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A system of stochastic differential equations is formulated describing the heat and salt content of a two-
box ocean. Variability in the heat and salt content and in the thermohaline circulation between the boxes
is driven by fast Gaussian atmospheric forcing and by ocean-intrinsic, eddy-driven variability. The eddy
forcing of the slow dynamics takes the form of a colored, non-Gaussian noise. The qualitative effects of
this non-Gaussianity are investigated by comparing to two approximate models: one that includes only
the mean eddy effects (the ‘averaged model’), and one that includes an additional Gaussian white-noise
approximation of the eddy effects (the ‘Gaussian model’). Both of these approximate models are derived
using the methods of fast averaging and homogenization.

In the parameter regime where the dynamics has a single stable equilibrium the averaged model has too
little variability. The Gaussian model has accurate second-order statistics, but incorrect skew and rare-event
probabilities. In the parameter regime where the dynamics has two stable equilibria the eddy noise is much
smaller than the atmospheric noise. The averaged, Gaussian, and non-Gaussian models all have similar
stationary distributions, but the jump rates between equilibria are too small for the averaged and Gaussian
models.

Keywords: Slow-fast systems; averaging; homogenization; stochastic differential equations; ocean
modeling

1. Introduction1

H. Stommel (1961) developed a conceptual model of the global ocean thermohaline circulation2

that consists of a system of ordinary differential equations modeling the heat and salt content3

of two containers (‘boxes’). One box models the equatorial ocean, and the other models the4

extra-tropical ocean. The boxes exchange heat and freshwater with each other and with the5

atmosphere. The rate of flow between the boxes is proportional to the density difference6

between the boxes, and a major result of Stommel’s investigation was that in some parameter7

regimes the system exhibits two equilibria: one analogous to the current climate, with dense8

cold water sinking at high latitudes, and one corresponding to a very different regime with9

dense salty water sinking in the equatorial ocean. In general, the goal of studies using extremely10

simplified models like Stommel’s is to observe and understand qualitative features that might11

inform and guide subsequent studies using more complete and more complex models. The12

qualitative predictions of Stommel’s model have since been verified using more complete ocean13

models, e.g. Rahmstorf (1995) and Deshayes et al. (2013).14

The present investigation develops a model closely related to Stommel’s where the slow,15

density-driven exchange of heat and salt between the boxes is augmented by fast, non-Gaussian16

stochastic processes representing eddy-driven heat and salt transport. Eddies smaller than the17

grid scale of comprehensive numerical ocean (and atmosphere) models can have significant18

impacts on the global circulation, and modeling the impacts of these unresolved eddies is a19

topic of continuing research; Berner et al. (2017) and Leutbecher et al. (2017) contain reviews20
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of stochastic models of eddy effects from an operational modeling perspective.21

The second author recently proposed a non-Gaussian model of the heat and salt transport22

associated with unresolved ocean eddies (Grooms 2016). In this model, the eddy velocity and23

density fields (the latter linearly related to temperature and salinity) are modeled as cen-24

tered Gaussian random fields, and the transports are modeled as the product of eddy velocity25

and density. The product of centered, jointly Gaussian random variables has a distinctive,26

non-Gaussian probability density, with a logarithmic singularity at the origin and skewed,27

algebraically-modulated exponential decay in the tails. This non-Gaussian model is signifi-28

cantly different from recent Gaussian stochastic models of eddy transport, e.g. Andrejczuk29

et al. (2016), Williams et al. (2016) and Juricke et al. (2017). The present investigation is mo-30

tivated by the desire to observe the qualitative effects of the kind of non-Gaussian transport31

from Grooms (2016) in an extremely simple model, in particular by comparison to Gaussian32

stochastic models, with the expectation of informing future investigations using more complex33

models.34

A very wide range of stochastic parameterizations for ocean models of various resolutions35

with various kinds of Gaussian and non-Gaussian noise are currently under development,36

e.g. Porta Mana and Zanna (2014), Zanna et al. (2017), Mémin (2014), Resseguier et al.37

(2017), Grooms et al. (2015), Holm (2015), Cotter et al. (2017), Cooper (2017), and Brankart38

et al. (2015), in addition to those cited previously and many more too numerous to cite. The39

present study is intended to investigate the qualitative differences between a stochastic pa-40

rameterization with a specific kind of non-Gaussian noise from Grooms (2016), a deterministic41

parameterization, and a Gaussian stochastic parameterization in a highly idealized model. As42

noted by Held (2005), the relationship of highly idealized models like the Stommel model to43

more complex and comprehensive climate models is analogous to the relationship between the44

fruit fly Drosphila melanogaster and Homo sapiens. Very few specific conclusions about the45

latter can be drawn from the former, but the study of the former is nevertheless invaluable in46

developing a broader understanding of generic features of biology.47

Several authors have developed stochastic versions of Stommel’s model to investigate the48

slow response of the ocean thermohaline circulation to fast atmospheric forcing, e.g. Cessi49

(1994), Vélez-Belchı et al. (2001), Monahan (2002), Monahan et al. (2002) and Monahan and50

Culina (2011). In these stochastic Stommel models the atmospheric heat and freshwater fluxes51

in Stommel’s model are replaced by Gaussian stochastic noise terms, resulting in a system of52

stochastic differential equations (SDEs). The model developed here attempts to understand53

a qualitatively different physical process: fast eddy transport. Since the eddies are typically54

faster than the global thermohaline circulation, the new model has the form of a slow-fast sys-55

tem, where eddy variables evolve on a fast time scale and converge towards a jointly Gaussian56

distribution conditioned on the slow variables. The slow variables (the heat and salt difference57

between the boxes) are impacted by quadratic products of fast variables modeling the fast58

eddy transport. The formal theory of fast averaging (Papanicolaou and Kohler 1974, Pavliotis59

and Stuart 2008, Freidlin and Wentzell 2012), is used to generate approximate slow systems60

for comparison: one with a drift correction and one with both drift and diffusion corrections61

derived from the eddy dynamics. These approximate systems qualitatively represent more62

complete ocean models with, respectively, deterministic and Gaussian stochastic models of63

the eddy transport.64

A new stochastic Stommel model including fast eddy transport is developed in §2. The two65

approximate models of the slow system are derived in §3. The numerical methods and exper-66

imental configuration are described in §4 and the results of these simulations are described67

in §5. A slightly different model with two stable equilibria is formulated and simulated in §6.68

The results and their implications are discussed in §7.69
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2. Formulating a Slow-Fast Two-Box Stochastic Ocean Model70

This section recalls the derivation of the original Stommel model by considering the conser-71

vation of heat and salt in an ocean basin divided into two subdomains that exchange heat72

and salt with each other, and are forced by heat and freshwater fluxes from the atmosphere.73

