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Priced timed automata provide a natural model for quantitative analysis of real-time systems and
have been successfully applied in various scheduling and planning problems. The optimal reacha-
bility problem for linearly-priced timed automata is knownto be PSPACE-complete. In this paper
we investigate priced timed automata with more general prices and show that in the most general
setting the optimal reachability problem is undecidable. We adapt and implement the construction of
Audemard, Cimatti, Kornilowicz, and Sebastiani for non-linear priced timed automata using state-
of-the-art theorem prover Z3 and present some preliminary results.

1 Introduction

Timed automata, introduced by Alur and Dill [3], extend finite state automata with continuous variables—
referred as clocks—that evolve with uniform rates. Time automata syntax permits comparing clocks
with integers as guard on transitions and as well as invariants on locations (states), and also allows clock
resets as a way to remember the time a transition was last fired. These features of time automata are gen-
eral enough to permit modeling rich timing properties of real-time systems while providing a decidable
verification framework. Timed automata have been quite successful in practice due to their appealing
theoretical properties as well as the presence of mature verification tools such as UPPAAL.

Priced timed automata [9, 8] are extensions of timed automata which permit us to model cost associ-
ated with staying at locations as well as taking discrete transitions. Priced timed automata are useful in
modeling various decision-theoretic problem in the presence of strict timing constraints. The most nat-
ural problem studied on these models is the optimal reachability problem (shortest path problem) where
the goal is to find the minimum (or maximum) cost to reach a given set of locations.

Linearly-priced timed automata [6] (LPTA), also known as weighted timed automata, are subclasses
of priced timed automata where prices change linearly with respect to delay incurred at particular loca-
tion. For LPTA the optimal reachability problem is known to be decidable and is shown to be PSPACE-
complete exploiting a clever extension of region graphs to so-called corner-point abstraction by Bouyer
et al. [8]. Alur et al. [4] earlier gave an EXPTIME algorithm to solve the problem with an arbitrary initial
state by giving a non-trivial extension of the region graph.Larsen et al. [6, 9] gave a symbolic algorithm
to solve the problem, although with some restrictions on theinitial state (a corner state with all clocks
set to zero). A recent result by Fearnley and Jurdzinksi [13]showed that the PSPACE-hardness results
hold for timed automata with two clocks [13]. On the other hand, for timed automata with one clock,
reachability-time and reachability-price problems are known to be NL-complete [19].

In practice, however, the requirement for nonlinear pricing models is quite common. As an example
consider the optimal scheduling problem of battery usage inembedded systems studied by Jongerden et
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al. [16]. In this work authors modeled batteries using kinetic battery model (KiBaM). KiBaM itself is a
nonlinear model, but Jongerden et al. [16] manually discretized it to required approximation to model the
whole problem as optimization on LPTA. Similar scenarios can be cited from other application domains
of priced timed automata such as scheduling [7], resource modeling and analysis [14], and optimal
synthesis [15]. However, we believe that providing non-linear price modeling facilities directly in the
language of timed automata will further their applicability in system design. Jurdzinski and Trivedi [18]
introduced a non-linear subclass of priced timed automata,so-called concavely-priced timed automata,
where prices in each location are certain concave prices of valuation and time delays. Exploiting the
concave nature of the prices, they showed that the optimal price reachability problem for this class
of automata has the same complexity as that of LPTA. Priced timed automata with exponential price
functions were studied in a restricted context by Bouyer et al. [10] and Fahrenberg and Larsen [12].

In this paper we uniformly study various subclasses of (non-linear) priced timed automata, and study
the boundary between decidable and undecidable variants ofPTA. Towards this goal we first show the
undecidability of the optimal reachability problem for unrestricted priced timed automata by showing
a reduction from the halting problem for two-counter machines. For reasoning with decidable variants,
we first introduce a key notion of price-preserving bisimilarity. We exploit this notion to formalize
reduction for the optimal cost reachability problem for piecewise-linear priced timed automata to linearly
priced timed automata. We also show the decidability ofε-optimal cost reachability for priced timed
automata with Lipschitz-continuous prices. Finally, we adapt the construction of Audemard, Cimatti,
Kornilowicz, and Sebastiani [5] for bounded model-checking of timed automata using SAT solvers to
work for bounded reachability problem for non-linearly priced timed automata using SMT solver Z3 [11].
In conjunction with a decision procedure for the theory of the class of price functions (for instance
polynomial prices [17, 11]), our implementation can be usedto compute bounded-step cost-optimal
schedules for priced timed automata. We demonstrate the applicability of our approach using airplane
landing problem [7].

This paper is organized as follows: we begin by defining syntax and semantics of generalized priced
timed automata in the next section. We define various pricingmodels and their hierarchy. We prove key
undecidability result in Section 3 and show decidability results in Section 4. Finally, in section 5 we
present the details of our implementation and experimentalresults.

2 Priced Timed Automata

We denote sets of integers, rational numbers and real numbers asZ,Q andR respectively. Their respec-
tive non-negative subsets are denoted asZ+,Q+ andR+.

