverages the up-front points-to analysis and instance-from constraints

used by the store abstraction introduced in Chapter 4 to precisely identify heap dependencies. Recall that

an instance-from constraint v̂ from r̊ states that the instance v̂ must have been allocated from the region r̊,

where a region is a set of allocation sites. We define v̂ from /0 ⇐⇒ false since it means that v̂ could not have

been allocated from any allocation site in the program. These constraints are useful for precisely computing

heap dependence information, as we will explain.

Computing relevance for heap dependencies requires determining what commands might be relevant

to a points-to constraint v̂· f 7� û with instance-from constraints v̂ from r̊∧ û from s̊. We can clearly restrict

possibly-relevant commands to those updating field f , of the form x. f := y. Given the instance-from con-

straints, we can further restrict relevant commands to those meeting the following condition:

ptG̊(x)∩ r̊ 6= /0∧ptG̊(y)∩ s̊ 6= /0

The function ptG̊(x) denotes the points-to set of x as computed by an up-front points-to analysis. The above

condition ensures consistency between the points-to sets of x and y and the corresponding regions r̊ and s̊,

rejecting any command that could not possibly produce the v̂· f 7� û points-to constraint.

This reasoning is captured in the R-WRITE rule of Figure 6.3. This rule is one of several comprising

the auxiliary judgment form ρ̂ Trel, which asserts that the transitions in Trel may be relevant to the abstract

store ρ̂ . Other rules defining relevance for local constraints leverage points-to information and instance-from

constraints in a manner similar to the R-WRITE rule, as we will explain. The R-READ, R-NEW, and R-ASSIGN

rules compute the data-relevant commands for a local points-to constraint x 7� v̂ in a similar way. These rules

essentially encode a flow-insensitive variation of reaching definitions extended with from constraints. The
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R-READ and R-ASSIGN rules say that any field read x := y.f (resp. x := y) such that the intersection of

the points-to set of y. f (resp. y) and the allocation region r̊ constraining v̂ is non-empty is relevant to the

points-to constraint x 7� v̂. The R-NEW rule says that any allocation command x := newa τ() that allocates

an allocation site a in the allocation region r̊ constraining v̂ is relevant to the points-to constraint x 7� v̂. The

R-ANY rules defines the base cases of relevance for the separation logic predicate any that is satisfied by any

heap.

The R-SEP rule gives structure to the ρ̂ Trel judgment by recursively applying the relevance relation

to each sub-memory of the store to find the data-relevant transitions for the entire store. It says that the set

of relevant transitions for the store ρ̂ is the union of the relevant transitions for each of its sub-memories.

The other auxiliary judgment form L̂ Trel asserts that the transitions in Trel may be relevant to the

abstract call string L̂. The R-CALL rule says that a call command with return label `1 must be considered

data-relevant to a call string with a label ` = `1 as its first label. In our backward analysis, the abstract

semantics for call can weaken the abstract state by popping a label off of the call string, thereby creating

a less constrained call string. Thus, we must consider all call instructions with labels matching the top of

the call string to be data-relevant in order to be sound.

However, as explained in Section 6.2.2, our invariant schemas always choose to weaken the abstract

call string to anystring before computing relevance and jumping, so this rule is never applied in our system.

Instead, R-ANYSTRING will always be applied. This rule is simply the analog of R-ANY and R-TOP rules for

call strings.

Finally, the top-level judgment form R Trel asserts that the transitions in Trel may be relevant to the

abstract state R. R-BOT and R-TOP rules define the base cases of relevance for an unreachable state and a

state representing all concrete states, respectively. In both cases, the only relevant transition is the initial

transition tinit. The R-BOT rule ensures that the relevance relation satisfies requirement (b) for the abstract

state ⊥.

The R-CASES rule says that for a disjunction of abstract states R0 ∨ R1, the set of data-relevant tran-

sitions is the union of the relevant transitions for R0 and R1. The R-SPLIT rule decomposes an abstract state

into its store component and call string component, computes the relevant transitions for each component
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R Trel

R-CASES
R0 T0 R1 T1

R0∨R1 T0∪T1

R-BOT

⊥ {tinit}

R-TOP

> {tinit}

R-SPLIT
ρ̂  T1 L̂ T2

(ρ̂, L̂) T1∪T2

ρ̂  Trel

R-SEP
ρ̂ = M0 N M1∧P M0∧P T0 M1∧P T1

ρ̂  T0∪T1

R-ASSIGN
Trel = { t | t ∈ P and t = `i −[x := y]� ` j and ptG̊(y)∩ r̊ 6= /0 }

x 7� v̂∧ v̂ from r̊∧P Trel

R-NEW
Trel = { t | t ∈ P and t = `i −[x := newa τ()]� ` j and a ∈ r̊ }

x 7� v̂∧ v̂ from r̊∧P Trel

R-READ
Trel = { t | t ∈ P and t = `i −[x := y.f ]� ` j and ptG̊(y. f )∩ r̊ 6= /0 }

x 7� v̂∧ v̂ from r̊∧P Trel

R-WRITE
Trel = { t | t ∈ P and t = `i −[x.f := y]� ` j and ptG̊(x)∩ r̊ 6= /0 and ptG̊(y)∩ s̊ 6= /0 }

v̂· f 7� û∧ v̂ from r̊∧ û from s̊∧P Trel

R-ANY

any∧P {tinit}

L̂ Trel

R-CALL
Trel = { t | t ∈ P and t = `i −[call `1]� ` j and `= `1 }

`::L̂ Trel

R-ANYSTRING

anystring {tinit}

Figure 6.3: A data-relevance relation that uses an up-front points-to analysis and instance-from constraints
to precisely identify heap dependencies. This relevance relation considers only commands that weaken the
current query to be relevant.
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using the auxiliary relevance judgments, and returns the union of the relevant transitions.

Data-relevance of constraints on pure types. The rules in Figure 6.3 only describe how to com-

pute the data-relevant commands for points-to constraints whose righthand side is an an abstract instance,

but in practice, we frequently need to compute relevant commands for exact points-to constraints whose

righthand side is a pure type (e.g., the constraint p̂·lex 7� true in Figure 6.1). We can add a variation of the

R-WRITE rule to compute the data-relevant commands for such a constraint as follows. We first remove the û

from s̊ constraint from the rule. We then generalize the clause c = x.f := y that restricts the set of commands

considered to the more permissive clause c = x.f := e. Finally, we swap the side condition ptG̊(y)∩ s̊ 6= /0 for

a satisfiability check SAT(û = e∧P), where SAT invokes a decision procedure for the expressions allowed

in the expression language e3 . The resulting R-WRITE-PURE rule is shown inset:

R-WRITE-PURE

Trel = { t | t ∈ P and t = `i −[x.f := e]� ` j and ptG̊(x)∩ r̊ 6= /0 and SAT (û = e∧P) }

v̂· f 7� û∧ v̂ from r̊∧P Trel

The R-ASSIGN and R-READ rules can be extended in a similar way.

Design decision: ignoring assume’s and return’s. We note that Figure 6.3 contains no rules

for computing the data-relevance of assume and return commands. As explained in Section 6.3.1, this

is intentional: Condition 5.3.1(a) tells us that any relevance relation can choose to ignore commands that

strengthen the abstract store. A command assumee can only strengthen the store by conjoining the expres-

sion e to the existing pure formulae in the abstract store. The return ` can only strengthen the store by

constraining the call string via prepending the label `.

Cost of computing data-relevance. We briefly comment on the cost of computing the data-relevant

commands for a query. Clearly, computing data-relevance information needs to be efficient in order for

piecewise refutation analysis to yield its promised scalability benefits. Our data-relevance relation’s use of

a precomputed points-to analysis typically allows us to compute relevance quite quickly.

One potential scalability concern is than many rules in Figure 6.3 quantify over every command in

3 Our implementation uses the Z3 SMT solver [de Moura and Bjørner, 2008] as its decision procedure.
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the program P. We note that in practice, we can often compute data-relevance much more efficiently by

exploiting procedural abstraction and up-front points-to information. The R-ASSIGN, R-NEW, and R-READ

rules compute the relevant statements for a constraint on some local variable x, so we only needs to inspect

each command in the method that x belongs to.

Shrinking the number of commands that the R-WRITE rule consider is slightly more challenging, but

we can do it using the points-to graph. Let E̊ be the edge set of the points-to graph and let x Z⇒ a denote

a may-points to edge from the graph. Further, let the containing method of a local variable x be given by

method(x), Assuming that we are interested in a heap constraint v̂· f 7� û ∧ v̂ from r̊∧ û from s̊, we compute

the sets P̂v = { method(x) | (x Z⇒ a) ∈ E̊ ∧ a ∈ r̊ } and Pû = { method(y) | (y Z⇒ a) ∈ E̊ ∧ a ∈ s̊ }.

These are sets of methods containing locals that may point to v̂ and û, respectively. Any method containing

a command that discharges the constraint v̂· f 7� û must have local variables pointing to both v̂ and û, so we

only need to look at write commands from methods in the set P̂v ∩ Pû. In practice, this set is typically small

enough to investigate efficiently.

6.3.4 Crafting an invariant-based relevance algorithm

Finally, we can combine the jumping strategies described in Section 6.2.2 with the technique for com-

puting precise data-relevance information for heap dependencies from Section 6.3.3 to define our relevance

relation (Figure 6.4). The relevance relation is quite straightword and works just as we have previously

described: it acts like THRESHER by choosing to follow the predecessor transitions of the current program

point by default (line 7), but chooses to “jump” by exploring the data-relevant commands for the current

program state based on eager relevance checking (line 3) or invariant schemas (line 9).

We claim that the algorithm meets the relevance soundness criteria defined in Condition 5.3.1. The

algorithm either returns the predecessor transitions of the current program point, which meets Condi-

tion 5.3.1(b), or it returns the set of data-relevant transitions for the current query, which meets Condi-

tion 5.3.1(a).
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Require: Current abstract state Rcur
Require: Current label `cur
Require: Program transition relation P
Require: Call graph CG
Ensure: Returned transition set Trel satisfies Condition 5.3.1

1: Trel← dataRel(Rcur) // compute Rcur Trel
2: if Trel = /0 then
3: return Trel // eager relevance checking
4: end if
5: // check if store matches invariant schemas
6: if R does not match Sobj or Scontainer then
7: return preds(`cur, P) // invariant schema doesn’t match, follow predecessors
8: end if
9: return Trel // invariant schema matched, jump by returning data-relevant transitions

Figure 6.4: A relevance relation that follow control-dependencies by default, but jumps by following data
dependencies if there are no data-relevant transitions or the query matches an invariant schema.
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6.4 Case study: proving the safety of tough casts

We implemented the practical jumping analysis described in Section 6.2.2 and Section 6.3 in the

HOPPER tool, an extension of the WALA4 and Z3 [de Moura and Bjørner, 2008]-based THRESHER tool.

The core of THRESHER is an engine for refuting queries written in separation logic. Clients are implemented

as lightweight add-ons that take a program as input and emit separation logic queries for the core refuter

to process. HOPPER extends THRESHER by adding the ability to perform jumps, but is otherwise identical.

Both THRESHER and HOPPER are typically run with a time budget for each query. If the tool cannot refute

the query within the allotted budget, the analysis gives up and reports the query as not refuted.

In order to evaluate the effectiveness of goal-directed coarsening of control-flow via jumping, we

sought to test the following hypotheses:

(1) HOPPER’s use of jumping provides a significant scalability advantage over THRESHER, given a fixed

time budget per query.

(2) The effects of jumping cannot be matched by THRESHER even with a much larger time budget.

Experimental setup We tested our hypotheses using the benchmarks5 and queries from a state-

of-the-art Datalog refinement analysis capable of adding unlimited object-sensitivity to a flow-insensitive

points-to analysis in order to refute queries [Zhang et al., 2014]. The queries are all downcasts that cannot

be proven safe by a flow-insensitive, context-insensitive points-to analysis. We ran all of our experiments

using an OpenJDK1.7 JVM on a Linux machine with a 2.93 GHz Intel Xeon processor and 32GB of memory.

First, we ran the Datalog refinement analysis (Dlog) on the set of queries from each benchmark. We

then ran THRESHER (Thr) and HOPPER (Hop) in a pipeline (THRESHER-first) on all of the queries with a

budget of 90 seconds per query. We chose the 90 second budget through trial and error—both tools refuted

fewer queries with a lower budget, and much larger budgets did not result in significantly more refutations

for either tool.
4 http://wala.sourceforge.net
5 https://code.google.com/p/pjbench/
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Finally, we manually triaged the casts that were not proven safe by the THRESHER-HOPPER pipeline

and classified each cast as (1) genuinely unsafe, (2) beyond the capability of THRESHER/HOPPER to prove

safe even with an infinite budget due to imprecision, or (3) provable by THRESHER/HOPPER in principle,

but not in the time given.

Manual triaging The results of our automated analysis and manual triaging are shown in Fig-

ure 6.5. We present the results in terms of the number of unproven casts remaining after applying the given

tool/triaging. The “Manual Triaging” column grouping presents the number of queries for each benchmark

(Qry), the number of these that are actually safe casts (Safe) and the number of these that THRESHER would

be able to prove safe given infinite time (Prov). Most genuinely unsafe casts that we found relied on non-

validated assumptions about external input. For example, in the case of toba-s, a Java bytecode optimization

framework, a large number of casts assumed that the bytecode would conform to the structure imposed by

the Java bytecode verifier

Of the 30 casts that THRESHER lacked the necessary precision to prove, the primary sources of

imprecision were the need to compute complex invariants over loops (18 casts), achieve strong updates on

summary locations (6 casts), or analyze strings precisely (4 casts). THRESHER performs on-the-fly loop

invariant inference over heap constraints [Blackshear et al., 2013], but the required loop invariants for the

18 casts in question involved both heap and pure constraints.

