
ON QUASI-NEWTON FORWARD–BACKWARD SPLITTING:
PROXIMAL CALCULUS AND CONVERGENCE

STEPHEN BECKER∗, JALAL FADILI† , AND PETER OCHS‡

Abstract. We introduce a framework for quasi-Newton forward–backward splitting algorithms (proximal quasi-
Newton methods) with a metric induced by diagonal ± rank-r symmetric positive definite matrices. This special
type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general
proximal calculus in the new metric. By using duality, formulas are derived that relate the proximal mapping in a
rank-r modified metric to the original metric. We also describe efficient implementations of the proximity calculation
for a large class of functions; the implementations exploit the piece-wise linear nature of the dual problem. Then, we
apply these results to acceleration of composite convex minimization problems, which leads to elegant quasi-Newton
methods for which we prove convergence. The algorithm is tested on several numerical examples and compared to a
comprehensive list of alternatives in the literature. Our quasi-Newton splitting algorithm with the prescribed metric
compares favorably against state-of-the-art. The algorithm has extensive applications including signal processing,
sparse recovery, machine learning and classification to name a few.

Key words. forward-backward splitting, quasi-Newton, proximal calculus, duality.

AMS subject classifications. 65K05, 65K10, 90C25, 90C31.

1. Introduction. Convex optimization has proved to be extremely useful to all quantitative
disciplines of science. A common trend in modern science is the increase in size of datasets, which
drives the need for more efficient optimization schemes. For large-scale unconstrained smooth convex
problems, two classes of methods have seen the most success: limited memory quasi-Newton methods
and non-linear conjugate gradient (CG) methods. Both of these methods generally outperform
simpler methods, such as gradient descent. However, many problems in applications have constraints
or should be modeled naturally as non-smooth optimization problems.

A problem structure that is sufficiently broad to cover many applications in machine learning,
signal processing, image processing, computer vision (and many others) is the minimization of the
sum of two convex function, one being smooth and the other being non-smooth and “simple” in a
certain way. The gradient descent method has a natural extension to these structured non-smooth
optimization problems, which is known as proximal gradient descent (which includes projected gra-
dient descent as a sub-case) or forward–backward splitting [5]. Algorithmically, besides a gradient
step with respect to the smooth term of the objective, the generalization requires to solve proximal
subproblems with respect to the non-smooth term of the objective. The property “simple” from
above refers the proximal subproblems. In many situations, these subproblems can be solved analyt-
ically or very efficiently. However, a change of the metric, which is the key feature of quasi-Newton
methods or non-linear CG, often leads to computationally hard subproblems.

While the convergence of proximal quasi-Newton methods has been analyzed to some extent
in the context of variable metric proximal gradient methods, little attention is paid to the efficient
evaluation of the subproblems in the new metric. In this paper, we emphasize the fact that quasi-
Newton methods construct a metric with a special structure: the metric is successively updated
using low rank matrices. We develop efficient calculus rules for a general rank-r modified metric.
This allows popular quasi-Newton methods, such as the SR1 (symmetric rank-1) and the L-BFGS
methods, to be efficiently applied to structured non-smooth problems. The SR1 method pursues a
rank-1 update of the metric and the L-BFGS method uses a rank-2 update.

We consider the results in this paper as a large step toward the applicability of quasi-Newton

∗Applied Mathematics, University of Colorado Boulder (stephen.becker@colorado.edu).
†Normandie Univ, ENSICAEN, CNRS, GREYC, France (Jalal.Fadili@greyc.ensicaen.fr).
‡Saarland University, Saarbrücken, Germany (ochs@math.uni-sb.de).

1

methods with a comparable efficiency for smooth and structured non-smooth optimization problems.

1.1. Problem statement. Let H = (RN , 〈·, ·〉) equipped with the usual Euclidean scalar

product 〈x, y〉 =
∑N
i=1 xiyi and associated norm ‖x‖ =

√
〈x, x〉. For a matrix V ∈ RN×N in

the symmetric positive-definite (SPD) cone S++(N), we define HV = (RN , 〈·, ·〉V) with the scalar
product 〈x, y〉V = 〈x, V y〉 and norm ‖x‖V corresponding to the metric induced by V . The dual
space of HV , under 〈·, ·〉, is HV −1 . We denote the identity operator as Id. For a matrix A, A+ is
its Moore-Penrose pseudo-inverse. For a positive semi-definite matrix A, A1/2 denotes its principal
square root.

An extended-valued function f : H → R∪{+∞} is (0)-coercive if lim‖x‖→+∞ f (x) = +∞. The
domain of f is defined by dom f = {x ∈ H : f(x) < +∞} and f is proper if dom f 6= ∅. We say
that a real-valued function f is lower semi-continuous (lsc) if lim infx→x0

f(x) ≥ f(x0). The class
of all proper lsc convex functions from H to R ∪ {+∞} is denoted by Γ0(H). The conjugate or
Legendre-Fenchel transform of f on H is denoted f∗.

Our goal is the generic minimization of functions of the form

min
x∈H

{F (x) := f(x) + h(x)} , (P)

where f, h ∈ Γ0(H). We also assume the set of minimizers Argmin(F) is nonempty. Write x? to
denote an element of Argmin(F). We assume that f ∈ C1,1(H), meaning that it is continuously
differentiable and its gradient (in H) is L-Lipschitz continuous.

The class we consider covers structured smooth+non-smooth convex optimization problems,
including those with convex constraints. Here are some examples in regression, machine learning
and classification.

Example 1.1 (LASSO). Let A be a matrix, λ > 0, and b a vector of appropriate dimensions.

min
x∈H

1

2
‖Ax− b‖22 + λ‖x‖1 . (1.1)

Example 1.2 (Non-negative least-squares (NNLS)). Let A and b be as in Example 1.1.

min
x∈H

1

2
‖Ax− b‖22 subject to x > 0 . (1.2)

Example 1.3 (Sparse Support Vector Machines). One would like to find a linear decision
function which minimizes the objective

min
x∈H,b∈R

1

m

m∑
i=1

L (〈x, zi〉+ b, yi) + λ‖x‖1 (1.3)

where for i = 1, · · · ,m, (zi, yi) ∈ H×{±1} is the training set, and L is a smooth loss function with
Lipschitz-continuous gradient such as the squared hinge loss L (ŷi, yi) = max(0, 1 − ŷiyi)2 or the
logistic loss L (ŷi, yi) = log(1 + e−ŷiyi). The term λ‖x‖1 promotes sparsity of the decisive features
steered by a parameter λ > 0.

1.2. Contributions. We introduce an general proximal calculus in a metric V = P ± Q ∈
S++(N) given by P ∈ S++(N) and a positive semi-definite rank-r matrix Q. This significantly
extends the result in the preliminary version of this paper [7], where only V = P +Q with a rank-1
matrix Q is addressed. The general calculus is accompanied by several more concrete examples (see
Section 3.3.4 for a non-exhaustive list), where, for example, the piecewise linear nature of certain
dual problems is rigorously exploited.

2

Motivated by the discrepancy between constrained and unconstrained performance, we define a
class of limited-memory quasi-Newton methods to solve (P) which extends naturally and elegantly
from the unconstrained to the constrained case. In particular, we generalize the zero-memory SR1
and L-BFGS quasi-Newton methods to the proximal quasi-Newton setting for solving (P), and prove
their convergence. Where L-BFGS-B [16] is only applicable to box constraints, our quasi-Newton
methods efficiently apply to a wide-variety of non-smooth functions.

To clarify the differences between this paper and the conference paper [7], the current paper (1)
extends the proximal framework to allow V = P ±Q scalings where Q is rank r > 1 (Theorem 3.4,
and specialized to the r = 1 case in Theorem 3.8), using Toland duality to handle non-convexity
issues that arise in the P −Q case, whereas [7] considers only V = P +Q for Q rank-1 and positive
semi-definite; (2) discusses at length bisection and semi-smooth methods to solve the dual problem,
and gives global (Proposition 3.11) and local (Proposition 3.7) convergence results, respectively;
(3) introduces the zero-memory L-BFGS quasi-Newton forward-backward algorithm (Algorithm 3)
in addition to the SR1 one; (4) proves convergence results for these algorithms (Theorems 4.2
and 5.2, respectively); and (5) discusses a few new examples of non-separable proximity operator
including that of the `1 − `2 norm in Section 3.3.4 and runs numerical experiments with this norm
in Section 6.2.

1.3. Paper organization. Section 2 formally introduces quasi-Newton methods and their gen-
eralization to the structured non-smooth setting (P). The related literature is extensively discussed.
In order to obtain a clear perspective on how to apply the proximal calculus that is developed in
Section 3, the outline of our proposed zero-memory SR1 and our zero-memory BFGS quasi-Newton
method is provided in Section 2. The main result that simplifies the rank-r modfied proximal
mapping is stated in Section 3.2, followed by several specializations and an efficient semi-smooth
Newton-based root finding strategy that is required in some situations. Section 4 describes the
details for the construction of the SR1 metric and states the convergence result. Following the same
outline, the L-BFGS metric is constructed in Section 5 and convergence is proved. The significance
of our results is confirmed in numerical experiments.

2. Quasi-Newton forward–backward splitting.

2.1. The algorithm. The main update step of our proposed algorithm for solving (P) is a
forward–backward splitting (FBS) step in a special type of metric. In this section, we introduce
the main algorithmic step and Section 3 shows that our choice of metric allows the update to be
computed efficiently.

We define the following quadratic approximation to the smooth part f of the objective function
in (P) around the current iterate xk

QBκ (x;xk) := f(xk) + 〈∇f(xk), x− xk〉+
1

2κ
‖x− xk‖2B , (2.1)

where B ∈ S++(N) and κ > 0. The (non-relaxed) version of the variable metric FBS algorithm
(also known as proximal gradient descent) to solve (P) updates to a new iterate xk+1 according to

xk+1 = argmin
x∈RN

QBkκk (x;xk) + h(x) =: proxBkκkh(xk − κkB−1
k ∇f(xk)) (2.2)

with (iteration dependent) step size κk and metric Bk ∈ S++(N). The right hand side uses the
so-called proximal mapping, which is formally introduced in Definition 3.1. Standard results (see,
e.g., [22, 72]) show that, for a sequence (Bk)k∈N that varies moderately (in the Loewner partial
ordering sense) such that infk∈N ‖Bk‖ = 1, convergence of the sequence (xk)k∈N is expected when
0 < κ 6 κk 6 κ < 2/L, where L is the Lipschitz constant of ∇f .

3

Note that when h = 0, (2.2) reduces to gradient descent if Bk = Id, which is a poor approxi-
mation and requires many iterations, but each step is cheap. When f is also C2(RN), the Newton’s
choice Bk = ∇2f(xk) is a more accurate approximation and reduces to Newton’s method when
h = 0. The update step is well-defined (at least locally) if ∇2f(x?) is positive-definite, but may be
computationally demanding as it requires solving a linear system and possibly storing the Hessian
matrix. Yet, because it is a more accurate approximation, Newton’s method has local quadratic
convergence under standard assumptions such as self-concordancy. Motivated by the superiority of
Newton and quasi-Newton methods over gradient descent for the case h = 0, we pursue a quasi-
Newton approximation for Bk for the case h 6= 0. However, the update is now much more involved
than just solving a linear system. Indeed, one has to compute the proximal mapping in the metric
Bk, which is, in general, as difficult as solving the original problem (P). For this reason, we restrict
Bk to the structured form of a positive-definite ”simple” matrix (e.g., diagonal) plus or minus a
low-rank term.

The main steps of our general quasi-Newton forward–backward scheme to solve (P) are given in
Algorithm 1. Its instantiation for a diagonal − rank 1 metric (0SR1) and a diagonal − rank 2 metric
(0BFGS) are respectively listed in Algorithm 2 and Algorithm 3. Details for the selection of the
corresponding metrics are provided in Section 4 and 5. Following the convention in the literature
on quasi-Newton methods, throughout the paper, we use Bk as an approximation to the Hessian
and Hk := B−1

k as the approximation to its inverse. The algorithms are listed as simply as possible
to emphasize the important components; the actual software used for numerical tests is open-source
and available at https://github.com/stephenbeckr/zeroSR1.

In Sections 4 and 5, we will prove Algorithm 1 converges linearly under the assumption that
f is strongly convex and t = 1, which is the standard theoretically controllable setting for Newton
and quasi-Newton methods. Moreover, global convergence of subsequences to a minimizer for the
line-search variant can be deduced from the literature [61, 10, 50]. Thanks to the line search, the
choice of the metric need not obey monotonicity. If standard assumptions on the monotonicity of the
metric are satisfied, convergence to a minimizer can be proved [61, 10]. Moreover, the convergence
results in [10] account for inexact evaluation of the proximal mapping, which even allows us to
invoke a semi-smooth Newton Method for solving the subproblems numerically (see Section 3.2.2).

