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Experiments have shown that Lagrangian statistics in turbulent flows display Gaussianly distributed velocity
values and non-Gaussianly distributed velocity differences or accelerations. Coherent flow structures in the
form of vortices have often been proposed to play an important role in this behavior. Here we examine the

origin of these statistics using both continuously stirred n-body point-vortex simulations and analytic random
variable transformation in a simplified model of randomly distributed vortices. We conclude that Lagrangian
velocity distributions can be understood in terms of dominant nearest vortex neighbor contributions. Accelera-
tions likewise reflect vortical contributions, but at smallest temporal increment are dominated, not by the
motion of the Lagrangian tracers, but by vorticity reconfiguration within the domain.
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I. INTRODUCTION

The analysis of the statistical properties of turbulence at
small scales has shown that, while the energy distribution is
well described by Kolmogorov’s 1941 theory [1], velocity
increments display strongly non-Gaussian distributions [2].
This behavior, usually called “intermittency” in turbulence
studies, is firmly established via laboratory and numerical
experiments for both Eulerian and Lagrangian [3-5] veloci-
ties. Analytical studies of simplified models have also shown
that it is consistent with the structure of the Navier-Stokes
equations [6], and in multifractal descriptions, Eulerian and
Lagrangian intermittencies are related through the spatial
granularity of energy dissipation [7-9]. One of the advan-
tages of the Lagrangian description is that it casts intermit-
tency in the dynamical framework of fluid particle motions.
In this context, it has been proposed that the very high ac-
celeration values measured originate in the proximity of
strong vorticity filaments [3-5,10-13]. In the work reported
here, we study this proposition directly by examining the
motion of Lagrangian tracer particles in the flow field gen-
erated by the superposition of point-vortex contributions. Al-
though it is clear that replacing a turbulent flow by a collec-
tion of point vortices is an idealized oversimplification
[2,14,15], the procedure sheds light on the role that vortex
dynamics plays in the statistics of Lagrangian motions [13].

This paper presents the results of two separate ap-
proaches: (i) numerical integration of a stirred n-body point-
vortex model with passively advected tracers, and (ii) ana-
lytic analysis of a model of randomly distributed vortices. In
the n-body simulation, the flow is built from a collection of
point vortices constrained to move in a plane. A stationary
state is reached in which constant stirring is provided by
discrete vortex creation at a fixed rate and dissipation occurs
when oppositely signed vortices merge. The details of that
model are given in Sec. II. The model is evolved numerically
and in Sec. III probability density functions (PDFs) of the
resulting Lagrangian velocity increments are presented. One
of the advantages of the simple geometry considered is that
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approximations for these distributions can be derived analyti-
cally. This forms the basis of the second approach, bivariate
transformation of random variable analysis of random distri-
butions of vortices, presented in Sec. IV. The calculations
reveal the dynamics underlying the point-vortex simulations
and, perhaps, laboratory experiments. These connections are
discussed in Sec. V.

II. POINT-VORTEX MODEL

We investigate a continuously stirred n-body point-vortex
model. Point vortices are randomly generated with Gauss-
ianly distributed intensity in a two- dimensional singly peri-
odic domain. The domain has dimension of x2_, with vortex
interactions truncated at a separation distance of x,,. The
vortex intensity is defined by the circulation I', so that the
velocity induced at distance r from a point vortex is

r
u(r)=——(ZX7), (1)

where 7 is a unit vector perpendicular to the plane of motion.
When N such vortices are present in the domain, the velocity
at any location x is computed as the sum of the contributions
from each individual vortex,

u(x) = E

e X -] 2)
k=1 277'| x|
The system is evolved with time, advecting each vortex by
velocity induced by all the others at its location.

The merger of two vortices is imposed in the model
whenever their separation is less than a fixed critical distance
Fmin- 1he new vortex position is taken as the amplitude-
weighted average position, and the new intensity as the sum.
The system would ultimately decay due to the merger of
oppositely signed vortices except for an applied stirring by
the injection of new point vortices at random locations in the
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domain. Injection occurs at a constant rate, with individual
vortex intensities Gaussianly distributed with zero mean and
standard deviation I",.

The results presented in this paper are largely based on a
simulation for which 2mx,,,,,=64, 277, =1, [';ns=0.2 (full
width at half maximum=0.5), and vortices are injected at a
rate of 256 per unit time interval. Other model runs were
computed, varying the injection rate of new vortices and the
minimum separation distance allowed before the merging of
vortices is enforced. While the simulations differ in detail,
they share common statistical properties (the focus of this
paper). The parameters chosen for the primary run presented
are largely based on computational expedience, representing
a compromise between the total number of vortices present
in the domain and the total integration time achievable. As
the parameters are defined, individual vortex velocities are
normalized so that u,=I" at a distance of r;,, and a single
Lagrangian orbit about a vortex of unit amplitude at that
distance takes 27 time units. The simulation was initiated
with 32 randomly placed point vortices and evolved for 584
time units, reaching the statistically steady state illustrated by
the snapshot Fig. 1(a). Figures 1(b) and 1(c) plot the evolu-
tion in number of vortices N and the total circulation I'; in
the domain, while Fig. 1(d) plots the interaction energy of
the N-vortex system,

1
4ar

N N
W=-—2> DT sln(r,p), (3)
a B

where the double sum extends over all vortex pairs (a# )
and r,g is the distance between them.

