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Soil moisture content plays a central role in the coupled water and energy 

exchange between the land surface and the atmosphere. It also controls infiltration 

rates and is therefore key to predicting groundwater recharge and discharge. Land 

Surface Models (LSMs) use meteorologic data with parameterizations of local soil 

and vegetation conditions to simulate soil moisture, runoff, and turbulent fluxes. 

Accurate predictions of droughts, floods, crop productivity, and climate change 

depend on our ability to understand and model the state and dynamics of surface 

soil moisture. 

Satellite-based remote sensing missions provides global coverage and 

therefore offer the potential to improve existing LSMs. We use remotely-sensed and 

in situ soil moisture observations from seven well-instrumented field sites to 

estimate soil hydraulic properties (SHPs) in the Noah LSM. Default SHPs are based 

on mapped soil type, but ample evidence shows that soil type is a poor predictor of 

hydraulic behavior. Improvements can be made by calibrating these parameters to 

unbiased observations of surface soil moisture, especially when the dynamics of the 

default model are poor.  

Remotely-sensed soil moisture observations measure between the surface and 

up to 5 cm depth. However, the shallowest layer of most LSMs and the placement of 
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in situ probes is typically centered at 5 cm. This depth discrepancy affects 

observations of soil moisture dynamics. We find that after rain events, NASA’s 

SMAP (Soil Moisture Active Passive) satellite observes drying to occur over a 44% 

shorter timescale and twice as fast as 17 in situ validation networks spread across 

the globe. 

Lastly, we demonstrate the strengths of SMAP and document how it differs 

from Noah simulated soil moisture over North America during drydown periods. 

Both SMAP and Noah drying rates depend on potential evaporation, soil moisture 

content, and vegetation. SMAP retrievals show that areas with sparse vegetation 

dry faster than areas with dense vegetation. Noah simulations show the opposite. 

After normalizing by potential evaporation, however, both SMAP and Noah data 

show that increased vegetation cover corresponds with lower evaporative efficiency. 

These differences are related to sensing depth and may also provide indications for 

how models can be improved.    
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Chapter 1: Introduction 

By studying soil moisture and its role in the hydrologic cycle, hydrologists can 

improve weather forecasts, flood and drought assessments, crop yields, freshwater 

availability estimates, and climate predictions. Aside from being a storage reservoir 

and mediating runoff and infiltration rates, available liquid water can change phase 

to vapor and therefore affect the relative intensities of latent and sensible heat 

fluxes. Relatively small differences in energy partitioning have a significant impact 

on boundary layer processes [Schär et al., 1999]. So while precipitation events are 

short-lived (minutes to days), resulting soil moisture anomalies can persist and 

influence the atmosphere for months [Delworth and Manabe, 1993]. Wet soils are 

linked to increases in precipitation, and the mechanism behind this connection 

includes changes to net radiation, land surface temperatures, evapotranspiration, 

and carbon fluxes [Entekhabi et al., 1996; Eltahir, 1998; Schär et al., 1999; Koster 

et al., 2004; Daly and Porporato, 2005]. Such variables are critical to hydrology, 

ecology, biogeochemistry, and climate. A better understanding and quantification of 

soil moisture processes is therefore key to reducing uncertainties in future climate 

projections with regard to extreme events, agriculture, and ecology [Seneviratne et 

al., 2010]. 

Soil moisture is most commonly expressed in terms of the volume of water 

present in a volume of soil (cm3 cm-3). To directly ascertain this “volumetric soil 

moisture” (VSM), one must use destructive methods: oven-dry a soil sample of 

known volume, and use the resulting change in water mass to calculate VSM of the 
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original sample. Continuous monitoring efforts must therefore utilize indirect 

observation techniques. In my research, I use three distinct methods to estimate 

soil moisture: in situ soil moisture probes, remote sensing, and modeling. 

In situ probes determine VSM using a well-established relationship between 

the soil’s dielectric properties and moisture content [Topp et al., 1980]. Though such 

probes have good precision and accuracy, they characterize only the few centimeters 

surrounding them [Topp and Davis, 1985; Ferré et al., 1998]. Horizontal variability 

is significant, so scaling from individual probe measurements to the field scale 

requires many instruments to be installed and maintained [Western et al., 2002; 

Famiglietti et al., 2008]. The expense and small-scale nature of in situ methods 

therefore prohibit their direct use at the continental scale. 

Remote sensing of soil moisture offers a more efficient observation method. It 

has been known for some time there is a correlation between surface soil moisture 

content and passive microwave emissions [Njoku and Kong, 1977; Dobson et al., 

1985; Ulaby et al., 1986; Jackson and O’Neill, 1987; Njoku and Entekhabi, 1996]. 

More recently, this knowledge has been used to develop two satellites whose 

primary mission is to measure soil moisture from space: the Soil Moisture Ocean 

Salinity (SMOS) mission of the European Space Agency (ESA) launched in 

November 2009, and the Soil Moisture Active Passive mission of the National 

Aeronautics and Space Administration (NASA) launched in January 2015 [Kerr et 

al., 2010b; Entekhabi et al., 2014]. Satellite remote sensing platforms are useful for 
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hydrologic research because unlike in situ probes, their observations are global and 

large-scale (10s of kilometers).  

Like remote sensing platforms, model products can characterize soil moisture 

anomalies on a continuous, continental scale [Xia et al., 2012b]. Land surface 

models (LSMs) such as Noah contain empirically- and theoretically-derived 

equations that predict how meteorologic observations will affect water storage, 

runoff, streamflow, soil temperature, and turbulent fluxes [Ek et al., 2003].  

The goal of this research is to assess the utility and characteristics of 

satellite-based soil moisture by comparing remote sensing products to both in situ 

data and land surface models. In this dissertation, I present (Chapter 2:) a study of 

how observed surface soil moisture can be used in a data assimilation framework to 

improve Noah LSM soil moisture simulations, (Chapter 3) an investigation into how 

in situ probes and SMAP retrievals observe the dissipation of moisture anomalies 

differently, and (Chapter 4) model-based insight into the utility of SMAP-observed 

soil moisture anomalies on a continental scale. In this way, I provide the community 

with a better understanding of the advantages and limitations of microwave remote 

sensing. 
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Chapter 2: Calibration of Noah soil hydraulic property parameters 
using surface soil moisture from SMOS and basin-wide in situ 

observations 

2.1 Background 

When a precipitation event wets the ground surface, the pathway water takes 

depends on the soil’s characteristics. Hydrologic LSMs use soil hydraulic properties 

(SHPs) to parameterize various soil types and generate reasonable simulations of 

the redistribution and drainage of water through the soil column. Surface and root 

zone soil moisture content affects runoff, baseflow, and partitioning of net radiation 

between ground, sensible, and latent heat fluxes (LHF) [Betts et al., 1996; 

Entekhabi et al., 1996]. Water and energy fluxes are thus dependent on SHPs. Land 

surface parameterizations and soil properties in particular have been shown to 

significantly affect continental-scale climate simulations [Pitman, 2003; Osborne et 

al., 2004; Richter et al., 2004; Guillod et al., 2013]. 

SHPs in LSMs are typically assigned using laboratory-derived look-up tables 

or empirical functions, both based on mapped soil texture [Teuling et al., 2009]. This 

approach is problematic because soil texture is a poor predictor of SHPs [Gutmann 

and Small, 2005, 2007]. The existence of soil texture maps allows the practice to 

persist despite overwhelming evidence that it is ill-suited. First, mapped texture 

classes often do not match the texture observed at the site. Xia et al. [2015] show 

that correcting for such mismatches does not categorically improve the root mean 

squared difference (RMSD) between simulations and in situ observations. Values 

for both range from 0.03 to 0.09 cm3 cm-3. Second, models use the mean SHP values 
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of each texture class, but commonly used soil databases (including Holtan et al. 

[1968], Rawls et al. [1976], and Schaap and Leij [1998]) exhibit more SHP variation 

within a single texture class than between the 12 class means [Soet and Stricker, 

2003; Gutmann and Small, 2005, 2007; Harrison et al., 2012]. This indicates an 

arbitrary discretization of SHPs and a decrease in soil property diversity, which 

decreases the likelihood of accurate soil properties [Wösten et al., 1995]. Third, the 

scale of LSMs (typically 1-50 km) is incommensurate with that of laboratory (~10 

cm) measurements. Soil properties are different when measured at a large scale 

because they must account for smaller-scale heterogeneities [Grayson and Blöschl, 

2000; Harter and Hopmans, 2004]. Fourth, soil structure, organic material, bulk 

density, and preferential flow through macropores influence soil drainage but are 

not captured by the typical assignation of sand/silt/clay percentages or texture class 

[Beven and Germann, 1982; Soet and Stricker, 2003; Gutmann and Small, 2005, 

2007]. And finally, although use of the Richards equation at field and watershed 

scales is common, it is not based on sound physical basis; models at the kilometer 

scale only provide effective representations of unsaturated flow processes [Beven, 

1995; Vereecken et al., 2007]. These problems make small-scale information about 

soils and hydraulic parameters nearly impossible to use in real-world upscaling 

approaches [Vereecken et al., 2007]. The limitations of such “bottom-up” approaches 

have led to instead using calibration to select parameters. This “top-down” strategy 

does not depend on knowledge of soil classes within the model domain [Ines and 

Mohanty, 2009]. 
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The calibration process matches modeled outputs to observations of those 

fluxes or states by adjusting model parameters, and it has been shown to improve 

model performance [Franks and Beven, 1997; Gupta et al., 1999; Hogue et al., 2006; 

Gutmann and Small, 2010; Harrison et al., 2012]. Studies to-date have used runoff, 

soil temperature, and heat fluxes to calibrate hydrologic model parameters 

[Sorooshian et al., 1993; Yapo et al., 1996; Franks and Beven, 1997; Crow et al., 

2003; Hogue et al., 2005; Liu et al., 2005; Gutmann and Small, 2007, 2010; 

Nandagiri, 2007].  

With a given model and observation set, calibration schemes differ in the 

number of included parameters. Studies such as Gutmann and Small [2010], Burke 

et al. [1998], and Santanello et al. [2007] estimate only two to five parameters, 

which allows them to evaluate the role of each on the observed response. Gupta et 

al. [1999], Houser et al. [2001], and others, on the other hand, allow for complex 

interactions between parameters by simultaneously calibrating a dozen or more. 

Bastidas et al. [2006], however, find overparameterization in complex models, which 

decreases parameter identifiability. To this point, Beven [1989] points specifically to 

“making use of measured internal state variables” such as soil moisture as a path 

towards reducing “equifinality”: that different parameter sets can produce equally 

good simulations [Beven and Binley, 1992].  

Soil moisture observations are particularly well-suited for LSM model 

calibration, as they capture a key component of hydrologic behavior. Due to data 

availability, past calibration experiments have only utilized soil moisture 
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observations in a small domain or in combination with other data [e.g., Mattikalli et 

al., 1998; Wooldridge et al., 2003; Koren et al., 2008; Ines and Mohanty, 2009; 

Pauwels et al., 2009; Milzow et al., 2011; Harrison et al., 2012]. The present work 

calibrates a hydrologic model to two large-scale observations of near-surface soil 

moisture: (1) basin-averaged in situ measurements, and (2) remotely-sensed 

observations from the ESA’s SMOS satellite mission. Multi-year data are available 

for both. Because soil moisture alone has never been used to calibrate a model at 

this temporal and spatial scale, we limit our study to only four parameters that 

directly affect soil moisture. This is the logical first step before expanding to 

secondary parameters and interactions. We address the following questions: (1) 

What aspects of modeled soil moisture can be improved through calibration of SHPs 

with soil moisture? (2) What are the strengths and weaknesses of using SMOS in 

such calibrations? To assess model calibration success, we investigate the resulting 

absolute soil moisture values and soil moisture anomalies. Absolute values affect 

the magnitude of other model fluxes such as LHF and runoff [Betts et al., 1996; 

Entekhabi et al., 1996]. Soil moisture anomalies are useful for characterizing system 

dynamics [e.g., Kurc and Small, 2004] and for assimilation efforts [e.g., Reichle and 

Koster, 2004; Crow et al., 2010; Juglea et al., 2010; Pan et al., 2012; Blankenship et 

al., 2014].  

2.2 Methods 

The model setup mimics that of the Noah LSM [Chen and Dudhia, 2001; Ek 

et al., 2003] in Phase 2 of the North American Land Data Assimilation System 

(NLDAS-2) [Xia et al., 2012b]. This framework allows our results to be directly 



 8 

applicable to ongoing NLDAS and NLDAS-type research. The calibration process 

uses observations that are roughly commensurate with the 1/8 degree 

(approximately 144 km2) NLDAS resolution, so soil moisture scaling is not part of 

this study.  

2.2.1 Model, parameters, and forcing data 

We employ the widely-used Noah LSM version 3.3 [Chen and Dudhia, 2001; 

Ek et al., 2003]. Noah is run in a stand-alone configuration, although it can be 

coupled directly to an atmospheric model [Skamarock et al., 2008]. The soil 

thickness is set to the default 2 m, with layer boundaries at 10, 40, 100, and 200 cm. 

Noah solves the Richards equation [Richards, 1931] to simulate the soil moisture 

content of each layer through time and allows gravity drainage from the bottom soil 

layer. The Richards equation is presented here as in Chen et al. [1996]: 

    (1) 

θ is the volumetric soil moisture (VSM) content in m3 m-3 (or cm3 cm-3), t is 

time in s, z is depth in m, and Fθ represents the sum of sources (positive) and sinks 

(negative) in cm3 cm-3 s-1: infiltration into and evaporation from layer 1, and 

transpiration from layers that contain roots. The remaining variables K and ψ are 

the hydraulic conductivity (m s-1) and water tension (m H2O). Noah uses the 

Campbell model to define their nonlinear behavior [Campbell, 1974]: 

     (2) 
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     (3) 

The four parameters in the above equations are SHPs (Table 1): (1) the 

inverse of the pore size distribution index, b (unitless), which defines the shape of 

the relationship between water tension and water content; (2) the saturated soil 

moisture content, θsat (cm3 cm-3); (3) the saturated matric potential, ψsat (m H2O), 

which is the water tension at which air enters a saturated volume of soil; and (4) 

the saturated hydraulic conductivity, Ksat (m s-1).  

Table 1. SHP parameters, their limits, and the ranges of their texture-based default values. 

Parameter   Uniform prior 
distribution   Noah default values 

Name Symbol Units  Minimum Maximum  Minimum Maximum 
Inverse of pore size 
distribution index b –   0.34 50.91   2.79 11.55 

Saturated soil moisture content θsat cm3 cm-3  0.12 0.698  0.339 0.476 
Saturated matric potential ψsat m H2O  0.036 4.01  0.036 0.759 

Saturated hydraulic 
conductivity Ksat m s-1   9.74E-07 1.51E-04   9.74E-07 4.66E-05 

  
Through Eq. (1) – (3), SHPs directly affect the flux of water between Noah’s 

soil layers. Each parameter controls one or more aspect of the simulated soil 

moisture time series. For example, higher Ksat enhances gravity-driven flow, which 

can result in drier surface soil. Nonlinear interactions between parameters exist, 

which is one reason why formal calibration schemes may be superior to manual 

selection of parameter values [Boyle et al., 2000]. Prior studies with Noah 

demonstrate that soil moisture and heat fluxes are sensitive to all four SHPs, 

K = Ksat
θ
θsat

!

"
#

$

%
&

2b+3
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whether on their own or through interactions with other parameters [Bastidas et 

al., 2006; Rosero et al., 2010].  

