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Priced timed automata provide a natural model for quaiv@analysis of real-time systems and
have been successfully applied in various scheduling aaohptg problems. The optimal reacha-
bility problem for linearly-priced timed automata is knowmbe PSPACE-complete. In this paper
we investigate priced timed automata with more generakprand show that in the most general
setting the optimal reachability problem is undecidable.afapt and implement the construction of
Audemard, Cimatti, Kornilowicz, and Sebastiani for nomefar priced timed automata using state-
of-the-art theorem prover Z3 and present some prelimiresylts.

1 Introduction

Timed automata, introduced by Alur and Dill [3], extend fadtate automata with continuous variables—
referred as clocks—that evolve with uniform rates. Timeomdta syntax permits comparing clocks
with integers as guard on transitions and as well as inviariam locations (states), and also allows clock
resets as a way to remember the time a transition was last Tirexe features of time automata are gen-
eral enough to permit modeling rich timing properties oftéae systems while providing a decidable
verification framework. Timed automata have been quite esgfal in practice due to their appealing
theoretical properties as well as the presence of matuiécedion tools such as UPPAAL.

Priced timed automatal[9} 8] are extensions of timed autanvaich permit us to model cost associ-
ated with staying at locations as well as taking discretesitimns. Priced timed automata are useful in
modeling various decision-theoretic problem in the presesf strict timing constraints. The most nat-
ural problem studied on these models is the optimal realityaoblem (shortest path problem) where
the goal is to find the minimum (or maximum) cost to reach amyise&t of locations.

Linearly-priced timed automatal[6] (LPTA), also known adgited timed automata, are subclasses
of priced timed automata where prices change linearly vatipect to delay incurred at particular loca-
tion. For LPTA the optimal reachability problem is known te tbecidable and is shown to be PSPACE-
complete exploiting a clever extension of region graphstoalled corner-point abstraction by Bouyer
et al. [8]. Alur et al. [4] earlier gave an EXPTIME algorithim $olve the problem with an arbitrary initial
state by giving a non-trivial extension of the region gralpirsen et al.[[6,19] gave a symbolic algorithm
to solve the problem, although with some restrictions onirit&al state (a corner state with all clocks
set to zero). A recent result by Fearnley and Jurdziriksi §h®wed that the PSPACE-hardness results
hold for timed automata with two clocks [13]. On the other dhafor timed automata with one clock,
reachability-time and reachability-price problems arewn to be NL-complete [19].

In practice, however, the requirement for nonlinear pgaimodels is quite common. As an example
consider the optimal scheduling problem of battery usagaribedded systems studied by Jongerden et
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al. [16]. In this work authors modeled batteries using kinbattery model (KiBaM). KiBaM itself is a
nonlinear model, but Jongerden et al.|[16] manually distedtit to required approximation to model the
whole problem as optimization on LPTA. Similar scenarios ba cited from other application domains
of priced timed automata such as scheduling [7], resourcdeimy and analysis_[14], and optimal
synthesis[[15]. However, we believe that providing nordinprice modeling facilities directly in the
language of timed automata will further their applicakiiih system design. Jurdzinski and Trivedi[[18]
introduced a non-linear subclass of priced timed autonsatasalled concavely-priced timed automata,
where prices in each location are certain concave priceglaition and time delays. Exploiting the
concave nature of the prices, they showed that the optimed peachability problem for this class
of automata has the same complexity as that of LPTA. Prigeddiautomata with exponential price
functions were studied in a restricted context by Bouyet.glLl8] and Fahrenberg and Larsén [12].

In this paper we uniformly study various subclasses of (imoear) priced timed automata, and study
the boundary between decidable and undecidable variafR§Af Towards this goal we first show the
undecidability of the optimal reachability problem for estricted priced timed automata by showing
a reduction from the halting problem for two-counter maekinFor reasoning with decidable variants,
we first introduce a key notion of price-preserving bisimila We exploit this notion to formalize
reduction for the optimal cost reachability problem forqaeise-linear priced timed automata to linearly
priced timed automata. We also show the decidabilitg-ofptimal cost reachability for priced timed
automata with Lipschitz-continuous prices. Finally, waptdthe construction of Audemard, Cimatti,
Kornilowicz, and Sebastiani [5] for bounded model-chegkof timed automata using SAT solvers to
work for bounded reachability problem for non-linearlyqerd timed automata using SMT solver Z3[[11].
In conjunction with a decision procedure for the theory af tHass of price functions (for instance
polynomial prices[[17,_11]), our implementation can be usedompute bounded-step cost-optimal
schedules for priced timed automata. We demonstrate tHesalpipty of our approach using airplane
landing problem([7].