Automated analysis The results of automated analysis are shown in the “Unproven Casts after

Analysis” column grouping of Figure 6.5. For all tools, we computed the number of unproven casts by

subtracting the number of casts proven safe by the tool from the number of “provable” casts shown in the

Prov column. We only include the provable casts in these counts since it is only for these casts that the

performance of HOPPER and THRESHER can be meaningfully compared.

Our results show that the THRESHER-HOPPER pipeline proves more casts safe than the Datalog re-

finement approach on all benchmarks where both tools ran to completion.6 This result is not surprising, as

proving cast safety frequently requires path/flow-sensitivity and strong updates that cannot be provided by

6 The OOM entries in Figure 6.5 indicate benchmarks where the Datalog analysis ran out of memory due because our machine
had only 32GB of memory (Zhang et al. report using a machine with 128GB).
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Benchmark Size Manual Triaging Unproven Casts after Analysis

Bench KLOC Qry Safe Prov Dlog Thr Hop Hop Impr (%)
antlr 131 145 145 130 75 12 5 58
hedc 153 22 22 18 OOM 0 0 -
javasrc-p 66 81 79 76 64 24 18 25
luindex 190 144 141 137 113 15 8 47
lusearch 198 155 154 157 107 11 9 18
schroeder-m 334 18 18 18 OOM 2 0 100
toba-s 69 60 31 24 OOM 12 1 92
weblech 194 8 6 6 OOM 0 0 -
Total 1335 633 596 566 359∗ 76 41 47

Figure 6.5: Proving cast safety with three different tools: Datalog refinement [Zhang et al., 2014] (Dlog),
THRESHER (Thr), and HOPPER (Hop). The size of each programs under analysis (including both applica-
tion and library code) is given by the KLOC column. The Manual Triaging columns give the number of
queries for each benchmark (Qry), the number of queries that are safe (Safe), and the number of safe queries
that THRESHER is precise enough to prove (Prov). The Unproven Casts after Analysis columns subtract
the number of casts proven safe by each tool (Dlog, Thr, and Hop) from the number of casts in the Prov
column to give the number of unsafe casts remaining after running the tool (or OOM if the tool ran out of
memory). The final Hop Impr column shows the percentage improvement of HOPPER over THRESHER for
each benchmark (Total is the geometric mean of the percentage improvement for each benchmark).
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a flow-insensitive approach.

The last three columns of Figure 6.5 contain the data that support experimental claim (1). HOPPER

improves on the results of THRESHER on each of the six benchmarks for which THRESHER can be improved,

proving a total of 35 additional casts safe. Of the 41 provable casts that HOPPER still could not prove safe,

the primary cause was a need to add both call site-sensitivity and object-sensitivity simultaneously that we

could not capture with an invariant schema.7 On the other hand, we only observed one case in which a

jump lost precision that would have led to a refutation, showing the effectiveness of our jumping policy for

identifying only precision-preserving jumps.

The final Hop Impr column shows the reduction in unproven casts achieved by HOPPER (where

100% represents a perfect result), summarizing the effectiveness of our approach. Overall, HOPPER reduces

the number of unproven queries from THRESHER by 47%, validating our first hypothesis that HOPPER

significantly improves scalability compared to THRESHER.

Figure 6.5 focuses small set of benchmarks and queries for a single client in order to gain a deep

understanding of the strengths and weaknesses of our technique. We have also used HOPPER to check

for array out-of-bounds errors, null dereferences, and unsafe downcasts on eight benchmarks from the

Dacapo2006 [Blackburn et al., 2006] suite. In these experiments, HOPPER improved on the results of

THRESHER for every benchmark/client that we ran. We have not yet performed the significant amount of

manual triaging required to quantify HOPPER’s improvement when eliminating unsafe queries and queries

not provable by THRESHER for these benchmarks/clients. The full results of these experiments are included

in the extended version of this paper.

Finally, to demonstrate that the scalability improvement provided by HOPPER cannot be easily repli-

cated with THRESHER by using a larger budget (Hypothesis 2), we re-ran THRESHER on each of the 35 casts

that the HOPPER component of the pipeline proved safe with a budget of 9000 seconds per cast instead of

90 seconds. Even with this much larger budget, THRESHER was not able to prove any additional casts safe,

showing that the jumping ability of HOPPER yields a scalability advantage that THRESHER cannot match.

7 For example, some queries required object sensitivity on a Comparator and container passed to a generic sort method, along
with call-site sensitivity for the call to sort and its transitive callees.
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6.5 Related work

Program slicing. Identifying commands that may affect a query using a data-relevance is closely

related to program slicing [Tip, 1995]. Our approach is most closely related to semantic slicing [Bourdoncle,

1993b; Rival, 2005], since we perform a slice with respect to an abstract state rather than a seed command. A

key difference between our data-relevance relation and semantic slicing is that we only compute the first step

of a slice (i.e., the immediately relevant commands) rather than computing a transitive closure of relevant

commands as a complete slice does. In many cases, taking a complete slice includes the majority of the

program and is prohibitively expensive to compute. Our analysis aims to incrementally compute the parts of

the slice that are important for finding a refutation while using abstraction to keep the size of the slice under

control. Our approach is much more efficient than the obvious approach of taking a full slice with respect

to the query and analyzing the sliced program.

CEGAR. As discussed in Chapter 1, counterexample-guided abstraction refinement (CEGAR) [Ball

et al., 2011; Clarke et al., 2000; Henzinger et al., 2002; Lal et al., 2012] is a common approach to goal-

directed analysis. CEGAR attempts to avoid analysis of irrelevant code by starting with the coarsest pos-

sible abstraction and then repeatedly refining the abstraction in response to spurious counterexamples. Our

analysis performs goal-directed coarsening instead of refinement: it begins with a very precise abstraction

and selectively coarsens the control-flow abstraction to limit the application of precise reasoning to small

fragments of code. The decision to coarsen is made on-the-fly and can be based on sources of information

other than counterexamples.

CEGAR-based analysis of software has primarily been applied to C device driver programs and has

not yet been shown to scale to modern object-oriented programs that make heavy use of heap allocation. The

CORRAL tool analyzes C# programs, but their published C# results only consider programs up to 2K lines of

code [Lal et al., 2012] . Zhang et al.’s Datalog refinement CEGAR algorithm handles large real-world Java

programs, but their approach is not path-sensitive and thus cannot refute many queries that our techniques

can (see the comparison in Section 6.5).

Impact pre-analysis. Recent work (also discussed in Section 2.1.2) has presented a form of ab-
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straction coarsening using a cheap, context-insensitive “impact” or “introspective” analysis to estimate the

precision and scalability impact of using a context-sensitive abstraction at a particular call site [Oh et al.,

2014; Smaragdakis et al., 2014a] or tracking the relationship between two variables [Oh et al., 2014]. This

pre-analysis is used to select an effective abstraction for a subsequent precise analysis. In both cases, the

abstraction used by the precise analysis is fixed, whereas the abstraction we use can be coarsened on-the-fly.

Neither approach is capable of selective path-sensitivity like our approach, though Oh et al. [Oh et al., 2014]

mention this as a direction for future work.

Skipping irrelevant code. Identifying statements important to a query using a relevance relation

is closely related to program slicing [Tip, 1995]. Our approach is most closely related to semantic slicing

[Bourdoncle, 1993b; Rival, 2005], since we perform a slice with respect to an abstract state rather than a seed

command. Two key differences between the relevance relation and semantic slicing are (1) the relevance

relation only computes the first step of a slice and (2) our analysis weakens queries according to an invariant

schema before jumping, which reduces the number of relevant commands. In many cases, taking a complete

slice will include the majority of the program and will be quite expensive to compute. Our analysis aims to

incrementally compute the parts of the slice that are important for finding a refutation while using abstraction

to keep the size of the slice under control. This approach is much more efficient than the obvious approach of

taking a full slice with respect to the the original query and then performing analysis on the sliced program.

Recent work on checking deep assertions [Lal and Qadeer, 2014] introduces a program transforma-

tion that adds extra control-flow edges from the program entrypoint to each method containing an assertion.

Their experiment shows that this transformation magnifies the effectiveness of the inlining heuristics used

in CORRAL, enabling faster proofs and counterexamples for queries. Unlike our jumping technique, this

transformation does not leverage a relevance relation to identify other code important for proving the safety

of the query. In particular, the transformation does not help the analysis identify methods without assertions

that need to be analyzed precisely (such as setGrammar in the motivating example of Section ??).

Previous work on refinement-based points-to analysis [Sridharan and Bodı́k, 2006] had a similar

ability to jump over code irrelevant to a particular query. That system was restricted to selectively adding

context- and field-sensitivity to a points-to analysis, whereas our focus is on the more general problem of
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scaling path-sensitive reachability analysis by using jumping.

Goal-directed backward symbolic analysis. Previous backward symbolic analyses (both over-

approximate [Blackshear et al., 2013; Manevich et al., 2004] and under-approximate [Chandra et al., 2009;

Sinha et al., 2012]) have enjoyed improved scalability due to their goal-directed exploration, but still suffer

performance bottlenecks from path explosion. Techniques have been proposed that mitigate the explosion

somewhat, such as directed call-graph construction [Chandra et al., 2009] and alternating forward and back-

ward search [Sinha et al., 2012]. The key advance in the current work is a method for skipping symbolic

analysis of code entirely using a relevance relation.

Precise and scalable whole-program analysis. Dillig et al. introduce scalable, non-goal-directed

approaches to whole-program analysis that achieve the high level of precision we are targeting: path-

sensitivity [Dillig et al., 2008] and container index-sensitivity [Dillig et al., 2011a,b] along with context-

sensitivity and strong updates. We see exhaustive whole-program techniques and goal-directed techniques

such as our jumping analysis as two distinct approaches with different challenges. In whole-program ap-

proaches the challenge is to manually define a fixed abstraction that enables precise and scalable analysis

of any program, whereas in goal-directed approaches the challenge is to craft techniques for automatically

creating query-specialized abstractions to enable precise and scalable handling of a particular query.

Leveraging invariant-based reasoning of programs. Our object invariant schema captures safety

invariants that are similar to those relied on by the tagged union idiom in C programs. Previous work [Jhala

et al., 2007] has focused on proving safe usage of tagged unions by inferring and checking dependent types

expressing the relationship between the tag and the type of elements in the union. Our system uses invariant

schemas to discover and check invariants that are useful for proving a given query in a goal-directed fashion.

This approach is more flexible than flow-insensitive dependent types because we can exploit path-specific

invariants [Beyer et al., 2007] (e.g., we can discover and use an invariant that holds for a given instance of an

object rather than for all instances). But since our approach never performs explicit inference of invariants,

we cannot re-use invariants as effectively as a system for inferring dependent types.



Chapter 7

Using jumping for tractable analysis of event-driven Android programs

Chapter 6 presented an instantiation of the jumping analysis framework from Chapter 5 specialized

for leveraging common forms of invariant-based reasoning used by real programmers. This approach is

effective when the invariants that queries reply upon for safety meet two conditions: (1) they are explicitly

established in the program text, and (2) they are flow-insensitive. The first condition is requirement because

the invariants must be recognized by an invariant schema like the ones defined in Section 6.2.2. The second

condition is a requirement because (as discussed in Section 6.3.1) the jumping analysis does not maintain

flow-sensitivity while jumping.

In this chapter, we present a different instantiation of the jumping framework from Chapter 5 designed

to handle queries where neither of these conditions holds. Specifically, we consider the problem of selective

flow-sensitive static analysis of event-driven systems. These systems are becoming increasingly important

due to their prevalent use in web and mobile applications. In event-driven systems, control-flow occurs

via invocation of event callbacks that may or may not be ordered. Inter-event flow-sensitive reasoning is

often important for precision, but such reasoning can be prohibitively expensive due to the large number of

possible event orderings that must be considered (as we will discuss in Section 7.1).

In event-driven systems, event ordering invariants are maintained not by the application, by the frame-

work code that implements the event dispatch logic. This framework code is frequently not available to the

analysis, and even if the code is available the invariants may be too difficult to recognize given the complex-

ity of the code (in either case, the first condition above is violated). Furthermore, the ordering of events is a

flow-sensitive property, which violates the second condition defined above.
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Clearly, we need a new kind of jumping analysis to deal with the unique structure of even-driven

systems. At a high-level, our idea is to precisely follow backward control-flow (i.e., behave like the analysis

of Chapter 4) until an event boundary is reached, then perform control-flow abstraction by jumping to

relevant events. We use data-relevance information to identify a small set of events relevant to the current

query, then use control-feasibility information to filter out events that could not have fired before the current

event (and thus maintain flow-sensitivity while jumping).

This chapter is organized as follows. Section 7.1 explains the challenges of analyzing event-driven

Android programs and briefly describes our approach to meeting these challenges. We have already pre-

sented a motivating example of the jumping analysis we formalize in this chapter in Section 3.2 (specifically,

we motivate the importance of our Android client in Section 3.2.1 and show the process of the analysis in

Section 3.2.3), which we encourage the reader to revisit in the context provided by this chapter. Section 7.2

shows how we can represent inter-event ordering information from the Android documentation in order

to perform control-feasibility filtering. Section 7.3 combines the control-feasibility filtering with a pre-

cise data-relevance relation similar to the one described in Section 6.3 to define a relevance algorithm for

events (Section 7.3.2). In Section 7.4, we explain how we avoid many difficulties of modeling the complex

Android framework by explicating the reflective bridge between the framework and an application. This

approach allows us to analyze the framework code directly rather than requiring specifications or an error-

prone harness. Finally, we implemented our jumping analysis in the HOPDROID tool and evaluated our tool

on the challenging client of checking null dereferences in event-driven Android programs (Section 7.5). Our

results showed that augmenting the goal-directed store abstraction described in Chapter 4 with our event-

based control-flow abstraction strategy significantly increased scalability, allowing the analysis to decrease

the number of unproven dereferences by an average of 54%. In addition, we found 11 real bugs in four

different Android applications, nine of which have already been fixed via our submitted patches.