Algorithm 1 Quasi-Newton forward–backward framework to solve (P)

Require: x0 ∈ dom(f + h), stopping criterion ε, method to compute stepsizes t and κk (e.g. based
on the Lipschitz constant estimate L of ∇f and strong convexity µ of f)

1: for k = 1, 2, 3, . . . do
2: sk ← xk − xk−1

3: yk ← ∇f(xk)−∇f(xk−1)
4: Compute Hk according to a quasi-Newton framework
5: Define Bk = H−1

k and compute the variable metric proximity operator (see Section 3) with
stepsize κk

x̄k+1 ← proxBkκkh(xk − κkHk∇f(xk)) (2.3)

6: pk ← x̄k+1 − xk and terminate if ‖pk‖ < ε
7: Line-search along the ray xk + tpk to determine xk+1, or choose t = 1.
8: end for

Remark 2.1. The usage of the terms “diagonal − rank r” and “diagonal + rank r” needs
clarification. The meaning of these terms is that Bk = D −

∑r
i=1 uiu

>
i or Bk = D +

∑r
i=1 uiu

>
i ,

respectively, where D is a diagonal matrix and ui ∈ RN . Collectively, to cover both cases, Bk =

4

https://github.com/stephenbeckr/zeroSR1

Algorithm 2 Zero-memory Symmetric Rank 1 (0SR1) algorithm to solve (P), cf. Section 4

Require: as for Algorithm 1, and parameters γ, τmin, τmax for Algorithm 7
Iterate as in Algorithm 1, with line 4 as:

4: Compute Hk via Algorithm 7 (diagonal plus rank one)

Algorithm 3 Zero-memory BFGS (0BFGS) algorithm to solve (P), cf. Section 5

Require: as for Algorithm 1
Iterate as in Algorithm 1, with line 4 as:

4: Compute Hk via Eq. (5.1)) (diagonal plus rank two)

D ±
∑r
i=1 uiu

>
i is used. Algorithmically, the choice of “+” or “−” is crucial.

For instance, if we talk about a “diagonal ± rank 1 quasi-Newton method”, this taxonomy applies
to the approximation of the Hessian Bk. Since, the inverse Hk can be computed conveniently with
the Sherman–Morrison inversion lemma, it is also of type “diagonal ∓ rank 1”, where the sign of
the rank 1 part is flipped. The analysis in [7] of the rank 1 proximity operator applied to the case
“diagonal + rank 1”. In this paper, we cover both cases “diagonal ± rank 1”, which generalizes and
formalizes the “diagonal − rank 1” setting in [36].

2.2. Relation to prior work.
First-order methods. The algorithm in (2.2) with Bk = Id is variously known as proximal

gradient descent or iterated shrinkage/thresholding algorithm (IST or ISTA). It has a grounded
convergence theory, and also admits over-relaxation factors α ∈ (0, 1) [23].

The spectral projected gradient (SPG) [8] method was designed as an extension of the Barzilai–
Borwein spectral step-length method to constrained problems. In [74], it was extended to non-
smooth problems by allowing general proximity operators. The Barzilai–Borwein method [4] uses a
specific choice of step-length κk motivated by quasi-Newton methods. Numerical evidence suggests
the SPG/SpaRSA method is highly effective, although convergence results are not as strong as for
ISTA.

FISTA [6] is a (two-step) inertial version of ISTA inspired by the work of Nesterov [46]. It can be
seen as an explicit-implicit discretization of a nonlinear second-order dynamical system (oscillator)
with viscous damping that vanishes asymptotically in a moderate way [67, 2]. While the stepsize
κ is chosen in a similar way to ISTA (though with a smaller upper-bound), in our implementation,
we tweak the original approach by using a Barzilai–Borwein step size, a standard line search, and
restart [3], since this led to improved performance.

Recently, [51] has shown that optimizing the inertial parameter in each iteration of FISTA,
applied to the sum of a quadratic function and a non-smooth function, the method is equivalent to
the zero memory SR1 proximal quasi-Newton method that we propose in Section 4. Convergence is
analyzed with respect to standard step sizes that relate to the Lipschitz constant, which does not
cover the case of Barzilai–Borwein step size.

The above approaches assume Bk is a constant diagonal. The general diagonal case was con-
sidered in several papers in the 1980s as a simple quasi-Newton method, but never widely adapted.
Variable metric operator splitting methods have been designed to solve monotone inclusion prob-
lems and convex minimization problems, see for instance [22, 72] in the maximal monotone case
and [17] for the strongly monotone case. The convergence proofs rely on a variable metric extension
of quasi-Fejér monotonicity [21]. In particular, this requires the variable metric to be designed a
priori to verify appropriate growth conditions. However, it is not clear how to make the metric adapt
to the geometry of the problem. In fact, in practice, the metric is usually chosen to be diagonal for
the proximity operator to be easily computable. When the metric is not diagonal but fixed, these

5

methods can be viewed as pre-conditioned versions that were shown to perform well in practice for
certain problems (i.e. functions h) [54, 14]. But again, the choice of the metric (pre-conditioner) is
quite limited for computational and storage reasons.

Active set approaches. Active set methods take a simple step, such as gradient projection, to
identify active variables, and then uses a more advanced quadratic model to solve for the free vari-
ables. A well-known such method is L-BFGS-B [16, 76] which handles general box-constrained
problems; we test an updated version [44]. A recent bound-constrained solver is ASA [35] which
uses a conjugate gradient (CG) solver on the free variables, and shows good results compared to
L-BFGS-B, SPG, GENCAN and TRON. We also compare to several active set approaches spe-
cialized for `1 penalties: “Orthant-wise Learning” (OWL) [1], “Projected Scaled Sub-gradient +
Active Set” (PSSas) [63], “Fixed-point continuation + Active Set” (FPC AS) [73], and “CG +
IST” (CGIST) [31].

Other approaches. By transforming the problem into a standard conic programming problem,
the generic problem is amenable to interior-point methods (IPM). IPM requires solving a Newton-
step equation, so first-order like “Hessian-free” variants of IPM solve the Newton-step approximately,
either by approximately solving the equation or by subsampling the Hessian. The main issues are
speed and robust stopping criteria for the approximations.

Yet another approach is to include the non-smooth h term in the quadratic approximation. Yu
et al. [75] propose a non-smooth modification of BFGS and L-BFGS, and test on problems where h is
typically a hinge-loss or related function. Although convergence of this method cannot be expected
in general, there are special cases for which convergence results could be established [42, 43], and
more recently [33]. The empirically justified good numerical performance has been observed for
decades [41].

The projected quasi-Newton (PQN) algorithm [65, 64] is perhaps the most elegant and logical
extension of quasi-Newton methods, but it involves solving a sub-iteration or need to be restricted
to a diagonal metric in the implementation [13, 12]. PQN proposes the SPG [8] algorithm for the
subproblems, and finds that this is an efficient trade-off whenever the cost function (which is not
involved in the sub-iteration) is significantly more expensive to evaluate than projecting onto the
constraints. Again, the cost of the sub-problem solver (and a suitable stopping criteria for this inner
solve) are issues. The paper [30] shows how the sub-problem can be solved efficiently by a special
interior-point method when h is a quadratic-support function. As discussed in [40], it is possible to
generalize PQN to general non-smooth problems whenever the proximity operator is known (since,
as mentioned above, it is possible to extend SPG to this case). In the same line of methods, [10]
proposes a flexible proximal quasi-Newton method that extends [12] to simple proximal operators,
though a diagonal metric is considered in the implementation. Another work that unifies and
generalizes several of the works mentioned above in a variable metric (i.e. quasi-Newton) setting is
[61].

A more general and efficient step size strategy with memory was proposed in [57] for uncon-
strained optimization, which was generalized to a scaled gradient projection method in [55], and
used in the proximal gradient method in [11]. However, the flexible choice of the step size and the
scaling of the metric is not for free when convergence guarantees are sought. [11, 10] rely on a line
search strategy to account for a descent of the objective values. The metric in [19] is constructed
such that (2.1) is a majorizer of the (possibly non-convex) objective and the step size selection is
more conservative, however line search can be avoided.

The works [53, 66] make use of the so-called forward–backward envelope, a concept that allows
them to reinterpret the forward–backward splitting algorithm as a variable metric gradient method
for a smooth optimization problem. Using this reformulation, they can apply classical Newton or
quasi-Newton methods. Proximal quasi-Newton methods have also been considered in combination
with the Heavy-ball method [49], and have been generalized further.

6

The proximal quasi-Newton methods described so far simply assume that the scaled proximal
mapping can be solved efficiently, rely on solving subproblems, or simple diagonal scaling metrics.
The first work on systematically solving non-diagonally scaled proximal mappings efficiently is the
conference version of this paper [7]. The key is structure of the metric. In [7], it is assumed to
be given as the sum of a diagonal and a rank-1 matrix. For the special case of the `1-norm, the
approach was transferred to the difference of a diagonal and a rank-1 matrix in [36]. A systematic
analysis for both cases where a rank-r modification is allowed, is presented in this paper.

The key result for efficiently computing the proximal mapping in this paper reveals a decompo-
sition into a simple proximal mapping (for example, w.r.t. a diagonal metric) and a low-dimensional
operator equation (root finding problem). In several cases, the operator equation can be solved ex-
actly using specialized techniques. In the general case, we rely on a semi-smooth Newton strategy.
It is known that the convergence of the latter, under mild conditions, is remarkably (locally) super-
linear [28], which may even be improved to quadratic convergence under strong semi-smoothness
[56]. A similar result was independently obtained in [39] under similar assumptions.

Due to the great success of Newton’s method for smooth equations, the non-smooth setting
has been actively studied and is still the subject of ongoing research, see for instance the recent
monograph [70]. Early studies of generalizing Newton’s method for solving non-smooth equations
include [37] for piecewise smooth equations, [52, 59] for so-called B-differentiable equations and [38]
for locally Lipschitz functions. As pointed out in [56], semi-smoothness is a crucial property in the
super-linear convergence analysis of these methods. Semi-smooth Newton methods have also been
adapted to non-smooth operator equations in function spaces [69]. Recognizing semi-smoothness is
however not always immediate. In [9], the authors proposed a large class of semi-smooth mappings.
Our convergence results on the semi-smooth Newton method will then rely on [28, 9].

3. Proximal calculus in HV . A key step for efficiently implementing Algorithm 1 is the
evaluation of the proximity operator in (2.3). Even if the proximal mapping proxh can be computed
efficiently, in general, this is not true for proxVh . However, we construct V of the form “diagonal ±
rank r”, for which we propose an efficient calculus in this section. In order to cover this topic broadly,
we assume V = P ± Q is a rank-r modification Q of a matrix P . The main result (Theorem 3.4)
shows that the proximity operator proxVh in the modified metric V can be reduced essentially to
the proximity operator proxPh without the rank-r modification and an r-dimensional root finding
problem.

3.1. Preliminaries. We only recall here essential definitions. More notions, results from
convex analysis as well as proofs are deferred to the appendix.

Definition 3.1 (Proximity operator [45]). Let h ∈ Γ0(H). Then, for every x ∈ H, the

function z 7→ 1
2 ‖x− z‖

2
+ h(z) achieves its infimum at a unique point denoted by proxh(x). The

single-valued operator proxh : H → H thus defined is the proximity operator or proximal mapping of
h. Equivalently, proxh = (Id + ∂h)−1 where ∂h is the subdifferential of h. When h is the indicator
function of a non-empty closed convex set C, the corresponding proximity operator is the orthogonal
projector onto C, denoted projC.

Throughout, we denote by

proxVh (x) = argmin
z∈H

h(z) +
1

2
‖x− z‖2V = (Id + V −1∂h)−1(x) , (3.1)

the proximity operator of h w.r.t. the norm endowing HV for some V ∈ S++(N). Note that since
V ∈ S++(N), the proximity operator proxVh is well-defined. The proximity operator proxVh can also
be expressed in the metric of H.

Lemma 3.2. Let h ∈ Γ0(H) and V ∈ S++(N). Then, the following holds:

proxVh (x) = V −1/2 ◦ proxh◦V −1/2 ◦V 1/2(x) .

7

The proof is in Section B.1. The important Moreau identity can be translated to the space HV .

Lemma 3.3 (Moreau identity in HV). Let h ∈ Γ0(H), then for any x ∈ H

proxVρh∗(x) + ρV −1 ◦ proxV
−1

h/ρ ◦V (x/ρ) = x, ∀ 0 < ρ < +∞ . (3.2)

For ρ = 1, it simplifies to

proxVh (x) = x− V −1 ◦ proxV
−1

h∗ ◦V (x) . (3.3)

The proof is in Section B.2.

3.2. Rank-r modified metric. In this section, we present the general result for a metric
V = P ± Q ∈ S++(N), where P ∈ S++(N) and Q =

∑r
i=1 uiu

>
i ∈ RN×N is symmetric with

rank(Q) = r and r 6 N , given by r linearly independent vectors u1, . . . , ur ∈ H. Computing the
proximity operator proxVh can be reduced to the simpler problem of evaluating proxPh and an r
dimensional root finding problem, which can be solved either exactly (see Section 3.3) or by efficient
fast iterative procedures with controlled complexity such as bisection (Section 3.3.2) or semi-smooth
Newton iterations (Section 3.2.2).

3.2.1. General case. We start with our most general result.
Theorem 3.4 (Proximity operator for a rank-r modified metric). Let h ∈ Γ0(H) and V =

P ±Q ∈ S++(N), where P ∈ S++(N) and Q =
∑r
i=1 uiu

>
i ∈ RN×N with r = rank(Q) 6 N . Denote

U = (u1, · · · , ur). Then,

proxVh (x) = P−1/2 ◦ proxh◦P−1/2 ◦P 1/2(x∓ P−1Uα?)

= proxPh (x∓ P−1Uα?) ,
(3.4)

where α? ∈ Rr is the unique zero of the mapping L : Rr → Rr

L(α) := U>
(
x− P−1/2 ◦ proxh◦P−1/2 ◦P 1/2(x∓ P−1Uα)

)
+ α

= U>
(
x− proxPh (x∓ P−1Uα)

)
+ α .

(3.5)

The mapping L is Lipschitz continuous with Lipschitz constant 1+
∣∣∣∣∣∣P−1/2U

∣∣∣∣∣∣2, and strongly mono-

tone with modulus c, where c = 1 for V = P +Q and c = 1−
∣∣∣∣∣∣P−1/2U

∣∣∣∣∣∣2 for V = P −Q.
The proof is in Section B.3.
Remark 3.5.
• The root finding problem in Theorem 3.4 emerges from the dual problem for solving proxVh .