This paper is organized as follows: we begin by defining syatad semantics of generalized priced
timed automata in the next section. We define various prigiodels and their hierarchy. We prove key
undecidability result in Sectidn 3 and show decidabilitguiés in Sectiom 4. Finally, in sectidd 5 we
present the details of our implementation and experimeagallts.

2 Priced Timed Automata

We denote sets of integers, rational numbers and real ngnalsg&r, Q andR respectively. Their respec-
tive non-negative subsets are denote@asQ™ andR™.

Let X = {Xq,X%2,...,X%,} be the finite set of clocks. A clock valuation is a mapX — R*. Thus, a
given clock valuatiorv maps clockx; to a valuey;. This fact is written av (X)) = v;. In n-tuple form,
a clock valuationv is denoted agvy, vy, ...,v,). Given a clock valuatiorv andt € R*, v + 1 is the
clock valuation defined byv; + 1,v2+1,...,Vq+ 7). A guard is any finite conjunction of clauses of
the formx; ~ ¢, where clockx; € X, constantc € Z* and~ is one of the comparison operators in set
{<,<,=,>,>}. LetG be the set of guards. Given a valuatierand a guardy= A;j(x ~¢j), VF g
means expressiof;(v(x) ~ c¢j) evaluates to true. Fof C X, v[Y := 0] denotes clock valuation in
which clocks inY are reset to 0 while other clocks remain unchanged.

Timed Automata. A timed transition systeny is a tuple(L,X,E) where (i)L is a finite set of lo-
cations, (ii)X is a finite set of clocks variables, and (ii) is set of transitions. Aonfigurationof .7
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is a pair(¢,v), where/ € L is a location and/ in clock valuation over seX. Let Q~ be the set of
configurations for the timed transition systef There are two types of transitions ov@y :

e Delay,E"C Qs xRT xQg: (£,V) AN (¢,v+1t), wheret € R*

e Switch,E®C Q7 x 2X x Qz: (£,V) AN (¢',v]Y :=0]) whereY C X.
We writeE = ET U E€ for the set of transitions of timed transition system

Definition A timed automaton is a tuple(L, X, E,|) where (i)L is a finite set of locations (iiX is a
finite set of clocks (ii)E C L x G x 2% x L is a finite set of edges (iM): L — G assigns an invariant to
each location.

The semantics of timed automaten is given as a timed transition systefy, = (L., X./,E.), Where
(i) Loy =L (i)) X,y = X (iii) E;y =El,UES,, s.t.

e« EL={(t,v) L (,v+t)[teRTandVd e RT,0< 5 <t = (V+3)EI(/)}

o E5, ={(¢,v) AR (¢,v[Y:=0)) |YCX, (¢,9,Y,¢') CE, vEgandvEI({)}

Arunp=qy— 1 — - — Qgm Of the timed automatory is a finite path in the induced timed
transition systent’,, where every; is configuration in7,, and— is either delay or switch edge ;.
We use notatiom = gp ~~ gm for a run fromqy to gm. We write Runs(g,q’) for the set of runs from the
locationq to . A run is said to beanonicalif delay and switch transitions alternate.

Priced timed automata. A priced timed automaton (PTA) is a timed automatgr= (L, X, E, I, T, )
augmented with a price functioms: Q,, x R — R* andy : E — Z™* which assign prices (costs) for
waiting at locations and taking edges, whe€)g is the set of the configurations of timed automatghn
Leto/ be a PTAaNg = g —5 01 — ¢y 2 0o 2 - - - ~ Gm — ¢f,, be a canonical run of7,,. Then the
costC(p) of the runp is equal taCq(p) +Cs(p) whereCy(p) = S L1 T(0_1, Tk) andCs(p) = 311 Y(&x)
are thedurationandswitchingcosts ofp respectively.

A priced timed transition systen¥ is a tuple(L,X,E) where (i)L is a set of locations (iiX is a
finite set of clocks (iii)E is a set of transitions. Aonfigurationis a tuple(¢,v,u), where/ € L is a
location, v is a clock valuation over s& andu € R is current accumulated price. L&, be the set of
configurations for timed transition systefi. There are two types of transitions defined oRQer:

e Delay,E" C Qs xR x Qz: (¢,v,u) AN (¢,v+t,U), wheret € RT

e Switch,E® C Q7 x 2X x Qz: (£,v,u) AR (¢',v]Y:=0],u) whereY C X.
We write E = ET U E® for the set of transitions of timed transition systefh A priced timed transi-
tion system is said to beanonicalif for its every run, delay transitions and switch transigooccur in
the strict alternation. Observe that two consecutive detaysitions like(¢1,v1,u;) LN (l2,Vv2,Up) 2,
(¢3,v3,u3) cannot be combined together &45,v1,u;) bt (¢3,v3,U3) because for non-linear price
functions such clubbing may not yield valid transitionsm#arly, there cannot be consecutive switch
transitions without zero delay transition between them.

