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Abstract   

With appropriate filters, high harmonic generation (HHG) can produce X-ray 

pulses on the attosecond time scale. We formulate a procedure to minimize pulse 

duration in various energy regimes and predict photoionization rates for a number of 

noble gases. Bridging the gap between the theory of high harmonic generation and the 

experimental reality, we seek to support the production of tabletop X-ray sources able 

to probe electron dynamics in inner shells. This thesis builds on the work of other 

researchers in the Ultrafast AMO Theory group, including a novel analytic fitting to 

noble gas potentials, and predictions of the energy spectrum and phases obtained by 

high harmonic generation. Specifically, computational methods (including Crank-

Nicolson) and the single active electron model allow for the solution of the time-

dependent Schrödinger equation and calculation of photoionization probabilities, while 

numerical Fourier transforms enable rapid analysis of filtered HHG spectra. 

 

Keywords: attosecond, photoionization, high harmonic generation, strong-field physics, 

AMO physics, ultrafast 

  



3 
 

Table of Contents   

ABSTRACT .................................................................................................................................................................... 2 

TABLE OF CONTENTS ............................................................................................................................................... 3 

INDEX OF FIGURES .................................................................................................................................................... 5 

INTRODUCTION .......................................................................................................................................................... 6 

1  STRONG-FIELD PHYSICS .................................................................................................................................................... 6 

2 PHOTOIONIZATION ............................................................................................................................................................. 6 

3 THE SINGLE ACTIVE ELECTRON MODEL ......................................................................................................................... 7 

4 HIGH HARMONIC GENERATION ........................................................................................................................................ 8 

METHODS .................................................................................................................................................................. 11 

1 INTRODUCTION ................................................................................................................................................................. 11 

2 STRONG-FIELD PHYSICS .................................................................................................................................................. 11 

3 COMPUTATIONAL QUANTUM MECHANICS AND THE CRANK-NICOLSON METHOD ................................................ 13 

4 GENERATING A GROUND STATE THROUGH IMAGINARY TIME PROPAGATION ....................................................... 14 

5 PHOTOIONIZATION ........................................................................................................................................................... 16 

6 THE SINGLE ACTIVE ELECTRON MODEL ....................................................................................................................... 19 

7 THE HIGH HARMONIC SPECTRUM ................................................................................................................................. 23 

8 FOURIER TRANSFORMS .................................................................................................................................................... 25 

i)  Basic Features ................................................................................................................. 25 

ii) Spectra with Varying Phase ....................................................................................... 26 

iii) Discrete Fourier Transform ....................................................................................... 27 

9 FILTERING THE HHG SPECTRUM ................................................................................................................................... 28 

i)  Gaussian Filters ............................................................................................................... 28 

ii) Un-physical Modifications .......................................................................................... 30 

iii) Fourier Transform ......................................................................................................... 30 

RESULTS ..................................................................................................................................................................... 32 

1 INTRODUCTION ................................................................................................................................................................. 32 

2 FILTERING A TEST SPECTRUM ........................................................................................................................................ 32 

3 HHG FILTERING – 800NM SOURCE .............................................................................................................................. 33 

i)  Constant Phase ................................................................................................................ 34 

ii) Constant Intensity .......................................................................................................... 35 

 iii) True Spectrum .............................................................................................................. 39 

4 HHG FILTERING – AT MID-INFRARED (2UM) WAVELENGTH.................................................................................... 40 



4 
 

 ii) Constant Intensity ........................................................................................................ 42 

iii) True Spectrum ................................................................................................................. 43 

5 PHOTOIONIZATION ........................................................................................................................................................... 44 

 i)  Single Photon Ionization ............................................................................................ 45 

ii) Multi-Photon Ionization .............................................................................................. 46 

DISCUSSION AND FURTHER RESEARCH ......................................................................................................... 49 

BIBLIOGRAPHY ........................................................................................................................................................ 51 

 

  



5 
 

Index of Figures 
 
Figure 1: A Semi-Classical View of high harmonic generation .............................................. 9 

Figure 2: Energy of an Electron in Hydrogen ............................................................................ 12 

Figure 3: HHG Spectrum (800nm Source) ................................................................................. 22 

Figure 4: HHG Phase Difference (800nm Source) ................................................................... 23 

Figure 5: Fourier Transformation of Gaussian Spectrum .................................................... 25 

Figure 6: Fourier Transform of a Gaussian with Frequency-Dependent Phase .......... 27 

Figure 7: Example Filtered Spectrum .......................................................................................... 29 

Figure 8: FWHM Pulse Duration for Test Spectrum ............................................................... 32 

Figure 9: Width Product vs Filter Width ..................................................................................... 33 

Figure 10: Pulse Duration for Constant-Phase Spectrum .................................................... 34 

Figure 11: Pulse Duration for Constant-Intensity Spectrum .............................................. 35 

Figure 12: Width Product vs Filter Width .................................................................................. 36 

Figure 13: Constant Intensity/high-ω phase ............................................................................ 37 

Figure 14: Constant Intensity w/out Cut-Off ............................................................................ 37 

Figure 15: Constant Intensity/Low-ω phase ............................................................................ 38 

Figure 16: Pulse Duration for Real Spectrum ........................................................................... 39 

Figure 17: HHG Spectrum (2μm Source) .................................................................................... 40 

Figure 18: Pulse Duration for Constant-Phase Spectrum (2μm) ...................................... 41 

Figure 19: Pulse Duration for Constant-Intensity Spectrum (2μm) ................................ 42 

Figure 20: HHG Phase (2μm Source) ............................................................................................ 42 

Figure 21: Pulse Duration for Real Spectrum (2μm) ............................................................. 43 

Figure 22: 3x Sin2 Pulse ..................................................................................................................... 44 

Figure 23: Sin2 Pulse ........................................................................................................................... 44 

Figure 24: Types of Sin2 Pulse ......................................................................................................... 45 

Figure 25: Single-Photon Ionization of Hydrogen ................................................................... 45 

Figure 26: Single-Photon Ionization of Hydrogen (Various Envelopes) ........................ 46 

Figure 27: Multi-Photon Ionization of Hydrogen .................................................................... 47 

Figure 28: Multi-Photon Ionization of Hydrogen (Various Envelopes) .......................... 48 

Figure 29: Photoionization of Neon .............................................................................................. 48 

 
  

file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702952
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702953
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702954
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702955
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702956
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702957
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702958
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702959
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702960
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702961
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702962
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702963
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702964
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702965
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702966
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702967
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702968
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702969
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702970
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702971
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702972
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702973
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702974
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702975
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702976
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702977
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702978
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702979
file:///C:/Users/Brynn/Documents/CU/Humanities/Writing/HONR3220%20-%20Thesis%20Seminar/Ran%20Brynn%20Reiff%20Thesis%20-%20Revised%20Copy%20d5.docx%23_Toc416702980


6 
 

Introduction   
1  STRONG-FIELD PHYSICS 

 The field of strong-field ultrafast physics seeks to understand atomic and 

molecular behavior under the interaction with laser pulses on their intrinsic time scale. 

Strong-field lasers have field strengths comparable to the Coulomb interaction between 

the nucleus and electrons; ultrafast research studies electron dynamics on the 

attosecond (10−18 𝑠) time scale. While previously beyond reach, advances in recent 

decades have brought laser pulses with such short durations and high intensities into 

many labs of even moderate size [1]. Thus, a breadth of new opportunities has been 

opened for both theory and experiment to study new phenomena [2]. Under exposure 

to such novel laser sources, the process of atomic ionization acquires greater complexity 

in its own right, even as it becomes a useful tool in developing newer specialized lasers. 

 

 While the inert noble gases are ideal for many experiments, the difficulty of 

efficient theoretical calculations must be overcome. With well-known computational 

methods and a novel analytic approximation, we begin to characterize common 

behavior, such as photoionization for single- and many-electron systems. Opening with 

a general discussion, we will then introduce our methods before turning to the 

application of high harmonic generation (HHG). 

 

2 PHOTOIONIZATION  

 It has long been known that exposure to laser light will ionize atoms, freeing the 

electrons. For weak lasers, perturbation theory can accurately describe many properties 
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of this process. However, in the strong-field regime this approach becomes invalid, 

requiring the use of other methods. In our research, the time-dependent Schrödinger 

equation (TDSE) is solved numerically, allowing for modeling photoionization under a 

wide selection of laser parameters. In particular, we can simulate interaction with 

realistic laser pulses (including frequency and phase distribution).  