Portions of this chapter previously appeared in a paper draft currently under submission entitled

“Selective Control-Flow Abstraction via Jumping”, which was co-authored by Bor-Yuh Evan Chang and

Manu Sridharan. Portions of Section 7.4 previously appeared in the SOAP 2015 paper “DROIDEL: A

General Approach to Android Framework Modeling” [Blackshear et al., 2015], which was co-authored by
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Figure 7.1: A simple event system containing three components with independent lifecycles.

Alexandra Gendreau and Bor-Yuh Evan Chang.

7.1 Challenges of analyzing event-driven programs

To illustrate the problem posed by precise tractable event-driven analysis, consider the simple event

system in Figure 7.1. This system has three components (a), (b), and (c) with independent event lifecycle

graphs. Events within an individual lifecycle graph are ordered by directed edges: e1→ e2 specifies that e1

must execute before event e2 . Otherwise, the events are unordered with respect to events in other lifecycle

graphs. For example, the system specifies that any of events e2, e4–e9 can execute immediately after e1, but

e3 cannot. Event interleavings across lifecycle graphs are important to consider since all events may access

shared mutable state.

The challenge in performing a flow/path-sensitive analysis of such systems is respecting intra-lifecycle

ordering constraints while soundly accounting for interleavings of event lifecycles. The obvious approach

to achieving this result is to compute and analyze the product graph of all event lifecycle graphs in the

event system. However, the number of edges in the product graph will be exponential in the number of

components, and all such edges must be considered to perform a flow/path-sensitive analysis (even for the

tiny system of Figure 7.1, the product graph contains 27 edges). For practical event systems with tens of

components and hundreds of events like the Android applications we consider in Section 7.5, this graph

quickly becomes intractable to represent—let alone analyze.

In practice, additional complications arise that make this problem even more difficult. Analyzing

an individual event can be quite expensive because each event is essentially a standalone program—it may
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call thousands of procedures and contain loops and recursion. Component lifecycles can execute more than

once, so the analysis may have to visit each edge in the product graph multiple times in order to compute

a fixed point. Finally, systems like Android implement lifecycle components and events via objects and

instance methods, so the analysis may need to consider an unbounded number of instances of each lifecycle

component.

Our insight is that although inter-event flow-sensitive reasoning is required to prove many properties

of event-driven systems, most of these properties can be proven without considering all of the possible in-

terleavings across component lifecycles. To leverage this insight to improve scalability, we need a selective

form of control-flow abstraction flexible enough to apply flow/path-sensitive reasoning within an event life-

cycle, but not across all edges in the lifecycle product graph. Though previous approaches to control-flow

abstraction have effectively addressed the problem of selective context/object-sensitivity [Oh et al., 2014;

Smaragdakis et al., 2014a; Sridharan and Bodı́k, 2006; Zhang et al., 2014], we are not aware of any previous

work that can vary flow/path-sensitivity in the manner desired here. Previous flow-sensitive approaches to

analyzing Android applications (e.g., [Fritz et al., 2014]) have avoided this issue by assuming the lifecy-

cles of different components cannot interleave, but this is unsound and (as we have seen in the example of

Figure 3.2 discussed in Section 3.2.3) can cause the analysis to miss real bugs.

In the remainder of this chapter, we tackle the challenge of selective flow/path-sensitive abstraction

by using the framework for control-flow abstraction via jumping defined in Chapter 5. Our key idea that

if we can identify the set of events that may affect the the query at hand, we only need to reason about all

possible orderings between these events in order to be sound. If we can coarsen the control-flow abstraction

by removing these irrelevant event orderings, we can give the analysis many fewer cases to explore. We

have found that since the number of relevant events for a given query is typically small in practice, this

approach is tractable even for large event systems. Our jumping framework allows us to limit analysis to

relevant events while retaining flow/path-sensitivity for the query at hand.

The core idea behind our approach is an alternation between following data dependences using a data-

relevance relation and considering control dependences using a notion of control-feasibility. The data-

relevance relation enables the analysis to identify commands that may affect the current query, while control-
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feasibility information allows the analysis to consider event lifecycle constraints to preserve flow/path-

sensitivity while jumping.

7.2 Representing inter-event control-flow

In this section, we explain how we represent the inter-event control-flow in Android applications in

a way that allows a static analysis to address the challenges laid out in Section 7.1. We will make use of

this information to check inter-event control-feasibility when we define a practical relevance relation for

Android in the next section (Section 7.3).

For Android programs, we must consider two distinct kinds of control-flow information: intra-event

control flow and inter-event control flow. Handling intra-event control-flow is the same as handling inter-

procedural control flow in an ordinary Java program, which is a well-understood problem. Control-flow

between methods can be represented using a call graph and control-flow within a method can be represented

using a control-flow graph for the method.

Representing inter-event control-flow is more difficult because this information is not directly rep-

resented in the call graph. In fact, the logic for maintaining orderings among events lives in native code

in the Android framework, so ordering information cannot be inferred by analyzing the Java portion of the

framework alone.

Our approach to representing inter-event control-feasibility constraints is to formally define the mean-

ing of the event ordering information that programmers have access to: the lifecycle documentation for

Android components (e.g., the Activity lifecycle1 ). This documentation takes the form of lifecycle graphs

where nodes are lifecycle event methods and directed edges express ordering constraints among the events.

We have already seen how such graphs are useful in Section 3.2.3: Figure 3.3 specified the ordering of

lifecycle events for the components used in the example and allowed the analysis to filter the set of relevant

events to be jumped to.

To go from the documentation to a graph to a representation that can provide control-feasibility in-

formation during static analysis, we need the following:

1 http://developer.android.com/guide/components/activities.html#Lifecycle
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(1) A well-defined semantics for Android lifecycle graphs. Our analysis can then use these graphs

to filter out irrelevant transitions based on the control-feasibility condition of relevance soundness (Condi-

tion 5.3.1(b)).

(2) A specialization of generic lifecycle graphs of core Android components (e.g., Activity, Service)

to a lifecycle graph for a specific application subclass of that component. This specialization resolves Java

method overriding to make explicit the method code for each application subclass, and for precision, it

incorporates other callbacks, such as those for handling user interface widgets.

(3) A way for the analysis to resolve lifecycle events on object instances. Since events in Android

are methods on lifecycle objects, we need to prove that object instance ô1 must-aliases ô2 for two events

ô1.m1 and ô2.m2 in order to show that ô1 and ô2 are constrained by the same lifecycle graph. If we cannot

prove this fact, it is unsound to do any control-feasibility filtering because ô1 and ô2 could be different

instances of the same lifecycle class (and therefore have potentially independent lifecycles).

Giving semantics to Android lifecycle graphs Consider the lifecycle graphs in Figure 3.3. These

graphs specify the sequence of possible event traces for a particular Android lifecycle component (though the

Android documentation never explicitly explains their meaning). If we think of the nodes of a lifecycle graph

as labels for their outgoing edges, we can interpret a lifecycle graph as a nondeterministic finite automata

(NFA) that accepts the language of all feasible concrete event traces for its lifecycle component. In order

to account for partial traces (e.g., traces ending in an exception that interrupts the lifecycle), every node

must be an accepting state. For example, the lifecycle graph for the HostActivity class from Figure 3.3

(reproduced for convenience) corresponds to the NFA on the left of Figure 7.2.

In order to connect the meaning of a lifecycle graph G to our model of concrete program execution, let

us consider labeling a NFA edge not with the name of its corresponding event e, but with the entry transition

of the event method, which we write as entry(e). This means that the strings accepted by the lifecycle NFA

(which we write as pGq for a lifecycle graph G) are strings of transitions t (i.e., traces T ) rather than strings

of events e. We can now state a soundness condition for lifecycle graphs.

Condition 7.2.1 (Lifecycle graph soundness) If concrete execution can reach event e ∈ G, the lifecycle
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Figure 7.2: Converting the HostActivitylifecycle graph from Figure 3.3 (right) to an event trace-accepting
NFA (left).
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event graphs G ::= {. . . ,e1→ e2, . . .}

events e ::= C.m | ô.m | ε
classes C methods m

memories M ::= any | x 7� v̂ | v̂· f 7� û |M1 N M2 |M∧P

pure formulæ P

program variables x object instances ô, v̂, û

Figure 7.3: Lifecycle graphs and abstract memories.

graph G accepts the concrete trace projected onto the transitions of the lifecycle graph. More formally, if

〈σ , `dummy〉 −→T ˆ t
∗ 〈σ ′, `′〉 and event e ∈ G where t = entry(e), then pGq accepts events(T ˆ t,G).

The function events(T,G) simply projects a concrete trace T onto the transitions of a lifecycle graph G:

events(T,G)
def
=



t ˆ events(T1) if T = t ˆ T1 and ∃ e ∈ G. entry(e) = t

events(T1) if T = t ˆ T1 and 6 ∃ e ∈ G. entry(e) = t

[] if T = []

We assume that the lifecycle graphs specified in the Android documentation are sound.

Specializing lifecycle graphs to application classes Android applications hook into the frame-

work by subclassing special Android core components like Activity. Thus far, we have discussed events

rather abstractly, but events in Android correspond to methods on Java objects. We make this explicit by

considering events as pairs of the method and the class in which it is defined (i.e., C.m) or as pairs of the

method and the receiver object on which it is invoked (i.e., ô.m) as shown in Figure 7.3. A well-formed

lifecycle graph can consist of class-method events or object-method events; we call the former version a

static lifecycle graph and the latter a dynamic lifecycle graph. We will explain the special event ε and the

structure of abstract memories M shortly.

The Android lifecycle documentation specifies the ordering of methods for core components, but we

would like static lifecycle graphs specialized for the application classes. The specialization of lifecycle

methods is straightforward by following the method resolution semantics of Java given a class hierarchy.

Suppose we wish to specialize a general lifecycle graph G describing an Android core component Ccore for
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an application subclass Capp (i.e., Capp <: Ccore). For each event method node Ccore.m in G, we replace the

node with C.m where C is the class from which Capp inherits method m (e.g., C =Capp if Capp overrides m).

An application class can also register custom callback methods that are triggered by external events

such as user interaction. For example, the HostActivity class from Figure 3.2 extends the OnClickListener

interface, overrides the onClick method, and registers itself as the listener for onClick events by calling

setOnClickListener(this) at line 5. For soundness, we need to account for all such callback methods,

which we could do simply by treating them as independent lifecycle components that have no ordering con-

straints. However, for precision it is important for the analysis to associate these callback methods with

the appropriate component. The analysis should also understand that these user-triggered events can only

occur during the “active” phase of the registering lifecycle component when the user can interact with the

component. For Activity components, this active phase is the interval between onResume and onStop.

We incorporate custom callback events into the lifecycle graph with a simple flow-insensitive anal-

ysis. For an application class Capp, we consider its reachable methods in the call graph to determine what

custom callbacks it may register. This analysis considers both callbacks statically registered in the XML

configuration files and callbacks dynamically registered with calls to methods like setOnClickListener.

To represent the active phase of a class C <: Activity, we introduce an ε event between onResume and

onClick events as we saw in Figure 7.2. An ε event is a no-op event that translates to an ε-transition in the

NFA formulation.

Once we have identified the set of callbacks {. . . ,ecb, . . .} that can execute during the active phase

of the registering component, we “attach” each custom callback event ecb to the active phase with edges

ε→ ecb and ecb→ ε . This models the fact that the user may or may not trigger an interaction event and that

interaction events can be triggered an arbitrary number of times. This analysis is flow-insensitive because

we do not consider the program point where registering methods like setOnClickListener are called. We

also do not consider orderings between core lifecycle components (e.g., modeling the launching order of

Activity’s). Incorporating this information via techniques like those presented in [Yang et al., 2015] could

improve the precision of our static lifecycle graphs.

Callback registering methods like setOnClickListener may register any object with the appropri-
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ate method defined as the callback object (not just the this object). A common pattern is to use anonymous

inner classes to implement these callbacks, as the anonymous ServiceConnection object created at line 3

of Figure 6.1 does. As a consequence, a lifecycle graph may need to contain methods invoked on multiple

object instances (e.g., the this object and the anonymous inner class object). We consider this issue next.

Resolving lifecycle events on object instances A significant challenge in leveraging lifecycle in-

formation in a flow/path-sensitive analysis is to soundly account for the fact that the lifecycle applies to

object instances at runtime. Our approach is to instantiate static lifecycle graphs to object instances during

the analysis phase.

To describe this approach more concretely, we consider describing program states using intuitionistic

separation logic assertions M that constrain sub-memories structured as shown in the grammar of Figure 7.3.

We write any to mean the abstract memory that concretizes to any concrete memory (instead of the standard

true, to avoid confusion with the boolean literal). For example, suppose our abstract memory is (this 7� ô1) N

(x 7� ô2) N M for some memory M while currently analyzing code in some event method C.m2; that is, we

are in the lifecycle event ô1.m2 in the corresponding dynamic lifecycle graph with some facts about objects

ô1 and ô2. We would like to leverage an event-ordering constraint C.m1→C.m2 in the static lifecycle graph

for C, but for soundness, we have to consider both ô1.m1 and ô2.m2 as possible events.