Letes = (L, X, E, I, T, ) be a priced timed automaton. The semantics/adre given by a canonical
priced timed transition systedf, = (L., X.s,E.) suchthatL,, =L, X, = X,Ey =El,UES,, s.t..

e EL ={(¢4,v,u) i>(€,v+t,u+ ) [teRTandvo e RT,0<d<t= (v+0)FI1({)}

e E5, = {(4,v,u) AR (¢, v[Y:=0],u+ g(y)) | Y C X, transitiony = (¢,9,Y,¢') e E, vE g, VvE
[(¢) andv]Y:=0]] E1(¢)}.
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A run of the transition systen¥,, starts with some configuratiofd,v,uo) where/ € L, v € (RT)* and
Up € R. We do not explicitly specify initial configuration in our fil@tion of priced timed automaton.

Cost-optimal reachability problem Let .7 be a priced timed automaton. Given two locatidng of
A, the optimal cosOptCost(,¢'), of reaching/’ from ¢ is defined as
OptCost(¢,/')= inf  C(p).
pti-os ( ’ ) peRuns(,0') (p)

Given priced timed automaton/, locations/, ¢, and a budgeB € R the cost-optimal reachability
problem is to decide wheth€ptCost(¢,¢") < B.

Summary of Our Results. Our first result (Sectionl 3) is that the optimal cost readitglproblem for
general priced timed automata is undecidable.

Theorem 2.1 Cost-optimal reachability problem for nonlinearly pricéched automata is undecidable.

Given this negative result it is justifiable to look for var®restricted subclasses of price functions
in order to recover decidable variants. The first subclaas e consider is piece-wise linear price
functions. Apiecewise linear price function :fR* —R can be represented as tugpk¥, Yy, Y,") where

e P! =(p;1=0,p,...,pn) is an increasing sequencempoints in time. First poinp; is always at
time value zero. Thug(=0) < p2 < ... < py holds.

o Y& = (Yp,,Ym---,Yp,) IS @ Sequence of prices such tiygt= f,(pi).

e Y/ = ((my,c1), (Mg, C2),...,(Mn,Cq)) is a sequence af tuples. Time intervals formed by points
in PY arely & (py, p2),- -, In £ (P, +). Again letl = (I1,...,1,) be the sequence of intervals.
Value of piecewise linear price functidiin the intervally is given by parameters in tuplen, c«),
such that ift € Iy, f(7) = mgT + ¢

We call tuple(P*,Yg,Y,) asstructureof function f. We call a timed automaton jsiecewise linearly
pricedif for all configuration(¢, v) we have thatt((¢,v), 1) = f,(1), wheref, = (P",Y3,Y/"), is a piece-
wise linear function defined over intervé),+) and all the constants appearing in its structure are
integers. Observe that the standard definition of lineailyed timed automata can be casted as a special
case of piecewise linearly priced timed automata suchfthat(P’,Yg,Y"), whereP’ = (0), Y& = (0),
andY,’ = ((k;,0)) such thak, is rate of change of price at locatidn For LPTA the cost-optimal reach-
ability problem is known to be PSPACE-complete [8]. In SexHl we show the following key result of
piecewise linearly priced timed automata.

Theorem 2.2 The cost-optimal reachability problem for piecewise lilggriced timed automaton is
PSPACE-complete.

This result can easily be extended to piecewise-concagegtimed automata [18].

We also study more general Lipschitz continuously pricetetl automata. We say that a function
f : R — R is Lipschitz continuous function, if there exists a constdrn> 0, called Lipschitz constant
of f, s.t. ||[f(x) — f(y)|| <K]|x—y]|| for all x,y in the domain off. A timed automaton is then called
Lipschitz continuous priced price functionsmi((¢,v),1) = f,(T), are Lipschitz continuous for every
location ¢ and there exists a constahtsuch that all the clock valuations are bounded from above by
T. For this class of functions the optimal reachability pesblmay not be computable due to optimal
occurring at non-rational points. For this reason we sthdyfollowing approximate optimal problem.

e-Cost-optimal reachability problem Let .7 be a priced timed automaton. Given- 0 and two loca-
tions/, ¢’ of o7, abudgeB € R™, thee-optimal cost problem is to decide whetl@ptCost (¢, ¢') < B+¢.
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X = endqc) y=1%:=0 y=1%:=0 X 0
y = endd) HI@ z>07? (} z=17? L y enqd)
w = 0 X,W:=0 x:=0, (2= 0} w = endc—1)
Tﬂo:(l_x_té)z 71{120 7'1[2:0
Figure 1: Decremerd module
x=1?x:=0,
=1?y:=0
X = enqc) Y 9({ X =0
y = endd) e z>07? | z=17? | y = endd)
w = 0 O w=0 & X:=0, :20 w = endc+1)
z =0 {z=0} z =0
z:=0
Th’o:(l—X—Zt)z m, =0 m,=0

Figure 2: Increment module

We show in Sectiohl4 the following result for Lipschitz-ciomious priced timed automata.