We use hourly NLDAS-2 meteorological forcings [Xia et al., 2012b]. Default 

model parameters are either constant or are chosen according to soil texture and 

vegetation (Table 2). STATSGO-based soil textures and a lookup table from Cosby 

et al. [1984] provide Noah with its four SHPs at each location [Miller and White, 

1998; Mitchell et al., 2004]. Noah’s vegetation parameters are chosen according to 

the location’s University of Maryland 1 km Land Cover Classification, based on 

AVHRR data from 1981 to 1994 [Hansen et al., 2000]. These consist of rooting 

depth, minimum and maximum leaf areas, emissivity, albedo, roughness height, 

and canopy stress parameters. The fractional cover of green vegetation, shdfac, is 

set to its monthly climatological average from NLDAS Noah forcings between 1979 

and 2014.  

Table 2. Site descriptions.  
S: sand, L: loam, Si: silt, C: clay. CGM: Cropland/grassland mosaic, WG: wooded grassland. 
“Soil probes” are the number of available probes at 5 cm depth during 2012 and 2013. “Mean 
veg cover” is the average of the monthly climatological shdfac values used in the simulations. 
“Precip” is average annual precipitation from 2011-2013 NLDAS forcings.  

Site State Abbrev Lat Lon 
Mapped 
soil type Vegetation 

Mean 
veg 

cover 
Precip 
(mm) 

Soil 
probes 

Approx 
km2 Climate Topo 

Fort Cobb OK FC 35.34 -98.57 SiL CGM 0.45 606 15 813 Sub-
humid Rolling 

Marena OK Mar 36.06 -97.22 SL WG 0.45 774 4 1 Sub-
humid Rolling 

Little 
Washita OK LW 34.88 -98.07 SL Grassland 0.44 773 15 610 Sub-

humid Rolling 

St. Josephs IN SJ 41.44 -85.03 SiL CGM 0.41 780 13 300 Humid Flat 
Walnut 
Gulch AZ WG 31.63 -110.40 L Grassland 0.22 320 14 148 Semi-

arid Rolling 

Little River GA LR 31.40 -83.56 LS CGM 0.50 1333 8 334 Humid Flat 
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Reynolds 
Creek ID RC 43.18 -116.78 L Grassland 0.20 346 11 238 Semi-

arid Mountainous 

 

2.2.2 Study sites and soil moisture observations 

Seven sites are used (Table 2): Marena, OK (Mar); Walnut Gulch, AZ (WG); 

Little Washita, OK (LW); Fort Cobb, OK (FC); Little River, GA (LR); St. Josephs, IN 

(SJ); and Reynolds Creek, ID (RC). At each, surface soil moisture data are available 

from: (1) a network of in situ probes operated by the United States Department of 

Agriculture Agricultural Research Service (USDA–ARS), and (2) the ESA’s SMOS 

satellite mission [Kerr et al., 2010b]. Soil moisture is reported as VSM (cm3 cm-3), 

representing the ratio between volume of water and total soil volume.  

A primary goal of these in situ networks is calibration and validation of 

satellite products. Each has a distributed network of Stevens Water Hydra Probes 

placed at 5 cm depth and an up-scaling function that qualifies it for use at the 36 

km scale [Colliander et al., 2015]. The networks’ “basin” average thus is 

representative of a passive microwave satellite footprint [Jackson et al., 2010]. 

Supporting studies have determined most of the networks (WG, LW, LR, RC) to 

represent soil moisture with high accuracy (~0.01 cm3 cm-3) from 0 to 5 cm [Bosch et 

al., 2006; Cosh et al., 2006, 2008; Jackson et al., 2012]. FC has been shown to 

perform well in a multiyear stability study, though it has not been explicitly 

validated [Cosh et al., 2014]. SJ is still under development, but its design and 

instrumentation are similar to the other sites.  

Each sites’ 5 cm in situ averages are used for SHP calibration. When 

available, we also use probes from lower in the soil column to evaluate performance 
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of the calibrated models. Five of the seven sites have deeper probes. We assign these 

to represent the second model layer (10 to 40 cm) as follows: when two probes fall 

within the second model layer, they are averaged. When only one exists, it 

represents the entire layer. For both soil layers, multiple probe locations contribute 

to the network’s average. Observations are recorded hourly, but for direct 

comparison with SMOS observations, only 0600 LT (local time) observations are 

used each day. Hereafter, “in situ” VSM refers to the daily, network-averaged soil 

moisture. 

SMOS uses a passive, synthetic aperture, L-band radiometer to retrieve soil 

moisture every ~3 days with spatial resolution of ~1200 km2 [Jackson et al., 2012]. 

The radiometer measures microwave brightness temperature, which is then 

converted into a soil moisture value according to the relationship outlined by 

Jackson and Schmugge [1989] and detailed in Kerr et al. [2010a]. Vegetation affects 

the retrievals, but corrections for vegetation are possible when vegetation water 

content is less than 5 kg m-2 [Kerr et al., 2010b]. SMOS has a sun-synchronous orbit, 

which passes over the equator at approximately 0600 LT (ascending) and 1800 LT 

(descending). The SMOS algorithm’s underlying equations are based on an 

assumption of uniform soil moisture and soil/vegetation temperature over the 

sensing depth. The ground surface is closest to meeting this assumption when it has 

had maximal time to equilibrate from the previous day’s fluxes [Jackson, 1980; 

Jackson et al., 2012]. We therefore use the ascending (0600 LT) level 3 soil moisture 

data, which are provided by the Centre Aval de Traitement de Données SMOS.  
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2.2.3 Calibration strategy and experiments 

The general format for model calibration to a single observational time series 

has been detailed in Vrugt et al. [2008]. We calibrate the four SHPs in Table 1. 

Posterior distributions have limited sensitivity to prior distributions [Harrison et 

al., 2012], so for simplicity, priors are taken to be uniform between two bounds. We 

use similar parameter ranges to those used by Harrison et al. [2012], except that 

the ranges of ψsat and Ksat priors are narrowed to avoid unrealistic layer two soil 

moisture contents observed in some preliminary experiments. The range of 

parameter values in the calibration scheme is purposefully larger than the range of 

mean values used in default Noah simulations (Table 1). This allows for increased 

parameter diversity and potential advantages to calibrated values.  

We calibrate SHPs by minimizing the differences between surface soil 

moisture observations and simulations. We quantify their differences with an 

objective function (OF), which we choose to be root mean squared difference 

(RMSD), Eq. (4).  

    (4) 

sim and obs indicate the simulated and observed VSM, respectively, and n is 

the number of days that both are available. RMSD is used in many hydrologic 

calibration studies [Burke et al., 1997; Gupta et al., 1998; Santanello et al., 2007; 

Peters-Lidard et al., 2008; Gutmann and Small, 2010; Harrison et al., 2012] and is a 

convenient way to measure dispersion of the model residual around zero [Gupta et 

RMSD =
VSMsim −VSMobs( )∑

2

n
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al., 1998]. As in Albergel et al. [2012], we use the terminology RMS difference, 

instead of RMS error, because observations do not represent true soil moisture.  

We use the differential evolution adaptive Metropolis (DREAM) algorithm to 

search the parameter space using 50,000 – 100,000 model simulations [Vrugt et al., 

2008, 2009]. Each simulation is two years long: a calibration year (2012) following a 

1-year spinup (2011). The spinup is sufficiently long for Noah SHP calibration 

purposes [Gutmann and Small, 2010]. The exact number of simulations depends on 

the 𝑅 statistic of Gelman and Rubin [1992], indicating convergence to a stationary 

posterior distribution. We ensure at least 2,500 additional model simulations after 

convergence to characterize the posterior distributions of the parameters in each 

experiment. Simulations from converged parameter sets are run for an additional 

year (2013) for validation against in situ soil moisture. 

The DREAM algorithm’s lineage includes the SCE-UA and SCEM-UA 

parameter estimation algorithms [Duan et al., 1992; Vrugt et al., 2003]. It is distinct 

in its ability to provide posterior parameter distributions, which we use to quantify 

uncertainty in our analyses.  

At each study site, both in situ and remotely-sensed surface soil moisture 

observations are available. With these two sources, we produce three calibration 

experiments: 

(1) “in situ”: Minimize the OF between simulated and in situ surface soil 

moisture. The calibration and validation observations are from the same 
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soil probes. This experiment therefore provides an upper limit to model 

performance at each site in the validation period. 

(2) “SMOS”: Minimize the OF between simulated and remotely-sensed soil 

moisture from the SMOS pixel centered on each field site. 

(3) “SMOSadj”: Minimize the OF between simulated soil moisture and a bias-

free SMOS product: the SMOS soil moisture time series has been 

adjusted through a translation of the observations so that the mean of the 

2012 SMOS and in situ observations are equal. Bias removal is completed 

on a site-by-site basis. In the rare cases when a shifted moisture value 

would drop below zero, it is limited to zero. This experiment shows the 

potential of a bias-free SMOS time series in our calibration framework. 

Our experiments produce posterior distributions for each parameter. The 

single best parameter set is that whose simulation produces the maximum a 

posteriori probability (MAP; in this case, lowest RMSD) in the calibration period. 

The associated model run is referred to as the calibrated simulation. 

2.2.4 Texture-based simulations 

A site’s soil texture designation (and thus SHPs) may differ between global 

maps, local maps, and site observations [Guillod et al., 2013; Xia et al., 2015]. We 

therefore carry out simulations using all 12 possible texture designations at each 

site. These parameter sets and their resulting simulations are hereafter called 

“texture-based.” They allow us to illustrate the range of states and fluxes that are 

possible for a given location using the current parameterization strategy. At each 

site, we highlight two of these texture-based simulations: 
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(1) The default texture: that which is used by NLDAS simulations. 

(2) The best texture: that which minimizes the RMSD between simulated 

and in situ surface VSM in the calibration period.  

The best texture simulation allows the calibration results to be compared 

with those of an improved texture. We acknowledge that the best texture cannot be 

determined in this fashion at sites that do not have soil moisture instrumentation.  

2.2.5 Assessment of model calibrations 

We use: 

(1) RMSD between simulated and in situ VSM. While the in situ soil 

moisture is not without its own measurement and averaging errors, it is 

our only proxy for the true surface soil moisture. 

(2) The arithmetic mean of VSM time series. This metric provides insight 

into how minimizing RMSD affects moisture biases.  

(3) RMSD between simulated and in situ VSM anomalies (unbiased RMSD, 

or “ubRMSD”). UbRMSD provides a measure of how well each simulation 

captures soil moisture dynamics. We calculate ubRMSD both for the 

validation year as a whole (“year-long ubRMSD”) and on a moving 90-day 

window throughout the validation period (“windowed ubRMSD”). The 

latter method identifies the time periods when calibration yields the 

greatest improvements. 
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2.2.6 Study limitations and sources of error 

2.2.6.1 Representativeness and accuracy of data products 

Soil moisture variability increases with scale, so representative basin-wide in 

situ values require many observations [Famiglietti et al., 2008]. The monitoring 

sites used in this study are the best available, but they cannot be perfect. Moreover, 

results from Mar must be considered differently. The probe type and installation 

depth match the other sites, but Mar only includes four sensors distributed across a 

1 km2 area. We include this location to identify what useful information (if any) can 

be gleaned from a site whose representative area is intermediate between a 

remotely-sensed pixel and a single probe. 

The SMOS mission’s target accuracy of 0.04 cm3 cm-3 RMSD is not met at all 

sites. In 2010, at WG, LW, LR, and RC, RMSD values were 0.038, 0.042, 0.051, and 

0.039 cm3 cm-3, and biases were 0.003, 0.002, 0.026, and -0.023 cm3 cm-3, 

respectively [Jackson et al., 2012]. Elsewhere in North America, SMOS biases of up 

to -0.12 cm3 cm-3 have been documented [Al Bitar et al., 2012; Albergel et al., 2012; 

Collow et al., 2012].  

In situ, remotely-sensed, and modeled depths are not identical. The 5 cm in 

situ probes measure over a depth of approximately 3 to 7 cm. This is similar to the 

first model layer, 0 to 10 cm. The correspondence between remotely-sensed and 

modeled VSM is not as exact. SMOS retrieval depth is approximately 5 cm. 

However, the sensing depth decreases after rainfall when the surface layer is nearly 

saturated and increases to more than 5 cm when the soil is dry [Jackson et al., 

2012]. To assess the significance of this difference, we have completed our 
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parameter estimation analysis with the Noah layer 1 thickness set to 0-5 cm 

instead of 0-10 cm. We find this change leads to trivial differences in both simulated 

soil moisture time series and parameter distributions. We continue with 0-10 cm 

thickness to avoid modifying the standard model setup and to make our findings 

directly applicable to NLDAS Noah simulations. Finally, we note that the spatial 

resolution of NLDAS-2 is finer than that of SMOS (Figure 1). Mar, as mentioned 

above, is of a different spatial scale. 
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Figure 1: The spatial coverage of in situ, SMOS, and NLDAS  
for all sites except Mar. 
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2.2.6.2 Calibration scheme 

Adjusting specific parameters can compensate for errors in other parameters, 

model structure, or input data [Doherty and Welter, 2010]. The DREAM algorithm 

limits the user to one OF, which has weaknesses compared to multi-objective 

schemes: calibration can lead to compensating biases in other aspects of the system, 

such as LHF and runoff [Gupta et al., 1999; Salvucci and Entekhabi, 2011; Wöhling 

et al., 2013]. In turn, changes to LHF of 15 to 20 W m-2 can have a significant 

impact on atmospheric processes [Schär et al., 1999]. Despite these disadvantages, 

we wish to study the potential of SMOS soil moisture in a single-objective scheme 

before combining it with other constraining states or fluxes. We lack observations of 

surface runoff, baseflow, and LHF, so a comprehensive evaluation of all model 

fluxes is admittedly not possible. However, these are high-quality soil moisture 

networks and thus provide unique and powerful constraints on SHPs. We 

supplement the validation by qualitatively assessing the effects that calibrated 

parameter sets have on discharge and LHF. 

Even a model with ideal parameters may have structural inadequacies and 

meteorological forcing errors. The latter has been shown to account for 20% to 60% 

of soil moisture prediction uncertainty [Hossain and Anagnostou, 2005]. Finally, 

parameters selected through calibration are not easily transferable to other scales 

or ungauged locations [Liang et al., 2004; Troy et al., 2008]. To mitigate these 

problems, we have included a variety of locations in this study, and as discussed 

above, in situ scales are roughly commensurate with forcing data.  



 21 

2.3 Results 

2.3.1 Improvement of surface soil moisture  

Surface VSM results are exclusively from the validation period and compare 

simulations with in situ observations.  

2.3.1.1 RMSD  

Figure 2 shows an example of the calibration results at SJ. We include soil 

moisture time series from the three calibrations as well as the 12 texture-based 

simulations. The site’s default soil texture, silty loam, is far from the best: RMSD is 

0.059 cm3 cm-3. Five other textures yield better soil moisture simulations. The best 

texture is sandy loam, with a RMSD of 0.048 cm3 cm-3. Thus, by changing the soil 

texture designation, we can reduce model error by nearly 20%. Similar results are 

found at all seven sites (Figure 3, Table 3). At no site is the default texture the same 

as the best texture. RMSDs for the default simulations range from 0.03 to 0.11 cm3 

cm-3 (mean 0.07 cm3 cm-3). If the best texture were used at each site, error would 

decrease by an average of 0.03 cm3 cm-3, bringing all but the RC simulation below 

0.05 cm3 cm-3, the low end of the RMSD range found in default simulations by Xia et 

al. [2015]. Such improvement from switching soil type reflects a general failure of 

using mapped soil texture to select SHPs but not necessarily a problem with the 12 

texture-based parameter sets themselves.  
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Figure 2: An example time series at SJ.  
Shown are the basin-averaged in situ surface soil moisture measurements (blue squares), the 
texture-based simulations (gray lines), the default simulation (silty loam, black line), the best 
texture simulation (sandy loam, black dotted line), and the three calibrated timeseries (blue: in 
situ; red: SMOS; green: SMOSadj). Precipitation is shown in dark blue. 