In an infinite domain of constant point-vortex member-
ship, W is a constant of motion (e.g., [16]). Here, it shows
significant variation with time. There are three reasons for
this. Most importantly, the model processes of vortex cre-
ation and merger cause both energy dissipation and injection.
Second, the domain periodicity, together with the limitation
of maximum interaction distance, can cause discontinuous
changes in the global vortex configuration as vortices shift
location from one side of the domain to the other. Finally, the
numerical integration scheme employed is weakly dissipa-
tive, particularly during close encounters of like signed vor-
tices. Much more carefully conservative integration schemes
have been developed (e.g., [17] and references therein), but
are not explored here. In this paper we are primarily inter-
ested in the statistics of Lagrangian tracer motions within the
point-vortex flow generated. For this, stirring of the flow by
vortex creation is the most critical ingredient.

We note that, in this model, the merger of nearby vortices
is imposed irrespective of vortex sign. For oppositely signed
pairs this is readily interpreted as dissipation (although the
interaction energy W can increase or decrease depending on
the consequent change in vortex configuration). Like sign
mergers, particularly those that immediately follow vortex
creation in the near vicinity of an already existing site, on the
other hand, yield vortex amplification. While the flow re-
mains strictly two-dimensional, these processes may to some
degree mimic essential processes that are found in three-
dimensional turbulent flows but are generally absent from
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FIG. 1. (Color online) Top (a), instantaneous point-vortex dis-
tribution. Vortex locations are indicated by discs with area propor-
tional to the vortex intensity. Blue (dark gray) symbols indicate
negative (clockwise flow) and red (light gray) symbols indicate
positive (counterclockwise flow) circulation respectively. Black
symbols plot the positions of 64 passive Lagrangian tracer particles.
Below, in (b) the number of vortices N, in (c) the total circulation of
the vortices in the plane ', and in (d) the total vortex interaction
energy W, as functions of time 7. In (b) and (c), blue (dark gray) and
red (light gray) traces plot values for negative and positive vortices
separately. Spectral and statistical analyses in this paper examine
data for time periods following the dotted and dashed vertical fidu-
cial lines respectively.

two-dimensional models such as vortex tube reconnection
and stretching, but that correspondence should not be over
interpreted. Fundamentally the algorithm we have adopted
introduces sources and sinks of vorticity otherwise unavail-
able to two-dimensional point-vortex systems. In the statisti-
cally steady state, energy injection equilibrates with dissipa-
tion. That state is achieved at late time in our simulation
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FIG. 2. (Color online) In red (dark gray), the Eulerian energy
spectrum, E(k)=k™'u(k)?, determined by averaging the power spec-
tra of the velocity time series taken at 64 Eulerian probe positions in
the domain and imposing the Taylor hypothesis. Also, in dark blue
(black), the average spatial power spectrum of the velocity recon-
structed on a 10247 spatial grid from 30 snapshots of the vortex
positions. The light blue (light gray) curve plots the average
velocity-power-spectrum of 64 Lagrangian tracer particles, with the
green (medium gray) curve plotting the same quantity for labora-
tory data. The vertical positioning of the spectra is arbitrary. The
solid line indicates Kolmogorov k™3 scaling behavior, while the
dashed line corresponds to a k=2 scaling. Compensated spectra, by
k™3 (upper curves) and by k=2 (lower curves), are shown in the
inset. The Eulerian spectra show a significant k™3 inertial range.

[Figs. 1(b)-1(d)], which shows nearly steady total vortex cir-
culation and number, and strongly fluctuating but stationary
values of W. Spectral and statistical analyses in this paper
focus on the last 293.3 and 145.3 time units of the simula-
tion, respectively (indicated by the dotted and dashed vertical
fiducial lines in Figs. 1(b)-1(d)).

The model solutions share some similarities with forced
turbulence. If one records the local velocity at fixed points in
space (Eulerian probes), the energy spectra of the resulting
time series (power spectrum of the velocity time series di-
vided by the frequency to implement the Taylor hypothesis)
display self-similar scaling with an exponent of —5/3 [red
(dark gray) curves in Fig. 2]. This is supported by direct
computation of the spatial energy spectrum via reconstruc-
tion of the two-dimensional velocity field over a discretized
domain for 30 distinct realizations of the point-vortex posi-
tions [dark blue (black) curve in Fig. 2]. Such an inertial
range spectrum is expected for three-dimensional turbulence
[1] and has been observed in a wide variety of experimental
situations [2]. In our model it extends for almost three de-
cades before dropping to a value of —2 at higher frequencies.
That higher frequency scaling likely reflects the random stir-
ring of the domain, with the temporal power spectra of the
total circulation [the time series illustrated by Fig. 1(c)]
showing a v~ scaling at all frequencies. As we have stressed
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previously, although the vortices in this model are restricted
to motions in a two-dimensional plane, some of the central
ingredients of three-dimensional turbulence, such as vorticity
production and amplification, have been introduced heuristi-
cally into the model by the vortex creation and merger pro-
cesses. The usual conserved quantities of two-dimensional
Navier-Stokes flows are not strictly preserved, and so one
does not expect two-dimensional scaling laws to be ob-
served.