Theorem 2.3 The e-Cost-optimal reachability is decidable for Lipschitzatimuous priced timed au-
tomata.

Finally, in Sectiori b we give details of our implementationsblve step-bounded cost-optimal reacha-
bility problem for general priced timed automata.

3 Undecidability

This section is devoted to the proof of Theorem 2.1. We prbigresult by reducing the halting prob-
lem for two counter machines to the cost-optimal reachshilroblem for priced timed automata. A
two-counter machine Ms a tuple(L,C) whereL = {{g,¢1,...,¢y} is the set of instructions including
a distinguished terminal instructiofy called HALT, and the se€ = {c;,c,} of two counters The in-
structionsL are of the type: (1) (incremem) ¢; : c := c+ 1; goto/y, (2) (decrement) ¢; : c:=c—1;
goto ¢, (3) (zero-checlc) ¢ : if (c > 0) then gotolk else goto/m, wherec € C, ¢, ¢, ¢m € L. A con-
figuration of a two-counter machine is a tuglec,d) where/? € L is an instruction, and,d € N is the
value of counterg; andc,, resp. A run of a two-counter machine is a (finite or infinitejjgence of
configurations(ko, k1, ...) whereky = (¢p,0,0) and the relation between subsequent configurations is
governed by transitions between respective instructidhshalting problemfor a two-counter machine
asks whether its unique run ends at the terminal instrudiionThe halting problem for two-counter
machines is knowri [20] to be undecidable.

Proof of Theorem[2.1 We reduce the reachability problem of two counter machinesntinstance of
the cost-optimal reachability proble@ptCost(qg,q’) for priced timed automata’ such that desired
configuration of two counter machine is reachable from itsaihconfiguration iff there is a run in the
automatone’ from qto g of cost exactly zero.
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Let.# be the instance of the two counter machine having coustargld. We construct a PTAY
from .# using suitable encoding. Valid runs o¥ are mapped to valid runs o such that their cost
is exactly zero. Figurell ard 2 describes the module simmglatbunter decrement instruction .of’.
PTA < is constructed by composing the various modules.uses four clocks %, y, w andz, out of
which x andy encode counters andd asx = 1— 4 andy =1 %. Let eng:) denote this encoding
function. Testing whether is zero amounts to testingis zero in the guards of/. Figure[1 describes
decrement operation on countert shows clock valuations before entering the module atet akiting
the module when simulation is correct. Itdte the amount of time spent in locatityduring simulation.
Let (x,y,zw) = (1— 2—10, 1- 2—1(1,0, 0) be the configuration on enterithg We want to ensure that the time
spent alpist = zc—l,l The self loop aty ensures that the value phever crosses 1. If so, the new values
of x,y,z w respectively are A — (% — 57) of 51 — &, 51,0. Note that the new value gfafter elapse
of timet is 1— (55 — %7) OF %1 — 5 depending on whethet > c or not. A time of 1 L7 is spent at
locationl;. This gives us the configuration D— 2—1(1,0, 1- 26—1,1 on reachingd,. Note that the self loop on
y at locationl helps in regaining the value gfto be 1— 2% in the case whed > c. Note that the cost

isOifft= zc—l,l Thus, only correct simulation incurs zero price. Likewiserement module in figuie 2
correctly works whet = X,

Observe that after every increment or decrement operatienyalue of clockk moves to clockw.
Hence, in order to composing’ from individual modules we need to swap the roles of clocaadw in
every alternate modules. Lét;,d;) be initial configuration andc,, dy) be target configuration o#.
They map to clock valuatiom; = (endc;),endd;),0,0) andv, = (endcz),endd,),0,0) respectively.
To makev, andv, separate locations, we can scale all constantg, and.e/ so as to make clock values
in v, andv, integers. The construction is now complete. |

4 Decidable Subclasses

Priced Timed Bisimulations. Let .« and % be timed automata with their timed transition systems
Zy and 5. Let 2., and 24 respective sets of configurations. A binary symmetric i@tatZ over
2.7 x 24 is astrong timed bisimulation relatioif for all a c (RT U2X)

e if g1 5 g} andg;Zq, then there exists transitiap > d, such that,Zd,
e conversely, ifgp > d, andq;Z ¢ then there exists transitiap 2 q; such that; Zqp,

whereqy, d; € 2., andap, o, € 24. The relationZ is strong timed bisimilarityor strong timed bisimu-
lation equivalencéf it is the largest strong timed bisimulation relation subbtZ C 2., x 24. Timed
automatas’ and% arestrong timed bisimilaiif there exists sucl?z.