Passing to the dual problem reduces dramatically the dimensionality of the problem to be
solved from N to r where usually r � N . The dual problem boils down to an r-dimensional
root finding problem of a strongly monotone function.

• Theorem 3.4 simplifies the computation of proxVh to proxPh (or equivalently proxh◦P−1/2),
which is often much easier to solve. This is typically the case when P is a diagonal matrix as
will be considered in Section 3.3. Another interesting scenario is when h = ψ ◦P 1/2, where
ψ ∈ Γ0(H) is a simple function so that proxh◦P−1/2 = proxψ is easy to compute. Thus the
matrix P in the expression of V can be interpreted as a pre-conditioner. In Section 3.3, we
will focus on the case P is diagonal since all standard and efficient quasi-Newton methods
(e.g., SR1, L-BFGS) use a diagonal P .

8

• The variable metric forward–backward splitting algorithm requires the inverse of the metric
in the forward step. It can be computed using the Sherman-Morrison inversion lemma: If
V = P ±Q with rank(Q) = r, then

V −1 = P−1 ∓ Q̃−1 , Q̃−1 := P−1Q (Id± P−1Q)−1P−1 ,

with rank(Q̃−1) = r. Note that the sign of the rank-r part flips, see also Remark 2.1.
• Using the inversion formula for V = P ±Q as in the preceding item, and using Lemma 3.3

(Moreau identity in HV), the computation of the proximity operator of the convex conjugate

function h∗, proxVh∗ , can be cast in terms of computing proxV
−1

h .
Corollary 3.6. Let V = P + Q1 − Q2 ∈ S++(N) with P ∈ S++(N) and symmetric positive

semi-definite matrices Q1, Q2 with rank(Qi) = ri and let Im(Qi) be spanned by the columns of
Ui ∈ RN×ri , i = 1, 2. Set P1 = P +Q1. Then, for h ∈ Γ0(H), the following holds:

proxVh (x) = proxP1

h (x+ P−1
1 U1α

?
1) = proxPh (x+ P−1

1 U1α
?
1 − P−1U2α

?
2)

where α?i ∈ Rri , i = 1, 2, are the unique zeros of the coupled system

L1(α1, α2) = U>1 (x− proxPh (x+ P−1
1 U1α1 − P−1U2α2))− α1

L2(α1, α2) = U>2 (x+ P−1
1 U1α1 − proxPh (x+ P−1

1 U1α1 − P−1U2α2))− α2.

Proof. Corollary 3.6 follows from a recursive application of Theorem 3.4 to proxVh with V =
P1 −Q2 and proxPh with P1 = P +Q1.

As discussed above, depending on the structure of the proximity operator proxh◦P−1/2 , either
general-purpose or specialized algorithms for solving the root-finding problem can be derived. In
some situations, see e.g., Proposition 3.13, the root of the function L can be found exactly in linear
time. If no special structure is available, however, one can appeal to some efficient iterative method
to solve (3.5) as we see now.

3.2.2. Semi-smooth Newton method. We here turn to the semi-smooth Newton method
to solve L(α) = 0 (see (3.5)) using the fact that L is Lipschitz-continuous and strongly monotone
(Theorem 3.4).

Since L : Rr → Rr is Lipschitz continuous, it is so-called Newton differentiable [18], i.e., there
exists a family of linear mappings G (called generalized Jacobians) such that for all α on an open
subset of Rr

lim
d→0

‖L(α+ d)− L(α)− G(α+ d)d‖
‖d‖

= 0.

However, this is only of little help algorithmically unless one can construct a generalized Jacobian
G which is easily computable and provably invertible under our strong monotonicity assumption.
This is why we turn to the semi-smoothness framework.

We shall write JL(α) ∈ Rr×r for the usual Jacobian matrix whenever α is a point in the
differentiability set Ω ⊂ Rr (its complement has measure zero by the celebrated Rademacher’s
theorem). The Clarke Jacobian of L at α ∈ Rr is defined as [20, Definition 2.6.1]

∂CL(α) = conv

{
G ∈ Rr×r : G = lim

αk→
Ω
α
JL(αk)

}
,

where conv is the convex hull and αk →
Ω
α is a shorthand notation for αk → α and αk ∈ Ω. It is

known, see [20, Proposition 6.2.2], that ∂CL(α) is a non-empty convex compact subset of Rr.
9

Semi-smooth functions (see [28, Definition 7.4.2]) are precisely (locally) Lipschitz continuous
functions for which the Clarke Jacobians define a legitimate Newton approximation scheme in the
sense of [28, Definition 7.2.2]. Here, we will even consider an inexact semi-smooth Newton method
which is detailed in Algorithm 4.

Algorithm 4 Semi-smooth Newton to solve L(α) = 0

Require: A point α0 ∈ Rn.
1: for all k = 0, 1, 2, . . . do
2: if L(αk) = 0 then stop.
3: else
4: Select Gk ∈ ∂CL(αk), compute αk+1 such that

L(αk) +Gk(αk+1 − αk) = ek,

where ek ∈ Rr is an error term satisfying ‖ek‖ ≤ ηk ‖Gk‖ and ηk ≥ 0.
5: end if
6: end for

It remains now to identify a broad class of convex functions h to which Algorithm 4 applies.
A rich family will be provided by semi-algebraic functions, i.e., functions whose graph is defined
by some Boolean combination of real polynomial equations and inequalities [26]. An even more
general family is that of definable functions on an o-minimal structure over R, which corresponds in
some sense to an axiomatization of some of the prominent geometrical properties of semi-algebraic
geometry [71, 25]. A slightly more general notion is that of a tame function, which is a function
whose graph has a definable intersection with every bounded box [9, Definition 2]. Given the variety
of optimization problems that can be formulated within the framework of o-minimal structures, our
convergence result for Algorithm 4 will be stated for tame functions.

Proposition 3.7 (Convergence of Algorithm 4). Consider the situation of Theorem 3.4, where
h is in addition a tame function. Then L is semi-smooth and all elements of ∂CL(α?) are non-
singular. In turn there exists η such that if ηk 6 η for every k, there exists a neighborhood of α?

such that for all α0 in that neighborhood, the sequence generated by Algorithm 4 is well-defined and
converges to α? linearly. If ηk → 0, the convergence is superlinear.

In particular, if h is semi-algebraic and ek = 0, then there exists a rational number q > 0 such
that

‖αk − α?‖ = O
(
exp(−(1 + q)k)

)
.

The proof is in Section B.5.
Proposition 3.7 provides a remarkably fast local convergence guarantee of Algorithm 4 to find

the unique zero of L in (3.5) provided one start sufficiently close to that zero. If this requirement
is not met, the convergence of the algorithm is not ensured anymore. However we can say that
‖α?‖ 6 β, where the radius β can be easily estimated from (B.3). For instance, for the metric
V = P +Q, by strong convexity of modulus c = 1 (see Theorem 3.4), we have

‖α?‖2 /2 6 1
(
h∗ ◦ P 1/2

)
(P 1/2x)− inf 1

(
h∗ ◦ P 1/2

)
+

1

2
‖x‖2Q+ .

If 0 ∈ dom(h), we have the bound, valid for any z ∈ RN ,

−h(0) = inf(h∗) ≤ h∗ ◦ P 1/2(p) ≤ 1
2 ‖z − p‖

2
+ h∗ ◦ P 1/2(p) = 1

(
h∗ ◦ P 1/2

)
(z).

10

where we denoted p = proxh∗◦P 1/2(z). Thus, setting β = 1
(
h∗ ◦ P 1/2

)
(P 1/2x) + 1

2 ‖x‖
2
Q+ + h(0),

one can initialize Algorithm 4 with α0 in the ball of radius β. An alternative way is to run e.g. an
accelerated gradient descent (Nesterov or FISTA), initialized with such α0, a few iterations on the
strongly smooth problem (B.3) in Rr (recall r � N), and use the final iterate as an initialization
of Algorithm 4. Note that accelerated (FISTA-type) gradient descent is linearly convergent with

the optimal rate 1 −
√

cond−1, where cond = (1 +
∣∣∣∣∣∣P−1/2U

∣∣∣∣∣∣2)/c is the condition number of
problem (B.3) (see Theorem 3.4).

3.3. Diagonal ± rank-1 metric. Here we deal with metrics of the form V = D ± uu> ∈
S++(N) which will be at the heart of our quasi-Newton splitting algorithm, where D is diagonal
with (strictly) positive diagonal elements di, and u ∈ RN .

3.3.1. General case. We start with the general case where h is any function in Γ0(H).
Theorem 3.8 (Proximity operator for a diagonal ± rank-1 metric). Let h ∈ Γ0(H). Then,

proxVh (x) = D−1/2 ◦ proxh◦D−1/2 ◦D1/2(x∓ α?D−1u) , (3.6)

where α? is the unique root of

L(α) =
〈
u, x−D−1/2 ◦ proxh◦D−1/2 ◦D1/2(x∓ αD−1u)

〉
+ α , (3.7)

which is a strongly increasing and Lipschitz continuous function on R with Lipschitz constant 1 +∑
i u

2
i /di.

Theorem 3.8 is a specialization of Theorem 3.4.
Remark 3.9.
• There is a large class of functions for which proxh◦D−1/2 can be computed either exactly or

efficiently. The case of a separable function h will be considered in Section 3.3.3, but the
computation is efficient even for many non-separable functions such as the indicator of the
simplex and the max function (see Table 3.1), and many others.

• It is of course straightforward to compute proxVh∗ from proxV
−1

h either using Theorem 3.8, or
using this theorem together with Lemma 3.3 and the Sherman-Morrison inversion lemma.

Indeed, when V = D ± uu> then V −1 = D−1 ∓ vv>, where v = D−1u/
√

1±
∑
i
u2
i

di
.

• The formula for the inverse is also important for the forward step (2.3) in Algorithm 2.
• The theory developed in [7] accounts for the proximity operator w.r.t. a metric V = D +
uu> (diagonal + rank-1), which is extended here to the case V = D ± uu>. Karimi and
Vavasis [36] developed an algorithm for solving the proximity operator of the (separable)
`1-norm with respect to a metric V = D − uu>, which is not covered in [7]. The results
in Theorems 3.4 and 3.8 are far-reaching generalizations that formalize the algorithmic
procedure in [36].

3.3.2. Bisection search. We here discuss solving (3.7) via the bisection method in Algo-
rithm 5, since this will allow us to produce a global complexity bound. The key tool is a bound on
the values of α given by the following proposition which is valid even if P is not diagonal.

Proposition 3.10. For r = 1, the root α? of (3.7) lies in the set [−β, β] where

β = ‖u‖ ·
(
2‖x‖+

∥∥proxVh (0)
∥∥) (3.8)

where proxVh (0) is a constant (e.g., it is zero if 0 ∈ argmin(h), as it is for all positively homogeneous
functions).

The proof is in Section B.4.
Proposition 3.11 (Convergence of Algorithm 5). For any ε > 0, Algorithm 5 will produce a

point α such that |α − α?| ≤ ε in log2 (ε/(2cβ)) steps, where β is as in (3.8), and c is the strong
monotonicity modulus given in Theorem 3.4.

11

The proof of the above proposition is immediate, since L is a strongly monotone operator and
one-dimensional, hence L is a monotonically increasing function, and thus the bisection method
works. Strong monotonicity implies that for all α ∈ R, |L(α)| ≥ c|α− α?|.

The bisection procedure is outlined in Algorithm 5; note that later we will provide Algorithm 6
which is a specialization of bisection to a special class of functions h for which we can find the root
with zero error (assuming exact arithmetic). Note that a variant of Proposition 3.10 holds when
r > 1 (see end of Section 3.2.2), but there is no analog to the bisection method in dimension r > 1
since there is no total order.

Algorithm 5 Bisection method to solve L(α) = 0 when r = 1

Require: Tolerance ε > 0
1: Compute the bound β from (3.8), and set k = 0
2: Set α− = −β and α+ = β
3: for all k = 0, 1, 2, . . . do
4: Set αk = 1

2 (α− + α+)
5: if L(αk) > 0 then
6: α+ ← αk
7: else
8: α− ← αk
9: end if

10: if k > 1 and |αk − αk−1| < ε then
11: return αk
12: end if
13: end for

3.3.3. Separable case. The following corollary states that the proximity operator takes an
even more convenient form when h is separable. It is a specialization of Theorem 3.8.

Corollary 3.12 (Proximity operator for a diagonal ± rank-1 metric for separable functions).

Assume that h ∈ Γ0(H) is separable, i.e. h(x) =
∑N
i=1 hi(xi), and V = D ± uu> ∈ S++(N), where

D is diagonal with (strictly) positive diagonal elements di, and u ∈ RN . Then

proxVh (x) =
(

proxhi/di(xi ∓ α
?ui/di)

)N
i=1

, (3.9)

where α? is the unique root of

L(α) =

〈
u, x−

(
proxhi/di(xi ∓ αui/di)

)N
i=1

〉
+ α , (3.10)

which is a Lipschitz continuous and strongly increasing function on R.
In particular, when the proximity operator of each hi is piecewise affine, we get the following.
Proposition 3.13. Consider the situation of Corollary 3.12. Assume that for 1 6 i 6 N ,

proxhi/di is piecewise affine on R with ki ≥ 1 segments, i.e.

proxhi/di(xi) =

ai0xi + bi0, if xi 6 ti1 ;

aijxi + bij , if tij 6 xi 6 tij+1, j ∈ {1, . . . , ki} ;

aiki+1xi + biki+1, if tiki+1 6 xi ,

(3.11)

for some aij , b
i
j ∈ R, and define ti0 := −∞ and tiki+2 := +∞. Then proxVh (x) can be obtained exactly

using Algorithm 6 with binary search for Step 3 in O(K log(K)) steps where K =
∑N
i=1 ki.