Let X = {x1,x2, . . . ,xn} be the finite set of clocks. A clock valuation is a mapν : X 7→ R+. Thus, a
given clock valuationν maps clockxi to a valueνi . This fact is written asν(xi) = νi . In n-tuple form,
a clock valuationν is denoted as(ν1,ν2, . . . ,νn). Given a clock valuationν andτ ∈ R+, ν + τ is the
clock valuation defined by(ν1 + τ ,ν2+ τ , . . . ,νn + τ). A guard is any finite conjunction of clauses of
the formxi ∼ c, where clockxi ∈ X, constantc ∈ Z+ and∼ is one of the comparison operators in set
{<,≤,=,>,≥}. Let G be the set of guards. Given a valuationν and a guardg =

∧

j(xi ∼ c j), ν � g
means expression

∧

j(ν(xi) ∼ c j) evaluates to true. ForY ⊆ X, ν [Y := 0] denotes clock valuation in
which clocks inY are reset to 0 while other clocks remain unchanged.

Timed Automata. A timed transition systemT is a tuple(L,X,E) where (i)L is a finite set of lo-
cations, (ii)X is a finite set of clocks variables, and (iii)E is set of transitions. Aconfigurationof T
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is a pair(ℓ,ν), whereℓ ∈ L is a location andν in clock valuation over setX. Let QT be the set of
configurations for the timed transition systemT . There are two types of transitions overQT :

• Delay,Eτ ⊆ QT ×R+×QT : (ℓ,ν) t
−→ (ℓ,ν + t), wheret ∈ R+

• Switch,Ee ⊆ QT ×2X ×QT : (ℓ,ν) Y
−→ (ℓ′,ν [Y := 0]) whereY ⊆ X.

We writeE = Eτ ∪Ee for the set of transitions of timed transition systemT .

Definition A timed automatonA is a tuple(L,X,E, I) where (i)L is a finite set of locations (ii)X is a
finite set of clocks (iii)E ⊆ L×G×2X ×L is a finite set of edges (iv)I : L 7→ G assigns an invariant to
each location.

The semantics of timed automatonA is given as a timed transition systemTA = (LA ,XA ,EA ), where
(i) LA = L (ii) XA = X (iii) EA = Eτ

A
∪Ee

A
, s.t.

• Eτ
A

= {(ℓ,ν) t
−→ (ℓ,ν + t) | t ∈R+ and∀δ ∈ R+,0≤ δ ≤ t ⇒ (ν +δ ) � I(ℓ)}

• Ee
A

= {(ℓ,ν) Y
−→ (ℓ′,ν [Y:= 0]) |Y⊆X, (ℓ,g,Y, ℓ′)⊆ E, ν � g andν � I(ℓ)}

A run ρ = q0 → q1 → ··· → qm of the timed automatonA is a finite path in the induced timed
transition systemTA where everyqi is configuration inTA and→ is either delay or switch edge inEA .
We use notationρ = q0 qm for a run fromq0 to qm. We writeRuns(q,q′) for the set of runs from the
locationq to q′. A run is said to becanonicalif delay and switch transitions alternate.

Priced timed automata. A priced timed automaton (PTA) is a timed automatonA = (L, X, E, I , π, ψ)
augmented with a price functionsπ : QA ×R+ 7→ R+ andψ : E 7→ Z+ which assign prices (costs) for
waiting at locations and taking edges, whereQA is the set of the configurations of timed automatonA .
LetA be a PTA andρ = q′0

τ1−→ q1
e1−→ q′1

τ2−→ q2
e2−→ q′2 · · ·

τm−→ qm
em−→ q′m be a canonical run ofTA . Then the

costC(ρ) of the runρ is equal toCd(ρ)+Cs(ρ)whereCd(ρ)=∑m
k=1π(q′k−1,τk) andCs(ρ)=∑m

k=1 ψ(ek)
are thedurationandswitchingcosts ofρ respectively.

A priced timed transition systemT is a tuple(L,X,E) where (i)L is a set of locations (ii)X is a
finite set of clocks (iii)E is a set of transitions. Aconfigurationis a tuple(ℓ,ν ,u), whereℓ ∈ L is a
location,ν is a clock valuation over setX andu∈ R is current accumulated price. LetQT be the set of
configurations for timed transition systemT . There are two types of transitions defined overQT :

• Delay,Eτ ⊆ QT ×R+×QT : (ℓ,ν ,u) t
−→ (ℓ,ν + t,u′), wheret ∈ R+

• Switch,Ee ⊆ QT ×2X ×QT : (ℓ,ν ,u) Y
−→ (ℓ′,ν [Y:=0],u′) whereY ⊆ X.

We write E = Eτ ∪Ee for the set of transitions of timed transition systemT . A priced timed transi-
tion system is said to becanonicalif for its every run, delay transitions and switch transitions occur in

the strict alternation. Observe that two consecutive delaytransitions like(ℓ1,ν1,u1)
t1−→ (ℓ2,ν2,u2)

t2−→

(ℓ3,ν3,u3) cannot be combined together as(ℓ1,ν1,u1)
t1+t2−−−→ (ℓ3,ν3,u3) because for non-linear price

functions such clubbing may not yield valid transitions. Similarly, there cannot be consecutive switch
transitions without zero delay transition between them.

