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Abstract
Power systemplanning aims at ensuring that sufficient supply- and demand-side assets exist tomeet
electricity demand at all times. For a Texas electric power systemwith highwind and solar
penetrations, we quantify how climate changewill affect supply and demand during three types of
high stress periods for the power grid: high demand hours, high net demand hours, and high system
ramphours.We specifically quantify effects on demand, reductions in available thermal capacity (i.e.
thermal deratings), wind and solar generation, and net demand.We estimate each using
meteorological variables fromfive climate change projections (2041–2050) assuming Representative
Concentration Pathway 8.5 and from a reference period (1996–2005). Allfive projections indicate that
climate changewill increase demand by up to 2 GWhduring high demand hours (4%of demand in
the reference period) and increase net demand by up to 3GWhduring high net demand periods (6%
of net demand in the reference period). Allfive projections also indicate thermal deratingswill increase
during high demand andnet demand periods by up to 2 GWh and high net demand rampswill
increase by up to 2 GW.Overall, our results indicate compounding effects of climate change in Texas
will necessitate greater investment in peak andflexible capacity.

Introduction

Power system planning primarily aims at maintaining
system adequacy, or at ensuring that sufficient assets
will be available tomeet future electricity demand at all
times. These assets include demand- and supply-side
resources, such as thermal, wind, and solar generators.
Because of their variability and uncertainty, wind and
solar generation poses new challenges to the planning
process. For instance, planning traditionally focused
on procuring capacity to meet demand in high
demand periods, but increasing wind and solar
penetrations are elevating other high stress periods in
planning (Lew et al 2013,Milligan et al 2017).

A growing consensus indicates climate change will
likely affect the demand for and supply of electricity

(Chandramowli and Felder 2014, Stanton and Des-
sai 2016, Craig et al 2018). In the United States, climate
change will increase the frequency and magnitude of
peak demand primarily because increased ambient air
temperatures under climate change increase air con-
ditioning loads (Dirks et al 2015, Auffhammer et al
2017, Fonseca et al 2019). Climate change will also
decrease available thermal capacity (i.e. increase ther-
mal deratings) particularly in the summertime (van
Vliet et al 2012, Bartos and Chester 2015, Liu et al
2017, Miara et al 2017, Loew 2018), when electricity
demand also peaks in many systems. Climate change
will increase deratings of thermal plants with once-
through cooling using freshwater through increased
water temperatures or reduced water availability (van
Vliet et al 2012, Liu et al 2017), and increase deratings
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of combustion turbines and plants with recirculating
and dry cooling through alteredmeteorological condi-
tions, e.g. increased air temperatures (Bartos and Che-
ster 2015, Loew 2018). Although less certain than prior
impacts, climate change will also likely cause regional
increases or decreases in average annual wind and
solar generation through altered resources, with larger
changes at sub-regional and sub-annual timescales
(Wild et al 2015, Haupt et al 2016, Craig et al 2018,
Carreño et al in review, Karnauskas et al 2018).

Little research has combined these demand- and
supply-side impacts of climate change to understand
their potential aggregate effect on power system plan-
ning. Larsen et al (2017) and McFarland et al (2015)
used long-term planning models to quantify how
increased annual and peak demand and decreased
available thermal capacity alter power plant invest-
ments and operations across the United States by
2050. Tobin et al (2018) estimated aggregate multi-
year changes in wind, solar, hydropower, and available
thermal capacity by country in Europe by end of cen-
tury. Parkinson and Djilali (2015) used a long-term
planning model to optimize generator builds given
possible increases in hydropower generation in British
Columbia by 2050. Notably, these studies did not
jointly quantify climate change impacts on electricity
demand, thermal deratings, and wind and solar gen-
eration, which will be crucial to planning in the high
wind and solar penetration power systems expected by
midcentury.