The novel component of the derivation is to add stochastic eddy-driven fluxes between74

the subdomains. Consistent with the goal of this investigation the eddy-driven exchange is75

constructed as the product of centered Gaussian eddy velocity, heat, and salt anomalies; the76

flux distribution is thus qualitatively similar to the flux distributions recently observed by77

Grooms (2016). Naturally, other eddy flux models are possible; a Gaussian white noise model78

is, for example, derived in §3.79

80

Consider a domain [0, Lx]× [0, Ly]× [0, H] representing an ocean basin, and let this domain81

be partitioned into two subdomains [0, Lx]× [0, `]× [0, H] and [0, Lx]× [(`, Ly]× [0, H] with82

volumes V1 = Lx`H and V2 = Lx(Ly−`)H. The first box (index 1) will represent the equatorial83

side of the ocean basin, and the second (index 2) will represent the poleward side. The domain84

is filled with a fluid whose density is related to its temperature and salinity via85

ρ = ρ0[1 + αS(S − S0)− αT (T − T0)]

where ρ0 = 1029 kg/m3 is a constant reference density, T0 = 5 C and S0 = 35 psu are a86

constant reference temperature and salinity (psu are practical salinity units; for the present87

purposes it is reasonable to use the simplification 1 psu = 1 g/kg), and αS = 7.5×10−4 psu−1
88

and αT = 1.7× 10−4 C−1 are coefficients of haline and thermal expansion. The conservation89

equations for heat are in the form of a system of two differential equations90

dT1

dt
= − 1

τT
(T1 − T ∗1 )− FT

ρ0cpV1
,

dT2

dt
= − 1

τT
(T2 − T ∗2 ) +

FT
ρ0cpV2

where T1 and T2 are the mean temperature in each box, τT is the timescale of relaxation91

towards an externally-specified atmospheric temperature T ∗i , cp = 4000 J/kg is the heat92

capacity of seawater (e.g. ρ0cpV1T1 is the heat content of the equatorial box), and FT is the93

heat flux from the equatorial box to the poleward box. The total heat content ρ0cp(V1T1+V2T2)94

thus depends only on the external forcing.95

Similarly, the conservation equations for salt are96

dS1

dt
=

1

2
F (t)− FS ,

dS2

dt
= −1

2
F (t) + FS

where F (t)/2 is the external freshwater forcing in the equatorial box (e.g. rain, runoff, evap-97

oration) and FS is the salt flux from the equatorial box to the poleward box. The external98

freshwater forcing is assumed not to change the net salt content, so that S1 + S2 remains99

constant in time.100

Following Stommel (1961), the heat and salt fluxes between the boxes are assumed to101

depend only on the temperature and salinity differences between the boxes. As a result, the102

temperature and salinity differences between the boxes decouple from the net heat and salt103

content. Defining ∆T = T1 − T2 and ∆S = S1 − S2,104

d∆T

dt
= − 1

τT
(∆T −∆T ∗)−

[
1

ρ0cpV1
+

1

ρ0cpV2

]
FT

105

d∆S

dt
= F (t)− 2FS .

Similar to Cessi (1994) and Vélez-Belchı et al. (2001), the atmospheric temperature difference106

∆T ∗ and external freshwater forcing F (t) are here modeled as constant mean terms plus107
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Gaussian white noise, leading to108

d∆T =

[
− 1

τT
(∆T −∆T ∗)−

[
1

ρ0cpV1
+

1

ρ0cpV2

]
FT

]
dt+

σ∆T√
τT

dW∆T

109

d∆S =
[
F − 2FS

]
dt+

σ∆S√
τd

dW∆S .

The amplitude of the atmospheric heat flux noise forcing is here scaled by
√
τT so that it110

generates temperature perturbations of amplitude σ∆T over a time period of length τT ; the111

atmospheric freshwater flux noise is similarly scaled to generate perturbations of amplitude112

σ∆S over a diffusive time τd, defined below.113

In Stommel’s original model the fluxes between the boxes consist of diffusive fluxes pro-114

portional to the temperature and salinity differences, and advective fluxes associated with115

the large-scale ocean circulation whose rate is proportional to the magnitude of the density116

difference between the boxes117 [
1

ρ0cpV1
+

1

ρ0cpV2

]
FT =

(
1

τd
+

1

τaρ0αT∆T ∗
|∆ρ|

)
∆T

118

2FS =

(
1

τd
+

1

τaρ0αT∆T ∗
|∆ρ|

)
∆S

where τd is the time scale of diffusive transport, τa is the time scale of advective transport,119

and120

∆ρ = ρ0[αS∆S − αT∆T ]

is the density difference between the boxes. Cessi (1994) used a smoother formulation, which121

does not qualitatively change the results122 [
1

ρ0cpV1
+

1

ρ0cpV2

]
FT =

(
1

τd
+

1

τa(ρ0αT∆T ∗)2
∆ρ2

)
∆T

123

2FS =

(
1

τd
+

1

τa(ρ0αT∆T ∗)2
∆ρ2

)
∆S.

The novel contribution to the model made here consists of the addition of fast variables124

crudely representing eddy velocity ve, temperature Te, and salinity Se anomalies at the in-125

terface between the boxes. The eddy-induced fluxes between the boxes will be modeled as an126

addition to the slow diffusive and advective fluxes127 [
1

ρ0cpV1
+

1

ρ0cpV2

]
FT =

(
1

τd
+

1

τa(ρ0αT∆T ∗)2
∆ρ2

)
∆T +

[
1

`
+

1

Ly − `

]
veTe

128

2FS =

(
1

τd
+

1

τa(ρ0αT∆T ∗)2
∆ρ2

)
∆S +

[
1

`
+

1

Ly − `

]
veSe.

The prefactors of `−1 + (Ly − `)−1 account for the fact that the boxes need not have equal129

volume, and that total heat and salt need to be conserved. For simplicity, only ` = Ly/2 is130

considered from here on.131

In general the flux between the boxes should be described by
∫ Lx

0

∫ H
0 vTdzdx where v and T132

are evaluated at y = ` = Ly/2. Our formulation amounts to a severe simplification that ignores133

the spatial structure of the eddy velocity and temperature perturbations between the boxes,134

and considers them only as zero-mean jointly-Gaussian variables. This level of simplification is135

consistent with the simplification of the ocean to two well-mixed boxes in the original Stommel136
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model, and is guided by the desire to investigate the qualitative effects of Gaussian-product137

noise, since eddy noise with this structure was recently observed by Grooms (2016).138

The fast eddy velocity will be modeled as an Ornstein-Uhlenbeck process139

dve = − 1

τe
vedt+

√
2

τe
σvdWv

where τe is the eddy time scale and σv is the eddy velocity scale, chosen to be 15 days and140

10 cm/s, respectively (Stammer 1997). The eddy velocity can here be thought of as being set141

by wind-driven processes independent of the density difference between the boxes. This is a142

simplification of the more complex reality where eddy kinetic energy and time scale depend143

also on the large-scale density gradient. The following model of the eddy dynamics is perhaps144

more qualitatively appropriate145

dve = −ve
τe

dt+

√
2(1 + µ∆ρ2)

τe
dWv

where µ > 0 is a parameter representing the sensitivity of the eddy variance to the large-scale146

density gradient. This model is not pursued further here, in part because of the difficulties in147

guaranteeing its ergodicity and in finding a robust numerical method for its solution.148

The eddy temperature and salinity anomalies will be modeled as resulting from eddy trans-149

port across the large-scale gradients150

dTe
dt

= −Te
τe
− ve

2∆T

Ly
,

151

dSe
dt

= −Se
τe
− ve

2∆S

Ly
.