Let A = (L, X, E, I , π, ψ) be a priced timed automaton. The semantics ofA are given by a canonical
priced timed transition systemTA = (LA ,XA ,EA ) such that,LA = L, XA = X, EA = Eτ

A
∪Ee

A
, s.t.:

• Eτ
A

= {(ℓ,ν ,u) t
−→ (ℓ,ν + t,u+π(ℓ, t)) | t ∈ R+ and∀δ ∈ R+,0≤ δ ≤ t ⇒ (ν +δ ) � I(ℓ)}

• Ee
A

= {(ℓ,ν ,u) Y
−→ (ℓ′,ν [Y:=0],u+ ψ(γ)) | Y ⊆ X, transitionγ = (ℓ,g,Y, ℓ′) ∈ E, ν � g, ν �

I(ℓ) andν [Y:=0]] � I(ℓ′)}.
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A run of the transition systemTA starts with some configuration(ℓ,ν ,u0) whereℓ ∈ L, ν ∈ (R+)X and
u0 ∈ R. We do not explicitly specify initial configuration in our definition of priced timed automaton.

Cost-optimal reachability problem Let A be a priced timed automaton. Given two locationsℓ,ℓ′ of
A, the optimal costOptCost(ℓ,ℓ′), of reachingℓ′ from ℓ is defined as

OptCost(ℓ,ℓ′) = inf
ρ∈Runs(ℓ,ℓ′)

C(ρ).

Given priced timed automatonA , locationsℓ, ℓ′, and a budgetB ∈ R the cost-optimal reachability
problem is to decide whetherOptCost(ℓ,ℓ′)≤ B.

Summary of Our Results. Our first result (Section 3) is that the optimal cost reachability problem for
general priced timed automata is undecidable.

Theorem 2.1 Cost-optimal reachability problem for nonlinearly pricedtimed automata is undecidable.

Given this negative result it is justifiable to look for various restricted subclasses of price functions
in order to recover decidable variants. The first subclass that we consider is piece-wise linear price
functions. Apiecewise linear price function f: R+→R can be represented as tuple(Pℓ,Yℓ

P,Y
ℓ
I ) where

• Pℓ = 〈p1 = 0, p2, . . . , pn〉 is an increasing sequence ofn-points in time. First pointp1 is always at
time value zero. Thus,p1(= 0)< p2 < .. . < pn holds.

• Yℓ
P = 〈yp1,yp2, . . . ,ypn〉 is a sequence of prices such thatypi = fℓ(pi).

• Yℓ
I = 〈(m1,c1),(m2,c2), . . . ,(mn,cn)〉 is a sequence ofn tuples. Time intervals formed by points

in Pℓ areI1
def
= (p1, p2), · · · , In

def
= (pn,+∞). Again let I = 〈I1, . . . , In〉 be the sequence of intervals.

Value of piecewise linear price functionfℓ in the intervalIk is given by parameters in tuple(mk,ck),
such that ifτ ∈ Ik, f (τ) = mkτ +ck.

We call tuple(Pℓ,Yℓ
P,Y

ℓ
I ) asstructureof function f . We call a timed automaton ispiecewise linearly

priced if for all configuration(ℓ,ν) we have thatπ((ℓ,ν),τ) = fℓ(τ), where fℓ = (Pℓ,Yℓ
P,Y

ℓ
I ), is a piece-

wise linear function defined over interval[0,+∞) and all the constants appearing in its structure are
integers. Observe that the standard definition of linearly priced timed automata can be casted as a special
case of piecewise linearly priced timed automata such thatfℓ = (Pℓ,Yℓ

P,Y
ℓ
I ), wherePℓ = 〈0〉, Yℓ

P = 〈0〉,
andYℓ

I = 〈(kℓ,0)〉 such thatkℓ is rate of change of price at locationℓ. For LPTA the cost-optimal reach-
ability problem is known to be PSPACE-complete [8]. In Section 4 we show the following key result of
piecewise linearly priced timed automata.

Theorem 2.2 The cost-optimal reachability problem for piecewise linearly priced timed automaton is
PSPACE-complete.

This result can easily be extended to piecewise-concave priced timed automata [18].
We also study more general Lipschitz continuously priced timed automata. We say that a function

f : R 7→ R is Lipschitz continuous function, if there exists a constant K ≥ 0, called Lipschitz constant
of f , s.t. ‖ f (x)− f (y)‖ ≤ K‖x− y‖ for all x,y in the domain off . A timed automaton is then called
Lipschitz continuous pricedif price functionsπ((ℓ,ν),τ) = fℓ(τ), are Lipschitz continuous for every
location ℓ and there exists a constantT such that all the clock valuations are bounded from above by
T. For this class of functions the optimal reachability problem may not be computable due to optimal
occurring at non-rational points. For this reason we study the following approximate optimal problem.

ε-Cost-optimal reachability problem Let A be a priced timed automaton. Givenε > 0 and two loca-
tionsℓ, ℓ′ of A , a budgetB∈R+, theε-optimal cost problem is to decide whetherOptCost(ℓ,ℓ′)≤B+ε .



D. Bhave, S. N. Krishna & A. Trivedi 69

x = enc(c)
y = enc(d)
w = 0
z = 0

l0 l1 l2
z> 0?

x,w := 0

z= 1?

x := 0,
z := 0

y= 1?y := 0y= 1?y := 0

{z= 0}

x = 0
y = enc(d)
w = enc(c−1)
z = 0

πl0 = (1−x− t
2)

2 πl1 = 0 πl2 = 0

Figure 1: Decrementc module

x = enc(c)
y = enc(d)
w = 0
z = 0

l0 l1 l2
z> 0?

w := 0

z= 1?

x := 0,
z := 0

x= 1?x := 0,
y= 1?y := 0

{z= 0}

x = 0
y = enc(d)
w = enc(c+1)
z = 0

πl0 = (1−x−2t)2 πl1 = 0 πl2 = 0

Figure 2: Incrementc module

We show in Section 4 the following result for Lipschitz-continuous priced timed automata.