Here, we assess how climate change might affect
power system planning by quantifying electricity
demand and supply during three high stress periods
for the power system: high demand hours, high net
demand hours, and high system ramp hours. We con-
duct our study on a Texas power system with high
wind and solar penetrations of 26% and 23% of total
installed capacity, respectively. We estimate synchro-
nous electricity demand, thermal deratings, wind and
solar generation, and net demand in a reference period
(1996–2005) and under five climate change projec-
tions under Representative Concentration Pathway
(RCP) 8.5 bymidcentury (2041–2050).

Methods

Weather variables under reference period and
climate change projections
To estimate electricity demand, thermal deratings, and
wind and solar generation in a reference period and
under climate change, wefirst obtainweather variables
for a reference period (1996–2005) and five climate
change projections (2041–2050) under RCP 8.5.
Among RCPs, RCP 8.5 has the greatest projected
warming by end of century, so we select it to estimate
an upper bound on climate change impacts. However,
RCPs 4.5, 6.5, and 8.5 result in similar projected

warming throughmidcentury (Stocker et al 2013), our
period of analysis.

We use highly spatially and temporally-resolved
weather variables for the reference period and climate
change projections fromCarreño et al (in review), who
generate those variables using the Weather Research
and Forecasting (WRF)model version 3.8, a numerical
weather prediction model (Skamarock et al 2008).
Carreño et al configured WRF by centering its grid at
31.00°N and 100.00°W and using 340 points in the
latitudinal and longitudinal directions spaced 4 km
apart (see supplemental information available online
at stacks.iop.org/ERL/15/024002/mmedia (SI)
section SI.1 for domain). To better estimate para-
meters that drive solar generation, they configured
WRF with the Rapid Transfer Radiative Model
(RRTM) for longwave radiation and activate direct
aerosol effects in WRF with high-resolution climatol-
ogy of aerosol optical depth at a 550 nm wavelength
fromWRF-Solar (Jimenez et al 2016).

To generate atmospheric variables for the refer-
ence period, Carreño et al used data from the North
American Regional Reanalysis (NARR) (Mesinger et al
2006) to specify WRF’s boundary conditions every 6 h
from 1995 through 2005. Since we used 1995 as a spin
up year, we exclude it fromour analysis.

To generate atmospheric variables under climate
change projections, Carreño et almodifiedNARR data
from the reference period using Global ClimateModel
(GCM) output dynamically downscaled with the
Regional Climate Model version 4 (RegCM4) (Giorgi
et al 2012), then used that modifiedNARR data to spe-
cify WRF’s boundary conditions every 6 h. Thus, to
generate climate change projections, Carreño et al
used two dynamical downscaling steps, in each of
which a higher-resolution atmospheric model
(RegCM4 and WRF in the 1st and 2nd steps, respec-
tively) was forced by time-varying boundary condi-
tions that were based on a coarser-resolution model
(GCM and RegCM4 in the 1st and 2nd steps, respec-
tively). To run WRF for climate change projections,
Carreño et almodified 6 h NARR sea surface temper-
ature (SST) and atmospheric temperature and moist-
ure on a cell-by-cell basis at all levels. To do so, they
first calculated average monthly changes between
1995–2005 and 2040–2050 for each year and variable
for RCP 8.5 from an ensemble of five GCMs
(ACCESS1-0, CCSM4, IPSL-CM5A-LR, MPI-ESM-
MR, and GFDL-ESM2M) dynamically downscaled
with RegCM4, then disaggregated these average
monthly changes via linear interpolation to 6 h chan-
ges. Thus, to each unique 6 h NARR SST and atmo-
spheric temperature and moisture value they added a
unique 6 h interpolated RegCM4 value. The five selec-
ted GCMs captured the range of annual mean pre-
cipitation projections in Texas across 11 GCMs
dynamically downscaled with RegCM4 by Ashfaq et al
(2016).
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Carreño et al validated wind and solar resources in
our reference period against high-resolution wind and
solar integration datasets (Draxl et al 2015, Sengupta
et al 2018) and against two long-term observed data-
sets from Texas. Validation indicated our reference
period had similar errors as the integration datasets for
global horizontal irradiance and wind speed relative to
the observed data. Validation also indicated our refer-
ence period tended to underestimate wind speeds and
global horizontal irradiance and overestimate direct
normal irradiance. Averaging across years from our
reference period to climate change projections, Car-
reño et al found average surface temperatures
increased by 0.5 °C–2.3 °C across Texas and average
wind and solar capacity factors changed by 1.3%–