12

The proof is in Section B.6.
Using Proposition 3.13, we derive Algorithm 6.

Algorithm 6 Exact root finding algorithm for piecewise affine separable proximity operators

Require: Piecewise affine proximity operator proxhi/di(xi), i = 1, . . . , N , as defined in Proposi-
tion 3.13.

1: Sort θ̃ :=
⋃N
i=1{±

di
ui

(xi − tij) : j = 1, . . . , ki} ⊂ R into a list θ ∈ Rk′ with k′ 6 K.

2: Set θ := [−∞,θ1, . . . ,θk′ ,+∞].
3: Via the bisection method, detect the interval [θ−, θ+) with adjacent θ−, θ+ ∈ θ that contains

the root of L(α).
4: Compute the root α? = −b/a where a and b are determined as follows:
5: For all i = 1, . . . , N , define ji ∈ {0, . . . , ki + 1} such that tiji 6 θ− < θ+ 6 tiji+1, and compute

a := 1±
N∑
i=1

aijiu
2
i /di and b :=

N∑
i=1

ui((1− aiji)xi − b
i
ji) .

Some remarks are in order.
Remark 3.14.
• The sign “±” in Algorithm 6 refers to the two cases of V = D ± uu> from Corollary 3.12.
• Since (3.10) is piecewise affine, a, b in Step 5 for the interval [θ−, θ+), can be determined

by

a =
L(θ′+)− L(θ′−)

θ′+ − θ′−
and b = L(θ′−)

where θ− 6 θ′− < θ′+ 6 θ+ and −∞ < θ′− and θ′+ < +∞. (The usage of “θ′” avoids
“L(−∞)”.)

Remark 3.15.
• The bulk of complexity in Proposition 3.13 lies in locating the appropriate breakpoints. This

can be achieved straightforwardly by sorting followed by a bisection search, as advocated,
whose worst-case computational complexity is nearly linear in N up to a logarithmic factor.
The log term can theoretically be removed by replacing sorting with a median-search-like
procedure whose expected complexity is linear.

• The above computational cost can be reduced in many situations by exploiting, e.g., symme-
try of the h′is, identical functions, etc. This turns out to be the case for many functions of
interest, e.g. `1-norm, indicator of the `∞-ball or the positive orthant, polyhedral seminorms,
and many others; see examples hereafter.

• It goes without saying that Corollary 3.12 can be extended to the “block” separable case
(i.e. separable in subsets of coordinates).

• It is important to stress the fact that the reasoning underlying Proposition 3.13 and Algo-
rithm 6 extends to a much more general class of proximity operators proxhi , hence functions
fi ∈ Γ0(R). Indeed, assume that hi is definable (see Section 3.2.2 for details on definable
functions). Thus arguing as in the proof of Proposition 3.7, we have that proxhi is also de-
finable. It then follows from the monotonicity lemma [71, Theorem 4.1] that for any k ∈ N,
one can always find a finite partition (tij)16j6ki into ki disjoint intervals such that proxhi
restricted to each nontrivial interval is Ck and strictly increasing or constant. With such a
partition, the right-hand side of (3.11) may be non-linear in xi but Ck and increasing on
the corresponding open interval. Consequently, the first three steps of Algorithm 6, which

13

Function h Method

`1-norm (separable) exact with sorting
Hinge (separable) exact with sorting
Box constraint (separable) exact with sorting
`∞-ball (separable) exact with sorting
Positivity constraint (separable) exact with sorting
`1 − `2 (block-separable) sort and root finding
Affine constraint (nonseparable) closed-form
`1-ball (nonseparable) root-finding and proxh◦D−1/2 costs a sort
`∞-norm (nonseparable) from projector on the `1-ball by Moreau-identity
Simplex (nonseparable) root-finding and proxh◦D−1/2 costs a sort
max function (nonseparable) from projector on the simplex by Moreau-identity

Table 3.1: A few examples of functions which have efficiently computable proximity operators in
the metric V = D ± uu>.

consist in locating the appropriate interval [θ−, θ+) that contains the unique root α?, remain
unchanged. If α? 6= θ±, only step 5, which computes α?, has to be changed to any root find-
ing method of a one-dimensional non-linear Ck smooth function on (θ−, θ+). For instance,
we have shown that α? is a non-degenerate root (L is strictly increasing). Therefore, if
k = 2, then L ∈ C2((θ−, θ+)), and a natural root-finding scheme would be the Newton
method which provides local quadratic convergence to α?. More generally, if k ≥ 2, local
higher order convergence rate can be obtained with the Householder’s class of methods.

• In view of the previous two remarks, the case of the `1−`2 norm, which is popularly used to
promote group sparsity, can be handled by our framework. This example will be considered
in more detail in Section 3.3.4.

3.3.4. Examples. Many functions can be handled very efficiently using our results above. For
instance, Table 3.1 summarizes a few of them where we can obtain either an exact answer by sorting
when possible, or else by minimizing w.r.t. to a scalar variable (i.e. finding the unique root of (3.7)).

Affine constraint. We start with a case where the proximity operator in the diagonal ± rank 1
metric has a closed-form expression. Consider the case where h = ι{x:Ax=b}. We then immediately
get

proxh◦D−1/2(z) = z + Y +(b− Y z) = Πz + c

where Y = AD−1/2, Π is the projector on Ker(Y) = D1/2 Ker(A), and c = Y +b. After simple
algebra, it follows from Theorem 3.8, that the unique root of L in this case is

α? =

〈
u,D−1/2

(
c− (Id−Π)D1/2x

)〉
1±

〈
u,D−1/2ΠD−1/2u

〉 .

Positive orthant. We now put Proposition 3.13 on a more concrete footing by explicitly covering
the case when h represents non-negativity constraints. Consider V = D + uu> and h = ι{x: x>0}.
We will calculate

proxV
−1

h (x) = argmin
y>0

1

2
‖y − x‖2V −1 (3.12)

We use the fact that the projector on the positive orthant is separable with components

(xi)+ := max(0, xi), i.e. a piecewise affine function. Define the scalar α = u>λ. Let λ
(α)
i :=

14

(−(xi + αui)/di)+, so we search for a value of α such that α = u>λ(α), or in other words, a root of

L(α) = α− u>λ(α).

Define α̂i to be the sorted values of (−xi/ui), so we see that L is linear in the regions [α̂i, α̂i+1]
and so it is trivial to check if L has a root in this region. Thus the problem is reduced to finding
the correct region i, which can be done efficiently by a bisection search over log2(n) values of i since
L is monotonic. To see that L is monotonic, we write it as

L(α) = α+

N∑
i=1

(
(uixi + αu2

i)/di
)
χi(α)

where χi(α) encodes the positivity constraint in the argument of (·)+ and is thus either 0 or 1,
hence the slope is always positive.

`1 − `2 norm. Let B be a uniform disjoint partition of {1, . . . , N}, i.e.
⋃
b∈B = {1, . . . , n} and

b ∩ b′ = ∅ for all b 6= b′ ∈ B. The `1 − `2 norm of x is

‖x‖1,2 =
∑
b∈B

‖xb‖ (3.13)

where xb is the subvector of x indexed by block b.

Without of loss of generality, we assume that all blocks have the same size, and we consider
the metric V = D + uu>, where the diagonal matrix D is constant on each block b. We now detail
how to compute the proximity operator in HV of h = λ ‖·‖1,2, λ > 0. For this, we will exploit
Theorem 3.8 and the expression of proxh◦D−1/2 , i.e. block soft-thresholding. The latter gives(

D−1/2 proxh◦D−1/2(D1/2x)
)
b

= (proxh◦D−1(x))b =

(
1− λ

db ‖xb‖

)
+

xb, ∀b ∈ B ,

where db is the diagonal entry of D shared by block b. This then entails that

L(α) = 〈x, u〉+ α−
∑

b∈I (α)

((
1− λ

db ‖xb − αub/db‖

)(
〈xb, ub〉 − α ‖ub‖2 /db

))
,

where I (α) = {b ∈ B : ‖xb − αub/db‖ ≥ λ/db}. This is a piecewise smooth function, with break-
points at the values of α where the active support I (α) changes. To compute the root of α, it
is sufficient to locate the two breakpoints where L changes sign, and then run a fast root-finding
algorithm (e.g. Newton’s method) on this interval where α is actually C∞. Denote NB = bN/ |b|c
the number of blocks. There are at most 2NB breakpoints, and these correspond to the two real
roots of NB univariate quadratic polynomials, each corresponding to

‖dbxb − αub‖2 = α2 ‖ub‖2 − 2αdb 〈xb, ub〉+ d2
b ‖xb‖

2
= λ2 .

Sorting these roots costs at most O(NB logNB). To locate the breakpoints, a simple procedure is
a bisection search on the sorted values, and each step necessitates to evaluate L. This search also
costs at most O(NB logNB) operations (observe that all inner products and norms in L can be
computed once for all). In summary, locating the interval of breakpoints containing the root takes
O(NB logNB) operations, though we believe this complexity could be made linear in NB with an
extra effort.

4. A SR1 forward–backward algorithm.

15

4.1. Metric construction. Following the conventional quasi-Newton notation, we let B de-
note an approximation to the Hessian of f and H denote an approximation to the inverse Hessian.
All quasi-Newton methods update an approximation to the (inverse) Hessian that satisfies the secant
condition:

Hkyk = sk, where yk = ∇f(xk)−∇f(xk−1), sk = xk − xk−1. (4.1)

Algorithm 2 follows the SR1 method [15], which uses a rank-1 update to the inverse Hessian
approximation at every step. The SR1 method is perhaps less well-known than BFGS, but it has
the crucial property that updates are rank-1, rather than rank-2, and it is described “[SR1] has now
taken its place alongside the BFGS method as the pre-eminent updating formula.”[32].

We propose two important modifications to SR1. The first is to use limited-memory, as is
commonly done with BFGS. In particular, we use zero-memory, which means that at every iteration,
a new diagonal plus rank-one matrix is formed. The other modification is to extend the SR1 method
to the general setting of minimizing f +h where f is smooth but h need not be smooth; this further
generalizes the case when h is an indicator function of a convex set. Every step of the algorithm
replaces f with a quadratic approximation, and keeps h unchanged. Because h is left unchanged,
the subgradient of h is used in an implicit manner, in comparison to methods such as [75] that use
an approximation to h as well and therefore take an explicit subgradient step.

Algorithm 7 Sub-routine to compute the approximate inverse Hessian Hk, 0SR1 variant

Require: k, sk, yk as in (4.1); and 0 < γ < 1, 0 < τmin < τmax

1: if k = 1 then
2: H0 ← τ Id where τ > 0 is arbitrary
3: uk ← 0
4: else
5: τBB2 ← 〈sk,yk〉

‖yk‖2
{Barzilai–Borwein step length}

6: Project τBB2 onto [τmin, τmax]
7: H0 ← γτBB2Id
8: if 〈sk −H0yk, yk〉 ≤ 10−8‖yk‖2‖sk −H0yk‖2 then
9: uk ← 0 {Skip the quasi-Newton update}

10: else
11: uk ← (sk −H0yk)/

√
〈sk −H0yk, yk〉).

12: end if
13: end if
14: return Hk = H0 + uku

>
k {Bk = H−1

k can be computed via the Sherman-Morrison formula}

Choosing H0. In our experience, the choice of H0 is best if scaled with a Barzilai–Borwein
spectral step length

τBB2 = 〈sk, yk〉 / 〈yk, yk〉 (4.2)

(we call it τBB2 to distinguish it from the other Barzilai–Borwein step size τBB1 =
〈sk, sk〉 / 〈sk, yk〉 > τBB2).

In SR1 methods, the quantity 〈sk −H0yk, yk〉 must be positive in order to have a well-defined
update for uk. The update is:

Hk = H0 + uku
>
k , uk = (sk −H0yk)/

√
〈sk −H0yk, yk〉. (4.3)

For this reason, we choose H0 = γτBB2Id with 0 < γ < 1, and thus 0 ≤ 〈sk −H0yk, yk〉 =
(1− γ) 〈sk, yk〉. If 〈sk, yk〉 = 0, then there is no symmetric rank-one update that satisfies the secant

16

condition. The inequality 〈sk, yk〉 > 0 is the curvature condition, and it is guaranteed for all strictly
convex objectives. Following the recommendation in [48], we skip updates whenever 〈sk, yk〉 cannot
be guaranteed to be non-zero given standard floating-point precision.

A value of γ = 0.8 works well in most situations. We have tested picking γ adaptively, as well
as trying H0 to be non-constant on the diagonal, but found no consistent improvements.

4.2. Convergence analysis. For our convergence analysis, we naturally assume that f is also
µ-strongly convex. This assumption is standard for Newton and quasi-Newton methods if one wants
to get provable convergence guarantees. Indeed, one has to assume some non-singularity assumption
for the iterates to be well-defined. We can make our strong convexity assumption hold only locally
around a minimizer, but our guarantees will also become of local nature. The strong convexity
assumption can be weakened to restricted strong convexity when h = ιS , where S ⊂ RN is a linear
subspace. In this case, problem (P) is equivalent to

min
x∈S

f ◦ projS(x).

Thus, since P = (γτBB2)−1Id for the 0SR1 and 0BFGS metrics, it follows from (3.4) that proxBkκkh(x) ∈
S. Hence, from (2.3), the quasi-Newton forward-backward sequence (xk)k∈N ⊂ S. In turn, the
quasi-Newton vectors sk and yk belong to S, i.e., ∀k ∈ N

sk = xk − xk−1 ∈ S and yk = projS(∇f(projS(xk)))− projS(∇f(projS(xk−1))) ∈ S.