Theorem 2.3 The ε-Cost-optimal reachability is decidable for Lipschitz-continuous priced timed au-
tomata.

Finally, in Section 5 we give details of our implementation to solve step-bounded cost-optimal reacha-
bility problem for general priced timed automata.

3 Undecidability

This section is devoted to the proof of Theorem 2.1. We prove this result by reducing the halting prob-
lem for two counter machines to the cost-optimal reachability problem for priced timed automata. A
two-counter machine Mis a tuple(L,C) whereL = {ℓ0, ℓ1, . . . , ℓn} is the set of instructions including
a distinguished terminal instructionℓn called HALT, and the setC= {c1,c2} of two counters. The in-
structionsL are of the type: (1) (incrementc) ℓi : c := c+ 1; gotoℓk, (2) (decrementc) ℓi : c := c− 1;
goto ℓk, (3) (zero-checkc) ℓi : if (c> 0) then gotoℓk else gotoℓm, wherec∈C, ℓi , ℓk, ℓm ∈ L. A con-
figuration of a two-counter machine is a tuple(ℓ,c,d) whereℓ ∈ L is an instruction, andc,d ∈ N is the
value of countersc1 andc2, resp. A run of a two-counter machine is a (finite or infinite) sequence of
configurations〈k0,k1, . . .〉 wherek0 = (ℓ0,0,0) and the relation between subsequent configurations is
governed by transitions between respective instructions.Thehalting problemfor a two-counter machine
asks whether its unique run ends at the terminal instructionℓn. The halting problem for two-counter
machines is known [20] to be undecidable.

Proof of Theorem 2.1 We reduce the reachability problem of two counter machines to an instance of
the cost-optimal reachability problemOptCost(q,q′) for priced timed automataA such that desired
configuration of two counter machine is reachable from its initial configuration iff there is a run in the
automatonA from q to q′ of cost exactly zero.
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Let M be the instance of the two counter machine having countersc andd. We construct a PTAA
from M using suitable encoding. Valid runs ofM are mapped to valid runs ofA such that their cost
is exactly zero. Figure 1 and 2 describes the module simulating counter decrement instruction ofM .
PTA A is constructed by composing the various modules.A uses four clocks –x, y, w andz, out of
which x andy encode countersc andd asx = 1− 1

2c andy = 1− 1
2d . Let enc(·) denote this encoding

function. Testing whetherc is zero amounts to testingx is zero in the guards ofA . Figure 1 describes
decrement operation on counterc. It shows clock valuations before entering the module and after exiting
the module when simulation is correct. Lett be the amount of time spent in locationl0 during simulation.
Let (x,y,z,w) = (1− 1

2c ,1− 1
2d ,0,0) be the configuration on enteringl0. We want to ensure that the time

spent atl0 is t = 1
2c−1 . The self loop atl0 ensures that the value ofy never crosses 1. If so, the new values

of x,y,z,w respectively are 0,1−( 1
2d −

1
2c−1 ) or 1

2c−1 −
1
2d , 1

2c−1 ,0. Note that the new value ofy after elapse
of time t is 1− ( 1

2d −
1

2c−1 ) or 1
2c−1 −

1
2d depending on whetherd > c or not. A time of 1− 1

2c−1 is spent at
locationl1. This gives us the configuration 0,1− 1

2d ,0,1−
1

2c−1 on reachingl2. Note that the self loop on
y at locationl1 helps in regaining the value ofy to be 1− 1

2d in the case whend > c. Note that the cost
is 0 iff t = 1

2c−1 . Thus, only correct simulation incurs zero price. Likewiseincrement module in figure 2
correctly works whent = 1−x

2 .
Observe that after every increment or decrement operation,the value of clockx moves to clockw.

Hence, in order to composingA from individual modules we need to swap the roles of clocksx andw in
every alternate modules. Let〈c1,d1〉 be initial configuration and〈c2,d2〉 be target configuration ofM .
They map to clock valuationν1 = (enc(c1),enc(d1),0,0) andν2 = (enc(c2),enc(d2),0,0) respectively.
To makeν1 andν2 separate locations, we can scale all constantsν1,ν2 andA so as to make clock values
in ν1 andν2 integers. The construction is now complete.

4 Decidable Subclasses

Priced Timed Bisimulations. Let A andB be timed automata with their timed transition systems
SA andSB. Let QA andQB respective sets of configurations. A binary symmetric relation R over
QA ×QB is astrong timed bisimulation relationiff for all a∈ (R+∪2X)

• if q1
a
−→ q′1 andq1Rq2 then there exists transitionq2

a
−→ q′2 such thatq′1Rq′2

• conversely, ifq2
a
−→ q′2 andq1Rq2 then there exists transitionq1

a
−→ q′1 such thatq′1Rq′2,

whereq1,q′1 ∈ QA andq2,q′2 ∈QB . The relationR is strong timed bisimilarityor strong timed bisimu-
lation equivalenceif it is the largest strong timed bisimulation relation suchthatR ⊆QA ×QB. Timed
automataA andB arestrong timed bisimilarif there exists suchR.