3.5% and −0.6% to 2.5%, respectively, across Texas.
Formore details, see Carreño et al (in review).

Overall, this process generates ten years of hourly
time series of atmospheric and solar irradiance vari-
ables fromWRF for 4× 4 km grid cells covering Texas
for one reference period and five climate change pro-
jections. The reference period corresponds to
1996–2005 meteorology, while each climate change
projection corresponds to 1996–2005 meteorology
superimposed with climate change for 2041–2050
under RCP 8.5 from one GCM dynamically down-
scaledwith RegCM4.

Estimating electricity demand, thermal deratings,
andwind and solar generation
To calculate how climate change affects electricity
demand, thermal deratings, and wind and solar
generation, we estimate each on an hourly basis using
WRF outputs for the reference period and five climate
change projections. For our study system, we use the
Electric Reliability Council of Texas (ERCOT), which
serves 90% of electric demand in Texas (Electric
Reliability Council of Texas 2017a). Given hydro-
power’s small installed capacity in ERCOT (less than
1% of total installed capacity (Electric Reliability
Council of Texas 2017b)) and limited research quanti-
fying climate change impacts on the transmission
network, we exclude hydropower and transmission
fromour analysis.

Electricity demand
Electricity demand has a strong nonlinear dependence
on ambient air temperature (Bramer et al 2017, Wang
and Bielicki 2018, Fonseca et al 2019): increased air
temperatures tend to increase demand for air con-
ditioning except at low temperatures, when increased
air temperatures reduce demand for electric heating.
To capture this nonlinear relationship, we estimate
hourly electricity demand (D (MWh)) as a function of
air temperature (T (°C)) using a piecewise linear
regression model that enforces continuities at its
breakpoints (see SI.2.3) (Fonseca et al 2019):

( ⁎ ) ( )å a d g b= + + + +
=

D T , 1t
i

N

i i t t t t
1

,

where t and i index hours and piecewise linear
segments, respectively; N=number of piecewise
linear segments (provided below); α= slope of the
relationship between temperature and demand
(MWh/°C); δ=fixed effect for all possible combina-
tions of hour of day, weekday versus weekend, and
season (MWh); γ=fixed effect for year (MWh); and
β and ε are intercept and error terms, respectively
(MWh). Time fixed effects δ and γ capture systematic
changes in electricity demand across days (e.g. demand
tends to peak in early evening as people arrive home),
weeks (e.g. demand tends to be greater on weekdays
thanweekends due to high commercial and residential
consumption), seasons (e.g. Texas is a summer peak-
ing season), and years (e.g. due to long-term climatic
variability and fuel price variability) (Fonseca et al
2019).

To isolate the impact of climate change on
demand, we ignore all other potential demand impacts
over our study period. Including interactions between
temperature and relative humidity within each seg-
ment only marginally improves our regression’s fit, so
we use our simpler and clearer model. Other approa-
ches, e.g. heating and cooling degree days, can forecast
demand under climate change (Sailor and Pav-
lova 2003), but at coarser temporal resolution than
needed here.