Our analysis handles this problem by performing an eager case split on aliasing (if we have no existing

aliasing information on ô1 and ô2). That is, just before considering the event-ordering constraint, we case

split the abstract state into an aliased case (this 7� ô1) N (x 7� ô2) N M∧ ô1 = ô2 and a disaliased case (this 7�

ô1) N (x 7� ô2) N M∧ ô1 6= ô2. The aliased case gives us the must-alias fact that we need to soundly leverage

the event-ordering constraint for control-feasibility filtering.

The eager case split means that we have a separate proof obligation for the disaliased case where we

cannot use the event-ordering constraint in the static lifecycle graph. However, as we will see in more detail

in Section 7.3, applying data-relevance often allows us to quickly rule out this case. In the common case that

the relevant commands in C.m1 and C.m2 are writes to this of the lifecycle object, then data-relevance rules

out C.m1. Even if the relevant writes are through non-this pointers (e.g., p.f = · · ·), our precise reasoning

about aliasing and strong updates typically handles this disaliased case quickly.
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7.3 An effective relevance algorithm for Android

In this section, we bridge the gap between theory and practice by combining the jumping framework

from Chapter 5 with the formalization of Android lifecycle graphs in Section 7.2 to design HOPDROID,

a practical jumping analysis for analyzing event-driven Android programs. We achieve this by devising a

sound relevance relation for THRESHER [Blackshear et al., 2013], a precise backward analysis that tightly

integrates the results of an up-front points-to analysis to refute separation logic queries (as described in

Chapter 4).

We have given the intuition for the jumping strategy that our relevance relation implements in Sections

3.2.3 and 7.1: when the analysis reaches an event boundary, it identifies events that contain data-relevant

commands, filters the set of data-relevant events using control-feasibility constraints based on Android life-

cycle information, then jumps to the remaining events. To realize this vision, we need to address two issues:

(1) precisely computing data-relevance information for the separation logic constraints that THRESHER uses

and (2) using the semantics of lifecycle graphs to perform control-feasibility filtering. We show how we

solve these issues in Section 7.3.1 before presenting an algorithm for computing relevant transitions that

utilizes our solutions in Section 7.3.2.

7.3.1 Heap data-relevance and event control-feasibility

To utilize Android lifecycle information in our relevance relation, we must connect the meaning of

lifecycle graphs from Section 7.2 (Condition 7.2.1) to the control-feasibility condition of relevance sound-

ness (Condition 5.3.1(b)). To maintain precision while jumping from one event to another, we must ensure

that we only perform jumps that respect the ordering constraints encoded in Android lifecycle graphs (while

simultaneously considering the necessary interleavings to be sound). Our solution here is to utilize the

reachability and postdominance information encoded in the lifecycle graph.

Using lifecycle graphs for control-feasibility filtering Since our analysis is backward, only jumps

from the current program point to a preceding transition in a concrete execution trace ending at the current

program point are control-feasible. Thus, we can filter a set of possibly relevant transitions using control-
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feasibility by considering backward reachability in the lifecycle graph.

If some event e is not backward-reachable from the current event ecur, then we know no concrete

trace ending in ecur can possibly have visited e first (following the semantics of lifecycle graphs as concrete

trace-accepting NFAs in Condition 7.2.1). Thus, we can prune all events that are not backward-reachable

from ecur from the lifecycle graph G to produce a pruned lifecycle graph G′ where ecur is a leaf node.

For example, we can use this technique to reason that if the analysis is currently in the onClick event

of Figure 3.3, the onDestroy event has not yet occurred in the current lifecycle. If we prune nodes and

edges not backward reachable from the current node onClick, we can prune the onDestroy event. We do

not need to consider jumps from ecur to pruned events.

The analysis can further refine the possible jump targets using postdominance on the pruned graph

G′. Consider the postdominance tree rooted at ecur, that is, a tree where each node is the immediate post-

dominator of its children. For any set of potentially relevant events E, we only need to consider the smallest

set E ′ ⊆ E such that E ′ postdominates E. As a consequence, for all e ∈ E, there is an e′ ∈ E ′ such that e′ is

between ecur and e in the postdominator tree rooted at ecur. The correctness of this reasoning follows directly

from the meaning of lifecycle graphs and the definition of postdominance: if ecur postdominates e′ and e′

postdominates e, we can conclude that every trace accepted by the lifecycle NFA that visits ecur always visits

e′ beforehand without visiting e in between.

To give a more concrete example using the HostActivity lifecycle graph in Figure 3.3, we would like

to able determine that if the analysis is currently in the onClick event and we know that only the onCreate

and HostActivity.<init> events are relevant, we only need to jump to onCreate. We can derive this fact by

demonstrating that onClick postdominates onCreate and onCreate postdominates HostActivity.<init>

in G′.

Computing data-relevance for heap dependencies We have previously our approach to comput-

ing precise data-relevance information for heap dependencies in Section 6.3. This data-relevance relation

considers all commands that may weaken the abstract store (that is, increase the magnitude of its con-

cretization) to be relevant. Here, we take a very similar approach with one important difference: we want

to consider all commands that may modify the abstract store to be data-relevant, not just the weakening
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1 x = 1 // query−weakening command
2 x = 0 // query−strengthening command
3 assert (x == 0) // query x 6= 0

Figure 7.4: An example demonstrating the importance of considering strengthening commands as data-
relevant.

commands. Considering modifying commands rather than just weakening commands to be data-relevant is

more precise, but more expensive.

The reason is we want to consider modifying commands to be data-relevant here is that we wish

to preserve flow-sensitivity while jumping by using control-feasibility information, whereas the strategy

outlined in Chapter 6 leverages flow-insensitive invariants and thus does not attempt to retain flow-sensitivity

during jumps (as explained in Section 6.3.1). To understand this in more detail, consider the simple example

in Figure 7.4. Our analysis will try to refute the query x 6= 0 in order to prove the safety of the assertion at

line 3. The command at line 2 strengthens this query, whereas the command at line 1 weakens this query.

The data-relevance relation defined in Section 6.3 would soundly report only the weakening command at

line 1 as data-relevant, but jumping only to this command loses precision and causes the analysis to miss a

refutation by skipping over the refuting command at line 2.

On the other-hand, say that we consider both of the commands to be data-relevant. If we perform

no control-feasibility filtering (like the approach in Chapter 6), this will lead to the same result as above

because we will jump to both commands and fail to refute the case that jumps to line 1. Thus, we might

as well report only weakening commands as data-relevant since this reduce the number of cases for the

analysis to consider without affecting precision. This is the approach taken by the data-relevance relation in

Section 6.3.

With our current approach, we will perform control-feasibility filtering that will allow us to find

refutations in the case that a strengthening transition dominates the current program point (as in Figure 7.4).

Thus, we want to consider any command that may modify the abstract store to be relevant. Figure 7.5 defines

a data-relevance relation that does exactly this. We refer the reader to Section 6.3 for an explanation of the
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judgment forms in this figure. This data-relevance relation is quite similar to the one defined in Figure 6.3

except that it does not perform any checks on the righthand-side expression of commands. These checks are

what allow that data-relevance relation to report only strengthening commands as relevant.

7.3.2 Defining the relevance relation

Finally, we present our algorithm for computing Android-specialized relevance information (Fig-

ure 7.6) and argue that our algorithm is sound with respect to relevance soundness (Condition 5.3.1). The

algorithm implements the 〈R, `〉 Trel judgment form for relevance relations and is executed each time the

A-JUMP rule is applied.

In the usual case where the current program label `cur is not the entry label of an event, the algorithm

behaves like a standard path-sensitive backward analysis by choosing to visit the predecessor labels of the

current program label next (lines 2–4). Clearly, this satisfies relevance soundness by satisfying the control-

feasibility condition (Condition 5.3.1(b)), as we have already argued in Section 5.3.

In the case that the current program label is the entry label of an event, we perform jumps to a

computed set of relevant transitions using the data-relevance and control-feasibility constraints described

in Section 7.3.1. Specifically, the algorithm computes the set of data-relevant events that may write to the

current abstract state (lines 5–20) and then filters this set of events using control-feasibility information from

the lifecycle graph of the current event (lines 22-37).

First, the algorithm computes the set of data-relevant transitions Trel for Rcur using the points-to anal-

ysis, as we have explained in Section 7.3.1. In principle, the algorithm could return the set Trel and still be

sound by satisfying relevance soundness Condition 5.3.1(a), but this would be imprecise because it would

not take the ordering of events in the lifecycle graph into account. The algorithm thus walks backward from

the calling method of each relevant transition trel (given by method(trel)) in the call graph until it reaches an

event on each path (loop from lines 8–20). The resulting set of data-relevant events Erel contains the set of

all events whose execution might lead to a relevant transition. Returning the exit transition of each of these

events Erel would also satisfy relevance soundness via a combination of Condition 5.3.1(b) and (a) because

by construction of Erel, these exit transitions collectively postdominate all relevant transitions.
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R Trel

R-CASES
R0 T0 R1 T1

R0∨R1 T0∪T1

R-BOT

⊥ {tinit}

R-TOP

> {tinit}

R-SPLIT
ρ̂  T1 L̂ T2

(ρ̂, L̂) T1∪T2

ρ̂  Trel

R-SEP
ρ̂ = M0 N M1∧P M0∧P T0 M1∧P T1

ρ̂  T0∪T1

R-ASSIGN
Trel = { t | t ∈ P and t = `i −[x := y]� ` j }

x 7� v̂∧ v̂ from r̊∧P Trel

R-NEW
Trel = { t | t ∈ P and t = `i −[x := newa τ()]� ` j }

x 7� v̂∧ v̂ from r̊∧P Trel

R-READ
Trel = { t | t ∈ P and t = `i −[x := y.f ]� ` j }

x 7� v̂∧ v̂ from r̊∧P Trel

R-WRITE
Trel = { t | t ∈ P and t = `i −[x.f := y]� ` j and ptG̊(x)∩ r̊ 6= /0 }

v̂· f 7� û∧ v̂ from r̊∧ û from s̊∧P Trel

R-ANY

any∧P {tinit}

L̂ Trel

R-CALL
Trel = { t | t ∈ P and t = `i −[call `1]� ` j and `= `1 }

`::L̂ Trel

R-ANYSTRING

anystring {tinit}

Figure 7.5: A data-relevance relation that reports (some) commands that modify the query and commands
that weaken the current query as relevant (in contrast to the data-relevance relation of Figure 6.3, which
considers only weakening commands to be relevant).
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Require: Current abstract state Rcur
Require: Current label `cur
Require: Program transition relation P
Require: Call graph CG
Ensure: Returned transition set Trel satisfies Condition 5.3.1

1: // not at event entry, follow predecessors
2: if `cur is not the entry label of an event then
3: return preds(`cur, P)
4: end if
5: // at event entry, get data-relevant events
6: Trel ← dataRel(Rcur) // compute Rcur Trel
7: Erel← /0 // events leading to a relevant transition
8: for all trel ∈ Trel do
9: W ← [ method(trel) ] // method worklist

10: V ← /0 // track visited methods to handle CG cycles
11: while W 6= /0 do
12: Remove m from W
13: if m is event then
14: Erel ← { m } ∪ Erel
15: else if m /∈ V then
16: Add preds(m, CG) to W
17: end if
18: V ← { m } ∪ V
19: end while
20: end for
21: // filter data-relevant events with a lifecycle graph
22: ecur← event(`cur)
23: G← specializeLifecyleGraph(class(ecur), CG)
24: EinG← { e | e ∈ Erel ∧ e ∈ G }
25: EnotinG← { e | e ∈ Erel ∧ e /∈ G }
26: Efeas← /0 // data-relevant/control-feasible events in G
27: W ← [ ecur ] // lifecycle graph event worklist
28: V ← /0 // track visited events to handle cycles in G
29: while W 6= /0 do
30: Remove e from W
31: if e ∈ EinG then
32: Efeas← { e } ∪ Efeas
33: else if e /∈ V then
34: Add preds(e, G) to W
35: end if
36: V ← { e } ∪ V
37: end while
38: return exitTrans(Efeas ∪ EnotinG)

Figure 7.6: An algorithm for selecting relevant transitions to visit in event-driven, heap-manipulating An-
droid programs.
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However, we can gain additional precision by removing events from Trel based on control-feasibility

information from the lifecycle graph, which is what the algorithm does next. Lines 22 and 23 compute a

lifecycle graph specialized for the class of the current event ecur, as we have described in Section 7.2. The

algorithm then partitions the set of relevant events Erel based on their presence in the lifecycle graph (lines

24–25). It does this because only the events EinG that are in the lifecycle graph should be filtered in the

subsequent step—the events in EnotinG are unordered with respect to ecur and the algorithm must return all

of them for soundness.

The loop from lines 29–37 performs control-feasibility filtering on nodes in the lifecycle graph. This

loop computes a subset Efeas of EinG that must be returned for soundness. The loop walks backward from the

current event ecur in the lifecycle graph G and stops each time it reaches a relevant event. The construction

of Efeas ensures that at the end of the loop, relevant events that are not backward reachable from ecur will

be excluded from the set Efeas, and as will events postdominated by both ecur and some other relevant event.

We have argued for the soundness of excluding events based on backward reachability and postdominance

in the lifecycle graph in Section 7.3.1.

Finally, the algorithm takes the union of the lifecycle graph control-feasible relevant events Efeas and

the unordered relevant events EnotinG and returns their exit transitions as the set of transitions that must be

visited (line 38). The set Efeas ∪ EnotinG is a subset of the set Erel whose exit transitions already satisfy

relevance soundness. We have only removed events from this set by soundly filtering based on lifecycle

control-feasibility information, so returning the exit transitions of Efeas ∪ EnotinG also satisfies relevance

soundness.