The relaxation towards zero on a time scale of τe qualitatively represents the full range of152

dissipative processes acting on temperature and salinity anomalies: cascade towards small153

scales and eventual diffusion, and atmospheric damping of thermal anomalies, etc. The time154

scale τe should not be associated with any particular physical process, but instead guarantees155

decorrelation of eddy anomalies on the time scale τe. Note that the lack of white noise forcing156

in the equations for Te and Se implies that the amplitude of the eddy terms is governed by157

σv; if σv = 0 then the eddy terms disappear, leaving the usual Stommel model.158

The governing equations are nondimensionalized using the diffusive time scale for t, the ex-159

ternal constant atmospheric temperature difference ∆T ∗ ≈ 20 C for large-scale temperature,160

and the convenient salinity scale αT∆T ∗/αS ≈ 4.5 psu for large-scale salinity. The mean atmo-161

spheric forcing F̄ is assumed to be 4.5 psu per diffusion time so that its nondimensional value162

is 1, following Cessi (1994) and Vélez-Belchı et al. (2001). The eddy velocity ve is nondimen-163

sionalized using the eddy velocity scale σv. It will be convenient to scale the eddy temperature164

and salinity variables differently; specifically, Te will have dimensions ∆T ∗Ly/(σvτd) and Se165

will have dimensions αT∆T ∗Ly/(αSσvτd). The reason for this unexpected scaling will be com-166

mented on shortly.167

Following traditional notation, the nondimensional temperature difference will be denoted x168

and the nondimensional salt difference will be denoted y. The nondimensional eddy variables169

will drop their subscripts e so that, e.g., the nondimensional eddy velocity is simply v. Risking170

confusion, the nondimensional time will still be denoted t. The complete nondimensional171

system is therefore172
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dx =

[
− 1

εT
(x− 1)− [1 + Pa(x− y)2]x+ 4vT

]
dt+

√
1

εT
σxdWx (1a)

dy =
[
1− [1 + Pa(x− y)2]y + 4vS

]
dt+ σydWy (1b)

dv = −v
ε

dt+

√
2

ε
dWv (1c)

dT = −1

ε

[
T + 2P 2vx

]
dt (1d)

dS = −1

ε

[
S + 2P 2vy

]
dt (1e)

where173

εT =
τT
τd
, ε =

τe
τd
, Pa =

τd
τa
, Pe =

σvτd
Ly

, P =
√
εPe.

Pa and Pe are Péclet numbers comparing the time scales of large-scale advective transport174

and fast eddy transport to the time scale of diffusion, respectively. The nondimensional noise175

amplitudes are σx = σ∆T /∆T ∗ and σy = αSσ∆S/(αT∆T ∗).176

The following parameter estimates are drawn from Cessi (1994) and Vélez-Belchı et al.177

(2001), and are consistent with the more recent observational analysis of Schmitt (2008).178

The diffusive time scale τd is approximately 220 years, and the time scale of large scale179

advection τa is approximately 35 years. Cessi (1994) estimates τT to be 25 days, but Vélez-180

Belchı et al. (2001) argue convincingly that large-scale temperature anomalies are damped181

on a slower time scale of approximately 220 days. Vélez-Belchı et al. (2001) used salinity182

noise whose nondimensional amplitude is here σy = 0.15, and assuming that fast atmospheric183

temperature fluctuations lead to perturbations on the order of 0.07 C implies nondimensional184

thermal noise has amplitude σx = 0.005. Finally, using a length scale appropriate to the185

global oceans Ly ≈ 8, 250 km leads to the following set of parameters which are adopted for186

the remainder of the investigation187

εT =
1

400
, ε =

1

5000
, Pa = 6, Pe = 80, σx = 0.005, σy = 0.15. (2)

The reason for scaling S and T differently from ∆S and ∆T should now be clear: 2P 2
e is the188

same order of magnitude as ε−1, implying that both terms in the evolution equations for S189

and T are of comparable magnitude.190

For the parameters (2) the system (1) has three equilibria, two of which are stable. The191

equilibria all have v, T, S = 0, and the stable equilibria occur at (x, y) ≈ (0.989, 0.22) and192

(x, y) ≈ (0.998, 1.00). In the absence of eddy dynamics, one would expect small atmospheric193

noise to lead to jumping between the two stable equilibria of the system; this was the focus194

of Cessi (1994), Monahan (2002), Monahan et al. (2002) and Monahan and Culina (2011).195

The existence of multiple equilibria is intrinsically tied to the nonlinear terms that model196

slow advective exchange between the boxes. As the exchange between the boxes becomes197

dominated by diffusion instead of advection (Pa → 0) one of the stable equilibria disappears198

in a reverse saddle-node bifurcation leaving a single stable equilibrium.199

200

Equations (1d) and (1e) lack noise terms, implying that the classical conditions for ergodicity201

(Khasminskii 2012) do not apply. Conditions for ergodicity of this type of system of SDEs202

can be found in Mattingly et al. (2002). The first condition is that there is an inner-product203

norm ‖·‖ such that 〈u,F (u)〉 ≤ α− β‖u‖2 for some α, β > 0 where u is a vector containing204
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the dependent variables and F (u) is the drift. It is straightforward to verify that ‖u‖2 =205

x2+y2+εv2+(2ε/P 2)(T 2+S2) satisfies this condition. The second condition is that the vectors206

{ρi, [[F ,ρj ],ρk]} span R5 where ρi, i = 1, 2, 3 are the columns of the diffusion matrix, which207

are here proportional to the first three standard basis vectors, and [·, ·] is a Lie bracket. Since208

[[F ,ρ1],ρ3] and [[F ,ρ2],ρ3] are proportional to the fourth and fifth standard basis vectors,209

respectively, the system satisfies the conditions of Mattingly et al. (2002) for ergodicity.210

3. Two Approximate Slow Models211

In this section two systems of SDEs are derived approximating the evolution of the slow212

variables x and y in (1). The system of SDEs (1) with parameters (2) has three time scales since213