Now, assuming that h is strongly convex on S and its gradient is Lipschitz on S, with constants
µS and LS , the bounds on the eigenvalues of matrices Hk in Lemma 4.1 and Lemma 5.1 here-
after will remain true with (µ,L) replaced by (µS , LS). The convergence claims of Theorem 4.2 and
Theorem 5.2 will also hold with rates characterized by the condition number LS/µS rather than L/µ.

The following lemma delivers useful uniform bounds on the eigenvalues of matrices Hk.
Lemma 4.1. Suppose that f is µ-strongly convex and its gradient is L-Lipschitz. Then, ∀k ≥ 0,

aId � Hk � bId, 0 < a = γL−1, 0 < b = (1+γ)µ−1−2γL−1

1−γ .
The proof is in Section C.1.
Theorem 4.2. Suppose that f is µ-strongly convex and its gradient is L-Lipschitz. Let a and

b be given as in Lemma 4.1. Assume that 0 < κ 6 κk 6 κ < 2(Lb)−1. Let α = 1 − Lbκ
2 and

η = L
2γµκ . Then, the sequence of iterates (xk)k∈N of the 0SR1 forward–backward Algorithm 2 with

t = 1 converge linearly to the unique minimizer x?, i.e.

‖xk − x?‖ 6

√
2 (F (x0)− F (x?))

µ
ρk/2 ,

where

ρ =

{
ρ1 for α ∈]0, 1/2[

min(ρ1, ρ2) for α ∈ [1/2, 1[
,

with

ρ1 = 1− α
(

1− 2
(√

η2 + η − η
))

and ρ2 =

{
2η (6 1/2) if η 6 1/4

1− 1
8η otherwise .

The proof is in Section C.2. Fig. 4.1 shows the phase diagram of the rate ρ as a function of η
and α.

17

Figure 4.1: Convergence rate as a function of the
parameters η and α (see Theorem 4.2 for details).

100 101
0

0.5

1

ρ1

ρ1

ρ2

η

α

Actually, this is the standard setting for Newton and quasi-Newton methods if one wants to
get provable convergence guarantees. Indeed, one has to assume some non-singularity assumption
for the iterates to be well-defined. We can make our strong convexity assumption holds only locally
around a minimizer, but our guarantees will also become of local nature.

Remark 4.3. For a concrete example of the rates in Theorem 4.2, choose γ = 1/2 so that
a = 1/(2L) and b = 3µ−1 − 2L−1, and choose κk ≡ κ = κ = 1/(Lb). Thus α = 1/2. Let c = L/µ
be the condition number of the problem. Then η = c(3c− 2), and so for large c� 1, we have η � 1
and via Taylor expansion we see that ρ1−ρ2 → 0 as η →∞. In turn, the rate of linear convergence
is ρ ≈ 1 − 1/(8η) ≈ 1 − 1/(24c2). Although, this rate is apperently worse than, for example,
the standard rate obtained for forward-backward, our numerical experiments demonstrate that the
performance is significantly better than this worst case prediction. Unless the metric approximates
second order information, which is not the case for our zero memory variant, we do not expect
to improve the convergence rate. Possibly, a deep analysis might improve the constants appearing
in the convergence rate estimate. However, the efficiency of our method comes from an “optimal”
compromise between locally adapting the metric and a cheap computability of the update step.

5. L-BFGS forward–backward splitting. In this section, we show how the extended theory
for rank-r modified proximity operators in Section 3.2 can be used for the efficient treatment of the
more sophisticated L-BFGS method in our context of proximal quasi-Newton methods. We consider
Algorithm 2 where the metric construction is outlined in Section 5.1 following the notation in [48].
The proximity operator in (2.3) will be of type “diagonal ± rank-2”.

5.1. Metric construction. Define

ρk =
1

y>k sk
, Vk = Id− ρkyks>k , with sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk)

as in (4.1). Store {si, yi} for i = k−m, k−m− 1, . . . , k− 1. Choose H0
k as before, e.g., H0

k = γτ Id.
Then the limited-memory BFGS (L-BFGS) quadratic approximation is

Hk = (V >k−1 · · ·V >k−m)H0
k(Vk−m · · ·Vk−1)

+ ρk−m(V >k−1 · · ·V >k−m+1)sk−ms
>
k−m(Vk−m+1 · · ·Vk−1)

+ ρk−m+1(V >k−1 · · ·V >k−m+2)sk−m+1s
>
k−m+1(Vk−m+2 · · ·Vk−1)

+ · · ·+ ρk−1sk−1s
>
k−1.

In the classical (unconstrained) L-FBGS, the update is then xk+1 = xk − αkHk∇fk.

18

In the extreme low-memory case (m = 1), we have

Hk+1 = V >k H
0
kVk + ρksks

>
k

which gives us a 0-BFGS method. For this m = 1 case and τ = τBB2, writing V for Vk and so on,
we can expand

Hk = V >H0
kV + ρss>

= (Id− ρsy>)(γτ Id)(Id− ρys>) + ρss>

= γτ(Id− ρ(ys> + sy>) + ρ2‖y‖2ss>) + ρss>

[ρ‖y‖2τ = 1] = γτ Id + ρ(1 + γ)
(
ss> − γτ

1 + γ
(sy> + ys>) +

γ2τ2

(1 + γ)2
yy>

)
− ρ γ

2τ2

1 + γ
yy>

= γτ Id + ρ(1 + γ)
(
s− γτ

1 + γ
y︸ ︷︷ ︸

=:uγ

)(
s− γτ

1 + γ
y
)>
− ρ γ

2τ2

1 + γ
yy> ,

(5.1)

which shows that the inverse Hessian approximation is of type “diagonal + rank-1 − rank-1” with
positive semi-definite rank-1 matrices. Note that we are free to choose γ = 1, in which case the
simpler expression follows:

Hk = τ Id + 2ρ
(
s− τ

2
y
)(
s− τ

2
y
)>
− ρτ

2

2
yy> , (5.2)

Applying the Sherman–Morrison inversion lemma to this, we obtain the following approximation to
the Hessian matrix Bk = H−1

k :

Bk = B0
k −

B0
kss
>B0

k

s>B0
ks

+
yy>

y>s
=

1

γτ

(
Id− ss>

s>s
+ γτ

yy>

y>s

)
(τ=τBB2)

=
1

γτBB2

(
Id− ss>

s>s
+ γ

yy>

y>y

)
.

The proximity operator with respect to this metric can be computed as shown in Corollary 3.6.
Only the evaluation of the simple proximity operator proxB0

h is required. The main computational
cost comes from the two dimensional root finding problem, which can be solved efficiently using
semi-smooth Newton methods.

5.2. Convergence analysis. For the convergence analysis, we again assume that f is also
µ-strongly convex. We start with a lemma which provides useful uniform bounds on the eigenvalues
of matrices Hk.

Lemma 5.1. Suppose that f is µ-strongly convex and its gradient is L-Lipschitz. Then, ∀k ≥ 0,

aId � Hk � bId, 0 < a = γ/(1 + γ)L−1, 0 < b = (1 + 2γ)µ−1 − (2+γ)γ
1+γ L−1.

The proof is in Section D.1.
Theorem 5.2. Suppose that f is µ-strongly convex and its gradient is L-Lipschitz. Let γ > 0,

and a, b be given as in Lemma 5.1. Assume that 0 < κ 6 κk 6 κ < 2(Lb)−1. Let α = 1− Lbκ
2 and

η = L
2γµκ . Then, the sequence of iterates (xk)k∈N of the L-BFGS forward–backward Algorithm 3

(with Hk as in (5.1)) with t = 1 converges linearly to the unique minimizer x?, i.e.

‖xk − x?‖ 6

√
2 (F (x0)− F (x?))

µ
ρk/2 ,

where ρ is as given in Theorem 4.2.

19

0 20 40 60 80 100
10−9

10−5

10−1

103

time in seconds

o
b

je
ct

iv
e

v
a
lu

e
er

ro
r

FISTA w/ BB SPG/SpaRSA 0-mem SR1 ASA CGIST

FPC-AS L-BFGS-B OWL PSSas

0 0.5 1 1.5 2 2.5
10−7

10−1

105

1011

time in seconds

Figure 6.1: Convergence plots for the methods described in Section 6 for solving the `1 LASSO
problem. The plot on the left corresponds to the experiment with the random matrix and the right
plot to the experiment with the differential operator. The vertical axis is the same for both plots.
The proposed 0-mem SR1 method and PSSas efficiently solves both problems. While our method
generalizes easily to the `1 − `2 sparsity norm, PSSas is hard to generalize.

The proof is the same as that of Theorem 4.2 (Section C.2) by substituting the constants a and
b in Lemma 4.1 with those in Lemma 5.1. Note that the phase diagram in Fig. 4.1 still applies,
though the underlying constants are slightly changed.

Remark 5.3. Let’s again illustrate the rate in Theorem 5.2. We choose γ = 1/2 as in
Remark 4.3 so that a = 1/(3L), b = 2µ−1 − 5/6L−1, and κk ≡ κ = κ = 1/(Lb). Thus α = 1/2 and
η = c(2c − 5/6), where c = L/µ is the condition number of the problem. For large c � 1, the rate
of linear convergence is ρ ≈ 1 − 1/(8η) ≈ 1 − 1/(16c2), which is smaller than the one of 0SR1 in
Remark 4.3.

6. Numerical experiments and comparisons. In the spirit of reproducible research, and
to record the exact algorithmic details, all code for experiments from this paper is available at
https://github.com/stephenbeckr/zeroSR1/tree/master/paperExperiments.

6.1. LASSO problem. Consider the unconstrained LASSO problem (1.1). Many codes, such
as [27] and L-BFGS-B [16], handle only non-negativity or box-constraints. Using the standard
change of variables by introducing the positive and negative parts of x, the LASSO can be recast as

min
x+,x−>0

1

2
‖Ax+ −Ax− − b‖2 + λ1>(x+ + x−) (6.1)

and then x is recovered via x = x+ − x−. With such a formulation solvers such as L-BFGS-B are
applicable. However, this constrained problem has twice the number of variables, and the Hessian

of the quadratic part changes from A>A to Ã =

(
A>A −A>A
−A>A A>A

)
which necessarily has (at least)

n degenerate 0 eigenvalues and adversely affects solvers.
A similar situation occurs with the hinge-loss function. Consider the shifted and reversed hinge

loss function h(x) = max(0, x). Then one can split x = x+ − x−, add constraints x+ > 0, x− > 0,
and replace h(x) with 1>(x+). As before, the Hessian gains n degenerate eigenvalues.

20

https://github.com/stephenbeckr/zeroSR1/tree/master/paperExperiments

Acronym Algorithm Name Tests Comments

FISTA Fast IST Algorithm §6.1,6.2 our own implementation in Matlab
SPG/SpaRSA Spectral Projected Gradient[8] as used in [74] §6.1,6.2 Matlab version from [74]

L-BFGS-B Limited memory, box-constrained BFGS[16, 76] §6.1 Fortran with Matlab wrapper
ASA “Active Set Algorithm” (conjugate gradient) [35] §6.1 C with Matlab wrapper, ver. 2.2
OWL Orthant-wise Learning [1] §6.1 Active set; Matlab
PSSas Projected Scaled Sub-gradient + Active Set [63] §6.1 Matlab
CGIST “CG + IST” [31] §6.1 Matlab
FPC-AS “Fixed-point continuation + Active Set” [73] §6.1 Matlab, ver. 1.21

0-mem SR1 Algorithm 7 §6.1,6.2 our approach (in Matlab)

Table 6.1: Algorithms used in experiments of sections 6.1 and 6.2. The first two algorithms are
standard “first-order” algorithms; the next group of algorithms use active-set strategies; and the
final group of three algorithms use a diagonal ± rank-1 proximal mapping. Our implementation of
FISTA used the Barzilai-Borwein stepsize [4] and line search, and restarted the momentum term
every 1000 iterations [3]. L-BFGS-B and ASA use the reformulation of (6.1). For L-BFSG-B, we
use the updated version [44]. Code for PSSas and OWL (slight variant of [1]) from [62].

We compared our proposed algorithm on the LASSO problem. The first example, on the left of
Figure 6.1, is a typical example from compressed sensing that takes A ∈ Rm×n to have iid N (0, 1)
entries with m = 1500 and n = 3000. We set λ = 0.1. L-BFGS-B does very well, followed closely
by our proposed SR1 algorithm, PSSas, and FISTA. Note that L-BFGS-B and ASA are in Fortran
and C, respectively (the other algorithms are in Matlab).

Our second example uses a square operator A with dimensions n = 153 = 3375 chosen as a
3D discrete differential operator. This example stems from a numerical analysis problem to solve
a discretized PDE as suggested by [29]. For this example, we set λ = 1. For all the solvers, we
use the same parameters as in the previous example. Unlike the previous example, the right of
Figure 6.1 now shows that L-BFGS-B is very slow on this problem. The FPC-AS method, very slow
on the earlier test, is now the fastest. However, just as before, our SR1 method is nearly as good
as the best algorithm. FISTA is significantly outperformed by our method on this problem. This
robustness is one benefit of our approach, since the method does not rely on active-set identifying
parameters and inner iteration tolerances. Moreover, the proposed SR1 method easily generalizes
to other regularization terms.

6.2. Group LASSO problem. As a second experiment, we replace the `1 sparsity term ‖x‖1
in (1.1) with an `1 − `2 sparsity ‖x‖2,1 as in (3.13), which is known to promote group sparsity

(hence the name group LASSO). We partition the N coordinates of x ∈ RN into groups b ∈ B
with randomly selected size |b| 6 12. For the numerical experiment, the entries of A and b are
drawn uniformly in [0, 1], and we set N = 2500, M = 1600, and λ = 1. As the `1 − `2 norm is
not polyhedral, active set based methods are hard to use. Also L-BFGS-B cannot be used, as the
“trick” for the `1-norm above does no apply here. The emerging rank-1 proximal mapping in our
proposed proximal SR1 method can be solved efficiently as described in Section 3.3.4. We apply
Newton’s method in the interval between breakpoints that locates the root.

