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Through deliberate material and geometrical design of the internal structure, phononic crys-

tals and metamaterials, collectively, phononic materials, elicit fundamental wave phenomena per-

taining to acoustic/elastic systems. This unique ability among classical materials and composites

has immediate engineering applications including vibration control in structures. Moreover, on-

going research has been directed toward technological improvements in communications, energy

harvesting, and acoustic imaging as well as the proposal of new devices for acoustic cloaking, non-

destructive super-resolution imaging, and even flow control. Periodicity, emerging from the spatial

repetition of a representative structural element, the unit cell, is a characteristic feature of phononic

materials and makes them accessible to Bloch’s theorem for dynamic analysis. This analysis is cen-

tral to predicting phononic material performance which inspires the previously stated applications.

However, energy dissipation stemming from the damping mechanisms inherent to all materials is

absent from much of the theoretical literature. This omission adversely affects the prediction of

phononic material performance and foregoes damping as a potential design parameter/objective.

In support of improved performance predictability and strategic material design with damping,

this dissertation extends the analysis techniques originally developed in the context of dissipative

vibration in damped structures to dissipative wave propagation in damped phononic materials.

The frequency band diagram summarizes much of the dynamic performance of phononic

materials and, ultimately, phononic devices, visually separating propagating and non-propagating

wave modes into distinct frequency regions denoted pass bands and band gaps, respectively. Ac-

counting for the practical effects of energy dissipation on the acoustic/elastic waves improves the

predictive capability of the band diagram and is one of the main thrusts of this dissertation. Both

the material and excitation environment are considered. Viscous and viscoelastic type damping,
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respectively, represent dissipation consistent with motion involving a fluid and the time-dependent

behavior of polymers and metals. The dissertation shows the changes that occur in the band di-

agram, especially the size of the band-gap region, as the damping is tuned continuously from one

damping type to another. Regarding the excitation environment, phononic structures may be sub-

ject to impact and harmonic loading. The dissertation investigates the distinctive response of free

and prescribed waves to energy dissipation, with implications for phononic structures subject to

impact and harmonic loading, respectively. Free waves dissipate energy over time while prescribed

waves dissipate energy over the extent of phononic material/structure producing radically differing

band diagrams for the same phononic material.

For cloaking and super-resolution imaging devices, performance is further linked to the prop-

erties of the underlying phononic material. No natural material or composite exhibits the negative

density/modulus or anisotropic density required for their operation. However, over a narrow range

of wave frequencies, these extraordinary properties emerge dynamically in phononic materials due to

relative motion among the internal structure. This dissertation advances the discussion of phononic

material performance by examining the changes undergone by the dynamic effective properties due

to energy dissipation. In addition to the conventional dynamic effective density and modulus, a dy-

namic effective viscous damping constant is presented and provides a means of measuring damping

beyond the low-frequency regime of the viscoelastic correspondence principle.

As an additional focus, this dissertation also considers damping as an objective of phononic

material design. The results of the previous studies, in particular, that on free wave propagation

in damped phononic materials, opened the door to design proposal for enhanced dissipation. The

dissertation examines the effect of phononic material configuration on the overall material damping

capacity, demonstrating the emergence of enhanced dissipation in phononic materials featuring

localized resonating bodies as compared to those without. Such behavior, which in our work has

been referred to as “metadamping”, provides a new strategy for the design of material systems that

exhibit high levels of dissipation without sacrificing load-bearing capacity (stiffness) which is a feat

beyond most traditional materials and composites.
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Chapter 1

Introduction

1.1 Phononic Materials

The problem of vibration control is of central importance in many areas of civil, mechani-

cal, and aerospace engineering. Seismic loading on buildings, noise from reciprocating machines,

activation-induced oscillations in deployable space structures are a few examples. Often, vibration

is undesirable for its adverse effects on the performance and integrity of a structural component

or assembly. In the form of noise pollution, it may also be a source of personal discomfort. To

address this problem, two solutions from structural dynamics are: (1) alter the frequency/intensity

of the excitation source; (2) mitigate the effects of the excitation with the aid of external vibra-

tion absorbers or energy dissipating materials. However, if dynamic loading is inherent to the

environment or the operation of the system, then the first option is nullified. The second option

requires the modification of original designs with statically inessential components which, particular

to energy dissipating materials, may diminish the overall load-bearing capacity. These provisional

changes typically incur additional development costs. A third option that voids the limitations and

drawbacks of the previous approaches is to internalize the function of vibration control and make

it an inherent feature of the structure. However, advanced composites which, compared to their

classical counterparts, may provide superior thermal, corrosion, toughness, and other attributes do

not typically possess a vibration control capability beyond their constituents.

Phononic materials distinguish themselves from among classical materials and composites

by the unique ability to manipulate acoustic/elastic vibrational waves. This is accomplished by
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(a) 1D (b) 2D (c) 3D

Figure 1.1: Representative phononic materials with periodicity in multiple dimensions. The colors
distinguish the homogeneous constituents of a composite.

deliberately structuring and arranging the material phases and/or geometry to take advantage

of fundamental wave-material interactions, including interference and resonance. Due to these

interactions, a phononic material is transparent to vibrational waves only over certain frequency

bands, and becomes opaque in the intervening band gaps where wave propagation is forbidden.

Figure 1.1 depicts examples of a phononic material in one, two, and three dimensions where a

common feature is a material (Figs. 1.1a and 1.1c) or geometrical (Fig. 1.1b) periodicity described

by a unit cell, the fundamental repeating element. Periodicity in addition to material makeup

characterize the phononic material dynamics. Structures incorporating phononic materials are

inherently capable of regulating vibration without the negative consequences of the aforementioned

remedies.

As detailed later in the chapter, phononic materials are not restricted to vibration control

applications. A theoretical understanding of the mechanics of wave propagation in phononic ma-

terials has led to many articles proposing improvements to current technologies – even overcoming

previously accepted limits – and introducing new ones. However, the value of theoretical work

lies in its predictive capability for which accounting for more of the relevant variables is benefi-

cial. From a fundamental mechanics perspective, there is little consideration in the literature for

material damping or the energy dissipation it engenders in vibrational waves. This situation is in

contrast to the large structural dynamics literature aimed at developing phenomenological models

of the different damping mechanisms for use in structural analysis. This dissertation extends the
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models and analysis techniques originally developed in the context of damped vibration in finite

structures to dissipative wave propagation in phononic materials. The overarching goals are not

only to illuminate the effects of material damping on the wave propagation characteristics (thus,

qualitatively reflecting observation and extending predictability), but also to explore damping in

phononic material design. From an analytical perspective, material models may be lumped, con-

tinuous, or a combination of the two. In addition, there are a variety of damping models in concert

with the complexity of dissipative mechanisms. In this dissertation, material models are largely

lumped (or discretized), leading to ordinary differential equations of motion. The focus is on two

linear damping models: viscous and viscoelastic (described in later chapters).

This chapter explains the theory underpinning the dynamic analysis of phononic materials,

and then discusses typical results using a one-dimensional material model. Additional phononic

material classifications are also scrutinized. Following a non-exhaustive literature review for orien-

tation, the chapter closes with an overview of the remainder of the dissertation.

1.2 Unit Cell Analysis and the Dispersion Band Diagram

Phononic materials inherit their name from solid-state physics where, at the nanoscale,

phonons, the quantized vibrations of a crystal lattice, influence the transfer of heat within solids [1].

In quantum mechanics, the time evolution of a cyrstal state follows the Schrödinger equation, a

partial differential equation (PDE) with periodic coefficients and whose solutions are wave func-

tions given by the one-dimensional Floquet theory [2] or three-dimensional Bloch theory [3]. The

purview of this dissertation, however, is at larger scales where the unit cell comprises an artificial

lattice and vibrational waves are associated with the propagation of elastic/acoustic (sound) waves.

In one dimension, the relevant equation of motion is

∂

∂x

[
E(x)

∂u

∂x

]
= ρ(x)ü, (1.1)

where u is the displacement from equilibrium, and the density ρ(x) and Young’s modulus E(x)

are functions reflecting the periodic quality of the phononic material. Apparently, the equation of
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motion possesses the same mathematical properties as the Schrödinger equation, thus permitting

the extension of Bloch theorem to vibrational waves in periodic media [4]. In this context, the

one-dimensional Bloch solution is given by

u(x, κ, t) = ũ(x)eiκx+λt (1.2)

where the wave envelope is described by a wave number κ = 2π/` (`: the wavelength), charac-

terizing the spatial frequency, and temporal parameter λ = iω, with ω = 2π/T (T : the period),

characterizing the temporal frequency. Although x is defined over the full space −∞ < x <∞, fol-

lowing the periodicity of the medium as expressed by the lattice constant a, the amplitude function

ũ(x) is periodic on x ∈ [0, a]. As a consequence, the following relation holds

u(x+ a, κ, t) = u(x, κ, t)eiκa, (1.3)

and declares that the analysis of a single periodic element – the unit cell – yields the solution for

all x. These conclusions generally apply to two- and three-dimensional problems.

Together, the Bloch solution and equation of motion formulate an eigenvalue problem with

eigenfunctions u(x, κ) corresponding to eigenvalues λ(κ) (or κ(λ) depending on the method). The

eigenvalues constitute the dispersion relations which describe much of the nature of wave propaga-

tion in phononic materials including the speed of sound, the velocity of a wave packet, the energy

velocity in the absence of dissipation, and, crucial to the problem of vibration control, the location

of band gaps described in Sec. 1.1. For a one-dimensional phononic material similar to Fig. 1.1a,

Fig. 1.2 provides a graphical illustration of the dispersion relations referred to as a band diagram.

In this case, the dispersion relation follows the κ(λ)-formulation, which yields a complex

wavenumber κ = κR + iκI for a given frequency. To display both the real and imaginary com-

ponents, Fig. 1.2 divides the κa-axis into right and left half-panes, respectively. While the value

of κI is theoretically unbounded, the present κ(λ)-formulation limits κR ∈ [0, π/a] which, for one-

dimensional problems, is the irreducible Brillouin zone [5]. The physical implications of a complex

wavenumber are revealed through Eq. (1.2) where κR corresponds to the wave’s characteristic
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Figure 1.2: Dispersion band diagram for a one-dimensional, layered phononic material by unit cell
analysis. (a) Superimposed is the frequency-wavenumber relationship of a homogeneous material
with the volume-averaged properties of the phononic material. (b) Overlaid are the results derived
from the natural frequency (NF) analysis and frequency response (FR) of a finite structure.

oscillations over space and κI describes the exponential decay of the wave amplitude. For the case

of κR = 0, π/a, the wave nodes are stationary, signifying a standing wave. Each of these scenar-

ios is illustrated in Fig. 1.3 where the displacement profiles associated with three, nearly-equal

frequencies in Fig. 1.2 are plotted at two instances in time. Figure 1.3a shows the displacement

profile of the propagating mode at f = 0.491× 105Hz. The wave propagates through the phononic

material such that a phase difference develops between the profiles at any two instances in time

provided that the duration is not a whole-number multiple of the period, T . Figure 1.3b shows

the displacement profile of the evanescent mode at f = 0.492 × 105Hz, within the band gap. In

addition to the spatial decay of wave amplitude corresponding to κI > 0, the wave nodes remain

stationary for all time following κR = π/a. The special case of (κR, κI) = (π/a, 0) occurs between

f = 0.491 × 105Hz and f = 0.492 × 105Hz, and, as shown in Fig. 1.3c, results in neither wave

propagation nor spatial decay in amplitude.
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Figure 1.3: Displacement profiles of select modes of a one-dimensional phononic crystal with the
dispersion given in Fig. 1.2. Snapshots taken at t = 0 (black curve) and t = T/5 (red curve). (a)
Propagating mode at f = 0.491× 105Hz. (b) Evanescent mode at f ≈ 0.492× 105Hz. (c) Special
case of a standing, non-decaying mode [(κR, κI) = (π/a, 0)] at f ≈ 0.491957568× 105Hz.

In Fig. 1.2, it is apparent that the dispersion consists of distinct frequency regions for

which κ is either real-valued or complex. Accordingly, in the κR-pane, the associated frequency

bands describe vibrational waves capable of propagating through the phononic material similar to

light through glass. However, in the band gaps, a complex wavenumber reflects an interference

phenomenon that renders the phononic material opaque within these frequency regions. With

proper engineering of the phononic material substructure, band gaps may be tuned in number,

size, and location within the band diagram, demonstrating the potential and flexibility of native

vibration control though phononic materials.

As illustrated in Fig. 1.2a, a homogeneous material is non-dispersive (i.e., ω is linearly

proportional to κ with the speed of sound the constant of proportionality) and band gaps do not
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exist. As κ → 0, the lowest frequency band in the propagating pane also linearizes. Here, the

wavelength is large in comparison to the phononic material substructure and experiences only the

averaged properties, effectively homogenizing the material. In the long wavelength limit, the bands

of the phononic material and its volume-averaged homogeneous counterpart coincide.

In this dissertation, a material is defined over the full space characterizing its periodicity.

For example, the periodicity of Fig. 1.1a extends infinitely in the direction normal to its layering.

Consequently, the dispersion is continuous, representing an infinite number of propagation modes.

In contrast, a structure is finite in extent and, thus, possesses a limited set of vibration modes.

Given that any implementation of a phononic design would necessarily be a finite structure, a

connection between unit cell analysis and structural performance need be established [6,7]. Figure

1.2b shows the same dispersion as in Fig. 1.2a overlaid with the results obtained from two typical

structural analyses on a corresponding finite structure of ten unit cells. In the κR-pane, the discrete

natural frequencies and wavenumbers of the free-free phononic structure show good agreement with

the band structure which suggests a kinship. Increasing the number of unit cells in the structure will

lead to more complete coverage. The response in the band gap is that of the unit cell alone. In the

κI-pane, the spatial logarithmic decrement obtained from the frequency response of the phononic

structure closely aligns with the band structure. Together, the natural frequencies and frequency

response of the phononic structure solidify the relationship between the material analysis and the

structure response. This is also verified through time simulations. Nevertheless, in obtaining a

continuous dispersion from a unit cell analysis, the material perspective is the most comprehensive

and efficient option.

1.3 Phononic Crystals and Metamaterials

As mentioned in Sec. 1.1, interference and resonance are the two mechanisms by which

phononic materials exert control over vibrational wave propagation. These wave-material inter-

actions also serve as a means of categorizing phononic materials into two subgroups: phononic

crystals and metamaterials.
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Figure 1.4: Dispersion band diagrams for a one-dimensional (a) phononic crystal with band gaps
induced by Bragg scattering and (b) metamaterial featuring a resonance-induced gap before those
of Bragg scattering.

Bragg scattering describes a process by which a light wave, upon passing through a crys-

tal, is partially reflected at every plane of atoms. Depending on the spacing between planes,

the reflected components may interfere with each other and the incident wave, forbidding wave

propagation through the crystal. Similarly, the artificial atoms of phononic crystals (i.e., the ma-

terial/geometrical constituents) interact with vibrational waves. In this context, the band gaps in

the band diagram of a conventional phononic crystal are the result of the Bragg scattering effect.

Figure 1.4a shows the same dispersion diagram as in Fig. 1.2 with the Bragg band gap frequency

regions lightly shaded. A typical feature of Bragg band gaps is the smooth variation in κI over

the relevant frequency range. Due to the dependency on constituent spacing, the size of phononic

crystals with a band gap for low-frequency applications (i.e., at long wavelengths) may become

impractically large.

Bragg scattering and interference effects also exist within metamaterials, leading to band
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gaps in the dispersion band diagram. However, for metamaterials, the lowest gap is typically

not the result of Bragg scattering, rather the result of a local resonance phenomenon [8]. Below

the length scale of the background wavelength (i.e., subwavelength), the metamaterial possesses

a resonating structure tuned to the background frequency. Consequently, a large fraction of the

wave energy is transfered from the background and localized within the resonator. This coupling

(or hybridization) opens a band gap before Bragg effects have the same result [9]. In Fig. 1.4b,

a subwavelength resonator produces a resonance band that hybridizes with the lowest frequency

band in Fig. 1.4a, splitting it in two with an intervening resonance gap. A typical feature of

resonance gaps is the piecewise-smooth variation in κI over the relevant frequency range [10]. Also

typical is the rapid plateauing of the lowest frequency band, representing the increasing mode

localization. Unlike Bragg scattering, the resonance phenomenon does not depend on periodicity

or constituent spacing (provided the resonators are not so close as to couple to each other). Thus,

for low-frequency applications, metamaterial-based devices will have a smaller spatial profile than

those of phononic crystals.

1.4 Advanced Applications

Composites, often modeled as periodic materials, have found widespread application in engi-

neering. Motivated by the desire to know the frequency-dependent displacement and stress profiles

in layered composites, early studies [4, 11, 12] exploited periodicity to apply Bloch theorem and

simplify the analysis. Gupta [6] connected the natural frequencies stemming from the analysis of

a periodic structure to the wave propagation characteristics obtained from the simpler unit cell

analysis (as demonstrated in the previous section). Thus, the unit cell analysis may extend from

periodic materials to the dynamic characterization of multi-storey buildings, aircraft fuselages, and

other engineering structures possessing periodicity [13]. Tassilly [14], studying bending wave propa-

gation in material periodic beams, proposed constructing periodic railway ties to take advantage of

phononic band gaps for sound abatement. Indeed, as remarked throughout this chapter, the inher-

ent vibration control capability of phononic materials has many engineering applications. However,
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the utility of phononic materials extends beyond vibration isolation in structures to more advanced

applications.

Phononic crystal waveguides are constructed by replacing the constituents along a path in the

phononic structure with an alternate material. Appropriately designed, this defect creates a narrow

band of propagating frequencies within the broad band gap of the underlying phononic crystal. The

effect is that only waves within the defect band are able to propagate through the guide while the

surrounding phononic material serves as a barrier. For waves outside the defect band, interference

at the entrance to the waveguide acts as a “acoustic dam” to prevent propagation as if the waveguide

were absent. Alone, the waveguide is a simple filter. Combining two such defects, Pennec et al [15]

simulated the multiplexing/demultiplexing capabilities of a Y-shaped waveguide with each defect

band tuned to a different frequency. Scaled to the relevant dimensions, the lower insertion loss

(decrease in signal power from embedded device) of phononic filters compared to electric ones opens

phononic crystals to signal processing and RF communications applications [16]. In addition, where

current acoustic imaging methods balance resolution and penetration depth, waveguides allow for

the decoupling of the transmitting/receiving element and the aperture size of an acoustic imaging

device for deep high-resolution imaging in nondestructive testing [17]. Apart from waveguides,

acoustic diodes for unidirectional wave propagation with communications and medical applications

have also attracted the attention of researchers [18–20]. In addition, using phononic crystals, convex

lenses for the focusing of sound has also been experimentally demonstrated [21]. Interestingly,

Cervera et al [21] attributed the refractive capability of the acoustic lens to the increased effective

density of phononic crystal due to the relative motion of the constituents. Remarkably, Yang et

al [22] and Sukhovich et al [23] focused ultrasound using phononic lenses lacking any curvature

(i.e., flat) utilizing an effective negative refraction property (not available from classical materials)

predicted by attributes of the corresponding band diagram. However, material damping impacted

the image quality. In each of these instances, an effective (i.e., global) material property emerges

from local wave-material interactions.

The prefix “meta-” (meaning “beyond”) is associated with materials that, through deliber-
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(a) Negative Density (b) Negative Modulus

Figure 1.5: Scenarios for which negative effective density and modulus emerge.

ate design of their internal structure, manifest unusual properties that exist beyond conventional

materials and phononic crystals. From a dynamics perspective, the effective mass density and

modulus become frequency-dependent and separately [24–27] or simultaneously [28–31] negative in

the vicinity of the resonance frequency. Dipolar and monopolar responses from the subwavelength

resonators are the underlying mechanisms of negative effective density and modulus, respectively.

Negative density implies that the acceleration is out of phase with the pressure/stress gradient [32].

Negative modulus suggests that the deformation is out of phase with the pressure/stress (see Fig.

1.5). Metamaterials hold the same potential as phononic crystals; however, in extending the range

of material properties, they promise more extraordinary applications. For conventional imaging

systems, diffraction places a physical limitation on the achievable resolution such that features

smaller than one-half the probing wavelength are indistinguishable. This condition is due to the

evanescent nature of the waves emerging from the fine features, which decay before being detected.

Ambati et al [33] showed that metamaterial resonances could be used to enhance the evanescent

waves associated with the subwavelength features of an imaged object, thus providing an avenue

for acoustic super-resolution from metamaterial lenses. Nevertheless material damping remains a
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practical limitation. A “hyperlens” for simultaneous super-resolution and magnification has also

been reported [34]. In this case, the effective density and modulus of the metamaterial are not only

negative, but strongly anisotropic as well. This anisotropy is also a requisite of cylindrical [35, 36]

and spherical [37] acoustic cloaks for effective sound shielding. In the absence of losses to create an

“acoustic shadow”, the cloak bends an impinging plane-wave pressure field around an object embed-

ded at its center to remerge undistorted on the leeward side. The concept has also been extended to

elastic waves [38–40]. Recently, mechanical metamaterials, which exploit substructure instabilities

(such as buckling) and connectivity, have been introduced. Using an externally applied load, Wang

et al [41] harnessed instability within substructural beams to manipulate the metamaterial band

gaps, demonstrating instability as a means of adapting wave propagation characteristics for smart

systems. Nadkarni et al [42] used a periodic system of bi-stable (i.e., possessing a snap-through in-

stability) elements to construct a single material with three wave propagation regimes activated by

the wave amplitude: linear (elastic wave); nonlinear (envelope soliton); and strongly nonlinear (kink

soliton). Ordinarily, instabilities are avoided, however, these illustrate the expanded functionality

and dynamic characteristics of structured materials with intentionally implanted instabilities.

1.5 Damping in Phononic Structures and Materials

Phononic materials [43–45] are the acoustic/elastic analogue of photonic materials [engineered

to manipulate electromagnetic (EM) waves] which preceded by a few years [46, 47]. As a scientific

offspring, much of the applied research in phononic materials parallels developments in the photonic

materials literature. However, the richer physics offered by acoustic and elastic waves, including

both longitudinal and transverse polarizations (only transverse for EM waves), and the greater

number and range of material tuning parameters, including density and two independent moduli

(only two parameters for EM waves), present a greater potential for phononic materials. At present,

much of the phenomena of wave propagation in phononic materials, from dispersion to dynamic

effective properties, is understood from the perspective of linear elasticity. This comprehension

grants a level of predictability of phononic material performance which is appreciated in ensuing
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applied research. Realizing the full potential of phononic materials, however, requires an account of

energy dissipation from material damping. This will provide an elevated level of predictability. It

will also show material damping as a potential design parameter for tuning phononic materials and

opening phononic materials to new applications. The treatment of damping in phononic materials

clarifies the wave propagation phenomenon at a fundamental level, and thus, represents a significant

contribution to the field. What follows is a review of studies in the literature regarding dissipative

wave propagation in phononic materials.