Other properties of our model are not so simply related to
turbulent fluid flows. For example, dissipation in the point-
vortex model is achieved by a discontinuous merger process,
so a flow Reynolds number is not easily defined. We may use
the Eulerian spectrum to estimate the integral and Taylor
microscales as

f [E(k)/k]dk
Lo ——— (4)
f E(k)dk
and
f KE(k)dk
N (5)
f E(k)dk

(e.g., [18]). This leads (to within factors of order unity) a
value of (L/\)?>~61000. Using the relationships of homo-
geneous turbulence, that corresponds to a Taylor-based Rey-
nolds number R, ~250, a value for which turbulence has
been found to be fully developed in both direct numerical
simulations and experimental studies [19,20], although some
work suggests that perhaps a significantly higher value (R,
~600-700) is needed to attain a robust Lagrangian inertial
range [10]. Again, caution should be taken in making these
comparisons.

III. LAGRANGIAN MOTION AND STATISTICS:
NUMERICAL SIMULATIONS

Lagrangian tracers are dynamically advected in the model
vortex flow; located at position x at time ¢, they assume the
local fluid velocity and their position is incremented by &x
=u(x,)dt during a time step of duration &. Figure 3 plots
two typical trajectories. These show swirling motions around
vortices similar to those observed in resolved experimental
tracking of Lagrangian tracers [4] and reminiscent of “trap-
ping events” described in a recent three-dimensional simula-
tions of fully developed homogeneous isotropic turbulence
[12]. The tracer dynamics suggest that very strong accelera-
tions are generated when the particles come into the imme-
diate vicinity of vortices. This is supported by Fig. 3, in
which the trajectory color reflects the magnitude of the par-
ticle acceleration at that point, and more quantitatively by
Fig. 4 in which the x components of the velocity and accel-
eration along a single Lagrangian trajectory are plotted,
along with probability distributions of their values obtained
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FIG. 3. (Color online) Two Lagrangian tracer trajectories span-
ning the last 35.6 time units of the simulation illustrated by Fig. 1.
Trajectories start at points labeled A and B, with color (gray scale)
coding reflecting the magnitude of the velocity difference, \s'ai+a§,
over temporal increment Ar=0.001 [the color table (gray scale)
ranges in value from zero to 0.05, higher values saturated]. Strong
acceleration occurs during close encounters with point vortices.
Trapping events [12] are quite common.

from 64 such trajectories. Lagrangian trajectories in the vi-
cinity of a vortex show oscillations in velocity and large
values of acceleration (the velocity difference between suc-
cessive simulation time steps). The PDF of the Lagrangian
velocity [Fig. 4(b)] is very close to Gaussian, as observed
experimentally [5], while that of the acceleration is non-
Gaussian [Fig. 4(d)], significantly more so than that of a
Gaussian random field [21].

A central question concerns how the velocity difference
PDF changes with temporal increment, ranging from the
flow turnover time to the smallest increment approximating
the instantaneous particle acceleration. We define, for the
velocity projected along the x axis,

a(t;7) = A (1) = u,(t + 7) — u, (1), (6)

and examine the distribution of its value as a function of 7.
These PDFs are shown in Fig. 5. As in experimental mea-
surements [5], one observes a continuous change in the dis-
tribution from Gaussian at large temporal increments (the
velocity is then decorrelated) to highly non-Gaussian with
extended tails for the smallest increments. The PDFs reflect
dramatic changes in the acceleration time series as 7 de-
creases [Figs. 5(b)-5(e)]. The time series display oscillations
when the Lagrangian tracer orbits a vortex. The magnitude
and frequency of the oscillations depend on both the period
of the orbit and the temporal increment. As the temporal
increment decreases, the frequency of the time series oscil-
lations increases, reflecting those time periods when the La-
grangian tracer was in close proximity to a vortex. Lower
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FIG. 4. (Color online) Time series, in (a) the Lagrangian veloc-
ity and in (c) the Lagrangian acceleration (velocity difference at
smallest temporal increment available, the simulation time step 7
=0.001). The last 35.6 time units plotted correspond to the Lagrang-
ian trajectory A in Fig. 3, and the full time series are the last quarter
of the simulation illustrated by Fig. 1. In (b) and (d), the velocity
and acceleration PDFs obtained from the time histories of 64 such
tracers. Values are normalized by their standard deviation (o,
=2.8 and o, =0.018), and the total probability density integrates to
unity. Red (;;ray) curves over plot in (b) a Gaussian fit to the ve-
locity data and in (d) an analytic description of new vortex contri-
butions to the Lagrangian acceleration (see Sec. IV).

frequency motions (more distant orbits), visible in time
traces at larger temporal increment, yield accelerations close
to zero at small temporal increment. This causes a decrease
in the variance of the signal with decreasing 7.

IV. VORTEX CONTRIBUTIONS: ANALYTICAL RESULTS

Since the numerical model above (Sec. III) is based on
simple point-vortex dynamics, the functional forms describ-
ing the dominant contributions to the velocity and accelera-
tion (velocity-difference) distributions can be identified ana-
lytically. In this section we compare analytically derived
PDFs to those obtained by randomly sampling randomly dis-
tributed vortices.