 
Figure 3: RMSD between simulations and in situ soil moisture  
at each site in the validation period. Simulations include texture-based (gray lines), default (solid 
black lines), best texture (dotted black lines), in situ calibrated (blue squares), SMOS calibrated 
(red triangles), and SMOSadj calibrated (green diamonds). Error bars show the range of 
performances from each calibration’s stable posterior parameter distribution. 

As expected, calibration to in situ observations improves simulated soil 

moisture. For example, the best in situ calibrated soil moisture time series at SJ 

(blue line, Figure 1) more closely follows the in situ observations than the default 
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simulation does. Across all sites, RMSD improves by an average of 0.03 cm3 cm-3. 

All but RC are brought below 0.05 cm3 cm-3. The improvements from in situ 

calibration at each site are only slightly better than the improvements made by 

replacing the default soil texture with the best texture. At sites where the default 

simulation performs well (Mar and LW), calibration changes the RMSD very little. 

Equally important, these best sites are not made worse through calibration. Sites 

with poor default simulations benefit the most from calibration (WG, LR, and RC).  

Calibration to SMOS observations does not consistently improve RMSD. At 

SJ, the SMOS calibrated soil moisture is far below the in situ observations (red line, 

Figure 2). FC, WG, and RC are improved through SMOS calibration (Figure 3, 

Table 3), but an equal number are made worse (Mar, SJ, LR). The average change 

to RMSD is close to zero.  

Table 3. RMSD between simulations and observed in situ soil moisture  
during the validation period. For readability, all values are expressed as hundredths of cm3 cm-3 
(divide by 100 for actual values). Change (∆) is with respect to the default simulation. Bold 
indicates improvement of at least 0.005 cm3 cm-3 (or 0.5 in the table); italics indicate degradation 
of at least 0.005 cm3 cm-3. S: sand, L: loam, Si: silt, C: clay. 

  Default texture Best texture in situ SMOS SMOSadj 
Site Class RMSD Class RMSD ∆ RMSD ∆ RMSD ∆ RMSD ∆ 
FC SiL 5.4 LS 2.9 -2.5 3.0 -2.5 3.4 -2.0 3.0 -2.4 
Mar SL 4.8 SCL 4.4 -0.4 4.0 -0.7 9.8 5.0 4.6 -0.2 
LW SL 3.3 LS 2.7 -0.6 3.2 -0.1 3.7 0.5 3.3 0.0 
SJ SiL 5.9 SL 4.8 -1.1 4.7 -1.2 12.1 6.2 4.8 -1.1 
WG L 7.9 S 1.4 -6.5 1.5 -6.4 3.3 -4.7 2.3 -5.6 
LR LS 10.7 S 3.4 -7.3 2.6 -8.2 14.0 3.3 3.3 -7.4 
RC L 9.8 LS 9.0 -0.0 7.2 -2.6 6.2 -3.6 6.2 -3.6 
Mean  6.8  3.9 -2.8 3.7 -3.1 7.5 0.7 3.9 -2.9 
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At all seven sites, calibration to SMOSadj observations results in a lower 

RMSD than the default simulations (Figure 3, Table 3). The average improvement 

is 0.03 cm3 cm-3. At SJ, the SMOSadj calibrated simulation (green line, Figure 2) is 

better than the default and SMOS calibrated simulations. Like simulations 

calibrated to in situ, the sites already performing well (Mar and LW) maintain their 

good performance when calibrated to SMOSadj.  

While RMSD establishes model error, it does not explicitly address how well 

model variability matches observations. To this end, we have calculated R2 values 

for all simulations shown in Figure 3, and the results are effectively the same 

(Figure 4). Error improvement, when present, is also bringing an improvement to 

modeled variability. 

 
Figure 4: As in Figure 3, but showing R2  
between simulations and in situ soil moisture. 

2.3.1.2 Mean VSM  

Figure 5a shows how the mean VSM of each simulation compares with the 

mean of the in situ observations. For all texture-based and calibrated simulations 
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except RC, the closer the match between simulated and observed mean VSM, the 

lower the RMSD is. In this light, it is not surprising that the SMOS retrievals 

cannot be used to successfully select SHPs, since the SMOS retrievals often have 

biases with respect to the in situ observations. Sites whose SMOS calibrated 

simulations have a greater RMSD than default simulations are Mar, SJ, and LR. 

They also have the worst SMOS biases: -0.064, -0.101, and 0.136 cm3 cm-3, 

respectively. SMOS biases at FC, LW, WG, and RC are smaller: -0.008, -0.008, 

0.013, and -0.049 cm3 cm-3. At these sites, the SMOS and SMOSadj calibrations are 

similarly successful at reducing or not changing RMSD.  

These results qualify the utility of SMOS data. The success of the SMOSadj 

calibrations is in large part due to their unbiased nature, a characteristic imposed 

on the calibration data by design prior to the experiment.  

 
Figure 5: Mean VSM (a) and year-long ubRMSD in the surface layer (b).  
Symbols and lines are as in Figure 3, with in situ observations also included as black circles. 
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2.3.1.3 UbRMSD  

We must determine the value of SMOS observations independent of their 

biases. Figure 6 shows VSM anomalies. The model does not capture the wetting 

events near the end of June nor the drying period at the end of August, no matter 

what parameter set is used. We quantify such temporal dynamics in each simulated 

VSM time series using year-long and windowed ubRMSD.  

 
Figure 6: SJ. As in Figure 2, but with the mean of each time series removed. 

We first summarize the year-long ubRMSD results (Figure 5b, Table 4). The 

best texture simulations do not minimize year-long ubRMSD at all sites. At Mar, 

SJ, and RC, a number of textures would have produced lower ubRMSDs than the 

best texture did. This failure indicates that minimization of RMSD does not require 

minimization of ubRMSD. It only requires a good match between mean values of 

the time series. 
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Table 4. UbRMSD between simulations and observed in situ soil moisture  
during the validation period. For readability, all values are expressed as hundredths of cm3 cm-3 
(divide by 100 for actual values). Change (∆) is with respect to the default simulation. Bold 
indicates improvement of at least 0.005 cm3 cm-3; italics indicates degradation of at least 0.005 
cm3 cm-3.  

  Default texture Best texture in situ SMOS SMOSadj 
Site ubRMSD ubRMSD ∆ ubRMSD ∆ ubRMSD ∆ ubRMSD ∆ 
FC 2.9 2.9 -0.06 2.8 -0.15 2.8 -0.10 2.9 -0.09 
Mar 4.4 4.2 -0.20 3.8 -0.63 4.2 -0.26 3.9 -0.51 
LW 2.8 2.7 -0.06 2.8 0.06 2.7 -0.04 2.8 -0.03 
SJ 5.3 4.6 -0.63 4.3 -0.96 4.0 -1.29 4.2 -1.10 
WG 2.1 1.4 -0.67 1.5 -0.62 2.7 0.60 2.2 0.14 
LR 2.8 2.8 -0.02 2.5 -0.31 3.0 0.20 3.3 0.46 
RC 8.5 8.7 0.25 7.2 -1.25 5.7 -2.78 5.7 -2.75 
Mean 4.1 3.9 -0.2 3.6 -0.55 3.6 -0.52 3.6 -0.55 

 

Calibrated soil moisture curves at most sites either do not change or improve 

the year-long ubRMSD over the default simulation. In five experiments, calibrated 

simulations improve year-long ubRMSD more than any texture-based simulation 

can: SJ calibrated to in situ and SMOSadj, LR calibrated to in situ, and RC 

calibrated to SMOS and SMOSadj. In these cases, unlike in texture-based 

simulations, minimization of RMSD does not merely match simulated and observed 

mean VSM. It has the additional effect of improving soil moisture dynamics. 

At the other extreme are FC and LW, whose calibrated and texture-based 

simulations all have the same year-long ubRMSD. Despite a wide range of RMSDs, 

all simulations have identical abilities to capture soil moisture dynamics. RMSD 

and the calibration process at these sites therefore depends entirely on the match 

with in situ mean VSM. 

Changes to year-long ubRMSD are not large. The windowed ubRMSD 

however, exposes notable improvements to calibrated simulations’ soil moisture 
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dynamics. We see the largest improvements occurring at sites and times of year 

when the default simulation is worst. Figure 7 compares the default simulation’s 

windowed ubRMSD to that of the three calibrated and best texture simulations at 

SJ. The default simulation has the highest ubRMSD around March and April, 

which are times of year when all three calibrated simulations show the largest 

improvements to windowed ubRMSD. The best texture simulation, on the other 

hand, has mixed, small effects on ubRMSD throughout the year, regardless of the 

default simulation’s performance.  

 
Figure 7: Windowed ubRMSD at SJ, from the in situ (a), SMOS (b), SMOSadj (c) experiments, 
and the best texture simulation (d).  
Default simulation is shown in black. Calibrated and best texture simulations are shown in blue. 
Green shading highlights periods when the calibrated or best texture simulation is better than the 
default simulation. Red shading shows the reverse. 
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Figure 8: The default simulation’s windowed ubRMSD and the change (∆) that four alternative 
simulations can make:  
in situ calibrated (blue squares), SMOS calibrated (red triangles), SMOSadj calibrated (greed 
diamonds), and best texture (gray circles). Dotted line shows 0.04 cm3 cm-3 threshold. Colored 
horizontal lines show mean values on each side of the threshold. Yellow shading shows where 
the default is worst and can be improved. 

Beyond SJ, improvements to ubRMSD are made at all sites and time periods 

when the default windowed ubRMSD is poor. In addition, ubRMSD is not made 

worse when the default simulation is good. In Figure 8, the x-axis shows the 

windowed ubRMSD of the default simulation for all validation days. The y-axis 

shows the changes that each calibration or best texture would make on each day 

(negative numbers indicate improvement). We use a black dotted line to define a 

threshold default ubRMSD at 0.04 cm3 cm-3. We average the windowed ubRMSD 

both below and above this threshold, shown with the solid colored lines. Below the 

threshold, where the default simulations are good, all calibrations have a mixed, 
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small effect on ubRMSD. There are no increases greater than 0.005 cm3 cm-3 at any 

site. Above the threshold, which is crossed at Mar, SJ, and RC, calibrated 

simulations have a lower ubRMSD than default simulations do, by as much as 0.026 

cm3 cm-3. We highlight this region of the plot by shading it yellow. In contrast, the 

best texture simulations do not improve ubRMSD at times when the default 

simulation is above the threshold. Improvement at Mar and SJ are present but 

small. At RC, the best texture is worse even than the default simulation.  

2.3.2 Changes to other model states and fluxes 

In this section, we describe the effects of calibration on deeper soil moisture, 

runoff, and LHF. Because none of these three variables were involved in calibration, 

the following results utilize modeled data from both the calibration and validation 

periods.  

2.3.2.1 Deeper soil moisture 

10 to 40 cm in situ data have not been verified as an accurate measurement 

of the second model layer’s VSM. We therefore assess performance with ubRMSD 

(Figure 9a), which depends only on changes to soil moisture, not absolute VSM 

values. The best texture simulations have no consistent effect on layer 2 dynamics. 

FC, Mar, and LW stay the same, SJ is made worse, and LR is improved. Calibrated 

simulations do not harm the model’s layer 2 dynamics and often slightly improve 

them. Only the in situ calibration at SJ is made worse.  
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Figure 9: UbRMSD (a) and mean VSM (b) in model layer 2.  
ND indicates no data is available below 10 cm. Symbols and lines are as in Figure 3, with in situ 
observations also included as black circles. 

Figure 9b shows the mean layer 2 VSM for all simulations. The calibrated 

simulations produce drier layer 2 VSM than the default in all cases except the in 

situ and SMOSadj calibrations at Mar, and the SMOS calibration at LR. The best 

texture simulations also decrease mean layer 2 moisture at all sites except Mar. 

The deeper (third and fourth) soil layers are similarly affected (not shown). For 

reference, we also show the mean in situ soil moisture, which can be either drier or 

wetter than the default simulation, although these in situ observations cannot be 

considered as truth.  

2.3.2.2 Runoff and LHF 

Conservation of mass requires that changes to soil moisture magnitudes and 

dynamics be associated with changes in runoff and LHF. We look first at each site’s 

surface runoff, subsurface runoff, and total runoff ratio (Figure 10). With only two 

exceptions (in situ at WG and SMOSadj at LR), calibrated simulations have more 

surface runoff than default simulations do. This change corresponds to an increase 
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in the runoff ratio (total runoff / total precipitation) for all experiments except in 

situ and SMOSadj at Mar, and SMOS at LR, which have counteracting decreases in 

subsurface runoff. We include runoff ratios from all 12 texture-based simulations at 

each site to illustrate the range of values possible without calibration. The 

calibrated simulations are mostly at the high end of this range. In contrast, the best 

textures produce simulations whose runoff ratios are more often at the low end or in 

the middle of this range.  

 
Figure 10: Runoff ratio (a) at each site for each calibration over 2012-2013. Corresponding 
volume of surface (b) and subsurface (c) runoff.  
Symbols and lines are as in Figure 3. Subsurface runoff at LR calibrated to SMOSadj is off-scale, 
at 1065 mm. 

Figure 11 shows the differences in each simulation’s mean daily summertime 

LHF. We focus on summer because that is the season in which LHF is greatest. The 

range of LHF produced by the 12 texture-based parameters is generally less than 15 

to 20 W m-2, and the best texture is at most only 8.3 W m-2 different from the default 

simulation. On the other hand, three of the seven sites have significantly lower (>20 

W m-2) LHF values after calibration: FC, SJ, and LR. The remaining four sites have 
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changes to LHF that are relatively small (less than 10 W m-2). We do not have flux 

tower data at all sites to determine whether LHF should be much different from 

that of the default simulation. But together the increased surface runoff and 

decreased LHF data indicate that calibrated parameters allow less water to pass 

through the soil column during rainfall events.  

 
Figure 11: Mean summertime (May-Aug) LHF at each site for each calibration and texture-based 
simulation.  
Symbols and lines are as in Figure 3.   

2.3.3 Parameter values and trends 

The DREAM algorithm, in addition to identifying a MAP value, produces a 

posterior probability distribution for each experiment. Similarly, Cosby et al. [1984] 

provide not only the mean of each texture class but also standard deviations. We 

illustrate the differences between each distribution for all four parameters in Figure 

12 through 15. All default and calibrated parameter values are provided in Table 5.  

At most sites, the calibrated θsat parameters (Figure 12), occupy a narrower 

range than they do in the laboratory measurements of Cosby et al. [1984]. Moreover, 

most MAP parameter values fall within the Gaussian distribution of the prescribed 
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texture class, evidence that the calibrated parameter values are reasonable 

estimates.  

 
Figure 12: The distributions of the θsat parameter at each site.  
Vertical dashed lines indicate the lower and upper constraints placed on the calibration 
algorithm. Normalized posterior probability density functions at each site for each calibration 
scheme are shown with colored curves. Laboratory-derived texture-based distributions are shown 
in black [Cosby et al., 1984]. Markers on the x-axis show the MAP parameter values for the in 
situ (blue squares), SMOS (red triangles), and SMOSadj (green diamonds) calibrations. Along the 
bottom, gray bars show all texture-based parameter values, black bar shows default parameter 
value, and dotted bar shows the best texture value. 

Most calibrated values for b are near the texture-based value (Figure 13). The 

calibration to SMOSadj at SJ and to SMOS at LR are both outliers, with b values of 

20.85 and 50.88, respectively, which are off the scale shown. 
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Figure 13: As in Figure 12, but for distributions of the b parameter.  
The far-right range of this parameter space is not shown to better illustrate the region that most 
experiments occupy. 