In one of the early studies to consider dissipative wave propagation in phononic materials,

Mead [48] examined the effect of viscous and hysteretic damping on the wavenumber for waves

propagating in a one-dimensional, periodically supported beam. Given any real-valued frequency,

the associated wavenumber is complex; damping enforces the decay of the wave amplitude from

one unit cell to the next. This result explains the localization of wave energy near the source of

excitation in damped homogeneous and periodic structures (finite) [49,50]. In addition, because the

complex wavenumbers exist throughout the frequency spectrum, band gaps become less distinct (an

effect which becomes more pronounced at higher frequencies). This result was reproduced qualita-

tively by Tassily [14] in his study of damped phononic beams with material periodicity. Seemingly

contradictory, Psarobas [51] reported the persistence of a complete band gap when damping was

introduced to a three-dimensional system of closed-packed rubber spheres in air. However, since

material damping was exclusive to the rubber spheres, the effects of energy loss was most appar-

ent around the sphere resonant frequencies when the acoustic wave field is localized within the

spheres. Corroboratively, Moiseyenko and Laude [52] concluded that flat bands associated with

low group velocity acquire an enhanced damping and that losses have a greater influence on the

propagating modes than on the evanescent. In addition, using an extended plane-wave expan-

sion method, Ref. [52] produced the complete band diagram (propagating and evanescent modes)

for a two-dimensional, damped phononic crystal. The interaction between material damping and

sound/shock wave transmission was the focus of additional research [53–56]. Other studies consid-

ered the application of Bloch theorem to phononic materials [57] with damping and the efficient
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characterization thereof [58]. The Schrödinger equation, for which Bloch theorem provides a so-

lution, does not account for dissipation, yet wave propagation in materials is, in fact, dissipative.

Farzbod and Leamy [57] presented a mathematical treatment for the unit cell analysis of damped

phononic materials. Collet et al [58] developed a numerical formulation amenable to phononic

materials with complex, frequency-dependent damping definitions. In each of the above cases, the

frequency had a prescribed real value such that the temporal parameter λ = iω was purely imagi-

nary. This situation represents a plurality of the wave propagation research incorporating damping

and corresponds to a steady-state perspective where material motion is driven at a given frequency.

Alternatively, the transient perspective has the wave amplitude decrease in time and, with

the frequency unprescribed, is referred to as free wave propagation. In considering the propagation

of longitudinal waves in homogeneous rods, Cady [59] allowed the temporal parameter to become

complex, λ = i(ωd + iξω) = −ξω + iωd, such that ωd is the damped propagation frequency and

−ξω is the temporal attenuation constant. Regarding periodic media, for one-dimensional phononic

materials, Mukherjee and Lee [60] appear to be the first to develop a dispersion diagram for each the

frequency and temporal attenuation constant; however, the solution technique (the finite difference

method) yielded only the κR-pane. Other studies also investigated the dispersion properties of

damped phononic materials using complex frequencies (i.e., complex temporal parameter). Opening

complete band gaps in phononic materials composed of solids within a fluid matrix is notoriously

difficult due to the suppression of transverse waves in the fluid phase. However, recognizing the

viscous penetration depth as an additional length scale for fluid-solid phononic materials, Sprik

and Wegdam [61] were able to open complete band gaps in a phononic material composed of silica

spheres in a liquid matrix of a glycerol/water-like mixture. Moreover, Zhang et al [62] found

the viscosity of the liquid to assist in widening the band gap. Later, reminiscent of vibration in

structures, Hussein [63] extracted a damping ratio band structure from Re[λ] and demonstrated

intriguing phenomena such as branch overtaking and branch cut-off. This dissertation will primarily

take the perspective of free wave propagation.

In addition to the dispersive properties of phononic materials, Sec. 1.4 described the utility of
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the effective material properties that emerge out of the substructure dynamics; however, predicting

these dynamic effective properties is not as straight-forward a procedure as in the static case. In

the static case, the homogenization of composite involves the volume fractions of each constituent

material [64–66] and yields the static effective density and moduli. However, for phononic mate-

rials (and composites in general), relative motion among the substructure yields dynamic effective

properties that differ from there static counterparts, even in the long wavelength regime [21,67,68].

In addition, the correspondence principle, which determines the effective viscoelastic properties

from the static solutions, is limited to the low-frequency regime to avoid inertial effects. Chapter

3 provides several references for which predicting the dynamic effective properties beyond the low-

frequency regime is the principal objective. Only one of these considers the effects of damping [69].

From the perspective of wave propagation at a prescribed frequency, Nemat-Nasser and Srivas-

tava [69] showed the effective density and elasticity to become complex in response to damping,

although the real parts are close to the undamped values. Chapter 3 adds the perspective of free

wave propagation and, for the first time, an effective damping constant.

1.6 Overview of Dissertation

As expressed in the chapter’s opening paragraphs, the ability to tailor the dynamic properties

of phononic structures opens them to many applications in engineering. More comprehensive than

a structural analysis, a unit cell analysis encompasses the wave propagation characteristics of a

particular material design in the form of the frequency band structure and is essential to the devel-

opment of phononic-based devices. However, a review of the phononics literature shows relatively

little regard for the implications of dissipative wave propagation due to material damping. In order

to narrow the gap between theoretical prediction and empirical evidence, which supports design and

optimization efforts, as well as to open phononic materials to new applications, dissipative dynam-

ics must be considered. The aim of this dissertation is not only to address the nature of dissipative

wave propagation in damped phononic materials, but also to exploit this quality for applications

requiring materials with simultaneously enhanced dissipation and load-bearing capability. In prac-
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tice, damping is the result of a number of material processes and choosing to model only the most

dominant of mechanisms greatly simplifies analysis. For its mathematical convenience, the viscous

damping model is popular in many dynamics software packages and the results from modal testing

are often fitted to this model. In this dissertation, where damping is treated in a general sense

and not specific to any material, the viscous damping model is used primarily (Ch. 6 considers

a viscoelastic damping model). The organization of the dissertation and the contributions to the

subject are as follows:

• Many composites in operation are composed of layers and, with the requisite periodic

arrangement, may form a phononic material. Chapter 2, examines the damped band struc-

tures generated under assumed real and complex frequencies for layered phononic materials.

In the case of real frequencies, damping closes the band gap such that the wave energy is

strongly in space localized within the material. For complex frequencies, the amplitude

of propagating waves diminishes in time only. In each case, a connection between the

dynamics of the infinite material and the finite structure is drawn.

• In the case of phononic materials, the effective mass density and elasticity become frequency-

dependent and, due to relative motion of the microstructure, may achieve negative values.

Chapter 3 shows the frequency-dependent effective properties, like the band structure, are

sensitive to dissipative influences and whether the propagating wave was free or prescribed.

These dynamic effective properties are central to many novel acoustic devices including the

superlenses and cloaks referenced earlier. In addition, to account for the material damping,

Chapter 3 introduces the first expression of an effective damping constant.

• Chapter 4 introduces dissipative wave propagation in the context of both lumped parameter

and discretized continuous phononic materials. With a viscous damping model, we extend

the structural dynamics techniques of modal analysis and the state-space transformation

to the wave propagation problem. These techniques and our choice of complex frequencies

in the Bloch formulation uniquely allows for the determination of damped frequency and
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damping ratio band structures. We also describe the phenomena of branch-overtaking and

branch cut-off.

• Chapter 5 introduces the concept of metadamping to describe the phenomenon of damping

emergence from locally resonant sonic materials (LSRMs). Specifically, when compared

to a statically equivalent phononic crystal (i.e., one of equal mass and sound speed) with

identically prescribed damping, a LRSM may exhibit a greater dissipative capacity. To

combat potentially damaging dynamic loads, it is desirable for an engineering material to

possess a high dissipative capacity while maintaining its load-bearing capability (stiffness).

However, for classic materials, an advantage in one of these traits comes at the expense of

the other. The phenomenon of metadamping answers the challenge of simultaneously high

stiffness and high damping within a material.

• In Chapter 6, using convolution integrals over exponentially decreasing kernel functions,

we extend the damping model from a viscous to a linear viscoelastic type. The viscoelastic

model describes a greater number of materials than the viscous. By adopting a special

form for the kernel functions and associating them with the damping matrix, a legitimate

comparison between the two models remains possible. In addition, a single parameter of

the kernel functions may be adjusted to smoothly transition the damping type from viscous

to viscoelastic to undamped. The band structures reflect these transitions and allow us to

establish a viscous-to-viscoelastic transition.

• Chapter 7 offers some closing remarks on the subject and proposes future research direc-

tions.



Chapter 2

Exact dispersion relation for a damped periodic rod considering free and forced

motion1

2.1 Abstract

The effects of damping in phononic materials is investigated in the context of free and pre-

scribed wave propagation. Damping is an inherent material property that may significantly affect

the dynamics of system. Moreover, the interpretation of dynamical properties of damped phononic

materials is subject to the type of wave propagation considered. Free wave propagation permits

both spatial and temporal decay and relates properties intrinsic to the material. Prescribed wave

propagation allows only spatial attenuation and relates properties extrinsic to the material. We

adapted the transfer matrix method for one-dimensional, layered phononic materials to incorporate

a viscosity term that accounts for the material damping in each layer. Thus modified and applied to

the generation of band diagrams and mode shapes, we identify and explain key differences between

the two propagation models using a representative damped phononic crystal. We also demonstrate

the level correspondence between the material and its structural counterpart.

2.2 Introduction

Since their resurgence more than twenty years ago [43, 45], phononic materials have been

the subject of intense research interest in the fields of materials science and engineering. The

inherent dynamical properties of these materials, which may be tailored by design, impact numerous

1 This chapter is adapted from a manuscript being prepared for journal submission.
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applications ranging from vibration control [70, 71] and waveguides [15] through sub-wavelength

sound focusing [22, 72] and cloaking [35, 73]. Bloch’s theorem [3] describes waves in phononic

materials as the product of a periodic function φ(r), a plane-wave envelope eiκ·x, and a temporal

function eλt. In the absence of energy dissipation stemming from material damping, λ = iω and

Bloch analysis generates the dispersion relations which tie the wave frequency ω to the wavevector

κ. From the dispersion relations, many dynamical properties may be determined

However, material damping is a physical reality that, once experimentally characterized, must

be incorporated into the equations of motion for an accurate depiction of the dynamical properties.

Moreover, the frame within which Bloch analysis is performed is dependent upon the temporal

parameter λ. In the presence of damping, wave propagation through phononic materials may be

prescribed such that λ = iω is maintained and damping effects are expressed solely through the

wavevector. Alternatively, λ = −ξω ± iωd may assume any value in the left complex plane in

response to the damping intensity such that a wave is free to propagate with a modified frequency

ωd = Im[λ] and a rate of amplitude decay specified by Abs[Re[λ]]. In the former context, dynamic

properties are acquired; in the latter, they are interpreted as intrinsic.

There are several articles in the literature investigating the effects of material damping in

phononic materials under the circumstance of prescribed motion. Mead [48] applies a complex stiff-

ness to a periodically supported beam to study the impact of damping on the value of wavenumbers

in the complex plane. Langley [50] and Tassilly [14] also consider periodically supported beams in

their studies on the vibration localization effects of damping and bending waves, respectively. For

Langley, damping is formulated as a complex inertial term, while Tassilly employs a separate vis-

cosity parameter. More complex damping models – ones accounting for the time history of motion

– are also considered. Merheb et al [54] uses the finite difference time domain method to examine

the audible transmission properties of periodic rubber-air composites where the rheological behav-

ior of the rubber follows the Maxwell-Weichert model of viscoelasticity. Zhao and Wei [74] use the

plane-wave expansion method to evaluate band gaps in a one-dimensional phononic material with

various standard model viscoelastic constituents. Additional studies [51, 52, 57, 75, 76] of one- and
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two-dimensional phononic materials with viscous/viscoelastic damping may be located.

There are comparatively fewer articles in the literature regarding free wave propagation in

damped phononic materials. Mukherjee and Lee [60] use finite difference methods to obtain the

dispersion curves and mode shapes of laminated media with standard linear solid constituents.

They study both prescribed waves with complex wavenumbers and free waves (featuring complex

λ) with real wavenumbers. Zhang et al [62] and Sprik and Wegdam [61] achieve similar results for

two- and three-dimensional composites of solids immersed in a fluid with complex Lamé constants.

Hussein [63] and Hussein and Frazier [77] derive the dispersion relations for viscously damped

phononic materials. Viscoelasticity is also considered [78].

The objective of this chapter is to compare prescribed and free wave propagation in damped

phononic materials. To this end, the damping model and material design are common between the

two propagation modes. The chapter is divided into four sections including the present introductory

remarks. Beginning with the free and prescribed dynamics of a damped, homogeneous material,

section 2.3 develops the theory for one-dimensional wave propagation in phononic crystals with

viscous damping. Matrix methods for elastodynamics form the mathematical foundation of this

section and the appendices. Section 2.4 contrasts the two propagation varieties using the dispersion

curves and mode shapes of a typical phononic crystal. Here, we also show the correlation between

the infinite medium and the finite structure: free wave propagation with natural frequencies, and

prescribed wave propagation with frequency response. Finally, section 2.5 restates the objective of

the paper and summarizes the results.

2.3 Damped Waves in 1D Phononic Materials

In this section, our interest is the dynamics of an infinite periodic material. Accordingly, we

seek the dispersion relations describing the wave propagation characteristics of a periodic medium.

To achieve this goal, we adopt the transfer matrix method [79, 80] and adapt it to incorporate

dissipative and prescribed motion. By formulating an eigenvalue problem, the method not only

yields a set of eigenvalues containing the dispersion relations, but also supplies a set of eigenvectors
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from which to construct the corresponding mode shapes. However, before the details of the method

are presented, we examine the dynamic characteristics of a homogeneous medium in the context of

both free and frequency-prescribed motion.

2.3.1 Waves in Homogeneous Materials

We begin our dynamic analysis of a homogeneous material, naturally, with the statement of

the equation of motion in one dimension

σx + f = ρutt, (2.1)

where σ = σ(x, t), f = f(x, t), ρ, and u = u(x, t) denote the stress, external force, material

density, and displacement, respectively. As indicated, the value of each of these quantities, with

the exception of the material density, is dependent upon the position, x, within the medium and

time, t. Differentiation with respect to position and/or time is denoted by the appropriate subscript

following a quantity. For example, (·)x indicates differentiation with respect to position while (·)tt

signifies double differentiation with respect to time.

Due to the diversity and complexity of dissipative mechanisms, the development of a universal

damping model stands as a major challenge. A rather simple model proposed by Rayleigh [81] and

observed in this article is the viscous damping model in which the instantaneous generalized velocity,

ut, is the only relevant state variable in the determination of the damping force. Consequently, the

stress is not only a function of the strain, ux, but the strain rate, uxt, as well. The constitutive

relationship then becomes

σ = Eux + ηuxt (2.2)

where E is the material Young’s modulus and η is the viscosity. In the absence of body forces,

substitution of Eq. (2.2) into Eq. (2.1) yields the general equation for wave propagation in a

viscously damped homogeneous 1D medium,

Euxx + ηuxxt = ρutt. (2.3)
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We may use Eq. (2.3) to study the propagation of waves in homogeneous, linearly elastic

materials. In particular, if we have a material of infinite extent (i.e., having no external boundaries

off which waves may reflect), then we may apply a plane wave solution of the form

u(x, t) = Aeiκxg(t), (2.4)

where i =
√
−1, A is the complex wave amplitude, κ is the wavenumber, and g(t) is an exponential

function of time. For prescribed propagation, g(t) = e−iωt where ω is the oscillation frequency.

Critically, for free wave motion, g(t) = eλt where λ, generally complex, encompasses an oscillation

frequency and rate of decay. When the motion is prescribed, establishing a dispersion relation is

comparatively straightforward. Substituting Eq. (2.4) into Eq. (2.3) produces a quadratic equation

in κ whose two solutions [Eq. (2.5)], respectively, represent forward and backward traveling waves.

κ2(E − iωη) = ω2ρ (2.5)

For free wave propagation, establishing a dispersion relation requires some insight and an interme-

diate step. Following the substitution of Eq. (2.4) into Eq. (2.3), with c =
√
E/ρ, we first solve

the resulting quadratic equation [Eq. (2.6)] for λ [Eq. (2.7)] rather than κ

−κ2(E + λη) = λ2ρ (2.6)

λ = −
(
ηκ

2ρc

)
(κc)± iκc

√
1−

(
ηκ

2ρc

)2

, (2.7)

which reflects the form suggested by Refs. [59, 63,77]

λ = −ξω ± iω
√

1− ξ2

= −ξω ± iωd,

(2.8)

where ω, ωd, and ξ are the undamped and damped wave frequencies, and associated damping ratio,

respectively. By equating the squares of the imaginary terms in Eqs. (2.7) and (2.8), we develop a

quadratic equation in κ2

κ4

(
η

2ρ

)2

− κ2c2 + ω2
d = 0. (2.9)

Although there are four κ solutions for Eq. (2.9), only the two smallest in magnitude are physical.
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2.3.2 Waves in Phononic Materials – Dispersion

For a layered periodic medium (Fig. 2.1) composed of two or more material layers, the

transfer matrix method enforces the continuity conditions that exist between layers to relate layer

boundary states (displacement and stress) from one layer to the next. If the displacement and

stress states at the boundary of one layer are known, then the corresponding states at the opposite

boundary (shared by the current layer and the adjacent layer) can be derived from a simple matrix

operation. Thus transferring boundary states across each layer of the unit cell produces a system

matrix that relates the states at opposite ends of the unit cell. In conjunction with Bloch’s theorem,

this system matrix is then utilized to generate an eigenvalue problem. The mathematical derivation

of this method is provided below.

Figure 2.1: Continuous model of a two-phased 1D phononic crystal with lattice spacing a. The
unit cell is enclosed in a red, dashed box.

For an arbitrary homogeneous layer j in the unit cell, the associated material properties are

denoted as ρ(j), E(j), and η(j). The layer is bordered by layer j−1 on the left and layer j+1 on the

right. Given the thickness of any layer j of the unit cell is d(j), the lattice spacing is a = Σn
j=1d

(j)

for a unit cell with n layers. Following this notation and accounting for forward and backward

traveling waves, Eq. (2.4) becomes

u(x, t) = [A
(j)
+ eiκ(j)x +A

(j)
− e−iκ(j)x]g(t), (2.10)

where κ(j) is the layer-specific wavenumber. We can write the spatial components of Eqs. (2.2)
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and (3.11) in matrix form asu(x)

σ(x)

 =

 1 1

iZ(j) −iZ(j)


eiκ(j)x 0

0 e−iκ(j)x


A(j)

+

A
(j)
−

 = BjCj(x)aj . (2.11)

where Z(j) = κ(j)(E(j) − iωη(j)) if the motion is prescribed, otherwise Z(j) = κ(j)(E(j) + λη(j)).

We now seek to relate the boundary states at the left boundary, x = x
(j)
L , of an arbitrary

layer to those at the right boundary, x = x
(j)
R . To accomplish this, we define x

(j)
R = x

(j)
L + d(j) and

insert this into Eq. (2.11) as follows:u(x
(j)
R )

σ(x
(j)
R )

 = BjCj(d
(j))Cj(x

(j)
L )aj . (2.12)

By setting x = x
(j)
L in Eq. (2.11), we rewrite Eq. (3.13) asu(x

(j)
R )

σ(x
(j)
R )

 = BjCj(d
(j))B−1

j

u(x
(j)
L )

σ(x
(j)
L )

 = Tj

u(x
(j)
L )

σ(x
(j)
L )

 , (2.13)

where Tj , the transfer matrix for layer j, has the expanded form

Tj =

 cos(κ(j)d(j)) (1/Z(j)) sin(κ(j)d(j))

−Z(j) sin(κ(j)d(j)) cos(κ(j)d(j))

 . (2.14)

Equation (2.13) relates the displacement and stress at x
(j)
L to those at x

(j)
R of the same layer.

However, since the construction of the transfer matrix is valid for any layer and x
(j)
R ≡x

(j+1)
L , the

result in Eq. (2.13) can be extended recursively across several layers. Thus,

y(x1
R) = T1y(x1

L) = y(x2
L),

y(x2
R) = T2y(x2

L) = T2T1y(x1
L) = y(x3

L),

y(x3
R) = T3y(x3

L) = T3T2T1y(x1
L) = y(x4

L),

...

y(xnR) = TnTn−1 · · ·T1y(x1
L) = Ty(x1

L).

(2.15)

In the interest of clarity, we have defined y(x) = [u(x) σ(x)]T to be the state vector at x. Ultimately,

the displacement and stress at the left end of the first layer (x = x1
L) in a unit cell are related to
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those at the right boundary of the nth layer (x = xnR) by the cumulative transfer matrix, T. More

direct, Bloch’s theorem asserts that the state at a given point in a unit cell differs from that of

the corresponding point in an adjacent unit cell by only a phase multiplier of eiκa (κ is the global

wavenumber applying to the periodic medium). This relation is given by h(x + a) = h(x)eiκa,

which, for the problem at hand, entails

y(xnR) = eiκay(x1
L). (2.16)

Equating Eqs. (2.15) and (2.16) yields the eigenvalue problem

[T− Iγ]y(x1
L) = 0, (2.17)

where γ = eiκa. The solution of Eq. (2.17), which appears in complex conjugate pairs, provides the

dispersion relations for the 1D phononic crystal. Real-valued wavenumbers, calculated from γ using

Eq. (2.18a), support the propagating modes, whereas imaginary wavenumbers, extracted from γ

using Eq. (2.18b), represent evanescent modes which decay in space. Together, κ = κR + iκI.

κR =
1

a
Re[−ilnγ] (2.18a)

κI =
1

a
Im[−ilnγ] (2.18b)

2.4 Results

The technique presented in section 2.3 is specific to one-dimensional wave propagation in

layered phononic crystals although a similar approach can be applied to layered, periodic acoustic

metamaterials. Within this scope, the design of the unit cell is arbitrary. For purposes of demon-

stration we consider a bi-material (n = 2) unit cell in with d(1) = d(2) and the material parameters

listed in Table 2.1. To give a good representation of the dissipative effects, we vary the viscosity

η(j) = qE(j) using the scaling parameter q. Through the band diagrams and mode shapes of the

infinite medium, and the natural frequencies and spatial attenuation effects of the finite structure,

we expose the properties of dissipative free (eλt) and prescribed (e−iωt) motion.
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Table 2.1: Phononic crystal properties

ABS polymer ρ(1) = 1040kg/m3 E(1) = 2.4GPa

Aluminum ρ(2) = 2700kg/m3 E(2) = 68.9GPa

2.4.1 Infinite Material

In Fig. 2.2, we show the frequency (non-dimensional) and damping ratio band structures

for our bi-material model. Each plot is divided into positive and negative wavenumber (non-

dimensional) domains representing the propagating and evanescent modes, respectively. In actual-

ity, the evanescent wavenumbers are not negative; rather, they are indicated as such to emphasize

their attenuating nature. As anticipated, and evident in Figs. 2.2a and 2.2c, material damping

alters the appearance of the frequency band structure; however, the response of the band structure

depends on whether the propagation is free or prescribed.