We obtain historic hourly demand for ERCOT
divided into eight weather zones for 1996 through
2005 excluding 2001, for which no demand data pub-
licly exists (Electric Reliability Council of Texas 2018).
To better capture local demand responses to air temp-
erature, we fit equation (1) separately for each weather
zone. To fit each regression, we regress historic hourly
binned demand against hourly WRF air temperatures
from the relevant weather zone for all 9 years in the
reference period (SI.2) (Fonseca et al 2019). By regres-
sing historic demand against WRF outputs instead of
against historic meteorology, we avoid potential biases
in WRF outputs relative to historic meteorology that
could bias our regression results (Fonseca et al 2019).
Based on the relationship between demand and WRF
air temperature in each weather zone, we use the fol-
lowing piecewise segments in equation (1) for each
weather zone (in degrees Celsius): [−18.44, 10], (10,
15], (15, 20], (20, 25], and (25, 42.67], where −18.44
and 42.67 are the minimum and maximum tempera-
tures in our dataset. In fitting equation (1) in each
weather zone, we use the temperatures closest to each
weather zone’s largest demand, which we assume is
the largest city (SI.2). In-sample R-squared values of
our fitted regressions range from 0.76 to 0.85, while
cross-validation indicates that in-sample and out-of-
sample root mean square errors of predicted demand
are similar (SI.2).

With the fitted regressions, we estimate hourly
demand in each weather zone for all nine years of the
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reference period and of each climate change projec-
tion using hourly WRF air temperatures, then sum
hourly demand across weather zones to estimate
hourly ERCOT demand. The correlation between
hourly observed and predicted ERCOT demand in the
reference period is 0.93.

Thermal deratings
Thermal power plants’ vulnerability to deratings (or
reductions in available capacity) depend on the type of
power plant and cooling technology (see Introduc-
tion). We calculate deratings of natural gas combus-
tion turbines (Bartos and Chester 2015) and of coal-
and other gas-fired generators with recirculating and
dry cooling systems (Loew 2018) as linear functions of
air temperature, relative humidity, and air pressure
(see SI.3). We do not quantify deratings for generators
with once-through cooling for two reasons. First, strict
environmental regulation enforcement largely drives
once-through cooling deratings (Henry and Prat-
son 2016, Liu et al 2017, Yearsley et al 2017), but
enforcement is unlikely when power system reliability
is at stake. Second, once-through cooling is phasing
out nationwide (Loew 2018), so has little relevance to
midcentury analyses.

To estimate the impact of climate change on ther-
mal deratings, we calculate thermal deratings for the
2017 ERCOT generator fleet (Electric Reliability
Council of Texas 2017b) in the reference period and in
each climate change projection usingWRF output and
linear equations. By using the 2017 generator fleet, we
ignore the effects of continued thermal plant retire-
ments and any adaptation measures taken to reduce
the vulnerability of existing thermal generators. Thus,
our research likely provides an upper bound on (i.e.
pessimistic estimate of) how climate change will affect
thermal deratings. Future research should forecast
interaction between climate change, thermal derat-
ings, and thermal generator fleet changes.

Since recirculating cooling is largely replacing
once-through cooling, we model deratings for gen-
erators with once-through cooling as if they had recir-
culating cooling. Table 1 provides the number and
total installed capacity of generators for which we esti-
mate deratings by plant and cooling type. We estimate
deratings for each generator using relevant variables,
which vary by plant and cooling type (SI.3), from the
nearest available WRF output. Given the hot Texas

climate, we assume cooling system designs that are
robust to high air temperatures (Loew 2018), but test
the sensitivity of our results to more and less robust
designs (SI.3).

Wind and solar generation
To isolate climate change impacts on wind and solar
generation, we calculate generation by the same wind
and solar generator fleet in the reference period and in
each climate change projection. Given expected
growth in wind and solar installed capacity and our
midcentury timeframe, we use a high wind and solar
generator fleet with wind and solar installed capacities
of 35 and 31.5 GW (26% and 23% of total installed
capacity), respectively, and energy penetrations of
25% and 15%, respectively. Absent climate change,
studies in other parts of the US indicate that this level
of renewable penetration can be integrated from a
technical perspective, but doing so might require
market design reform and investment in transmission
and flexible assets (Hand et al 2012, Bloom et al 2016).
As of July 2019, ERCOThas 22 and 1.8 GWof installed
wind and solar, respectively (ERCOT 2019). We site
this wind and solar capacity at locations of wind and
solar plants deployed by the Regional Energy Deploy-
ment System (Cohen et al 2019), a capacity expansion
model, for a similar wind and solar penetration
scenario. Generally, our wind plants are sited in the
Panhandle, Central, and Southern Texas, while our
solar plants are sited in the Panhandle, Central, and
Houston areas (see SI.4 for map). In the reference
period, the wind and solar generator fleets have
average fleet-wide capacity factors of 0.39 and 0.18,
respectively, indicating they are sited in high quality
resource areas.