The calibrated posterior distributions for ψsat are not all well-defined (Figure 

14). We observe multi-modal distributions in this parameter at all sites except for 

Mar. This indicates that surface soil moisture may be less sensitive to this 

parameter (consistent with Bastidas et al. [2006]) than the other three or that some 

of the observational products do not contain enough information to constrain this 

parameter very well. 
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Figure 14: As in Figure 12, but for distributions of the ψsat parameter. 

Figure 15 shows the posterior Ksat distributions. Like ψsat, Ksat also contains a 

few poorly-constrained posterior distributions, most notably at LR and RC using 

SMOS and SMOSadj. We suspect these distributions to have resulted from lower-

quality SMOS observations because the in situ calibrations are relatively well-

behaved. 
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Figure 15: As in Figure 12, but for distributions of the Ksat parameter. 

Table 5. A complete listing of the calibrated and default parameter values  
at each site. We also include two parameters that the Noah code derives from the four in this 
study: soil moisture at field capacity and soil moisture at wilting point. 

    SHPs in this study 
SHPs derived in Noah 

code 

Site Parameter set b (-) 
θsat 

(cm3cm-3) 
ψsat (log 
(m H2O) 

Ksat (log 
(m s-1)) 

soil 
moisture 
at field 

capacity 
(cm3cm-3) 

soil 
moisture 
at wilting 

point 
(cm3cm-3) 

FC Default texture 5.33 0.476 -0.120 -5.552 0.360 0.084 
 Best texture 4.26 0.421 -1.440 -4.852 0.283 0.028 
 Calibrated to in situ 6.50 0.312 -1.085 -6.008 0.255 0.047 
 Calibrated to SMOS 5.75 0.301 -1.436 -5.976 0.240 0.034 
  Calibrated to SMOSadj 6.81 0.307 -1.440 -5.953 0.251 0.043 
Mar Default texture 4.74 0.434 -0.850 -5.282 0.312 0.047 
 Best texture 6.77 0.404 -0.870 -5.352 0.315 0.069 
 Calibrated to in situ 5.10 0.429 -0.785 -6.010 0.337 0.053 
 Calibrated to SMOS 3.96 0.334 -1.147 -6.010 0.250 0.022 
  Calibrated to SMOSadj 6.58 0.402 -1.159 -6.011 0.329 0.060 
LW Default texture 4.74 0.434 -0.850 -5.282 0.312 0.047 
 Best texture 4.26 0.421 -1.440 -4.852 0.283 0.028 
 Calibrated to in situ 3.94 0.386 -0.675 -5.330 0.267 0.034 
 Calibrated to SMOS 4.68 0.333 -1.221 -5.447 0.243 0.029 
  Calibrated to SMOSadj 5.60 0.333 -1.239 -5.438 0.252 0.039 
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SJ Default texture 5.33 0.476 -0.120 -5.552 0.360 0.084 
 Best texture 4.74 0.434 -0.850 -5.282 0.312 0.047 
 Calibrated to in situ 5.13 0.393 -0.851 -6.004 0.309 0.048 
 Calibrated to SMOS 3.39 0.261 -0.673 -6.009 0.190 0.017 
  Calibrated to SMOSadj 20.85 0.313 0.050 -5.990 0.290 0.122 
WG Default texture 5.25 0.439 -0.450 -5.472 0.329 0.066 
 Best texture 2.79 0.339 -1.160 -4.332 0.192 0.010 
 Calibrated to in situ 3.94 0.277 -1.083 -4.081 0.169 0.019 
 Calibrated to SMOS 2.55 0.340 -1.415 -6.002 0.234 0.006 
  Calibrated to SMOSadj 2.15 0.314 -1.431 -6.011 0.208 0.003 
LR Default texture 4.26 0.421 -1.440 -4.852 0.283 0.028 
 Best texture 2.79 0.339 -1.160 -4.332 0.192 0.010 
 Calibrated to in situ 3.32 0.200 -0.976 -6.010 0.145 0.010 
 Calibrated to SMOS 50.88 0.307 -0.682 -4.878 0.293 0.134 
  Calibrated to SMOSadj 0.34 0.652 -1.415 -4.676 0.264 0.000 
RC Default texture 5.25 0.439 -0.450 -5.472 0.329 0.066 
 Best texture 4.26 0.421 -1.440 -4.852 0.283 0.028 
 Calibrated to in situ 3.25 0.349 0.196 -5.997 0.251 0.039 
 Calibrated to SMOS 4.49 0.286 -0.242 -5.983 0.219 0.039 
  Calibrated to SMOSadj 8.25 0.331 -0.075 -5.640 0.272 0.085 

 

The remainder of this section focuses on summarizing the differences 

between MAP values and texture class mean values for each SHP.  

Except for SMOSadj at LR, all experiments and all best textures result in θsat 

being lower than its default assignment. We show in Figure 16 that this parameter 

correlates well with the mean VSM of its calibration time series, which is lower 

than that of the default simulation in almost all cases (Figure 5a). We include a line 

connecting the in situ and SMOS data at each site to show that this relationship is 

always positive within a location. The SMOSadj θsat values fall between those of the 

in situ and SMOS calibrations; SMOSadj is a hybrid of the two observational time 

series. The SMOSadj calibration at LR is clearly visible here as an outlier. 
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Figure 16: The calibrated θsat and the mean VSM for in situ (squares), SMOS (triangles), and 
SMOSadj (diamonds) observations.  
Colors indicate site: FC red, Mar blue, LW green, SJ orange, WG brown, LR pink, and RC gray. 

All calibrated Ksat parameters are lower than the default values with only two 

exceptions: SMOSadj calibration at LR and in situ at WG. In contrast, the best 

texture values are all higher than the default values, except at Mar. This division is 

the most distinct of the four parameters, and we address its implications in the 

discussion.  

Neither b nor ψsat change much with calibration. The value of b remains 

similar to the default value, and ψsat values are similar or slightly lower. For both, 

however, the best texture values are consistently lower than the default. The only 

exception for b is Mar, where it is slightly higher and for ψsat is LR, where it already 

had the lowest possible value. 

2.3.4 Nonbehavioral simulations at LR 

LR has a number of problems with its calibrated simulations and parameters. 

Figure 17 shows the observational time series, default simulation, and rainfall at 

LR. The rainfall and vegetative cover are higher than at any other site (Table 2). 
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The in situ observations are lower than all but the arid WG site. The default 

simulation, likely because of this inconsistency, is poor, having a higher RMSD than 

any other location (Figure 3). 

 
Figure 17: LR surface soil moisture content  
of the default simulation (black line), in situ observations (blue squares), and SMOS 
observations (red triangles). Daily precipitation is also included. 

In all three LR calibration experiments, parameter values move away from 

the default, and simulations are nonbehavioral. When LR is calibrated to in situ, 

there is more than twice as much surface runoff as in any other simulation, and 

summer LHF decreases by 20 W m-2. When LR is calibrated to SMOS, the 

simulation’s surface soil moisture RMSD becomes higher than that of any other. 

Also, the value of the b parameter reaches its upper limit, which may not be 

physically realistic. Finally, when LR is calibrated to SMOSadj, the resulting 

simulation has 1.5 times the subsurface runoff than the next highest simulation, 
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and summer LHF decreases by more than 20 W m-2. In addition, the θsat value is 

clearly an outlier (Figure 16), and the b value reaches its minimum value.  

The mismatch between simulated and observed VSM at LR is too great to be 

reconciled through parameter calibration. The resulting nonbehavioral simulations 

reveal the following possibilities: (1) VSM data is not representative of the basin; (2) 

other parameters or model physics do not adequately characterize this site; and (3) 

meteorological forcings are inaccurate. 

2.4 Discussion 

Using the mapped soil texture and the standard SHP lookup table does not 

yield optimal Noah parameters. Simulations can be improved by changing the site’s 

soil texture designation or by calibrating soil parameters using surface soil moisture 

from either in situ or SMOSadj observations. In either case, RMSD decreases mainly 

because of improved agreement between the simulated and observed mean surface 

VSM. Calibrating to SMOS alone does not reliably improve simulations. There are 

tradeoffs to using calibrated and best texture parameters. It is more likely that total 

column soil moisture, runoff, and LHF are affected through calibration, possibly 

yielding nonbehavioral simulations. On the other hand, no texture-based parameter 

set improves soil moisture dynamics as much as calibrated simulations do. We find 

this to be especially true at times and locations when the default simulation is 

worst.  

Because of the poor performance of simulations calibrated to SMOS, we limit 

the remainder of our discussion to parameters and simulations from (1) the best in 

situ and SMOSadj calibrations, and (2) the best texture.  
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In situ and SMOSadj calibrated parameters all have lower θsat and Ksat values 

than the default simulation does. The effect of decreasing θsat is to lower the 

threshold for surface runoff, lower the field capacity and residual VSM, and 

increase the relative conductivity of soil in the column. All three changes decrease 

the mean modeled surface VSM. The role of lower Ksat values is to decrease the 

speed at which water can be transferred into and through the soil column. 

Subsurface runoff decreases, and again, the likelihood of surface runoff increases. 

These processes explain our experimental results: lower VSM in calibrated 

simulations. Because water availability is lower, plant transpiration and overall 

LHF also decrease for all calibrations except SMOSadj at WG, where there is limited 

vegetation. Subsurface runoff is unchanged or lower in all cases except SMOSadj at 

LR.  

An unfortunate side effect of calibration is the possibility of nonbehavioral 

simulations. All three calibrated simulations at LR are unreasonable in some way. 

They provide extreme runoff volumes and parameter values at the edges of their 

ranges. In addition, the changes to LHF seen at SJ and FC cannot be verified, and 

thus must be considered as potentially problematic. We attribute the LR failures in 

part to it being wet and well-vegetated. Large amounts of precipitation limit the 

number of soil drydown events, making SHPs less important relative to 

meteorological forcings. SMOS retrievals are subject to a wet bias on days with 

precipitation due to a shortening of the sensing depth [Jackson et al., 2012]. 

Vegetation also increases the chances of inaccurate SMOS retrievals. Poor SMOS 
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performance at LR is not new. In 2010, it had the highest RMSD among LR, WG, 

LW, and RC [Jackson et al., 2012]. 

The best texture parameters result in simulations with lower mean surface 

VSM than default simulations. But they do not change physical processes of the 

model as much as calibrated parameters do. Surface runoff remains the same. 

Every site’s best texture has lower b and ψsat values than its default texture, which 

decreases the water tension at a given moisture level. Together with higher Ksat 

values, these three parameters allow faster drainage through the soil column, but 

the overall volume of subsurface flow does not necessarily change. Because water is 

still transmitted through the lower layers, LHF is maintained at similar levels to 

the default simulation.  

We have shown important differences in the ability of calibrated and texture-

based simulations to capture wetting and drying events. When the default 

simulation is behaving poorly, all textures suffer from similar problems. Mar, SJ, 

and RC are the three locations that exhibit high ubRMSDs during some portion of 

the year. Visual inspection of the problematic time periods reveals that they occur 

during successive wetting and drying events. Calibrated simulations show decent 

agreement with observations. Low Ksat values allow surface soil moisture to 

increase dramatically during rain events because they limit infiltration to lower 

layers. Excess rainfall is shed as surface runoff, so subsequent drying is rapid. 

Texture-based parameters poorly characterize events that dry quickly. They allow 
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for more infiltration, and subsurface runoff and transpiration are by nature slower 

than surface runoff. 

Our study indirectly assesses the effect of scaling on SHPs. Texture-based 

parameters were developed in small-scale laboratory settings [Cosby et al., 1984]. 

The modeling in this study applies to watersheds on the order of 100s of km2. By 

identifying the best texture for each site, we are implicitly identifying the best 

texture for use at that larger scale. Thus, we reiterate the differences between 

mapped textures and best textures: b, θsat, and ψsat decrease, and Ksat increases. The 

change to b causes soils to drain more easily and decreases the residual VSM. The 

change to θsat causes more runoff, higher relative hydraulic conductivity, and lower 

overall moisture levels. The changes to ψsat and Ksat cause faster infiltration. These 

processes are consistent with the existence of macropores at larger scales and with 

the positive relationship between hydraulic conductivity and scale in heterogeneous 

media [Schulze-Makuch et al., 1999]. Although the spatial coverage at Mar is small, 

its calibrated parameter values were well-behaved and not significantly different 

from those at the other sites.  

There are different challenges associated with implementing a calibration 

strategy or choosing the best texture class at a continental scale. A successful 

calibration requires high-quality in situ measurements or an unbiased remotely-

sensed product. At present, neither of these exists outside of specific, well-studied 

regions. NASA’s SMAP mission [Entekhabi et al., 2010] may provide data that meet 

such requirements, but the changes to runoff and LHF discussed here call for a 
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more extensive investigation to assess viability. Alternatively, we can focus on 

developing a revised soil texture map. Presently, soil maps are associated with 

actual observations. At our study sites, however, the best texture is different from 

the mapped texture. We suggest using remotely-sensed data to select the best 

textures at a number of verifiable locations. Then, regionalization techniques could 

be used to apply the best textures continent-wide [Singh et al., 2012]. This will 

require remotely-sensed data of higher quality (smaller or no bias) than we 

presently have, which we look to SMAP or SMOS reprocessing to provide. 

2.5 Conclusions 

We summarize our main findings: 

(1) The mapped soil texture designations used in NLDAS-2 simulations do 

not provide optimal SHPs for Noah at all sites (FC, Mar, LW, SJ, WG, 

LR, and RC). Simulations with parameters from a different texture class 

would match surface soil moisture observations more closely. At SJ and 

WG, the best textures also improve ubRMSD. 

(2) Calibration of SHPs is successful when we use in situ or unbiased SMOS 

observations: the resulting RMSDs between simulated surface soil 

moisture and in situ observations are lower than those from the default 

simulations. SMOS observations are not useful for calibration at Mar, SJ, 

and LR due to bias in the product. 

(3) Calibration improves the simulation of surface soil moisture dynamics 

during time periods when default modeled wetting and drying is worst. 
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(4) Little or no change is made to surface soil moisture RMSD or ubRMSD 

when the default simulations are already good. 

(5) The best textures and calibrations all produce simulations that have 

lower mean soil moisture than the default simulations, both at the 

surface and at depth. The best texture simulations allow for faster 

drainage through the column, whereas the calibrated simulations 

produce more surface runoff.  

The calibration framework used in this study allows for reconciliation of 

model simulations with observations when it is executed using high-quality soil 

moisture data. However, when biases are present, this method results in 

compensating effects within the model that may be unrealistic. In addition, we have 

shown that ubRMSD is more challenging to improve than bias or RMSD. What this 

means is that the model cannot easily be made to match the dynamics of observed 

soil moisture. Now that we’ve established that differences in drying behavior are 

present, we take a step backwards to investigate and compare two observation 

sources against one another: remotely-sensed and in situ VSM. 
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Chapter 3: SMAP soil moisture drying more rapid than observed in situ 
following rainfall events       

3.1 Background 

The climate system retains memory of precipitation events through root zone 

soil moisture anomalies, which can persist on timescales up to months [Koster et al., 

2006; Ghannam et al., 2016]. Although surface soil moisture varies more rapidly 

than deeper soil moisture due to the direct effects of precipitation and evaporation 

[e.g., Kurc and Small, 2004], propagation of anomalies from the surface layer 

influences dynamics throughout the soil profile and below [Eltahir and Yeh, 1999]. 

Observations of soil drying at the surface can therefore inform on deeper, more 

persistent anomalies that define the onset of drought [Serafini and Sud, 1987; Ford 

et al., 2015], affect ecosystem dynamics [D’Odorico et al., 2000; Rodriguez-Iturbe, 

2000; Daly and Porporato, 2005], and control soil carbon and nitrogen 

cycles [Porporato et al., 2003; Ivanov et al., 2008]. Here, we focus on two ways to 

observe surface soil moisture dynamics: in situ measurements, and remotely-sensed 

products. The nature of these data is different enough to warrant investigation into 

how they characterize soil drying. The reason these observations are important is 

that studying them can lead to a better understanding of how observations can 

work together with models. 