We focus, for the moment, on the free propagation scenario (Fig. 2.2a). One may imagine

this scenario as the result of an initial displacement at the end of a semi-infinite medium. The dis-

crepancy between the undamped and damped band structures increases with frequency, illustrating

the impact of the strain rate in Eq. (2.2). In this scenario, the higher frequency bands descend

more rapidly than those below, leading to the simultaneous reduction of band gap frequency ranges

and shift in band gap central frequencies. A possible eventuality is band gap annihilation as damp-

ing causes a higher mode to overtake a lower one [63, 77], however, the current κ(λ) formulation

does not support this action. In all damping conditions, propagating and evanescent modes occupy

distinct frequency ranges – a consequence of real-valued layer wavenumbers.

Coincident with its interpretation in structural dynamics, in the context of wave propagation,

the damping ratio diagram (Fig. 2.2c) is a measure of the material opposition to oscillation (through

energy loss). The reduction in frequency illustrated in Fig. 2.2a is one manifestation of this material

resistance. A second is exhibited in Fig. 2.3a where a set of mode shapes corresponding to an

undamped and damped condition at ωda/c
(1) = 1 are compared. A study of each frame reveals a
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Figure 2.2: The frequency band structure for free (a) and prescribed (b) wave propagation. In
addition to the undamped case, indicated by (—) q = 0, two damping intensities, (—) q = 1.5×10−7

and (—) q = 3.0 × 10−7, are displayed for comparison. The damping ratio band structure (c) is
unique to dissipative free wave propagation. The horizontal dotted lines at ωda/c

(1) = ωa/c(1) = 1
and ξ = 0.024 identify the modes plotted in Fig.2.3.

clear diminishing of the wave amplitude over time; independent of spatial extent. However, within

a band gap, amplitude attenuation occurs over both time and space (not shown), the former the
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Figure 2.3: Mode shapes for bi-material phononic crystal corresponding to (a) ωda/c
(1) = 1 and

ξ = 0.024, and (b) ωa/c(1) = 1 in Fig. 2.2 for an undamped (—) q = 0 and damped (—)
q = 3.0× 10−7 case. Snapshots are depicted for times between some initial time and the duration
of one period, P , inclusive.

result of material damping and the later the outcome of adverse wave interference.

Now, we turn our attention to the prescribed propagation scenario (Fig. 2.2b). One may

imagine the prescribed propagation scenario as the result of sustained harmonic forcing at the end

of a semi-infinite medium. In the absence of damping, as verified in Figs. 2.2a and 2.2b, the two

statements on the origins of free and prescribed propagation are equivalent (i.e., λ = iω). In the

presence of damping, we distinguish prescribed propagation from its free counterpart in three ways.

In one, because the layer wavenumbers are complex, the destructive interference that generates a

band gap is less than optimal [82]. Thus, as we observe in Fig. 2.2b, waves in the damped phononic

crystal simultaneously propagate and decay in space, challenging the theoretical notion of a band

gap where propagation is prohibited. In a second aspect, the inability of prescribed propagation to

support temporal attenuation precludes the generation of a damping ratio band diagram. In Fig.

2.3b, the damped wave amplitude corresponding to ωa/c(1) = 1 attenuates over the plotted spatial
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extent, but is unaffected over the passage of time. With the application of material damping, a

third distinction between the two wave propagation models presents itself as the ascent of frequency

bands in Fig. 2.2b while bands in Fig. 2.2a are compelled downward.

2.4.2 Infinite-Finite Correspondence

The interpretations of free and prescribed wave propagation offered in the previous section

allow us to establish a link between the performance of the phononic material (infinite in extent)

and the phononic structure (finite in extent). As the result of some initial disturbance, free wave

propagation represents the innate dynamic characteristics of a material in analogy to the natural

frequencies of a structure. As the product of enforced motion, prescribed wave propagation repre-

sents the stimulated response of a material, paralleling the frequency response of a structure. In

Figs. 2.4a and 2.4b, we illustrate the strength of the infinite-finite correspondence.

Figure 2.4a contains the frequency dispersion curves for our phononic medium assuming

free propagation. In addition, superimposed are the natural frequencies and wavenumbers of a

corresponding phononic structure of ten cells. There is superb agreement between the two systems.

Irrespective of damping condition, the mode shape amplitude of the phononic structure remain

constant over the structural extent. Unique to the free wave assumption, propagating modes do

not simultaneously attenuate with propagation distance. Due to this similarity concerning the

wavenumber and the common temporal freedom eλt, the infinite-finite correspondence is confined

to the right panel of Fig. 2.4a. A similar agreement could be illustrated using the damping ratios,

respectively, of the infinite and finite systems.

Figure 2.4b shows the prescribed frequency dispersion curves of our phononic material. Super-

imposed is the reconstructed imaginary component of the wavenumber extracted from the frequency

response of the same phononic structure described above. Because we compare the magnitude of a

boundary state at two locations within the structure, the frequency response can inform us of the

attenuation (if any) that occurs with distance. Resonance-induced amplification of the boundary

states, especially in the absence of damping, causes some of the extracted κI to appear misleadingly
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in the right panel. Nevertheless, the good agreement between the two systems with and without

damping demonstrates the infinite-finite correspondence where motion is described by e−iωt.

Figure 2.4: Correlation between the phononic material (curves) and a phononic structure (open
circles) of ten unit cells. The undamped q = 0 (black) and damped q = 3.0× 10−7 (red) cases are
illustrated. (a) Free propagation frequency bands relate to the natural frequency distribution and
discretized wavenumbers of the phononic structure. (b) Prescribed propagation frequency bands
relate to the attenuation of boundary states within the phononic structure

2.5 Conclusions

The effects of damping in phononic materials is investigated in the context of free and pre-

scribed wave propagation. Free wave propagation, adhering to eλt and permitting both spatial and

temporal decay, may be conceptualized as the result of an initial displacement/velocity or impulse

applied to the end of a semi-infinite medium. Prescribed wave propagation, governed by eiωt and

allowing only spatial attenuation, may be envisioned as the response of a semi-infinite medium to

an imposed harmonic end displacement or harmonic forcing.

We adapted the transfer matrix method for one-dimensional, layered phononic materials to

incorporate a viscosity term that accounts for the material damping in each layer. Thus modified
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and applied to the generation of band diagrams and mode shapes, we identify and explain key dif-

ferences between the two propagation models using a representative damped phononic crystal. (1)

Free propagation supports waves that either propagate through space or exponentially decay while

simultaneous propagation and decay is possible for prescribed propagation. (2) Free propagation,

permitting temporal decay, is described by a combination frequency and damping ratio band dia-

gram while prescribed propagation may only be represented by the former. (3) Damping reduces

the frequencies of freely propagating waves and increases the frequencies of prescribed waves.

Whether the analyst adheres to the free or the prescribed propagation model is dependent

upon the research objective. For each propagation model, we have demonstrated the level corre-

spondence between the material description and structural counterpart. Free wave propagation

describes the intrinsic dynamics of phononic materials, a characteristic that parallels the natural

frequencies of structures subject to impulsive loading. Prescribed wave propagation describes the

response of a material to enforced harmonic motion similar to a harmonically excited structure.



Chapter 3

Dynamic effective properties of damped periodic materials under free and

forced wave motion2

3.1 Abstract

Bloch wave propagation in elastic materials may be represented by either of two temporal

exponential functions: e−iωt and eλt. The former describes waves that propagate at a prescribed

frequency analogous to those stimulated by harmonic forcing at the end of a semi-infinite medium.

The latter, with λ generally in the left complex plane, characterizes free waves that propagate at

a frequency innate to the supporting material and decay in time analogous to those generated by

an impulse at one end of a lossy semi-infinite medium. For damped periodic materials, energy

dissipation affects prescribed and free waves uniquely, resulting in two distinct sets of dispersion

diagrams. Predictably, as energy dissipation influences the frequency band structure, its effects

extend to the dynamic effective properties (density and Young’s modulus) of the homogenized

medium. In this article, we explore the role of energy dissipation and wave propagation variety

in the formation of the band structure and the dynamic effective properties for one-dimensional

phononic crystals. To the best of our knowledge, ours is the first to manifest a dynamic effective

damping constant. Together with the effective density and effective Young’s modulus, the effective

damping constant completes the set of parameters describing a homogenized lossy composite.

2 This chapter is adapted from a manuscript being prepared for journal submission.
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3.2 Introduction

Often, the aim of composite design is the realization of effective properties unavailable from

the constituent phases themselves, or denied by nature entirely. In the static case, taking into

account the constituent material filling ratios, the determination of effective mechanical properties

(i.e., effective density and effective compliance) can be quite straightforward. In the dynamic

case, relative motion among the constituent material phases complicates the calculation. While

adherence to Newton’s second law of motion is absolute at the length scale of the microstructure,

relative motion beyond the resolution of a traveling wave, under certain conditions, may give the

illusion that the classical equation of motion fails. The apparent violation at the macro-scale can be

rectified by the substitution of a dynamic effective density and compliance for the static versions.

Thus, for the dynamic case, especially when a high degree of mechanical mismatch exists between

the constituent phases, some method of dynamic homogenization is necessary.

By definition, the effective medium arising from the static homogenization of a composite

is non-dispersive as the assumption of wave field homogeneity is a fundamental assumption. An

averaging scheme based on the volume fraction of the constituent microstructure gives the static

effective parameters. Conversely, by acknowledging the varying sound speeds of the microstructure

and interface scattering, the effective medium resulting from dynamic homogenization maintains

the dispersive fingerprint of the original composite microstructure. An ensemble averaging scheme

accounting for the state of the microstructure under dynamic conditions returns the dynamic ef-

fective parameters. At this point, we offer a brief, non-exhaustive history of homogenization.

Premier attempts at dynamic homogenization considered the long-wavelength, quasi-static

limit in which it is revealed that the effective parameters are nonlocal [83]. With the aid of energy

methods, [84] and [85] sought to place bounds on the elastic properties of randomly inhomogeneous

composites. Earlier, Ref. [67] asserted that the dynamic effective density could differ from the static

version even in the long-wavelength regime. However, due to a lack of experimental reinforcement

among other limitations, further theoretical and experimental support was needed, for example,
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as given by Refs. [68] and [21], respectively. In general, the dynamic effective properties of a

homogenized medium are nonlocal in space and time. For the general dynamic case, Ref. [86]

rigorously demonstrated a revised constitutive model in which stress is not only coupled to strain

but also the material velocity, and the momentum density is not only related to the material

velocity but the strain as well. The elegance of the Willis constitutive model, however, does not

explicitly lend itself to the determination of the effective material parameters at finite frequencies.

In one dimension, Ref. [87] addressed this by employing a Magnus series expansion of a Floquet

wavenumber matrix. Using the plane wave expansion method, Ref. [88] extended the analytic

determination of effective material properties to three dimensions. In addition, several numerical

techniques were developed for one-dimensional [89, 90] and three-dimensional periodic composites

[91]. Other techniques expedite classical band structure calculations [92,93].

In recent years, periodic elastic composites have garnered the attention of the scientific and

engineering community. Whether due to Bragg scattering [45] or local resonances [8], the dispersive

nature of periodic materials can be exploited as a passive form of vibration control. Certain

extraordinary applications such as sub-wavelength acoustic imaging [72], acoustic cloaking [94],

and flow control [95] are also the subject of many ambitious investigations. The effective properties

acquired by periodic materials are key to the development of many of these applications. Composites

with certain internal components have been shown to acquire negative or anisotropic effective

properties [96, 97]. Reference [90] demonstrated simultaneously negative dynamic effective density

and compliance due to local resonance. Recently, an elastic composite with multiple resonating

microstructures exhibited fluid-like behavior within a specific range where only compression wave

propagation was permitted [27].

In the context of Bloch’s theorem, the temporal parameter describing damped wave behavior

in time may, in general, take one of two forms: imaginary [14, 48] or complex [60, 63, 77]. In

the former circumstance, wave motion is prescribed at a given frequency. One may imagine this

scenario as the result of sustained harmonic forcing at the end of a semi-infinite medium. In the

latter event, free wave propagation occurs. One may imagine this scenario as the result of an initial
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impulse at the end of a semi-infinite medium. Absent energy dissipation, the propagating wave

is identical both conditions. In one situation, energy dissipates over propagation distance. In the

other condition, energy dissipates over time. Naturally, the effective properties respond to damping

and the distinction between the two forms of wave motion. Motivated by the unique behavior of

prescribed and free wave propagation in dissipative environments, and the consequences for the

calculated the effective properties, this chapter seeks to illustrate the effects of material damping

on the frequency band structure and effective properties of periodic materials.

3.3 Theory

In this section, the necessary mathematical procedures are developed to calculate the dy-

namic effective properties of a one-dimensional, layered periodic material (a phononic crystal) with

material damping. The strategy rests on the spatial averaging of the periodic field quantities; how-

ever, as the determination of the field variables is a secondary consideration, the presentation of

the homogenization procedure is followed by a brief review of the transfer matrix method used in

the field variable calculation.

3.3.1 Homogenization for a 1D Phononic Crystal with Damping

Before addressing the homogenization method, we briefly discuss the distinguishing char-

acteristics of prescribed and free wave propagation. These can be revealed by examining the

one-dimensional equations of motion for a damped, homogeneous material.

Euxx + ηuxxt = ρutt (3.1)

In this case, the density ρ, Young’s modulus E, and viscous dissipation parameter η, as well as

the field quantities are all nonlocal. In the extended medium, a plane wave solution describes the

propagating wave.

u(x, t) = Ueiκx+λt (3.2)
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Naturally, the variables x and t represent position and time, respectively. In the exponent, the

wave envelope is characterized by the wavenumber κ, which defines the wave spatial frequency, and

the parameter λ, which describes different time-dependent wave attributes for prescribed and free

propagation.

For prescribed propagation, λ has a defined, strictly imaginary value representing the wave

oscillation frequency. When the motion is prescribed, λ = −iω and a particular secular equation

emerges from equations (3.1) and (3.2):

−κ2(E − iωη) + ω2ρ = 0. (3.3)

The mandate of prescribed motion that the frequency ω be a real value obligates the wavenumber

to reconcile the conservative and dissipative forces by adopting a complex value for all ω > 0. Thus,

energy is dissipated over propagation distance.

Different wave characteristics emerge from (3.1) and (3.2) in the free propagation condition

for which λ is not predefined:

κ2(E + λη) + λ2ρ = 0. (3.4)

From (3.4) and the work of Ref. [59], we expect λ to be constructed as follows:

λ = −
(
κη

2ρc

)
(κc)± iκc

√
1−

(
κη

2ρc

)2

= −ξω ± iω
√

1− ξ2

= −ξω ± iωd,

(3.5)

where c =
√
E/ρ is the speed of sound in the medium, and ω, ωd, and ξ, respectively, are the

undamped and damped wave frequencies, and associated damping ratio. With λ free to acquire

any value in the left complex plane, a damped wave dissipates energy over time. Only in the absence

of damping are the prescribed and free propagation models necessarily equivalent and λ = iω.

Turning to heterogeneous, periodic materials, in the context of Bloch wave propagation, the



37

relevant one-dimensional field variables are modified by a time-dependent plane wave envelope:

u(x, t) = U(x)eiκx+λt, (3.6a)

ε(x, t) = ux = E(x)eiκx+λt, (3.6b)

s(x, t) = uxt = λE(x)eiκx+λt, (3.6c)

σ(x, t) = [E(x) + λη(x)]E(x)eiκx+λt = [Σc(x) + Σnc(x)]eiκx+λt, (3.6d)

where equations (3.6) are, respectively, the displacement, strain, strain-rate, and stress. Notice,

the stress is composed of both conservative and nonconservative components, proportional to both

the strain and the strain-rate, respectively. Adhering to Bloch’s theorem, the field quantities U(x),

E(x), Σc(x), and Σnc(x) have the periodicity of the phononic crystal unit cell.

The homogenization scheme presented here is adapted from that of Ref. [89] to incorporate a

viscous dissipation parameter. For a periodically layered material, we define the reference position

x = 0 to be the left boundary of the phononic crystal unit cell. To arrive at the homogenized

medium, each of the periodic field variables is averaged over the span of the unit cell to render

them nonlocal

Ā =
1

a

∫ a

0
A(x)dx, (3.7)

where a is the lattice constant and A(x) is an arbitrary field quantity. It is worth noting that,

in the absence of spatial attenuation (due to damping or wave interference), real-valued effective

parameters emerge if the average is calculated over a symmetric unit cell. Coupling among the

field variables yields complex effective parameters if the unit cell is not symmetric [89]. With

the homogenized field quantities, we may identify separate relations for prescribed and free wave

propagation leading to the formulation of effective material parameters.

For the homogenized medium, the following mean constitutive relation and characteristic

equation hold for every (κ, λ) pair of the original dispersion relation

Σ̄ = Σ̄c + Σ̄nc = (Eeff + ληeff)Ē , (3.8)

κ2(Eeff + ληeff) + λ2ρeff = 0, (3.9)
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with λ representative of either prescribed or free wave propagation. Together, equations (3.8) and

(3.9) allow the formulation of the effective properties in terms of the homogenized strain and stress

components.

ρeff = −κ
2Σ̄

λ2Ē
(3.10a)

ηeff =
Σ̄nc

λĒ
(3.10b)

Eeff =
Σ̄c

Ē
(3.10c)

3.3.2 Transfer Matrix Implementation

For a layered periodic medium (Fig. 3.1) composed of two or more material layers, the

transfer matrix method enforces the continuity conditions that exist between layers to relate layer

boundary states (displacement and stress) from one layer to the next. If the displacement and

stress states at the boundary of one layer are known, then the corresponding states at the opposite

boundary (shared by the current layer and the adjacent layer) can be derived from a simple matrix

operation. Thus transferring boundary states across each layer of the unit cell produces a system

matrix that relates the states at opposite ends of the unit cell. In conjunction with Bloch’s theorem,

this system matrix is then utilized to generate an eigenvalue problem. The mathematical derivation

of this method is provided below.

Figure 3.1: Continuous model of a multi-phased 1D phononic crystal with lattice spacing a.

For an arbitrary homogeneous layer j in the unit cell, the associated material properties are

denoted as ρ(j), E(j), and η(j). The layer is bordered by layer j−1 on the left and layer j+1 on the

right. Given the thickness of any layer j of the unit cell is d(j), the lattice spacing is a =
∑n

j=1 d
(j)
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for a unit cell with n layers. Following this notation and accounting for forward and backward

traveling waves, equation (3.2) becomes

u(x, t) =
[
U

(j)
+ eiκ(j)x + U

(j)
− e−iκ(j)x

]
eλt, (3.11)

where κ(j) is the layer-specific wavenumber determined by solving either equation (3.3) or, according

to equation (3.4), [κ(j)]4(η(j)/2ρ(j))2 − [κ(j)c(j)]2 + ω2
d = 0 (the smallest magnitude solutions are

physical). We can write the spatial components of displacement and stress in matrix form asu(x)

σ(x)

 =

 1 1

iZ(j) −iZ(j)


eiκ(j)x 0

0 e−iκ(j)x


U (j)

+

U
(j)
−

 = BjCj(x)uj . (3.12)

where Z(j) = κ(j)(E(j) − iωη(j)) if the motion is prescribed, otherwise Z(j) = κ(j)(E(j) + λη(j)).

We now seek to relate the boundary states at the left boundary, x = x
(j)
L , of an arbitrary

layer to those at the right boundary, x = x
(j)
R . To accomplish this, we define x

(j)
R = x

(j)
L + d(j) and

insert this into Eq. (3.12) as follows:u(x
(j)
R )

σ(x
(j)
R )

 = BjCj(d
(j))Cj(x

(j)
L )uj . (3.13)

By setting x = x
(j)
L in Eq. (3.12), we rewrite Eq. (3.13) asu(x

(j)
R )

σ(x
(j)
R )

 = BjCj(d
(j))B−1

j

u(x
(j)
L )

σ(x
(j)
L )

 = Tj

u(x
(j)
L )

σ(x
(j)
L )

 , (3.14)

where Tj , the transfer matrix for layer j, has the expanded form

Tj =

 cos(κ(j)d(j)) (1/Z(j)) sin(κ(j)d(j))

−Z(j) sin(κ(j)d(j)) cos(κ(j)d(j))

 . (3.15)

Equation (3.14) relates the displacement and stress at x
(j)
L to those at x

(j)
R of the same layer.

However, since the construction of the transfer matrix is valid for any layer and x
(j)
R ≡x

(j+1)
L , the
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result in Eq. (3.14) can be extended recursively across several layers. Thus,

y(x1
R) = T1y(x1

L) = y(x2
L),

y(x2
R) = T2y(x2

L) = T2T1y(x1
L) = y(x3

L),

y(x3
R) = T3y(x3

L) = T3T2T1y(x1
L) = y(x4

L),

...

y(xnR) = TnTn−1 · · ·T1y(x1
L) = Ty(x1

L).

(3.16)

In the interest of clarity, we have defined y(x) = [u(x) σ(x)]T to be the state vector at x. Ultimately,

the displacement and stress at the left end of the first layer (x = x1
L) in a unit cell are related to

those at the right boundary of the nth layer (x = xnR) by the cumulative transfer matrix, T. More

direct, Bloch’s theorem asserts that the state at a given point in a unit cell differs from that of

the corresponding point in an adjacent unit cell by only a phase multiplier of eiκa (κ is the global

wavenumber applying to the periodic medium). This relation is given by h(x + a) = h(x)eiκa,

which, for the problem at hand, entails

y(xnR) = eiκay(x1
L). (3.17)

Equating Eqs. (3.16) and (3.17) yields the eigenvalue problem

[T− Iγ]y(x1
L) = 0, (3.18)

where γ = eiκa. The solution of Eq. (3.18), which appears in complex conjugate pairs, provides the

dispersion relations for the 1D phononic crystal. Real-valued wavenumbers, calculated from γ using

Eq. (3.19a), support the propagating modes, whereas imaginary wavenumbers, extracted from γ

using Eq. (3.19b), represent evanescent modes which decay in space. Together, κ = κR + iκI.

κR =
1

a
Re[−ilnγ] (3.19a)

κI =
1

a
Im[−ilnγ] (3.19b)

In addition to the eigenvalue, γ, Eq. (3.18) yields the eigenvector (state vector), y(x1
L),

containing the displacement and stress at the left boundary of the unit cell. With this result, we
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present the following procedure for calculating the displacement and stress mode shapes in a 1D

phononic material.