 

For the traditional single-photon process – where photon energy (ℏ𝜔) is greater 

than the electron’s binding energy – photoionization probability is simply proportional 

to total laser pulse energy. With high enough laser intensities, however, multi-photon 

ionization can occur, where 𝑛 photons are absorbed and it is their total energy 𝑛ℏ𝜔 that 

exceeds the binding energy. This work involves calculating ionization probabilities for 

both processes via the numerical solution of the TDSE. The method of imaginary time 

propagation allows us to construct the ground state for an electron given a potential 

curve – such as Hydrogen’s simple Coulombic formula or more complex multi-electron 

potentials. Similarly, we can add any temporal form of a laser field, propagate the 

wavefunction in time, calculate the final state, and determine the ionization probability.  

 

3 THE SINGLE ACTIVE ELECTRON MODEL 

 The potential curve for atoms with greater numbers of electrons than Hydrogen 

requires approximation due to the large number of dimensions needed to simulate each 

electron simultaneously. The single active electron (SAE) model is one such 

approximation for noble gases and certain other multi-electron atoms. Various 
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methods, such as density functional theory, allow for the calculation of the ground state 

electron orbitals. Then, we assume that only one electron – usually the outermost – 

interacts with the external field while the others remain in their ground state 

configuration. We consider the other electrons as supplying a static potential, allowing 

for simpler, single-electron, calculations. 

 

While the potential of noble gases previously required point-by-point definition, 

a graduate student in the Ultrafast AMO Theory group, Michelle Miller, has 

systematically fit analytic forms to the numerical density functional theory calculations 

for certain noble gases (He, Ne, Ar, and Kr). Among other applications, her work allows 

me to calculate ionization in much the same way as for Hydrogen. Comparison with 

literature data [3, 4] provides a test for the analytic forms of the potential. In turn, we 

prepare to model ionization from HHG pulses and provide a simple measure useful for 

later research.  

 

4 HIGH HARMONIC GENERATION 

 High harmonic generation (HHG) is a process by which radiation with energy up 

to the X-ray regime can be generated from an infrared driving laser (Figure 1). Atoms 

are subjected to a powerful infrared laser, leading to absorption of multiple photons 

and subsequent ionization. When the laser field reverses direction, the free electron is 

directed back to the nucleus, gaining kinetic energy along the way. When the electron 
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Figure 1: A Semi-Classical View of high harmonic generation 

Single-atom HHG with classical acceleration and quantum tunneling ionization. Taken from [5] 

 

re-enters its original bound state, excess energy is released in the form of a photon 

(Figure 1) [5]. 

 

 The Ultrafast AMO Theory group (particularly Dr. Carlos Hernández-García) has 

worked on calculations of the radiated energy spectrum from HHG and has determined 

that attosecond or shorter pulses can be generated through careful filtering and phase-

matching [6]. 

 Recently, we have begun investigating the time domain laser pulses resulting 

from various Fourier transformed HHG spectra. The ideal case of constant phase across 

all harmonics leads to the shortest pulses, but we must also consider the more practical 

scenario where the phase varies across different energies. To this end, we have 

computed pulses using spectra and phases calculated by Dr. Hernández-García. Applying 

experimentally-feasible filters, we seek to refine the spectrum and reduce the resultant 

pulses to shorter durations. Sampling central energies across the HHG spectrum, we 
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vary the filter width and analyze the resulting pulse duration and shape. In pursuit of a 

general model, connections are made between the initial spectrum (namely its intensity 

profile as well as phase) and the duration of pulses drawn from different regions 

therein. 

 

 Once the shortest pulses have been identified, we aim to combine the different 

aspects of this research. Seeking to understand and characterize these novel pulses, we 

plan to simulate their interaction with various noble gases and calculate the resultant 

photoionization probabilities. 
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Methods   
1 INTRODUCTION 

 We will first briefly review the general procedures for solving the one-electron 

Schrödinger equation beyond the limits of perturbation theory. A discussion of our 

general computational methods is followed by the application to our particular interest: 

photoionization in single- and multi-electron atoms. Turning to high harmonic 

generation, we provide a broader description of the process and the resultant spectrum. 

Beyond computational techniques for filtering the spectrum and converting it into the 

time domain, we include a discussion of our more general methods for extracting 

meaningful results. Finally, the topics are tied together by the study of photoionization 

of multi-electron atoms with HHG attosecond laser pulses. 

 

2 STRONG-FIELD PHYSICS 

 The Time-dependent Schrödinger equation (TDSE) exactly describes the behavior 

of any quantum mechanical system in a state 𝜓: 

Ĥψ(r⃗, t) = iℏ
∂ψ(r⃗⃗,t)

∂t
.       (1) 

For Hydrogen, we fix the nucleus (a single proton) at the origin, define a spatial electron 

wavefunction in terms of r⃗ and apply an electric field E⃗⃗⃗(t). Thus, we have Ĥ = Kinetic 

Energy + Coulomb potential + E-field coupling: 

[
−ℏ2

2me
∇2 −

e2

4πε0|r⃗⃗|
+ eE⃗⃗⃗(t) ∗ r⃗] ψ(r⃗, t) = iℏ

∂ψ(r⃗⃗,t)

∂t
.  (2) 

To simplify the equation, we use Hartree atomic units, where 

ℏ = 𝑚𝑒 = 𝑞𝑒 = 4𝜋𝜀0 = 1 and 𝑐 =
1

𝛼
= 137.  (3) 
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Figure 2: Energy of an Electron in Hydrogen 

Shown is the potential energy of the Coulombic field for an electron in Hydrogen (blue line), the 
ground state energy (red line) and the potential energy when a .1 a.u. electric field is applied (green 
line). Note that electrons with ground state energy are no longer bound with this . 1 𝑎. 𝑢. electric 
field. For weaker fields, the potential energy distortion can result in tunneling ionization.  
 

This is the natural unit system for Hydrogen, with one atomic unit (a.u.) equal to 

the Bohr radius 𝑎𝐵 and twice the magnitude of the ground state energy 𝑅𝑦. In this 

thesis, we define the z-direction to be along the polarization of the electric field, leading 

to the simpler TDSE: 

[
−1

2
∇2 −

1

|r⃗⃗|
+ E(t)z] ψ(r⃗, t) = i

∂ψ(r⃗⃗,t)

∂t
.   (4) 

 

 This equation cannot be solved exactly, but for weak laser fields (in comparison 

to the Coulomb interaction), perturbation theory can give an approximate analytical 

solution.  

 

 As can be seen in Figure 2, an electric field of . 1 𝑎. 𝑢. magnitude (5.14 ×

 1010 𝑉/𝑚) dramatically alters the potential energy curve of a Hydrogen-bound 

electron.  In this strong-field regime, perturbation theory does not apply and we must 

employ other methods. 
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3 COMPUTATIONAL QUANTUM MECHANICS AND THE CRANK-NICOLSON METHOD 

 Stepping away from analytic solutions entirely, we turn to computational 

techniques based on the Crank-Nicolson method. Using a code library written by former 

members of the Ultrafast AMO Theory group, we can solve the TDSE for many systems. 

Wavefunctions are defined at discrete spatial and temporal points on a spatial grid of 

finite size. 

 

 To propagate the wavefunction through a small time step Δ𝑡, we take the 

approximate solution: 

𝜓(𝑡 + Δ𝑡) ≃ 𝑒−𝑖𝐻̂(𝑡)Δ𝑡𝜓(𝑡) ≃
1−𝑖

Δ𝑡

2
𝐻̂(𝑡)

1+𝑖
Δ𝑡

2
𝐻̂(𝑡)

𝜓(𝑡),   (5) 

write the Hamiltonian in a particular coordinate system (e.g., Cartesian as shown here): 

𝐻̂(𝑡) =
−1

2
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2) −
1

√x2+y2+z2
+ zE(t),   (6) 

and approximate the derivatives as finite differences: 

𝜕𝑓(𝑥,𝑡)

𝜕𝑡
≈

𝑓(𝑥,𝑡+𝛥𝑡)−𝑓(𝑥,𝑡)

𝛥𝑡
   and   (7) 

𝜕2𝑓(𝑥)

𝜕𝑥2
≈

𝑓(𝑥+𝛥𝑥)−𝑓(𝑥)

𝛥𝑥
 − 

𝑓(𝑥)−𝑓(𝑥−𝛥𝑥)

𝛥𝑥

𝛥𝑥
=

𝑓(𝑥+𝛥𝑥)−2𝑓(𝑥)+𝑓(𝑥−𝛥𝑥)

𝛥𝑥2
.  (8) 

 

Thus, the Hamiltonian 𝐻̂ becomes an operator depending only on the values of 

𝜓 at points on the grid, leading to a system of linear equations: 

(

𝜓(𝑥0, 𝑦0, 𝑧0, 𝑡1)

𝜓(𝑥1, 𝑦0, 𝑧0, 𝑡1)
…

𝜓(𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁 , 𝑡1)

) = 𝐴 (

𝜓(𝑥0, 𝑦0, 𝑧0, 𝑡0)

𝜓(𝑥1, 𝑦0, 𝑧0, 𝑡0)
…

𝜓(𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁 , 𝑡0)

),  (9) 
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where 𝐴 is a matrix and a function of the Hamiltonian. This system can be solved 

computationally through a variety of methods included in the code library.  