Remote-sensing missions such as SMAP and SMOS have coarse spatial 

resolution and only pass over a particular location periodically [Njoku et al., 2003; 

Kerr et al., 2010b; Entekhabi et al., 2014]. However, the global coverage of space-

borne sensors makes their data optimal for assimilation, allowing for possible 
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improvements in simulations of root zone soil moisture and hydrometeorologic 

fluxes [e.g., Martens et al., 2016]. To facilitate this process, efforts must be taken to 

characterize the differences between satellite retrievals and in situ observations.  

The science requirement for SMAP (and SMOS) is to provide estimates of soil 

moisture in the top 5 cm of soil with an unbiased root mean squared error 

(ubRMSE) no greater than 0.04 cm3 cm-3 [Kerr et al., 2010b; Entekhabi et al., 2014]. 

For SMAP validation, in situ soil moisture monitoring sites were developed and 

charged with providing an estimate of soil moisture over this same depth interval, 

at a spatial scale commensurate with the SMAP sensing footprint [Entekhabi et al., 

2014]. For practical reasons, in situ probes in these networks are typically placed at 

5 cm depth, which means they measure soil moisture content between 3.5 and 6.5 

cm [Rondinelli et al., 2015]. In contrast, L-band radiometers such as that on SMAP 

measure soil moisture between the surface and a depth that varies. Though 

nominally 5 cm, penetration depth can be much shallower when soil water content 

is high [Njoku and Kong, 1977; Escorihuela et al., 2010; Jackson et al., 2012]. In 

addition, SMAP’s soil moisture retrieval algorithm is strictly valid only for uniform 

soil moisture profiles [Jackson et al., 2016], which may not exist immediately 

following rainfall. 

Notwithstanding this imperfect representation of the passive L-band sensing 

depth, monitoring sites with probes inserted at 5 cm depth have been and continue 

to be a primary means of validating satellite-based soil moisture estimates [Jackson 

et al., 2010, 2012; Entekhabi et al., 2014]. Chan et al. [2016] used 13 such sites, 
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referred to as core validation sites (CVS) [Jackson et al., 2016], to demonstrate that 

initial SMAP soil moisture retrievals yield an ubRMSE of 0.038 cm3 cm-3, thus 

meeting the mission target. Despite this success, it was qualitatively noted that 

SMAP soil moisture dries more rapidly than observed in situ [Chan et al., 2016], 

perhaps due to differences in sensing depth between the satellite and in situ 

observations [Jackson et al., 2016]. 

Two previous studies demonstrated that SMOS soil moisture also decreases 

more quickly following rainfall than observed in situ. Champagne et al. [2016] 

analyzed data from four sites in Canada (including the two used here) and showed 

that although SMOS captured drying trends, SMOS soil moisture was often higher 

than the in situ observations soon after rainfall events. Rondinelli et al. [2015], 

using data from South Fork, Iowa, showed that surface drying rates from SMOS 

were faster than rates calculated from in situ observations. They used an 

unsaturated soil water flow model to demonstrate that differences in observation 

depths could explain the observed differences in drying rates.  

This paper contributes to SMAP validation by comparing retrieved soil 

moisture with in situ observations during soil drying (drydown) events. Data from 

193 distinct events across 17 sites with distributed networks of soil moisture probes 

were used for this analysis. SMAP and in situ soil moisture are both used to 

calculate (1) exponential timescales of soil drying [e.g., Kurc and Small, 2004; 

Rondinelli et al., 2015], and (2) discrete drying rates as a function of time since last 

rainfall. Calculations are independent of bias and answer a more specific question 
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than ubRMSE can: What differences exist between how SMAP and in situ probes 

characterize drying of the land surface after a rain event? Analyses include in situ 

data at both its native high frequency and at the SMAP observation frequency, 

allowing us to assess if critical information about drying is lost due to the timing 

and frequency of SMAP observations. Quantifying the accuracy of SMAP drying 

rates is necessary for informed use of SMAP soil moisture observations. 

3.2 Materials and Methods 

3.2.1 Data 

3.2.1.1 SMAP Observations 

The SMAP satellite was launched on January 31, 2015. SMAP overpasses are 

every 1 to 3 days, with the repeat interval depending on latitude. SMAP’s 

radiometer operates in the L band of the microwave spectrum (1.41 GHz) 

[Entekhabi et al., 2014]. The SMAP radiometer soil moisture team has developed 

five soil moisture retrieval algorithms to generate level 2 passive soil moisture 

estimates (L2SMP). This study used the baseline soil moisture algorithm: single 

channel algorithm using vertical polarization observations (SCAV) [Chan et al., 

2016]. All SMAP data shown here were processed using a 36 km grid centered on 

each CVS (described below) and thus differs from the publically-available data on 

the EASE-Grid. We used level 2 descending half-orbit (~6 am local time) 

observations from 31 March 2015, to 1 March 2016 (data version 3). Data flagged 

due to frozen conditions, snow, dense vegetation, and precipitation were excluded 

from the analysis.  
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3.2.1.2 In situ observations 

The SMAP validation program collaborates with CVS situated around the 

world. These locations constitute an extensive network of densely-instrumented soil 

monitoring sites, allowing rigorous and continual evaluation of SMAP retrievals. 

Analyses use up-scaled data from 17 CVS (Table 6), not individual probe values. 

Up-scaling is based on a geometrically-weighted average of probes within the pixel 

[Colliander et al., 2015] that qualifies them for use at the 36 km scale [Jackson et 

al., 2016]. At all sites, probes were inserted horizontally at 5 cm depth, except 

Yanco and Kyeamba, Australia, where most probes were inserted vertically (0 to 5.8 

cm).  

Table 6: Each core validation site (CVS) used in this paper. 
We provide the location, the abbreviation we use in figure legends, the principal investigator(s), 
the number of drydowns analyzed, the number of days in those drydowns, and the date ranges 
used. *Indicates that as of 1/23/16, the site was a candidate CVS. 
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In situ data have a sampling frequency of 60 minutes or less. These data, 

referred to in our analyses below as inSituall, are assumed to represent the ‘true’ soil 

moisture drying dynamics at each CVS. Land surface heterogeneities are averaged 

out by the upscaling calculation at each site.  Network accuracies where quantified 

are 0.02 cm3 cm-3 or better [Cosh et al., 2004, 2006, 2008; Bosch et al., 2006]. Probe 

random errors average 0.01 cm3 cm-3 [Coopersmith et al., 2016], and probe precision 

is better than 0.01 cm3 cm-3 [Seyfried et al., 2005]. All analyses were also completed 

using a subset of in situ observations that correspond in time with SMAP retrievals. 
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This subset of data is referred to as inSituSMAP. Figure 18 shows the temporally-

resampled in situ data and a graphic representation of the model parameters. 

Temporal resampling isolates the effects of SMAP observation frequency (inSituall 

vs. inSituSMAP) from overall differences (inSituall vs. SMAP). 

 
Figure 18: A single drydown (highlighted in green) at Fort Cobb, Oklahoma.  
Markers show inSituall, inSituSMAP, and SMAP observations. Exponential model fits are shown 
with curves. Parameter values A, τ, and θf characterize the curves as shown for the SMAP fit. 

3.2.1.3 Precipitation Products 

Precipitation networks are not available at every CVS. In order to ensure a 

homogenous analysis (gauges, where present, do not have uniformity in number or 

density), we used Land Data Assimilation System (LDAS) products at all sites. 

North American LDAS (NLDAS-2) precipitation [Xia et al., 2012b] covers North 

American locations, and Global LDAS (GLDAS-1) covers all others [Rodell and 
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Beaudoing, 2007]. Analyses employed the 1/8th degree NLDAS-2 or the 1/4th degree 

GLDAS-1 cell that is most closely aligned with each CVS. The use of such large-

scale precipitation products prohibits investigation into possible effects of non-

uniform rainfall. In addition, because these products have errors and scale 

discrepancies, they provided only initial guidance in selecting rain-free intervals. 

The drydowns were further evaluated and adjusted as follows. 

3.2.2 Selection of drydown events 

We selected discrete drydown intervals using a two-step process. First, we 

used LDAS precipitation to automatically identify dry periods that follow rainfall 

events. The start of such a drydown is designated after 5 mm (or more) of rain has 

accumulated in the preceding 24 hours. The drydown ends once more than 2 mm of 

subsequent precipitation accumulates. We only consider drydowns that are at least 

4 days long. Second, we manually adjusted the drydown start time to within an 

hour after the observed maximum in situ soil moisture and adjusted the end time to 

just prior to any increase in soil moisture due to new rainfall. In addition, we 

excluded events that: had obvious errors (sensors dropping in or out), contained 

fewer than two concurrent SMAP and in situ observations, or demonstrated no 

response of soil moisture to the rainfall or drydown. The selection process therefore 

avoided relying exclusively on LDAS products, so using different precipitation data 

would have minimal impacts on the results. 

 Using these criteria, 193 drydown events were identified, totaling 2005 days 

across the 17 CVS (Table 6, and Figure 19 – Figure 35). All analyses are limited to 
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observations from these drydown periods, which include 959 SMAP observations 

and constitute 40% of the snow-free record. 

 
Figure 19: Rainfall (bottom), VSM (middle), and soil drying rates (top) at Monte Buey, 
Argentina.  
Drydowns are highlighted in green. Markers show inSituall (blue dot), inSituSMAP, (black circle), 
and SMAP (red ex) observations. Solid curves are models whose confidence interval around τ 
does not include zero (acceptable fits). Dotted curves are fitted exponential models whose 
confidence interval around τ includes zero (low-quality fits). InSituSMAP fits are nearly identical 
to inSituall fits and are not shown. 

 
Figure 20: Kyeamba, Australia.  
Markers and lines are as in Figure 19. 
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Figure 21: Yanco, Australia.  
Markers and lines are as in Figure 19. 

 
Figure 22: Carman, Manitoba, Canada.  
Markers and lines are as in Figure 19. 
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Figure 23: Kenaston, Saskatchewan, Canada.  
Markers and lines are as in Figure 19. 

 
Figure 24: Twente, Netherlands.  
Markers and lines are as in Figure 19. 
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Figure 25: REMEDHUS, Spain.  
Markers and lines are as in Figure 19. 

 
Figure 26: Valencia, Spain.  
Markers and lines are as in Figure 19. 
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Figure 27: Fort Cobb, Oklahoma, USA.  
Markers and lines are as in Figure 19. 

 
Figure 28: Little River, Georgia, USA.  
Markers and lines are as in Figure 19. 
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Figure 29: Little Washita, Oklahoma, USA.  
Markers and lines are as in Figure 19. 

 
Figure 30: Reynolds Creek, Idaho, USA.  
Markers and lines are as in Figure 19. 
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Figure 31: South Fork, Iowa, USA.  
Markers and lines are as in Figure 19. 

 
Figure 32: St Josephs, Indiana, USA.  
Markers and lines are as in Figure 19. 
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Figure 33: Tonzi Ranch, California, USA.  
Markers and lines are as in Figure 19. 

 
Figure 34: TxSON, Texas, USA.  
Markers and lines are as in Figure 19. 
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Figure 35: Walnut Gulch, Arizona, USA.  
Markers and lines are as in Figure 19. 

3.2.3 Analysis methods 

Two methods were used to analyze and compare SMAP observations with in 

situ observations: (1) Fitting of an exponential model to assess the timescale and 

magnitude of drying; and (2) Calculation of discrete drying rates between successive 

observations. Both of these methods provide information in an unbiased framework, 

so adjusting SMAP time series for bias is unnecessary. 

3.2.3.1 Exponential model 

We modeled the in situ and SMAP observations from individual drydowns as 

exponential decay functions [Kurc and Small, 2004; Rondinelli et al., 2015]:  

θ 𝑡 = 𝐴 ∗ 𝑒 ()* + θ, ,     (5) 

where θ is surface soil moisture content (cm3 cm-3), t is time since the 

beginning of the drydown (days), and A, τ, and θf are empirically-determined fitting 

parameters indicating, respectively, the magnitude of soil moisture drying (cm3 cm-

3), the exponential time constant (days), and a final soil moisture content (cm3 cm-3; 
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Figure 18). Modeled θ approaches but never reaches θf. We therefore constrain θf 

below the lowest soil moisture observed during the drydown and at or above the 

site’s lowest (residual) soil moisture.  

For each event, model parameters (τ, A, and θf) were selected to minimize the 

sum of squared errors between modeled soil moisture and: (1) inSituall, (2) 

inSituSMAP, and (3) SMAP observations. Parameter selection used a subspace trust-

region algorithm, based on the interior-reflective Newton method [Coleman and Li, 

1994, 1996]. 

When fitting Eq. (5) to the three observation types, confidence intervals at 

the 68% level were determined, corresponding to one standard deviation. An 

‘acceptable’ fit is considered to be one in which the τ confidence interval does not 

include zero. Using this criterion, 188 of the 193 models fit to inSituall drydowns 

were found to be acceptable. Such success indicates that the exponential model 

provides a reasonable characterization of soil moisture. In contrast, only 88 and 74 

models fit to inSituSMAP and SMAP (respectively) were acceptable. This does not 

indicate that the exponential model is inappropriate for these data, but that the 

lower SMAP observation frequency increases parameter uncertainty. After 

screening out low-quality fits, there were 63 drydowns that had acceptable model 

fits to all three observation types. Exponential model results are limited to this 

subset of drydowns. Widening or narrowing the confidence interval does not 

significantly alter the results of this study.  
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3.2.3.2 Soil drying rates 

We calculated rates of soil drying (dθ/dt) using finite differences within 

drydown periods: 

-.
-/
= .012(.0

/012(/0
,       (6) 

where n and n+1 correspond to consecutive observations. This analysis 

required only 2 or more soil moisture observations within each drydown interval. 

Thus, unlike the exponential analysis, all 193 drydowns were included. For 

comparison against SMAP, we use daily in situ data (inSitudaily), starting 12 hours 

after the drydown commences. This removes the diurnal fluctuations present in 

inSituall. A total of 1807 inSitudaily soil drying rates were calculated, across all sites 

and drydowns. SMAP and inSituSMAP both yielded 769 because of their lower 

observation frequency.  

Drying rates are expected to be most negative at the beginning of a drydown 

and trend towards zero. To ensure that abnormally infrequent observations did not 

affect our results, we only calculated drying rates when tn+1–tn (Eq. 6) was three or 

fewer days. Errors in individual observations introduced considerable noise into the 

calculated drying rates (Figures 1 and S2-S18). Therefore, each drying rate was 

binned according to how many days into the drydown interval its midpoint fell, 

rounded to the nearest whole number day. The results and discussion below are 

focused on the median value from each bin. 
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3.3 Results 

For the 2005 drydown days across all sites, the average ubRMSE between 

SMAP and in situ soil moisture is 0.033 cm3 cm-3, within SMAP mission target 

accuracy. This is similar to the 0.038 cm3 cm-3 ubRMSE reported by Chan et al. 

[2016] using observations from the full period of record. The four sites with highest 

ubRMSEs in Chan et al. [2016] (carm, sofo, kyea, reme) all had ubRMSE > 0.04 cm3 

cm-3 in this study as well. By comparing timescales and drying rates between SMAP 

and in situ observations, we can uncover important differences not captured by 

ubRMSE. All results are summarized using median values to avoid the effects of a 

positive skew in τ (its range is zero to infinite). Using mean values does not change 

the findings. 