To have a fixed frame of reference, we designate the position of the left boundary of the unit

cell at x = x1
L = 0. Given that Cj(0) = I, according to Eq. (3.12), the eigenvector computed from

Eq. (3.18) can expressed as:

y(x1
L) = B1u1. (3.20)

Thus, the amplitude vector for the left end of the unit cell is easily determined:

u1 = B−1
1 y(x1

L). (3.21)

Utilizing the transfer matrix, T1, we are able to relate y(x2
L) to y(x1

L) as

y(x2
L) = T1y(x1

L) = B2C2(x2
L)u2 (3.22)

from which we obtain the amplitude vector for the left end of the second layer of a unit cell in

terms of the computed eigenvector

u2 =
[
B2C2(x2

L)
]−1

T1y(x1
L). (3.23)

With the aid of Eq. (3.16), this process may be extended to any layer j of a unit cell of n layers,

uj =
[
BjCj(x

(j)
L )
]−1

Tj−1 · · ·T0y(x1
L) (3.24)

where T0 := I.

Once all uj have been determined, the portion of the displacement and stress mode shapes

within each layer in the first unit cell can be computed from Eq. (3.12). Specifically,

u(x) = U
(j)
+ eiκx + U

(j)
− e−iκx, (3.25a)

σc(x) = iκ(j)E(j)
(
U

(j)
+ eiκx − U (j)

− e−iκx
)
, (3.25b)

σnc(x) = ωκ(j)η(j)
(
U

(j)
+ eiκx − U (j)

− e−iκx
)
, (3.25c)

where, as anticipated, σ(x) = σc(x) + σnc(x).
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Table 3.1: Phononic crystal properties

Material 1 ρ(1) = 1000kg/m3 E(1) = 2GPa

Material 2 ρ(2) = 3000kg/m3 E(2) = 200GPa

3.4 Results and Discussion

The aim of this chapter, regarding to the dynamics of periodic media, is twofold: (1) to introduce

the effective viscosity and to show the transformation of the effective properties in response to dissi-

pative wave propagation, and (2) to illustrate the effects of material damping on the phononic band

structure. Each of these objectives are pursued in the context of free and prescribed wave propa-

gation. In essence, the homogenization procedure can be extended to two and three dimensions,

however, in keeping with its one-dimensional presentation in this chapter, the results presented are

for a one-dimensional phononic crystal. For simplicity, the phononic crystal is composed of two ma-

terials (Table 3.1) arranged such that the unit cell is symmetric – specifically d(1) = d(3) = 2.5mm

and d(2) = 5mm. In the numerical case studies to follow, the density and Young’s modulus of

each constituent material remains constant while the viscosity is manipulated to show the evolu-

tion of the band structure and effective properties over a range of damping intensities. Although

the viscosity of each constituent material may assume any positive value, we adopt the definition

η(j) = qE(j) [81], where q is a scaling parameter.

Figure 3.2 shows the dispersion curves corresponding to our bi-material phononic crystal

and illustrates the effects of dissipation over a range of damping intensities. Each plot in Fig.

3.2 is divided into positive and negative wavenumber domains (non-dimensional) representing the

propagating and evanescent modes, respectively. In actuality, the evanescent wavenumbers are not

negative; rather, they are indicated as such to emphasize their attenuating nature. In addition

the solid and dashed plotting styles that further distinguish real and imaginary components of the

wavenumber, respectively, are a convention maintained in later figures.

First, we focus our attention on the free wave propagation scenario collectively depicted in
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Figs 3.2a,c. By inspecting the frequency diagram in Fig. 3.2a, it is immediately evident that the

influence dissipation increases with frequency, a consequence of the linear dependence of dissipative

tractions on the strain-rate. The descent of the frequency band in response to material damping

is supported by the corresponding damping ratio diagram in Fig. 3.2c. For the free propagation

scenario, the damping ratio diagram measures the temporal attenuation of the wave in response to

energy loss. Consistent with its structural dynamics interpretation, as the damping ratio approaches

unity, temporal oscillations decrease to zero. Interestingly, as higher frequency bands descend more

rapidly than those below, the frequency range of the band gap narrows and its central value shifts

downward. Nevertheless, throughout the evolution of the band structure, the band gaps remain

clearly identifiable provided κ(j) ∈ R (i.e., ωdη
(j) ≤ E(j)).

Now, we turn our attention to the prescribed propagation scenario illustrated by Figs. 3.2b.

As stated earlier and verified in a comparison of Figs. 3.2a and 3.2b, in the absence of damping,

free and prescribed wave propagation are identical. In the presence of damping, the two propa-

gation types may be distinguished in several ways. Most apparent is the lack of a damping ratio

diagram as a result of mandating λ = −iω. In this case, energy dissipation occurs over the wave’s

propagation distance rather than over time. Thus band gaps, their identification less obvious, melt

into propagating bands. The effect becomes more severe at higher frequencies as a near-linear

dependency develops between the complex wavenumber and the real frequency.

Given their frequency dependence, the influence of dissipation extends beyond the frequency

band structure to impact the effective parameters. For free and prescribed wave propagation,

respectively, Figs. 3.3a,c,e and 3.3b,d,f display the effective dynamic material properties for our

representative damped phononic crystal. By declaring the strain-rate, rather than the displacement

or acceleration, to be the only relevant state variable in determination of dissipative tractions,

dissipation causes the dynamic effective density and Young’s modulus to be joined by a dynamic

effective viscosity. Introducing damping through a complex Young’s modulus, Ref. [90] found

dissipation yielded imaginary components to the effective density and Young’s modulus but no

effective damping parameter. In Figs. 3.3a,c,e and 3.3b,d,f, complex components arise in regions of
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spatial attenuation. These regions are the interference-induced band gaps in the free propagation

scenario and the interference- and/or dissipation-induced attenuation for prescribed waves.

In the long-wavelength limit, a single wavelength encompasses many unit cells and loses its

ability to resolve the inhomogeneity of the phononic crystal. Instead, the propagating wave observes

the static effective properties (the filling-fraction weighted average of the unit cell constituent

materials). In Fig. 3.2, this regime manifests itself in regions of the diagrams where there is near

linear relationship between frequency and wavenumber. The results displayed in Fig. 3.3 provide a

level of confidence in the homogenization procedure presented in section 3.3. In the long-wavelength

limit, when the response of the phononic crystal is nearly static, each of the effective parameters

in Fig. 3.3 approach the relevant unique effective static parameter irrespective of the dissipation.

In addition, while the dynamic effective density and Young’s modulus always return to the same

effective static values in the long-wavelength limit regardless of damping, the dynamic effective

viscosity returns to different static values as the level of damping changes. Moreover, due to our

specific Rayleigh damping model, ηeff = qEeff . Beyond the long-wavelength limit, the motion of the

sub-wavelength constituents appreciably effect the wave dynamics, and a generalization of Newton’s

second law causes the dynamic effective properties to deviate from the static ones.

As a final testament to the damped dynamic homogenization procedure of section 3.3, we

substitute λ and the appropriate effective parameters into equations (3.3) and (3.4), and then solve

for κ to reconstruct the free (Fig. 3.4a and 3.4c) and prescribed (Fig. 3.4b) dispersion diagrams,

validating the proposed scheme.

3.5 Conclusions

In this work, we demonstrated the consequences of prescribed and free dissipative wave

propagation on the dynamic effective properties of a viscously damped periodic material. To this

end, a modified form of the homogenization scheme in Ref. [89] was used to define the effective

parameters in terms of the averaged field variables and the dispersion characteristics of our model

phononic crystal. The calculated dynamic effective properties approach the appropriate static
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values in the long-wavelength limit and are able to reconstruct the damped dispersion relations,

providing solid verification of the results. This is the first time a frequency-dependent effective

damping parameter has been determined. The incorporation of damping is a necessity as dissipation

is an inherent and potentially functional property of actual materials. While this chapter employs

a viscous damping model, we acknowledge that a nonviscous, hereditary dissipation model [54,80]

could yield qualitatively different results.
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Figure 3.2: The frequency band structure for (a) free and (b) prescribed wave propagation under
various damping conditions: undamped (—) q = 0, and damped (—) q = 0.5 × 10−6 and (—)
q = 1.0×10−6. The damping ratio band structure (c) is unique to dissipative free wave propagation.
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Figure 3.3: Dynamic effective material properties – density, viscosity, and Young’s modulus – for
a two-phased, one-dimensional phononic crystal experiencing free [(a), (c), and (e)] and prescribed
[(b), (d), and (f)] wave propagation. Scaling parameters: (—) q = 0, (—) q = 0.5× 10−6, and (—)
q = 1.0× 10−6.
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Figure 3.4: Comparing dispersion diagrams of a two-phased, one-dimensional phononic crystal
(curves) and its homogeneous counterpart (open circles) with dynamic effective properties. Free
[(a) and (b)] and prescribed (c) wave propagation are considered. Scaling parameters: (—) q = 0,
(—) q = 0.5× 10−6, and (—) q = 1.0× 10−6.



Chapter 4

State-Space Formulation and Modal Analysis3

4.1 Abstract

In this chapter, we present theoretical formalisms for the study of wave dispersion in damped

elastic periodic materials. We adopt the well-known structural dynamics techniques of modal anal-

ysis and state-space transformation and formulate them for the Bloch wave propagation problem.

First, we consider a one-dimensional lumped parameter model of a phononic crystal whereby two

masses connected by springs and viscous dashpot dampers compose the unit cell. We then extend

our analysis to the study of a two-dimensional phononic crystal, modeled as a dissipative elastic

continuum, and consisting of square inclusions periodically distributed within a host material. For

our damping model, we consider both proportional damping and general damping. Our results

demonstrate the effects of a range of damping levels on the frequency band structure for two dis-

tinct damping scenarios. In particular, we reveal two intriguing phenomena: branch overtaking

and branch cut-off. The former may result in an abrupt drop in the relative band gap size, and

the latter implies an opening of full or partial wavenumber (wave vector) band gaps. Following our

frequency band structure analysis, we illustrate the concept of a damping ratio band structure.

4.2 Introduction

Phononic crystals are elastic materials whereby the microstructure geometry or constituent

material phases are distributed periodically in space. With careful size scaling and choice of the

3 This chapter is adapted from Hussein and Frazier, Journal of Applied Physics (2010).
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constituent material phases and their spatial distribution within the periodic unit cell, phononic

crystals can be designed to classically control the propagation of acoustic/elastic waves in a pre-

determined manner. In doing so, these modern materials have opened up a technological frontier

in acoustic and elastic devices [17, 45, 98]. Bloch theory [3] provides the underlying mathematical

framework for obtaining the fundamental wave propagation characteristics in phononic crystals.

Through this theory, it is possible to obtain a relationship between frequency and wavenumber

(wave vector) — this relationship is referred to as the frequency band structure. In many cases,

one or more of the constituent materials are damped (i.e., dissipative), a good example is vis-

coelastic materials which are often used to form the matrix phase in phononic crystal composites.

The presence of damping results in temporal and spatial attenuations of the elastic waves as they

freely “progress” through the periodic media [48]. It is therefore necessary to establish rigorous

theoretical formalisms for damped Bloch wave propagation, which is the objective of this chapter.

To follow is a brief survey of various studies in the literature that dealt with damping in infinite

(and finite) periodic materials (and structures). In an early study focusing on one-dimensional

(1D) discrete mass-spring-dashpot models, Mead [48] considered structural (velocity independent)

damping as well as a hypothetical type of damping associated with what was referred to as “damped

forced modes”. Viscous damping was treated later on with various types of dissipative constitutive

models. Mukherjee and Lee [60], for example, provided a dispersion relation using a complex

elastic modulus to model viscoelasticity in a 1D laminated medium. Tassilly [14] on the other hand

considered viscous damping which was mathematically incorporated in the governing equations as

a separate term representing velocity-dependent damping forces. He analyzed 1D periodic beam

structures suspended on an elastic foundation, which is a unique configuration that produces no

acoustical branches in the frequency spectrum. In other studies, often the focus has been on finite

structures or there was little consideration of the broad effects on the band structure characteristics

(e.g., Refs. [51, 99, 100]). Some studies explicitly investigated the band structure using viscoelastic

damping models, although limited to a fixed frequency [61,62] or to low frequencies [75]. Wang et

al. [76] analytically studied dispersion in 1D viscoelastic lattices with a model applicable to a wide



51

frequency range. Merheb et al. [54] also provided a study that was not limited to certain frequencies,

using the finite difference time-domain method in addition to experiments. Yet both these studies

did not provide a detailed analysis of the broad effects of damping on the dispersion band structure.

In Ref. [54], the conclusions were focused on the spatial attenuation/decay effects. Recently, Lee

et al. [101] proposed a method whereby effective medium theory is employed in conjunction with

the transfer matrix method to analyze 1D damped periodically layered materials.

In Refs. [102] and [63], the concept of Bloch modal analysis has been introduced for the

study of the dynamics of periodic media. The concept was first employed for the purpose of model

reduction for band structure calculations [102], and was later utilized for the study of the effects

of proportional (Rayleigh) damping on the band structure and phase and group velocity disper-

sion relations [63]. In this chapter, we further utilize Bloch modal analysis towards investigating

the effects of both stiffness- and mass-proportional damping on the dispersion relation. Our pri-

mary objective, however, is to broaden our treatment of damped periodic media by developing a

theoretical formalism, based on state-space transformation, for the study of systems with general

damping. For both the proportional damping and general damping problems, we consider 1D and

two-dimensional (2D) viscously damped phononic crystal models and explicitly show the effects of

damping on the frequency versus wavenumber wave vector curves. In doing so, we highlight two

intriguing phenomena — branch overtaking and branch cut-off. In branch overtaking the presence

of damping causes the higher branches in the band structure to drop in frequency at rates that

exceed the drop rates for lower branches, thus causing the overtake. Branch cut-off refers to a state

whereby a dispersion branch does not cover the entire first Brillouin zone, thus creating a full or

a partial band gap with respect to the wavenumber (wave vector) as opposed to the frequency.

Finally we correlate our frequency band structure analysis with the corresponding representation

of the damping ratio-wavenumber (wave vector) relations, i.e., damping ratio band structure.

In this work, we consider constant damping parameters in our treatment of viscous damping.

However, since we assume harmonic motion in time, the viscous dissipation force, fvd is frequency-

dependent, i.e., fvd = Ĉu̇ = λ(ω)Ĉu, where u denotes the displacement vector, Ĉ denotes the
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damping matrix, λ(ω) denotes a frequency-dependent coefficient, ω denotes frequency, and the

dot symbolizes differentiation with respect to time. This is in contrast, for example, to what is

known as structural damping which generates a frequency-independent force fsd = iµK̂u, where K̂

denotes the stiffness matrix, µ is a damping parameter, and i =
√
−1. Reference to the frequency-

dependence of damping is often made to the damping matrix itself as opposed to the damping

forces. Incorporating frequency-dependence in the Ĉ matrix, i.e., Ĉ = Ĉ(ω), is a subject for future

research.

The layout of the chapter consists of two parts: Sec. 4.3 covers a discrete model and Sec. Sec.

4.4 covers a continuous model. In each section, we present the theory and subsequently provide

numerical examples for both proportional and general damping.

4.3 Discrete Model

4.3.1 Theory

We begin our study of damped periodic materials by considering a simple 1D lumped pa-

rameter lattice model which we use to demonstrate the basic characteristics of dispersive behavior

due to damping. Our system, which is by definition infinite in extent, is constructed by appending

copies of the two-mass unit cell of Fig. 4.1 along the line of motion. The lattice spacing is denoted

by a.

Figure 4.1: Discrete model of phononic crystal: two-mass unit cell.

The set of equations that describe the motion of the two masses, m1 and m2, in the unit cell
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are

m1ü
j
1 + (c1 + c2)u̇j1 + (k1 + k2)uj1 − c2u̇

j
2 − k2u

j
2 − c1u̇

j−1
2 − k1u

j−1
2 = 0, (4.1)

m2ü
j
2 + (c1 + c2)u̇j2 + (k1 + k2)uj2 − c2u̇

j
1 − k2u

j
1 − c1u̇

j+1
1 − k1u

j+1
1 = 0, (4.2)

where uj` represents the displacement of mass ` in the jth unit cell.

We assume a plane wave solution

uj`(x, κ, t) = ũ`e
iκx+λt, (4.3)

for mass ` at the jth lattice point, where ũ`, κ, x, and t denote the complex wave amplitude,

wavenumber, position, and time, respectively. It should be noted that x is not continuous, reflecting

the discreteness of the material model. Moreover, because the unit cell resides at each lattice point,

the wave may only be sampled at those points, i.e., x = {−ja, . . . ,−a, 0, a, . . . , ja} (j is an integer).

Due to the periodicity of the solution, the following statement holds for the displacement of mass

` at neighboring lattice points.

uj+n` (x+ na, κ, t) = uj`(x, κ, t)e
inκa, (4.4)

In Eq. (4.4), the integer n = 0 for the present unit cell, n = 1 for the subsequent unit cell, and

n = −1 for the previous unit cell. Substituting Eq. (4.4) into Eqs. (4.1) and (4.2) yields two

homogeneous equations for u1 and u2, respectively, i.e., in matrix form

M̂ü + Ĉu̇ + K̂u = 0, (4.5)

where M̂ denotes the mass matrix and u = [u1 u2]T [(·)T denotes the transpose operation]. The
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M̂, Ĉ, and K̂ matrices are explicitly defined as follows:

M̂ =

m1 0

0 m2

 , (4.6a)

Ĉ =

 c1 + c2 −(e−iκac1 + c2)

−(eiκac1 + c2) c1 + c2

 , (4.6b)

K̂ =

 k1 + k2 −(e−iκak1 + k2)

−(eiκak1 + k2) k1 + k2

 . (4.6c)

Applying the time derivatives, Eq. (4.5) becomes

(λ2M̂ + λĈ + K̂)u = 0, (4.7)

For Ĉ = 0, the familiar eigenvalue problem emerges. With eigenvalue λ2 = −ω2, the disper-

sion relation is easily obtained. In the case of the phononic crystal represented by the unit cell in

Fig. 4.1, the undamped frequency-wavenumber relation is

ωs(κ) =

√
(k1 + k2)(m1 +m2)∓

√
[(k1 + k2)(m1 +m2)]2 − 8(1− cosκa)k1k2m1m2

2m1m2
, s = 1, 2,

(4.8)

where s refers to the mode number, which in the context of a dispersion band structure is the

branch number.

4.3.1.1 General damping

For the case of general damping (where the damping matrix Ĉ is nonzero, Hermitian, but

nonproportional to M̂ or K̂) it is not possible to set up a Bloch eigenvalue problem in the usual

way because of the presence of the viscous damping term. We therefore resort to converting the

second-order problem to a first-order problem through a state-space transformation [103,104]

Â ˙̂y + B̂ŷ = 0. (4.9)
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where

Â =

 0 M̂

M̂ Ĉ

 , (4.10a)

B̂ = diag

[
−M̂ K̂

]
, (4.10b)

ŷ =

[
u̇ u

]T

. (4.10c)

For convenience, we define rm = m2/m1, rc = c2/c1, rk = k2/k1, and subsequently write the M̂,

Ĉ, and K̂ matrices in terms of only m2, c2, and k2 respectively,

M̂ = m2M̂o = m2

1/rm 0

0 1

 , (4.11a)

Ĉ = c2Ĉo = c2

 1 + 1/rc −(e−iκa/rc + 1)

−(eiκa/rc + 1) 1 + 1/rc

 , (4.11b)

K̂ = k2K̂o = k2

 1 + 1/rk −(e−iκa/rk + 1)

−(eiκa/rk + 1) 1 + 1/rk

 . (4.11c)

Utilizing this notation and dividing by m2, the state-space matrices Â and B̂ become

Â =

 0 M̂o

M̂o βĈo

 , (4.12a)

B̂ = diag

[
−M̂o ω2

0K̂o

]
, (4.12b)

where ω0 =
√
k2/m2 and β = c2/m2. We assume a solution for Eq. (4.10) of the form ŷ = ȳeγt.

The damped frequency band structure can now be obtained by solving the associated eigenvalue

problem. The eigenvalues, which appear in complex conjugate pairs, are solutions to the charac-

teristic equation

γ4 + aγ3 + bγ2 + cγ + d = 0, (4.13)
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with

a =
(1 + rc)(1 + rm)β

rc
, (4.14a)

b =
2(1− cosκa)rkrmβ

2 + (1 + rk)(1 + rm)rcω
2
0

rcrk
, (4.14b)

c =
2(1− cosκa)(rc + rk)rmβω

2
0

rcrk
, (4.14c)

d =
2rmω

4
0(1− cosκa)

rk
. (4.14d)

The form of the solution resembles that from structural dynamics, except, in the context of Bloch

wave propagation, the terms are dependent upon the wavenumber (wave vector).

γ(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, 2, (4.15)

In Eq. (4.15), the real part is the negative of the product of the wavenumber-dependent damping

ratio, ξs(κ), and the resonant frequency, ωs(κ); the imaginary part is the wavenumber-dependent

frequency of damped wave propagation ωd,s(κ) for mode s. Corresponding to each eigenvalue, the

frequency of damped free wave propagation and the associated damping ratio are simply

ωd,s(κ) = Im[γs(κ)], s = 1, 2, (4.16)

ξs(κ) = − Re[γs(κ)]

Abs[γs(κ)]
, s = 1, 2. (4.17)

Since each member of a conjugate pair describes the same wave with only the direction of propa-

gation in opposition, no information is lost in considering only the member with Im[γs(κ)] > 0.

4.3.1.2 Proportional (Rayleigh) damping

The advantage of the state-space formulation is its applicability to a generalized viscous

damping matrix; however, the size of the eigenvalue problem doubles. For the special case of

Rayleigh damping (see Ref. [105] for a discussion on the limitations of this model), Ĉ is linearly

proportional to M̂ and/or K̂, i.e.,

Ĉ = pM̂ + qK̂ (4.18)



57

where p, q ≥ 0 are scaling parameters. Naturally, p, q = 0 corresponds to the undamped case. In

circumstances of proportional damping, the size of the problem need not be doubled through a

state-space transformation. Instead, we can now employ the concept of Bloch modal analysis [63]

which allows us to linearly transform the model degrees of freedom u to a set of Bloch generalized

degrees of freedom, v, that is, u = Φv. Unlike in Ref. [102] in which the aim is model reduction,

here the matrix Φ is formed using a set of mass-normalized Bloch vectors obtained by solving the

standard undamped eigenvalue problem at the current κ point.