Let.or and.% be priced timed automata with their priced timed transiggatems7,, and 7. Let
Z .y and P4 be respective sets of priced configurations. A strong timsithidarity ~ is said toprice
preservingif for everya ¢ (R* U 2X)

o if (gu,u1) > (g, ) is in 7, andgy ~ g then there exists transitioftp, Up) = (0, Uy) in Tz
such tha ~ g, and(uj —ug) = (U, — U)

o conversely, ifgp, up) > (05, Uy) is in Tz andgy ~ g then there exists transitiday, uy ) N (q,uh)
in 7., such thaig; ~ of, and(uy — u1) = (U, — W)

where(gq,u1), (0, U;) € Py and(Gz,Uz), (0h,Uy) € Pp.
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Lemma 4.l If & and% are two priced timed automata with price preserving timezirbilarity ~, then
for any k length rurp% in.«, Wherep% (qy,,uo) (q%,ul) (qy,,u2) NN (q% ,Uk—1) LN
(qd, uk), there is arun k length rupﬁz in 4, wherepegg) = (q@, uo) (0, un) L2, (q?@, uz) N
(@5 ue1) 2 (g, u), such that, for everp <i <k, d,, ~ d,, holds. w is initial credit.

As the choice of initial credit is arbitrary and the cost ofia does not depend on the value of initial
credit, we claim following lemma.

Lemma 4.2 Let ¥ and % be two priced timed automata with price preserving timedntilarity ~.
Then following statements are true.

1. for every runo,, in <7, there exists a rupy in % s. t. cost ¢p./) =C(px)

2. for every runpy in A, there exists a rup,, in <7 s. t. cost ¢p.,) = C(p»)

4.1 Proof of Theorem 2.2

Lemma 4.3 For every piecewise linearly priced timed automaton (PwRAR There exists linearly priced
timed automaton with price preserving strong bisimulati@iween them.

Proof We prove this lemma by constructing LPTA explicitly from agm PWLPTA. Rest of this section
explains construction and lemmal4.4 proves its correctness

Construction of LPTA Let« = (Lo, X, Eoy oy, T4y, Yor) be a PWLPTA. We construct LPTAS =
(Lz, Xz, Ez, | 2, Tz, Yz) from PWLPTA.« as follows:

e Let/ e L, be some location of7. Delay price function for locatiort, m,(¢,7) = f,(7), is
piecewise linear with respect o f, is given by integer restricted structuf@’, Yg,Y;’), where
- PZ: <p1:07p27"'7pl’1>

— YFl; = <yp17yp27 e ,ypn>
=Y/ = {(myg,c1), (Mg, C2), ..., (My, Cn)) with the following interval sequence

I = (11 Z (p1,P2), 12 Z (P2, P3), -+ 5 In = (P, Pris = +0)).

We associate each < P! and eacH; € | with locations ofL 4. This association is captured by
mappinga’ such thata!(p;) = (P anda’(l;) = ¢(Pi-Pi+1), Here, P and¢(Pi:Pi<1) are the names
of locations of#. We define another mapprn@/ ) which returnsj™ entry in the sequence
Y,f. This mapping is useful for retrieving parameters of delagtdunction in the interval;.
Let 8¢ = u{‘zl{epi,e(pi’piﬂ)}. 8‘ denotes locations ih4 generated from locatiofie L. Then
Lg = UZGLMBZ.

e We add one extra clock namedo #. Thus,X4 := X, U {x}. This clock measures time spent at
every location ofez. Whenever a run enters any location®f x is reset to zero.
e Anedgee= (I,¢,A,l") € E4 iff there is an edge = (¢, x,&,¢') € E,, such that
— eithera’(p;) =1 ora’(l) =1
— eithera’(pj) =" ora’(l) =1’

)=

(p;j)
_ [ xnx=p) ifal(p)=I
_¢'_{X Axel) if al(l) =
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- A:=&U{x}
e Location invariant) 4 (1) = 1.,(¢) iff | € 6°
0 ifaf(p)=I
m if af(l;) =1 andB’(l})) = (m,q)
Yo (&) +yp if a’(p) =1
Py(e)+c if a’() =1 andB’(I;) = (m,q)

Let £ andm be locations ofer and % respectively. We define following relation betweéandm,
Y={(,m)|mec 6},

e Location price,mz(l) := {

e Edge priceyyz(e) := {

Lemma 4.4 Y'is price preserving timed bisimilarity.