Let A andB be priced timed automata with their priced timed transitionsystemsTA andTB. Let
PA andPB be respective sets of priced configurations. A strong timed bisimilarity ∼ is said toprice
preservingif for every a∈ (R+∪2X)

• if (q1,u1)
a
−→ (q′1,u

′
1) is in TA andq1 ∼ q2 then there exists transition(q2,u2)

a
−→ (q′2,u

′
2) in TB

such thatq′1 ∼ q′2 and(u′1−u1) = (u′2−u2)

• conversely, if(q2,u2)
a
−→ (q′2,u

′
2) is inTB andq1 ∼ q2 then there exists transition(q1,u1)

a
−→ (q′1,u

′
1)

in TA such thatq′1 ∼ q′2 and(u′1−u1) = (u′2−u2)

where(q1,u1),(q′1,u
′
1) ∈ PA and(q2,u2),(q′2,u

′
2) ∈ PB.
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Lemma 4.1 If A andB are two priced timed automata with price preserving timed bisimilarity∼, then
for any k length runρ (k)

A
in A , whereρ (k)

A
=(q0

A
,u0)

a1−→ (q1
A
,u1)

a2−→ (q2
A
,u2)

a3−→·· ·
ak−1
−−→ (qk−1

A
,uk−1)

ak−→

(qk
A
,uk), there is a run k length runρ (k)

B
in B, whereρ (k)

B
=(q0

B
,u0)

a1−→ (q1
B
,u1)

a2−→ (q2
B
,u2)

a3−→ ·· ·
ak−1
−−→

(qk−1
B

,uk−1)
ak−→ (qk

B
,uk), such that, for every0≤ i ≤ k, qi

A
∼ qi

B
holds. u0 is initial credit.

As the choice of initial credit is arbitrary and the cost of a run does not depend on the value of initial
credit, we claim following lemma.

Lemma 4.2 Let A and B be two priced timed automata with price preserving timed bisimilarity ∼.
Then following statements are true.

1. for every runρA in A , there exists a runρB in B s. t. cost C(ρA ) =C(ρB)

2. for every runρB in B, there exists a runρA in A s. t. cost C(ρA ) =C(ρB)

4.1 Proof of Theorem 2.2

Lemma 4.3 For every piecewise linearly priced timed automaton (PwLPTA), there exists linearly priced
timed automaton with price preserving strong bisimulationbetween them.

Proof We prove this lemma by constructing LPTA explicitly from a given PwLPTA. Rest of this section
explains construction and lemma 4.4 proves its correctness.

Construction of LPTA Let A = (LA , XA , EA , IA , πA , ψA ) be a PwLPTA. We construct LPTAB =
(LB, XB, EB, IB, πB, ψB) from PwLPTAA as follows:

• Let ℓ ∈ LA be some location ofA . Delay price function for locationℓ, πA (ℓ,τ) = fℓ(τ), is
piecewise linear with respect toτ . fℓ is given by integer restricted structure(Pℓ,Yℓ

P,Y
ℓ
I ), where

– Pℓ = 〈p1 = 0, p2, . . . , pn〉

– Yℓ
P = 〈yp1,yp2, . . . ,ypn〉

– Yℓ
I = 〈(m1,c1),(m2,c2), . . . ,(mn,cn)〉 with the following interval sequence

I = 〈I1
def
= (p1, p2), I2

def
= (p2, p3), · · · , In

def
= (pn, pn+1 =+∞)〉.

We associate eachpi ∈ Pℓ and eachI j ∈ I with locations ofLB. This association is captured by
mappingαℓ such thatαℓ(pi) = ℓpi andαℓ(I j) = ℓ(pj , pj+1). Here,ℓpi andℓ(pj , pj+1) are the names
of locations ofB. We define another mappingβ ℓ(I j) which returns j th entry in the sequence
Yℓ

I . This mapping is useful for retrieving parameters of delay cost function in the intervalI j .
Let θ ℓ = ∪n

i=1{ℓ
pi , ℓ(pi , pi+1)}. θ ℓ denotes locations inLB generated from locationℓ ∈ LA . Then

LB := ∪ℓ∈LA
θ ℓ.

• We add one extra clock namedx to B. Thus,XB := XA ∪{x}. This clock measures time spent at
every location ofA . Whenever a run enters any location ofA , x is reset to zero.

• An edgee= (l ,ϕ ,λ , l ′) ∈ EB iff there is an edgee′ = (ℓ,χ ,ξ , ℓ′) ∈ EA such that

– eitherαℓ(pi) = l or αℓ(Ii) = l

– eitherαℓ(p j) = l ′ or αℓ(I j) = l ′

– ϕ :=

{

χ ∧ (x= pi) if αℓ(pi) = l
χ ∧ (x∈ Ii) if αℓ(Ii) = l
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– λ := ξ ∪{x}

• Location invariant,IB(l) = IA (ℓ) iff l ∈ θ ℓ

• Location price,πB(l) :=

{

0 if αℓ(pi) = l
mi if αℓ(Ii) = l andβ ℓ(Ii) = (mi ,ci)

• Edge price,ψB(e) :=

{

ψA (e′)+ypi if αℓ′(pi) = l ′

ψA (e′)+ci if αℓ′(Ii) = l ′ andβ ℓ′(Ii) = (mi ,ci)

Let ℓ andm be locations ofA andB respectively. We define following relation betweenℓ andm,
ϒ = {(ℓ,m) |m∈ θ ℓ}.

Lemma 4.4 ϒ is price preserving timed bisimilarity.