ε < εT � 1: x evolves significantly more quickly than y, yet slower than the eddy variables214

v, T , and S. Many previous investigations (which lacked the eddy variables) accounted for215

the scale separation somewhat crudely by setting x = 1, and focused on the dynamics of the216

slowest variable y, e.g. Cessi (1994), Monahan (2002), Monahan et al. (2002), and Monahan217

et al. (2008). The analysis of Monahan and Culina (2011) is more careful, employing the same218

methods used here but for the system without eddy variables and in the limit εT → 0. This219

section considers the limit ε→ 0 while holding εT fixed.220

The two approximate models are derived using standard approximations for slow-fast sys-221

tems (Papanicolaou and Kohler 1974, Pavliotis and Stuart 2008, Freidlin and Wentzell 2012).222

The presentation here follows the convenient review found in Bouchet et al. (2016); the for-223

mulas are derived in a straightforward manner using formal asymptotic methods applied to224

the backwards Kolmogorov equation for the system (for details, see the appendices of Bouchet225

et al. (2016)).226

The first approximation is derived via simple averaging. In the limit ε→ 0 the eddy variables227

are well approximated as solutions to (1c)–(1e) with x and y considered constant. Curiously,228

although the full system (1) has a smooth invariant measure the system (1c)–(1e) does not:229

the long-time limiting distribution of v, T , and S is jointly Gaussian with a singular covariance230

matrix. In light of this, the following noise-augmented system is considered instead231

dv = −v
ε

dt+

√
2

ε
dWv (3a)

dT = −1

ε

[
T + 2P 2vx

]
dt+

√
2

ε
σεdWT (3b)

dS = −1

ε

[
S + 2P 2vy

]
dt+

√
2

ε
σεdWS (3c)

and the limit σε → 0 is taken after the fact.232

The invariant measure of (3) is Gaussian with zero mean and covariance233

 1 −P 2x −P 2y
−P 2x 2P 4x2 + σ2

ε 2P 4xy
−P 2y 2P 4xy 2P 4y2 + σ2

ε

 . (4)

The averages of the terms vT and vS in the slow equations with respect to the invariant234

measure of the fast system are simply −P 2x and −P 2y, respectively. It is worth noting that235

these values are independent of the auxiliary noise amplitude σε. Inserting these into the slow236

equations leads to the following approximate model237

238



March 27, 2018 Geophysical and Astrophysical Fluid Dynamics BG˙GAFD˙17˙r2

8 W. Barham and I. Grooms

Deterministic Approximation239

dx =

[
− 1

εT
(x− 1)− [1 + Pa(x− y)2]x− 4P 2x

]
dt+

√
1

εT
σxdWx (5a)

dy =
[
1− [1 + Pa(x− y)2]y − 4P 2y

]
dt+ σydWy. (5b)

The model (5) is referred to as the ‘deterministic’ or ‘averaged’ approximation since it models240

the eddy terms vT and vS as deterministic functions of x and y. It is straightforward to241

verify that this model is ergodic under the classical conditions of Khasminskii (2012).242

243

As described in Bouchet et al. (2016), one can derive equations that approximate the varia-244

tions of the true solution to (1) around the solution of the approximate model (5). Combining245

the equations for the variations with the deterministic approximation leads to further cor-246

rections in both the drift and diffusion, of order ε and
√
ε, respectively. The drift correction247

is significantly smaller than the leading-order drift. But the leading-order diffusion terms in248

the x and y equations are of order ≈ 0.1, and corrections of order
√
ε may be of comparable249

magnitude.250

In order to compute the diffusion corrections, it is convenient to define some notation.251

Let Y = (v, T, S)T denote the solution to the noise-augmented system (3). Define constant252

matrices253

M = −1

ε

 1 0 0
2P 2x 1 0
2P 2y 0 1

 , G =

√
2

ε

1 0 0
0 σε 0
0 0 σε


such that the fast system (3) may be written dY = MY + GdW , where dW is a vector of254

independent Gaussian white noises. The solution is thus255

Y (τ) = eMτY 0 +

∫ τ

0
eM(τ−s)GdW . (6)

The deviations of the eddy terms vT and vS from their conditional means are denoted256

f(x, y,Y ) =

(
vT + 4P 2x
vS + 4P 2y

)
.

According to Bouchet et al. (2016), the diffusion-corrected model for the slow variables has257

the form258

dx =

[
− 1

εT
(x− 1)− [1 + Pa(x− y)2]x− 4P 2x

]
dt

+
√
εaxx(x, y)dŴx +

√
εaxy(x, y)dŴy +

√
1

εT
σxdWx

dy =
[
1− [1 + Pa(x− y)2]y − 4P 2y

]
dt

+
√
εayx(x, y)dŴx +

√
εayy(x, y)dŴy + σydWy.

where the matrix259

A =

[
axx axy
ayx ayy

]
is any square root of the following symmetric positive definite matrix260
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C =

∫ ∞
0

EY 0

[
EY (τ)

[
f(x, y,Y (τ))fT (x, y,Y 0) + f(x, y,Y 0)fT (x, y,Y (τ))

]]
dτ.

The matrix C is the integral of the time-lagged auto-covariance of f with x and y considered261

constant. In the above expression, EY (τ) denotes the expectation on Y (τ) conditioned on the262

initial condition Y0; the distribution is Gaussian with mean and covariance implied by (6).263

EY 0 denotes expectation on Y 0 whose distribution is the stationary distribution of the fast264

process, in this case a zero-mean Gaussian with covariance (4). The calculation for the system265

under consideration here is particularly straightforward since it requires only higher moments266

of jointly-Gaussian variables. The matrix C is found to have the form267

C =

[
16(5P 4x2 + σ2

ε ) 80P 4xy
80P 4xy 16(5P 4y2 + σ2

ε )

]
.

In this case (unlike the leading-order drift term) the limit σε → 0 is singular in the sense that268

the matrix C becomes positive semi-definite. Nevertheless, a square root matrix A exists; in269

the limit σε → 0 it has the form270

A = 4
√

5P 2

[
x 0
y 0

]
.