Proof Let & = (L@/, Xy Egry Ly Ty, l.IJW) be a PWLPTA and# = (L@, Xz, Ez, |z, Tz, l.IJ@) be
LPTA constructed fromz using above construction.

If part: Lett be delay andh be set of clocks to be reset if. Now consider following transition

. ) , . : e .
in 7., (I1,v1,u1) ), (17,v1,4;). Now we try to find simulating transition ig¢ under relationy. We

claim its (I,v1 : O,u;) ﬂ> (15,v1 1 0,u;). To hold this claim, we choosk € L4 such that delay

matches with expected interval bf If t = p; for somei thenl, = a'l(pi). Otherwiset will match with
some intervalj. Soly = a'i(lj). Thus,(I3,12) € Y holds. To place edge i, construction mandates
(11,15) € Y. Also the clocks inX,, change identically. Now, let’s verify that prices are presd. For
the case where= p;, (U} —u1) =yp + Pr ((11,12)). Verify that from construction yields same price
difference. For the case whetre- |}, location price matters. Verify that rateslgandl), are the same in
the construction. Price changé, —u;) = m; -t +c;j + ./ ((I1,12)). Price offset; is added to edge cost
in the construction. Thus prices are preserved.

: : . e ) .
Else if part: We consider following transition ifiz, (12, vz : 0,up) Q (15,v5 : 0,u5). We simulate

, A , .
it on <7 to get(l1, Vo, 1) o), (13, V5,uy). If (I1,12) € Y, then construction offers no choice but to choose

17 such that(l,15) € Y holds. vj := (v2+t)[A := 0] follows from construction. Verify that prices are
preserved using the same argument as in if part of the proof.

Now we are in position to sketch the proof of Theollem 2.2.

Proof of Theorem[2.2 PSPACE-hardness follows from the fact that LPTA are notlbog PWLPTA
with single piece and their cost-optimal reachability iPREE-complete. We now explain a PSPACE
algorithm for solving cost-optimal reachability for PWLRTWe construct LPTAZ for given piece-
wise linearly priced timed automatos” and solve cost-optimal reachability ¢d. Construction yields
priced timed bisimilarityY. Using lemma 42, we get OptC¢ékt’) = opt {OptCostm,m’) | (I,m) €
Yand(lI’,m) € Y} wherel andl’ are locations ofe#, m and m' are locations ofZ and opt is either
supremum or infimum. |

4.2 Proof of Theorem 2.3

Before we sketch a proof of Theorém12.3, we introduce the eutnof iterative approximation for non-
linear price functions.

Letos = (L, X, E, I, 1, ) be a priced timed automaton. If for some locatioprice functionr(¢, )
is nonlinear with respect tp, then.# is nonlinearly priced timed automaton (NLPTA).
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Definition We define a PWLPTA, = (L, X, E, |, 11, {) be upper bound price approximation.of, if
for every locatiory and timert, 14,(¢,7) > (¢, T) and (¢, T) is piecewise linear it for a fixed/?.

Similarly, a PWLPTA« = (L, X, E, |, 1, ) is lower bound price approximation ef, if for every
location? and timer, 17 (¢,7) < ri(¢,7) and g (¢, T) is piecewise linear irr for a fixed?.

Lemma 4.5 OptCosty (¢, ¢') < OptCost, (¢, ') < OptCosty, (¢, ¢')

Now we are in position to sketch the proof of Theolflem 2.3.

Proof of Theorem[2.3 Let f : R — R be Lipschitz continuous function with Lipschitz const#&nt Let
x,y € R be any two arbitrary points in the intervid,y]. The value off in [x,y] is upper bounded by
M;K(y_x) and lower bounded bw. Figure[3 shows calculation of these bounds for
a Lipschitz continuous function. More precisely, for every[x,y],

(1) e f(x)+f(y)2—K(Y—X)’ f(X)+f(y)2+K(y—X) .

Assume thatf is a rational function. We will first prove decidability @foptimal cost reachability
problem using this assumption. Later we will drop this agstion.

We now construct two piecewise linear price functidnand f, such thatf; (t) < f(t) < fy(t) holds
for0<t<T.LetT € R" is a constant such that all clock valuations are boundedeabyV .