Substituting Eq. (4.18) into Eq. (4.7) yields

[λ2M̂ + λ(pM̂ + qK̂) + K̂]u = 0. (4.19)

Utilizing the orthogonality condition that the Bloch vectors exhibit with respect to M̂ and K̂, the

expansion uncouples the equations in Eq. (4.19). This is done by substituting u(t) = Φv(t) into

Eq. (4.19) and pre-multiplying by ΦH [(·)H denotes the Hermitian transpose operation]

ΦH[λ2M̂ + λ(pM̂ + qK̂) + K̂]Φv = 0. (4.20)

Equation (4.20) simplifies to

[λ2I + λ(pI + qΛ) + Λ]v = 0, (4.21)

where Λ is a diagonal matrix of eigenvalues. Equation (4.21) represents two uncoupled equations

expressed in matrix form. Analogous to the treatment of single degree-of-freedom finite systems

in structural dynamics, each of these equations can be written in terms of the damping ratio ξs(κ)

and the undamped frequency ωs(κ),

[λ2
s + 2ξs(κ)ωs(κ)λ+ ω2

s(κ)]vs = 0, s = 1, 2. (4.22)

Comparing Eqs. (4.21) and (4.22) gives

2ξs(κ)ωs(κ) = p+ qω2
s(κ). (4.23)

From Eq. (4.23), the damping ratio is derived explicitly

ξs(κ) =
1

2

[
p

ωs(κ)
+ qωs(κ)

]
, s = 1, 2. (4.24)
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Solving for the roots of Eq. (4.22), we get

λs(κ) = −ξs(κ)ωs(κ)± ωs(κ)
√
ξ2
s (κ)− 1, s = 1, 2, (4.25)

which, for the underdamped case, [ξs(κ) < 1] is by definition equal to

λs(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, 2. (4.26)

Hence, the wavenumber-dependent frequency of damped wave propagation is

ωd,s(κ) = ωs(κ)
√

1− ξ2
s (κ)

= ωs(κ)

√
1− 1

4

[
p

ωs(κ)
+ qωs(κ)

]2

, s = 1, 2.

(4.27)

For the undamped case [ξs(κ) = 0], the frequency of the sth branch of the original undamped

band structure [i.e., ωs(κ)] is recovered. For ξs(κ) > 1, the medium is overdamped and temporal

oscillations do not exist. The medium is critically damped when ξs(κ) = 1. It is noteworthy that

this theory is analogous to the well-established modal analysis (modal decomposition) theory for

proportionally damped finite structures [103,104].

4.3.2 Results

To examine our formulation, we select a specific set of material constants for our two-mass

model as follows:

rm = 9 rc = 1/2 rk = 1 ω0 =
√
k2/m2 = 150rad/s. (4.28)

4.3.2.1 Effects of different types of damping

We consider three different damping cases – stiffness-proportional, mass-proportional, and

general damping – and, for each case, present both the frequency band structure and the damping

ratio band structure for various levels of damping intensity. In all the figures concerned with this

two-mass system, the frequency of the acoustical branch, ωd,1, is represented by a solid curve,

while the frequency of the optical branch, ωd,2, is represented by a dashed curve. In addition, the

undamped curves are always colored blue and the damped curves are colored otherwise.
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Figure 4.2: Stiffness-proportional damping dispersion curves and damping ratio band diagrams.

In Fig. 4.2, we show the results for the stiffness-proportional damping case (i.e., p = 0

and q > 0). It is apparent from Fig. 4.2a that the optical frequency branch is more affected

by the damping than the acoustical frequency branch; indeed, as most apparent in Fig. 4.2c,

the optical branch’s corresponding value of damping ratio increases more rapidly than that of

the acoustical branch. As the level of damping increases, the curve for ωd,2/ω0 flattens out and

eventually transitions from being concave down to concave up before vanishing. The downward

concavity of ωd,1/ω0 remains the same, but, as shown in Fig. 4.2b, the range of κa over which

ωd,1/ω0 > 0 decreases as the damping intensifies.

The results for mass-proportional damping (i.e., p > 0 and q = 0) are shown in Fig. 4.3.

Comparing Fig. 4.3a with Fig. 4.2a, it is clear that mass-proportional damping has the opposite

effect on the acoustical and optical frequency branches than that induced by stiffness-proportional
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Figure 4.3: Mass-proportional damping dispersion curves and damping ratio band diagrams.

damping. The acoustical frequency branch is affected more by this type of damping and accordingly

the corresponding damping ratio values increase more rapidly. Unlike in Fig. 4.2a, the concavity

of both curves remains constant while, like in Fig. 4.2a, the range of κa over which propagation is

possible (ωd,1/ω0 > 0) decreases. In this case, low-frequency waves possessing longer wavelengths

(κa→ 0) are the first to become overdamped.

Emerging from the state-space transformation approach, Fig. 4.4 presents the frequency band

structure for a general damping model for various values of β/ω0. A comparison of Figs. 4.2 and

4.4 reveals a similarity in the dispersive effects of stiffness-proportional damping and the present

condition of general damping. These similarities in the dispersion band structure can be explained

by the mathematical similarities between the K̂ matrix and the Ĉ matrix due to the common

placement of springs and viscous dampers in Fig. 4.1. Ĉ and qK̂ are structurally similar being full
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Figure 4.4: General damping dispersion curves.

matrices, while Ĉ and the diagonal pM̂ are structurally dissimilar. As for stiffness-proportional

damping, in Fig. 4.4, ωd,2 is more susceptible to the influences of damping than is ωd,1. The optical

frequency branch flattens out before changing concavity (not shown in Fig. 4.4).

It is noteworthy that the band structure alterations described above induce both quantitative

and qualitative changes to the group velocity dispersion curves. For example, it is possible for the

group velocity of some branches to switch from positive to negative as a result of damping [63].

4.3.2.2 Branch overtaking and branch cut-off

In the results presented for the damped mass-spring periodic chain, we can observe two

intriguing phenomena that emerge due to the presence of damping: branch overtaking and branch

cut-off. Branch overtaking takes place when higher branches in the band structure drop in frequency
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Figure 4.5: Frequency (solid lines) and wavenumber (dashed lines) band gaps as a function of
damping level for the (a) stiffness-proportional, (b) mass-proportional, and (c) general damping
cases considered.

at rates that exceed the drop rates for lower branches, thus causing the overtake. A branch cut-off

refers to a state whereby a dispersion branch does not cover the entire first Brillouin zone, thus

creating a partial band gap with respect to the wavenumber (or wave vector for a multi-dimensional

problem) as opposed to the frequency.

In Figs. 4.2a and 4.4a, we observe cases of branch overtaking. In particular, we observe

in each case that the location of the optical branch shifts down the frequency domain at a much

faster rate than the acoustical branch as the intensity of damping is increased. For example, in

Fig. 4.4a the optical branch is located below the acoustical branch when β/ω0 = 0.3. Damping and

the higher drop rate of the optical branch causes the band gap to decrease in size at an increasing

rate. This is quantitatively illustrated by tracking the relative size of the band gap with respect

to its central frequency as a function of damping intensity, as illustrated in Fig. 4.5. Clearly the

relative band gap size rate drops for the stiffness-proportional and general damping cases. For the

mass-proportional damping situation, a greater rate of descent for the acoustical branch compared

to the optical results in an increasing band gap and, therefore, no branch over-taking. In some

cases (as reported in Ref. [63]), if the overtake takes place on an optical branch, a band gap can

drop in size even more abruptly.

In Figs. 4.2b, 4.3a, and 4.4b, we observe another damping-induced phenomenon in the

frequency band structure. We observe, that when the level of damping exceeds a certain value,
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the acoustical branch gets cut off in the wavenumber domain, i.e., it does not span the entire first

Brillouin zone. Moreover, since the optical branch eventually disappears in the cases of Figs. 4.2a

and 4.4b (due to the presence of a high level of damping), we get a wavenumber band gap, i.e.,

a wavenumber range where waves are prohibited from propagation. This phenomenon is clearly

analogous to the well-known concept of a frequency band gap. In the case presented in Fig. 4.3a,

we observe a partial wavenumber band gap as the optical branch remains. In Fig. 4.5, we track the

opening of the relative width of the wavenumber band gap for the three damping cases studied.

The damping-induced branch-overtaking and branch cut-off phenomena clearly present op-

portunities for design, building on already existing methodologies at the unit cell level [106, 107]

and/or at the combination of the unit cell and structural levels [71].

4.4 Continuous Model

4.4.1 Theory

In this section, we consider a continuous phononic crystal governed by

∇ · σ = ρü, (4.29)

where σ is the stress tensor, ρ is the density, and u = {ux, uy, uz} is now used to denote the

displacement field. The constitutive behavior is treated phenomenologically assuming linear and

isotropic elastic response and viscous damping,

σ = CK : ∇Su + CC : ∇Su̇, (4.30)

where CK is the conventional elasticity tensor, CC is the viscous damping tensor, and ∇S denotes

the symmetric gradient operator, that is,

∇Su =
1

2
[∇u + (∇u)T]. (4.31)

Substituting Eq. (4.30) into Eq. (4.29) yields

∇ ·CK : ∇Su +∇ ·CC : ∇Su̇ = ρü. (4.32)
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We will assume that the unit cell is composed of two or more material phases, and that the material-

to-material interfaces are ideal. Equation (4.32) has a Bloch solution of the form

u(x,κ, t) = ũ(x)eiκ·x+λt, (4.33)

where ũ(x) is the periodic displacement Bloch amplitude function with the periodicity of the

medium, x is the position vector, and κ is the wave vector. Similar to discrete counterpart in Eq.

(4.3), periodicity enforces the following identity

u(x + a,κ, t) = u(x,κ, t)eiκ·a. (4.34)

Using Eq. (4.33), the spatial component of the displacement gradient is

∇u = (∇ũ + iκ⊗ ũ)eiκ·x, (4.35)

where the symbol ⊗ denotes the outer product. Similarly, the velocity gradient is

∇u̇ = (∇ ˙̃u + iκ⊗ ˙̃u)eiκ·x. (4.36)

Substitution of Eqs. (4.31), (4.33), (4.35), and (4.36) into Eq. (4.32) gives the strong form of the

Bloch eigenvalue problem

∇ ·CK :

[
∇Sũ +

i

2
(κ⊗ ũ + ũ⊗ κ)

]
+∇ ·CC :

[
∇S ˙̃u +

i

2
(κ⊗ ˙̃u + ˙̃u⊗ κ)

]
= ρ¨̃u. (4.37)

Applying the time derivatives, Eq. (4.37) becomes

∇ ·CK :

[
∇Sũ +

i

2
(κ⊗ ũ + ũ⊗ κ)

]
+ γ∇ ·CC :

[
∇Sũ +

i

2
(κ⊗ ũ + ũ⊗ κ)

]
= γ2ρũ. (4.38)

Equation (4.38) can be discretized using a numerical method. We will consider the finite

element (FE) method [102], but it should be noticed that the following treatment of damping

is independent of the specific choice the numerical method. The discretization transforms the

continuous Bloch displacement functions to discrete Bloch displacement vectors, yielding

M̂¨̃u + Ĉ ˙̃u + K̂ũ = 0, (4.39)
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and

[γ2M̂ + γĈ + K̂]ũ = 0, (4.40)

respectively. M̂, Ĉ, and K now denote the finite element mass, damping, and stiffness matrices.

In Eqs. (4.39) and (4.40), the vectors are of size ne × 1 and each of the matrices is of size ne × ne

where ne denotes the number of FE equations.

For the undamped case, where Ĉ = 0, we realize that γ = iω (hence u(x; t) = ũ(x)eiωt) and

subsequently obtain the familiar eigenvalue problem for undamped Bloch wave propagation

[K̂− ω2M̂]ũ = 0. (4.41)

On the other hand, if the second term in the left-hand-side of Eq. (4.40) is nonzero, this prevents

us from generating an eigenvalue problem in the usual way for calculating the band structure.

4.4.1.1 General damping

To enable a formal eigenvalue analysis of a problem exhibiting general damping, we transform

Eq. (4.39) into the state-space formulation consistent with Eq. (4.10). In this case, the eigenvalue

solution is wave vector-dependent:

λs(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, . . . , ne. (4.42)

In the same manner as in the discrete case, we can extract ξs(κ) and ωd,s(κ) from Eq. (4.42).

4.4.1.2 Proportional (Rayleigh) damping

As discussed earlier in Sec. 4.3.1.2, a special case for a phononic crystal damping model is

proportional damping [63]. We will define the proportional viscous finite element matrix similarly

as given in Eq. (4.18), substitute into Eq. (4.39), and subsequently obtain

M̂¨̃u + [pM̂ + qK̂] ˙̃u + K̂ũ = 0. (4.43)

As we did in the discrete case, we employ the concept of Bloch mode expansion [63, 102] which

allows us to linearly transform the model to a set of Bloch generalized coordinates, ṽT(t) =
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[ṽ1(t) ṽ2(t) · · · ṽm(t)], i.e.,

ũ(t)(ne×1) = Φ(ne×m)ṽ(m×1)(t), (4.44)

where Φ is a Bloch modal matrix. In Eq. (4.44), m denotes the total number of Bloch modes

retained in the expansion. We follow the same procedure as in Sec. 4.3.1.2, and utilize the orthog-

onality condition that the Bloch vectors exhibit with respect to M̂ and K̂ at the current κ-point

to uncouple the governing equations. This is done by substituting Eq. (4.44) into Eq. (4.43) and

pre-multiplying all terms by ΦH. Returning to Eq. (4.44), only as many Bloch modes m need to be

incorporated in the expansion as the number of branches of interest in the damped band diagram

that is to be generated. The result is a set of m uncoupled equations

¨̃vs + 2ξs(κ)ωs(κ) ˙̃vs + [ωs(κ)]2ṽs = 0, s = 1, . . . ,m. (4.45)

where ṽs is the sth Bloch generalized coordinate and ωs(κ) represents the wavenumber-dependent

frequency of undamped wave propagation (as in the discrete case). In Eq. (4.45), ξs(κ) is the

damping ratio of the sth branch (out of a total of m branches) of the damped band structure at

point κ and is defined as

ξs(κ) =
1

2

[
p

ωs(κ)
+ qωs(κ)

]
, s = 1, . . . ,m. (4.46)

Applying the derivatives in Eq. (4.45) and solving for the roots yields a similar expression as given

in Eq. (4.25)

λs(κ) = −ξs(κ)ωs(κ)± ωs(κ)
√
ξ2
s (κ)− 1, s = 1, . . . ,m. (4.47)

For the undamped case [ξs(κ) = 0], the frequency of the sth branch of the original undamped band

structure is recovered. For ξs(κ) < 1, the medium is underdamped at κ and propagating waves

exhibit temporal decay in time. Subsequently,

λs(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, . . . ,m, (4.48)

and the wave vector-dependent frequency of damped oscillation is defined as

ωd,s(κ) = ωs(κ)
√

1− ξ2
s (κ), s = 1, . . . ,m, (4.49)
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which is essentially the frequency of the sth branch of the damped band structure at point κ. For

ξs(κ) > 1, the medium is overdamped at κ and temporal oscillations cannot exist. The medium is

critically damped at κ when ξs(κ) = 1.

4.4.2 Results

Figure 4.6: Continuous model of phononic crystal with irreducible Brillouin zone enclosed in red.

In this section, we examine the behavior of a continuous model of both a proportionally

damped and a generally damped phononic crystal. We use the finite element method to discretize

the spatial domain in both cases. For the proportionally damped case we solve Eq. (4.45) and

proceed to calculating ξs(κ) and ωd,s(κ) by simply post-processing the resulting undamped band

structure data using Eqs. (4.46) and (4.49), respectively. For the generally damped case we use

the state-space formulation, solve for λs(κ), and extract ξs(κ) and ωd,s(κ). Both damping-type

formulations are applicable to three-dimensional models. However, for ease of exposition we present

results for a 2D model under plane strain conditions. In our example model, a square lattice is

considered with a bi-material unit cell consisting of a centrally located square inclusion, as shown

in Fig. 4.6. The filling ratio is 0.3086. The material phase for the matrix (denoted by subscript

“1”) is chosen to be compliant and light while the phase for the inclusion (denoted by subscript

“2”) is stiff and dense. In particular, a ratio of Young’s moduli of E2/E1 = 20 and a ratio of

densities of ρ2/ρ1 = 2 are chosen. A Poisson ratio of ν = 0.34 is assumed for both phases. The unit
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cell finite element mesh consists of 9× 9 uniformly sized four-node bi-linear quadrilateral elements.

The path along the symmetry points, Γ → X → M → Γ, bordering the irreducible Brillouin zone

is sampled into ninety-seven κ-point steps. In the results, we refer to the degree of proportional

damping using the scaling parameters p and q. The shear Lamé constant for material phase “1” is

denoted µ1. For the general damping case we perturb a stiffness-proportional damping model by

multiplying each of the Lamé constants by a different scalar, thus breaking the proportionality of

the damping matrix to the stiffness matrix.

Figure 4.7a,b shows the frequency band structure (restricted to real wave vectors) for the

undamped case, where p, q = 0, a proportionally damped case with parameters p = 0 and q = 0.05,

and a generally damped case whereby a proportionally damped model with parameters pscaled = 0

and qscaled = 0.05 is perturbed by replacing µ by µdamp = 1.4µ and λ by λdamp = 0.6λ in the

damping matrix C. The damping ratio corresponding to each mode, as a function of κ, is shown

in Fig. 4.7c,d. We observe that for the proportionally damped case considered the location of

the branches in the frequency domain drop with damping, and do so at an increasing rate as the

branch number increases. The damping ratio diagram shown in Fig. 4.7c resembles the frequency

band structure in shape. Furthermore, the locations of the curves in Fig. 4.7a drop, and in Fig.

4.7c rise, with increase in the value of q (not shown). We also studied the case where p 6= 0

and q = 0 (not shown). Here, the band structure away from the Γ-point experiences very small

shifts, whereas at and near the Γ-point the downward shift in frequencies is dramatic, and this

is due to sharp increases in ξs within this neighborhood. In fact, with a small increase in p, the

value of the damping ratio at and near the Γ-point exceeds unity, i.e., exceeds the critical damping

level beyond which there is no temporal oscillations. We therefore focus on a nonzero q while

keeping p = 0. The response of the considered generally damped case follows a similar trend to the

proportionally damped case with deviations in certain regions such as between the M - and Γ-points,

especially for the sixth branch. The damping ratio diagram for both cases also differ considerably

especially at the high branches. Even though λdamp was decreased at the same rate (40%) as µdamp

was increased in the general damping matrix, we observe that the level of overall damping in the
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band structure has increased compared to the nominal stiffness-proportionally damped case. This

suggests that damping in shear has a more significant effect on the band structure than longitudinal

damping. This conclusion is confirmed by considering the opposite case where µ has been replaced

by µdamp = 0.6µ and λ by λdamp = 1.4λ, the results of which are presented in Fig. 4.7b and d.

Figure 4.7: Frequency (a,b) and damping ratio (c,d) band structures for.

4.5 Conclusions

We presented a formal treatment of the Bloch wave propagation problem for viscously damped

phononic crystals. We first studied an infinite chain consisting of two masses in the unit cell, then

generalized to a continuum model of a phononic crystal which was subsequently discretized using

the finite element method. We considered both the general damping case and the special case

where the damping matrix is proportional to the mass and/or stiffness matrices. In all our analyses
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we presented the mathematical formulations governing the application of Bloch theory to a single

unit cell, and obtained the frequency band structure as well as the wavenumber- (wave vector-)

dependent damping ratio band structure.

Our results show that damping in general alters the shape of the frequency band structure.

For the specific case of proportional damping, we observed from the discrete model results that

the optical branch is more sensitive to stiffness-proportional damping, while the acoustical branch

responds more readily to mass-proportional damping. The band gap shrinks or widens accordingly.

These alterations induce both quantitative and qualitative changes to the group velocity dispersion

curves. A significant consequence is the possibility of transition of the group velocity corresponding

to some branches from positive to negative as a result of damping [63].

Our results also revealed that when the damping is significant it could lead to rather dramatic

changes to the frequency band structure (and hence the band gaps). In particular, we observed the

branch overtaking phenomenon whereby the higher branches drop at a faster rate than the lower

branches, thus allowing for the possibility of a branch overtake. We also observed, in the context

of general damping, the phenomenon of a wavenumber (wave vector) band gap whereby in the case

considered the acoustical branch experiences a cut-off, that is, it no longer spans the entire first

Brillouin zone.

The treatment of damping using modal analysis and state-space transformation is common

in the study of the dynamics of structures [103–105]. In this paper, and building on our earlier

work [63, 102] we have extended the application of these techniques to the study of the dynamics

of materials within the framework of Bloch theory. Incorporation of damping in this context is

necessary as the newly emerging field of phononics – the science of phonons and their manipulation

for technological applications – expands to incorporate a broader range of constituent material

phases exhibiting different levels of dissipation. Since our formalisms revolve around the use of the

damping matrix C, we can fully utilize already established quantitative models of damping in the

finite structural dynamics literature [103–105]. Furthermore, the presented formalisms are relevant

to the study of Bloch wave propagation in other types of dissipative periodic media such as lossy
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photonic crystals [108–110].



Chapter 5

Metadamping: An emergent phenomenon in dissipative metamaterials4

5.1 Abstract

Using a generalized form of Bloch’s theorem, we derive the dispersion relation of a viscously

damped, locally resonant metamaterial modeled as an infinite mass-in-mass lumped parameter

chain. For comparison, we obtain the dispersion relation for a statically equivalent Bragg-scattering

mass-spring chain that is also viscously damped. For the two chains, we prescribe identical damp-

ing levels in the dashpots and compare the damping ratio associated with all propagating Bloch

modes. We find that the locally resonant metamaterial exhibits higher dissipation throughout the

spectrum which indicates a damping emergence phenomena due to the presence of local resonance.

This phenomenon, which we define as “metadamping”, provides a new paradigm for the design of

material systems that display both high damping and high stiffness. We conclude our investigation

by quantifying the degree of metadamping as a function of the long-wave speed of sound in the

medium or the static stiffness.

5.2 Introduction

Damping is an intrinsic property of materials and when present in a structural configuration

may play a significant role in shaping the structural response. While in certain applications –

such as energy harvesting – dissipation is not desired, its maximization is sought in numerous

avenues, including vibration suppression, shock resistance,and acoustic absorption. From a design

4 This chapter is adapted from Hussein and Frazier, Journal of Sound and Vibration (2013).



73

perspective, a highly constraining trade-off in these latter applications is that an increase in the

intensity of damping in the materials employed commonly appears at the expense of stiffness,or

mechanical load-bearing capacity. For example, elastomeric materials are more dissipative than

metallic materials but are much less stiff. Hence, the development of concepts in material design

that lead to both high levels of dissipation and stiffness has been an active area of research. Lakes

et al. [111], for example, demonstrated that composite materials incorporating constituents in

a metastable state simultaneously exhibit elevated values of viscoelastic stiffness and damping.