The model for the slow variables with leading-order drift and diffusion corrections (but271

ignoring the order-ε drift correction) is thus272

273

Gaussian Stochastic Approximation274

dx =

[
1

εT
(1− x)− [1 + Pa(x− y)2]x− 4P 2x

]
dt+ 4

√
5εP 2xdŴ +

√
1

εT
σxdWx (7a)

dy =
[
1− [1 + Pa(x− y)2]y − 4P 2y

]
dt+ 4

√
5εP 2ydŴ + σydWy. (7b)

For x ≈ 1 the noise amplitude associated with the eddies is ≈ 0.16, which is slightly larger275

than the ‘atmospheric’ noise σε/
√
εT = 0.1. The order-ε drift corrections have also been276

calculated, but they are small in comparison with the leading-order terms, and have been left277

out of the model for simplicity. This system of SDEs is interpreted in the Ito sense; while278

the drift corrections in slow-fast systems with one slow degree of freedom can be interpreted279

as a correction from Stratonovich to Ito, this is no longer generally true in systems with280

multiple slow degrees of freedom (Pavliotis and Stuart 2008, Freidlin and Wentzell 2012).281

It is straightforward to verify that this model is ergodic under the classical conditions of282

Khasminskii (2012).283

It is interesting to note that the Gaussian stochastic model replaces the eddy terms 4vT284

and 4vS by −4P 2x(dt +
√

5εdŴ ) and −4P 2y(dt +
√

5εdŴ ). This form of subgrid-scale pa-285

rameterization is qualitatively the same as that proposed in Buizza et al. (1999), where it was286

proposed to multiply a deterministic parameterization (here −4P 2x) by a stochastic process287

(here 1 +
√

5εẆ ). This style of stochastic parameterization has been widely used in atmo-288

spheric models (Berner et al. (2017) provides a review), and much has been made of the role289

of multiplicative noise by, e.g. Sura et al. (2005). The above derivation gives an example where290

this style of ad hoc parameterization is rigorously justified, though multiplicative noise with a291

linear coefficient is certainly not the universal form of eddy-induced noise (see e.g. Monahan292

and Culina 2011, for a counterexample).293
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Recall that for the parameters (2) the system (1) has only three equilibria, two of which294

are stable. The equilibria all have v, T, S = 0, and the stable equilibria occur at (x, y) ≈295

(0.989, 0.22) and (x, y) ≈ (0.998, 1.00). The deterministic and Gaussian stochastic models296

have the same drift, which has only one equilibrium at (x, y) ≈ (0.974, 0.093). As will be297

verified by the results in §5, the inclusion of nonlinear eddy effects completely changes the298

regime of the ocean model from a regime of multiple equilibria to a regime with a single stable299

equilibrium.300

The averaged drift has a single stable equilibrium for all P greater than approximately301

0.117; below this value the drift undergoes a saddle-node bifurcation that creates a pair of302

equilibria near x = 1 and y = 1. To achieve such small values of P would require reducing the303

eddy velocity scale from 10 cm/s to 1 cm/s, which is unrealistically small. The approximate304

models derived in this section show that the mean effect of eddies is linear and diffusive. Since305

a linear diffusive effect is already present in the equations (the terms −x and −y in (1a) and306

(1b)), the mean eddy effect could be viewed as a double-counting of eddy-induced diffusive307

exchange between the boxes. This can be rectified by eliminating the mean diffusion terms,308

and such a model is formulated and studied in §6. By avoiding a double-counting of diffusive309

exchange, the model in §6 allows multiple equilibria with small, yet realistic eddy amplitudes.310

4. Numerical Methods311

Numerical methods are needed to compare the qualitative behavior of the three models (1),312

(5), and (7) . Many methods are derived based on the assumption that the drift is globally-313

Lipschitz (Kloeden and Platen 1992), which is not the case here. Several more recent investi-314

gations have analyzed numerical methods for SDEs whose drift satisfies a one-sided Lipschitz315

condition (e.g. Higham et al. (2002) and Mao and Szpruch (2013)), but none of the models in316

consideration here satisfy such a condition. A method appropriate to polynomial drifts is de-317

rived by Lamba et al. (2007), but their analysis requires an invertible diffusion matrix, which318

the model (1) does not have. The Euler-Maruyama method may be appropriate, but is known319

to behave poorly in problems with polynomial drift (Mattingly et al. 2002, Hutzenthaler et al.320

2011). In light of this, the ‘backward Euler’ (BE) method is used here for all three models.321

For a general system of SDEs of the form322

dX = b(X)dt+ Σ(X)dW

the BE method takes the following form323

Xn+1 −∆tb(Xn+1) = Xn + Σ(Xn)∆W n (8)

where ∆t is the time step. In every simulation presented here ∆t = 2 × 10−6, which is324

significantly smaller than the smallest time scale of the system ε = 2× 10−4. Mattingly et al.325

(2002) prove that the method is ergodic (for sufficiently small ∆t) and that the invariant326

measure of the numerical method converges to that of the SDE as ∆t → 0. Though the327

analysis of Mattingly et al. (2002) focuses on models with additive noise, the BE method is328

nevertheless applied here to the model (7) with multiplicative noise.329

For the model (1), a two-step process is used to generate solutions of the nonlinear system330

of equations (8). First, an asymptotic approximation in the limit ∆t → 0 is computed that331

has the form X∗ = Xn + Σ(Xn)∆W n + O(∆t); this approximation is followed by a single332

Newton step. For the systems (5) and (7), approximate solutions to the nonlinear systems333

were generated using 10 fixed-point iterations started at Xn. Given the small step size, the334

resulting approximations solve their respective nonlinear systems with high accuracy; the335
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Figure 1. Base-10 logarithm of the climatological joint probability density functions of x and y for (a) Full model (1),
(b) Deterministic approximation (5), and (c) Gaussian-stochastic approximation (7). The vertical lines are placed at
x = 0.96 and x = 0.985.

residuals are typically on the order of 10−11.336

337

5. Results338

5.1. Climatology339

A suite of 10,000 independent simulations was run starting from x, y, v, T, S = 0 at t = 0.340

Data were saved for the time interval t ∈ [4, 10], saving every 100th time step for a spacing of341

2× 10−4. The mean and covariance appeared to have stabilized by t = 4, suggesting that the342

data in t ∈ [4, 10] represents the stationary climatological distribution of the system. Recalling343

that the dimensional time unit is 220 years, this amounts to 1,320 years of data saved approx-344

imately twice per month. The three models all have the same mean of (x, y) ≈ (0.974, 0.094),345

which is very close to the equilibrium of the deterministic and Gaussian stochastic models at346

(0.974, 0.093). All three models have the same marginal standard deviation of y approximately347

equal to 0.034. This can be explained by the fact that the amplitude of the eddy noise in the y348

equation is estimated in the Gaussian stochastic model to be 4
√

5εP 2y ≈ 0.015 for y = 0.093,349

which is much less than the atmospheric noise with amplitude σy = 0.15. The parameter350

values (2) derived from the literature are necessarily imprecise, but the order of magnitude351

difference between the eddy noise and the atmospheric noise in the y equation suggests that352

the effects of eddy noise (Gaussian or otherwise) on the salinity dynamics of the real ocean353

may be small in comparison with atmospheric forcing.354

The climatological distributions of the models differ in other respects. For example, the355

marginal standard deviation of x is 0.0063, 0.0035, and 0.0065 in the full, deterministic, and356

Gaussian stochastic models, respectively. The eddy noise in the x equation is of comparable357

size to the atmospheric noise, and has a significant impact on the variability; the deterministic358

model lacks this eddy noise, and has too little variability. The lack of eddy noise in the x equa-359

tion of the deterministic model also leads to an overestimate of the correlation between x and360

y: the full and Gaussian stochastic models have correlations 0.15 and 0.14, respectively, while361

the deterministic model has correlation 0.23. The most-probable values of the distributions362

are (x, y) ≈ (0.976, 0.092) for the full model, (0.974, 0.091) for the deterministic model, and363