Letd € Q",0< & <T be the sampling period. Choice for the valueddf explained at the end of
the proof. We samplé at periodic intervals 06 in the interval 0<t < T. We define a piecewise linear
functions

fit) =f() if t=N-0,whereN € N

_ f(N~6)+f((l;l+1)~5>—K5 ifte (N-8,(N+1)-5),whereN € N

fu(t)

f(t) ift=N-0,whereN ¢ N

_ f(N‘6>+f((l;l+1)~5>+K5 ifte (N-9,(N+1)-9),whereN € N

Let .7 be priced timed automaton with Lipschitz continuous prigections at all locations. We con-
struct automatay and.e#, by replacing price function at every location while keepawgrything else
unchanged. Specifically, if price function at locatiéin <7 is ¥ = f, then in.e, price at location

{is rq(f) = f|. Likewise we assign priceu(f) = f, to location/ of «7,. Observe that#| and &, are

replicas of</ except the difference in location price functions. Siruq% t) < (1) < r[(f holds
for all locations?, OptCosty (¢, ¢') < OptCost, (¢, ¢') < OptCosty, (¢, ¢') follows. Now for any single

delay transition, su{j\nﬁg rq([ )|} <||KJ| overall 0<t <T. LetD be the diameter of region

Figure 3: Upper and lower bounds for Lipschitz continuougcfion in the rangéx,y]
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graph, then sufd|OptCost . (£,¢") — OptCost,, (£,¢')||} = £ < ||DKS||. This gives us the bound an
We choose = m.

In the above constructioh is evaluated only at sampling points. We can safely dropdtierality
restriction off by approximating it by rational functioff’ such that|f — f’|| < “D—g‘s”. |

5 Step-Bounded Cost-Optimal Reachability Problem

In this section we look into the following step-bounded emstimal reachability problem for priced
timed automata.

Step-Bounded Cost-optimal reachability problem Let o7 be a priced timed automaton. Given two
locations?, ¢’ of A, step boundN € N, the step-bounded optimal cd3ptCosty (¢,¢'), is defined as

OptCosty(4,¢')= inf C
ptios N( ) ) peRunsy (4,¢') (p)v
where Runsy(4,¢') are the set of canonical runs betweeand ¢’ of length less than or equal 9.
Given priced timed automatow/, locations/, ¢/, and a budgeB € R the step-bounded cost-optimal
reachability problem is to decide wheth@ptCosty (¢, ¢') < B.

In this section we extend the encoding of Audemard, Cimitiinilowicz, and Sebastiani[5] to solve
step-bounded optimal-cost reachability problem for ritened automata. After generating the encod-
ing, we can feed it to SMT solver that support the theory @poading to the price functions to solve
the step-bounded cost-optimal reachability problem.

5.1 Audemard-Cimatti-Kornilowicz-Sebastiani Encoding or PTA

Let.oh, 9%, ... 9, be the priced timed automata which are composed into netef@itomatas’. These
automata communicate using channels. h.éke the set of channels useddn. If cis a channel, then!

is send operation on the chaniedndc? is the blocking receive operation on the charmel

Original Encoding for Timed Automata. We generate SMT formula for each automata using encoding
from Audemard et. al.[]5]. As per their scheme, we create eaévariable for every clock and create
separate one for an extra variable narnzgdhich keeps the track of global time. We add a variable
nameds of type bitvector at every step which denotes current locatNotations, denotes assertion that
current location ig. We also create two binary variables for each channel penzaton — one for send
and one for receive. For example, if automatehsends over channelin current step, we set variable
namedas.cl. This notation helps us to identify automaton which used tthannel in the current step
and the type (send or receive) of an operation performedaircttannel. We permit to use global clocks.
While generating formula fof, it may happen that some of the automata share clock namesatidn
names. For example, automata and.e/ may both have local clocks namgdBut we must distinguish
between variables that were created to hold valugmfez; and value ol in <%. We qualify all variables
with name of automaton they are the part of. Here, we crealevagiables namedy;.y and.o%.y. All

of these variables are created for every step of a run in aatdrbounded-model-checking fashion.
Assertions in Figl_5]1 describe encoding at current and stextin the formula. We represent next step
variables in primed version. For further details refei tp [5

Extension for Priced Timed Automata. Let .« = (L, X, E, I, 11, ) be priced timed automaton. To keep
our encoding as general as possible, we describe our SMTufargeneration for general priced timed
automata. Observe that this class of automata subsume Ld®haavely-priced PTA, piecewise-linear
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N To(AoAssn ANX=2D)A \NX=x)1(Z=2)
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Figure 4: SMT assertions for priced timed automata
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Table 1: Comparison of the performance of our tool with UPRARora is shown for ALP problem with
8, 9, and 10 runways, with varying number of airplanes. Wentepunning time (in seconds) for our
algorithm (Z3) and DFS and random options for UPPAAL-Cor@. stands for timeout{30 mins).