 

Given any initial electronic state, we can determine its behavior for all times. 

Note that extending this procedure to other single-electron systems only requires 

exchanging Hydrogen’s 
1

√x2+y2+z2
 potential term with the target’s potential (such as 

Z

√x2+y2+z2
 for Hydrogenic ions). 

 

4 GENERATING A GROUND STATE THROUGH IMAGINARY TIME PROPAGATION 

 Determining the ground state can be accomplished through a simple procedure, 

called imaginary time propagation (ITP). First, we make a guess for the spatial 

wavefunction, usually consisting of a Gaussian distribution:  

  |𝜓⟩ = 𝑐𝑒−
|𝑟|2

2𝜎 .       (10) 

This state is a superposition of many energy eigenstates: 

  |𝜓⟩ = ∑ 𝑎𝐸|𝐸⟩𝐸 .      (11) 

Left alone in the electric field-free Hamiltonian, the states will oscillate in time: 

  |𝜓⟩(𝑡) = ∑ 𝑎𝐸𝑒−𝑖𝐸𝑡|𝐸⟩𝐸 .     (12) 

Next, we propagate backward in imaginary time: 

  |𝜓⟩(−𝑖Δ𝑡) = ∑ 𝑎𝐸𝑒−𝐸Δ𝑡|𝐸⟩𝐸 .     (13) 

Recall that 𝐸 < 0 for all bound states: 

  |𝜓⟩(−𝑖Δ𝑡) = ∑ 𝑎𝐸𝑒|𝐸|Δ𝑡|𝐸⟩𝐸 ,     (14) 
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and the ground state has the greatest binding energy:  

|𝐸0| > |𝐸𝑒𝑥𝑐𝑖𝑡𝑒𝑑|.       (15) 

So, the ground state term will have the fastest-growing exponential and 

  ∑ 𝑎𝐸𝑒|𝐸|Δ𝑡|𝐸⟩𝐸 ≈ 𝑎𝐸0
𝑒|𝐸0|Δ𝑡|𝐸0⟩, for large Δ𝑡.  (16) 

Finally, we normalize the wavefunction (a simple numerical task). Consider the 

projection onto a given eigenstate: 

  
|⟨𝜓|𝐸⟩|2

|⟨𝜓|𝜓⟩|  
=

𝑎𝐸
2 𝑒2|𝐸|Δ𝑡

∑ 𝑎𝐸
2 𝑒2|𝐸|Δ𝑡

𝐸
≈

𝑎𝐸
2 𝑒2|𝐸|Δ𝑡

𝑎𝐸0
2 𝑒2|𝐸0|Δ𝑡 

=
𝑎𝐸

2

𝑎𝐸0
2

𝑒2|𝐸|Δ𝑡

𝑒2|𝐸0|Δ𝑡 =
𝑎𝐸

2

𝑎𝐸0
2 𝑒2(|𝐸|−|E0|)Δ𝑡   

=
𝑎𝐸

2

𝑎𝐸0
2 𝑒−2|𝐸0−𝐸|Δ𝑡.       (17) 

The ground state projection is simply: 

|⟨𝜓|𝐸0⟩|2

|⟨𝜓|𝜓⟩|  
≈

𝑎𝐸0
2

𝑎𝐸0
2 𝑒−2|𝐸0−𝐸0|Δ𝑡 = 1,    (18) 

while the excited states are suppressed: 

  
|⟨𝜓|𝐸⟩|2

|⟨𝜓|𝜓⟩|  
≈

𝑎𝐸
2

𝑎𝐸0
2 𝑒−2|𝐸0−𝐸|Δ𝑡 → 0   as Δ𝑡 → ∞.   (19) 

 

Thus, after imaginary time propagation and normalization, we are left with only 

the ground state wavefunction. In practice, it is necessary to take many small time steps 

and normalize after each one to ensure accuracy, but the end result is the same. Note 

also that while 𝑎𝐸0
= 0 (i.e., the ground state is not at all contained in the initial guess) 

would lead the ITP method to fail, this would require an astoundingly unlucky guess and 

does not, in practice, occur.  
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 ITP can also calculate excited states, though with less accuracy than for the 

ground state. This requires an iterative method: to determine the first excited state, we 

need the ground state; to find the second, we need the ground and first excited states; 

and so on. When calculating an excited state, we subtract off the projection onto all 

states with greater binding energy at each step. So, the target state has the fastest 

exponential growth and thus dominates. 

 

5 PHOTOIONIZATION 

 In the simplest photoionization scenario, an electron bound to a single proton 

(i.e., 𝐻) absorbs one photon with sufficient energy to ionize (for 𝐻: 13.6 𝑒𝑉). Treating 

the photon explicitly as a particle, if we assume the probability that one photon is 

absorbed is independent of the number of photons (but may depend on, e.g., 

wavelength), then we may use a simple law of probability: the probability of an event 

occurring one or more times within 𝑁 trials is the probability of each individual event 

times the number of trials minus the probability of more than one occurrence: 

  𝑃1+𝑒𝑣𝑒𝑛𝑡𝑠 = 𝑁𝑃𝑒𝑣𝑒𝑛𝑡 − 𝑃2+𝑒𝑣𝑒𝑛𝑡𝑠.    (20) 

For a single-photon process, a single absorption event is sufficient; absorbing additional 

photons merely results in greater electron kinetic energy. If the total probability of 

ionization is low enough that we can ignore multiple absorption double-counting, then:  

  𝑃𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ≈ 𝑁𝑃𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛(𝜔),    (21) 

with 𝑁 equal to the number of photons which may be absorbed (i.e. the number in the 

pulse). Now, the number of photons is itself proportional to the total energy of the 
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pulse. For a given pulse envelope, the energy scales with intensity. We therefore expect 

ionization probability will be directly proportional to intensity: 

  𝑃𝑖𝑜𝑛 ≈ 𝑁𝑃𝑎𝑏𝑠(𝜔) =
𝐸𝑝𝑢𝑙𝑠𝑒

ℏ𝜔
𝑃𝑎𝑏𝑠(𝜔) =

𝑘𝑠ℎ𝑎𝑝𝑒𝐼

ℏ𝜔
𝑃𝑎𝑏𝑠(𝜔) ∝ 𝐼. (22) 

 

 We may also treat light as a wave, and consider the interaction between an atom 

and an electromagnetic field. For electric field strengths small in comparison to the 

Coulombic field (for Hydrogen: 5.14 × 1011𝑉/𝑚 or 1 𝑎. 𝑢.), time-dependent 

perturbation theory applies. I will not repeat the derivation, as it can be found in most 

introductory quantum mechanics texts. The result, however, is simple: 

  𝑃𝑖𝑜𝑛 = 𝑘(𝜔)|𝐸⃗⃗𝑚𝑎𝑥 |
2

= 𝑘(𝜔) ∗ (2𝑐𝜇0)𝐼 ∝ 𝐼.   (23) 

 

 In either treatment, we expect the probability of single photon ionization will be 

proportional to laser intensity. In both cases, we assume that the intensity is “small” so 

that: there are few enough photons to ignore multiple absorption; and, perturbation 

theory is valid.   

 

 Now, let us turn to wavelengths too long (corresponding to photon energies too 

low) for single photon ionization. In this case, 𝑛-photon absorption occurs with 

𝑛ℏ𝜔 > 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔. Since electrons are restricted to discrete energy levels, multi-photon 

ionization cannot normally occur by steps – the electron must absorb all 𝑛 photons in a 

“very short” period. There remains some debate as to whether the photons must be 

absorbed simultaneously, but for this thesis the distinction is not important.  
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Higher-order perturbation theory dictates that 𝑃𝑖𝑜𝑛 ∝ 𝐼𝑛, but this requires a 

weak field. In practice, multi-photon absorption is usually observed at 𝐼 ≳ 1013𝑊/𝑐𝑚2, 

corresponding to field strengths greater than 1% of the proton-electron attraction. 