(0.973, 0.093) for the Gaussian stochastic model; the differences in the y value are negligible,364

but the differences in the x value are up to half of a standard deviation.365

Time-lagged correlation functions were computed, for example Corr[x(t), x(t + τ)] = C(τ)366

(stationarity is assumed). The correlation functions are all very similar across the models (not367

shown). The correlation functions all decay monotonically to zero, so it is natural to define368

a decorrelation time by
∫∞

0 C(τ)dτ . The correlation functions for y in all three models are369
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very similar, with decorrelation time approximately 22 years. The correlation function for370

x exhibits similar rapid initial decay in all three models. The correlation function for x in371

the deterministic model has a long tail, with larger long-lag correlations than the other two372

models, leading to a decorrelation time of 1.6 years, which is longer than the decorrelation373

times of the full model and Gaussian stochastic model, both of which are approximately 1374

year.375

A simple binning procedure was used to generate approximations to the climatological prob-376

ability density function (pdf) for each model; results are shown in Fig. 1, with panels (a)–(c)377

presenting the full model, deterministic model, and Gaussian stochastic model, respectively.378

It has already been noted that the three models have the same marginal variance for y, and379

indeed the range of y in the three models is quite similar. The deterministic model is clearly380

under-dispersed with respect to x. The climatological distribution of the Gaussian stochastic381

model has a more-accurate core, but is not skewed in the same way as the full model.382

It is possible that minor deficiencies near the core of the distribution could be corrected383

by adding order-ε corrections to the drift of the Gaussian stochastic model, but the results384

of Bouchet et al. (2016) indicate that such corrections will not generate correct rare-event385

probabilities even in the limit ε→ 0. To emphasize differences in the rare event probabilities,386

the probabilities of x ≤ 0.96 and x ≥ 0.985 were calculated for the three models (these387

x values are indicated by vertical lines in Fig. 1). The small-event probabilities are 0.039388

for the full model, less than 10−4 for the deterministic model, and 0.022 for the Gaussian389

stochastic model. The large-event probabilities are 0.016 for the full model, less than 10−3 for390

the deterministic model, and 0.048 for the Gaussian stochastic model. Not surprisingly, the391

deterministic approximation has too-small rare event probabilities. The Gaussian-stochastic392

model is more accurate, but is still incorrect by nearly a factor of 2 for small-event probabilities,393

and a factor of 3 for large-event probabilities.394

The system (1) has two stable equilibria, near (x, y) ≈ (1, 1) and (1, 0.22). The simulations395

described above had no trajectories near the stable equilibrium at (1,1); to verify that396

the system does not remain near the stable equilibrium of (1) at (x, y) ≈ (1, 1), a set of397

1,000 simulations of (1) was run with initial condition (x, y, v, T, S) = (1, 1, 0, 0, 0). These398

simulations were again run for the interval t ∈ [0, 10], saving the output from t ∈ [4, 10]. The399

stationary distribution did not display a secondary peak near (1, 1), indicating that the two400

stable equilibria of the full model are largely irrelevant to the dynamics of the system.401

402

5.2. Rare event forecasting403

The previous section examined only the stationary climatological distributions of the three404

models. Within a climate prediction scenario, short-term behavior is also important. Given405

that the climatological distributions differ mainly in their rare event probabilities, a separate406

set of experiments was used to investigate the ability of the models to predict rare events407

over a shorter time interval. The goal was to test how accurately the approximate models408

forecast the probability of the unusually large and small x values over a range of forecast lead409

times. Two trajectories of the system (1) were selected out of the 10,000 discussed above: one410

reaching a value of x ≤ 0.96 and one reaching a value of x ≥ 0.985. These trajectories are411

shown in Fig. 2 panels (a) and (b). Note that the large-x trajectory passes the threshold of412

0.985 approximately half a year before the final time, whereas the small-x trajectory crosses413

the 0.96 threshold only at the last time step. Ensembles of 10,000 independent forecasts for414

all three models were initialized from the true trajectory for a range of lead times out to 2415

years. Thus, for each of the three models a 10,000 member ensemble forecast was initialized416

at t = −2 years and run until t = 0, and another 10,000 member ensemble forecast was417

initialized at t = −1 year and run until t = 0, etc. These ensembles were used to estimate418
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Figure 2. (a) and (b): x trajectories of the full model (1). (c) probability that x > 0.985 at t = 0, and (d) probability
that x < 0.96 at t = 0 for forecasts initialized from the trajectories in (a) and (b), respectively. Note that the time axes
in (c) and (b). are different from each other and from those in (a) and (b).

the probabilities P (x(t = 0) ≤ 0.96) for the small-event case and P (x(t = 0) ≥ 0.985) for419

the large-event case. The probabilities shown in Fig. 2c correspond to the large-x trajectory,420

and those in Fig. 2d correspond to the small-x trajectory. Since the large-x trajectory crosses421

the threshold nearly half a year before the final time, all 10,000 of the forecasts initialized422

at any lead time less than half a year in advance are already above threshold; nevertheless,423

the probability at the final time is less than one because many of the trajectories cross the424

threshold back towards smaller values of x.425

In both cases the forecast by the deterministic model is significantly worse that the other two426

models at all but the shortest lead times. The rare-event probability forecast by the Gaussian427

stochastic model, in contrast, begins to increase from its climatological value at approximately428

the same time that the true forecast probability begins to increase, between 0.8 and 0.6 years in429

advance for the large-x event and around 0.3 years in advance for the small-x event. Although430

the actual probability assigned by the Gaussian stochastic model at relatively long lead times431

is incorrect, the fact that it begins to increase at the right time could still be used qualitatively432

to predict whether the model is getting close to a rare event. Once the probability of a rare433

event increases past about 20%, the Gaussian stochastic model uniformly under-predicts the434

correct probability, despite having over-predicted the climatological probability for x > 0.985.435

For example, with a lead time of about 2.5 months the Gaussian stochastic model predicts the436

large-x event with probability only 53% while the true probability is in fact 67%; with a lead437

time of half a month the Gaussian stochastic model predicts the small-x event with probability438

only 21% while the true probability is 61%. Differences in the small-event and large-event439

predictability for these two cases are probably less related to intrinsic predictability than to440

the fact that the true trajectory remains above threshold for half a year before the forecast441

verification time t = 0 in the large-event case, while in the small-event case the true trajectory442

reaches threshold only at t = 0.443

In summary, the deterministic model is essentially useless for rare-event forecasting, while444

the Gaussian stochastic model is only qualitatively useful, predicting whether a rare event is445

more likely but not with a robust uncertainty estimate.446
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447