To estimate hourly electricity generation by each
wind and solar plant in the reference period and cli-
mate change projections, we input WRF outputs into
the System Advisor Model (SAM) (US National
Renewable Energy Laboratory 2017), which includes a
wind and solar performance model. Specifically, we
input into SAMhourly air temperature, wind speed (at
10 m), direct normal irradiance, and direct horizontal
irradiance from WRF to estimate hourly solar elec-
tricity generation. In so doing, we capture the effect of
temperature on solar PV generation. To estimate
hourly wind electricity generation, we input into SAM
wind speed, air pressure, and air temperature (all at

Table 1.Number and installed capacity of generators in our thermalfleet by plant type and cooling technology, which drive a generator’s
vulnerability to deratings, and cooling technology we use to calculate deratings. ST, CC, andCT stand for steam turbine, combined cycle,
and combustion turbine, respectively. OT, RC, andDC stand for once-through, recirculating, and dry cooling, respectively.

Plant type Cooling technology

Number of

generators

Total installed capacity of gen-

erators (GW)
Cooling technology used to calculate

deratings

Coal ST None/OT/RC/DC 0/0/25/0 0/0/15.5/0 RC/RC/RC/DC

Gas ST None/OT/RC/DC 6/15/19/0 0.2/4.4/5.8/0 RC/RC/RC/DC

GasCC None/OT/RC/DC 14/8/61/10 2.9/3.1/2.5/2.3 RC/RC/RC/DC

GasCT NA 67 4.6 NA
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100 m) from WRF. We assume fixed tilt solar panels
tilted at latitude and IEC-2 composite wind turbines at
100 m hub height and with 90 m rotor diameter and
use the nearest WRF output to each wind and solar
plant.We ignore wake effects for wind generation.

Defining high stress periods
We quantify the effect of climate change on demand,
thermal deratings, and wind and solar generation
during three types of high stress periods for the power
grid: high demand, high net demand, and high system
ramps. Net demand equals demand plus thermal
deratings minus wind and solar generation, which we
calculate on an hourly basis using the synchronous
time series generated above. System ramps equal the
change in demand or net demand between each pair of
hours. Upward ramps typically pose greater opera-
tional challenges than downward ramps, as excess
renewable generation can be curtailed to meet the
latter. Consequently, we quantify system ramps as
upward changes in demand or net demand on an
hourly basis, the temporal resolution of our data.

To analyze patterns in demand- and supply-side
impacts of climate change, we define ‘high’ as the top
20 h values per year, e.g. high demand periods are the
hours with the top 20 demand values in each year.
ERCOT also uses top 20 h in planning, for the calcul-
ation of wind and solar capacity values (Electric Relia-
bility Council of Texas 2019). We find similar results
when defining ‘high’ as the top 10 and 30 h values
annually (SI.5).

Power systems must continually balance supply
and demand. High demand stresses power grids by
requiring utilization ofmost of their installed capacity.
High net demand stresses power grids by requiring
utilization of most of their installed dispatchable capa-
city, as net demand already accounts for non-dis-
patchable generation (namely wind and solar
generation and thermal deratings). High net demand
periods poses a particular challenge to high wind and
solar systems because wind and solar might displace
dispatchable capacity. Because net demand factors out
wind and solar generation, high net demand rarely
coincides with high demand. Finally, high system
ramps stress power grids by requiring utilization of
most of their installed flexible capacity, or capacity
that can quickly respond to changes in supply or
demand.