Thus, perturbation theory is not valid for multiphoton ionization. I am aware of no 

derivation, but studies (both computational and experimental) on particular multi-

photon ionization processes have consistently observed that: 

 𝑃𝑛−𝛾 𝑖𝑜𝑛 ∝ 𝐼𝑘, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ ℝ.    (24) 

The relationship (if any) between 𝑘 and 𝑛 has not been discovered, though it is clear 

that 𝑘 is not proportional to 𝑛. 

 

 In this thesis, we calculate photoionization by computational solution of the 

TDSE. The electric field of a laser is treated as a wave through the E⃗⃗⃗(t) ∗ z⃗ term in the 

Hamiltonian. This has the advantage of treating single- and multi- photon processes 

comparably, without the need for field strength approximations or prior knowledge of 

which process should occur. Given that we can calculate a variety of initial states with 

ITP and propagate them in time, determining the electron-laser interaction becomes 

relatively straightforward. The primary issue is the finite nature of the spatial grid. In 

photoionization, electrons often leave the neighborhood of the source atom at high 

speeds. If we are not cautious, these ionized electrons will reflect in un-physical ways 

when they reach the boundary of our grid.  
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Two popular methods for resolving this boundary issue are described in [7] and 

briefly summarized here. The simpler solution, the masking function method, 

“multiplies the wavefunction by a cosine-based function that smoothly decays from 1 to 

0 in the absorbing region” [7] at the end of each propagation step. This procedure 

absorbs most of the ionized electron wavefunction and suffices when reflection from 

grid boundaries is not of high concern. The second method, Exterior Complex Scaling 

(ECS), must be inserted directly into the propagation calculation. ECS adds a complex 

term to the limits of the axes, resulting in a more robust absorption [8]. The group 

library includes codes for both methods, so we chose to use ECS for all calculations. 

 

Now, we can calculate the cumulative ionization probability as the initial norm 

minus the final (i.e. the percentage of the wavefunction that has left the grid): 

 𝑃(𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛) = |⟨𝜓|𝜓⟩|𝑜𝑓𝑓 = |⟨𝜓|𝜓⟩|𝑖𝑛𝑖𝑡 − |⟨𝜓|𝜓⟩|𝑜𝑛. (25) 

With a normalized initial state, |⟨𝜓|𝜓⟩|𝑖𝑛𝑖𝑡 = 1, and we only need to calculate the on-

grid norm: 

 𝑃(𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛) = 1 − |⟨𝜓|𝜓⟩|.    (26) 

 

6 THE SINGLE ACTIVE ELECTRON MODEL 

 Thus far, our methods have applied generally to any single-electron system with 

a known potential. Unfortunately, this limits us to 𝐻, 𝐻2
+, 𝐻𝑒+, 𝐿𝑖2+, etc., which are 

unsuited to experimentation (due to chemical reactivity, production issues, etc.). 

Unreactive noble gases (𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟, 𝑋𝑒) are preferable, but suffer theoretical 
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challenges. The TDSE solution methods from above can be used with multiple electrons, 

but the Coulombic coupling between electrons dramatically increases the computation 

time required to fully model, e.g., even a two-electron system: 

𝐻̂ = −
1

2
∇1

2 −
1

2
∇2

2 −
𝑍

|r⃗⃗1|
−

𝑍

|r⃗⃗2|
+

1

|r⃗⃗1−r⃗⃗2|
+ E(t)z1 + E(t)z2  (27) 

 

 The single active electron model offers an approximate solution. We assume that 

only one of the electrons interacts with the laser field, while all others remain in their 

initial states. Thus, our active electron experiences a time-independent Coulomb field 

with contributions from the static electrons as well as the nucleus. For our situation of 

interest – noble gases interacting with lasers on a femtosecond or shorter time scale – 

this is a good approximation for the photoionization process. 

 

 Now, the issue becomes determining the multi-electron potential. A variety of 

methods can be used to numerically calculate the effective electron potential [7], but 

these are both theoretically unilluminating and computationally difficult. For this 

reason, a number of researchers have developed analytical fits to the numerical 

potential.  

 
Tong and Lin [10] propose:  

  𝑉(𝑟) = − (
𝑍𝑐

𝑟
+ 𝑎1

𝑒−𝑎2𝑟

𝑟
+ 𝑎3𝑒−𝑎4𝑟 + 𝑎5

𝑒−𝑎6𝑟

𝑟
).  (28) 

𝑍𝑐 is the total atomic charge with the active electron removed (+1 for neutral atoms), 

and 
𝑍𝑐

𝑟
 therefore fits the long-range potential. The exponential decay term (𝑎3𝑒−𝑎4𝑟) and 



21 
 

the Yukawa terms (𝑎1
𝑒−𝑎2𝑟

𝑟
+ 𝑎5

𝑒−𝑎6𝑟

𝑟
) are fitted to the short-range potential including 

the static electrons’ contribution. This model can be fit to observed binding energies 

moderately well, but has little theoretical motivation. The reasoning behind the three 

short-range terms is particularly opaque. 

 

 The Ultrafast AMO Theory group (particularly Michelle Miller) [9] proposes a 

systematic, physically-motivated procedure for constructing fits of the form: 

  𝑉(𝑟) = − (
𝑍𝑐

𝑟
+ 𝑎1

𝑒−𝑎2𝑟

𝑟
+ 𝑎3𝑒−𝑎4𝑟 + ⋯ ).   (29) 

As in Tong’s model, a 
𝑍𝑐

𝑟
 term matches the long-range potential seen by our active 

electron. Exponential terms are non-divergent for small 𝑟 (𝑎3𝑒−𝑎4(0) = 𝑎3) and are used 

to model structure very close to the nucleus. Yukawa terms do diverge at small 𝑟, but 

have the advantage of matching the Coulombic 
1

𝑟
 behavior for mid-range distances (less 

than, e.g., 𝑎2). The number of these short-range terms required depends on the 

principle quantum number, 𝑛, of the atom. Essentially, electronic orbitals add structure 

to 𝑉 at some particular 𝑟𝑛 and require either an exponential term (if it is closely bound 

to the nucleus and 𝑟𝑛 < 𝑎𝐵) or a Yukawa term (if it is further away). One additional 

Yukawa term is required to match overall long-range behavior. In particular, the 

coefficients of all the Yukawa terms plus 𝑍𝑐 should sum to the total nuclear charge.  

 

Beyond the appealing theoretical justification, this system has the advantage of 

enabling iterative fitting for larger atoms. Starting with the parameters for Helium, we 
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Figure 3: HHG Spectrum (800nm Source) 

Shown is the HHG spectrum as obtained from numerical simulations by Dr. Carlos Hernández-García. 
Driving Field: 𝜆 = 800𝑛𝑚, 𝐼 = 6.8 × 1014 𝑊/𝑐𝑚2. Target: 2mm thick He gas at 400 torr.  
Note intensity peaks found at integer multiples of driving photon energy (1.55 eV).  

 

add an appropriate term to match the effect of the 𝑛 = 2 orbitals. The choice of 𝑎5
𝑒−𝑎6𝑟

𝑟
 

or 𝑎5𝑒−𝑎6𝑟 depends on the particular atom. We take this new fit plus a term for 𝑛 = 3 

as an initial guess for the next atom. For instance: 

  𝑉𝑋𝑒
6 𝑇𝑒𝑟𝑚𝑠 

    ~𝑉𝐾𝑟
5 + 𝑉𝑋𝑒,𝑛=5

1   

        ~𝑉𝐴𝑟
4 + 𝑉𝐾𝑟,4

1 + 𝑉𝑋𝑒,5
1   

            ~𝑉𝑁𝑒
3 + 𝑉𝐴𝑟,3

1 + 𝑉𝐾𝑟,4
1 + 𝑉𝑋𝑒,5

1   

                ~𝑉𝐻𝑒
2 + 𝑉𝑁𝑒,2

1 + 𝑉𝐴𝑟,3
1 + 𝑉𝐾𝑟,4

1 + 𝑉𝑋𝑒,5
1    (30) 

 

 With this analytic expression for the potential, we can extend all of our previous 

methods to certain experimentally-viable, multi-electron atoms. The extensive literature 

data then allow us to perform a test of both this thesis’ methods as well as the new 

potentials themselves.  
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Figure 4: HHG Phase Difference (800nm Source) 

Shown are the phase difference of adjacent HHG points (modulo 2π), as obtained in calculation by 
Dr. Carlos Hernández-García.  
 