Research on shape memory alloys has also presented an example, showing that hysteretic motion

of interfaces at the thermoelastic martensitic phase leads to realization of high damping capacity

without reduction in overall stiffness [112]. Chung [113] presents a review of other approaches for

enhancing damping-stiffness capacity of materials through composite materials engineering.

In this chapter, we propose periodic acoustic metamaterials (AMs) with local resonance

properties [8] as a candidate for materials that can be designed to exhibit high levels of dissipation

while retaining high stiffness. An underlying principle is that vibration attenuation due to damping

is most profound at resonance frequencies, as is well known in the field of structural dynamics. Here

we draw an analogy and explore the effect of resonance on dissipation in the context of what we

may refer to as “material dynamics”. In this setting, we examine the level of dissipation not only

near a resonance frequency but across the entire frequency-wavenumber spectrum of the material’s

dispersion curves.

To assess the degree of dissipation in a locally resonant AM, we first generalize Bloch’s the-

orem to incorporate complex frequencies – which is necessary to allow for proper treatment of

temporally attenuating waves. The original form of Bloch’s theorem, which was developed for elec-

tronic band structure calculation [3], is sufficiently based on real frequencies. Next, we derive the

frequency and damping ratio band structures of a damped AM and compare the characteristics of

the latter with those of a corresponding statically-equivalent phononic crystal (PC), i.e., another

type of periodic material that does not possess local resonances yet has the same long-wave prop-

agation characteristics. In this analysis,we seek to determine the possibility of an “emergence of
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damping” in the AM. The concept of emergence in complex systems theory and other disciplines

stems from the widely held notion that for certain systems “the whole is greater than the sum of

its parts” [114]. Although emergence is usually associated with a lack of predictability, the concept

may also be relevant to systems whose properties are predictable in principle, yet unforeseen a pri-

ori [115]. In relation to chemistry and materials science, often the emerging whole stems from the

structure while the parts is associated with the composition. From a similar perspective, our aim

is to demonstrate emergence in the context of how local resonance within the internal structure, of

a material, leads to enhanced dissipation, over all frequencies and wavenumbers, when compared

to other materials with equivalent static properties and the same level of prescribed damping.

We emphasize that the practical implications of damping emergence are profound since this phe-

nomenon provides a novel paradigm towards the design of materials with both high damping and

high stiffness.

5.3 Acoustic metamaterial and phononic crystal: Models and equations of

motion

By considering lumped masses, springs, and viscous damping (dashpot) elements, we con-

struct a simple one- dimensional (1D) model of a damped diatomic AM (represented by a “mass-in-

mass” configuration [116] as shown in Fig. 5.1a), and for comparison we also examine a correspond-

ing 1D model of a damped diatomic PC (represented by a “mass-and-mass” configuration as shown

in Fig. 5.1b). This choice of simple lumped parameter models allows us to focus on the underlying

damping emergence phenomenon free from the distraction of irrelevant system complexities. Both

models represent a unit cell that is infinitely repeated in both directions.

Considering unit cell periodicity, the set of homogeneous equations describing the motion of

each mass in the AM model shown in Fig. 5.1a is obtained as follows (where the AM superscript
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is omitted for brevity):

m1ü
j
1 + c1(2u̇j1 − u̇

j−1
1 − u̇j+1

1 ) + c2(u̇j1 − u̇
j
2) + k1(2uj1 − u

j−1
1 − uj+1

1 ) + k2(uj1 − u
j
2) = 0, (5.1a)

m2ü2 + c2(u̇j2 − u̇
j
1) + k2(uj2 − u

j
1) = 0, (5.1b)

where ujα is the displacement of mass α in an arbitrary jth unit cell. In general, a unit cell and

its neighbors may be identified by j + n, where n = 0,−1, 1 denotes the present, previous, and

subsequent unit cell, respectively. Similarly for the PC model shown in Fig. 5.1b, the equations of

motion corresponding to the two masses are (where the PC superscript is omitted for brevity) as

follows:

m1ü
j
1 + (c1 + c2)u̇j1 − c2u̇

j
2 − c1u̇

j−1
2 + (k1 + k2)uj1 − k2u

j
2 − k1u

j−1
2 = 0, (5.2a)

m2ü2 + (c1 + c2)u̇j2 − c2u̇
j
1 − c1u̇

j+1
1 + (k1 + k2)uj2 − k2u

j
1 − k1u

j+1
1 = 0. (5.2b)

5.4 Generalized Bloch’s theorem: Derivation of frequency and damping

ratio dispersion curves

For each of the system of equations, Eqs. (5.1) and (5.2), we apply the generalized form of

Bloch’s theorem [63,77]

uj+nα (κ, t) = Ũαe
inκa+λt, α = 1, 2, (5.3)

which represents the displacement of mass α in the (j + n)th unit cell in the periodic chain, and

where Ũα is the wave amplitude, a is the unit-cell length, κ is the wavenumber, and λ is a complex

frequency function that permits wave attenuation in time. In the limiting case of no damping,

λ = ±iω, and the usual form of Bloch’s theorem is recovered. Substituting Eq. (5.3) into the

governing equations for both the AM and the PC yields a characteristic equation of the form

λ4 + aλ3 + bλ2 + cλ+ d = 0, (5.4)
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where for the AM,

a =
(m1 +m2)c2 + 2m2c1(1− cosκa)

m1m2
, (5.5a)

b =
(m1 +m2)k2 + 2(m2k1 + c1c2)(1− cosκa)

m1m2
, (5.5b)

c =
2(c1k2 + c2k1)(1− cosκa)

m1m2
, (5.5c)

d =
2k1k2(1− cosκa)

m1m2
, (5.5d)

and for the PC,

a =
(m1 +m2)(c1 + c2)

m1m2
, (5.6a)

b =
(m1 +m2)(k1 + k2) + 2c1c2(1− cosκa)

m1m2
, (5.6b)

c =
2(c1k2 + c2k1)(1− cosκa)

m1m2
, (5.6c)

d =
2k1k2(1− cosκa)

m1m2
. (5.6d)

We note that the form of each of c and d does not vary between the two models. Upon solving Eq.

(A.8) for either the AM or the PC, we obtain the general solution

λ1,2 =
1

2

3a∓ S +

√
18a2 − 48b− 6

3
√

4R− 12 3
√

2P

R
∓ 54(a3 − 4ab+ 8c)

S
)

 , (5.7)

where

P = b2 − 3ac+ 12d, (5.8a)

Q = 2b3 − 9abc+ 27(c2 + a2d)− 72bd, (5.8b)

R =
3

√
Q+

√
Q2 − 4P 3, (5.8c)

S =

√
9a2 − 24b+ 6

3
√

4R+
12 3
√

2P

R
. (5.8d)

The distinction between the solution of the two systems arises upon the appropriate substitution

of a and b as given in Eqs. (5.5) and (5.6), respectively.

The roots we obtain from Eq. (5.7) may also be expressed as

λs(κ) = −ξs(κ)ωs(κ)± iωd,s(κ), s = 1, 2, (5.9)
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where s represents the branch number. Hence from Eqs. (5.7) and (5.9), we can obtain the

frequency, ωd,s(κ), and damping ratio, ξs(κ), relations. Specifically, from the complex solution,

λs(κ), we directly extract ωd,s(κ) = Im[λs(κ)] and ξs(κ) = −Re[λs(κ)]/Abs[λs(κ)] for each of the

two dispersion branches.

5.5 Metadamping phenomenon

Now we examine the frequency and damping ratio dispersion curves of both systems for

the following parameter ratios: m2/m1 = 5 and k2/k1 = 1/5. Furthermore, we set m1 = 1,

ω0 =
√
k2/m2 = 100, and a = 1. All the parameters here and elsewhere in this work may be

read in any consistent system of physical units. To enable proper comparison, we select the value

of ωAM
0 [critically, keeping mAM

1,2 constant and varying kAM
1,2 (maintaining kAM

2 /kAM
1 = 1/5)] such

that ωAM
0 6= ωPC

0 and in such a manner as to render both systems statically equivalent, that

is, both systems having the same undamped long-wave sound speed as the wavenumber goes to

zero, cst = limκ→0[ω1(κ)/κ]. With the chosen parameters for the PC, cst = 83.33. The AM

is set to exhibit the same value of long-wave sound speed when ωAM
0 = 40.90. Concerning the

damping prescription, we define η1 = cPC
1 = cAM

1 and η2 = cPC
2 = cAM

2 . For the special case of

the two dashpots in each system having the same prescribed damping value, we η = η1 = η2 (i.e.,

cAM
2 /cAM

1 = cPC
2 /cPC

1 = 1).

The first set of results is shown in Fig. 5.2. The left hand side (LHS) of Fig. 5.2a displays

the frequency band structure of the AM for three example cases: no damping (η = 0), low damping

(η = 40), and high damping (η = 80). The LHS of Figs. 5.2b,c display the damping ratio

band structures for the low damping and high damping cases, respectively. In the damping ratio

diagrams, we have added a third curve to represent the summation of the damping ratio values

for the acoustic and optical branches, i.e., ξsum(κ)|ν = ξ1(κ)|ν + ξ2(κ)|ν , where ν = AM,PC.

On the right hand side (RHS) of Fig. 5.2, the matching diagrams for the corresponding PC are

shown. The results show that there are shifts in the frequency band diagrams (greater in the optical

branches) due to the presence of damping, and that these shifts are more profound in the AM. This
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behavior manifests itself in a most remarkable manner in the damping ratio diagrams. Despite the

static equivalence and equally prescribed value of the viscous damping constant, η, we observe in

Figs. 5.2b,c that the AM exhibits higher damping ratio values (i.e., higher dissipation) across the

entire Brillouin zone (BZ), for both the acoustic and optical branches. This is an indication of a

considerable amplification, or emergence, of dissipation in the AM compared to its PC counterpart.

Moreover, this emergence is present for all propagating Bloch modes and not only for modes close

to the band gap. Consequently, even though the band gap of the AM might be smaller in width,

as in our case, the overall wave attenuation performance when viewed across the entire spectrum is

more favorable compared to the PC. This is because outside a band gap, attenuation of propagating

modes may only be realized via damping.

To quantify this difference in damping ratio values, we introduce a wavenumber-dependent

damping emergence metric, Z`(κ) = ξ`(κ)|AM − ξ`(κ)|PC, where ` = 1, 2, or sum. In Fig. 3, we

show Z`(κ), its cumulative value

Zcum
` (θ) =

∫ θ

0
Z`(κ)dκ, ` = 1, 2, sum; θ ∈ [0, π] (5.10)

and its total value, Ztot
` = Zcum

` (π) for our example AM and PC pair – displaying the data for

the acoustic branch (` = 1), the optical branch (` = 2), and the summation of the two branches

(` = sum) in Figs. 3a-c, respectively (for η = 40 on the LHS and η = 80 on the RHS). The

results reveal significantly high values of Ztot
` which we may view as a measure of the intensity

of damping emergence. We also observe that Z2 > Z1 for all values of κ, in line with what we

noted above. Fig. 4a shows that the value of Ztot
` varies linearly with the level of damping, η.

Here the subfigure terminates when the value of the damping ratio of the AM optical branch is no

longer limited to unity (i.e., critical damping) within the BZ. This occurs at η = 165.57. Fig. 4b

focuses on isolating the role of cAM
1 versus cAM

2 in the creation of damping emergence (considering

that only cAM
2 is associated with the prescribed damping level of the local resonator in the AM).

This is done by varying η2 while keeping η1 = 0 and comparing with the case of varying η1 while

keeping η2 = 0. The case of varying η (i.e., varying 1 and 2 simultaneously while keeping them
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equal) is also plotted for reference. A more representative reference curve is one that corresponds to

varying η/2, as it directly correlates with the first two curves since the total amount of prescribed

damping among the two dashpots is the same for each value of η∗. As expected, it is shown that

the impact of cAM
2 is higher than that of cAM

1 , although not by a significant degree. This suggests

that prescribed damping levels even away from local resonators in an AM are bound to influence

damping emergence.

Returning to the driving objective of realizing materials that exhibit increased damping

without deterioration of static stiffness, we repeat our calculations for a range of cst values. We do

so by keeping all the parameters as in the previous example except for ωPC
0 and ωAM

0 . Changing

ωPC
0 causes cst to vary, and, in turn, ωAM

0 is adjusted accordingly to keep both systems statically

equivalent. Throughout this process, the ratio ωAM
0 = ωPC

0 stays constant, and hence the relative

size and location of the undamped band gap between one system and the other also remains

constant. In Fig. 5, we show the relationship between the level of dissipation (i.e., actual damping)

versus cst for the AM and the PC. For this purpose, we calculate the total damping ratio over both

branches, ξtot
sum; which we obtain by integration, i.e., ξtot

sum = ξcum
sum (π); where

ξcum
sum (θ) =

∫ θ

0
ξsum(κ)dκ, θ ∈ [0, π]. (5.11)

To provide further insight, we calculate an effective static Young’s modulus, Est, which we

obtain by considering an effective elastic rod, with a cross-sectional area equal to unity. Using the

standard rod properties of E, the Young’s modulus, ρ, the density, and c =
√
E/ρ, the speed of

sound in the rod, we derive Est ≈ (mν
1 +mν

2)c2
st for each of our periodic chains. We clearly observe in

Fig. 5 that for a given value of long-wave speed, or effective static Young modulus, the AM exhibits

a substantial increase in the value of ξtot
sum when compared to the PC. In other words, even though

there is still a trade-off between damping and stiffness, the level of dissipation in the AM increases

without sacrifice of stiffness. Shaded in gray is the region of damping emergence, or “metadamping

region”. We note that the level of metadamping (represented by the height of the shaded region)

is highest at low levels of cst (i.e., compliant materials) and reduces in value as cst increases to
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represent more stiff materials. The intensity of metadamping, or area of the metadamping region,

increases with η,or η1 and η2 (as we may deduce from Fig. 4 and as elaborately demonstrated in

Fig. 6); however, for a given η,or η1 and η2, this area may be increased further upon optimization

of the periodic chain parameters including the local resonator parameters [117].

5.6 Conclusions

In conclusion, we have demonstrated the concept of damping emergence, or metadamping,

due to the presence of local resonance. This finding has far reaching implications on the design

of materials for numerous applications that require the reduction, mitigation, or absorption of

vibrations, shock, and/or sound. While the analysis has been presented in the context of sim-

ple mass-spring-dashpot periodic chains, it can be readily extended to practical realizations of

locally resonant acoustic metamaterials. Examples include material structures that utilize: heavy

inclusions with compliant coatings [8], soft inclusions [118], split-resonators [119], inertial ampli-

fiers [120], pillars [121,122], holes drilled in a rigid block [72] and suspended masses [123]. The two

underlying features needed are (1) the presence of locally resonant elements and (2) the presence

of at least one constituent material phase or component that exhibits damping (e.g., by utilizing

viscoelastic materials, friction at material interfaces, etc.). It is the combination of these two fea-

tures that forms a prerequisite for metadamping. As such, other concepts for enhancing damping

while retaining stiffness (such as those described in Refs. [111–113]) may be applied in conjunction

with the inclusion of local resonators leading to an additive effect. While the perspective in this

study has been that metadamping is a desired phenomenon (i.e., for the applications noted above),

conversely, there is another category of metamaterial-based applications where metadamping is not

desired (such as subwavelength energy harvesting, waveguiding or focusing). For this latter cate-

gory, however, an awareness and understanding of the phenomenon is necessary for achievement of

optimal design. Finally, while the concept of metadamping has been presented in the context of a

mechanical problem, in principle it is also applicable to other disciplines in materials physics that

involve both resonance and dissipation.
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Figure 5.1: Unit cells of statically-equivalent periodic chains consisting of masses, springs and vis-
cous damping (dashpot) elements: (a) acoustic metamaterial (mass-in-mass), (b) phononic crystal
(mass-and-mass).
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Figure 5.2: (a) Frequency band structure for the acoustic metamaterial and statically equivalent
phononic crystal with η = 0, 40, and80. The associated damping ratio band structure corresponding
to (b) η = 40 and (c) η = 40.



Chapter 6

Viscous-to-viscoelastic transition in metamaterial band structure5

6.1 Abstract

The dispersive behavior of phononic crystals and metamaterials is influenced by the type

and degree of damping present in the constituent materials forming the unit cell. Dissipation

arising from viscous damping depends upon the instantaneous modal velocities; whereas in the

case of viscoelastic damping, the dissipation is influenced by the past history of motion because

the elastic component of the damping adds a storage capacity. Following a state-space framework,

we construct a Bloch eigenvalue problem incorporating general viscoelastic damping based on the

Zener model. In this approach, the conventional Kelvin-Voigt viscous damping model is recovered

as a special case. We examine, in a continuous fashion, the influence of the elastic component of

the damping on the band structure of both a phononic crystal and a metamaterial. While viscous

damping generally narrows a band gap, the hereditary nature of the viscoelastic conditions reverses

this behavior. In the limit of vanishing heredity, the formulation of the viscoelastic equations of

motion allows us to analyze the transition between the two regimes. The presented theory also

allows us to quantify the increase in the modal dissipation enhancement (metadamping) capacity

as the type of damping transitions from viscoelastic to viscous.

5 This chapter is adapted from a manuscript being prepared for journal submission.
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6.2 Introduction

The field of wave propagation in periodic materials has witnessed an explosive increase in

activity over the past few decades [124], especially in the category of phononic crystals [43, 45]

and acoustic/elastic metamaterials [8], collectively, phononic materials. The appeal of vibration

control by design gives impetus to phononic material research. However, despite its physical reality,

investigations into the impact of material damping on wave propagation is largely absent in the

literature. Nevertheless, discrepancies between theoretical and experimental results have been

attributed to energy loss [23]. The theoretical acknowledgment of dissipative effects not only

constitutes a more authentic description of the dispersion characteristics of phononic materials,

but also provides a means by which the material design process may be guided by the application-

specific demand for the maximization (or minimization) of dissipation [125].

Of the studies that consider the treatment of damping, many focus on simulating finite

periodic structures [49,51,99]. Dispersion analysis at the unit cell level, on the other hand, provides

information on the intrinsic dynamical properties of the medium, which offers insights that are in

principle applicable to any finite-structure analysis, regardless of the size, number of cells, boundary

conditions, or nature of excitation. In unit cell analysis, wave propagation in a periodic material is

fully characterized by the application of Bloch’s theorem [3]. The proposition maintains that the

wave field in a periodic medium is the product of an amplitude function with the spatial periodicity,

a, of the unit cell and a plane wave envelope. In terms of the displacement response, u(x,κ, t), this

is expressed as

u(x,κ, t) = ũ(x)eiκ·x+λt (6.1)

where ũ(x) represents the amplitude function that is periodic across the unit cell domain. Subse-

quently,

u(x + a,κ, t) = u(x,κ, t)eiκ·a (6.2)

The wavevector, κ, and the temporal quantity, λ, modulate the wave envelope in space and time,

respectively. In much of the literature, λ is prescribed as an imaginary value, i.e., λ = −iω,
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representing waves that, due to energy dissipation may decay in space but not in time [48, 52, 57,

126].6 In the laboratory, this scenario is analogous to the harmonic excitation of a corresponding

finite periodic structure. In this article, we consider the case where λ is generally a complex

number thus the energy loss manifests as temporal attenuation [60, 63, 77, 126]. This treatment

is consistent with results obtained from free vibration analysis of a corresponding finite periodic

structure. Only in the absence of energy dissipation do the free and harmonic wave conditions yield

identical results [124].

A literature synopsis of past studies that investigated dispersion properties of damped peri-

odic materials reveals a variety of approaches in both the manner of modeling the damping and

the method of solution. Among the early studies is Mead’s calculation of the wave motion phase

and attenuation constants for 1D lumped-parameter, chain-like models exhibiting structural damp-

ing (i.e., velocity-independent damping forces) [48]. Generally, it is common to incorporate the

damping via a complex elastic modulus [49, 61, 62] or a convolution integral expression applied to

the elastic modulus [54]. Damping has also been introduced via a complex inertial term [50] and

as a stand-alone parameter, or matrix, that multiplies with the velocity vector in the equation of

motion [63, 77]. The quality of an adopted damping model improves whenever its performance is

compared and calibrated with experimental results [127–129]. Nevertheless, regardless of the choice,

any damping model is theoretically acceptable provided the resulting rate of energy dissipation is

positive [130–132].

Other than the manner of introducing the damping into the problem, a key classification

of damping is in the nature of the dissipation mechanism it describes. Here, we consider two

key classes: viscous damping and viscoelastic damping. Dissipation arising from viscous damping

depends upon the instantaneous modal velocities. On the other hand, dissipation arising from

viscoelastic damping is influenced by the past history of motion; this is because the elastic compo-

nent of the damping adds a storage capacity. A viscous damping model is appropriate for material

systems where fluid viscosity is the dominant dissipative mechanism, such as in a dashpot or in a

6 This is in addition to the spatial decay experience resulting from wave interference.
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configuration where the material is exposed to a fluid [133]. A viscoelastic model, on its part, is

representative of a solid exhibiting material loss, such as in polymers. Non-conservative forces in a

viscoelastic model are hereditarily dependent upon the entire history of motion up to and including

the present state. Mathematically, this dependence manifests as a convolution integral over kernel

functions rather than the instantaneous value of any state variable. The contrast between the

viscous and the viscoelastic nature of material damping results in fundamental differences in the

dispersion behavior, which is the main focus of this paper.

Another aim of this work is to consider the effect of the type of damping on the dissipative

capacity of phononic crystals and metamaterials, particularly the latter. One of the aims of vi-

bration control is to decrease transmission from the environment to a protected structure. This

is often attempted through the introduction of an intervening, dissipative material such as rub-

ber. However, dissipative materials generally lack a load-bearing capacity (stiffness) and efforts

to combat this deficiency usually sacrifice the damping quality that was the original appeal, re-

vealing an age-old trade-off in materials engineering. The challenge of achieving simultaneously

high stiffness and high damping within a material has been addressed in a variety of ways using

composites [111–113, 134]. In a recent study of damped phononic materials [125], the concept of

metadamping was introduced to describe the notion of an amplification of dissipation in locally

resonant materials when compared to Bragg-scattering materials of equivalent stiffness and equally

prescribed viscous damping. In the present article, using a phononic crystal and metamaterials as

Bragg and locally resonant materials, respectively, we investigate the metadamping phenomenon

within the framework of both types of damping, viscous and viscoelastic.

The paper is divided into three parts. First, in Sec. 6.3, we introduce the viscous and

viscoelastic damping models that form the foundation of the rest of the paper; we discuss their

physical attributes as it relates to material deformation and address the non-standard eigenvalue

problem that arise from their representation in the equations of motion. Following this discussion,

Sec. 6.4 presents wave dissipation in phononic crystals and elastic metamaterials with a focus on

the qualitative differences between the viscous and viscoelastic types. In Sec. 6.5, these differences
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are explored further to reveal the implications on metadamping. Finally, conclusions are presented

in Sec. 6.6.