We consider first a single vortex having a fixed amplitude.
We computed the velocity distribution it generates for points
located at a fixed distance, and then for points distributed at
random positions with respect to this single vortex. We sub-
sequently consider a random collection of such vortices and
compute the nearest neighbor and collective contributions. In
comparing these results with those of the n-body model dis-
cussed previously, we are implicitly making the assumption
that the statistics of many Lagrangian trajectories over long
time periods are equivalent to those obtained from a random
sampling of the vortex distribution at many positions. We
base this ergodicity assumption on the random stirring of the
n-body model flow, which stochastically alters both the vor-
tex distribution in the domain and the spatial trajectories of
the Lagrangian tracers. Moreover, our focus on acceleration
over short temporal increments lessens the importance of
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FIG. 5. (Color online) In (a), PDFs of the La-
grangian velocity difference (acceleration) as a
function of temporal increment, with 7 taking

values from 0.001 to 16.384, doubling for each

curve from top to bottom. Using the velocity auto
correlation function, one measures a Lagrangian
integral time 7; ~7.2. Each successive distribu-
tion is offset vertically for clarity. Time traces on

the right (b)—(e), are single Lagrangian particle

contributions to the distributions plotted in red
(gray) in (a), showing how the acceleration time
series contributing to these distributions are sen-
sitive to the temporal increment 7.
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long time correlations. However, the assumption proves
wrong. While we will show that the random stirring in the
n-body model is critical to the velocity-difference PDFs at
smallest temporal increment, the highly Gaussian Lagrangian
velocity distribution strongly reflects trapping events in the
flow, and cannot be explained on the basis of random sam-
pling of the vortex field [13].

A. Single point vortex

In the plane perpendicular to the axis of a line vortex, the

fluid velocity is u=A0/ré, where 6 is the unit vector in the
azimuthal direction, r is the radial distance from the vortex
site, and Ag=1"/27 [Eq. (1)]. The projection of this azi-
muthal velocity onto any direction in the plane, x for ex-
ample, is u,=(Ay/r)sin 6, where 6 is the angle between the
position radius vector measured from the vortex site and the
velocity projection direction. At a fixed radial distance (r
=1) the angular probability density P(6) is uniform with 6,
and the probability density of the projected velocity is

P(u,) *« —, (7)
cos 0
where f=sin"!(u,/A,), so that
P(u,\) & [l - (ux/AO)Z]_]/z' (8)

The probability of observing any value of the projected ve-
locity between 0 and Ay is finite since [P(u,)du,=[Ayd6, but
the probability density diverges for = = 7/2 corresponding

to u,= * A, where du, goes to zero for a given d6 (Fig. 6).
Note that this distribution not only describes the velocity of
the simple point vortex sampled at constant radius, but also
the projection onto a chosen direction of any randomly ori-
ented vector uniformly distributed in direction and of con-
stant magnitude. These very different physical interpretations
cannot be distinguished based on PDFs alone. This is critical
when assessing the importance of trapping events in the
n-body flows (Sec. V A).

a,/d,,
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
1F T T T T T 11
|
[
‘ngop(u") O; ‘ *:O ‘ngop(ax)
-1 L L L L L -1
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Uy /Oy,

FIG. 6. (Color online) Logarithm of the probability densities of
u, and a, for a point-vortex flow sampled uniformly in azimuthal
position # and at fixed radius r. Random sampling of a single point
vortex at fixed distance is shown in black. The analytic functions
describing these distributions [Egs. (7) and (10) in text] are over-
plotted in red (gray).
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For this simple flow, sampled at constant radial distance,
the projected Lagrangian velocity difference has the same
distribution as the projected velocity itself. The velocity dif-
ference is

a,=Aysin(0+ 8) — Ay sin 0= A(sin 6 cos 5+ cos sin §
—sin 6), 9)
where d=wr=A)7, with w the angular velocity about the

vortex site and 7 the temporal increment between velocity
measurements. The probability density of a, is

1

cos 6 cos 5—sin Osin 8—cos 6’

P(a,) « (10)
where 6 is determined by inverting Eq. (9) for any given a,
[22]. The velocity-difference variance is {a,*)e 1 —cos &, and
when scaled by the square root of the variance, all moments
of the velocity-difference probability density are independent
of the temporal increment 7.

When the radial distance to the line vortex is not fixed,
but instead the flow is sampled randomly in the plane per-
pendicular to its axis, 6 is distributed uniformly, as before,
but P(r)ocr. By a bivariate transformation of the random
variables (e.g., [23,24] and this paper’s Appendix A) the
probability density for the projected velocity u,=Ay/r sin 6
is then

1
P(u,) * —, (11)
MX
and, for small 8=A,/r’*r, a,=A,6/r cos § with probability
density

1
53¢
a.)(

P(a,) = (12)
The upper curves in Figs. 7(a) and 7(b) compare these ana-
Iytical expressions with probability densities obtained by a
random sampling of the point-vortex flow in a plane. The
two match for |u,|>Ag/ry.y and |a,|>Ag7/ 7). For values
smaller than these, the probability density of the random
sampling reflects the limited spatial extent of the domain, 0
<r<r,

max-*

B. Nearest neighbor contribution

Consider next many equal amplitude point vortices ran-
domly distributed in a plane with number density n. For any
point in the plane, the probability density of the nearest
neighbor distance is P(r)=27'rnre"””2 (Appendix B, [25]).
Taking the velocity to be locally only that contributed by the
nearest neighbor vortex, transformation of random variables

yields
mn 2 mn mn
P(u,) = — e ™20 (—) -1 (—) 13
() e o\ 2,2) ~I 3.2 (13)
[lower red (gray) curve in Fig. 7(a)] where I, and I, are
modified Bessel functions of integer order [26]. Similarly,