Results

For each high stress period, we first quantify demand,
thermal deratings, wind and solar generation, and net
demand (where relevant) in our reference period, then
quantify the effect of climate change on each. Since
demand increases annually over our reference period
(figure 1), we treat each year as an independent
observation in our analysis and compare median

climate change effects across the nine years in each
climate change projection.

Highdemand hours
In our reference period, demand varies from 46–47
GWh to 53–54 GWh across years (figure 1) and high
demand hours (i.e. the top 20 demand hours
annually). Also during these hours, thermal deratings
range from 1–5 GWh across years (which corresponds
to 2%–7% of total thermal capacity) and wind plus
solar generation ranges from 17 to 45 GWh with large
variability between andwithin years.

For each climate change projection, we quantify
the median climate change impact on demand, ther-
mal deratings, and wind and solar generation in each
high demand hour by taking themedian impact across
years for each hour (figure 2). During high demand
hours, all five climate change projections indicate cli-
mate change will increase median demand by 1–2
GWh (up to 4% of demand in the reference period).
We do not find climate change will change when high
demand occurs, typically between June and August in
the late afternoon (2–4 p.m.). During high demand
hours, all five climate change projections also indicate
climate change will increase median thermal deratings
by 0–2 GWh (up to 40% of deratings in the reference
period) (figure 2). Increased demand and thermal
deratings compound each other by reducing thermal
plants’ potential contribution to meeting the increase
in demand during high demand periods. Increases in
demand and thermal deratings also occur across high
demand hours in individual years (SI.6).

No consistent impact of climate change onwind or
solar generation during high demand hours emerges
across climate change projections or across high
demand hours within each projection. Median chan-
ges in wind generation range from a 5 GWh decrease
to 7 GWh increase while median changes in solar gen-
eration range from a 5 GWh decrease to 3 GWh
increase across climate change projections and high
demand hours. Greater variability in wind and solar
generation changes under climate change occur across
high demand hours within each year (SI.6).

Highnet demand
In the reference period, net demand ranges from
31–35 GWh to 40–46 GWh across years during high
net demand hours (figure 3). High net demand
generally coincides with moderate demand (36–53
GWh), low wind and solar generation (less than
17 GWh), and low thermal deratings (less than 3
GWh). Consequently, high net demand hours do not
coincidewith high demand hours.

Across all five climate change projections, we find
climate change will increase median net demand by
0.5–3 GWh in high net demand hours (figure 4), or by
up to 6% of median net demand in the reference per-
iod (i.e. the median across years for each high net
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demand hour) (figure 3). We found a similar increase
of 1–2 GWh in demand during high demand hours
under climate change (figure 2). We do not find cli-
mate change will shift when high net demand occurs,
typically in the early evening (6–8 p.m.) between June
and September.

In high net demand periods, we find climate
change will increase net demand primarily through
increases in demand and thermal deratings (figure 4).
Net demand increases in each high net demand hour,
but contributing increases in demand and thermal
deratings do not occur in each high net demand hour,
indicating their compounding nature. Climate change
will have a mixed impact on wind generation and little
impact on solar generation during high net demand
hours (figure 4). High net demand tends to occur in
the early evening, when solar generation is small.

High system ramps
In the reference period, high system ramps in demand
range from 3.5 to 5 GW while high system ramps in
net demand range from 9 to 17 GW across years
(figure 5). Greater ramps in net demand (relative to
just demand) are driven primarily by greater variability
introduced by wind and solar power; deratings have
little effect on high system ramps. Thus, variability in
wind and solar generation increases system flexibility
requirements from roughly 5 to 17 GW in our
reference period.