7.4 Explicating reflection in the Android framework

In this section, we present a detailed explanation of how our analysis models the Android framework

using the DROIDEL2 tool. Though these details may seem a bit low-level, we believe that it is important to

carefully explain how our model works because models used in static analysis often significantly impact the

soundness and precision of the analysis. For models of complex frameworks like Android, failure to fully

2 https://github.com/cuplv/droidel
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model the execution context of application code can lead to surprising unsoundnesses even when models

seem over-approximate for the analysis of interest.

Our approach in DROIDEL is to prevent soundness concerns by avoiding modeling whenever possible.

Instead, we focus on explicating the parts of the Android framework that are polymorphic with respect to

apps. By instantiating this polymorphism for a given app, we can eliminate difficult-to-analyze code and

sources of unsoundness, such as uses of reflection.

In the remainder of this section, we explain how we designed and implemented DROIDEL using this

approach. We first discuss the difficult of modeling Android and explain the problems with existing models

(Section 7.4.1). Section 7.4.2 focuses on how an analysis designer would use DROIDEL, while Section 7.4.3

explains how our implementation works to enable analysis designers to adapt and extend our approach.

7.4.1 Problems with existing Android framework models

Reflection is a notoriously thorny issue that most static analyses do not handle soundly [Livshits et al.,

2015]. Thus frameworks that make heavy use of reflection, like Android, pose problems for static analysis.

Because the Android framework is complex and full of reflection, static analyses for Android typically

choose to create models of the Android framework rather than analyzing the framework code itself. Creating

these models is both tedious and error-prone, as it requires careful study of the framework’s source code,

documentation, and dynamic behavior. However, carefully crafted models are extremely important because

an incomplete or incorrect model can compromise both the soundness and the precision of an analysis.

Since carefully crafted framework models are so important, we would hope that once a well-tested,

authoritative framework model for Android has been created, all static analyses for Android would be able

to re-use it. Unfortunately, to our knowledge, no such general framework model exists. The primary reason

for this current state of affairs is that framework models tend to be client-specific—they summarize only the

semantics of the framework with respect to a particular analysis client. This enables the framework model

designer to abstract away the complex behavior of the framework code that is not relevant to the client of

interest. For example, the FLOWDROID taint analysis tool [Fritz et al., 2014] models calls to framework

methods from application code via handwritten taint wrappers that summarize the framework’s behavior
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for the taint analysis client. Although the creators of FLOWDROID have spent an immense amount of

effort understanding and modeling the Android framework, their models cannot be readily reused by other

analyses for Android. To see the problem concretely, consider this response on the Soot mailing list3 from

a FLOWDROID developer to a frustrated analysis designer who wishes to build a new analysis client on top

of FLOWDROID:

Question: “The call graph is missing edges. . . .”
Response: “Another idea would be to just live with the incomplete call graph. . . . . We
know that we don’t have call edges for some call sites. . . . . You write that you do not want
to perform taint tracking. In that case, the taint wrappers provided by FlowDroid will not
be of much help.”

Clearly, the Android static analysis community would benefit from a general model of the framework

that is independent of any particular client and can be used with any program analysis platform. In this

section, we present an approach to fill this void.

Android applications (apps) hook into the framework by extending special framework classes such

as Activity or Service and overriding known callback methods such as onCreate or onDestroy. The

framework executes an app by using reflection to look up the application classes that extend these special

types and to invoke the appropriate callback methods in response to user interaction. In brief, DROIDEL

works by explicating this reflection. That is, our approach to “the modeling problem” is to analyze the

Android framework code itself but to de-obfuscate the library’s usage of reflection. DROIDEL does this

de-obfuscation automatically by replacing reflective method calls with automatically generated app-specific

stubs that invoke the appropriate app code.

The key observation underlying our approach is that most uses of reflection are simply to make the

Android framework generic for all apps. DROIDEL takes advantage of this observation to create a non-

reflective, app-specific version of the Android framework for each application it analyzes. The replacement

of reflective calls and the generation of stubs is performed entirely at the Java source code level; the output

of DROIDEL is a Java program with a single entry-point that can be processed by any existing Java analysis

platform (e.g., Soot, WALA, Chord).
3 https://mailman.cs.mcgill.ca/pipermail/soot-list/2015-February/007745.html and https://mailman.

cs.mcgill.ca/pipermail/soot-list/2015-February/007747.html.
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One of our contributions is the open-source DROIDEL implementation following the approach we

have advocated. DROIDEL is already being used by researchers from IBM Research, the University of

Texas, the University of Maryland, and the University of Colorado for a wide variety of analyses, including

taint analysis, malware detection, permission analysis, and null dereference checking.

7.4.2 Designing DROIDEL for general usability

In designing DROIDEL, we focused on the following two principles.

Model the framework as little as possible. Most existing approaches to analyzing Android applications

explicitly seek to avoid analyzing the Android framework, but our approach is exactly the opposite.

Each bit of framework code that is not analyzed must be carefully modeled to avoid introducing

unsoundness (as we argued in Section 7.4.1). Instead of replacing the framework code with a large

model, we choose to augment it with small models that minimally explicate the reflection and native

code that the framework uses to interact with applications.

Be as standalone as possible. Modeling Android is hard work. We want others to benefit from our mod-

eling efforts. In practical terms, this means that our model must be usable by any client analysis

or program analysis framework in order to be widely adopted. To avoid being client-specific, we

avoid abstracting away any Android framework code so that we do not eliminate any behaviors of

potential importance. To avoid being analysis framework-specific, we generate all of our stubs and

models at the Java source code level so they can be understood by any Java program analysis tool.

Note that our explicating approach is entirely compatible with additional modeling such as client-specific

modeling (e.g., for increasing precision or improving the scalability of the analysis). We believe that starting

from the framework source code and incrementally modeling key portions of the code is bound to lead

to more trustworthy analysis results than beginning with a model that has no direct relationship to the

framework source.

In building DROIDEL, we began by studying the source code for the Android framework and iden-

tifying uses of reflection that may allocate application objects or call methods on application objects. We
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public interface DroidelStubs {

// Reflective allocations of app objects
Application getApplication(String cname);

Activity getActivity(String cname);

Service getService(String cname);

BroadcastReceiver getBroadcastReceiver(String cname);

ContentProvider getContentProvider(String cname);

Fragment getFragment(String cname);

View inflateViewById(int id, Context c);

// Reflective method invocations
void callXMLRegisteredCB(Context c, View v);

}

Figure 7.7: DROIDEL generates app-specialized stubs that implement this interface. We manually replace
reflective calls in the Android framework with calls to DroidelStubs methods.

class AppStubs implements DroidelStubs {

Activity getActivity(String cname) {

if (cname == "ActivityA") {

return new ActivityA();

} else if (cname == "ActivityB") {

return new ActivityB();

} else { return new Activity(); }

}

View inflateViewById(int id, Context c) {

switch (id) {

case R.id.passwordView: return new TextView(c);

case R.id.tweetView: return new TextView(c);

default: return null;
}

}

void callXMLRegisteredCB(Context c, View v) {

if (c instanceof ActivityA) {

((ActivityA) c).myOnClick(v);

} else if (c instanceof ActivityB) {

((ActivityB) c).myOnClick(v);

}

}

}

Figure 7.8: A partial implementation of DroidelStubs from Figure 7.7 for an app with ActivityA and
ActivityB, two TextViews, and an XML configuration-registered callback myOnClick.
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then manually replaced each such use of reflection in the Android framework with a call to an appropriate

method from the DroidelStubs interface shown in Figure 7.7. This interface acts as a bridge between

application and framework code—it allows the framework to obtain pointers to application-space objects.

The DroidelStubs interface also centralizes and serves to document the instances of framework reflection

that it explicates.

After replacing uses of reflection with calls to method stubs from DroidelStubs, we made one final

change to the Android framework code: we changed ActivityThread.main, the “main” method that the

Android framework uses to run an application, to take an implementation of the DroidelStubs interface

as input.

The result is a slightly modified version of the Android framework that calls stubs from DroidelStubs

rather than using reflection in several key places. This modified framework code can be compiled once and

then used to analyze any application. The application-specific part of DROIDEL is generating an implemen-

tation of DroidelStubs, which we explain further in Section 7.4.3.

As the Android framework changes, future uses of framework reflection can easily be handled by

adding new methods to this interface, updating the framework with calls to the new methods, and updating

the application-specific part of DROIDEL to generate implementations of these new methods on a per-app

basis.

Analyzing an app with DROIDEL. To enable whole-program analysis, DROIDEL creates a special

androidMain method whose body allocates an instance of the auto-generated DroidelStubs implemen-

tation and calls the ActivityThread.main method with this object as its argument. An Android program

analysis that wishes to use a DROIDEL-processed program need only import: (a) the application classes, (b)

the DROIDEL-generated stub classes, and (c) the modified Android framework classes. The androidMain

method can be used as a single entry point for whole-program analysis.

7.4.3 Implementation

There are two parts to DROIDEL: (1) a one-time manual modification of the Android framework

sources to replace uses of reflection with calls to the appropriate methods of the DroidelStubs interface
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and (2) a per-app code generation module to automatically create an application-specific implementation of

DroidelStubs.

Manually explicating reflection in the Android framework. To see a concrete example of replac-

ing uses of reflection with calls to stub methods in DroidelStubs, consider the following snippet drawn

from the android.app.Instrumentation class:

// Replace the use of reflection (a call to newInstance) with

// a call to the Droidel stub getActivity.

Activity a = (Activity) clazz.newInstance();

Activity a = droidelStubs.getActivity(clazz.getName());

We manually identified that the call to clazz.newInstance() might create an Activity object from the

application, so we replaced this use of reflection with a call to droidelStubs.getActivity, a method of

the DroidelStubs interface. For a method like getActivity, the DROIDEL implementation will generate

allocations for each subclass of Activity defined in the application.

Application-specific stub generation. When DROIDEL runs on an app, it synthesizes an application-

specific implementation of each of the stub methods of the DroidelStubs interface. To generate the getter

methods for the core Android components Application, Activity, Service, BroadcastReceiver, Content-

Provider, and Fragment, DROIDEL parses the application manifest AndroidManifest.xml for the app to

determine which components have been declared by the developer and then builds the class hierarchy for

the app and ensures that it can find each component.

To give an example of what an app-specific implementation of DroidelStubs would look like, we

continue the discussion of the stub method getActivity from above. In Figure 7.8, we show an implemen-

tation of DroidelStubs for an app with two subclasses of Activity (named ActivityA and ActivityB).

The generated implementation of getActivity simply dispatches based on the cname parameter. The doc-

umentation for newInstance states that this reflective call invokes the default (zero-argument) constructor

for the given Class, so our stub methods allocate each type by invoking its zero-argument constructor. Gen-

erating the getter methods for the other core Android components is similar, though there is some special

handling of Fragments because their usage has changed slightly as the Android framework has evolved.
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Generating the inflateViewById stub is slightly different because Views are components of the

Android layout rather core Android components, so they are typically declared in resource files (e.g.,

res/layout/filename.xml) rather than in the application manifest. Additionally, View objects have as-

sociated identifiers that the app developer can use to distinguish between different layout components at run

time. Understanding the association between View objects and their identifiers is crucial for a static analysis

because View objects are frequently retrieved using these identifiers with methods such as findViewById.

For example, the developer might have one TextView object with identifier R.id.passwordView and an-

other TextView object with with identifier R.id.tweetView. It is important for the static analysis client

to understand that calling findViewById(R.id.passwordView) will return a different TextView than

calling findViewById(R.id.tweetView), or else the state of the two View objects may be conflated.

Thus, DROIDEL parses all of the layout resource files to identify which View objects the app may use

and to associate instances with their identifiers. It then generates stubs that model the reflective instantiation

of View objects from the layout XML configuration file (called layout inflation in Android). For the sim-

ple two-TextView layout objects described above, DROIDEL would generated the stub implementation for

inflateViewById shown in Figure 7.8.

The functionality to generate these application-specific stubs is the core of DROIDEL. These stubs

explicate Android framework’s use of reflection to allocate application objects specified in XML configura-

tion files. However, there is another tricky use of reflection in the Android framework. In Android apps, the

developer can register callbacks either in the application code itself or (for certain callbacks) in the layout

XML configuration file for the application. The first kind of registration is handled easily because its be-

havior is apparent in the framework code (i.e., does not use reflection), but the second kind of registration

requires special treatment.

To give an example of the XML registration construct, suppose the application developer uses the

layout XML configuration file to register a callback on a Button using the following snippet:

<Button android:onClick="myOnClick" ... />

The semantics of this XML snippet are that when the layout hierarchy containing this Button is attached to
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an Android Context object (e.g., via Activity.setContentView), the myOnClick method of that Activity

will be registered as callback to be invoked when the user clicks the Button. The lookup of the myOnClick

method for a particular Context object is performed reflectively and thus must be explicated to be un-

derstood by the static analysis client. DROIDEL deals with this use of reflection by parsing the layout

XML configuration file to identify XML-registered callbacks. It then generates an implementation of the

callXMLRegisteredCB stub method that invokes each method of a Context subclass whose name matches

the method name in the layout XML.

Let us assume that the two Activity classes from our running example, ActivityA and ActivityB,

each have an myOnClick method with the proper signature for overriding the interface method

OnClickListener.onClick. The callXMLRegisteredCB stub shown in Figure 7.8 corresponds to the

implementation that DROIDEL would generate for this app. Since the layout hierarchy that registers the

myOnClick method in the layout XML can be used in any Context object at run time, this way of generating

stubs makes sure that every method matching myOnClick gets called.