P(a,) can be written analytically in terms of generalized hy-
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FIG. 7. (Color online) Upper curves in both (a) and (b): Loga-
rithm of the probability densities of u, and a, for a single point-
vortex flow sampled randomly in the xﬁm plane. The analytic func-
tions describing these distributions [Eqgs. (11) and (12) in text] are
overplotted in red (gray). The limits, |u|=A¢/rmax and |a,|
=A(2)7'/ rfnax, beyond which the random sampling contributions are
independent of domain size, are indicated with vertical dotted fidu-
cial lines. For clarity, only the very core of the velocity difference
a, distribution is shown. Lower curves in both (a) and (b): Loga-
rithm of the probability densities of the nearest neighbor contribu-
tions to u, and a, for a collection of identical amplitude point vor-
tices randomly distributed in a plane and sampled randomly in the
same two-dimensional space. The analytic functions describing
these distributions [Eqgs. (13) and (14) in text] are over-plotted in
red (gray). Vertical dashed fiducial lines indicate where |ua
=Ag/r,, and |a,| =A37'/rfn, where r,,=0.5/Vn is the mean vortex
spacing. Dashed red (gray) curves plot the lowest order power law
contributions to the distributions [Egs. (11) and (12)]. Only in the
very core do these differ from the complete function, even over the
very restricted domain shown in (b).

pergeometric functions, but perhaps more usefully as

23 - \23 7\
2
Pla,)=n—z|lag+an| —| +am”| —| + -
a; a a,

P

(14)

[lower red (gray) curve in Fig. 7(b)] where the numerical
coefficients a, can be evaluated analytically.

Monte Carlo sampling (random sampling of randomly
generated vortex distributions) of 1500 identical stationary
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FIG. 8. (Color online) Logarithm of the probability densities of
the nearest neighbor contributions to u, and a, for a collection of
point vortices randomly distributed in a plane, with Gaussianly dis-
tributed amplitudes, and sampled randomly in the same two-
dimensional space. The analytic functions describing these distribu-
tions [Eqgs. (15) and (16) in text] are overplotted in red (gray).
Dashed red (gray) curves plot the lowest order power law contribu-
tions to the distributions [barely distinguishable from the complete
function in (b), even over the very restricted domain shown].

vortices randomly distributed in an xlz,wx domain with La-
grangian tracer advection over increment 7=0.001 yields the
distributions plotted in black as the lower curves in Fig. 7.
Only in the core of these distributions, where |u,|<A/r,,
and |a,| <A27/r>, with r,,=0.5/\n the mean vortex spacing,
are the higher order terms in the analytic expressions signifi-
cant. In the wings, the distributions are accurately described
by the lowest order terms, equivalent to the power law ex-
pressions of Egs. (11) and (12).

The same is true when the vortex amplitudes are Gauss-
ianly distributed rather than of constant amplitude (Fig. 8). In
this case the distributions are given analytically by

P )_i / 1 K( 27mno’ )
o = w u§+27m02 u§+27m02

—E( 27mno? )} (15)
u§+21'rn02 ’

where K and E are elliptical integrals of the first and second
kind [26] and ¢? is the amplitude variance, and
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2/3 2/3 43
P(ax) =nw2+/)3|:a0+aln<é) +a2n2<%—) + .- :| s
a, N

(16)

where the a, are analytic numerical constants [different from
those in Eq. (14)]. We emphasize that, given the point vortex
density, amplitude variance, and temporal increment, the ran-
domly sampled nearest neighbor contributions to the velocity
and acceleration PDFs can be calculated exactly.

C. Collective contributions

Finally, we relax the nearest neighbor constraint and con-
sider the velocity and velocity difference observed at a given
location due to many point vortices distributed randomly in a
plane and interacting through mutual advection.

Since the velocity at any observation point is the sum of
those contributed by each individual vortex, and since the
individual vortex contributions have power law distributions,
the central limit theorem suggests that the resulting projected
velocity distribution at any given observation point should be
Gaussian in its core [27]. This is confirmed by randomly
placing N point vortices with Gaussianly distributed ampli-
tudes in a domain and summing their contributions to the
velocity measured at randomly located observation sites.
Over many realizations of the vortex spatial distribution, the
probability density of the projected velocity is Gaussianly
distributed at low velocities and follows the nearest neighbor
distribution previously derived [Eq. (15) in the wings (Fig.
9)]. The Gaussian core widens as the number density of vor-
tices increases, but there is only slow convergence to Gaus-
sianity [28].