3.3.1 Exponential timescales of soil drying 

The exponential model fits both SMAP and in situ observations of soil 

moisture following rainfall events (Figure 36): drying is rapid at first and slows 

with time. The median RMSEs between model fits and observations are well below 

0.01 cm3 cm-3 for all observation types (Table 1). Exponential drying timescales (τ) 

vary from several to more than 20 days across the 63 events. Investigation into why 

τ varies from event to event or site to site is beyond the scope of this paper. 

Possibilities include differences in meteorological conditions, water table depth, 

vegetation, and soil texture. 
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Figure 36: Rainfall (bottom), volumetric soil moisture (VSM; middle), and soil drying rates (top)  
at Fort Cobb, Oklahoma (a) and Tonzi Ranch, California (b). Drydowns are highlighted in green. 
Markers show inSituall (blue dot), inSituSMAP (black circle), and SMAP (red ex) observations. 
Solid curves are models whose confidence interval around τ does not include zero (acceptable 
fits). Dotted curves are fitted exponential models whose confidence interval around τ includes 
zero (low-quality fits). InSituSMAP fits are nearly identical to inSituall fits (Figure 18) and are not 
shown. τ values for acceptable model fits are displayed according to color. 

Table 7: Model Fits, Parameters, and Uncertainties.  
Median RMSEs, parameters, and uncertainties for exponential fits to each data type. These data 
come from 63 drydowns that provide acceptable model fits to all three observation types. A and 
θf values and uncertainties are expressed as 100* cm3 cm-3. 

  Observations used to fit model 
 InSituall InSituSMAP SMAP 
RMSE (cm3 cm-3) 0.0042 0.0020 0.0062 
τ (days) 7.33 7.30 4.08 
τ uncertainty (days) 0.19 1.30 1.29 
A (100* cm3 cm-3) 11.3 11.1 15.2 
A uncertainty (100* cm3 cm-3) 0.09 2.1 3.4 
θf (100* cm3 cm-3) 9.0 9.1 9.2 
θf uncertainty (100* cm3 cm-3) 0.11 0.84 1.0 

 
τ values fit to SMAP data are consistently smaller than those fit to inSituall. 

For example, the third drydown in Figure 36a has SMAP and inSituall τ values of 

3.4 and 6.2 days, respectively. This difference is consistent across nearly all 



 68 

drydowns: of the 63 events with acceptable fits, 53 fall below the 1:1 line in Figure 

37a. The median τ value is 44% smaller when fit to SMAP (4.08 days) than when fit 

to inSituall (7.33 days) (Table 7). Restricting the frequency and timing of in situ 

observations to that of SMAP does not decrease the exponential drying timescale. 

Corresponding τ values fit to inSituall and inSituSMAP are centered on the 1:1 line in 

Figure 37b, and their median values are nearly identical (Table 7).  

 
Figure 37: (a) Relationship between inSituall-fit and SMAP-fit τ values. (b) Relationship between 
inSituall-fit and inSituSMAP-fit τ values.  
Marker colors correspond to each site as shown. Marker sizes correspond to length of drydown. 

Based on A (Eq. 5), SMAP almost always observes a larger magnitude of soil 

moisture drying than in situ probes do. Of the 63 modeled drydowns, 53 have larger 

A values when fit to SMAP than when fit to inSituall. They lie above the 1:1 line in 

Figure 38a. Median values are 35% higher for SMAP than for in situ (Table 7). As 

with τ values, restricting the frequency and timing of in situ observations to that of 

SMAP does not change the modeled magnitude of drying. Figure 38b shows that A 
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values associated with inSituall and inSituSMAP are nearly identical (fall along the 

1:1 line). 

 
Figure 38: (a) Relationship between inSituall-fit and SMAP-fit A values. (b) Relationship 
between inSituall-fit and inSituSMAP-fit A values.  
Marker colors correspond to each site as shown. Marker sizes correspond to length of drydown. 

By plotting the final soil moisture values (θf in Eq. 5), we show that they are 

not identical between models fit to SMAP and inSituall and that they exhibit no 

consistent difference (Figure 39a). As before, θf values when the model is fit to 

inSituall and inSituSMAP are nearly identical (Figure 39b). 



 70 

 
Figure 39: As in Figure 38, but showing θf parameter values. 

Parameter uncertainties (Table 7) are primarily related to the number of 

observations, not how well the exponential model describes the data. Fits to inSituall 

have the lowest uncertainty. Models fit to inSituSMAP and SMAP have the same 

limited number of observations and similarly high parameter uncertainties due to 

the challenge of fitting a multiple-parameter model with a limited number of 

observations.  

3.3.2 Discrete drying rates 

Figure 40 shows how drying rates vary with increasing time since cessation 

of rainfall. Data for each site are shown individually in Figure 19 – Figure 35. As 

expected, the most negative rates (fastest drying) occur soon after rain events. 

Although there is considerable noise within each daily bin, median values for each 

day and measurement type reveal two important differences. First, the frequency of 

soil moisture observations does not affect the calculated drying rate: observations 

up to 3 days apart (inSituSMAP) yield rates consistent with those calculated from 

daily data (inSitudaily). Second, drying rates are faster when calculated from SMAP 
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than from inSitudaily. In days 1 through 6, median drying rates are 1.6, 2.7, 2.4, 2.1, 

1.7, and 1.6 times greater, respectively, for SMAP than inSitudaily (mean: 2.0). There 

is no apparent difference between SMAP and inSitudaily drying rates after day 6. 

Similar differences exist when SMAP and inSituSMAP are compared. 

 
Figure 40: Drying rates calculated from inSitudaily (blue), inSituSMAP (green), and SMAP (red) as 
a function of time into the drydown period.  
Small markers show all data for inSitudaily and SMAP. Large markers show the median of each 
observation type in each daily bin. Large marker sizes correspond to the number of data points in 
each bin, which is also shown at the top of the figure. Error bars indicate +/- 1 standard deviation 
around the mean (mean not shown). 

The drying rate results are consistent with the exponential model analysis. 

Compared to inSituall, exponential fits to SMAP exhibit shorter median timescales 

and greater median magnitudes of drying (Table 7). These differences require that 

SMAP observes faster drying rates over the interval during which a majority of the 

soil drying occurs. 
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3.4 Discussion and Conclusions 

Meeting the SMAP validation goal (ubRMSE ≤ 0.04 cm3 cm-3) at CVS does not 

guarantee that the dynamics of drying events determined from SMAP are accurate, 

especially given the difference in observation depth between satellite radiometer 

and in situ probes. Quantifying differences that exist is important for both data 

assimilation applications and model verification studies that utilize SMAP soil 

moisture. 

The exponential model used here characterizes the timescale and magnitude 

of 63 soil moisture drydowns across 17 sites. The SMAP soil moisture data yield 

exponential drying timescales that are approximately half (44%) those determined 

from watershed-averaged in situ observations. In addition, the magnitude of SMAP 

drying is 35% greater than that of the in situ networks. Direct calculation of drying 

rates between consecutive observations corroborates that SMAP and in situ soil 

moisture observations exhibit different behavior. In the 6 days following the rain 

events (approximately the median exponential drying timescale), surface soil 

moisture measured by SMAP decreases twice as fast as that measured by in situ 

probes. Drying rates are effectively equal at longer intervals (>6 days) after rainfall. 

The differences between SMAP and in situ dynamics are not due to the timing and 

frequency of SMAP observations; the subset of in situ observations concurrent with 

SMAP yields nearly identical results as its high-frequency counterpart. 

SMAP and in situ probes measure drying behavior differently because they 

are sensitive to soil moisture at different depths. L-band radiometer measurements 

are sensitive to soil water between the surface and a moisture-dependent depth, 



 73 

usually 5 cm or less [e.g., Njoku and Kong, 1977]. The in situ probes at 15 of the 17 

CVS, however, are centered at 5 cm, and thus do not measure soil moisture in the 

top several centimeters [Rondinelli et al., 2015]. These differences in sensing depth 

lead to different characterizations of soil moisture drying. Rain events create 

positive vertical moisture gradients. The near-surface soil is wetter than deeper soil 

shortly after rainfall, but tends to dry more quickly due to evaporation and vertical 

redistribution [e.g., Schneeberger et al., 2004]. Moreover, L-band sensing depth for 

very wet soil may be as little as ~1 cm [Escorihuela et al., 2010], further 

accentuating the combined effects of vertical soil moisture gradients and different 

sensing depths. The two Australia sites yield similar results to those from other 

sites, despite having vertically-inserted probes, possibly because the soil depth 

observed by the probes is still deeper than SMAP penetration depth. In addition, 

the sensor head may shelter rain [Adams et al., 2015], making probe observations 

drier than SMAP retrievals until the soil equilibrates.  

Results are consistent with those from SMOS [Rondinelli et al., 2015; 

Champagne et al., 2016], suggesting that shortened drydowns may be an issue for 

any L-band instrument. It is also possible that non-uniform rainfall within the 

validation pixel could lead to different drying dynamics, which should be evaluated 

in future studies.  

Hydrologic applications and studies that utilize SMAP soil moisture must 

consider the differences in sensing depth, drying timescale, and drying rate 

discussed here. Results from this chapter can help guide efforts to optimize the 
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usefulness of SMAP observations. In addition, these results provide a starting point 

for investigations into the role that other tools (LSMs, novel remote sensing 

platforms, bias correction methods) play in characterizing soil moisture dynamics. 
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Chapter 4: Factors affecting SMAP and Noah drying rates  

4.1 Background 

Soil moisture constitutes a key component of land surface hydrology. Though 

the volume of water is small, surface soil moisture generates outsized effects on the 

global water and energy balance [McColl et al., 2017]. Climate, weather, and flood 

predictions depend on soil moisture [Entekhabi et al., 1996; Viterbo and Betts, 

1999]. Feedback between the land and atmosphere can perpetuate soil and 

atmospheric anomalies differently depending on the climatic regime [Koster et al., 

2004; Tuttle and Salvucci, 2016].  

Precipitation wets a given parcel of soil from above. Consequently, there are 

two avenues by which the moisture may dissipate: (1) water moves back into the 

atmosphere (evapotranspiration), or (2) water moves deeper into the ground 

(drainage and diffusion). Evapotranspiration can be split between direct 

evaporation from the ground and evaporation from plant stomata (transpiration, 

Figure 41) [Campbell and Norman, 1998; Monteith and Unsworth, 2013]. Because 

rooting depths often reach 100 cm or deeper [Schenk and Jackson, 2002], we expect 

transpiration to play a role any time evaporation is occurring and vegetation is 

present.  

To evaporate water, energy is required to overcome the latent heat of 

vaporization, and a vapor sink is required for the atmosphere to absorb it. Over 

open water or bare soil, these processes depend on surface vapor pressure, 

atmospheric vapor pressure, surface temperature, atmospheric temperature, 

radiation, albedo, and wind velocity [Penman, 1948; Mahrt and Ek, 1984]. This 
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quantity is the potential evaporation (PE) rate. Evaporation from vegetated areas 

must further be scaled by the aerodynamic resistance required to move vapor from 

the ground or stomata into the atmosphere [Wang and Dickinson, 2012].  

 
Figure 41: Cartoon showing processes contributing to drying  
and the depths that SMAP and the Noah LSM represent 

Of course, evapotranspiration also depends on the moisture supply (moisture 

stress) in the soil. Moisture is commonly quantified as the volume of water divided 

by the volume of soil in which that water resides. This is called volumetric soil 
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moisture (VSM), and its units are cm3 cm-3. In the Noah LSM and other common 

LSMs, moisture stress for a bare surface is represented as a three-stage function 

that depends on two VSM thresholds. Above field capacity, evaporation proceeds at 

its potential rate (stage 1 evaporation); below a residual soil moisture content, no 

evaporation occurs; between the two thresholds, evaporation depends on relative 

moisture content (stage 2 evaporation) [Allen, 2000; Chen and Dudhia, 2001].  

Vegetated surfaces introduce two counteracting effects that are absent from 

bare surfaces. Evaporation decreases because of shading from the canopy that 

intercepts solar radiation [Mahfouf and Noilhan, 1991], and transpiration is 

introduced, which can draw moisture from the root zone. (Transpiration rates 

depend on type of vegetation, soil moisture content, and atmospheric state [Chen 

and Dudhia, 2001]). 

Drainage and diffusion are assumed to be negligible in our study. This 

simplification implies that wetting fronts infiltrate through the root zone in less 

time than the model time step spans (for us, the time steps are the one or more days 

between SMAP observations), and that any further diffusion is negligible compared 

with evapotranspiration rates. This is a common assumption in models of soil 

moisture dynamics [e.g., Laio et al., 2001; Guswa et al., 2002; Federer et al., 2003; 

Porporato et al., 2004], and we adopt it as well.  

NASA’s SMAP (Soil Moisture Active Passive) mission has been providing 

global observations of surface soil moisture content since March 2015. In this study, 

by analyzing SMAP and precipitation data together, we provide estimates of how 
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long water remains near the land surface after a rain event. We expect the driving 

mechanisms behind SMAP drying rates to be similar to those described above. For 

comparison, we also look at how such mechanisms affect simulations from the Noah 

LSM, a model that incorporates the aforementioned findings from the literature 

into its structure and parameters [Ek et al., 2003; Xia et al., 2012a].  

We expect there to be differences between SMAP observations and Noah 

simulations. The goal of both is to provide information that reflects the real world. 

Previous work has shown that SMAP achieves its mission goal of 0.04 cm3 cm-3 

unbiased root mean squared error (ubRMSE) compared with its in situ validation 

network [Chan et al., 2016; Colliander et al., 2017]. However, during rain-free 

periods, soil moisture decreases faster and over a shorter time period as observed by 

SMAP than in situ [Shellito et al., 2016b]. The discrepancies in drying rates are 

likely because SMAP and in situ networks observe slightly different soil moisture 

depths. To prevent in situ probes from being disrupted by fauna or farm equipment 

and exposed to the atmosphere, they are typically centered at no less than 5 cm 

depth, meaning they measure soil moisture content between 3.5 and 6.5 cm 

[Rondinelli et al., 2015]. SMAP nominally represents 0-5 cm soil moisture, but 

penetration depth can be less, especially when water content is high [Njoku and 

Kong, 1977; Escorihuela et al., 2010; Jackson et al., 2012]. Though this difference 

complicates validation efforts, SMAP nonetheless presents an opportunity to assess 

shallow soil moisture dynamics, which is our goal here. Continuous, continent-wide 

in situ observations do not exist, so we make our comparisons instead against Noah 
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simulations of 0-10 cm soil moisture (its shallowest soil layer). The difference 

between SMAP sensing depth and Noah simulation depth is expected to result in 

drying dynamics that are different in a similar way as SMAP and in situ dynamics 

are different [Shellito et al., 2016b]: slower, longer drying periods for the model than 

for SMAP. 

We focus our investigation on North America, using SMAP observations, 

meteorological forcing data from the National Land Data Assimilation System 

(NLDAS), simulated data from the Noah LSM, and vegetation data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS). Both NLDAS and Noah 

data are are available on a 1/8 degree grid covering North America [Xia et al., 

2012b]. SMAP and NDVI are available globally [Entekhabi et al., 2014; NASA LP 

DAAC, 2016]. 

With these tools, we quantify the controls on SMAP and Noah soil moisture 

drying rates after rain events. The existing framework for understanding soil 

drying rates includes two hypotheses we will address. (1) Soil texture exerts some 

control on drainage rates and readily evaporable water [Allen, 2000; Santanello et 

al., 2007; Xia et al., 2015]. (2) Evaporation is controlled by meteorology and water 

availability [Monteith and Unsworth, 2013].  