Airplanes 8 runways 9 runways 10 runways
Z3 | CORA| CORA Z3 CORA | CORA Z3 CORA | CORA
DFS | Random DFS | Random DFS | Random
1 0.12 | <0.1 <0.1 0.4 <0.1 <0.1 0.30 <01]| <01
2 0.09 | <0.1 <0.1 0.57 | <0.1 <0.1 0.76 <01]| <01
3 044 | <0.1 <0.1 252 | <01 <0.1 2.31 <0.1 <0.1
4 4.28 2.4 0.04 6.73 4.18 0.08 5.86 7.81 0.06
5 2.73 | 278.21 0.7 9.61 | 679.27 0.1 5.09 TO 0.05
6 22.28| TO 0.16 21.34 | TO 0.45 20.68 TO 0.32
7 29.23| TO 0.23 | 201.15| TO 1.15 152.03| TO 1.36
8 89.27| TO 0.79 86.1 TO 1.85 94.88 TO 5.12
9 331 TO 35.09 | 103.62| TO 151.84 | 1650.05| TO 277.38
10 889 TO 36.42 | 667.33| TO 49.04 | 1309.67| TO 230.69

PTA, and Lipschitz-continuous priced PTA. For each autematve represent current accumulated price
using real variable named price. We introduce variablesgpét each step. Initially priggis set to zero
as inl5. When switch transition occurs, we update the pricegwenjuation 6. The functiogy(T) denotes
edge price for the transitiol. Equatiori ¥ is used to specify prices for each delay tramsitQuantity
(z—Z) is the delay incurred at current step anid vector of current clock valuations. As price functions
are location dependent, we add clagséo check whether current location 4sand then update price
accordingly. For null transitions, prices at current anevpus step are identical. To decide whether
accumulated price at stapsatisfies the condition pri@é x k, wherex € {<,<,> > = #}, we add

an assertion as per Hg. 9.

5.2 Experimental Results

We implemented the encoding discussed in the previous stifnseas a vtool[[1] for analyzing step-
bounded optimal-cost for PTA. Out tool invokes state-a-#rt theorem prover Z8 [11] from Microsoft
Research. It supports linear and non-linear arithmetieyditors, arrays, data-types, and quantifiers. For
our purpose, Z3 can be used to solve price functions thatiaea gs a polynomial of time-delay and the
current valuation. Other non-linear price functions susthog, sin, cos, and exp can be accommodated
in this framework using corresponding Taylor series apipnaxions.

In order to show experimental results, we concentrate #relsird Airport Landing Scheduling Prob-
lem (ALP) from [7]. In order to give comparison with an exigjitool we keep the price function linear
and compare our tool with state-of-the-art optimal-coathability tool Uppaal-Cora [2].

Airport Landing Scheduling Problem. Given number of airplanes each with attributes like type of
airplane, landing time window and number of runways, assiganding time and runways to each
airplane such that all airplanes land within their specifiading time window and also comply with
safety regulations like mandatory wake turbulence sejparakelay. There are two possible sources of
costs. If airplane travels faster than its designated spiedahds earlier but consumes more fuel. If
airplane landing is delayed, it suffers fuel costs for aiglover the airport.



D. Bhave, S. N. Krishna & A. Trivedi 77

ALP is known to suffer exponential blowup with increasingqways [7]. We used the instances
of ALP problem which are distributed with Uppaal CORA demasien. We asked whether there is
a schedule such that all airplanes land and total cost isdamlifrom above by a fixed budget (800).
Table[1 shows the results of our experiments. We ran all operaxents on 64-bit Intél Xeor® CPU
E5-2660 v2 running at 2.20GHz with 64 GB RAM. We fixed time lint 30 minutes for each problem
and used single threaded Z3 SMT solver (v 4.3.2).

6 Conclusion and Future Work

We studied priced timed automata with non-linear pricessinmved the undecidability of a general class
of polynomially-priced timed automata. We then introdugpéetewise-linear and Lipschitz-continuous
price functions, and recovered decidability in this restéd setting. We also studied step-bounded cost-
optimal reachability problem for price timed automata, anglemented an SMT based tool to solve
this problem. This problem is of interest since the optidt reachability problem in some cases (un-
der structurally non-Zeno restriction on timed automatag@lwith non-negativity restriction on prices)
reduces to step-bounded reachability problem.

Observe that, although our tool does not perform as wellaasiom-optimal option of UPPAAL-
Cora, it outperforms bothfs andbfs (not reported here). As a future work, we plan to exploit @
ization to scale the performance of our implementation. \&éebe that these experiments presented
here demonstrate the applicability of SMT-based step-fedrverification methodology for medium-
sized examples of priced timed automata.
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