The collective velocity difference measured at given point
is distributed quite differently. To measure this we let the
observation point and the field vortex positions above evolve
over temporal increment 7 as in the full n-body simulation
described in Sec. II, but with two fundamental differences:
no creation or merger of vortices occurs, and both the obser-
vation site and the vortex amplitudes and positions are cho-
sen randomly anew before each measurement, eliminating
dynamics induced spatial and temporal correlations. Thus the
measured velocity differences represents the purely advec-
tive contribution of a random collection of vortices over a
given temporal increment. This velocity difference can be
written

ur(x',t") —ur(x,1) = E [ui(xi,;x’,t’) —uxisx,0)], (17)

where up(x,1)=2u,(x;;x,t) is the total velocity at position x
and time ¢ contributed by vortices located at x;. For a fixed
Eulerian probe the observation positions x and x' are the
same, but they differ for a Lagrangian tracer advected with
the flow. For neither type of observation does the central-
limit theorem hold. For a Lagrangian tracer x’ =x+uy7. This
is not equal to x+u;7 (advection by each vortex individually)
and so the sum in Eq. (17) cannot be written as one over
individual vortex contributions. Moreover, even for an Eule-
rian probe, u;(x;;x,t) depends on the relative position of the
observation site at x and the i vortex at x;. Since the indi-
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FIG. 9. (Color online) PDFs of the Lagrangian velocity (a) and
acceleration (b) measured by randomly sampling many realizations
of a random distribution of vortices with Gaussianly distributed
amplitudes. The domain is identical to the full point-vortex simula-
tion discussed in Sec. II and the velocity difference is calculated
with temporal increment equal to the time step of that simulation.
Curves are offset vertically for clarity with the vortex densities in
the domain changing by two orders of magnitude from bottom to
top (10 vortices, gray (bottom), 100 vortices, brown (middle), and
1000 vortices, black (top), in the domain respectively). Red (gray)
curves plot the analytic nearest neighbor PDFs for each vortex den-
sity [Eq. (15) for P(u,) and Eq. (16) for P(a,)] and match the
distributions outside the core regions, where collective contribu-
tions at high number density can be important to P(u,) (see text).

vidual vortex motions depend on all other vortices, x;=x;
+24i(x;3x;,1) 7, the velocity-difference sum again cannot
be expressed as a sum of individual and independent contri-
butions. As a consequence, both the Eulerian and Lagrangian
velocity difference are non-Gaussianly distributed even in
the core [Fig. 9(b)].

As further evidence we have computed PDFs for the ve-
locity difference under three scenarios [29]: Lagrangian trac-
ers in a fixed (random) vortex field, fixed Eulerian tracers in
an evolving vortex field, and Lagrangian tracers in an evolv-
ing vortex field. The distributions in all cases, the last illus-
trated by Fig. 9, show strongly non-Gaussian distributions
with divergent cores and are well described by nearest neigh-
bor contributions [Eq. (16)]. Recall that in this section the
vortex system is not forced into a steady state via the cre-
ation and annihilation of vortices, as it was in the n-body
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model of Sections II and III. The vortex distributions here
are randomly chosen anew for each measurement, so that
“Lagrangian” and “Eulerian” refer to the method of sampling
of the vortex configurations rather than to their dynamical
evolution. The plots in Fig. 9 refer only to a random sam-
pling of N vortices of Gaussianly distributed amplitude.

V. OBSERVATIONAL CONNECTION AND PHYSICAL
INTERPRETATION

A. The importance of trapping events

As discussed above, Monte Carlo sampling of the La-
grangian velocity and velocity-difference in random vortex
fields yields distributions (Fig. 9) dominated by nearest
neighbor scaling in the wings, with deviations only in the
very core, and these only for the velocity distribution when
the number density of point vortices is very high. This does
not match the Lagrangian statistics of either our point-vortex
simulation [Fig. 4(b)] or that of laboratory measurements
[11]. In those, the Lagrangian velocity PDF is strictly Gauss-
ian with no evidence for broader wings, even for values of
velocity outside the expected Gaussian core. One might
guess that this is due to the assumed Gaussian distribution of
the vortex amplitudes used in the Monte Carlo examples, but
that is not the case. While the actual amplitude distribution
of the vortices in the n-body simulation is not Gaussian,
when this is accounted for in derivation of the randomly
sampled Lagrangian PDFs only a small change to the core of
the distribution results. Moreover, an Eulerian measurement
of the velocity in the point-vortex model [made at fixed
probe locations, brown (gray) curve in Fig. 10(a)] shows the
distribution expected, Gaussian in the core with elevated
nearest neighbor wings [30].

The key to the strict Gaussianity of the observed Lagrang-
ian velocity probability distribution function lies in the dy-
namics of the Lagrangian tracers. The Lagrangian trajecto-
ries do not sample the vortex field randomly, but instead
undergo a series of trapping events during each of which
they sample the vortices at a nearly constant radius, and that
radius depends on the amplitude of the trapping vortex. This
suggests that in the derivation of P(u,=A,/r sin 6) it is in-
correct to treat Ay and r as independent random variables.
The vortex circulation and the distance at which a Lagrang-
ian tracer is trapped are related; trapping by a vortex of low
amplitude can occur only at very close distance. If one takes
velocities of trapped Lagrangian particles Uy=A/r to be dis-
tributed as

_ 2
P(Up) = #I%Iexp(%» (18)

then the probability density of P(u,) is exactly Gaussian, as
observed. The curious implication of this result is that the
Lagrangian trajectories may be composed of a series of trap-
ping events each of well defined and coherent motion, but
the velocity amplitudes of those events are distributed in
such a way [Eq. (18)] to produce a strictly Gaussian velocity
distribution when many such events are included in the time
series analyzed. The probability density function then shows
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FIG. 10. (Color online) The Lagrangian (black) and Eulerian
[brown (gray)] velocity (a) and velocity-difference (b) probability
density functions from the stirred point-vortex model. A temporal
increment of 7=0.032, corresponding to the viscous time scale as
estimated from the Lagrangian autocorrelation function and the
flow Reynolds number, was used. The Eulerian probe measures
distributions in agreement with random nearest neighbor sampling
of the point-vortex field. The Lagrangian tracers do not.