6.3 State-space Transformation

Damping dependent upon state variables other than the instantaneous displacement or ac-

celeration does not immediately yield a standard eigenvalue problem. In this section, by a state-

space transformation of the equations of motion, the standard eigenvalue problem is formulated

[77,78,132]. In the case of viscous damping, this transformation adopts the familiar Duncan form.

For the viscoelastic description, this formulation is extended by the addition of one or more internal

variables.

6.3.1 Formulation of Viscous Wave Propagation

Consider the unit cell of a phononic material with spatial periodicity in one, two, or three

dimensions. For a material model represented by a lumped-parameter system or by the spatial

discretization of a continuum, the equations of motion for a viscously damped unit cell are written

compactly in matrix form as

Mü + Cu̇ + Ku = f , (6.3)

where M, C, and K are the assembled n × n mass, damping, and equilibrium stiffness matrices,

respectively. While the material properties make the determination of M and K relatively straight-

forward, the coefficients of C must be extracted from experimental data [128–130]. Often, Cj is

obtained for each material/structural constituent j so that C is assembled from the individual Cj .

The n× 1 vector u collects the displacement degrees of freedom while the associated nodal forces

(applied by neighboring unit cells) are contained within f .

Following [57], we define an m× 1 (m < n) condensed displacement vector û containing the

minimal set of degrees of freedom including the internal ui and the essential boundary ub displace-

ments. The remaining boundary displacements are obtained from the essential boundary freedoms

through the application of the appropriate lattice propagation constant. Thus, exploiting Eq. (6.2),
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the condensed set relates to the full set of unit cell displacements according to u = Tû, where T

is the n×m transformation matrix enforcing the Bloch boundary conditions. For convenience, we

adopt the partitioning û = [ui ub]T. Given this arrangement, T may be partitioned into suitably-

sized identity matrices I and diagonal matrices for each propagation direction. For the case of a

cubic unit cell with lattice periods ai (i = 1, 2, 3), T has the block form

T =



I 0

0 I

0 Ieiκ1a1

0 Ieiκ2a2

0 Ieiκ3a3

0 Iei(κ1a1+κ2a2)

0 Iei(κ2a2+κ3a3)

0 Iei(κ1a1+κ3a3)

0 Ieiκ·a



. (6.4)

Equation (6.3) is written in terms of û as follows:

M̂¨̂u + Ĉ ˙̂u + K̂û = 0, (6.5)

where

M̂ = T∗MT, (6.6a)

Ĉ = T∗CT, (6.6b)

K̂ = T∗KT, (6.6c)

and T∗f = 0 [135], with T∗ being the conjugate transpose of T. Although, in this work, the

Bloch condition is applied through T, alternative formulations for lumped-parameter [78] and

discretized [136] systems are suitable.

In general, Ĉ is not simultaneously diagonalizable with M̂ and K̂ by the system eigenvectors,

and so applying the derivatives in Eq. (6.5) formulates a coupled, non-standard eigenvalue problem
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with eigenvalues λs and eigenvectors ûs (s = 1, . . . ,m). For such scenarios, Eq. (6.5) is recast into

first-order form via a state-space transformation [77]

Â ˙̂y + B̂ŷ = 0. (6.7)

where

Â =

 0 M̂

M̂ Ĉ

 , (6.8a)

B̂ = diag

−M̂ 0

0 K̂

 , (6.8b)

ŷ =

[
˙̂u û

]T

. (6.8c)

Now, assuming the solution ŷ = ȳeγt, we obtain a standard eigenvalue problem.

For viscous damping, the state-space transformation doubles the size of the original problem.

Consequently, the eigenvalue problem that emerges from the substitution of ŷ = ȳeγt in Eq. (6.7)

has eigenvalues γs and eigenvectors ȳs (s = 1, . . . , 2m) that appear in conjugate pairs. Given their

orthogonality with respect to the system matrices, the eigenvectors decouple the equations into 2m

modal equations with complex roots γs, and thus effectively represent 2m single-degree of freedom

systems. Focusing on the member of the conjugate pair with Im[γs] > 0, we can write

γs(κ) = −ξs(κ)ωs(κ) + iωs(κ)
√

1− ξ2
s (κ)

= −ξs(κ)ωs(κ) + iωd,s(κ), s = 1, . . . ,m

(6.9)

where, in the special case of Rayleigh damping, ωs(κ) is the undamped frequency. From Eq.

(6.9), we extract the wavevector-dependent damped frequency ωd,s(κ) and damping ratio ξs(κ),

respectively:

ωd,s(κ) = Im[γs(κ)], (6.10)

ξs(κ) = − Re[γs(κ)]

Abs[γs(κ)]
. (6.11)
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Figure 6.1: Maxwell element composed of a linear elastic spring and viscous dashpot representing,
respectively, conservative and non-conservative mechanical processes.

6.3.2 Formulation of Viscoelastic Wave Propagation

For the case of viscous damping presented in Sec. 6.3.1, the non-conservative forces are

assumed to depend only on the instantaneous velocities. In practice, this is unique to the situation

in which a viscous fluid is the mechanism for dissipation. The dissipative forces within common

materials such as polymers, composites, and even metals nonviscously depend on quantities other

than the instantaneous velocities. In the linear hereditary theory, energy loss is attributed to the

phase lag between the displacement and the applied stress [137]. The label “hereditary” refers to

the role of the past history of motion on the current state. While preserving the linearity of the

problem, perhaps the most general way of imparting this characteristic to Eqs. (6.3) and (6.5)

is through convolution integrals over kernel functions G(t) [133]. With exponentially decreasing

kernel functions of the form G(t) = µ1e−µ2t, we rewrite Eq. (6.5) as

M̂¨̂u +
∑̀
j=1

Ĉj

∫ t

0
µ1,je

−µ2,j(t−τ) ˙̂u(τ)dτ + K̂û = 0, (6.12)

where the summation reflects the possibility of multiple coefficient matrices and kernel functions

with relaxation pairs (µ1,j , µ2,j) being required to accurately describe the behavior. Such a system is

described as one of hereditary of degree `. Although, for the Maxwell element of viscoelasticity, the

kernel functions are traditionally associated with a stiffness matrix (effectively adding a dissipative

capability), in Eq. (6.12), the kernel functions are associated with the damping matrix (effectively

adding a storage capability). Figure 1 depicts a Maxwell element as a linear spring and a viscous

dashpot in series. The kernel function can be derived as [138]

G(t) = kMe−(kM/c)t. (6.13)

One may imagine that in the limit kM → ∞, the viscous dashpot joins a rigid spring such that

essentially no mechanical energy is stored by the spring and, instead, is dissipated by the dashpot.
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Viscoelastic effects emerge to varying degrees if kM has a finite, non-zero value that permits the

storage of a portion of the mechanical energy supplied to the Maxwell element. In the limit

kM → 0, the spring and dashpot effectively disengage and mechanical energy is neither conserved

nor dissipated. Multiple Maxwell elements arranged in parallel to an equilibrium spring (Maxwell-

Weichert model) may be applied to more accurately describe the material behavior.

In this section, we apply the state-space approach to Eq. (6.12) by introducing a set of

internal variables. We develop the state-space matrices using an approach proposed for finite

structural dynamics systems [132]; here, we extend it to the analysis of the unit cell problem.

The approach is specific to the case in which the magnitude of the relaxation pairs are equal (i.e.,

µj = µ1,j = µ2,j). This particular form of the kernel function, possessing a unit area,∫ ∞
0

µje
−µjtdt = 1, (6.14)

allows the direct comparison of the viscous and viscoelastic cases [131]. For the special case of

` = 1 and damping is low such that the damped frequency is approximately equal to the undamped

frequency, Ref. [131] describes a method for extracting µ1 and C̄1 from experimental data.

First, we equate each convolution integral with an internal variable p̂j such that

p̂j =

∫ t

0
µje
−µj(t−τ) ˙̂u(τ)dτ, (6.15)

M̂¨̂u +

k∑
j=1

Ĉjp̂j + K̂û = 0. (6.16)

From the Leibniz integral rule applied to Eq. (6.15), we obtain

˙̂pj = −
∫ t

0
µ2
je
−µj(t−τ) ˙̂u(τ)dτ + µj ˙̂u

= µj [ ˙̂u− p̂j ].

(6.17)

Substituting Eq. (6.17) into Eq. (6.16) gives

M̂¨̂u +

k∑
j=1

Ĉj

[
˙̂u− 1

µj
˙̂pj

]
+ K̂û = 0. (6.18)

At this point, incorporating Eq. (6.18) into a state-space format will result in non-square matrices.

To produce square and block-symmetric state-space matrices, we formulate an additional equation.
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Premultiplying Eq. (6.17) by Ĉj and dividing by µ2
j yields

− 1

µj
Ĉj

˙̂u +
1

µ2
j

Ĉj
˙̂pj +

1

µj
Ĉjp̂j = 0. (6.19)

Finally, adjoining (6.18) and (6.19) may be assembled into the state-space format of Eq. (6.7)

where

Â =



0 M̂ 0 0 · · · 0

M̂
k∑
j=1

Ĉj − 1
µ1

Ĉ1 − 1
µ2

Ĉ2 · · · − 1
µk

Ĉk

0 − 1
µ1

Ĉ1
1
µ21

Ĉ1 0 · · · 0

0 − 1
µ2

Ĉ2 0 1
µ22

Ĉ2 · · · 0

...
...

...
...

. . .
...

0 − 1
µk

Ĉk 0 0 · · · 1
µ2k

Ĉk



, (6.20a)

B̂ = diag

[
−M̂ K̂ 1

µ1
Ĉ1

1
µ2

Ĉ2 · · · 1
µk

Ĉk

]
, (6.20b)

ŷ =

[
˙̂u û p̂1 p̂2 · · · p̂k

]T

, (6.20c)

and diag[·] contains the elements of a block diagonal matrix.

Upon obtaining the eigenvalues γs, there are m conjugate pairs that physically represent the

modes of damped wave propagation. The remaining real eigenvalues are non-oscillating. As seen

in the above formulation, in the limit µj →∞ ∀j, the viscous state-space formulation [Eq. (6.8)] is

recovered. That is, high values of µj represent more viscous behavior (less dependence on the past

history), while low values of µj represent more viscoelastic behavior (more dependence on the past

history).

6.4 Band Structure of Damped Phononic Materials and the Viscous-to-

viscoelastic Transition

6.4.1 Lumped parameter model

The formulations in Eqs. (6.8) and (6.20) are suitable to a finite element discretization of

a material continuum; however, for simplicity, to compare the effects of viscous and viscoelastic
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Figure 6.2: Lumped parameter models of a two-mass 1D phononic material unit cell with lattice
spacing a with (a,c) the Bragg scattering configuration of a phononic crystal and (b,d) the locally
resonant configuration of an elastic metamaterial. In (a,b), damping is represented by a Zener
(viscoelastic damping) model; whereas in (c,d) it is represented by a KelvinVoigt (viscous damping)
model.

damping on wave propagation in periodic materials, we utilize a simple lumped-parameter material

model composed of point masses, linear elastic springs, and viscous dashpots. Furthermore, we

examine the results for two archetypal material configurations: phononic crystal (PC) [Fig. 6.2a]

and elastic metamaterial (AM) [Fig. 6.2b]. For the purpose of demonstration, the material param-

eters have the following relations: m2/m1 = rm = 3, c2/c1 = rc = 1/2, and k2/k1 = rk = 1. With

these criteria and degrees of freedom organized such that u = [u1 u2 uL]T, f = [f1 f2 fL]T,

and û = [u1 u2]T, we write the matrices associated with each unit cell configuration in Fig. 6.2
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explicitly. The two material configurations share a common mass matrix.

M = m2Mo = m2


1/rm 0 0

0 1 0

0 0 0

 (6.21)

Specifically, for the phononic crystal:

C = c2Co = c2


1/rc + 1 −1 −1/rc

−1 1 0

−1/rc 0 1/rc

 , (6.22a)

K = k2Ko = k2


1/rk + 1 −1 −1/rk

−1 1 0

−1/rk 0 1/rk

 , (6.22b)

T =


1 0

0 1

0 e−iκa

 . (6.22c)

For the metamaterial:

C = c2Co = c2


1/rc + 1 −1 −1/rc

−1 1 0

−1/rc 0 1/rc

 , (6.23a)

K = k2Ko = k2


1/rk + 1 −1 −1/rk

−1 1 0

−1/rk 0 1/rk

 , (6.23b)

T =


1 0

0 1

e−iκa 0

 . (6.23c)

After applying the transformation matrix, M̂, Ĉ, and K̂ are the same matrices appearing in
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Ref. [78]. Dividing by m2, the general equations of motion are

M̂o
¨̂u + βĈo

∫ t

0
µe−µ(t−τ) ˙̂u(τ)dτ + ω2

0K̂oû = 0, (6.24)

where β = c2/m2, which varies with c2, is a measure of damping intensity and ω0 =
√
k2/m2 =

150rad/s. To demonstrate the viscoelastic case, we employ only one kernel function.

6.4.2 Phononic crystal versus metamaterial and viscous versus viscoelastic damp-

ing

As we examine the frequency and damping ratio dispersion diagrams, the undamped con-

dition, achieved by setting the normalized damping intensity β/ω0 = 0, is represented by a

black curve, while light and dark green curves represent the damping conditions β/ω0 = 0.1 and

β/ω0 = 0.2, respectively. In particular, the frequency diagrams are normalized with respect to

ω0 = 150rad/s.

Figure 6.3: Damped dispersion diagrams (top row) of a discrete, two degree-of-freedom phononic
crystal (left column) and elastic metamaterial (right column). The undamped, long-wavelength
speed of sound, cst is displayed in each frequency diagram. The corresponding damping ratio
diagrams (bottom row) are a consequence of a complex temporal frequency in the application
of the Bloch condition. All mass, stiffness, and damping parameters are identical between each
material model.
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Figures 6.3a,c,e,g shows the dispersion diagrams generated by Eqs. (6.7) and (6.8) for the

viscous case [i.e., or Eq. (6.20) when all the corresponding kernels are delta functions]. Because the

damping force is proportional to the relative velocity (a function of λ) of each degree of freedom,

the damping effect is more pronounced at higher frequencies. Also noticeable, energy dissipated

by propagating waves manifests as a decrease in propagation frequency across the whole of the

wavenumber domain for each branch in Figs. 6.3a,e; which is characteristic of viscous damping.

Thus the width of the band gap decreases and the value of the central frequency shifts to lower

magnitudes. The corresponding damping ratio diagrams in Figs. 6.3c,g reinforces these findings.

Naturally, for sufficiently high β, wavenumbers for which ξs(κ) ≥ 1 (not shown) represent non-

oscillating modes.

Assuming a single relaxation parameter µ = 103 (kM ∝ µ), Figs. 6.3b,d,f,h demonstrate the

viscoelastic case. Similar to the viscous case, the effect of damping increases with frequency. On the

other hand, the viscoelastic frequency diagrams in Figs. 6.3b,f display unique behavior compared

to the viscous case. Under the chosen viscoelastic conditions, both branches show an increase in

frequency across the wavenumber domain with this trait emphasized in the second branch. As

a consequence, the band gap widens and its central frequency shifts upwards. By introducing

a hereditary effect into the damping model, a portion of the mechanical energy that would be

dissipated in the viscous case is instead conserved, leading to the increase in frequency and the

decrease in damping ratio seen in Figs. 6.3d,h, respectively. This is a manifestation of joining an

elastic spring in series with the viscous dashpot, forming a Maxwell element.

6.4.3 Damping zones and transition lines

In Sec. 6.3.2, we emphasized that in the limit µj →∞ ∀j, the viscous state-space formulation

[Eqs. (6.8)] is recovered. For each material configuration of the models examined in Fig. 6.3, the

plots in Fig. 6.4 track the evolution of the viscoelasticly damped band-gap edge frequencies over

a range of µ for β/ω0 = 0.1 and β/ω0 = 0.2. The light and dark green dashed horizontal lines

indicate the location of the viscously damped edge frequencies for, respectively, these two values
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Figure 6.4: Viscoelasticly damped band-gap edge frequencies over the viscoelastic-viscous regime.
Dashed, horizontal lines mark the value of the corresponding viscously damped band-gap frequen-
cies.

of damping intensities. The dashed black lines correspond to the undamped case. The maximum

viscoelastic effect grows with damping intensity as the storage capability of the Maxwell element

is amplified more than the dissipative capacity.

For ease of exposition, since the results are similar between the material types, we focus

exclusively on the phononic crystal model to further examine viscoelastic wave propagation. The

plots in Fig. 6.5 highlight the viscous-viscoelastic metamorphosis particular to β/ω0 = 0.2 in Fig.

6.4a. Using a Maxwell element with a fixed c and variable kM as a guide, we inspect the damped

band-gap edge frequencies for various values of µ ∝ kM. Point A marks the value of µ at which

the band-gap edge frequency is 1% over the viscous value and beyond which kM is so stiff that it is

effectively a rigid rod and the vast majority of the energy transferred to the Maxwell element (i.e.,

not stored by the equilibrium springs k1,2) is dissipated by the dashpot. In this limiting case, the

viscoelastic band structure closely resembles the corresponding viscous band structure. Conversely,

point D marks the value of µ at which the band-gap edge frequency is 1% over the undamped value

and below which kM is so elastic as to effectively disengage the dashpot so as to deprive the Maxwell

element of mechanical influence. As a result, the damped band-gap edge frequencies approach their

undamped values and so does the viscoelastic band structure as a whole. Between points A and D,
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Figure 6.5: Detailed view of viscoelasticly damped band-gap frequencies in Fig. 6.4 (β/ω0 = 0.2).

while dissipation remains present in the Maxwell element, kM is neither too rigid nor too flexible

to store a meaningful fraction of mechanical energy. Point B marks the value of µ where the

undamped and damped band-gap edge frequencies are equal, as if the spring component of the

Maxwell element cancels the damping component, although this equivalence is not necessarily true

universally over the entire wavenumber domain. At point C, the energy storage capability reaches

its zenith and the damped band-gap edge frequency achieves the greatest separation above its

viscously damped counterpart.

In Fig. 6.5, it is apparent that points A–D do not coincide between the two branches,

softening thus rendering the transition between the contrast between the viscous and viscoelastic

behavior frequency dependent. To better distinguish the two two damping regimes, we identify

essentially viscous damping as that for which the viscoelastic band structure ωVE is, on average,

within 1% of the viscous band structure ωV as obtained from matrices of Eq. (6.8). Similarly,
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with the undamped band structure ωU as a reference, we separate the qualitatively undamped and

viscoelastic regions. Mathematically, the relevant criteria may be stated as follows:

φ1 =
1

mC

m∑
s=1

∮ (
ωVE,s

ωU,s
− 1

)
dκ

 φ ≤ 0.01 undamped

φ > 0.01 viscoelastic

(6.25a)

φ2 =
1

mC

m∑
s=1

∮ (
ωVE,s

ωV,s
− 1

)
dκ

 φ ≤ 0.01 viscous

φ > 0.01 viscoelastic

(6.25b)

where C is the path length of the irreducible Brillouin zone (IBZ). In the present case, assuming a

lattice spacing of a = 1, then C = π.

Figures 6.6a,b show the variation of φ1,2 as a function of µ for a set of damping intensi-

ties, specifically, β/ω0 = {0.05, 0.10, 0.15, 0.20}. Typically, φ1,2(µ) displays a single maximum at

µ = µpeak where the viscoelastic band structure has the greatest disagreement with the relevant

undamped or viscous band structure. In Fig. 6.6a, for µ < µpeak, 1 approaches zero as ωVE

better approximates ωU. Detailed in the inset, the undamped-to-viscoelastic transition occurs at

µ = µtrans, where φ1(µtrans) = 0.01. As the prescribed damping intensity β/ω0 increases, it is

observed that µtrans shifts to ever lower values. Above µpeak, the function converges to negative

values as ωVE descends below the undamped band structure to approach ωV. Using φ2, Fig. 6.6b

shows the transition of the band structure from viscoelastic to the viscous condition. In Fig. 6.6b,

as β/ω0 increases, the slope of φ2 for µ > µpeak becomes steeper such that the transition to viscous

behavior becomes more abrupt. At the higher damping intensities presented in Fig. 6.6c, µtrans

indicates the increasing abrupt transition as it moves closer to µpeak. Below µpeak, the opposite

occurs and ever smaller values of are required to trigger the transition to the undamped regime.

Figure 6.6c combines the results of Figs. 6.6a,b to define the viscoelastic region over a range

of damping levels. The transitions to viscoelastic behavior from the respective undamped and

viscously damped conditions are indicated. Below β/ω0 ≈ 0.016, φ1,2 ≤ 0.01 ∀µ and so, following

our criteria, no clear distinction between the three damping scenarios exists. However, given that

undamped and viscous qualities reside on either side of µpeak, it may serve as a boundary between

the two regimes in this otherwise ambiguous damping region. At β/ω0 ≈ 0.016, the viscous-
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viscoelastic transition is established when first φ1,2(µpeak) = 0.01 and µtrans = µpeak. Generally, for

φ1 and φ2, these points do not coincide but converge with transition criteria more demanding than

the present 1%.

Strikingly, for constant β/ω0, an overly damped, non-propagating dispersion branch [ωd,s(κ) =

0 for all or a subset of κ] in the viscous region may become a propagating branch in the viscoelastic

region as a result of the amplification of kM with decreased µ. This amplification leads to a second

interesting result. Under viscous circumstances, if K = 0, wave propagation is impossible; however,

with the storage capability of the Maxwell element, this is not necessarily true under viscoelastic

conditions. Increasing C or decreasing µ may amplify kM to the extent of supporting oscillation

and, thus, wave propagation in the phononic material. With K = 0 and the appropriate kernel

function, we model a viscoelastic fluid [137], not a viscoelastic solid. For our phononic crystal, the

viscoelastic fluid domain is indicated in Fig. 6.6b.