Proof Let A = (LA , XA , EA , IA , πA , ψA ) be a PwLPTA andB = (LB, XB, EB, IB, πB, ψB) be
LPTA constructed fromA using above construction.

If part: Let t be delay andλ be set of clocks to be reset inA . Now consider following transition

in TA , (l1,ν1,u1)
(t,λ)
−−→ (l ′1,ν ′

1,u
′
1). Now we try to find simulating transition inB under relationϒ. We

claim its (l2,ν1 : 0,u1)
(t,λ)
−−→ (l ′2,ν ′

1 : 0,u′1). To hold this claim, we choosel2 ∈ LB such that delayt
matches with expected interval ofl2. If t = pi for somei thenl2 = α l1(pi). Otherwiset will match with
some intervalI j . So l2 = α l1(I j). Thus,(l1, l2) ∈ ϒ holds. To place edge inB, construction mandates
(l ′1, l

′
2) ∈ ϒ. Also the clocks inXA change identically. Now, let’s verify that prices are preserved. For

the case wheret = pi , (u′1 − u1) = ypi +ψA ((l1, l2)). Verify that from construction yields same price
difference. For the case wheret = I j , location price matters. Verify that rates atl ′1 andl ′2 are the same in
the construction. Price change(u′1−u1) = mj · t +c j +ψA ((l1, l2)). Price offsetc j is added to edge cost
in the construction. Thus prices are preserved.

Else if part: We consider following transition inTB, (l2,ν2 : 0,u2)
(t,λ)
−−→ (l ′2,ν ′

2 : 0,u′2). We simulate

it on A to get(l1,ν2,u1)
(t,λ)
−−→ (l ′1,ν ′

2,u
′
1). If (l1, l2)∈ ϒ, then construction offers no choice but to choose

l ′1 such that(l ′1, l
′
2) ∈ ϒ holds. ν ′

2 := (ν2+ t)[λ := 0] follows from construction. Verify that prices are
preserved using the same argument as in if part of the proof.

Now we are in position to sketch the proof of Theorem 2.2.

Proof of Theorem 2.2 PSPACE-hardness follows from the fact that LPTA are nothingbut PwLPTA
with single piece and their cost-optimal reachability is PSPACE-complete. We now explain a PSPACE
algorithm for solving cost-optimal reachability for PwLPTA. We construct LPTAB for given piece-
wise linearly priced timed automatonA and solve cost-optimal reachability onB. Construction yields
priced timed bisimilarityϒ. Using lemma 4.2, we get OptCost(l , l ′) = opt{OptCost(m,m′) | (l ,m) ∈
ϒ and(l ′,m′) ∈ ϒ} where l and l ′ are locations ofA , m and m′ are locations ofB and opt is either
supremum or infimum.

4.2 Proof of Theorem 2.3

Before we sketch a proof of Theorem 2.3, we introduce the concept of iterative approximation for non-
linear price functions.

Let A = (L, X, E, I , π, ψ) be a priced timed automaton. If for some locationℓ, price functionπ(ℓ,τ)
is nonlinear with respect toτ , thenA is nonlinearly priced timed automaton (NLPTA).
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Definition We define a PwLPTAAu = (L, X, E, I , πu, ψ) be upper bound price approximation ofA , if
for every locationℓ and timeτ , πu(ℓ,τ)≥ π(ℓ,τ) andπu(ℓ,τ) is piecewise linear inτ for a fixedℓ.

Similarly, a PwLPTAAl = (L, X, E, I , πl , ψ) is lower bound price approximation ofA , if for every
locationℓ and timeτ , πl (ℓ,τ)≤ π(ℓ,τ) andπl (ℓ,τ) is piecewise linear inτ for a fixedℓ.

Lemma 4.5 OptCostAl (ℓ, ℓ
′) ≤ OptCostA (ℓ, ℓ′) ≤ OptCostAu(ℓ, ℓ

′)

Now we are in position to sketch the proof of Theorem 2.3.

Proof of Theorem 2.3 Let f : R 7→ R be Lipschitz continuous function with Lipschitz constantK. Let
x,y ∈ R be any two arbitrary points in the interval[x,y]. The value off in [x,y] is upper bounded by
f (x)+ f (y)+K(y−x)

2 and lower bounded byf (x)+ f (y)−K(y−x)
2 . Figure 3 shows calculation of these bounds for

a Lipschitz continuous function. More precisely, for everyt ∈ [x,y],

f (t) ∈
[ f (x)+ f (y)−K(y−x)

2
,

f (x)+ f (y)+K(y−x)
2

]

.

Assume thatf is a rational function. We will first prove decidability ofε-optimal cost reachability
problem using this assumption. Later we will drop this assumption.

We now construct two piecewise linear price functionsfl and fu such thatfl (t)≤ f (t)≤ fu(t) holds
for 0≤ t ≤ T. Let T ∈ R+ is a constant such that all clock valuations are bounded above byT.