 

7 THE HIGH HARMONIC SPECTRUM 

 Using an infrared laser (e.g., 800nm, 1.55 𝑒𝑉) to drive high harmonic generation, 

we see a resulting non-linear spectrum, where the intensities of frequencies many times 

that of the source field are not exponentially suppressed. In fact, a plateau structure 

appears, with roughly constant intensities across a wide range of energies (Figure 3). 

Unfortunately, HHG imparts an intrinsic chirp (frequency-dependent phase) to the 

spectrum (Figure 4). As we will see, the plateau structure enables short laser pulses, but 

a broadening effect of the chirp results in longer durations. 

 

 The work to calculate this spectrum was completed by Dr. Carlos Hernández-

García, and the methods are fully described in his thesis [5], so I only briefly outline 

them here. He considers a region (~𝑚𝑚 thickness) of Helium gas at several realistic 

pressures. Characterizing the HHG process involves simulating four steps: 1) multi-
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photon ionization, 2) acceleration, 3) recombination and emission, 4) propagation of 

photons. Steps 1)-3) correspond to the later three stages shown in Figure 1, while Step 

4) involves the photons emitted by different atoms propagating through the gas to the 

edge of the region. The resultant laser spectrum is marked by intensity peaks at odd 

integer multiples of the source field’s energy (called harmonics). 

 

The core theory used for this computation is the strong field approximation 

(SFA). First, the electron’s full Hilbert space is split into two subspaces: Bound and 

Continuum.  The basic SFA assumes that no atomic excitation occurs, so the only 

available bound state is the ground state (1). (To be precise, Dr. Carlos Hernández-

García uses “SFA+” which loosens this assumption.) While the electron is in the 

continuum (2), the effect of the atom’s Coulomb field is ignored. Finally, after ionization, 

the electron is assumed to only recombine when it passes through the location of the 

nucleus (3). This method results in rapid calculation of the spectrum from a single atom. 

Combining the electromagnetic waves generated by many atoms and propagating 

through the source medium (4), the final complex-valued spectrum can be determined 

(Figure 3, Figure 4). SFA (and SFA+) are known to poorly model the lowest harmonics, 

so I use spectra where approximately the first 20 (800nm) or 40 (2μm) harmonics have 

been removed.  
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Figure 5: Fourier Transformation of Gaussian Spectrum 

Shown are the magnitudes of ℎ(𝑡) (blue lines) and 𝐻(𝜔) (black lines), respectively. Note 
that as 𝜎𝜔 increases (right panel), 𝜎𝑡 decreases and vice versa. 
 

8 FOURIER TRANSFORMS 

 I)  BASIC FEATURES 

 Fourier transformation (FT) converts a signal ℎ(𝑡) from the time-domain into the 

frequency (or energy) domain: 

  𝐻(𝜔) = ℱ[ℎ(𝑡)] ≡ ∫ ℎ(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
.   (31) 

Similarly, the inverse Fourier transform converts a frequency-domain signal into the 

time domain: 

  ℎ(𝑡) = ℱ−1[𝐻(𝜔)] ≡
1

2𝜋
 ∫ 𝐻(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
.   (32) 

Unsurprisingly, ℱ−1 is the inverse of ℱ, with ℱℱ−1 and ℱ−1ℱ returning the original 

signal. Also, a signal’s energy content remains constant under the transform: 

  ∫ |ℎ(𝑡)|2𝑑𝑡
∞

−∞
= ∫ |𝐻(𝜔)|2𝑑𝜔

∞

−∞
.    (33) 

 

For the simplest case of a constant signal ℎ(𝑡) =
1

√2𝜋
, the transform returns a delta 

function, and vice-versa: 

  ℱ [
1

√2𝜋
] = 𝛿(𝜔) ℱ[𝛿(𝑡)] =

1

√2𝜋
.   (34) 
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The constant and delta functions can be seen as the limits of the Gaussian spectrum, 

with 𝜎 → ∞ and 𝜎 → 0, respectively. This pattern continues, with the transform of all 

Gaussian pulses being of Gaussian form (Figure 5). In fact, the relation between the 

widths is quite simple: 

  𝜎𝜔−𝑑𝑜𝑚𝑎𝑖𝑛 = 1/𝜎𝑡−𝑑𝑜𝑚𝑎𝑖𝑛,     (35) 

  ℱ [𝑒
−

𝑡2

2𝜎𝑡
2
] = 𝑒−

𝜔2𝜎𝑡
2

2   ℱ−1 [𝑒
−

𝜔2

2𝜎𝜔
2

] = 𝑒−
𝑡2𝜎𝜔

2

2 . (36) 

 

Similarly for general spectra, the characteristic time 𝑡0 is inversely proportional 

to the characteristic frequency 𝜔0. So, there exists a product 𝑡0𝜔0 that depends only on 

the shape of the spectrum and not the energy width (e.g., for Gaussian: 𝜎𝜔𝜎𝑡 = 1). 

 

 II) SPECTRA WITH VARYING PHASE 

 When 𝐻(𝜔) is complex-valued, the Fourier transform becomes more 

complicated. A constant phase carries through: 

   ℱ−1[𝑒𝑖𝜙𝐻(𝜔)] ≡
1

2𝜋
 ∫ 𝑒𝑖𝜙𝐻(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
 

=
1

2𝜋
 𝑒𝑖𝜙 ∫ 𝐻(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
= 𝑒𝑖𝜙ℎ(𝑡).   (37) 

A phase varying linearly with frequency leads to a time-shift: 

  ℱ−1[𝑒𝑖𝜙𝜔𝐻(𝜔)] ≡
1

2𝜋
 ∫ 𝑒𝑖𝜙𝜔𝐻(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
 

=
1

2𝜋
 ∫ 𝐻(𝜔)𝑒𝑖𝜔(𝑡+𝜙)𝑑𝜔

∞

−∞
= ℎ(𝑡 + 𝜙).   (38) 

But, a non-linear phase has no straightforward effect on the time-domain pulse: 
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Figure 6: Fourier Transform of a Gaussian with Frequency-Dependent Phase 

Shown is a comparison of time domain signals from frequency spectra with constant (blue line) 

and varying phase (red line): ℎ𝑏𝑙𝑢𝑒(𝑡) = ℱ−1 [𝑒
−

𝜔2

2𝜎𝜔
2

], and ℎ𝑟𝑒𝑑(𝑡) = ℱ−1 [𝑒
−

𝜔2

2𝜎𝜔
2

𝑒𝑖𝜙𝜔2
], 

respectively. The magnitude of the frequency spectrum (black) is equal for both. Note the 
width of ℎ𝑟𝑒𝑑(𝑡) is greater than that of ℎ𝑏𝑙𝑢𝑒(𝑡) as a direct result of the phase. 

 ex: ℱ−1[𝑒𝑖𝜙𝜔2
𝐻(𝜔)] ≡

1

2𝜋
 ∫ 𝑒𝑖𝜙𝜔2

𝐻(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞
 

=
1

2𝜋
 ∫ 𝐻(𝜔)𝑒𝑖𝜔(𝑡+𝜔𝜙)𝑑𝜔

∞

−∞
=? ?.    (39) 

However, we can note that the (𝑡 + 𝜔𝜙) argument suggests a frequency-dependent 

time-delay. This has the general effect of broadening the pulse in the time domain 

(Figure 6) so that 𝜎𝑡𝜎𝜔 ≠ 1. For complex spectra, the pulse shape may also be affected. 

 

 III) DISCRETE FOURIER TRANSFORM 

 Our research considers a frequency spectrum defined at discrete points, and 

thus the continuous (inverse) Fourier transform described above is not quite 

appropriate. Instead, we use the (inverse) discrete fast Fourier transform (DFFT). For a 

spectrum 𝑋(𝜔𝑗), defined at 𝑁 evenly-spaced frequencies (i.e., 𝜔𝑗 = 𝑗𝑑𝜔 and 

𝑗 = 0,1,2, … 𝑁 − 1),  

  𝑥(𝑡𝑘) = ℱ−1[𝑋(𝜔𝑗)] ≡ ∑ 𝑋(𝜔𝑛)𝑁−1
𝑛=0 𝑒𝑖𝜔𝑛𝑡𝑘,   (40) 
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where 𝑡𝑘 = 𝑘𝑑𝑡 with the same number of points 𝑘 = 0,1,2, … 𝑁 − 1, and with spacing 

𝑑𝑡 =
2𝜋

𝑁𝑑𝜔
.  