6.5 Metadamping: Enhancement of modal dissipation

To combat potentially damaging dynamic loads, it is desirable for an engineering material to

possess a high damping capacity while maintaining a load-bearing capability (stiffness). However,

for classic materials, an advantage in one of these traits comes at the expense of the other. For

example, the load-bearing capability of steel is exploited in many engineering applications although

its damping capacity is unremarkable; on the contrary, polymers such as rubber excel at dissipat-

ing energy but possess little stiffness. The challenge of achieving simultaneously high stiffness and

high damping within a material has been met in a variety of ways. Chung [113] sought the optimal

combination of dissipative and stiff elements forming a composite. Van Humbeek [112] explored the

conditions (amplitude, frequency, etc.) for which metal alloys with highly dissipative martensitic

phases achieved superior damping and stiffness. Lakes et al [111] demonstrated the efficacy of em-

bedding negative-stiffness inclusions within a supporting matrix to generate a material with extreme

damping and stiffness. Meaud et al [48] designed a hierarchical microstructure that displayed sig-

nificantly higher stiffness than conventional polymers while maintaining high damping. In a recent
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Figure 6.6: The fractional deviation of the viscoelastic band structure ωVE from the (a) undamped
band structure ωU and (b) viscous band structure ωV. Particular to the damping intensity, ωVE

transitions to either ωU or ωV at a specific µ = µtrans. With µtrans < µpeak, φ1(µtrans) = 0.01
marks the undamped-viscoelastic transition. Similarly, with µtrans > µpeak, the viscous-viscoelastic
transition occurs when φ2(µtrans) = 0.01. (c) A map distinguishing the three phases of ωVE. The
viscoelastic fluid domain indicates where wave propagation is possible even with K = 0.

study [125], the concept of metadamping was introduced to describe the phenomenon of damping

emergence that may arise in an acoustic/elastic metamaterial. Specifically, when compared to a

statically equivalent phononic crystal with identically prescribed damping, a metamaterial may ex-

hibit higher dissipation levels across many, if not all, modes of wave propagation. This phenomenon

has implications for the design of highly dissipative materials that maintain (or do not sacrifice)

mechanical load-bearing capacity. Previously, metadamping has been demonstrated for viscous

conditions [125]. In this Section, we utilize our material models to illuminate the metadamping

phenomenon in viscoelastic circumstances.
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Given that the total mass of each configuration in Fig. 6.2 is the same, static equiva-

lence is achieved when, in the absence of dissipation, the long-wavelength sound speed, cst =

lim|κ|→0(ω1(κ)/|κ|), of each material is also in agreement. At present, as indicated in Figs. 6.3a,e,

cPC
st = 91.85 and cAM

st = 129.86. While maintaining rk, the two long-wavelength sound speeds may

be brought into agreement by strengthening the springs of the phononic crystal such that ω0 is

configuration-specific (i.e., ωPC
0 6= ωAM

0 ). Alternatively, the same goal can be achieved by weaken-

ing the springs of the metamaterial. The damping ratio diagrams may then be used to compare the

damping capacity of each material configuration. For this purpose, we calculate the total damping

ratio over both branches,

ξνtot =
m∑
s=1

∮
ξνs (κ)dκ ν = PC,AM (6.26)

where the integration is over the IBZ boundaries.

Figure 6.7: Total damping ratio over both branches for the phononic crystal (solid) and meta-
material (dashed) over a range of cst values for (a) the viscoelastic condition and (b) the viscous
condition. The total damping ratio of each configuration is displayed for comparison until the
overdamped condition (ξ > 1) is attained.

For β/ω0 = 0.2, the diagrams in Fig. 6.7 illustrate the variation of ξtot over a range of cst.

In each plot, the dashed curve corresponding to ξAM
tot and the solid curve of ξPC

tot enclose a positive

metadamping region (i.e., (ξAM
tot − ξPC

tot ) > 0). A typical feature of each plot is the downward

slope of ξνtot as cst increases, a result of the material becoming stiffer. The metadamping region

is bounded on the left by a minimum value of cst for which dissipative wave propagation is still
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possible for both configurations over the entire boundary of the IBZ. Below this value of cst, the

elastic metamaterial is overdamped and, because Eq. 6.11 limits the damping ratio to ξ ≤ 1, a fair

comparison of ξPC
tot and ξAM

tot can no longer be made. Inspecting each frame in Fig. 6.7 reveals the

effect of viscoelasticity on the metadamping region. Naturally, the metadamping region diminishes

and favors the lower left of the diagram as the damping condition becomes more viscoelastic and

heredity mitigates the dissipation of mechanical energy.

Figure 6.8 shows the sensitivity of the metadamping phenomenon to the relevant material

parameters. As increased heredity effectively transforms the viscous dampers into elastic springs in

Fig. 6.8a, the metadamping region simultaneously descends the ξtot-axis and collapses. Metadamp-

ing results from the concentration of strain energy, a task at which the elastic metamaterial, with

the aid of the internal resonator, outperforms the phononic crystal. In general, as illustrated in Fig.

6.8b,c,d, decreasing rm or increasing the coupling between m1 and m2 through one or a combination

of rc →∞ and rk →∞ diminishes the role of the internal resonator and curtails the metadamping

phenomenon. The metamaterial resembles more the phononic crystal as rm decreases. Manipulat-

ing the ratio of damping viscosities rc bestows the metamaterial resonator with more/less influence

over the emergent phenomenon. Smaller storage ratios are indicative of a decreased ability for the

metamaterial resonator to cache the energy of oscillation and, thus, the dissipative element of the

resonator expresses greater influence. Consequently, smaller storage ratios promote the emergence

of the metadamping phenomenon.

Until now, metadamping has been demonstrated with the aid of a locally resonant material

possessing a dipole resonance. However, locally resonant material designs featuring monopolar

[29] and quadripolar [27, 30] resonances appear in the literature. This motivates a study of what

effect the type of resonance has on the material damping capacity. Continuing with the one-

dimensional lumped parameter models used thus far, in Fig. 6.9, we present the unit cell of an

elastic metamaterial similar to that of Ref. [139] (although with damping elements) and supporting

a monopole resonance. Four rigid, massless truss members connect the unit cell microstructure.

While the mass and transformation matrices are the same as those defined in Eqs. (6.21) and
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Figure 6.8: Variation of the metadamping phenomenon with material parameters rm, rc, and
rk affecting the influence of the metamaterial internal resonator and µ affecting the influence of
heredity. Damping intensity held constant at β/ω0 = 0.2. Except where plainly contradictory,
rm = 3, rc = 1/2, and rk = 1. A negative metadamping (ξAM

tot < ξPC
tot ) region emerges as rm → 0.

(6.23c), respectively, the corresponding damping and stiffness matrices for the unit cell in Fig. 6.9

are given by Eq. (6.27) where δ = (a/D)2.

C = c2Co = c2


1/rc + δ/2

√
δ −(1/rc + δ/2)

√
δ/2 1 −

√
δ/2

−(1/rc + δ/2) −
√
δ 1/rc + δ/2

 (6.27a)

K = k2Ko = k2


1/rk + δ/2

√
δ −(1/rk + δ/2)

√
δ/2 1 −

√
δ/2

−(1/rk + δ/2) −
√
δ 1/rk + δ/2

 (6.27b)

The band structure associated with the monopolar metamaterial has features similar to the
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Figure 6.9: Lumped parameter model of a two-phased 1D phononic material unit cell with local
monopolar resonance.

dipolar metamaterial and will not be shown here. In addition, the conclusions reached earlier in this

section regarding the effects of viscoelasticity, energy concentration, and coupling on the metadamp-

ing phenomenon still hold. For simplicity, we consider the viscous case in the metadamping plot in

Fig. 6.10. Here the total damping ratio associated with the phononic crystal, elastic metamaterial

with dipole resonance (DP), and elastic metamaterial with monopole resonance (MP) (δ = 1) are

compared over a range of cst. Monopole responses have a higher degree of symmetry than those

of the dipole which permits a greater concentration of mechanical energy. With the application of

damping, this superior ability to pool mechanical energy results in greater damping amplification

for the monopole metamaterial than the dipole metamaterial and phononic crystal. Extending this

reasoning to quadrupole and higher-order resonances, it is expected that the metadamping region

will generally narrow with the increased order of the resonance. More work is needed to confirm

this.

6.6 Conclusions

In this article, viscous and viscoelastic descriptions of material damping are used to model

dissipative wave propagation in two archetypal phononic materials: an elastic metamaterial and
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Figure 6.10: Total damping ratio over both branches for the phononic crystal (solid), metamaterial
with dipole resonance (dashed), and metamaterial with monopole resonance (dotted) over a range
of cst values for the viscous condition.

a phononic crystal. The viscous assumption (characteristic of fluids) regards the instantaneous

velocity to be the only relevant state variable in the determination of the damping force, while the

viscoelastic condition [characteristic of polymeric solids and (to a lesser extent) metals] accounts

for the whole time history of motion through convolution integrals over exponentially decreasing

kernel functions associated with the damping matrix. Following [132], the viscoelastic equations of

motion are recast into a standard eigenvalue problem by an extended state-space transformation

which acquires the familiar Duncan form of viscous damping when all kernels are delta functions.

We observe viscous damping to decrease the propagating frequency and thereby contract the band

structure; however, the hereditary effect of viscoelastic damping mitigates this response. By re-

garding viscoelasticly damped band-gap frequencies within 1% of their viscously damped values as

representative of essentially viscous behavior, we define a viscous-viscoelastic transition. Plotted

over a parameter space of damping and kernel decay constants, the transition traces a bow shape

as increasingly narrow kernel functions are required to trigger the viscous-viscoelastic transition

at higher damping intensities. Similar to [125], we found the influence of dissipation to be greatly

affected by the configuration of the material through which a wave propagates. In localizing mechan-

ical energy, the damping capacity of elastic metamaterials (locally resonant materials) is, in general,

amplified when compared to statically equivalent phononic crystals (Bragg-scattering materials).
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Among the locally resonant materials, those with monopolar resonance yield greater amplification

over their counterparts with dipolar resonance. The hereditary effect of viscoelasticity lessens this

effect, as does increased coupling between the matrix and inclusions. The consequences of these

findings extend to the design of materials for elastic/acoustic vibration reduction, mitigation, and

absorption purposes.



Chapter 7

Conclusions

The studies taken up in this dissertation are directed toward an understanding of dissipative

wave propagation in phononic materials for improved performance prediction and extending the

application space. To this end, methods from structural dynamics analysis were extended to the

wave propagation problem at the material level to reveal the impact of dissipation on the band

diagram and the dynamic effective properties. The results inspire a phononic-based solution to a

long-standing materials problem. The purpose of this chapter is to recapitulate the main findings

and to suggest some future research directions.

7.1 Summary

The native control of acoustic/elastic waves opens phononic materials to many applications

in engineering where noise reduction and vibration isolation is desirable. In addition, their dynamic

effective properties are central to the realization of advanced concepts, including cloaking and super-

resolution imaging devices. Bloch’s theorem forms the theoretical foundation of phononic material

analysis, yielding the frequency band diagram, which summarizes much of the wave propagation

characteristics and provides insight into the performance of the phononic structure in its practical

engineering form. Material damping inevitably leads to dissipation of the wave energy; however,

due to the variety of damping mechanisms and the complexity of damping models, among other

reasons, much of the theoretical literature assumes conservative systems. This assumption nega-

tively impacts the predictability of implemented phononic material designs and foregoes damping
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as a design parameter/objective. To address each of these issues, this dissertation extends the

models and analysis techniques originally developed in the context of vibration in finite structures

to wave propagation in phononic materials.

Chapter 1 introduces phononic materials and indicates where the dissertation fits within the

relevant literature. Phononic materials are shown to consist of fundamental structural elements

called “unit cells” that repeat periodically in one-, two-, or three spatial dimensions. This inter-

nal structuring affects the propagation of acoustic/elastic waves in a manner described by Bloch’s

theorem, opening phononic materials to vibration control applications in engineering. The chap-

ter shows how the frequency band diagram, the result of a unit cell analysis, describes the wave

propagation characteristics of a phononic material and how its results relate to the dynamics of the

corresponding structure. Phononic materials are divided into two subcategories—phononic crystals

and metamaterials—and advanced applications (i.e., beyond vibration control) are highlighted for

each classification. Metamaterials have especially remarkable applications due to their unnatural

dynamic effective properties which may include negative density and modulus. The chapter con-

cludes with a literature review pertaining to the subject of dissipative wave propagation in damped

phononic materials, placing this dissertation within it and identifying the dissertation objectives

as improved predictability of phononic material performance and damping as a design parame-

ter/objective.

A review of the literature highlights the prevalence of studies investigating dissipative wave

propagation from the perspective of waves at prescribed frequencies. Free waves have received far

less attention and only from the propagating modes of the band diagram. Chapter 2 constructs

the complete band diagram (propagating and non-propagating modes) for free waves and compares

this to the corresponding complete diagram for prescribed waves. In the absence of energy dissi-

pation, the two band diagrams are the same. For prescribed waves, material damping hinders the

transmission of energy between subsequent unit cells, resulting in spatial attenuation throughout

the spectrum. For free waves, energy dissipation lowers the propagation frequency resulting in a

more compact band diagram. Free waves also experience a temporal decay in amplitude whose
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normalized rate, the damping ratio, is expressed in its own diagram. Damped phononic structures

will inhabit both impact and harmonic loading environments where the complete band diagram for

free and prescribed waves, respectively, will provide insight into the structure’s performance. The

chapter also examines the correlation between the response of infinite periodic phononic materials

and their finite counterpart.

Chapter 3 presents a parallel study on phononic material performance from the perspective

of the effective properties that emerge dynamically from damped phononic materials due to the

motion of the internal structure. Following a homogenization procedure, a dynamic effective den-

sity and modulus are determined, and, unique to the literature, in the case of damped phononic

materials, a dynamic effective viscosity. The dynamic effective viscosity provides a means of quan-

tifying damping in composite materials while taking into account inertia effects. The conventional

viscoelastic correspondence principle does not account for inertia effects and, thus, is restricted to

low frequencies. As suggested by the disparate band diagrams of free and frequency-prescribed

waves presented in Ch. 2, these properties are sensitive to the type of wave propagation. For free

waves, the dynamic effective properties remain positive and real-valued except for the frequency

region of the band gap where propagation is forbidden. For frequency-prescribed waves, the effec-

tive properties, are complex at every frequency. These dynamic effective properties, especially the

viscosity parameter, are of significance to advanced phononic applications such as acoustic super-

resolution imaging and acoustic cloaking whose performance depends on precise dynamic effective

properties.

Focusing on free waves, the remaining chapters (Chs. 4, 5, and 6) consider discrete mod-

els (lumped or discretized continuum) and extend structural dynamics methods for vibration in

generally damped structures to wave propagation in generally damped phononic materials. Chap-

ter 4, using a state-space transformation, demonstrates the band diagram phenomena of branch-

overtaking and branch cut-off unique to free waves. Using an extended state-space transformation,

Ch. 6 continuously tunes the frequency band diagram from the undamped to the viscously damped

regimes with an intervening viscoelastic domain. The two damping cases, the viscous and viscoelas-
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tic regimes, respectively, reflect material damping mechanisms stemming from motion involving a

fluid and relaxation processes in polymers/metals. Thus, phononic materials of a variety of com-

positions are represented.

As a dimensionless measure of the amplitude decay rate, the damping ratio diagram intro-

duced in Ch. 2 may be used to compare the damping capacity of phononic materials with differing

internal structure. Chapter 5 highlights the strategic design of phononic materials for engineering

applications where high damping is desired without sacrificing load-bearing capacity as is common

for conventional materials/composites. The damping capacity of two metamaterials, distinguished

by monopolar and dipolar resonance, and a reference phononic crystal are compared. Taking

advantage of the increased dissipation associated with resonance, the metamaterials show an en-

hanced damping capacity over the phononic crystal, a phenomenon referred to as “metadamping”.

Moreover, the uniform force distribution of the monopole resonance outperforms the directional

force distribution of the dipole resonance. The metadamping effect addresses the long-standing

challenge of realizing a material with simultaneously high stiffness and damping capacity. For an

additive effect, metadamping may be integrated with other damping enhancement methods (e.g.,

material/mechanical instabilities, hierarchical internal structuring, etc.).

7.2 Future Research Directions

The studies conducted in this dissertation have shown the impact of energy dissipation on

wave propagation in phononic materials which improves the prediction of their performance. The

same qualitative behavior can be expected to appear in practice. Opportunities to design for

extreme damping have also been highlighted. The following are potential avenues of research

emerging from this dissertation.

• Experimental Verification: The models in this dissertation deliver qualitative results of

dissipative wave propagation that, in a broad sense, are expected to arise in practical

implementations. There is a need for experimental verification to further refine the models
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and direct future theoretical investigations in synergistic manner.

• Material/Geometric Nonlinearities: Throughout the dissertation, the material models have

been linear which facilitated the derivation of close-form solutions for the dispersion rela-

tions. However, certain materials, such as muscle tissue, demonstrate a nonlinear damping

response. In general, nonlinear effects are triggered by large deformation [140]. Particu-

lar lattice constructions, may display a strong amplitude dependence [42]. Such systems

present an opportunity to realized a wide, tunable range of effective properties. These

to factors motivate the use of more complex damping models and extending the linear

dynamic homogenization procedure to the nonlinear regime.

• Harnessing Instabilities: Fabricating shape memory alloy (SMA) nanolattices with com-

bined elastic buckling and metadamping could lead to enhanced dissipation for sensitive mi-

croelectromechanical systems (MEMS). The austenite-martensite phase transition in SMAs

represents a material instability marked by energy dissipation [112]. Moreover, a signifi-

cant size effect has been reported whereby the nanoscale samples demonstrate an enhanced

damping capacity compared to the bulk [141]. Meza et al [142] constructed recoverable ce-

ramic nanolattices following a unit cell design methodology that exchanges brittle fracture

for elastic shell buckling, a mechanical instability.

• Minimizing Loss Many proposed phononic material designs for constructing super-resolution

imaging lenses involve a highly dissipative local resonance effect. Dissipation erodes the per-

formance of the device. The resonance effect is insensitive to the lattice configuration of the

resonating bodies, however, the overall dissipation may be affected. Considering prescribed

waves, the homogenization procedure will elucidate the effect of resonator orientation on

dissipation.
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Appendix A

Waves in Phononic Materials

A.1 Mode Shapes

In addition to the eigenvalue, γ, Eq. (2.17) yields the eigenvector (state vector), y(x1
L),

containing the displacement and stress at the left boundary of the unit cell. With this result, we

present the following procedure for calculating the displacement and stress mode shapes in a 1D

phononic material.

To have a fixed frame of reference, we designate the position of the left boundary of the unit

cell at x = x1
L = 0. Given that Cj(0) = I , according to Eq. (2.11), the eigenvector computed from

Eq. (2.17) can expressed as:

y(x1
L) = B1a1. (A.1)

Thus, the amplitude vector for the left end of the unit cell is easily determined:

a1 = B−1
1 y(x1

L). (A.2)

Utilizing the transfer matrix, T1, we are able to relate y(x2
L) to y(x1

L) as

y(x2
L) = T1y(x1

L) = B2C2(x2
L)a2 (A.3)

from which we obtain the amplitude vector for the left end of the second layer of a unit cell in

terms of the computed eigenvector

a2 = [B2C2(x2
L)]−1T1y(x1

L). (A.4)
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With the aid of Eq. (2.15), this process may be extended to any layer j of a unit cell of n layers,

aj = [BjCj(x
(j)
L )]−1Tj−1 · · ·T0y(x1

L) (A.5)

where T0 := I.

Once all aj have been determined, the portion of the displacement and stress mode shapes

within each layer in the first unit cell can be computed from Eq. (2.11). Furthermore, Bloch’s

theorem, as formulated in Eq. (2.16), may be used to compute the displacement and stress mode

shapes over as many subsequent unit cells as desired. A full mode shape is realized when the

displacement/stress profile spans a complete wavelength, 2π/κR, noting that the periodicity of the

wave mode shape is related to the periodicity of the medium through the phase multiplier eiκa.

A.2 Damped Vibration in 1D Phononic Structures

In subsection 2.3.2, the transfer matrix method implements successive matrix operations Tj

and enforces continuity conditions to relate the boundary states u(x1
L) and σ(x1

L) across each layer

j of a phononic crystal unit cell. Bloch’s theorem and the cumulative transfer matrix (the product

of the successive matrix operations) T, formulate an eigenvalue problem from which the eigenval-

ues establish the dispersion relations and the eigenvectors (the boundary states) may be used to

develop mode shapes. For an infinite periodic material, such as a phononic crystal, Bloch’s theo-

rem imposes periodic boundary conditions. However, for a periodic structure of finite dimension,

the boundary conditions are known a priori, allowing for the determination of structural dynamic

characteristics using only the cumulative transfer matrix. Here, we formulate the equations for the

natural frequencies and frequency response of a finite phononic structure.

A.2.1 Natural Frequencies

For each layer j of the unit cell, we solve Eq. (2.6) for the two κ
(j)
s solutions

κ(j)
s = ±λs

√
ρ(j)

E(j) + λsη(j)
, s = 1, 2, . . . ,m (A.6)
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which we substitute into Eq. (2.14) and ultimately Eq. (2.15). Naturally, for a phononic structure

composed of M unit cells of n layers, we have

y(xnMR ) = Vy(x1
L) (A.7)

where V(λs) = TM . For a free-free structure, σ(x1
L) = σ(xnMR ) = 0, and so V21(λs)u(x1

L) = 0.

However, since u(x1
L) 6= 0,

V21(λs) = 0 (A.8)

is the secular equation whose m solutions λs simultaneously deliver the damped natural frequen-

cies ωd,s = Im[λs] and damping ratios ξs = Re[λs]/|λs|. The associated discretized real-valued

wavenumbers are

κs =
sπ

Ma
. (A.9)

A.2.2 Frequency Response and Attenuation

With the exception of the determination of κ(j) and the choice of boundary conditions, the

development of the frequency response function mirrors that which formulated Eq. (A.8) in A.2.1.

In the present case, κ(j) is determined by Eq. (2.5) and Eq. (A.7) is constructed with V(ω). For

a fixed-free structure with a harmonic excitation at the free end, one possible set of boundary

conditions is u(x1
L) = 0, σ(x1

L, t) = Σ1
Leiωt (steady-state response), and σ(xnMR , t) = ΣnM

R eiωt

(forcing). Consequently, ΣnM
R eiωt = V22(ω)Σ1

Leiωt, which we manipulate into the frequency response

function ∣∣∣∣ Σ1
L

ΣnM
R

∣∣∣∣ = |V22(ω)|−1 . (A.10)

Using Eq. (A.10), we may also determine the attenuation that occurs over the span of the

periodic structure. With ΣnM
R as a reference, we write the stress amplitude at the fixed end in terms

of that at the free end, Σ1
L = ΣnM

R eiκMa. However, recognizing that κ = κR + iκI, this relation may

be expressed as Σ1
L = ΣnM

R eiκRMae−κIMa. By taking the absolute value of the ratio of stresses as

in Eq. (A.10), we arrive at ∣∣∣∣ Σ1
L

ΣnM
R

∣∣∣∣ = e−κIMa. (A.11)
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Finally, we divide the natural logarithm of Eq. (A.11) by the negative of the structure dimension

` = Ma to complete the derivation.

κI = −1

`
ln

∣∣∣∣ Σ1
L

ΣnM
R

∣∣∣∣ (A.12)