6. A model without mean diffusion448

As noted at the end of §3, the averaged effect of the eddies is linear and diffusive. Linear449

diffusive terms are already included in the budgets of heat and salt, with the result that450

the averaged models have only one stable equilibrium unless the eddies are assumed to be451

extremely weak, with velocities on the order of 1 cm/s. If one assumes that linear diffusive452

exchange between the boxes is entirely eddy-driven then one can drop the mean diffusion453

terms from the governing equations of the full model, i.e. equations (1a) and (1b) are changed454

to455

dx =

[
− 1

εT
(x− 1)− Pa(x− y)2x+ 4vT

]
dt+

√
1

εT
σxdWx (9)

and456

dy =
[
1− Pa(x− y)2y + 4vS

]
dt+ σydWy (10)

respectively. The eddy reductions proceed as before, so that the −x and −y terms are similarly457

dropped from the deterministic (5) and Gaussian (7) models. The resulting model is much458

more amenable to multiple equilibria. For P greater than about 0.514 there is a single stable459

equilibrium with x ≈ 1 and y ≈ 0.25. Below this value of P the system undergoes a saddle-460

node bifurcation that creates a pair of equilibria near (x, y) = (1, 1); the saddle then moves461

down towards the original equilibrium, which it joins in a reverse saddle-node bifurcation at462

P approximately 0.301, below which there remains only a single equilibrium. We investigate463

the system at a value of Pe = 32, i.e. P ≈ 0.45, where there are three equilibria: a stable one464

at (.99, .24), a saddle at (1.00, .65), and another stable one at (1.00, 1.11).465

6.1. Ergodicity466

Recall that there are two conditions for ergodicity of hypoelliptic SDEs in Mattingly et al.467

(2002). The first condition is that there is an inner-product norm ‖·‖ such that 〈u,F (u)〉 ≤468

α−β‖u‖2 for some α, β > 0 where u is a vector containing the dependent variables and F (u)469

is the drift. The second condition is that the vectors {ρi, [[F ,ρj ],ρk]} span R5 where ρi, i =470

1, 2, 3 are the columns of the diffusion matrix, and [·, ·] is a Lie bracket. It is straightforward471

to verify that the second condition is met in this model in the same way that it is met in the472

original model (1).473

The first condition is more difficult. We will use the inner product 〈u,v〉 = u1v1 + u2v2 +474

εu3v3 + (2ε/P 2)(u4v4 + u5v5), so we must show that there are α, β > 0 such that475

〈u,F (u)〉 − α+ β‖u‖2 ≤ 0

i.e.476

− α+ y − x(x− 1)/εT − Pa(x− y)2(x2 + y2)− v2 − (2/P 2)(T 2 + S2)

+ β(x2 + y2 + εv2 + (2ε/P 2)(T 2 + S2)) ≤ 0.
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Figure 3. (a) Climatological marginal probability density functions p(y) for the three models without mean diffusion.
Climatological joint probability density functions p(x, y) for (b) Full model, (c) Deterministic approximation, and (d)
Gaussian-stochastic approximation.

The terms involving the eddy variables (v, T , and S) will clearly pose no problem provided477

that β < ε−1. It therefore remains to see whether one can choose α, β such that478

−α+ y − x(x− 1)/εT − Pa(x− y)2(x2 + y2) + β(x2 + y2) ≤ 0.

Consider the behavior along a line through the origin in the (x, y) plane: along any line except479

y = x the function is a quartic polynomial that can be made negative by choosing α sufficiently480

large. Along the line y = x the condition reduces to481

−α+ x− x(x− 1)/εT + 2βx2 ≤ 0.

As long as β < 1/(2εT ) it will be possible to choose α sufficiently large that this condition is482

met. The model without mean diffusion terms is therefore still ergodic. Ergodicity is important483

because it implies that there is a single climatological distribution independent of the initial484

condition; the conditions of Mattingly et al. (2002) further guarantee that the distribution485

collapses exponentially quickly towards the climatological distribution.486

6.2. Numerical experiments487

Ensemble simulations for the three models without mean diffusion were run with 1000 ensem-488

ble members each; all parameters are the same as in §5 except Pe = 32. The deterministic and489

Gaussian approximate models were initialized with x = 1, y = 0.6, while the full model was490

initialized with x = 1, y = 0.65, and v, T, S = 0. After a burn-in of 4 nondimensional time491

units, the simulations were run for 500 more time units, i.e. about 110,000 years. Although the492

models are geometrically ergodic, with distributions collapsing exponentially quickly towards493

the invariant distribution, this was not enough time for the approximate models to reach the494

invariant distribution. These models were then extended for a further 500 time units, during495

which time their distributions converged. The full model was initialized closer to the saddle496

point, so its distribution converged within the first 504 time units.497
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Figure 4. Regime transitions for the three models without mean diffusion. (a) A single y(t) trajectory from the full
system showing jumps between regimes. (b) The probability p01(τ) of a transition from y(t) < 0.5 to y(t+ τ) > 0.8. (c)
The probability p10(τ) of a transition from y(t) > 0.8 to y(t+ τ) < 0.5.

The climatological distributions of the slow variables are shown in Fig. 3. Panel (a) shows498

the marginal y distributions of the three models, while panels (b)–(d) show the joint (x, y)499

distributions. The three models are remarkably similar. Though ε is the same as in the previ-500

ous case, P is smaller. The diffusion correction in the x equation of the Gaussian-stochastic501

approximation has amplitude 4
√

5εP 2x ≈ 0.026 which is smaller than the atmospheric noise502

amplitude σx/
√
εT = 0.1; the atmospheric noise similarly dominates the y equation. As a503

result, the effects of eddy noise are not seen in the equilibrium distributions of the three models.504

505

The noise levels are low enough that the system trajectories make rare transitions between506

the neighborhoods of the two stable equilibria; Fig. 4 panel (a) shows a system trajectory y507

from the full model that jumps between regimes. The rates and paths of these transitions are508

the subject of large deviation theory (Freidlin and Wentzell 2012). The methods of Bouchet509

et al. (2016) to analyze the transitions do not seem to apply directly here because of the510

inclusion of noise forcing in the slow dynamics. In any case, it is not difficult to estimate the511

transition probabilities from simulations. For practical purposes it was convenient to estimate512

the following probabilities p01(τ) = P (y(t + τ) > 0.8 | y(t) < 0.5) and p10(τ) = P (y(t + τ) <513

0.5 | y(t) > 0.8). These transition probabilities are plotted for the three models in Fig. 4514

panels (b) and (c), respectively. The effects of differences in the eddy noise are clear: the515

deterministic model has the lowest transition probabilities; the Gaussian stochastic model has516

higher transition probabilities; the full model has the highest transition probabilities.517