We quantify climate change impacts on high sys-
tem ramps as themedian change in high hourly system
ramps across years in each climate change projection.
We examine high system ramps in demand, demand
plus thermal deratings, and net demand. All five cli-
mate change projections indicate climate change will
decrease the median of high system ramps in demand
by up to 0.1 GW (up to 3% of reference period values)
(figure 6). Conversely, all five climate change projec-
tions indicate climate change will increase the median
of high system ramps in demand plus thermal derat-
ings by up to 0.2 GW (up to 6% of reference period
values). Climate change has larger and more variable
effects on high system ramps in net demand. Specifi-
cally, all five climate change projections indicate cli-
mate change will increase the median of high system
ramps in net demand by up to 2 GW (up to 10% of
reference period values).We find similar results for 4 h
ramps (SI.7).

Discussion

This paper analyzes how climate change might affect
power system planning at high wind and solar
penetrations. We quantified climate change effects on
supply (specifically thermal deratings and wind and
solar generation) and demand during three types of
high stress periods for the power system: high demand,
high net demand, and high system ramps. To quantify

Figure 1.Demand, wind plus solar generation, and thermal deratings in high demand hours in the reference period. Lines represent
individual years. Demand is sorted fromgreatest to least, while thermal deratings andwind and solar generation are synchronouswith
sorted demand.
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climate change effects, we compared five climate
change projections representative of 2041–2050
impacts under RCP 8.5 in Texas against a reference
period of 1996–2005.

We found agreement across climate change pro-
jections that climate change will increase demand by
up to 2 GWh in high demand periods (4% of demand
in the reference period), increase net demand by up to
3 GWh in high net demand periods (6% of net
demand in the reference period), and increase system

ramps in net demand by up to 2 GW in periods with
high system ramps in net demand (10% of system
ramps in net demand in the reference period). Our cli-
mate change projections also agree that climate change
will increase thermal deratings by up to 2 GWh (40%
of thermal deratings in the reference period) during
high demand periods.

Our finding that climate change will increase
demand during high demand periods agrees with
prior work (Auffhammer et al 2017, Craig et al 2018,

Figure 2.Climate change impacts on demand, thermal deratings, wind generation, and solar generation during high demand hours.
Each faded line corresponds to a single climate change projection, and indicates themedian climate change impact across years for
each high demand hour. Bold lines are themedian values of those faded lines, i.e. themedian values across climate change projections.

7

Environ. Res. Lett. 15 (2020) 024002



Fonseca et al 2019). As power systems increasingly
shift towards renewable energy, high net demand peri-
ods will become increasingly important in planning.
We demonstrated that climate change will exacerbate
high net demand periods in all five climate change
projections, indicating climate change will increase
peak capacity investment needs in Texas with and
without high wind and solar penetrations. Peak capa-
city refers to firm capacity that can dependably con-
tribute to meeting high demand periods, such as
dispatchable thermal capacity or derated wind and
solar capacity. In other words, our results suggest
shifting towards wind and solar power does not avoid
increased peak capacity investment needs imposed by
climate change. Peak capacity investments aimed at
meeting the increase in high demand due to climate
change might also meet the increase in high net
demand due to climate change, as we found those
increases similar inmagnitude.

We also found agreement among climate change
projections that climate change will exacerbate ther-
mal deratings during high demand and net demand
periods. Consequently, system planners should care-
fully consider potential future deratings when procur-
ing additional capacity to meet expected increases in
demand and net demand under climate change.While
our study focuses on Texas, this will likely affect all US
power systems as their thermal generator fleets and
loads experience warming. An important mediating

factor in how climate change will affect future thermal
fleets is how those fleets evolve over time (Wang et al
2019). We found that shifting to robust cooling tech-
nologies nearly eliminates thermal deratings in high
demand hours (SI.3.2), indicating adaptation poten-
tial within the existing generator fleet (van Vliet et al
2016). Additionally, retiring all coal-fired generators
(without replacement) would reduce thermal derat-
ings by 41%–45% in high demand hours across cli-
mate change projections, indicating the importance of
future changes in the generator fleet composition.