Limitations of DROIDEL. There are many uses of reflection in the complex Android framework

that DROIDEL does not (yet) explicate (for example, reflective allocation of Preferences objects). In addi-

tion, DROIDEL does not generate stubs to summarize the behavior of native methods in Android. Both of

these issues are not fundamental problems with our approach, but limitations of the current implementation

that we plan to address in the future.

Another issue is that we currently need to perform the manual explication of reflection in the Android

framework separately for each version of the Android framework. We believe that this process can be

automated in the future, as the explication that needs to be performed is almost identical for each version

of framework we have considered. We note that the state of affairs is worse for harness-based approaches

since the semantics of each version of the framework must be manually scrutinized in order to ensure that

the generated harness over-approximates its behaviors.
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7.5 Case study: proving null dereference safety in event-driven Android programs

In order to evaluate the effectiveness of the jumping strategy outlined in this chapter, we sought to

test the following experimental hypothesis:

Jumping is a scalable approach to flow/path-sensitive inter-event analysis. We hypothesize that aug-

menting a state-of-the-art path-sensitive analysis with jumping increases precision by allowing the analysis

to reason about event orderings, yet limits the number of event orderings that must be considered enough to

make analysis tractable.

Experimental setup. In order to test our hypotheses, we chose to evaluate jumping analysis on the

client of proving the absence of null-dereferences in event-driven Android programs. We chose this client

because null dereferences are a common problem in real-world Android apps, and the event-driven nature of

Android makes precisely verifying the absence of null dereferences a significant challenge for analyses (see

Section 3.2.1 for a more detailed discussion of this client). We implemented the practical jumping analysis

described in Section 7.3 in the HOPPER4 tool, a variant of the WALA- and Z3 [de Moura and Bjørner,

2008]-based THRESHER [Blackshear et al., 2013] tool. HOPPER extends THRESHER by adding the ability

to perform jumps, but the tools are otherwise identical.

The core of THRESHER is an engine for refuting queries written in separation logic. Clients are im-

plemented as lightweight add-ons that take a program as input and emit separation logic queries for the core

refuter to process. We extended THRESHER/HOPDROID with a new client for checking null dereferences.

The client leverages @NonNull annotations inferred by the NIT tool5 to eliminate easy cases where non-

nullness of fields, function return values, or function parameters is a flow-insensitive property. For each

non-static field read/write x.f or function call x.m() in the the program, the client emits the necessary bug

precondition x 7�null as a query to refute in order to prove dereference safety.

We give THRESHER and HOPDROID a maximum budget of 10 seconds to refute each query. We

chose this budget through trial and error—we found that larger budgets did not allow the analysis to find

appreciably more refutations, whereas smaller budgets caused too many timeouts. In the case that the tool

4 https://github.com/cuplv/hopper
5 http://nit.gforge.inria.fr/
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cannot refute a query within the budget, a timeout is declared and the dereference is reported as a potential

bug. We ran all experiments in single-threaded configuration on a Mac desktop machine running Mac OS

10.10.2 with 64GB of RAM and 3.5GHz Intel Xeon processors.

Android applications can make use of concurrency—events execute atomically, but the execution of

two events can interleave if the events execute on separate threads. In addition, app developers can use Java

threads for multithreaded execution in the usual way. THRESHER and HOPDROID do not soundly account

for either of these features, as both tools assumes that all events execute atomically on a single thread.

Both tools also do not soundly handle reflection and native code for which we do not have handwritten

stubs—these constructs are treated as no-ops.

Representing Android event dispatch Instead of generating a harness to model the event dis-

patch performed by the Android framework, THRESHER and HOPDROID analyze the actual logic for event

dispatch in the Android framework source code. To allow this, we pre-processed each app we analyzed

with DROIDEL (cf. Section 7.4) to explicate the reflection the Android framework uses to call application

methods and then used the ActivityThread.main method of the framework as a single entrypoint for

call graph construction. There are several advantages to analyzing the actual event dispatch code instead of

using a harness: (1) we do not have to worry about soundly and precisely modeling the execution context

of events, which can be a significant challenge, and (2) generating a harness that precisely represents all

ordering constraints is impractical, as we have already argued in Section 7.1 and Section 7.4.

7.5.1 Proving dereferences safe with jumping

We ran both THRESHER and HOPDROID on the corpus of ten open-source Android apps shown in

Figure 7.9. The apps range in size from 3K source lines of code to 57K source lines of code. Since the pri-

mary challenge of analyzing these apps comes from considering interleavings of their lifecycle components,

we also report the number of core lifecycle components (i.e., Application, Activity, Fragment, Service, and

ContentProvider subclasses) and the total number of events in each app. Our analysis must consider the

possibility of interleavings between events of different components for soundness, but must preserve the

ordering of events within the lifecycle of a single component for precision. Recall from Section 7.1 that
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Benchmark Size Unsafe Derefs HOPDROID Effectiveness

Bench KLOC Com Evt Deref Nit Thr Hop (Impr %) Total Hop Proven (%)
drupaleditor 3 10 127 928 679 179 72 (60) 92
npr 5 14 120 829 617 181 51 (72) 94
lastfm♠ 13 34 272 4840 3528 954 477 (50) 90
duckduckgo 11 12 174 1969 1341 518 143 (72) 93
github 19 70 572 3603 2520 601 290 (52) 92
seriesguide♠ 32 80 871 8184 5438 986 625 (37) 92
connectbot♠ 33 13 201 2190 1562 316 74 (77) 97
textsecure 38 63 588 5921 3643 698 330 (53) 94
k-9 55 52 750 19032 11968 3104 1988 (36) 90
wordpress♠ 57 98 1325 15066 9775 2431 1362 (44) 91
Total 266 446 5000 62562 41071 9968 5412 (54) 92

Figure 7.9: Proving dereference safety in event-driven Android apps with HOPDROID. The “Benchmark
Size” column grouping gives the number of (thousands of) lines of application source code (KLOC), lifecy-
cle components (Com), and events (Evt) for each benchmark. The “Unsafe Derefs” column grouping lists
the number of possibly-unsafe dereferences in each app before analysis (Deref) followed by the number
remaining after running NIT, (Nit), THRESHER (Thr), and HOPDROID (Hop). The HOPDROID column
also lists the percentage reduction in unproven derefs of HOPDROID over THRESHER (Impr %). The final
column grouping gives the percentage of derefs proven safe by HOPDROID (Total Hop Proven). The “To-
tal” row gives the sum of all numeric rows and the geometic mean of the Hop Impr and Total Hop Proven
percentages. ♠’s indicate benchmarks where our partial manual triaging revealed a true bug.
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the size of a reified harness that considers the interleavings between just a single instance per component is

exponential the number of components.

The “Unsafe Derefs” columns of Figure 7.9 summarize the results of proving null dereference safety

on our benchmark apps with NIT, THRESHER and HOPDROID. Each column reports the number of un-

proven dereferences after running the tool (where 0 represents proving all dereferences safe, so lower is

better). The results show that although about a third of the dereferences can be proven safe using the flow-

insensitive analysis of NIT, the path-, flow-, and context-sensitive THRESHER analysis was significantly

more precise (providing evidence that precision beyond flow-insensitivity is necessary for proving derefer-

ence safety in Android apps). The Hop Impr column gives the percentage reduction in unsafe dereferences

achieved by running HOPDROID (where 100% represents proving all remaining dereferences safe, so higher

is better). HOPDROID substantially improved on the already-significant precision of THRESHER—on aver-

age, HOPDROID reduced the number of dereferences unproven by THRESHER by more than half.

The difference between HOPDROID and THRESHER is that the jumping capability of HOPDROID

enabled precise inter-event analysis, as we predicted in our experimental hypothesis. We noticed that when

THRESHER reaches an event boundary without proving safety, it continues precise backward analysis of

the event dispatch code of the Android framework and (almost always) times out without finding a proof.

By contrast, HOPDROID jumps from an event boundary to a (typically) small set of relevant events and is

frequently able to prove safety based on precise and tractable inter-event reasoning.

The final Total Hop Proven column shows that for every benchmark, HOPDROID proved at least

90% of the dereferences safe (92% safe on average). We note that previous state-of-the-art work in null

dereference checking for ordinary, non-event-driven Java programs (e.g., [Loginov et al., 2008; Madhavan

and Komondoor, 2011; Margoor and Komondoor, 2015; Nanda and Sinha, 2009]) reports proving 84-91%

of dereferences safe on average. Achieving similar precision results in the presence of the formidable

scalability challenges introduced by an event-driven setting is a significant advance.
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7.5.2 Manual triaging of alarms

To understand why HOPDROID sometimes fails to proof safety, we manually triaged a sample of 20

unproven dereferences from each of our 10 benchmark applications (a total of 200 alarms). We classified

the unproven dereferences into three categories (a) true bugs, (b) scalability issues, or (c) precision issues.

We placed a dereference into the true bugs category if we found a concretely feasible sequence of events

would lead the application to throw a NullPointerException. We classified a dereference as a scalability

issue if we determined that HOPDROID possessed the necessary precision to prove the dereference safe, but

was not able to do so within the 10 second budget. Finally, we labeled a dereference as a precision issue

if HOPDROID did not have the precision required to prove the query correct. This category includes both

analysis imprecision (e.g., loop invariant inference, container abstraction) as well as modeling imprecision

(e.g., Android UI models, Android/Java reflection and native code).

The results from our manual triaging are shown inset. In the 200 alarms we examined, most derefer-

ences that cannot be proven safe are due to precision issues (172). Of these 172 alarms, 132 would require

more precise modeling of the Android framework and 41 are due to more fundamental analysis imprecision.

Many of Android modeling issues are additional constraints on the interaction between different lifecycle

components that we do not account for. For example, proving safety of some dereferences required un-

derstanding details such as the order in which Activity’s launch each other or the fact that a callback on a

Button cannot be invoked if the visible attribute of the Button is set to false. Handling all of the corner

cases of the complex Android framework is challenging task that we leave to future work.

(a) Bug (b) Scalability (c) Precision

11 17 172

Nearly all of the the analysis imprecision issues stem from imprecise abstraction of containers and

strings. Both of these precision problems are orthogonal to HOPDROID’s approach to analysis of event-

driven programs and could in principle be addressed by enhancing HOPDROID with better abstractions or

solvers (e.g., [Dillig et al., 2011a] for containers and [Kiezun et al., 2012] for strings).

The fact that only 17 of the 200 unproven dereferences we examined could not be proven due to
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scalability issues strengthens our conviction that jumping is an effective approach for tractable analysis of

event-driven systems. Though HOPDROID is not perfect, it proves an impressive 92% of the dereferences it

encounters. The vast majority of proof failures are due to our incomplete modeling of Android rather than

scalability issues.

Bugs found We found eleven bugs in four different apps: lastfm (1), seriesguide (5), connectbot

(4) and wordpress (1). The bug in wordpress had already been eliminated by the developers, though in an

indirect way (replacing the functionality in the buggy class with an entirely new class). We sent pull requests

fixing the bugs in each of the remaining projects. The developer of seriesguide and connectbot accepted all

of our pull requests. The developers of lastfm have not yet responded to our pull requests. This project is

updated infrequently and has a backlog of pending pull requests.

Of the eleven bugs that we found, five of them involved misunderstanding or misusing the Android

lifecycle in some way. This strengthens our belief that the lifecycle is a source of confusion for develop-

ers that would be well-served by better analysis tools. We further note that four of the five bugs involved

interactions between the lifecycles of different components. These bugs could not be found by an unsound

approach that models the lifecycle of each component, but does not consider interleaving lifecycles of dif-

ferent components.

7.6 Related work

Static analysis of Android applications. Numerous techniques have considered static analysis of

Android apps, but to the best of our knowledge few have tackled the problem that we address in this chapter:

soundly considering the interleaving of different lifecycle components. The harness method generated by the

state-of-the-art FLOWDROID [Fritz et al., 2014] tool soundly reflects the sequential execution of component

lifecycles, but not their interleaving. This unsound modeling avoids the cost of computing a product graph

as described in Section 7.1, but will miss bugs like the five lifecycle-sensitive bugs we found in Section 7.5

along with the bug explained in Section 3.2.3.

ANADROID [Liang et al., 2013] is the only tool we are aware of that explicitly claims to handle

interleavings between lifecycles of different components. Their entry point saturation technique efficiently
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computes a fixed point over all possible event ordering. However, this computation does not take intra-

lifecycle event orderings into account and thus will lose precision. We found this kind of precision to be

crucially important in Section 7.5—HOPDROID’s improvement over THRESHER comes entirely from inter-

event reasoning.

The GATOR tool presents an intriguing representation of Android control-flow in the form of a call-

back control flow graph (CCFG). This structure represents dependencies between launched Activity’s,

callback registrations and invocations, etc. Incorporating information from the CCFG into our analysis

would likely improve precision by yielding additional control-feasibility constraints.

Harness generation for Android. Previous work has developed numerous techniques for model-

ing various features of Android in order to avoid analyzing the framework code like we do (Section 7.4).

SCANDROID [Fuchs et al., 2009] and FLOWDROID [Fritz et al., 2014] were the first static analysis tools

to consider modeling the event-driven lifecycle of the core components in Android. DROIDSAFE [Gordon

et al., 2015] attempts to analyze some of the framework code while replacing other parts with accurate

analysis stubs that summarize framework behavior with respect to tainting and points-to analysis. These

stubs are correct for points-to and taint analysis, but abstract away other behaviors of the framework. This

approach is not compatible with our goal of being a general model independent of any particular client. In

addition, their stubs do not seem to take account of the application under analysis, which can lead to un-

sound results. For example, their model6 of layout inflation in View.java allocates a single View instance

rather than considering the fact that layout inflation may instantiate any of the View’s declared in the layout

XML configuration file for the app currently being analyzed.