7. Conclusions518

This paper formulates a stochastic two-box ocean model modeled after Stommel’s (1961); the519

model consists of a system of 5 SDEs (1). Previous stochastic Stommel models (e.g. Cessi520

1994, Vélez-Belchı et al. 2001, Monahan et al. 2002, Monahan 2002, Monahan and Culina521

2011), modeled the atmospheric heat and freshwater forcing as Gaussian stochastic processes,522

and the exchange of heat and salt between the boxes as a nonlinear drift term corresponding523

to the large-scale overturning thermohaline circulation. The novelty of the formulation here524

is that a fast, eddy-driven component is added to the the exchange between the boxes. The525

terms modeling the eddy-driven exchange are quadratic products of approximately Gaussian526

random variables; products of jointly-Gaussian random fields were recently found to be an527

accurate model of eddy-driven exchanges in Grooms (2016).528

In more complete and complex ocean models, fast eddy effects are frequently modeled529
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deterministically. Stochastic parameterizations have recently been developed that multiply530

these deterministic eddy parameterizations by Gaussian random fields (Andrejczuk et al. 2016,531

Juricke et al. 2017), which is a popular approach for atmospheric models based on the work532

of Buizza et al. (1999) and Sura et al. (2005). A key benefit of stochastic parameterizations533

in comparison to deterministic ones is the former’s ability to induce realistic variability in the534

resolved scales. Models with realistic variability are needed for making forecasts with robust535

uncertainty estimates, which explains the wide adoption of stochastic parameterizations in536

weather forecasting (Buizza et al. 1999, Orrell et al. 2001, Palmer et al. 2005, Berner et al.537

2017, Leutbecher et al. 2017).538

Using methods of averaging and homogenization for slow-fast systems (Pavliotis and Stuart539

2008, Freidlin and Wentzell 2012, Bouchet et al. 2016), two models were derived approximating540

the evolution of the slow components (the difference in heat and salt content of the two boxes).541

The first model (5) replaces the fast eddy-driven exchange terms by a fixed ‘deterministic’ drift542

term, analogous to the standard approach of deterministic parameterization in more complex543

ocean models. The second model (7) adds an additional multiplicative noise term accounting544

for fast variations in the eddy-driven flux. A suite of simulations of each of the three models545

was used to compare their qualitative behavior in a parameter regime with a single stable546

equilibrium. All three models were then altered by removing an explicit representation of547

diffusion and allowing all diffusive effects to be achieved completely by the eddies. Numerical548

simulations of these models were used to compare their qualitative behavior in a parameter549

regime with two stable equilibria.550

The main results are as follows. There is little qualitative difference in the core of the551

stationary distributions of the full, non-Gaussian model and the Gaussian multiplicative ap-552

proximation. In the regime with a single equilibrium the deterministic model has too little553

variability, but the Gaussian model gives an accurate climatological mean and covariance.554

In the regime with two stable equilibria the climatological distribution of the three models555

is nearly the same. In the regime with two stable equilibria the amplitude of the eddies is556

smaller than in the regime with a single equilibrium, which could perhaps account for the fact557

that the deterministic model is more accurate in the former regime. Observational estimates558

suggest that up to 30% of the variability of the Atlantic Meridional Overturning Circulation559

(AMOC) is driven by ocean eddies, with the rest driven by atmospheric noise (Hirschi et al.560

2013, Sonnewald et al. 2013).561

Though the Gaussian stochastic model gives a good approximation of the core of the cli-562

matological distribution, the rare event probabilities are inaccurate. In the single-equilibrium563

regime there is no clear trend in the behavior: the Gaussian model overestimates rare event564

probabilities on one side of the mean, and underestimates on the other side. This inaccuracy565

manifests for short time, transient behavior too: even with a short lead time, the Gaussian566

model gives inaccurate predictions of the probability of a rare event. Surprisingly, despite567

overestimating the climatological rare event probability for one kind of event, in a rare event568

forecasting configuration the Gaussian model systematically underestimates the rare event569

probability for both kinds of events (i.e. events above and below the climatological mean).570

In the regime with two stable equilibria the rare events of interest are the transitions between571

the two. Despite the fact that the amplitude of the eddy noise in this regime is smaller than the572

amplitude of the atmospheric noise, clear differences were observed in the rates of transition573

from the neighborhood of one equilibrium to another: the deterministic model had the rarest574

transitions, and the Gaussian model still made transitions less frequently than the full model.575

In the single-equilibrium regime, significant differences in the rare-event dynamics of the576

three models were only found in the x variable, which describes the temperature difference577

between the poleward and equatorial boxes. The amplitude of the eddy noise in the salinity578

equation was an order of magnitude smaller than the amplitude of the atmospheric noise, and579

the latter dominated despite the long-tailed non-Gaussian statistics of the noise in the full580
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model. In contrast, the amplitude of the eddy noise in the temperature equation was closer to581

the amplitude of the atmospheric noise, and the effects of non-Gaussianity in the noise were582

evident in the rare-event statistics. In the regime with two stable equilibria the rare events583

are transitions between neighborhoods of the two equilibria, and they are most prominent in584

the salinity rather than the temperature. The amplitude of the eddy noise in this regime is585

smaller than the amplitude of the atmospheric noise by a factor of about 6, but the long-tailed586

non-Gaussianity of the eddy noise is still able to have an impact on the rare event probability.587

The goal of the investigation was to investigate the qualitative impacts of non-Gaussian eddy588

noise of the type observed by Grooms (2016) in a simple model, and to compare to models589

with Gaussian noise and without eddy noise. The extreme simplicity of the model precludes590

confident extrapolation to more complex and comprehensive ocean models. Nevertheless, the591

results suggest that Gaussian stochastic parameterizations in ocean general circulation models592

may be able to successfully produce the day-to-day variability associated with the core of the593

climatological distribution, but that more accurate non-Gaussian models may be needed to594

correctly model rare events. Such rare events include extreme behavior like droughts and595

heat waves, as well as abrupt transitions between climate regimes. The impact of stochastic596

parameterizations on rare event distributions in climate models has only recently begun to be597

investigated (Tagle et al. 2016).598

The qualitative impact of non-Gaussian eddy noise seems to depend on the relative ampli-599

tude of that noise in comparison with atmospheric noise forcing. If the eddy noise is signifi-600

cantly smaller than the atmospheric noise, then it will presumably have little impact on the601

variability of the system. The parameters used here (2) to describe the amplitude of atmo-602

spheric and eddy noise are drawn from the literature, but are necessarily imprecise. Hirschi603

et al. (2013) and Sonnewald et al. (2013) argue on the basis of observations that up to 30%604

of the variability of the Atlantic Meridional Overturning Circulation (AMOC) is driven by605

ocean eddies, with the rest driven by atmospheric noise. Our results suggest that there should606

be qualitative differences between the rare event probabilities of systems with Gaussian and607

non-Gaussian eddy models even for noise as small as 30%.608
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