Figure 6.2 shows the convergence of several methods in terms of objective value error vs iteration
(left plot) or time (right plot). Our 0SR1 method shows the best performance in the low and
medium precision regime, while, for obtaining a high precision, accelerated strategies, such as FISTA,
seem to be favorable. Presumably, this comes from the `2 − `1 norm, which usually activates a
whole block of coordinates, unlike in the LASSO case where eventually only a few coordinates are
active and thus often has an improved condition number when restricted to these active variables.
Acceleration strategies seem to compensate for this effect. In the beginning, the SR1 metric reflects

21

0 500 1,000 1,500
10−3

10−2

10−1

100

101

102

iteration

o
b

je
ct

iv
e

v
a
lu

e
er

ro
r

FISTA SPG/SpaRSA 0-mem SR1

0 10 20 30 40 50
10−3

10−2

10−1

100

101

102

time in seconds

Figure 6.2: Convergence plots for the methods described in Section 6.2 for solving the `1−`2 LASSO
problem. The vertical axis is the same for both plots. The methods based on the efficient solution
of the diagonal ± rank-1 proximal mapping proposed in this paper outperform comparable methods
based on a diagonally scaled proximal mapping.

the conditioning of the problem better than isotropic metrics.

Figure 6.2 also suggests that the improvement with respect to FISTA could be further increased
when a more efficient implementation of the diagonal ± rank-1 proximal mapping is used, or when
the rank-1 update is combined with the acceleration strategy as in [51], which we will explore in
future work.

7. Conclusions. In this paper, we proposed a novel framework for variable metric (quasi-
Newton) forward–backward splitting algorithms, designed to efficiently solve non-smooth convex
problems structured as the sum of a smooth term and a non-smooth one. We introduced a class
of weighted norms induced by diagonal ± rank r symmetric positive definite matrices, as well as a
calculus to compute the proximity operator in the corresponding induced metrics. The latter result
is new and generalized our previous results on the subject [7], and we believe it is of independent
interest as even the simpler version from [7] has been the basis of other works such as [36, 51]. We
also established convergence of the algorithm, and provided clear evidence that the non-diagonal
term provides significant acceleration over diagonal matrices.

The proposed method can be extended in several ways. Although we focused on forward–
backward splitting, our approach can be easily extended to the new generalized forward–backward
algorithm of [58]. However, if we switch to a primal-dual setting, which is desirable because it
can handle more complicated objective functionals, updating Bk is non-obvious, though one could
perhaps use our results for a non-diagonal pre-conditioning method.

Another improvement would be to derive efficient calculation for exact calculation of rank-
2 proximity terms, thus allowing our 0-memory BFGS method to have cheaper and more exact
update steps (as compared to the semi-smooth Newton method currently suggested). Theorem 3.4
and Corollary 3.6 give some clues in this direction.

A final possible extension is to take Bk to be diagonal plus rank-1 on diagonal blocks, since if h
is separable, this is still can be solved by our algorithm (see Proposition 3.13). The challenge here
is adapting this to a robust quasi-Newton update. For some matrices that are well-approximated
by low-rank blocks, such as H-matrices [34], it may be possible to choose Bk ≡ B to be a fixed

22

preconditioner.

Appendix A. Elements from convex analysis. We here collect some results from convex
analysis that are key for our proof. Some lemmata are listed without proof and can be either easily
proved or found in standard references such as [60, 5].

A.1. Background.

Functions. Definition A.1 (Indicator function). Let C a nonempty subset of H. The indicator
function ιC of C is

ιC(x) =

{
0, if x ∈ C ,
+∞, otherwise.

dom(ιC) = C.
Definition A.2 (Infimal convolution). Let h1 and h2 two functions from H to R ∪ {+∞}.

Their infimal convolution is the function from H to R ∪ {±∞} defined by:

(h1

+
∨ h2)(x) = inf {h1(x1) + h2(x2) : x1 + x2 = x} = inf

y∈H
h1(y) + h2(x− y) .

Conjugacy. Definition A.3 (Conjugate). Let h : H → R ∪ {+∞} having a minorizing affine
function. The conjugate or Legendre-Fenchel transform of h on H is the function h∗ defined by

h∗(v) = sup
x∈dom(h)

〈v, x〉 − h(x) .

Lemma A.4 (Calculus rules).
(i) (h(x) + t)∗(v) = h∗(v)− t.

(ii) (th(x))∗(v) = tf∗(v/t), t > 0.
(iii) (h ◦A)∗ = h∗ ◦

(
A−1

)∗
if A is a linear invertible operator.

(iv) (h(x− x0))∗(v) = h∗(v) + 〈v, x0〉.
(v) Separability: (

∑n
i=1 hi(xi))

∗
(v1, · · · , vn) =

∑n
i=1 h

∗
i (vi), where (x1, · · · , xn) ∈ H1×· · ·×Hn.

(vi) Conjugate of a sum: assume h1, h2 ∈ Γ0(H) and the relative interiors of their domains have
a nonempty intersection. Then

(h1 + h2)∗ = h∗1
+
∨ h∗2 .

(vii) For V ∈ S++(N), the conjugate of f in HV is h∗(V u).
Lemma A.5 (Conjugate of a degenerate quadratic function). Let Q be a symmetric positive

semi-definite matrix. Let Q+ be its Moore-Penrose pseudo-inverse. Then,(
1

2
‖y − ·‖2Q

)∗
(v) =

{
1
2 ‖y − v‖

2
Q+ if v ∈ y + Im(Q) ,

+∞ otherwise .

Lemma A.6 (Conjugate of a rank-1 quadratic function). Let u ∈ H. Then,(
1

2
〈u, ·〉2

)∗
(v) =

{
‖v‖2

2‖u‖2 if v ∈ Ru ,
+∞ otherwise.

23

Subdifferential. Definition A.7 (Subdifferential). The subdifferential of a proper convex func-
tion h ∈ Γ0(H) at x ∈ H is the set-valued map ∂h : H → 2H

∂h(x) = {v ∈ H|∀z ∈ H, h(z) ≥ h(x) + 〈v, z − x〉} .

An element v of ∂h is called a subgradient. The subdifferential map ∂h is a maximal monotone
operator from H → 2H.

Lemma A.8. If h is (Gâteaux) differentiable at x, its only subgradient at x is its gradient
∇h(x).

Lemma A.9. Let V ∈ S++(N). Then V ∂h is the subdifferential of h in HV .
The duality formulae to be stated shortly will be very useful throughout the rest of the paper.
Fenchel duality. Lemma A.10. Let h ∈ Γ0(H) and g ∈ Γ0(H). Suppose that 0 ∈ ri (dom g − domh).

Then

inf
x∈H

h(x) + g(x) = −min
u∈H

h∗(−u) + g∗(u) , (A.1)

with the extremality relashionships between x? and u?, respectively the solutions of the primal and
dual problems

x? ∈ ∂h∗(−u?) and u? ∈ ∂g(x?) ,

−u? ∈ ∂h(x?) and x? ∈ ∂g∗(u?) .
(A.2)

Toland duality. Lemma A.11. Let h ∈ Γ0(H) and g ∈ Γ0(H). Then

inf
x∈H

h(x)− g(x) = min
u∈H

g∗(u)− h∗(u) . (A.3)

If h−g is coercive, and u? solves the dual problem in u, then there exists a solution x? of the primal
problem and

x? ∈ ∂h∗(u?) and u? ∈ ∂g(x?) ,

u? ∈ ∂h(x?) and x? ∈ ∂g∗(u?) .
(A.4)

Proof. The first assertion is a consequence of [68, Theorem 2.2]. The extremality relationships
follow by combining [68, Theorem 2.7 and 2.8].

A.2. Proximal calculus in H. Definition A.12 (Moreau envelope [45]). The function
ρh(x) = infz∈H

1
2ρ ‖x− z‖

2
+ h(z) for 0 < ρ < +∞ is the Moreau envelope of index ρ of h.

ρh is also the infimal convolution of h with 1
2ρ ‖·‖

2
.

Lemma A.13.
(i) Translation: proxh(·−y)(x) = y + proxh(x− y).

(ii) Scaling: ∀ρ ∈ (−∞,∞),proxh(ρ·)(x) = proxρ2f (ρx)/ρ.

(iii) Separability : let (hi)1≤i≤n a family of functions each in Γ0(R) and h(x) =
∑N
i=1 hi(xi).

Then h is in Γ0(H) and proxh =
(
proxhi

)
1≤i≤N .

Lemma A.14. Let h ∈ Γ0(H). Then its Moreau envelope ρh is convex and Fréchet-differentiable
with 1/ρ-Lipschitz gradient

∇ρh = (Id− proxρh)/ρ.

24

Lemma A.15 (Moreau identity). Let h ∈ Γ0(H), then for any x ∈ H

proxρh∗(x) + ρproxh/ρ(x/ρ) = x, ∀ 0 < ρ < +∞ .

From Lemma A.15, we conclude that

proxh∗ = Id− proxh, proxh∗(x) ∈ ∂h(x) .

Appendix B. Proofs of Section 3.

B.1. Proof of Lemma 3.2. Proof. Let p = proxVh (x). The statement follows from the
following equivalences

p = proxVh (x)⇔ x ∈ p+ V −1∂h(p)

⇔ V 1/2x ∈ V 1/2p+ V −1/2 ◦ ∂h ◦ V −1/2(V 1/2p)

⇔ V 1/2p = proxh◦V −1/2(V 1/2x) .

B.2. Proof of Lemma 3.3. Proof. We have

p = proxVρh∗(x) = (Id + V −1ρ∂h∗)−1(x)⇔ V (x− p) ∈ ∂(ρh∗)(p)

⇔ p ∈ ∂h(V (x− p)/ρ)

⇔ V x/ρ− (V x− V p)/ρ ∈ V ∂(h/ρ)(V (x− p)/ρ)

⇔ V (x− p)/ρ = (Id + V ∂(h/ρ))−1(V x)

⇔ x = p+ ρV −1 ◦ (Id + V ∂(h/ρ))−1(V x) .

B.3. Proof of Theorem 3.4. Proof. Let p = proxVh (x). Then, we have to solve

min
z

1

2
‖x− z‖2V + h(z)

⇔ min
z

(
1

2
‖z‖2P − 〈x, z〉P + h(z)

)
± 1

2
〈x− z,Q(x− z)〉[

y = P 1/2z

W = P−1/2QP−1/2

]
⇔ min

y

(
1

2
‖y‖2 −

〈
P 1/2x, y

〉
+ h ◦ P−1/2(y)

)
± 1

2

〈
P 1/2x− y,W (P 1/2x− y)

〉
(B.1)[

Lemma A.10(A.1)
or Lemma A.11(A.3)

]
⇔ min

w
±
(

1

2
‖·‖2 −

〈
P 1/2x, ·

〉
+ h ◦ P−1/2

)∗
(∓w) +

(
1

2

〈
P 1/2x− ·,W (P 1/2x− ·)

〉)∗
(w)[

Lemma A.5
and Lemma A.4(iv)

]
⇔ min

w∈Im(W)
±
(

1

2
‖·‖2 −

〈
P 1/2x, ·

〉
+ h ◦ P−1/2

)∗
(∓w) +

1

2
‖w‖2W+ +

〈
P 1/2x,w

〉
[Lemma A.4(vi)-(iii)]⇔ min

w∈Im(W)
±
((

1

2
‖·‖2 −

〈
P 1/2x, ·

〉)∗
+
∨ (h∗ ◦ P 1/2)

)
(∓w) +

1

2
‖w‖2W+ +

〈
P 1/2x,w

〉
⇔ min

w∈Im(W)
±
((

1

2

∥∥∥P 1/2x+ ·
∥∥∥2
)

+
∨ (h∗ ◦ P 1/2)

)
(∓w) +

1

2
‖w‖2W+ +

〈
P 1/2x,w

〉
[Definition A.12]⇔ min

w∈Im(W)
±1
(
h∗ ◦ P 1/2

)
(P 1/2x∓ w) +

1

2
‖w‖2W+ +

〈
P 1/2x,w

〉
. (B.2)

25

By virtue of Lemma A.14, 1
(
h∗ ◦ P 1/2

)
is continuously differentiable with 1-Lipschitz gradient.

Together with Lemma A.8, Lemma A.10(A.2) or Lemma A.11(A.4)1, and Lemma A.15, this yields

p = P−1/2 ◦ ∇1
(
h∗ ◦ P 1/2

)
(P 1/2x∓ w?) = P−1/2 ◦ (Id− proxh∗◦P 1/2) (P 1/2x∓ w?)

= P−1/2 ◦ proxh◦P−1/2 ◦P 1/2(x∓ P−1/2w?),

where w? is a solution to the dual problem (B.2), which will turn out to be unique as we will show
shortly. Problem (B.2) is a minimization problem of a proper continuously differentiable objective
with a Lipschitz continuous gradient over a linear set. The linear set can be parametrized by α ∈ Rr
such that w = P−1/2Uα, and minimizing (B.2) is then equivalent to solving the r-dimensional
smooth optimization problem

min
α∈Rr

±1
(
h∗ ◦ P 1/2

)
(P 1/2x∓ P−1/2Uα) +

1

2
‖α‖2U>Q+U +

〈
U>x, α

〉
. (B.3)

Since the columns of U are linearly independent, U>Q+U is nothing but the identity operator on Rr.
The gradient of the objective in (B.3) is given by the mapping L. Lipschitz continuity of L follows
from non-expansiveness of the proximal mapping, and the Lipschitz constant is straightforward from
the triangle and Cauchy–Schwartz inequality. The root α? of L is unique if L is strongly monotone.
In the case V = P +Q, strong monotonicity is immediate since all terms in (B.3) are convex, and

‖α‖2U>Q+U is strongly convex of modulus 1.