The GATOR tool [Rountev and Yan, 2014; Yang et al., 2015] of Yang et al. and the SMARTDROID

[Zheng et al., 2012] tool focus on precisely modeling the control-flow not only between lifecycle callbacks,

but also between callbacks registered to GUI components. COMDROID [Chin et al., 2011], EPICC [Octeau

et al., 2013], and APPOSCOPY [Feng et al., 2014] specialize in modeling the Intent mechanism that Android

uses to implement inter-component-communication between core components of a single app and (in

some cases) between core components of different apps on the same device.

6 https://github.com/MIT-PAC/droidsafe-src/blob/master/modeling/api/android/view/View.java#L288
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Though not all of these approaches explicitly reify a harness modeling the application callbacks in-

voked by the Android framework, they are all (to the best of our understanding) harness-based in the sense

that they model the invocation behavior of the framework by considering a hard-coded set of callback meth-

ods to be entry points for analysis. By contrast, DROIDEL works by explicating reflection in the framework

and then analyzing the framework code to allow the analysis itself to determine what callbacks may be

invoked.

Modular analysis approaches like INFER [Calcagno et al., 2015] avoid modeling Android by ignoring

the library and performing modular analysis of each application method independent of its calling context.

However, this approach will not be able to identify lifecycle-related bugs like many of the ones we found.

Analysis of asynchronous and event-driven programs. Identifying a small set of commands

relevant to the query and their corresponding events using data-relevance exploits the fact that the data de-

pendencies of a program are often less complex than its control dependencies in practice. Recent techniques

for concurrent program verification [Farzan et al., 2013] and bug finding [Burckhardt et al., 2010] have used

a similar insight: an effective way to prevent the complexity of a concurrent program analysis (static or

dynamic) from growing exponentially in the number of threads is to design the analysis around tracking

data dependencies rather than control dependencies. This approach works because control dependencies

typically explode as additional threads are added, but data dependencies usually do not. Jumping based on

a relevance relation allows the analysis to exploit both data-relevance and control-feasibility information to

improve scalability, and jumping can be applied in sequential, concurrent, and event-driven settings.

Jhala et al. show that the IFDS framework can be extended to enable analysis of event-driven pro-

grams and present a goal-directed algorithm for proving safety properties in their extended framework [Jhala

and Majumdar, 2007]. Their focus is on handling unordered events whose execution may interleave, whereas

we focus on the problem of preserving the ordering between lifecycle events whose execution is atomic.

Handling Java reflection. As mentioned in Section 7.4, reflection is a challenging feature for static

analyses to handle soundly both in Java and in other languages [Livshits et al., 2015]. Several approaches

to handling Java reflection more soundly have been proposed. Tamiflex [Bodden et al., 2011] uses dynamic

analysis to observe the targets of reflective method calls at run time, then uses this information to generate



158

reflective summaries that are sound with respect to the observed concrete behavior. The solution offered

by Tamiflex is much more general than our Android-specific reflection handling, but the instrumentation

Tamiflex performs does not work with Android applications.

Recent work by Li et al. [Li et al., 2014] and Smaragdakis et al. [Smaragdakis et al., 2014b] present

promising new approaches to fully-static resolution of reflective calls in Java. Both techniques leverage

meaningful operations performed on the return value of reflective calls (such as downcasts) to provide a

more sound handling of reflection without compromising scalability.



Chapter 8

Conclusion and future directions

In this dissertation, we have presented goal-directed abstraction coarsening. Our approach works

backward from an abstraction of the goal query that is as precise as possible by default, but can be coarsened

in order to improve the scalability of the analysis and keep the analysis focused on the query. Our thesis

was that this is a flexible and practical approach to goal-directed static analysis. We have supported the

claim of flexibility by presenting a goal-directed store abstraction (Chapter 4) and a framework for goal-

directed control-flow abstraction based on jumping (Chapter 5). Both of these abstractions can be coarsened

on-the-fly at any point during automated analysis along each of the dimensions explained in Chapter 2.

We have supported the claim of practicality by combining our store and control-flow abstractions

to design three different goal-directed static analyses. The THRESHER tool uses our goal-directed store

abstraction to precisely represent and efficiently refute heap reachability queries. The HOPPER tool extends

THRESHER by combining our goal-directed store abstraction with the ability to coarsen the store abstraction

by jumping to relevant code based on data-relevance information. HOPPER chooses to jump when it detects

that the safety of the goal query may rely on a flow-insensitive invariant established earlier in the program.

We show that this strategy allows HOPPER to quickly prove the safety of tough downcasts that could not

be handled by the THRESHER approach alone. Finally, HOPDROID uses our framework for control-flow

abstraction to perform THRESHER-style analysis at the intra-event level, but jumps based on data-relevance

and Android lifecycle control-feasibility information at event boundaries. This combination allows tractable

analysis of event-driven Android apps while soundly accounting for all possible event orderings.
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8.1 Future directions

This dissertation lays a foundation for thinking about goal-directed analyses that opens many doors

for future work. We briefly discuss a few ideas that we consider to be particularly promising.

A relevance relation for concurrent program analysis. Analyzing concurrent programs is ex-

tremely challenging due to the state-space explosion that results from considering all possible interleavings

of threads. As with analysis of event-driven programs (cf. Section 7.1), the key challenge for concurrent

program analysis (both over- and under-approximate) is effective control-flow abstraction to soundly re-

duce the number of interleavings to be considered (e.g., via partial order reduction [Coons et al., 2013;

Flanagan and Godefroid, 2005; Peled, 1993; Valmari, 1989]).

We believe that control-flow abstraction via jumping can be applied to this problem using a strategy

similar to the one we used for analysis of event-driven programs. For example, we could design an anal-

ysis that uses precise control-feasibility information within code regions protected by a lock, then jumps

based on data-relevance information once it reaches the boundary of a locked region. In addition, we could

construct graphs representing the spawning/joining structure of threads (similar to the lifecycle graphs from

Section 7.2) to perform control-feasibility filtering during jumping. Using data-relevance information would

hopefully limit the number of interleavings to a small number relevant to the query, whereas using control-

feasibility information would further reduce the interleavings to consider and allow us to maintain flow-

sensitivity while jumping.

Answering multiple queries simultaneously. This dissertation has focused primarily on the prob-

lem of refuting a single query as quickly as possible. However, if a goal-directed analysis has multiple

queries to answer, it may be able to achieve better performance by answering multiple queries simultane-

ously. Many existing goal-directed analyses (e.g., [Oh et al., 2014; Zhang et al., 2014]) take advantage of

this fact. Our analysis is capable of trivially handling multiple queries at the same time by answering them

in parallel, but we have not tried more interesting strategies for grouping queries together to be handled by

a single thread. We could try grouping together queries from the same procedure or basic block, or try to

identify queries involving similar parts of program store by using the points-to analysis.
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In a similar vein, this dissertation has not considered the problem of effective summaries for goal-

directed analysis. We use simple top-down summaries at loop heads, procedure boundaries, and jump targets

that prevent the analysis from exploring paths it has already seen (Section 4.3.4, “Query simplification”

paragraph and Section 5.2.3). More sophisticated strategies are certainly possible and would likely improve

performance.

Backtracking and ensemble solving. In our description of the coarsening-based approach to goal-

directed analysis, we have spoken as if the choice to coarsen is final and cannot be undone. This is not the

case: at each point the analysis chooses to coarsen, the analysis could backtrack to that point after failing

to find a refutation, choose not to coarsen instead, and continue analysis. We did not consider this option

due to its (potentially) prohibitive cost, but exploring more clever techniques for backtracking may give us

a way to coarsen without having to worry about losing precision.

A similar idea for avoiding precision loss during coarsening is to run multiple coarsening strategies

in parallel (for example, we could run THRESHER, HOPPER, and HOPDROID on a query simultaneously) in

the style of portfolio solving for SAT/SMT solving [Wintersteiger et al., 2009; Xu et al., 2008] or ensemble

methods for machine learning [Zhou, 2012]. These approaches have been successful in a variety of domains

because multiple solvers/classifiers can only yield better results than a single solver/classifier. Using a

portfolio of coarsening strategies that make vastly different precision/scalability tradeoffs is a promising

approach to getting the best performance and precision for each query.
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Appendix A

Soundness proof for jumping analysis

In this section, we prove the soundness of our framework for jumping analyses (Theorem 5.4.1). The

central challenge of the proof lies in proving the soundness of the A-JUMP rule given a sound relevance

relation (e.g., one satisfying Condition 5.3.1). For reference, the concrete syntax of the language we use

to formalize jumping analysis is given in Figure 5.1 and explained in Section 5.1. The concrete semantics

of this language are given in Figure 5.2 and explained in Section 5.1.1. The abstract semantics of jumping

analysis are given in Figure 5.3 and explained in Section 5.2.2.

A.1 Assumptions

We begin by stating a few assumed conditions that the proof relies on. In addition, we restate the

relevance soundness condition from the body of this paper with one additional requirement: tinit ∈ Trel. This

requirement is not restrictive, since it is trivial to adapt any relevance relation to satisfy this requirement.

We introduce this requirement as a technical device because it maintains invariant that the relevance relation

always returns at least one transition to jump to, making the proof much cleaner.

.

Condition A.1.1 (Relevance soundness)

If 〈R, `post〉 Trel, 〈σ , `pre〉 −→T
∗ 〈σ ′, `post〉, tirrel : `1 −[c]� `2 ∈ P−Trel, and ` {Rpre } c {R}, then tinit ∈ Trel

and either

(a) Rpre |= R, or (b) ∃ T1, T2 s.t. T = T1 ˆ T2, tirrel /∈ T2 and Trel ∩ T2 6= /0.
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Condition A.1.2 (Soundness of command evaluation)

If 〈σpre,c〉 ⇓ σpost and ` {Rpre } c {Rpost } such that σpost ∈ γ (Rpost), then σpre ∈ γ (Rpre).

These conditions are assumptions about the inputs to the framework; that is, we require a sound

abstract semantics for commands and a sound relevance relation.

Condition A.1.3 (Sanity of analysis for commands)

For all R, c, ` {Rpre } c {R} for some Rpre.

This condition says that if we have a command and an abstract state in hand, we can always run our

analysis for commands and get a pre-state.

Condition A.1.4 (Label pairs uniquely define a transition)

Each pair of labels is involved in at most one transition; that is, (a) If t0 = `−[c0]� `′ ∈ P and t1 = `−[c1]� `′

∈ P, then c0 = c1 and t0 = t1. Furthermore, (b) If 〈σ , `〉 →t 〈σ
′, `′〉 and t = `0 −[c]� `1, then ` = `0 and `′ =`1.

Condition A.1.5 (Program non-empty)

P 6= /0.

These are simply a well-formedness condition that we impose on the input programs P that we wish

to analyze. The program non-empty restriction simply makes the proof cleaner without restricting the set

of input programs in a meaningful way; it is trivial to statically analyze empty programs. We require each

pair of labels to define at most one transition so there can be no ambiguity regarding which transition the

small-step evaluation relation visited given a pair of labels.

Condition A.1.6 (Form of initial transition)

tinit ∈ T = `dummy −[skip]� `entry.

Condition A.1.7 (Initial transition is a no-op)

If 〈σ , `〉 →tinit 〈σ
′, `′〉, then σ = σ ′.
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Condition A.1.8 (Initial transition is always visited)

If 〈σdummy, `dummy〉 −→T
∗ 〈σ ′, `′〉, and T 6= /0, then tinit ∈ T .

Condition A.1.9 (Execution from initial label starts from initial state)

If 〈σ , `dummy〉 −→T
∗ 〈σ ′, `′〉, then σ = σdummy.

Condition A.1.10 (Initial state is unconstrained)

If σdummy ∈ γ (R), then R = >.

These five conditions are assumptions about the special initial transition tinit and the special initial

state σdummy. The proof is much cleaner if we can rely on the fact that a relevant transition always exists,

and adding our own special no-op transition tinit accomplishes this goal without restricting the class of input

programs we can consider. We assume that the initial transition goes from the initial “dummy” label `dummy

to the entry label of the program `entry and that executing the transition does not change the concrete state.

We also assume that any program execution starting from the special dummy label `dummy starts in the

special state σdummy. Furthermore, we assume that every non-empty program execution starting from the

dummy label `dummy visits the initial transition tinit.

Finally, we assume that the only abstract state that includes σdummy is >; that is, we cannot assume

that the initial concrete state has any particular structure. This is important for allowing us to show that it is

sound to refute queries that cannot be produced by any execution of the program P. Otherwise, we would be

allowed assume that the constraints encoded in the query held in the initial state, and thus would be unable

to refute anything.

A.2 Key Lemmas

Lemma A.2.1 (Soundness of transition evaluation) If 〈σpre, `pre〉 →t 〈σpost, `post〉 and I ` t such that σpost

∈ γ (I(`post)), then σpre ∈ γ (I(`pre)).

Proof A.2.1 By induction on the derivation of 〈σpre, `pre〉 →t 〈σpost, `post〉 and leveraging Condition A.1.2.
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This lemma lifts the soundness of command evaluation to soundness for the single-step transition

relation, which is required for the proof since the premises of C-STEP, A-STEP, and A-JUMP involve this

relation.