Let δ ∈ Q+,0< δ ≤ T be the sampling period. Choice for the value ofδ is explained at the end of
the proof. We samplef at periodic intervals ofδ in the interval 0≤ t ≤ T. We define a piecewise linear
functions

fl (t) = f (t) if t = N ·δ ,whereN ∈ N

= f (N·δ )+ f ((N+1)·δ )−Kδ
2 if t ∈

(

N ·δ ,(N+1) ·δ
)

,whereN ∈ N

fu(t) = f (t) if t = N ·δ ,whereN ∈N

= f (N·δ )+ f ((N+1)·δ )+Kδ
2 if t ∈ (N ·δ ,(N+1) ·δ ),whereN ∈ N

Let A be priced timed automaton with Lipschitz continuous price functions at all locations. We con-
struct automataAl andAu by replacing price function at every location while keepingeverything else
unchanged. Specifically, if price function at locationℓ in A is π(ℓ) = f , then inAl , price at location
ℓ is π(ℓ)

l = fl . Likewise we assign priceπ(ℓ)
u = fu to locationℓ of Au. Observe thatAl andAu are

replicas ofA except the difference in location price functions. Since,π(ℓ)
l (t) ≤ π(ℓ)(t) ≤ π(ℓ)

u (t) holds
for all locationsℓ, OptCostAl (ℓ, ℓ

′) ≤ OptCostA (ℓ, ℓ′) ≤ OptCostAu(ℓ, ℓ
′) follows. Now, for any single

delay transition, sup{‖π(ℓ)
u (t)−π(ℓ)

l (t)‖} ≤ ‖Kδ‖ over all 0≤ t ≤ T. Let D be the diameter of region

x y

f (x)

f (y)

f (x)+ f (y)+K(y−x)
2

f (x)+ f (y)−K(y−x)
2

f

t

Figure 3: Upper and lower bounds for Lipschitz continuous function in the range[x,y]
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graph, then sup{‖OptCostAl
(ℓ,ℓ′)−OptCostAu

(ℓ,ℓ′)‖} = ε ≤ ‖DKδ‖. This gives us the bound onε .

We chooseδ = ‖DK‖
ε .

In the above constructionf is evaluated only at sampling points. We can safely drop the rationality
restriction of f by approximating it by rational functionf ′ such that‖ f − f ′‖ ≤ ‖DKδ‖

2 .

5 Step-Bounded Cost-Optimal Reachability Problem

In this section we look into the following step-bounded cost-optimal reachability problem for priced
timed automata.

Step-Bounded Cost-optimal reachability problem Let A be a priced timed automaton. Given two
locationsℓ,ℓ′ of A, step boundN ∈ N, the step-bounded optimal costOptCostN(ℓ,ℓ

′), is defined as

OptCostN(ℓ,ℓ
′) = inf

ρ∈RunsN(ℓ,ℓ′)
C(ρ),

whereRunsN(ℓ,ℓ′) are the set of canonical runs betweenℓ and ℓ′ of length less than or equal toN.
Given priced timed automatonA , locationsℓ, ℓ′, and a budgetB ∈ R+ the step-bounded cost-optimal
reachability problem is to decide whetherOptCostN(ℓ,ℓ

′)≤ B.

In this section we extend the encoding of Audemard, Cimatti,Kornilowicz, and Sebastiani [5] to solve
step-bounded optimal-cost reachability problem for priced timed automata. After generating the encod-
ing, we can feed it to SMT solver that support the theory corresponding to the price functions to solve
the step-bounded cost-optimal reachability problem.

5.1 Audemard-Cimatti-Kornilowicz-Sebastiani Encoding for PTA

Let A1,A2, . . .An be the priced timed automata which are composed into networkof automataA . These
automata communicate using channels. Letη be the set of channels used inA . If c is a channel, thenc!
is send operation on the channelc andc? is the blocking receive operation on the channelc.
Original Encoding for Timed Automata. We generate SMT formula for each automata using encoding
from Audemard et. al. [5]. As per their scheme, we create one real variable for every clock and create
separate one for an extra variable namedz, which keeps the track of global time. We add a variable
namedsof type bitvector at every step which denotes current location. Notationsℓ denotes assertion that
current location isℓ. We also create two binary variables for each channel per automaton – one for send
and one for receive. For example, if automatonA2 sends over channelc in current step, we set variable
namedA2.c!. This notation helps us to identify automaton which uses that channel in the current step
and the type (send or receive) of an operation performed on that channel. We permit to use global clocks.
While generating formula forA, it may happen that some of the automata share clock names or location
names. For example, automataA1 andA2 may both have local clocks namedy. But we must distinguish
between variables that were created to hold value ofy in A1 and value ofy in A2. We qualify all variables
with name of automaton they are the part of. Here, we create real variables namedA1.y andA2.y. All
of these variables are created for every step of a run in a standard bounded-model-checking fashion.
Assertions in Fig. 5.1 describe encoding at current and nextstep in the formula. We represent next step
variables in primed version. For further details refer to [5].
Extension for Priced Timed Automata. Let A = (L, X, E, I , π, ψ) be priced timed automaton. To keep
our encoding as general as possible, we describe our SMT formula generation for general priced timed
automata. Observe that this class of automata subsume LPTA,concavely-priced PTA, piecewise-linear
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∧

T=(ℓ,ϕ ,λ ,ℓ′)
T →

(

sℓ∧ϕ ∧s′ℓ′ ∧
∧

x∈λ
(x′ = z′)∧

∧

x/∈λ
(x′ = x)∧ (z′ = z)

)

(1)

Tδ →
(

(sℓ = s′ℓ)∧ (z′−z< 0)∧
∧

x∈X

(x′ = x)∧
∧

a∈η
(¬a)

)

(2)

Tnull →
(

(sℓ = s′ℓ)∧ (z′ = z)∧
∧

x∈X

(x′ = x)∧
∧

a∈η
(¬a)

)

(3)