no hint of the power law wings that dominate a random
sampling of the same vortical flow field. Alternatively, inde-
pendent normally distributed velocity components in two di-
mensions also lead to the two-dimensional Maxwellian speed
distribution [Eq. (18)], suggesting short correlation times for
the Lagrangian velocity vector orientation [31]. This ambi-
guity between vortical and randomly oriented motions, pre-
viously noted in Sec. III A when discussing single point-
vortex contributions at fixed radius, cannot be resolved by
the PDF alone.

The velocity-difference PDFs are more difficult to inter-
pret. For the laboratory data they are limited by the minimum
temporal increment achievable. For the point-vortex simula-
tions, where arbitrarily small temporal increments can be
achieved, they are complicated by the contributions from
new vortex creation.

B. The Lagrangian acceleration

Let us first stress that the point-vortex analytical models
in Sec. IV all show velocity-difference PDFs with significant
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FIG. 11. (Color) PDFs of Lagrangian acceleration for the point-
vortex flow simulation (black curves), and experimental data (green
curve from [5]). Overplotted are statistical models of the distribu-
tions: cyan, Gaussian; blue curve, nearest neighbor acceleration
[Eq. (16)], blue crosses, trapping event distribution, and red curves
new vortex velocity distribution. These were calculated from input
parameters of the model and normalized in amplitude. Temporal
increment 7 takes values from 0.001 to 16.384, doubling for each
curve from top to bottom. Each successive distribution is offset
vertically for clarity. Gray curve plots the distribution for increment
equal to the estimated viscous time scale in the simulation.

insensitivity to details of the vortex amplitude distributions,
sampling of the field, or collective contributions, outside of
the resulting distribution core, and that core region narrows
with decreasing temporal increment. Outside of the narrow
core, the velocity-difference distributions closely approxi-
mate the dominant P(a,)*a;>” nearest neighbor contribu-
tion in all cases, even when the contributions from many
vortices in the domain are considered (Fig. 9).

In hydrodynamic experiments, both the stirred two-
dimensional (2D) point vortex flows presented here and
laboratory measurements, the situation is quite different.
Plotted in Fig. 11 are the PDFs of Lagrangian acceleration
A u, for the point-vortex simulation as a function of tempo-
ral increment 7 (black curves), with 7=7,2", n ranging from
0 to 14, top to bottom, and 77,=0.001, the time step of the
simulation. At large temporal increments the velocity-
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difference PDF coincides with that of the velocity itself, and
is described by a Gaussian distribution (cyan curve in Fig.
11). As the increment scale is reduced the PDFs evolve from
Gaussian to having stretched exponential tails. This is in
good agreement with 3D turbulent flow measurements at the
smallest temporal scales investigated in experiments (green
curve, from [5]). At yet smaller temporal increment, the La-
grangian velocity difference in our point-vortex flow be-
comes increasingly intermittent. The gray curve in Fig. 11
plots the distribution for increment equal to the estimated
viscous time scale in the simulation. Note, however, that the
distribution does not approach that expected from a nearest
neighbor random (overplotted in blue in Fig. 11) or trapped
(blue crosses) sampling of a Monte Carlo vortex field. The
latter trapped sampling distribution can be computed analyti-
cally in terms of the Meijer G functions [32] by making use
of the trapping distribution [Eq. (18)], the width of the ve-
locity distribution, the vortex field amplitude variance I',,,
and the temporal increment.

Thus we find that neither the nearest neighbor nor the
trapped orbit Lagrangian velocity-difference PDF corre-
sponds to that observed at short temporal increments in labo-
ratory experiments or our n-body point-vortex model. This is
true both for temporal increment of order the viscous time
scale (gray curve) and one much smaller (of order the simu-
lation time step, upper most curve in Fig. 11). The latter
increment is likely not realistic, since vortices merge and are
create instantaneously in the simulation, but suggests the dis-
tribution trend. Our observation is that, as the temporal in-
crement decreases, the velocity-difference PDF approaches
the velocity PDF of the randomly sampled nearest new
neighbor (overplotted in red in Fig. 11). This can be com-
puted exactly, evaluating Eq. (15) using the number density
and amplitude distribution width I',,,; of new vortices gener-
ated in the domain over the time period 7. Over very small
temporal increment, the only contribution to the velocity dif-
ference is from vortex reconfiguration, via creation in the
model or flow instabilities in a real flow. At very small 7,
contributions from the motions of the Lagrangian tracer and
the background vortices are negligible compared to changes
induced by vortex reconfiguration.

C. Discussion

We have constructed a stirred two-dimensional point-
vortex model which shares some properties with fully devel-
oped three-dimensional turbulence. While limited, the model
has the advantage of allowing exact calculation of some pos-
sible contributions to the dynamics of fluid particles.