In case V = P−Q, we apply Moreau’s identity (−1(ϕ∗)(x) = 1ϕ(x)− 1
2 ‖x‖

2
for ϕ ∈ Γ0(H)) (see,

for example, [24, Lemma 2.10]) to the first term, which reduces the analysis of strong convexity to
that of

〈
α, (U>(Q+ − P−1)U)α

〉
, hence, the positive definiteness of U>(Q+−P−1)U . Since P−Q ∈

S++(N), we have
∣∣∣∣∣∣P−1/2QP−1/2

∣∣∣∣∣∣ < 1 and P−1/2QP−1/2 is invertible on Im(Q). Therefore, using

1 =
∣∣∣∣∣∣AA−1

∣∣∣∣∣∣ 6 ∣∣∣∣∣∣A∣∣∣∣∣∣∣∣∣∣∣∣A−1
∣∣∣∣∣∣ for an invertible matrix A, we conclude that

∣∣∣∣∣∣P 1/2Q+P 1/2
∣∣∣∣∣∣

Im(Q)
> 1,

where
∣∣∣∣∣∣ · ∣∣∣∣∣∣

Im(Q)
denotes the operator norm restricted to Im(Q), which implies that Q+ − P−1 ∈

S++(Im(Q)) and, thus, (B.3) is strongly convex. Its modulus of strong convexity is
∣∣∣∣∣∣U>(Q+ −

P−1)U
∣∣∣∣∣∣ = 1−

∣∣∣∣∣∣U>P−1U
∣∣∣∣∣∣ = 1−

∣∣∣∣∣∣P−1/2U
∣∣∣∣∣∣2.

B.4. Proof of Proposition 3.10. Proof. We use the notation of Theorem 3.4 and its
proof in Appendix B.3. Let p = proxVh (x). By non-expansivity of the proximal mapping, ‖p‖ =∥∥proxVh (x)

∥∥ ≤ ‖x‖+
∥∥proxVh (0)

∥∥. Since p minimizes 1
2 ‖x− z‖

2
V + h(z), and using the same change

of variable y = P 1/2z as in the proof, the optimal point y? = P 1/2p.
Letting g(y) = ± 1

2

〈
P 1/2x− y,W (P 1/2x− y)

〉
with W = P−1/2QP−1/2, either Lemma A.10 or

Lemma A.11 gives the optimal dual solution

∓w? = ∇g(y?)

= W (y? − P 1/2x)

= P−1/2QP−1/2y? − P−1/2Qx

= P−1/2Q(p− x). (B.4)

Finally, w? = P−1/2Uα?, and observe U = u since r = 1, and so also Q = uu>. Then

|α?| =
∥∥P 1/2w?

∥∥/ ‖u‖
= ‖Q(p− x)‖ / ‖u‖ via (B.4)

≤ ‖u‖
(
2 ‖x‖+

∥∥proxVh (0)
∥∥) .

1The coercivity assumption holds (in fact the primal has exactly one solution) and the dual problem has indeed
a non-empty set of minimizers.

26

B.5. Proof of Proposition 3.7. Proof. The key of the proof is the remarkable stability
properties of definable functions. In particular, under the sum, composition by a linear operator,
derivation, and canonical projection (see [71, 25]). Since h is a tame function, so is h◦P−1/2, as well
as its Moreau envelope (by the projection stability), and the gradient of the latter. Combining this
with Lemma A.14, it follows that proxh◦P−1/2 is a tame mapping. We then deduce from stability to
the sum and composition by a linear operator that L is a tame mapping. Thus, L is tame Lipschitz
continuous mapping (Theorem 3.4), and it follows from [9, Theorem 1] that L is semi-smooth.

Let us now show that ∂CL(α?) is non-singular. By definition of the Clarke Jacobian for a
Lipschitz function and the Carathéodory theorem, for any G ∈ ∂CL(α?), we have a finite sequence

ρ1, · · · , ρr2+1 ≥ 0 living on the simplex, i.e.,
∑r2+1
i=1 ρi = 1, and r2 + 1 sequences (αi,k)k∈N with

αi,k →
Ω
α? as k → +∞ such that, for any d ∈ Rr

〈Gd, d〉 =

r2+1∑
i=1

ρi lim
k→+∞

〈JL(αi,k)d, d〉 =

r2+1∑
i=1

ρi lim
k→+∞

lim
τ→0

〈L(αi,k + τd)− L(αi,k), d〉
τ

.

By strong monotonicity of L of modulus c > 0 (Theorem 3.4), we have for all d ∈ Rr

〈L(αi,k + τd)− L(αi,k), d〉
τ

≥ c ‖d‖2 .

Passing to the limit and summing, we conclude that

〈Gd, d〉 ≥ c ‖d‖2 , ∀d ∈ Rr.

Since G is any element of ∂CL(α?), we get that ∂CL(α?) is non-singular. We are then in position
to apply [28, Theorem 7.5.5] to obtain the first part of the convergence claim.

For the case where h is semi-algebraic, we argue as above, using stability of semi-algebraic sets
to the same operations (in particular projection stability by the Tarski-Seidenberg principle [26]),
to deduce that proxh◦P−1/2 is also a semi-algebraic mapping. The last claim then follows from [9,
Theorem 2].

B.6. Proof of Proposition 3.13. Proof. Recall that (3.10) is strictly increasing, continuous,
and has a unique solution. When proxhi/di is piecewise affine with ki segments, it is easy to see that
L(α) in (3.10) is also piecewise affine with slopes and intercepts changing at the k′ (unique) transition

points θ̃. Therefore, the root of L can be found by sorting θ̃ (Step 1) and finding the interval between
breakpoints that localizes the root (Step 3). Step 1 has the complexity O(K log(K)). Step 3 has
the complexity O(N log(K)), where O(log(K)) steps are required for binary search and each step
costs the evaluation of L, which consists of N terms. Step 5 adds at most a complexity of O(N).

Appendix C. Proofs of Section 4.

C.1. Proof of Lemma 4.1. Proof. From [47, p. 57 and 64], we have for any x and y in
dom(F)

L−1‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ L‖x− y‖2

µ‖x− y‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ µ−1‖∇f(x)−∇f(y)‖2.

Thus by applying the above results to the quasi-Newton sequences sk and yk, we get

L−1‖yk‖2 ≤ 〈sk, yk〉 ≤ L‖sk‖2

µ‖sk‖2 ≤ 〈sk, yk〉 ≤ µ−1‖yk‖2
=⇒

L−1 ≤ 〈sk, yk〉
‖yk‖2

≤ µ−1

µ ≤ 〈sk, yk〉
‖sk‖2

≤ L.
(C.1)

27

We will use the “2nd” Barzilai–Borwein stepsize τBB2 as opposed to the more common τBB1:

τBB2 =
〈sk, yk〉
‖yk‖2

, τBB1 =
‖sk‖2

〈sk, yk〉
.

Via Cauchy-Schwarz, we have τBB2 ≤ τBB1. From (C.1), we have L−1 ≤ τBB2 ≤ τBB1 ≤ µ−1.
Given the SR1 update and the choice H0 = γτBB2Id with 0 < γ < 1, we have

uk = (sk − γτBB2yk)/
√
〈sk − γτBB2yk, yk〉 = (sk − γτBB2yk)/

√
(1− γ) 〈sk, yk〉.

Combining this with the estimates (C.1), we obtain

‖uk‖2 =
‖sk‖2 − 2γτBB2 〈sk, yk〉+ γ2τ2

BB2‖yk‖2

(1− γ) 〈sk, yk〉

= (1− γ)−1

(
‖sk‖2

〈sk, yk〉
− 2γτBB2 + γ2τBB2

)
≤ (1− γ)−1

(
µ−1 − 2γL−1 + γ2µ−1

)
.

Thus

0 ≺ γL−1Id � H0 � Hk � γµ−1Id + (1− γ)−1
(
(1 + γ2)µ−1 − 2γL−1

)
Id

� (1− γ)−1
(
(1 + γ)µ−1 − 2γL−1

)
Id.

C.2. Proof of Theorem 4.2. Proof. We first recall the classical inequality for smooth func-
tions with L-Lipschitz continuous gradient,

f(x)− f(y) + 〈∇f(y), y − x〉 6 L

2
‖x− y‖2 . (C.2)

• Case α ∈]0, 1/2[:. It is clear that (2.3) is equivalent to

Bk(xk − xk+1)− κk∇f(xk) ∈ κk∂h(xk)

which in turn implies

h(y) ≥ h(xk+1) + κ−1
k 〈Bk(xk − xk+1)− κk∇f(xk), y − xk+1〉 , ∀y ∈ dom(h) . (C.3)

Applied at xk, it yields

h(xk)− h(xk+1) + 〈∇f(xk), xk − xk+1〉 ≥ κ−1
k ‖xk+1 − xk‖2Bk . (C.4)

Denote Dk = h(xk)− h(xk+1) + 〈∇f(xk), xk − xk+1〉. We have Dk ≥ 0. In view of (C.2), we get

F (xk+1)− F (xk) +Dk = f(xk+1)− f(xk) + 〈∇f(xk), xk − xk+1〉

6
L

2
‖xk+1 − xk‖2 6

Lb

2
‖xk+1 − xk‖2Bk ,

where we used Lemma 4.1. The last inequality together with (C.4) yields

F (xk+1)− F (xk) 6 −
(

1− Lbκk
2

)
Dk 6 −αDk .

28

By assumption, the right hand side is non-positive, meaning that the objective function decreases
with k. Denote

Ek = F (xk)− F (x?) and ∆k = Ek − Ek+1 .

Observe that Ek is a positive and decreasing sequence, and thus converges. Moreover,

∆k ≥ αDk ,

Using convexity of f and inequality (C.3) at y = x?, we obtain

Ek = f(xk)− f(x?) + 〈∇f(xk), x? − xk〉
+ h(xk)− h(xk+1) + 〈∇f(xk), xk − xk+1〉
+ h(xk+1)− h(x?) + 〈∇f(xk), xk+1 − x?〉
6 Dk + κ−1

k 〈Bk(xk − xk+1), xk+1 − x?〉
6 Dk + κ−1

k ‖xk+1 − x?‖Bk ‖xk+1 − xk‖Bk

6 Dk +

√
1

κa
‖xk+1 − x?‖

√
Dk

6 α−1

(
∆k +

√
α

κa
‖xk+1 − x?‖

√
∆k

)
.

Thus, using Young inequality, together with strong convexity of f and Ek is decreasing, we get for
any ε > 0,

αEk 6 ∆k +
αε

2κa
‖xk+1 − x?‖2 +

∆k

2ε

6

(
1 +

1

2ε

)
∆k +

αε

κaµ
Ek+1

6

(
1 +

1

2ε

)
∆k +

αε

κaµ
Ek =

(
1 +

1

2ε

)
∆k +

εLα

γκµ
Ek .

Let β(ε) = 1 + 1
2ε and c = L/µ > 1. It follows that

Ek+1 6 ρEk , ρ = 1− α

β(ε)

(
1− εc

γκ

)
.

We always have β(ε) ∈]1,+∞[, and by assumption on the sequence κk, α ∈]0, 1[. Choosing ε =

νγκ/c, for any ν ∈]0, 1[, we get that ρ = 1− α ν(1−ν)
ν+η ∈]0, 1[. Therefore,

‖xk − x?‖ 6

√
2 (F (x0)− (Fx?))

µ
ρk/2 .

The function ν ∈]0, 1] 7→ ν(1− ν)/(ν + η) has a unique maximizer at νopt =
√
η2 + η − η (which is

indeed a strictly increasing function of η on]0,+∞[taking values in]0, 1/2[). We get the optimal
rate ρ1 by plugging νopt into the expression of ρ.

29

• Case α ∈ [1/2, 1[:. From (2.1), (C.2), Lemma 4.1 and the assumption on α, we have

QBkk (x) + h(x) = F (x)− (f(x)− f(xk) + 〈∇f(xk), xk − x〉) +
1

2κk
‖x− xk‖2Bk

≥ F (x)− L

2
‖x− xk‖2 +

1

2κk
‖x− xk‖2Bk

≥ F (x) +
1

2κk
(1− Lbκk) ‖x− xk‖2Bk

≥ F (x) .

Moreover, convexity of f yields

QBkk (xk+1) + h(xk+1) = min
x
QBkk (x) + h(x)

= min
x
F (x)− (f(x)− f(xk)− 〈∇f(xk), x− xk〉) +

1

2κk
‖x− xk‖2Bk

6 min
x
F (x) +

1

2κk
‖x− xk‖2Bk .

It then follows that

F (xk+1) 6 QBkk (xk+1) + h(xk+1)

6 min
x
F (x) +

1

2κk
‖x− xk‖2Bk

6 min
t∈[0,1]

F (tx? + (1− t)xk) +
t2

2κk
‖xk − x?‖2Bk

6 min
t∈[0,1]

tF (x?) + (1− t)F (xk) +
t2L

2κγ
‖xk − x?‖2

6 min
t∈[0,1]

F (xk)− t (F (xk)− F (x?)) +
t2L

κγµ
(F (xk)− F (x?))

= min
t∈[0,1]

F (xk)− t (1− 2tη) (F (xk)− F (x?)) .

Thus, we arrive at

Ek+1 6 min
t∈[0,1]

(1− t (1− 2tη))Ek = ρ2Ek .