4.2 Materials and Methods 

4.2.1 Data 

4.2.1.1 SMAP retrievals 

The SMAP mission was launched in January 2015 and provides morning and 

evening (6 AM and 6 PM local time, respectively) estimates of VSM, in cm3 cm-3, 
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between 0 and 5 cm globally every 1-3 days [Entekhabi et al., 2014]. Retrievals are 

indirect estimates of soil moisture based on passive microwave (1.41 GHz) 

brightness temperature as described in Entekhabi et al. [2014]. We use the 

“enhanced” level 3 soil moisture data product, version 1, which is available from the 

National Snow and Ice Data Center. The SMAP radiometer has a native spatial 

resolution of 36 km but this product utilizes the Backus-Gilbert optimal 

interpolation algorithm to post soil moisture retrievals onto the 9 km Equal-Area 

Scalable Earth grid ver. 2 (EASE-2) [O’Neill et al., 2016]. We use only AM 

overpasses because the SMAP algorithm assigns only one temperature to both the 

soil and its overlying canopy, a condition that is best met in the morning hours 

[Jackson et al., 2012; Entekhabi et al., 2014]. We exclude data that have been 

flagged for uncertain quality due to dense vegetation (>5 kg/m2), mountainous 

terrain (>3° slope standard deviation), and >5% of the sensing area comprising 

frozen ground, snow, ice, precipitation, or static water. These exclusions decrease 

the number of SMAP observations by 56.5% (mostly because of vegetation in the 

eastern portion of North America). Figure 42 (top panel) shows the number of 

SMAP observations between March 31, 2015 and January 27, 2017, after removing 

flagged data. These are the observations used in this study. 
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Figure 42: Distribution of SMAP observations (top), the number of drydowns calculated from 
NLDAS precipitation forcing (middle), and the number of acceptable model fits (bottom) in the 
study domain 
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4.2.1.2 NLDAS Primary Forcing 

We use surface meteorological data (precipitation, solar radiation, long-wave 

radiation, specific humidity, temperature, pressure, wind speed, and potential 

evaporation [PE]) from the NLDAS-2 primary (default) forcing fields [Xia, 2009; Xia 

et al., 2012b]. These data have been derived from the National Center for 

Environmental Prediction (NCEP) North American Regional Reanalysis (NARR), 

interpolated to the NLDAS 1/8th-degree grid and disaggregated to hourly frequency 

[Cosgrove et al., 2003].  

As described in Xia et al. [2012b], NLDAS rainfall is supplemented with the 

NCEP Climate Precdiction Center’s unified gauge-based precipitation, which has 

been adjusted for orographic effects [Daly et al., 1994]. Shortwave radiation is 

adjusted using satellite-derived radiation to remove a known positive bias [Pinker et 

al., 2003].  

PE is calculated using the modified Penman scheme of Mahrt and Ek [1984]. 

This equation uses air temperature, wind speed, net radiation, specific humidity, 

and a surface exchange coefficient that depends on the atmospheric stability [Mahrt 

and Ek, 1984]. Using the specific humidity and temperature fields, we have also 

calculated the vapor pressure deficit using equations 2.9 and 2.17 of Shuttleworth 

[2012]. 

Within the United States, NLDAS also provides a gridded soil texture 

product derived from 1-km State Soil Geographic (STATSGO) data [Miller and 

White, 1998; Mitchell et al., 2004]. Figure 43 shows that although there are 15 
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categories, some types (silt, sandy clay loam, sandy clay, silty clay, organic 

materials, water, and bedrock) all occupy less than 3% of the domain. We therefore 

focus on the dominant 8 textures: loam (26.0%), silt loam (25.9%), sandy loam 

(23.0%), sand (6.8%), silty clay loam (4.2%), clay loam (4.1%), loamy sand (3.6%), 

and clay (3.4%). 

 
Figure 43: Soil textures according to NLDAS. 

4.2.1.3 NLDAS Noah simulations 

The meteorological data described in 4.2.1.2 are used to force the Noah LSM 

[Chen and Dudhia, 2001] from 1979 to present as part of the NDLAS-2 project [Xia 

et al., 2012b]. The simulations use a climatologically-based parameter to define 

fractional vegetation cover. The shallowest soil layer in the Noah LSM is 0-10 cm, 

which is different from the SMAP retrieval depth of 0-5 cm (Figure 41). We have 

obtained Noah simulations of 0-10 cm soil moisture, 0-10 cm soil temperature, soil 

surface (skin) temperature, fractional vegetation cover, and potential 

evapotranspiration data from the Goddard Earth Sciences Data and Information 
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Services Center (GES DISC) [Xia, 2012]. Soil moisture values are converted from 

kg/m2 to cm3 cm-3 to be consistent with SMAP units. 

4.2.1.4 Vegetation data 

NASA’s Terra and Aqua satellites carry the MODIS instrument and provide 

Normalized Difference Vegetative Index (NDVI) data every 16 days globally [NASA 

LP DAAC, 2016]. The data have a resolution of 1 km and have been linearly 

interpolated in the days between retrievals. 

4.2.1.5 Domain 

Our study utilizes SMAP and NLDAS data from the nearly two-year period 

since SMAP began operation: March 31, 2015, through January 27, 2017.  

Although SMAP and NDVI data are available globally, the NLDAS forcing 

and simulation data cover only North America. Therefore, our study is limited to 

the domain found between longitudes 124.9° and 67.1° West and latitudes 25.1° and 

52.9° North (Figure 42). This area consists of 189,720 SMAP pixels and 103,936 

NLDAS pixels. Approximately ¼ of the domain is ocean and is excluded. Of the 

remaining 136,422 SMAP pixels, 59% have at least one non-flagged observation. We 

focus our analysis on these 79,987 “active” SMAP pixels. 

4.2.2 Methods 

4.2.2.1 Matchup of NLDAS and MODIS pixels to SMAP pixels 

Our study requires linking SMAP observations with MODIS NDVI 

observations, NLDAS meteorology, and NLDAS Noah simulation data. Each SMAP 

pixel is matched with the NLDAS or MODIS pixel that contains the center point of 

the SMAP cell.  
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Because the SMAP grid is finer than the NLDAS grid, multiple SMAP pixels 

will at times correspond to the same NDLAS pixel. Though this is not ideal, it is 

preferable to basing our analysis on the NLDAS grid, which would force us to 

exclude some SMAP pixels or blend them with their neighbor when they fall within 

the same NLDAS pixel. In this way, we keep SMAP as the focus of this study. 

Moreover, the meteorological and model data from NLDAS are spatially and 

temporally continuous, so it is expected that neighboring SMAP grid cells should 

have similar (if not identical) NLDAS data associated with them. 

The MODIS grid is finer than the SMAP grid, and we assign each SMAP 

pixel the NDVI value closest to its center point. 

4.2.2.2 Drydown periods 

We utilized the precipitation field in the NLDAS forcing dataset to select 

drydowns for our analysis. Following Shellito et al. [2016b], a drydown is a period of 

dry weather that follows a soil wetting event. We automate this selection process for 

all NLDAS pixels according to the following logic: 1) the event precipitation volume 

must surpass 5 mm in a 24-hour period; 2) the dry period must begin after the event 

precipitation stops and end a day before 3 mm or more additional precipitation 

accumulates; and 3) the dry period must be at least 3 days long.  

The spatial distribution of the number of drydowns is shown in Figure 42 

(middle). We anticipate some errors in the NDLAS precipitation dataset, so our 

analyses require excluding some drydowns as detailed in the following section. 
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4.2.2.3 Calculation of drying timescales 

We calculate a drying timescale for the drydowns identified in 4.2.2.2. 

Timescales are estimated by fitting an exponential decay model [Kurc and Small, 

2004; Rondinelli et al., 2015; Shellito et al., 2016b] to the soil moisture values as 

they dry out:  

θ t = A ∗ e (67 + θ8 .     (7) 

θ is surface soil moisture content (cm3 cm-3), t is time since the beginning of 

the drydown (days), and A, τ, and θf are empirically-determined fitting parameters 

indicating, respectively, the magnitude of soil moisture drying (cm3 cm-3), the 

exponential time constant (days), and a final soil moisture content (cm3 cm-3). 

Our analysis focuses on the τ values that result from a least squares fitting of 

the above model parameters to SMAP soil moisture retrievals. We include in our 

analysis only model fits where (1) τ parameter uncertainties at the 67% significance 

level (one standard deviation) do not include zero, (2) RMSE values between the 

model and the observations are less than 0.012 cm3 cm-3 (90th percentile), and (3) 

model R2 values are above 0.8 (10th percentile). We define these models as 

“acceptable.” Unacceptable model fits can result from noisy or erroneous forcing 

data or not enough observations in the drydown period. (Because the model has 

three parameters, if there are two or fewer observations in a drydown, we do not 

even attempt a fit.) Changing these criteria thresholds does not change the overall 

results.  
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We also fit the model to surface soil moisture as simulated by Noah in 

NLDAS. To maintain consistency and facilitate comparisons, we utilize only those 

Noah observations that are concurrent with SMAP overpasses. Using all the Noah 

soil moisture observations would not substantially change the parameter values 

[Shellito et al., 2016b]. 

Our analysis includes only models that have been acceptably fit to both 

SMAP and Noah soil moisture. These restrictions ensure consistency in our 

comparisons between SMAP and Noah model fits and minimize any effects of 

forcing data errors. The geographic distribution of the 331,957 models that have 

been acceptably fit to both SMAP and Noah is shown in Figure 42 (bottom). 

To summarize the resulting τ parameter values, we use histograms that have 

been passed through a kernel smoothing function, resulting in an empirical 

probability density function (ePDF). We select kernel bandwidths of 0.24 and 0.60 

for to SMAP and Noah τ distributions, respectively. This provides appropriate 

smoothing resolutions as shown for SMAP data in Figure 44. The maximum τ 

probability is the location of the ePDF peak (in this case, 2.22 days). The ePDFs 

represent the t distributions quite well in both and will be used without the 

underlying histogram in subsequent figures. 
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Figure 44: t histogram and ePDF for all models fit to SMAP data. 

4.2.2.4 Calculation of drying rates 

As a non-parametric alternative to the drydown timescales in 4.2.2.3, we also 

use a finite differences approach to calculate soil drying rates during the drydown 

periods [Shellito et al., 2016b]: 

-.
-/
= .012(.0

/012(/0
.      (8) 

n and n+1 correspond to consecutive observations. This analysis produces 

4,738,702 SMAP drying rates, or an average of 75.2 per active SMAP pixel. By 

multiplying by the SMAP sensing depth (50 mm [Entekhabi et al., 2014]), we are 

left with an estimate of the depth of water leaving the top 5 cm of soil through 

evapotranspiration, diffusion, or infiltration each day. Preliminary analyses showed 

that SMAP observations can at times reach and stay at a maximum value, near 0.5 

cm3 cm-3, producing drying rates of exactly 0 mm/day. This is an artifact of the 

SMAP algorithm and does not reflect the drying process. These cases have been 

removed.  
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For comparison, we also determine the concurrent Noah drying rates. Since 

Noah represents soil moisture between 0 and 100 mm, we obtain Noah drying rates 

in mm/day by multiplying by 100 mm. Thus, Noah drying rates correspond to the 

depth of water leaving the top 10 cm of soil each day, which is twice the thickness of 

the SMAP sensing depth. Because we are assuming that diffusion and drainage 

between layers is negligible, this drying rate approximates the total 

evapotranspiration out of the top layer of the model. A scatter plot between Noah 

drying rates and Noah layer 1 evaporation confirms this (Figure 45). Because there 

are over 400,000 points, we scale point densities by color instead of showing them 

individually. Hotter locations correspond with higher point densities. The data 

nicely track the 1:1 line. 

 
Figure 45: Scatter plot showing Noah layer 1 drying and evaporation rates. 
Hot colors indicate higher point densities. 1:1 line shown in white. 

Drying rates are expressed in absolute terms (mm H2O/day) and as a fraction 

of PE, which indicates evaporative efficiency (the fraction of the potential that is 

realized by water leaving the top 5 or 10 cm). Our analysis of these data includes 



 90 

determining how drying rates relate to soil moisture content (qn) in each 

observation pair, in addition to the factors listed in 4.2.2.5. 

4.2.2.5 Effects of meteorologic conditions and land surface states 

We quantify the effects of meteorologic conditions and land surface states on 

drying dynamics by using the NLDAS forcing and NDVI retrievals described in 

4.2.1.2 and 4.2.1.4. For each quantity, we record the arithmetic mean through the 

extent of either the exponential decay model (from cessation of rainfall to the time 

of the last soil moisture observation) or the drying rate calculation (from tn to tn+1).  

With these data, we can provide continent-wide summaries of the effect of 

each environmental state on the drying dynamics. We assess the role of 

environmental data by dividing them into quantiles and comparing fitted t values 

and surface drying rates. In each case, either the entire distribution is shown, or 

bootstrapping is employed to estimate the median value and its standard error. 

Those parameters are displayed as markers with error bars in our figures. 

Bootstrapped statistics are generated using 500 instances of 100 random samples.  

4.3 Results 

4.3.1 Drying timescales 

The drying timescales as observed by SMAP and simulated by Noah are quite 

different. Figure 46 (left) shows that SMAP drying timescales are short, with a 

maximum t probability of 2.2 days. Noah has a wider distribution of drying 

timescales and a maximum t probability of 4.8 days, 118% longer than SMAP 

timescales. Figure 46 (right) is a scatter plot that shows the how each drydown 

event is observed by the satellite and the model. The most common t pairs (white 
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hot) are consistent with the ePDFs: 2.06 and 4.06 days, respectively. However, we 

do not see a linear feature in the scatter plot, which means that the longest 

drydowns as observed by SMAP do not correspond with the longest drydowns as 

simulated by Noah, and vice versa. This indicates that in at least these cases, there 

are different mechanisms at work.  

 
Figure 46: ePDFs (left) and scatter plot (right) comparing SMAP and Noah t values. 
Hot colors indicate higher point densities. 

In the next sections, we investigate the role that four environmental factors 

play in controlling the t distributions: geography, soil texture, vegetation, and PE. 

4.3.1.1 Role of geography 

The distributions of t fit to SMAP and Noah vary according to region (Figure 

47, top and middle). These plots use a 25-pixel moving window to smooth the t 

values. Displayed are median values from each window that contain at least 50 

acceptable model fits. Because maximum t probabilities in models fit to Noah are 

approximately double those fit to SMAP, we have adjusted the color scaling to 

emphasize regions that deviate from that multiplier. There are two main regions 
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where SMAP and Noah drying timescales disagree: interior high latitudes, where 

SMAP has relatively longer drying timescales than Noah, and arid southern and 

western regions, where the opposite is true. The best agreement is found the 

southeast and much of the Great Plains.  

The bottom panel of Figure 47 shows the mean NDVI values throughout the 

sensing period. Visual inspection suggests a positive correlation between SMAP 

drying timescales and NDVI, with the lowest values for both located in the High 

Plains, West and Southwest. In contrast, the shortest drying timescales from Noah 

simulations are located at high latitudes and span a range of NDVI values. We 

further explore the relationship between NDVI and drying dynamics below, in 

sections 4.3.1.4 and 4.3.2.2. 
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Figure 47: Distributions of t fit to SMAP (top) and to Noah (middle). Bottom shows mean 
NDVI. 

4.3.1.2 Role of soil texture 

Soil texture plays a role in the distributions of drying timescales for models 

fit both to SMAP and to Noah (Figure 48). The maximum probabilities of each ePDF 

are listed in Table 8.  

 
Figure 48: ePDFs of t distributions in the most prevalent soil textures  
as fit to SMAP observations and Noah simulations. 