Tnull∨Tδ ∨
∨

T∈E

T (4)

price0 = 0 (5)

∧

T∈E

T →
(

price′ = price+ψ(T)
)

(6)

∧

ℓ∈L

Tδ ∧sℓ →
(

price′ = price+π(ℓ,x,z−z′)
)

(7)

Tnull → (price’= price) (8)

price(n) ⋊⋉ k (9)

Figure 4: SMT assertions for priced timed automata
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Table 1: Comparison of the performance of our tool with UPPAAL-Cora is shown for ALP problem with
8, 9, and 10 runways, with varying number of airplanes. We report running time (in seconds) for our
algorithm (Z3) and DFS and random options for UPPAAL-Cora. TO stands for timeout (>30 mins).
Airplanes 8 runways 9 runways 10 runways

Z3 CORA CORA Z3 CORA CORA Z3 CORA CORA
DFS Random DFS Random DFS Random

1 0.12 < 0.1 < 0.1 0.4 < 0.1 < 0.1 0.30 < 0.1 < 0.1
2 0.09 < 0.1 < 0.1 0.57 < 0.1 < 0.1 0.76 < 0.1 < 0.1
3 0.44 < 0.1 < 0.1 2.52 < 0.1 < 0.1 2.31 < 0.1 < 0.1
4 4.28 2.4 0.04 6.73 4.18 0.08 5.86 7.81 0.06
5 2.73 278.21 0.7 9.61 679.27 0.1 5.09 TO 0.05
6 22.28 TO 0.16 21.34 TO 0.45 20.68 TO 0.32
7 29.23 TO 0.23 201.15 TO 1.15 152.03 TO 1.36
8 89.27 TO 0.79 86.1 TO 1.85 94.88 TO 5.12
9 331 TO 35.09 103.62 TO 151.84 1650.05 TO 277.38
10 889 TO 36.42 667.33 TO 49.04 1309.67 TO 230.69

PTA, and Lipschitz-continuous priced PTA. For each automaton, we represent current accumulated price
using real variable named price. We introduce variables pricek at each step. Initially price0 is set to zero
as in 5. When switch transition occurs, we update the price using equation 6. The functionψ(T) denotes
edge price for the transitionT. Equation 7 is used to specify prices for each delay transition. Quantity
(z−z′) is the delay incurred at current step andx is vector of current clock valuations. As price functions
are location dependent, we add clausesℓ to check whether current location isℓ and then update price
accordingly. For null transitions, prices at current and previous step are identical. To decide whether
accumulated price at stepn satisfies the condition price(n) ⋊⋉ k, where⋊⋉ ∈ {<,≤,>,≥,=, 6=}, we add
an assertion as per Eq. 9.

5.2 Experimental Results

We implemented the encoding discussed in the previous subsection as a vtool [1] for analyzing step-
bounded optimal-cost for PTA. Out tool invokes state-of-the-art theorem prover Z3 [11] from Microsoft
Research. It supports linear and non-linear arithmetic, bit-vectors, arrays, data-types, and quantifiers. For
our purpose, Z3 can be used to solve price functions that are given as a polynomial of time-delay and the
current valuation. Other non-linear price functions such as log, sin, cos, and exp can be accommodated
in this framework using corresponding Taylor series approximations.

In order to show experimental results, we concentrate the standard Airport Landing Scheduling Prob-
lem (ALP) from [7]. In order to give comparison with an existing tool we keep the price function linear
and compare our tool with state-of-the-art optimal-cost reachability tool Uppaal-Cora [2].
Airport Landing Scheduling Problem. Given number of airplanes each with attributes like type of
airplane, landing time window and number of runways, assigna landing time and runways to each
airplane such that all airplanes land within their specific landing time window and also comply with
safety regulations like mandatory wake turbulence separation delay. There are two possible sources of
costs. If airplane travels faster than its designated speed, it lands earlier but consumes more fuel. If
airplane landing is delayed, it suffers fuel costs for circling over the airport.
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ALP is known to suffer exponential blowup with increasing runways [7]. We used the instances
of ALP problem which are distributed with Uppaal CORA demo version. We asked whether there is
a schedule such that all airplanes land and total cost is bounded from above by a fixed budget (800).
Table 1 shows the results of our experiments. We ran all our experiments on 64-bit IntelR© XeonR© CPU
E5-2660 v2 running at 2.20GHz with 64 GB RAM. We fixed time limit to 30 minutes for each problem
and used single threaded Z3 SMT solver (v 4.3.2).

6 Conclusion and Future Work

We studied priced timed automata with non-linear prices andshowed the undecidability of a general class
of polynomially-priced timed automata. We then introducedpiecewise-linear and Lipschitz-continuous
price functions, and recovered decidability in this restricted setting. We also studied step-bounded cost-
optimal reachability problem for price timed automata, andimplemented an SMT based tool to solve
this problem. This problem is of interest since the optimal-cost reachability problem in some cases (un-
der structurally non-Zeno restriction on timed automata along with non-negativity restriction on prices)
reduces to step-bounded reachability problem.

Observe that, although our tool does not perform as well asrandom-optimal option of UPPAAL-
Cora, it outperforms bothdfs andbfs (not reported here). As a future work, we plan to exploit random-
ization to scale the performance of our implementation. We believe that these experiments presented
here demonstrate the applicability of SMT-based step-bounded verification methodology for medium-
sized examples of priced timed automata.
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