Instead of investing inmore thermal peaking capa-
city, non-generation technologies, such as grid-scale
storage (via batteries or pumped hydropower) or
demand response, could compensate for increased
demand and net demand. In fact, investment in these
types of technologies will likely continue to grow to
handle variability of wind and solar generation and
due to falling costs (Kittner et al 2017). However, cli-
mate change may also affect the performance of these
technologies, which future research should examine.

We also found agreement across our five projec-
tions that climate change will increase system ramps in
demand plus thermal deratings during high demand
ramps and will increase system ramps in net demand
during high net demand ramps. In our study system,
this means system flexibility requirements would need
to increase with and without high wind and solar
penetrations. Increasing wind and solar penetrations

Figure 3.Net demand, demand, wind plus solar generation, and thermal deratings in high net demand hours in the reference period.
Lines represent individual years. Net demand is sorted fromgreatest to least, while demand, thermal deratings, andwind and solar
generation are synchronouswith sorted net demand.
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Figure 4.Climate change impacts on net demand, demand, thermal deratings, wind generation, and solar generation during high net
demand hours. Each faded line corresponds to a single climate change projection and indicates themedian climate change impact
across years for each high demand hour. Bold lines are themedian values of those faded lines, i.e. themedian values across climate
change projections.
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Figure 5.Top 20 high system ramps in demand (left) plus thermal deratings (second to left)minuswind generation (second to right)
minus solar generation (i.e. net demand) (right) per year in the reference period. Lines represent individual years.

Figure 6.Climate change impacts on high system ramps in demand (left) plus thermal deratings (second to left)minuswind
generation (second to right)minus solar generation (i.e. net demand) (right). Faded lines aremedian values across years for each
climate change projection. Bold lines are themedian values of those faded lines, i.e. themedian values across climate change
projections.

10

Environ. Res. Lett. 15 (2020) 024002



have already pushed some power systems to procure
flexibility products (California ISO 2018). Such pro-
ducts could be used to compensate for increasing flex-
ibility requirements under climate change.
Additionally, we found increases in high demand and
net demand values will likely be larger than increases
in system flexibility requirements, so the same resour-
ces could be used to compensate for both increases if
planning accounts for system flexibility needs (e.g. by
procuring flexible capacity resources). Storage tech-
nologies like batteries are particularly well suited to
meet increased flexibility needs due to their fast
response time.

One limitation of our analysis is that by conduct-
ing our analysis over nine years, we might not capture
decadal variability that could yield more extreme cli-
mate change impacts in some years. Including more
years, e.g. thirty, would better capture long-term cli-
mate variability, which future research should explore.
Other opportunities for future research also exist.
First, we assess climate change impacts on a generator
fleet that was deployed (in the case of thermal units)
and optimized (in the case of wind and solar units)
without considering climate change. Different siting
or technology decisions could mitigate the climate
change impacts we quantified, which future research
should explore. Second, to understand the general-
izability of our results, future research should study
synchronous and highly temporally resolved impacts
of climate change across a broader geographic scope.
Third, future research should consider climate change
impacts on transmission, which we do not capture.
Transmission will play a crucial role in integrating
high wind and solar penetrations through connecting
generators to loads and through enabling sufficient
system flexibility to accommodate their generation
(Bloom et al 2016). By limiting transmission capacities
(Craig et al 2018), climate change could lead to greater
curtailment of wind and solar or inhibit their growth
absent additional transmission investment.

Conclusions

In our study system, we found climate change will
exacerbate periods of high demand, net demand, and
net demand ramps. In response, our study system
would need to invest in more peak and flexible
capacity with and without high wind and solar
penetrations. These increased investment needs are
partly driven by compounding supply- and demand-
side effects of climate change, illustrating the impor-
tance of including both in planning. Given long
lifespans of power system investments, planning
should start incorporating climate change effects to
safeguard the reliability of future power systems.
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