The forward DFFT is defined likewise:  

  𝑋(𝜔𝑘) = ℱ[𝑥(𝑡𝑗)] ≡ ∑ 𝑥(𝑡𝑛)𝑁−1
𝑛=0 𝑒−𝑖𝑡𝑛𝜔𝑘.   (41) 

 

Note that ℱℱ−1[𝑋(𝜔𝐽)] = 𝑁𝑋(𝜔𝑗), though other definitions of the DFFT exist 

to preserve normalization. In this work, however, we only concern ourselves with 

relative intensities, and can thus ignore the factor of 𝑁. 

 
 The DFFT approximately retains all of the properties of the continuous FT, 

depending on the frequency sample. Small 𝑑𝜔 is required to accurately reflect the 

frequency spectrum, but we need large 𝑁𝑑𝜔 (thus small 𝑑𝑡) to resolve pulses in the 

time domain. Our 𝑑𝜔 is limited by the spectrum provided, but 𝑁 may be increased – 

without altering the physical data – by padding the end of the spectrum with zeros. We 

found 𝑑𝑡 sufficiently small for our purposes and did not use this technique. The DFFT is, 

of course, calculated computationally [11]. 

 

9 FILTERING THE HHG SPECTRUM 

 I)  GAUSSIAN FILTERS 

 To generate shorter pulses, we apply experimentally-feasible filters to the HHG 

spectra. In particular, we multiply the magnitudes by various Gaussian masks: 

  𝑋𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜔𝑛) = 𝑋0(𝜔𝑛) ∗ 𝑒
1

2
(

𝜔𝑛−𝜇

𝜎𝑓
)

2

.    (42) 
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Figure 7: Example Filtered Spectrum 

The Figure shows the HHG spectrum (black line), obtained as in Figure 3 above. Also shown 
is the spectrum filtered (green line) with a Gaussian filter (red line) with 𝜇 = 121 𝑒𝑉, and 
𝜎 = 7.7 𝑒𝑉 product. 

This is equivalent to filtering the intensities by a filter of proportional width: 

  𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜔𝑛) = |𝑋𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜔𝑛)|
2

= |𝑋0(𝜔𝑛)|2 ∗ (𝑒
1

2
(

𝜔𝑛−𝜇

𝜎𝑓
)

2

)

2

 

  𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜔𝑛) = 𝐼0(𝜔𝑛)𝑒
2

1

2
(

𝜔𝑛−𝜇

𝜎𝑓
)

2

= 𝐼0(𝜔𝑛)𝑒

1

2
(

𝜔𝑛−𝜇

𝜎𝑓/√2
)

2

. (43) 

 

For the 800nm spectrum, we systematically range central energy 𝜇 across every 

harmonic between the intensity cut-offs (29.2 𝑒𝑉, 30.7 𝑒𝑉, … , 147.4 𝑒𝑉) and vary the 

filter width 𝜎𝑓 from 1-25 harmonics (1.54, 3.07, … , 38.38 𝑒𝑉), resulting in 1,950 

separate filtered spectra (ex: Figure 7).  

 

The 2μm spectrum is significantly broader, so we sample 𝜇 every 10 harmonics 

(25.1, 31.3, … , 570.0 𝑒𝑉) and vary 𝜎𝑓 from 5-100 harmonics in steps of 5 
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(3.13, 6.26, … , 62.64 𝑒𝑉), for a total of 1,760 filtered spectra. The precise combinations 

with 1-harmonic steps (88,000 in all) may be completed at some future point; however, 

it is unlikely new physical effects will be revealed. 

 

 II) UN-PHYSICAL MODIFICATIONS 

 In addition to realistic filters of the spectrum, two purely theoretical 

modifications help make sense of the data. Namely, we may set the intensity and/or 

phase to a constant value, before applying the same filters: 

  𝐼𝑐𝑜𝑛𝑠𝑡,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜔𝑛) = 1 ∗ 𝑒
−

1

2
(

𝜔𝑛−𝜇

𝜎𝑓/√2
)

2

       𝜙𝑐𝑜𝑛𝑠𝑡(𝜔𝑛) = 0. (44) 

This allows us to parse the effects of the spectrum’s shape (intensity) and its chirp 

(phase) independently. Performing both modifications simultaneously serves as a test of 

the numerical procedure. 

 

 III) FOURIER TRANSFORM 

 Combining our chosen intensity and phase profile into a complex signal: 

  𝑋(𝜔𝑛) = √𝐼(𝜔𝑛)𝑒𝑖𝜙(𝜔𝑛),     (45) 

we compute the inverse discrete Fourier transform described above: 

  𝑥(𝑡𝑘) = ℱ−1[𝑋(𝜔𝑖)] ≡ ∑ 𝑋(𝜔𝑛)𝑁−1
𝑛=0 𝑒𝑖𝜔𝑛𝑡𝑘 .   (46) 

 

From this time-domain pulse, we calculate the full width at half maximum based on 

intensity: 
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  𝐼𝑚𝑎𝑥 = max𝑘|𝑥(𝑡𝑘)|2 , 𝐼1/2 =
1

2
𝐼𝑚𝑎𝑥,    (47) 

𝑡𝑚𝑎𝑥 ≡ {max𝑘(𝑡𝑘) ∶ |𝑥(𝑡𝑘)|2 ≥ 𝐼1

2

}, 

𝑡𝑚𝑖𝑛 ≡ {min𝑘(𝑡𝑘) ∶ |𝑥(𝑡𝑘)|2 ≥ 𝐼1

2

},     (48) 

  𝐹𝑊𝐻𝑀 ≡ 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛,     (49) 

and we define the pulse duration as 𝐹𝑊𝐻𝑀. 

 

 For a perfect Gaussian pulse, the FWHM duration is proportional to 𝜎: 

𝐼𝑚𝑎𝑥 = max |𝑒
−

𝑥2

2𝜎2|

2

= 1   𝐼1/2 =
1

2
 

𝑥𝑚𝑎𝑥 ≡ {max(𝑡) ∶ |𝑒
−

𝑥2

2𝜎2|

2

=
1

2
}, 

So, 𝑒
−

𝑥𝑚𝑎𝑥
2

𝜎2 =
1

2
 or  −

𝑥𝑚𝑎𝑥
2

𝜎2 = ln (
1

2
) 

𝑥𝑚𝑎𝑥 = 𝜎√ln 2  ( and 𝑥𝑚𝑖𝑛 = −𝜎√ln 2 ) 

𝐹𝑊𝐻𝑀 = 2𝜎√ln 2 ≈ 1.665𝜎.    (50)  

Now, we consider a continuous FT of this Gaussian, and we can find the width product 

𝜎𝜔𝐹𝑊𝐻𝑀𝑡: 

𝜎𝜔𝜎𝑡 = 1   𝜎𝜔𝐹𝑊𝐻𝑀𝑡 ≈ 1.665.   (51) 

This will later become useful for comparison with other cases. 
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Results   
1 INTRODUCTION 

 First, we consider a simple test of our general DFFT procedure. Then, we discuss 

the results related to the High Harmonic spectrum generated from 800nm and 2μm 

driving fields. Turning to the study of photoionization, we again begin with a test – 

single-photon ionization of Hydrogen. This leads into the study of a strong-field process 

– multiphoton ionization. To conclude, we discuss ionization from noble gases. 

 
 
 
2 FILTERING A TEST SPECTRUM 

 As a test of our methods, we first consider the test spectrum with constant 

intensity and phase: 

 
Figure 8: FWHM Pulse Duration for Test Spectrum 

FWHM pulse duration as function of central energy 𝜇 and filter width 𝜎𝑓. 

Note that the color map range (37.5 − 112.5 as) differs from that of all later 
figures (50 − 300 as). 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Intensity and 
phase of test 
spectrum: 
constant from 
0 − 331 𝑒𝑉 
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Figure 9: Width Product vs Filter Width 

Shown is the width product 𝜎𝑓𝐹𝑊𝐻𝑀𝑡 as a 

function of the filter width. In contrast to a 
continuous Fourier transform (black line), the 
width product is not constant for a Discrete 
Fourier transform (blue, red points) 

  𝐼𝑐𝑜𝑛𝑠𝑡,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜔𝑛) = 1 ∗ 𝑒
−

1

2
(

𝜔𝑛−𝜇

𝜎𝑓/√2
)

2

       𝜙𝑐𝑜𝑛𝑠𝑡(𝜔𝑛) = 0. (44) 

In Figure 8, we show the calculated FWHM duration for each combination of central 

energy 𝜇 and filter width 𝜎𝑓. We first note that, as expected, duration decreases as filter 

width increases. Aside from some deviation at low central energies, the duration is 

independent of where we center our Gaussian. These deviations result when our 

Gaussian is cut off by the lower edge of our spectrum (𝐼 is not defined for 𝜔𝑛 < 0).  