Table 8: Maximum t probabilities for the four most prevalent soil textures. 
 Peak t in models fit to 
 SMAP Noah 

Sand 2.24 4.01 
Sandy loam 1.91 5.02 
Loamy sand 2.41 3.76 

Loam 2.21 4.60 
Silt loam 2.78 4.18 

Silty clay loam 2.58 6.27 
Clay loam 2.54 5.52 

Clay 2.74 7.11 
 

For t values fit to both SMAP and Noah, the shortest drying timescales are 

found in relatively coarse-grained textures (sandy loam and loamy sand, 
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respectively), and the longest drying timescales are found in fine-grained textures 

(silt loam and clay, respectively). Fine-grained soils (clay, clay loam, silty clay loam, 

silt loam) also tend to have thicker tails than coarse-grained soils (sand, sandy loam 

loamy sand, loam), which is consistent with the expectation that fine-grained soils 

retain more water at the same water tension levels than coarse-grained soils do 

[Saxton et al., 1986].  

The major difference between the role of soil texture on SMAP observations 

compared to Noah simulations is the degree of the effect. The difference between the 

shortest and longest SMAP drying timescales is 46% (1.91 days vs. 2.78 days). The 

difference between the shortest and longest Noah drying timescales is 89% (3.76 

days vs. 7.11 days). 

4.3.1.3 Role of PE  

PE reflects the readiness by which the atmosphere can take up moisture, so 

we expect soil drying rates to be affected by PE rates. To quantify its role on drying 

timescales, all t values have been separated into three quantiles (terciles) according 

to their associated NLDAS PE rates. (PE depends on atmospheric conditions, so the 

terciles contain identical drydown events. The only difference is whether SMAP or 

Noah data are describing those events.) Figure 49 and Table 9 show that PE exerts 

a strong control over drying timescales as observed by SMAP and little control over 

drydowns as simulated by Noah. Moreover, the little effect that PE does have on 

Noah drying timescales is reversed from what would be expected: despite high 

atmospheric demand for moisture, the highest PE tercile is associated with Noah 
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simulations that show water remaining in the soil for longer. For models fit to 

SMAP, there is a nearly two-fold difference in peak ePDF between the top and 

bottom terciles. 

 
Figure 49: ePDFs of t distributions for three terciles of PE rates  
as fit to SMAP observations and Noah simulations 

Table 9: Maximum t probabilities for each PE tercile. 
 Peak t in models fit to 

PE tercile SMAP Noah 
Low 3.03 4.55 

Medium 2.42 4.55 
High 1.82 5.56 

 

4.3.1.4 Role of vegetation 

Visual inspection of Figure 47 suggests the existence of a relationship 

between average NDVI and SMAP drying timescales. Because vegetation varies 

throughout the year, we investigate this effect more closely by looking at the t 

values associated with specific NDVIs. 

We separate all NDVI values into ten quantiles (deciles). Figure 50 shows the 

median t values from models fit to both SMAP and Noah in each decile. As NDVI 
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increases, SMAP drydown timescales also increase, with the exception of the 

highest decile. This trend does not exist in the Noah drydown timescales. Instead, 

we see a widening of the distribution of Noah t values with NDVI, as shown by the 

larger standard errors. The median values of t fit to Noah show no monotonic trend. 

The strongest relationship both SMAP and Noah t values have with vegetation is 

between 0.15 and 0.35 NDVI, where they exhibit opposite responses to increasing 

NDVI.  

 
Figure 50: Median t values and standard errors from each NDVI decile. 

4.3.2 Drying rates 

The trends shown in 4.3.1 are based on SMAP and Noah data that have been 

fit to an exponential decay model. We established the important variables, but there 

are some relationships in the data that warrant further investigation. Figure 51, 

Figure 52, and Figure 53 are scatter plots of the correlation between NDVI, PE, and 
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soil moisture. Hotter colors indicate higher point densities. NDVI and PE are 

positively related (Figure 51) because both tend to be higher in the summer. Note 

that while the correlation is weak, high NDVI values are consistently collocated 

with high PE rates (spring and summer vegetation), and low PE rates are 

consistently collocated with low NDVI (winter). The third cluster is sites with high 

PE and low NDVI, which reflects desert conditions. NDVI and VSM have a positive 

correlation (Figure 52) because vegetation cannot grow where there is insufficient 

moisture. Finally, PE and VSM have a negative correlation (Figure 53), because 

when atmospheric demand is high, it will more readily remove moisture from the 

shallow soil.  

Next, we present results that use calculated drying rates to investigate how 

PE, NDVI, and VSM affect soil moisture dynamics separately.  

 
Figure 51: Scatter plot showing correlation of PE with NDVI. Pearson’s R is 0.11. 
Hot colors indicate higher point densities. 
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Figure 52: Scatter plots showing correlation of NDVI with VSM 
from SMAP (left, R=0.49) and Noah (right, R=0.29). Hot colors indicate higher point densities. 

 
Figure 53: Scatter plots showing correlation of PE with VSM 
from SMAP (left, R=-0.33) and Noah (right, R=-0.36). Hot colors indicate higher point densities. 

4.3.2.1 Role of PE 

We expect drying to be faster when more water exists in the soil. We also 

expect drying to be faster when PE is higher. Figure 54 shows how the two factors 

affect one another. We have divided the drying rates into terciles according to PE 

rate. We use 10 bins of increasing soil moisture content to further divide the data 
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and plot the results in terms of drying rates (top) and evaporative efficiency 

(bottom). 

 
Figure 54: Drying rates (top) and evaporative efficiency (bottom) of surface soil moisture 
as a function of soil moisture content for low, medium, and high PE rates as observed by SMAP 
(left) and simulated by Noah (right). Error bars show standard error of each median value. 
Markers show median values. 

It is apparent from Figure 54 (top) that SMAP observations (left) and Noah 

simulations (right) both have an increased sensitivity of drying rate to soil moisture 

content when PE rates are high. SMAP shows this sensitivity to a larger degree 

than Noah does. For both, when PE rates are low, the drying rates plateau around 

0.3 mm/day.  
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The bottom panels of Figure 54 show that the evaporative efficiency is not 

affected by the PE rate itself. For both SMAP and Noah, there is an approximately 

linear relationship between soil moisture content and evaporative efficiency in all 

three PE terciles. The standard errors overlap.  

4.3.2.2 Role of vegetation 

Vegetative cover can shade the ground and therefore decrease direct 

evaporation from the ground. However, it also introduces transpiration. These 

mechanisms have opposing effects on the overall drying rate shown in Figure 55.  
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Figure 55: Drying rates (top) and evaporative efficiency (bottom) of surface soil moisture 
as a function of 8 VSM quantiles (x-axis) and 4 NDVI quantiles (colors). Moisture levels and 
drying rates are from SMAP observations (left) and Noah simulations (right). Error bars show 
standard error of each median value. Markers show median values. 

The top left panel of Figure 55 shows that according to SMAP observations, 

(1) drying rate depends highly on VSM, no matter the vegetation level, and (2) at 

almost all soil moisture levels, the highest drying rates are over pixels with the 

lowest vegetation levels. The one exception is in the highest soil moisture quantile, 

where the most densely-vegetated quantile dries faster than the most sparsely-

vegetated quantile. (The drying rate of the former increases linearly with VSM, 
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whereas less-vegetated quartiles reach a plateau.) The top right panel shows that 

Noah simulations exhibit a weakly positive dependence of drying rate on VSM. At 

all soil moisture levels, more vegetation is associated with faster Noah drying rates, 

which is the opposite from how vegetation affects SMAP drying rates. 

The bottom two panels of Figure 55 show the same data as those above them, 

but drying rates are expressed as a fraction of potential evaporation. This 

normalization removes the negative correlation of PE with VSM (Figure 53) and the 

positive correlation of PE with NDVI (Figure 51). For both SMAP and Noah, 

evaporative efficiency monotonically increases with soil moisture, except for a 

plateau in the low vegetation quartile at SMAP VSMs between 0.25 and 0.35 cm3 

cm-3.  

Both SMAP and Noah data show a negative effect of vegetation on 

evaporative efficiency. For SMAP (bottom left), the trend is the same as it was prior 

to normalization. More vegetation unequivocally decreases evaporative efficiency. 

For Noah (bottom right), the trend is weak, but the effect of vegetation is in the 

opposite direction from pre-normalization (top right). At most Noah-simulated VSM 

levels, evaporative efficiency is higher when vegetation cover is low.  

4.4 Discussion  

The data from NASA’s SMAP mission, combined with existing environmental 

remote sensing and modeling data, have provided insights into the environmental 

factors affecting surface soil moisture dynamics.  

Overall, SMAP drying timescales are about half as long as those from Noah 

simulations. The most likely cause for this disparity is the difference between 
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SMAP sensing depth (between the surface and up to 5 cm) and the thickness of the 

shallowest soil layer being simulated in Noah (prescribed at 0-10 cm). Soil drying 

starts at the surface and progresses into the ground [Schneeberger et al., 2004], so it 

is expected that the top few centimeters should dry over a shorter time period than 

soil near the bottom of Noah’s first layer.  

The difference in representative depths also plays a role in the relative 

contributions of surface evaporation and transpiration. Bare soil evaporation plays 

a proportionally smaller role for a thick surface layer than it does a thin one. 

Transpiration pulls about equally from all parts of a layer, assuming uniform 

wetness and root distribution. Therefore, as soil shifts from bare to vegetated, the 

soil depth being represented will determine how drying is partitioned between 

evaporation and transpiration.  

In the transition from low to moderate NDVI (0.1 to 0.35), SMAP 

observations show a lengthening of the drying timescale (Figure 50). We attribute 

this change to an increase in the shaded ground area and aerodynamic resistance. 

The resulting decrease of direct evaporation from the soil surface is not offset by the 

increase in transpiration out of the top few centimeters that the vegetation 

provides. Noah simulations, on the other hand, show the opposite effect through the 

same NDVI interval. The increase in transpiration from the top 10 centimeters is 

greater than the decrease in surface evaporation, so the overall effect of increased 

vegetation is a shortening of the drying timescale. As a reminder, Noah uses a 

climatology-based parameter to assign fractional vegetation cover. Our NDVI 
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values are from real observations. Using climatological values dampens but does 

not change the effects seen in Figure 50, since seasonality will never correspond 

perfectly with the conditions of any given year.  

Soil texture is a fundamental component of soil infiltration and redistribution 

models [Campbell, 1974; Van Genuchten, 1980; Chen and Dudhia, 2001]. It is 

expected that the higher water tension that fine-grained soils (silts and clays) 

provide should hold soil water longer than coarse grained soils (sands) as the soil 

dries. Our results show an overall trend that supports this theory (Figure 48, Table 

8). However, the correspondence between grain size and drying timescale is not 

perfect, and it is exhibited to different degrees by SMAP observations and Noah 

simulations. Noah has soil parameters for each texture category coded into it, which 

provides for different wilting points, field capacities, and hydraulic diffusivities and 

conductivities [Chen and Dudhia, 2001]. SMAP shows that while it is true that 

different soil textures have different dynamics, the degree of those differences is 

much smaller (46% versus 89%) than Noah simulations would suggest. 

The inexact correspondence of drying timescales with soil texture between 

SMAP and Noah supports the findings of Xia et al. [2015]: substituting one soil map 

with another will not improve simulations. The relationship between soil textures 

and parameters are built around laboratory experiments [Campbell, 1974] that only 

approximate those that are seen on a ~10 km scale. Chapter 2 corroborates the fact 

that map- and laboratory-based soil textures are not optimal for use at the 

landscape scale [Shellito et al., 2016a]. 
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In assessing soil drying rates, we must simultaneously consider the supply of 

water (soil moisture), the atmospheric demand for it (PE), and the vegetative cover 

(NDVI). Having established that NDVI affects drying behavior, we look at the role 

of PE and soil moisture. Three conclusions come out of Figure 54, all of which are 

supported by both SMAP observations and Noah simulations: (1) drying rates are 

positively related to soil moisture content, (2) the sensitively of drying rates to soil 

moisture depends on PE (higher PE results in higher sensitivities), and (3) 

evaporative efficiency is linearly related to soil moisture, regardless of PE rate. All 

three points indicate that at the continental scale, evapotranspiration is water-

limited (stage 2 evaporation). These conclusions support our working assumption 

that saturation beyond the field capacity, where gravity drainage is active and 

evaporation is limited by PE, is uncommon at the timescales of our observations 

and simulations.  

Lastly, we lastly look to Figure 55 to understand the role of vegetation on 

drying rates, independent of soil moisture and PE rate. According to SMAP 

observations, vegetation has a strong influence on evaporative efficiency at every 

soil moisture level. Areas with less vegetation have higher evaporative efficiencies. 

This translates to faster drying rates, which corroborates our earlier findings that 

SMAP drying timescales are shorter when NDVI is below 0.35. The only exception 

to this trend is highly vegetated pixels that are also in the wettest quartile. High 

NDVI usually means high PE (Figure 51), and ample moisture supply ensures the 

atmospheric demand is met. This category therefore has the fastest overall drying 
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rates of all shown, but only because its PE rate is also high, not because of the 

vegetation present. 

The implications of Figure 55 regarding Noah simulations are subtler. For 

most moisture levels, vegetation correlates with lower evaporative efficiencies. 

However, because the Noah model layer is thicker than the SMAP sensing layer, 

transpiration is more effective at offsetting this decrease in efficiency. This results 

in a weaker negative relationship between vegetation and surface evaporation than 

is seen using the shallower SMAP observations. When looking at drying rates 

themselves (Figure 55, top right), we see the relationship is entirely obscured and in 

fact flipped because of the higher PE rates that well-vegetated pixels tend to have 

(Figure 51).  

In summary, SMAP observations and Noah simulations both support our 

finding that that given an equal soil moisture level and PE, the presence of 

vegetation will slow the speed at which surface soil moisture dries. The counter-

acting roles vegetation has in increasing shaded area and introducing transpiration 

make this result dependent on depth, so it is most effectively seen in the SMAP 

observations. The trend is barely present over the 0-10 cm Noah simulation depth. 

These findings are most applicable to regions with intermediate moisture levels and 

relatively sparse vegetation (NDVI < 0.35). Moist soil, thick vegetation, or a thicker 

soil layer would move the system into a regime where drying is dominated by 

transpiration, which, given enough atmospheric water demand, would negate the 

tempering effect that vegetation has on evaporative efficiency. 
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4.5 Conclusion 

We show the ability of SMAP to capture drying dynamics after rain events in 

North America. The extent of SMAP retrievals is limited by dense vegetation cover 

in the eastern portion of the domain, but observations are sufficient to draw several 

conclusions regarding how PE, VSM, NDVI, and soil texture affect soil drying 

dynamics. We use simulations of soil moisture from the shallowest layer of the 

Noah LSM to support our findings and gain insight into how the 0-5 cm SMAP 

dynamics differ from those simulated by the 0-10 cm Noah layer. 

1. In North America, drying timescales from SMAP observations are 

approximately half those from Noah simulations. The longest drydowns 

from SMAP are found in arid regions. The longest drydowns from Noah 

are found at high latitudes. In the Great Plains, the Noah drying 

timescales are consistently twice those of SMAP. We attribute these 

differences at least in part to the different soil depths being represented.  

2. Both SMAP and Noah observations show that soil texture influences 

drying timescales. The effect is greater for Noah than for SMAP, 

suggesting that the former places too much weight on this aspect of the 

system. 

3. Drying rates are affected by VSM, PE, and NDVI. More soil moisture and 

higher PE rates cause faster drying rates. The effect of each is sensitive to 

and magnified by the other. The presence of vegetation in SMAP 

observations causes drying rates to decrease. The presence of vegetation 

in Noah simulations causes drying rates to increase. This difference 
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implies that transpiration plays a larger role in soil drying as simulated 

by Noah than as observed by SMAP. 

4. We calculate evaporative efficiency by normalizing drying rates by PE. 

Both SMAP and Noah data show that vegetation decreases evaporative 

efficiency. The effect of vegetation can be obscured because it is positively 

correlated with both VSM and PE, two factors that increase surface soil 

moisture drying rates. It can also be obscured as the soil layer being 

studied gets thicker and transpiration dynamics overcome those of surface 

evaporation. 
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