Lemma A.2.2 (Relation of single-step evaluation and command evaluation) If 〈σ , `〉 →t 〈σ
′, `′〉 and t :

`−[c]� `′, then 〈σ ,c〉 ⇓ σ ′.

Proof A.2.2 By induction on the derivation of 〈σpre, `pre〉 →t 〈σpost, `post〉.

This lemma clarifies the relationship between the single-step transition relation and the concrete se-

mantics for commands, which is useful because the relevance soundness condition gives a guarantee about

the execution of commands, but the abstract semantics reason primarily about transitions.

Lemma A.2.3 (Unrolling concrete executions w.r.t a transition) If 〈σpre, `pre〉 −→T
∗ 〈σpost, `post〉, and t ∈

T , then 〈σpre, `pre〉 −→Tpre

∗ 〈σ , `〉, 〈σ , `〉→t 〈σ
′, `′〉, and 〈σ ′, `′〉 −→Tpost

∗ 〈σpost, `post〉 such that T = Tpre ˆ {t} ˆ Tpost.

Proof A.2.3 By induction on the derivation of 〈σpre, `pre〉 −→T
∗ 〈σpost, `post〉.

This lemma allows us to decompose a multi-step concrete derivation that we know visits a certain

transition t into a multi-step derivation preceding the visit of t, the single-step visit of t, and a multi-step

derivation succeeding the visit of t. This lemma is needed to allow us to transform a concrete derivation into

one that matches an abstract derivation given that we know they both visit the same transition.

The next lemma is the key lemma needed to make the proof go through.

Lemma A.2.4 (Irrelevant transitions preserve concretization property) If 〈σpre, `pre〉 −→T
∗ 〈σpost, `post〉

such that σpost ∈ γ (Rpost), and for all t : `1 −[c]� `2 ∈ T , ` {R′ } c {Rpost } and R′ |= Rpost, then σpre ∈

γ (Rpost).

Proof A.2.4 By induction on the structure of 〈σpre, `pre〉 −→T
∗ 〈σpost, `post〉.

Case C-STOP: Then σpre = σpost and since σpost ∈ γ (Rpost), clearly σpre ∈ γ (Rpost).
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Case C-STEP: Then

C1 :: 〈σpre, `pre〉 −→Tpre

∗ 〈σ ′, `′〉 C2 :: 〈σ ′, `′〉 →t 〈σpost, `post〉

〈σpre, `pre〉 −→Tpre ˆ {t}
∗ 〈σpost, `post〉

Since T = Tpre ˆ { t }, clearly Tpre ⊆ T . By the assumptions of the theorem that for all t : `1 −[c]� `2

∈ T , ` {R′ } c {Rpost } and R′ |= Rpost and the fact that Tpre ⊆ T , we know that these assumptions hold for

Tpre also: (F1::) t : `1 −[c]� `2 ∈ Tpre, ` {R′ } c {Rpost } and R′ |= Rpost.

We can apply Lemma A.2.2 to t : `′ −[c]� `post and C2 to obtain (F2::) 〈σ ′,c〉 ⇓ σpost. We can then

apply Condition A.1.3 to c and Rpost to obtain (F3::) ` {R′ } c {Rpost } for some R′.

We can then apply Condition A.1.2 to (F2::) 〈σ ′,c〉 ⇓ σpost, (F3::) ` {R′ } c {Rpost }, and theorem

assumption σpost ∈ γ (Rpost) to obtain σ ′ ∈ γ (R′). Because σ ′ ∈ γ (R′) and R′ |= Rpost, we know (F4::) σ ′ ∈

γ (Rpost).

Finally, we can apply the IH to C1, (F4::) σ ′ ∈ γ (Rpost), and (F1::) t : `1 −[c]� `2 ∈ Tpre, `

{R′ } c {Rpost } and R′ |= Rpost to obtain σpre ∈ γ (Rpost), as required.

A.3 Soundness proof

Theorem A.3.1 (Soundness of jumping analysis)

If T1:: 〈σdummy, `dummy〉 −→T
∗ 〈σpost, `post〉 and T2:: I ` `post such that σpost ∈ γ (I(`post)), then σdummy ∈

γ (I(`dummy)).

Proof A.3.1 By induction on the derivation of 〈σdummy, `dummy〉 −→T
∗ 〈σpost, `post〉.

Case (1) C-STOP:

Then σdummy = σpost and `dummy = `post. Since σpost ∈ γ (I(`post)) is an assumption of the theorem, the

desired result σdummy ∈ γ (I(`dummy)) is immediate.

Case (2) C-STEP:
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C1 :: 〈σdummy, `dummy〉 −→Tentry
∗ 〈σ ′, `′〉 C2 :: 〈σ ′, `′〉 →tpost

〈σpost, `post〉

〈σdummy, `dummy〉 −→T
∗ 〈σpost, `post〉

The only relevant abstract rule is A-JUMP.

Case A-JUMP: The last abstract rule applied was:

A-JUMP

A1 :: I(`post) |= R A2 :: 〈R, `post〉 Trel

A3 :: I ` t for all t : `i −[ci j]� ` j ∈ Trel A4 :: R |= I(` j) for all ` j A5 :: I ` `i for all `i

I ` `post

We proceed on cases by: (A) Tentry = /0 and (B) Tentry 6= /0.

Case (2-A) Tentry = /0:

Then T = /0 ˆ {tpost}, so T = { tpost } and plainly T 6= /0. By applying Condition A.1.8 to theorem assumption

T2 and the derived fact T 6= /0, we obtain tinit ∈ T . Since T is a singleton set containing only tpost, it follows

from tinit ∈ T that tpost = tinit.

By applying Condition A.1.7 to this fact and C2, we can conclude that σ ′ = σ ′post. Since σ ′ = σ ′post

and the assumption of the theorem that σpost ∈ γ (I(`post)), we can conclude that σ ′ ∈ γ (I(`post)). By Con-

dition A.1.6, tinit = `dummy −[skip]� `entry. Applying Condition A.1.4(b) to C2 and the fact that tpost = tinit

= `dummy −[skip]� `entry, we can reason that `′ = `dummy. Finally, we can apply Condition A.1.9 to C2 and

`′ = `dummy to obtain σ ′ = σdummy. Since we have derived fact σ ′ ∈ γ (I(`post)), σ ′ = σdummy, and `post =

`dummy, we can conclude σdummy ∈ γ (I(`dummy)), as required.

Case (2-B) Tentry 6= /0:

Plainly, either tpost is a relevant transition or it is not. Thus, there are two sub-cases to consider here: (I) tpost

∈ Trel, and (II) tpost /∈ Trel.
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Case (2-B-I) tpost ∈ Trel:

By A3, we know I ` t for all t : `i −[ci j]� ` j ∈ Trel. Combining this fact with the assumption of this case

that tpost ∈ Trel, we can choose t = tpost to obtain I ` tpost. We can then apply Lemma A.2.1 to concrete

sub-derivation C2, derived fact I ` tpost, and theorem assumption (T3) σpost ∈ γ (I(`post)) to obtain `′ ∈

γ (I(`′)).

We can apply Condition A.1.4 to C2 and tpost to write tpost as tpost : `′ −[cpost]� `post. Since tpost ∈ Trel

by the assumption of this case and we know (A5) I ` `i for all `i for all t : `i −[ci j]� ` j ∈ Trel, we can choose

`i = `′ to obtain I ` `′. We can then apply the IH to concrete sub-derivation C1, derived fact I ` `′, and

derived fact I(`′) ∈ γ (I(`′)) to obtain σdummy ∈ γ (I(`dummy)), as required.

Case (2-B-II) tpost /∈ Trel:

We know the transitions T traversed by a concrete execution are a subset of the program transitions P (i.e.,

T ⊆ P), so we can use this fact and the assumption of this case that tpost /∈ Trel to reason that (*) tpost ∈ P -

Trel.

We can apply Condition A.1.1 to the T-JUMP assumption 〈R, `post〉 Trel and Condition A.1.3 to ob-

tain the facts (F1) tinit ∈ Trel, for all t : `1 −[c]� `2 ∈ P - Trel, ` {R′ } c {R} (using Condition A.1.3 once

more)), and either (a) ∃ T1, T2 s.t. T = T1 ˆ T2, tpost /∈ T2 and Trel ∩ T2 6= /0, or (b) R′ |= R. We proceed by

cases depending on whether the control-feasibility condition (a) holds or the data-relevance condition (b)

holds.

Case (2-B-II-a) ∃ T1, T2 s.t. T = T1 ˆ T2, tpost /∈ T2, and Trel ∩ T2 6= /0:

Because T = Tentry ˆ {tpost}, the only way we can write T = T1 ˆ T2 such that t /∈ T2 is to choose T1 = T and

T2 = /0. However, this leads us to a contradiction because an assumption of this case is that Trel ∩ T2 6= /0, but

we require T2 = /0 and clearly Trel ∩ /0 = /0.

Case (2-B-II-b) ∀ t : `1 −[c]� `2 ∈ P - Trel, ` {R′ } c {R}, and R′ |= R:

We can apply Condition A.1.8 to concrete sub-derivation C1:: the assumptions of the current case (2-B)

Tentry 6= /0 to obtain tinit ∈ Tentry. Since we also know that (F1) tinit ∈ Trel, note that Tentry ∩ Trel 6= /0. Now,
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let us select a transition trel ∈ Tentry ∩ Trel that is the last relevant transition visited in the concrete trace Tentry.

Such a transition is guaranteed to exist because we have just shown that Tentry ∩ Trel 6= /0. More formally, let

T = t0, . . . , tn. We choose trel to be a transition ti such that ti ∈ T , ti ∈ Trel, and for all t j ∈ T where j > i, t j

/∈ Trel. In prose, trel is the last transition visited by the concrete execution that is in also in the set of relevant

transitions Trel; all transitions in T occurring after trel are not in Trel.

Next, we can apply Lemma A.2.3 to concrete sub-derivation C1 and the fact that trel ∈ Tentry to obtain

(F2) 〈σdummy, `dummy〉 −→Tpre

∗ 〈σpre, `pre〉,

(F3) 〈σpre, `pre〉 →trel
〈σ ′pre, `

′
pre〉, and

(F4) 〈σ ′pre, `
′
pre〉 −→Tirrel

∗ 〈σ ′, `′〉.

By our method of selecting trel, we know (F5) for all tirrel ∈ Tirrel, t /∈ Trel.

We can apply Condition A.1.4 to C2 and tpost to write tpost as tpost : `′ −[cpost]� `post. We can apply

Lemma A.2.2 to C2:: and tpost : `′ −[cpost]� `post to obtain (F5) 〈σ ′,cpost〉 ⇓ σpost.

Next, we can apply the assumption of case (2-B-II-b) ∀ t : `1 −[c]� `2 ∈ P - Trel, ` {R′ } c {R} to

fact (*) tpost ∈ P - Trel (choosing t = tpost, c = cpost, and R = I(`post)) to determine that (F6) R′ |= I(`post)

(note that this also yields ` {R′ } c { I(`post)} as a consequence of choosing R = I(`post)). We can then

apply Condition A.1.2 to (F5) 〈σ ′,cpost〉 ⇓ σpost, ` {R′ } c { I(`post)}, and theorem assumption (T3) σpost ∈

γ (I(`post)) to obtain σ ′ ∈ γ (R′). Since (F6) R′ |= I(`post), by definition of |= we know γ (R′) ⊆ γ (I(`post)).

Since γ (R′) ⊆ γ (I(`post)) and σ ′ ∈ γ (R′), clearly σ ′ ∈ γ (I(`post)).

We can apply Lemma A.2.4 to (F4) 〈σ ′pre, `
′
pre〉 −→Tirrel

∗ 〈σ ′, `′〉, σ ′ ∈ γ (I(`post)), and the previously

derived facts that for all tirrel ∈ Tirrel, t /∈ Trel, tirrel : `1 −[cirrel]� `2 ∈ Tirrel, and ` {R′ } c { I(`post)}, and using

the assumption of this case R′ |= R to derive R′ |= I(`post) (choosing R = I(`post)), we obtain the fact that

(F7) σ ′pre ∈ γ (I(`post)).

By A-JUMP premise (A3) I ` t for all t : `i −[ci j]� ` j ∈ Trel. Since trel : `pre −[c]� `′pre ∈ Trel, and by

A-JUMP premise A4 we know R |= I(` j) for all ` j where t : `i−[ci j]� ` j ∈ Trel, we can select ` j = `′pre to obtain

R |= I(`′pre). By A1 we have I(`post) |= R, which means I(`post) |= R |= I(`′pre). This implies γ (I(`post)) ⊆

γ (R) ⊆ γ (I(`′pre)) by definition of |=. Because (F7) σ ′pre ∈ γ (I(`post)), clearly σ ′pre ∈ γ (I(`′pre)).

We can now apply the transition soundness lemma (Lemma A.2.1) to (F3) 〈σpre, `pre〉 →trel
〈σ ′pre, `

′
pre〉,
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A-JUMP premise (A3) I ` t for all t : `i −[ci j]� ` j ∈ Trel where t : `i −[ci j]� ` j ∈ Trel (choosing t = trel, since

trel ∈ Trel), and derived fact σ ′pre ∈ γ (I(`′pre)) to obtain σpre ∈ γ (I(`pre)).

Finally, we can apply the IH to (F2) 〈σdummy, `dummy〉 −→Tpre

∗ 〈σpre, `pre〉, A-JUMP premise A5:: I `

`i for all `i where t : `i −[ci j]� ` j ∈ Trel (choosing t = trel : `pre −[c]� `′pre and consequently `i = `pre), and

derived fact σpre ∈ γ (I(`pre)) to obtain σdummy ∈ γ (I(`dummy)), as required.