 

Another effect of the discrete Fourier transform is the limited resolution. Recall 

that the width product 𝜎𝑓𝐹𝑊𝐻𝑀𝑡 is 1.665 (eq. 45) for the continuous Fourier 

transform. But, for our DFFT, the duration remains constant across a range of 𝜎𝑓. This 

leads to width products varying from 1.3– 2.2 (Figure 9). We do not have the perfect 

analytic result, but come close enough for our descriptive purposes.  

 

3 HHG FILTERING – 800NM SOURCE 

 Assured that our methods are 

sound, we begin analysis of the true HHG 

spectrum. First, we consider the intensity 

spectrum alone by setting the phase to a 

constant zero. Next, we investigate just 

the phase using a constant-windowed 

intensity. Finally, we take the full, true 
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spectrum and phase. The interesting duration features can be resolved by a common 

color scale, ranging from 50 − 300 𝑎𝑠 (note this is different than for the test spectrum). 

For the 800nm spectrum, we have 𝑁 = 4096 data points in the frequency and time 

domains, with resolution of 𝑑𝐸 = .0808 𝑒𝑉, and 𝑑𝑡 =
2𝜋

𝑁𝑑𝜔
≈ 12.50 𝑎𝑠, respectively. 

 
 I)  CONSTANT PHASE 

 Flattening the phase allows us to probe the effects of the intensity distribution 

without worrying about effects due to phase. In Figure 10, we see that the limits of the 

spectrum (~29 − 164 𝑒𝑉) become important, similar to the zero cut-off seen in the test 

spectrum. Unlike the test spectrum, the duration depends on where exactly we center 

the filter, even in the plateau region. This effect remains relatively small (±~25 𝑎𝑠), but 

 
Figure 10: Pulse Duration for Constant-Phase Spectrum 

Same as Figure 8, but for actual intensity distribution and constant phase. 
Note that similar durations are found in regions of constant intensities 
across the harmonics 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
True HHG 
intensity; 
constant 
phase 
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does serve to differentiate sections of the spectrum, especially at mid-range filter 

widths. 

 
 II) CONSTANT INTENSITY 

 The analysis of the HHG phase is both more complex and, as will be seen, more 

significant. Setting the intensity to a constant 1 within the limits of the original spectrum 

reveals an interesting map of the phase effects (Figure 11).  

 
First, let us focus on central energies of ~80 − 120 𝑒𝑉. For tight filters (low 𝜎𝑓), 

the pulses are too long to be of particular interest. As the filter broadens in frequency, 

we see the expected narrowing of our pulse in time. However, the shortest pulses 

appear for 𝜎𝑓~12 𝑒𝑉, with filters wider than this resulting in longer pulses. This 
 

 
Figure 11: Pulse Duration for Constant-Intensity Spectrum 

Same as Figure 10, but for windowed constant intensity and actual phase 
from numerical simulations. Note, in particular, that the duration increases 
for large filter widths 𝜎𝑓. 

 
 
 
 
 

 
 
 
 
 
 

 
 
 

Constant 
intensity from 
29 − 164 𝑒𝑉; 
true HHG 
phase 
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Figure 12: Width Product vs Filter Width  

Comparisons of width products as a function of 
filter width for results with varying phase (green 
points) to those with constant phase (blue points)  
for 𝜆 = 800𝑛𝑚 and a central filter energy 
𝜇 = 100 𝑒𝑉.  

 

contrasts with the behavior for spectra of constant phase. As we take broader frequency 

samples, we also encounter a broader range of phase. This leads to narrowing and 

broadening, respectively, of our time pulse. It is the competition between these effects 

that leads to the behavior in Figure 11.  

This behavior can also be understood through the width product 𝜎𝑓𝐹𝑊𝐻𝑀𝑡. For a 

constant phase Gaussian, this product is roughly 1.67. When the phase varies with 

frequency, we diverge from this Fourier limit. Consider the filters centered at 100 𝑒𝑉 

(Figure 12): for filter widths above ~10 𝑒𝑉, 𝜎𝑓𝐹𝑊𝐻𝑀𝑡 increases quadratically with 𝜎𝑓 

in the case of frequency-dependent phase. We can think of the Fourier transform as 

becoming less efficient when phase variation is present. For constant phase, a constant 

factor relates width in the time and frequency domains. In this case, we may narrow our 

time pulse without limit. With a frequency-dependent phase, widening the frequency 

spectrum leads to a dramatically less efficient transform, setting a lower limit on the 

breadth of our time domain pulse. Note 

that this is not a computational relic, 

but rather an essential feature of the 

mathematics (and similarly, the 

physics). 

 

Considering the high central 

energy region (𝜇 ≳ 120 𝑒𝑉), we see 

similar behavior, though the intensity 
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cut-off plays an 

important role. To 

analyze this 

region, we 

compute two 

additional 

spectrum/phase 

cases. First, while the cut-off is essential to the actual physics, it somewhat obscures 

useful phase information for higher central energies. Thus, in Figure 14, we do not set 

the intensity to zero at the edges of the original spectrum. Note that in the low-𝜇 

regions where we do not have accurate phase information, this un-cut phase 

dramatically (and un-physically) alters the duration profile. However, in the higher 

central energy region of current interest, we see a smooth continuation of the mid-

range 𝜇 behavior. Namely, the duration first decreases as the filter broadens, then rises 

again as we reach higher filter widths. The only difference is the values of 𝜎𝑓. For higher 

energies, the band 

of short pulses is 

thinner and the 

long (> 300 𝑎𝑠) 

pulses appear for 

much tighter filters. 

 

 
Figure 14: Constant Intensity w/out Cut-Off 

Same as Figure 11, but for constant intensity 
(ignoring the cut-off). 
 

 
 

 
 

 
 
Constant intensity 
from 0 − 331 𝑒𝑉;  
true HHG phase 
 

 

 
 

 

 
 

Constant intensity 
from 29 − 164 𝑒𝑉; 
true HHG phase  
above 67.5 𝑒𝑉 
 
 

 
Figure 13: Constant Intensity/high-ω phase 

Same as Figure 11, but for spectra in which 
the large variation of the phase below 67.5 𝑒𝑉 
is suppressed. 
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For the next informative case, we flatten the phase of harmonics below ~67 𝑒𝑉 

(Figure 13). This is the region where phase differences are greatest (Figure 4), and 

there is an interest in analyzing the effect of these rapid changes. Unsurprisingly, for low 

central energies, the effect is dramatic, returning us almost to the test case. Of greater 

import, however, are the effects on high central energy pulses. Comparing Figure 11 

and Figure 13 for 𝜇 ≳ 90 𝑒𝑉, we see almost no difference in pulse durations. The 

presence or lack of phase difference in the lower harmonics is irrelevant when the 

associated intensities are negligible. But, for wide filters centered around 100 𝑒𝑉, we 

observe an interesting effect – the pulses have shorter durations when the low-𝜔 phase 

is included. This counterintuitive effect likely results when the frequency-dependent 

delays arrange to cancel each other out, thus compressing the pulse.  

 
 Turning our attention to the lower central energies, we make similar 

observations. Comparison between the true phase (Figure 11) and that with the higher 

harmonics set to constant phase (Figure 15) leads to interesting insights. In both cases, 

the large phase 

difference found in 

the low harmonics 

results in long 

pulses. However, 

this effect is 

alleviated when we 

 

 
 
 

 
 

Constant intensity 
from 29 − 164 𝑒𝑉; 
true HHG phase  
below 67.5 𝑒𝑉 

 
 

 
Figure 15: Constant Intensity/Low-ω phase 

Same as Figure 11, but the (small) phase 
variations in the high energy part of the 
spectrum are suppressed.  
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broaden the filter to include contributions of less varying phase. But, we see that no 

variance is not, in fact, the ideal case. Shorter pulses are found when the phase is 

allowed to vary somewhat at the edges of the filter. As our central energy approaches 

the region of relatively constant phase, the filter width required to constructively 

incorporate this region decreases (thus the angled band structure). Still, we see an 

eventual turnaround, where broadening the filter results in longer pulses – we include 

too wide a spectrum and the phase works against us. At these large filter widths, 

constant phase is preferable (Figure 15) – even if only in a portion of the target region. 