We find that the Gaussianity of the velocity distribution
results from the particular nature of Lagrangian dynamics.
Lagrangian particles follow specific trajectories. The tracers
are successively trapped around vortices, and the exact Gaus-
sianity of velocity distribution implies a specific statistical
relationship between the distance of trapping and the inten-
sity of the vortex, with the probability distribution of this
ratio given by Eq. (18). Alternatively, the Lagrangian veloc-
ity vector may be undergoing random reorientation. These
interpretations cannot be distinguished on the basis the PDF
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alone, may be critical in assessing the importance of trapping
events at high Reynolds number [33], and remain a focus of
future work.

Concerning the distribution of the Lagrangian velocity
difference (acceleration), the velocity results suggest that it
should also be dominated by nearest neighbor contributions
during trapping. This is not the case. As the temporal incre-
ment is decreased toward the dissipation scale, the evolution
of the PDF suggests (Fig. 11) that the limiting distribution
results from vorticity reconfiguration within the entire flow
volume. In the numerical model, this is due to the creation
and merging of vortices within the domain. In a real physical
flow this would reflect flow instability and dissipation.

Many studies have pointed out the physical importance of
concentrated vortices to the dynamics and statistics of La-
grangian tracers. The sensitivity at small scales to global
reconfiguration of the vorticity field implied by our model
suggests that less local influences may also be important to
measurements made at short temporal increments. This is in
agreement with the observation (e.g., [5]) that the Lagrang-
ian acceleration is dominated by pressure gradients. As pres-
sure solves a Poisson equation formally equivalent to that in
electrostatics, with vorticity and strain playing the role of
negative and positive charges [34,35], it is extremely sensi-
tive to changes in the overall “charge” configuration. As the
temporal increment decreases, and consequently so too does
the direct contribution of Lagrangian tracer motion, recon-
figuration of existing and/or generation of new vortical struc-
tures within the domain plays a larger role.
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APPENDIX A: BIVARIATE TRANSFORMATION OF
RANDOM VARIABLES

Let x and y be independent random variables with prob-
ability densities P(x) and P(y), respectively, and joint prob-
ability density P, (x,y)=P(x)P(y). Let u=f(x,y) and v
=g(x,y) be functions of the random variables with inverses
x=h,(u,v) and y=h,(u,v). (Note that typically only one of
these functions is one for which the probability density is
desired, while the other is a dummy function chosen judi-
ciously so that it can be easily integrated out of the joint
probability density leaving that of the required function.) The
joint probability density of u and v is (e.g. [23,24])

oh,  dh
o w

P (u,v) = Pyy(hy,hy) , (A1)
oy
du v

and the individual probability densities for # and v can be
determined by integration of their joint probability density
over the range of the other variable:
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P(u):jP(u,v)dv and P(v):JP(u,v)du. (A2)

As an example, consider two Gaussianly distributed inde-
pendent random variables each with a mean value of zero
and a variance equal to one and with joint probability

1
Py(xy) = s—e 092, (A3)
2
To derive the probability density of their product, define two
functions, u=xy and v=y, and their inverses, x=h,(u,v)
=u/v and y=h,(u,v)=v. The joint probability density of u
and v is then

1 u
- 1

2

e—(u2/v2+v2)/2 — e—(u2/v2+v2)/2

1
P (wv)=—I/|V ¥
w(U,0) .
0 1
(A4)

Integrating over the range of dummy variable v by imposing
symmetry about v=0 yields
1
P(u) = —Ko(\ie), (AS)
where K|, is the lowest order modified Bessel function of the
second kind [26]. The probability density has a logarithmic

singularity at zero which contributes nothing to the probabil-
ity integral.

APPENDIX B: PROBABILITY DENSITY OF NEAREST
NEIGHBOR DISTANCE

This derivation of the probability density function of the
nearest neighbor distance when sampling a random distribu-
tion of points in a plane,

P(r)= 27ane_””’2, (B1)

follows [25].

Distribute N points randomly in a plane of area A. If N
=1, then at any location in the plane, the probability of find-
ing the neighbor at a distance between r and r+dr is
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2r

dP,= Tdr. (B2)

For N=2, the probability of the nearest neighbor point being
at a distance between r and r+dr is

A - mr? A - mr?
+dP, s
A A

dP,= dPl( (B3)
where two terms each express the probability that one of the
points is the nearest neighbor, lies between r and r+dr, and
the other lies farther away, at a distance greater than » and so
not within 7772, Similarly, for N=3, the probability of the
nearest neighbor point being at a distance between r and r
+dris

A—ar?\[A - A—ar?\[A - ar?
dP3=dP] +dP]
A A A A

A-mr*\[A-ar?
+dP, ” n ,

where each term expresses the probability that one of the
points is the nearest neighbor and the other two lie farther
away. Generalizing to N points yields

A-mrP\M N A — a2\ V!
=—2mr dr
A A A

(B4)

dPy= NdP1<

(B5)

Letting n=N/A, the number density, and ,LL:A/7T}’2, this in
turn can be rewritten as

- —nar? -1
dPN=27an[<1 —l) ] (1 —l> dr. (B6)
M M

In the limit u— o0, when the nearest neighbor distance is
much smaller than the size of the domain, this simplifies to

—'ﬂ'ﬂrzdr,

dPy=2mnre (B7)

with mean

- 1
(r)= f 2mnrte™ ™ dr = —,
0

(B8
2\n )
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