The function (1− t (1− 2tη)) attains its minimum uniquely at t = 1 if η 6 1/4, and 1/(4η) other-
wise. Plugging these values gives the expression of ρ2.

Appendix D. Proofs of Section 5.

D.1. Proof of Lemma 5.1. Proof. We derive a uniform bound for the matrix H in (5.1).
Note that uγ from (5.1) satisfies with τ = τBB2

ρ ‖uγ‖2 =
‖s‖2 − 2 γτ

1+γ 〈y, s〉+
(
γτ

1+γ

)2 ‖y‖2
〈y, s〉

=
‖s‖2

〈y, s〉
− 2

γ

1 + γ
τBB2 +

γ2

(1 + γ)2
τBB2

= τBB1 −
γ

1 + γ

(
2− γ

1 + γ

)
τBB2 6 µ−1 − (2 + γ)γ

(1 + γ)2
L−1

30

where we used ρ−1 = 〈y, s〉, ρ ‖y‖2 = τ−1
BB2, and the estimations in the proof of Lemma 4.1 for τBB2

and τBB1. Using this estimation, ρτ2
BB2 ‖y‖

2
= τBB2 ≥ L−1, and positive semi-definiteness of yy>

and uγu
>
γ , we conclude that

0 ≺ γ

1 + γ
L−1Id = γ

(
τBB2 −

γ2

1 + γ
τBB2

)
Id � H � τBB2γId + (1 + γ)µ−1Id− (2 + γ)γ

1 + γ
L−1Id

� (1 + 2γ)µ−1Id− (2 + γ)γ

1 + γ
L−1Id.

REFERENCES

[1] G. Andrew and J. Gao, Scalable training of l1-regularized log-linear models, in Proceedings of the 24th Inter-
national Conference on Machine Learning, ICML’07, New York, NY, USA, 2007, ACM, pp. 33–40.

[2] J. Attouch, H; Peypouquet, The rate of convergence of nesterov’s accelerated forward-backward method is
actually faster than 1/k2., SIAM Journal on Optimization, 26 (2016), pp. 1824–1834.

[3] Brendan B. O’Donoghue and E. Candès, Adaptive restart for accelerated gradient schemes, Foundations of
Computational Mathematics, 15 (2015), pp. 715–732.

[4] J. Barzilai and J. Borwein, Two point step size gradient method, IMA J. Numer. Anal., 8 (1988), pp. 141–148.

[5] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces.,
Springer-Verlag, New York, 2011.

[6] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM
J. on Imaging Sci., 2 (2009), pp. 183–202.

[7] S. Becker and J. Fadili, A quasi-Newton proximal splitting method, in Advances in Neural Information Pro-
cessing Systems (NIPS), Curran Associates Inc., 2012, pp. 2618–2626.

[8] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex
sets, SIAM J. Optim., 10 (2000), pp. 1196–1211.

[9] Jérôme Bolte, Aris Daniilidis, and Adrian Lewis, Tame functions are semismooth, Mathematical Program-
ming, 117 (2009), pp. 5–19.

[10] S. Bonettini, I. Loris, F. Porta, and M. Prato, Variable metric inexact line-search based methods for
nonsmooth optimization, SIAM Journal on Optimization, 26 (2016), pp. 891–921.

[11] S. Bonettini, I. Loris, F. Porta, M. Prato, and S. Rebegoldi, On the convergence of variable metric
line-search based proximal-gradient method under the Kurdyka-Lojasiewicz inequality, arXiv:1605.03791,
(2016).

[12] S. Bonettini and M. Prato, New convergence results for the scaled gradient projection method, Inverse Prob-
lems, 31 (2015).

[13] S. Bonettini, R. Zanella, and L. Zanni, A scaled gradient projection method for constrained image deblurring,
Inverse Problems, 25 (2009).

[14] K. Bredies and H. Sun, Preconditioned Douglas–Rachford splitting methods for convex-concave saddle-point
problems, SIAM Journal on Numerical Analysis, 53 (2015), pp. 421–444.

[15] C. Broyden, Quasi-Newton methods and their application to function minimization, Mathematics of Compu-
tation, 21 (1967), pp. 577–593.

[16] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound constrained optimization,
SIAM J. Sci. Computing, 16 (1995), pp. 1190–1208.

[17] G. HG Chen and R. T. Rockafellar, Convergence rates in Forward–Backward splitting, SIAM Journal on
Optimization, 7 (1997), pp. 421–444.

[18] X. Chen, Z. Nashed, and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator
equations, SIAM Journal on Numerical Analysis, 38 (2000), pp. 1200–1216.

[19] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, Variable metric forward–backward algorithm for minimizing
the sum of a differentiable function and a convex function, Journal of Optimization Theory and Applica-
tions, (2013).

[20] F. Clarke, Optimization and nonsmooth analysis, vol. 5 of Classics in Applied Mathematics, SIAM, Philadel-
phia, 2nd ed., 1990.

31

[21] P.L. Combettes and B.C. Vũ, Variable metric quasi-Fejér monotonicity, Nonlinear Analysis: Theory, Methods
& Applications, 78 (2013), pp. 17–31.

[22] , Variable metric forward–backward splitting with applications to monotone inclusions in duality, Opti-
mization, 63 (2014), pp. 1289–1318.

[23] P. L. Combettes and J. C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point Algo-
rithms for Inverse Problems in Science and Engineering, H. H. Bauschke, R. S. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, eds., Springer-Verlag, New York, 2011, pp. 185–212.

[24] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward–backward splitting, Multiscale Modeling
& Simulation, 4 (2005), pp. 1168–1200.

[25] M. Coste, An introduction to o-minimal geometry, tech. report, Institut de Recherche Mathematiques de
Rennes, November 1999.

[26] , An introduction to semialgebraic geometry, tech. report, Institut de Recherche Mathematiques de
Rennes, October 2002.

[27] I. Dhillon, D. Kim, and S. Sra, Tackling box-constrained optimization via a new projected quasi-Newton
approach, SIAM Journal on Scientific Computing, 32 (2010), pp. 3548–3563.

[28] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems I
and II, Springer, New York, 2003.

[29] Roger Fletcher, On the Barzilai-Borwein method, in Optimization and Control with Applications, L. Qi,
K. Teo, X. Yang, P. Pardalos, and D. W. Hearn, eds., vol. 96 of Applied Optimization, Springer US, 2005,
pp. 235–256.

[30] M. P. Friedlander and G. Goh, Efficient evaluation of scaled proximal operators, Electronic Transactions on
Numerical Analysis, 46 (2017), pp. 1–22.

[31] T. Goldstein and S. Setzer, High-order methods for basis pursuit, tech. report, CAM-UCLA, 2011.

[32] N. Gould, Seminal papers in nonlinear optimization, in An introduction to algorithms for continuous optimiza-
tion, Oxford University Computing Laboratory, 2006.

[33] J. Guo and A. Lewis, BFGS convergence to nonsmooth minimizers of convex functions, ArXiv e-prints, (2017).
arXiv: 1703.06690.

[34] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices, Comput-
ing, 62 (1999), pp. 89–108.

[35] W. W. Hager and H. Zhang, A new active set algorithm for box constrained optimization, SIAM Journal on
Optimization, 17 (2006), pp. 526–557.

[36] S. Karimi and S. Vavasis, IMRO: A proximal quasi-newton method for solving `1-regularized least squares
problems, SIAM Journal on Optimization, 27 (2017), pp. 583–615.

[37] M. Kojima and S. Shindo, Extension of Newton and Quasi-Newton Methods to Systems of PC1 Equations,
Journal of the Operations Research Society of Japan, 29 (1986), pp. 352–375.

[38] B. Kummer, Newton’s method for non-differentiable functions, in Advances in Mathematical Optimization,
J. Guddat, B. Bank, H. Hollatz, P. Kall, D. Klatte, B. Kummer, K. Lommatzsch, L. Tammer, M. Vlach,
and K. Zimmerman, eds., Akademi-Verlag, Berlin, 1988, pp. 114–125.

[39] , Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis, in
Advances in Optimization, W. Oettli and D. Pallaschke, eds., Lecture Notes in Economics and Mathematical
Systems, Springer Berlin Heidelberg, 1992, pp. 171–194.

[40] J. Lee, Y. Sun, and M. Saunders, Proximal Newton-type methods for minimizing composite functions, SIAM
Journal on Optimization, 24 (2014), pp. 1420–1443.

[41] C. Lemaréchal, Numerical experiments in nonsmooth optimization, in Progress in Nondifferentiable Optimiza-
tion, E.A. Nurminski, ed., IIASA, Laxenburg, 1982, pp. 61–84.

[42] A.S. Lewis and M.L. Overton, Nonsmooth optimization via quasi-Newton methods, Mathematical Program-
ming, 141 (2013), pp. 135–163.

[43] A.S. Lewis and S. Zhang, Nonsmoothness and a variable metric method, Journal of Optimization Theory and
Applications, 165 (2015), pp. 151–171.

[44] José Luis Morales and Jorge Nocedal, Remark on algorithm L-BFGS-B: Fortran subroutines for large-scale
bound constrained optimization, ACM Transactions on Mathematical Software, 38 (2011), pp. 7:1–7:4.

[45] J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, CRAS Séries A Math-
ematics, 255 (1962), pp. 2897–2899.

[46] Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2), Soviet
Mathematics Doklady, 27 (1983), pp. 372–376.

[47] , Introductory Lectures on Convex Optimization: A Basic Course, vol. 87 of Applied Optimization,
Kluwer, Boston, 2004.

32

[48] J. Nocedal and S. Wright, Numerical Optimization, Springer, 2nd ed., 2006.

[49] P. Ochs, Unifying abstract inexact convergence theorems for descent methods and block coordinate variable
metric iPiano, ArXiv e-prints, (2016). arXiv:1602.07283 (accepted to SIOPT).

[50] P. Ochs, J. Fadili, and T. Brox, Non-smooth non-convex bregman minimization: Unification and new algo-
rithms, Journal of Optimization Theory and Applications, (2018). in press (arXiv:1707.02278 [math.OC]).

[51] P. Ochs and T. Pock, Adaptive Fista, arXiv:1711.04343, (2017).

[52] J.-S. Pang, Newton’s Method for B-Differentiable Equations, Mathematics of Operations Research, 15 (1990),
pp. 311–341.

[53] P. Patrinos, L. Stella, and A. Bemporad, Forward–backward truncated Newton methods for convex composite
optimization, arXiv:1402.6655, (2014).

[54] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex opti-
mization, in International Conference on Computer Vision (ICCV), 2011.

[55] F. Porta, M. Prato, and L. Zanni, A new steplength selection for scaled gradient methods with application
to image deblurring, Journal of Scientific Computing, 65 (2015), pp. 895–919.

[56] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Mathematical Programming, 58 (1993), pp. 353–
367.

[57] Roger R. Fletcher, A limited memory steepest descent method, Mathematical Programming, 135 (2011),
pp. 413–436.

[58] H. Raguet, J. Fadili, and G. Peyré, A generalized forward–backward splitting, SIAM Journal on Imaging
Sciences, 6 (2013), pp. 1199–1226.

[59] S.M. Robinson, Newton’s method for a class of nonsmooth functions, Set-Valued Analysis, 2 (1994), pp. 291–
305.

[60] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[61] S. Salzo, The variable metric forward–backward splitting algorithm under mild differentiability assumptions,
arXiv:1605.00952, (2016).

[62] M. Schmidt, Graphical Model Structure Learning with L1-Regularization, PhD thesis, University of British
Columbia, Vancouver, 2010.

[63] M. Schmidt, G. Fung, and R. Rosales, Fast optimization methods for l1 regularization: A comparative study
and two new approaches, in European Conference on Machine Learning, 2007.

[64] M. Schmidt, D. Kim, and S. Sra, Projected Newton-type methods in machine learning, in Optimization for
Machine Learning, S. Sra, S. Nowozin, and S.Wright, eds., MIT Press, 2011.

[65] M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy, Optimizing costly functions with simple
constraints: A limited-memory projected quasi-Newton algorithm, in AISTATS, 2009.

[66] L. Stella, A. Themelis, and P. Patrinos, Forward–backward quasi-Newton methods for nonsmooth optimiza-
tion problems, Computational Optimization and Applications, 67 (2017), pp. 443–487.

[67] W. Su, S. Boyd, and R. Candes, A differential equation for modeling Nesterov’s accelerated gradient method:
Theory and insights, in Advances in Neural Information Processing Systems, 2014, pp. 2510–2518.

[68] J.F. Toland, A duality principle for non-convex optimisation and the calculus of variations, Archive for Ra-
tional Mechanics and Analysis, 71 (1979), pp. 41–61.

[69] M. Ulbrich, Semismooth Newton Methods for Operator Equations in Function Spaces, SIAM Journal on Op-
timization, 13 (2002), pp. 805–841.

[70] , Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in
Function Spaces, Society for Industrial and Applied Mathematics, 2011.

[71] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Mathematical Journal,
84 (1996), pp. 497–540.

[72] B. C. Vũ, A variable metric extension of the Forward–Backward–Forward algorithm for monotone operators,
Numerical Functional Analysis and Optimization, 34 (2013), pp. 1050–1065.

[73] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage,
subspace optimization and continuation, SIAM Journal on Scientific Computing, 32 (2010), pp. 1832–1857.

[74] S. Wright, R. Nowak, and M. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans-
actions on Signal Processing, 57 (2009). 2479–2493.

[75] J. Yu, S.V.N. Vishwanathan, S. Guenter, and N. Schraudolph, A quasi-Newton approach to nonsmooth
convex optimization problems in machine learning, J. Machine Learning Research, 11 (2010), pp. 1145–1200.

[76] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization, ACM Transactions on Mathematical Software, 23 (1997), pp. 550–560.

33

	Appendix