 
  

 III) TRUE SPECTRUM 

 Taking the full real spectrum, the durations (Figure 16) show a behavior 

surprisingly similar to that of the constant intensity case (Figure 11). While the 𝜇, 𝜎𝑓 

 
Figure 16: Pulse Duration for Real Spectrum 

Shown is the pulse durations obtained for the real HHG spectrum as 
function of  the central filter energy 𝜇 and filter width 𝜎𝑓.  
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Figure 17: HHG Spectrum (2μm Source) 

Shown is the HHG spectrum as obtained from numerical simulations by Dr. Carlos Hernández-García. 
Driving Field: 𝜆 = 2𝜇𝑚, 𝐼 = 4.5 × 1014 𝑊/𝑐𝑚2. Target: 2mm thick He gas at 200 torr.  
Note intensity peaks found at integer multiples of driving photon energy (. 62 𝑒𝑉).  

 
 

dependence is generally smoother, the essential features remain. We have long pulses 

in three regions: {very low 𝜎𝑓}, {low 𝜇, low 𝜎𝑓}, and {high 𝜇, high 𝜎𝑓}. Short pulses can be 

found at {midrange 𝜇, low-mid 𝜎𝑓} as well as in a band from {very low 𝜇, high 𝜎𝑓} to {low 

𝜇, low-mid 𝜎𝑓}. The most noteworthy difference is that the short-duration band for the 

full spectrum covers a wider range of 𝜎𝑓 and includes consistently shorter pulses than 

those of the constant intensity spectrum. In most cases, a perfect Gaussian suffers more 

from phase difference than a spectrum with more complicated structure. For the 

Gaussian, any change must broaden the time pulse, whereas other spectra may benefit 

from a frequency-dependent time-shift.  

 

4 HHG FILTERING – AT MID-INFRARED (2UM) WAVELENGTH 

 Now, we consider the high harmonic spectrum generated from a 2μm source. 
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For the 2μm spectrum, we have 𝑁 = 32768 data points in the frequency and time 

domains, with resolution of 𝑑𝐸 ≈ 0.030 𝑒𝑉, 𝑑𝑡 =
2𝜋

𝑁𝑑𝜔
≈ 4.23 𝑎𝑠, respectively. 

 

 i)  Constant Phase 

 Due to the much greater total energy spread in the 2μm spectrum, we have 

significantly shorter pulses when setting a constant phase. Thus, the duration scale of 

Figure 18 ranges from 21 − 63 𝑎𝑠, so that important features may be seen. Essentially 

the same features as for the 800nm driving field occur; we see a consistent pattern of 

increasing 𝜎𝑓 resulting in decreasing duration. A few deviations appear due to the shape 

of the spectrum, but they are, again, relatively small. 

 

 

 
Figure 18: Pulse Duration for Constant-Phase Spectrum (2μm) 

Same as Figure 10, but for 𝜆 = 2𝜇𝑚. Note shorter scale (21 − 63 𝑎𝑠). 
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Figure 20: HHG Phase (2μm Source) 

Shown are the phase difference of adjacent HHG points (modulo 2π), as obtained in calculation by 
Dr. Carlos Hernández-García.  
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 II) CONSTANT INTENSITY 

 Based on our previous results at 800nm, those for 2μm at constant intensity are 

straightforward to interpret. Centering the filter toward the center of the spectrum 

 
Figure 19: Pulse Duration for Constant-Intensity Spectrum (2μm) 

Same as Figure 11, but for 𝜆 = 2𝜇𝑚. Note that they have the same time scale 
(50 − 300 𝑎𝑠), unlike the figures for the constant phase case. 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Constant 
intensity from 
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true HHG 
phase 
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results in the same dependence of 𝐹𝑊𝐻𝑀𝑡 on 𝜎𝑓: first we see a decrease, then an 

increase as we raise 𝜎𝑓. The phase in the 2μm spectrum remains relatively constant for a 

greater portion of the spectrum (Figure 20), and thus this explains the features over the 

majority of the central energies. We see a hint of the short duration band at low 𝜇, but 

it is less significant than for 800nm HHG (Figure 11).  

 

 III) TRUE SPECTRUM 

 The true spectrum (as obtained from simulations) lowers durations slightly, but 

is otherwise very much like the constant intensity case. The patterns remain intact and 

the shorter pulses still lie on the upper edge of our target durations – the actual 

intensity leaves the shortest pulses unchanged.  

The advantage of the 2μm spectrum over the quite similar 800nm one is the 

 
Figure 21: Pulse Duration for Real Spectrum (2μm) 

Same as Figure 16, but for 𝜆 = 2𝜇𝑚. Note close match to Figure 19. 
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Figure 23: Sin2 Pulse 

Electric Field (red) with sin2 envelope 
(black) and 20 cycles in total duration 
 

 
Figure 22: 3x Sin2 Pulse 

Same as Figure 23, but for a series of three 
pulses 
 

wide array of filters that result in pulses of < 125 𝑎𝑠 duration. We have the choice of 

central energies from 130 − 500 𝑒𝑉 and filter widths as low as 12 𝑒𝑉 or as high as 

25 𝑒𝑉. With relative freedom and precision, we can choose central energies sufficient 

for inner-shell ionization. 

 
5 PHOTOIONIZATION 

 To begin our study of photoionization, we chose simple pulses with either a sin2 

electric field envelope (Figure 23) or a pulse train of three sin2 pulses with the center 

pulse having twice the amplitude (Figure 22). When comparing the two laser pulses, 

we: either match the maximum intensity or match the total energy (Figure 24). These 

choices are separated by a factor of √2, but it is useful to consider both, as certain 

processes depend exclusively on total energy, while others are also affected by 

maximum intensity. We first consider Hydrogen, with lasers of sufficiently low 

wavelength (thus, high energy) that traditional single-photon ionization occurs. We then 

discuss multi-photon ionization – where higher wavelength light can ionize atoms if the 

laser intensity is sufficient that multiple photons are simultaneously absorbed. Finally, 

we turn to ionization of noble gases.  
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Figure 25: Single-Photon Ionization of Hydrogen 

Showni is the ionization probability as a function of peak intensity for sin2 laser pulses 
of 20-cycles at 80nm (corresponding to 15.5 𝑒𝑉) 
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Figure 24: Types of Sin2 Pulse 

Comparison of electric field envelopes (left) and intensities (right) for the cases in which 
the maximum intensity (blue) or the total energy (green) of a three-pulse sequence is 
matched to that of a single pulse (red) 
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 I)  SINGLE PHOTON IONIZATION 

For 15.5 𝑒𝑉 UV light, our photon energy is larger than the Hydrogen binding 

energy (13.6 𝑒𝑉). Thus we expect single photon ionization to dominate and predict 

𝑃𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∝ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦. We do indeed find this to be the case across a wide range of 

intensities (Figure 25). Above 𝐼 = 3 × 1014 𝑊/𝑐𝑚2 (𝑃(𝐼𝑜𝑛) = 45%), we begin to 
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Figure 26: Single-Photon Ionization of Hydrogen (Various Envelopes) 

Same as Figure 25, but including the three pulse sequence lasers with matched energy or peak 
intensity. 

‘saturate’ the atom and the probability of ionization increases more slowly. We note 

that ionization probability does not drop below ~4 × 10−10, regardless of the pulse 

applied. Due to the computational limits, this is the effective zero for Hydrogen in our 

simulations.  

 

For the other envelopes, we see a similar proportionality (Figure 26). Matching 

the total pulse energy leads to very similar ionization probabilities, while intensity peak 

matching results in proportionally lower ionization. 

 

 II) MULTI-PHOTON IONIZATION 

 Turning to photon energies much less than the 𝐻 binding energy, we investigate 

multi-photon ionization. In particular, we choose a 1.55 𝑒𝑉 IR pulse, requiring 

absorption of at least nine photons to ionize. Here, we observe no ionization until 
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Figure 27: Multi-Photon Ionization of Hydrogen 

Same as Figure 25, but for 𝜆 = 800𝑛𝑚 (1.55 𝑒𝑉). 

 

intensities (Figure 27) many orders of magnitude larger than that required for the 

single-photon process above. Then, for a relatively brief intensity range, ionization 

probability is proportional to intensity raised to a certain power – here 𝑃(𝐼𝑜𝑛) ∝ 𝐼6.1. 

We are not aware of a theoretical justification for this particular power, though similar 

values have been reported elsewhere. Above this ‘power law regime,’ the ionization 

probability saturates, and we see a slower increase to 100% ionization probability. 

 
 Looking to the other pulse envelopes, we see the single sin2 pulse more closely 

corresponds to the peak intensity-matching triple pulse sequence than the energy-

matching one (Figure 28). For a multi-photon process, the peak intensity is the deciding 

factor in contrast to the single-photon ionization case. When we match the peak 

intensity, the ionization is naturally more similar, though different by a small factor due 

to the width of the peak. Matching the total pulse energy, we considerably increase the 

peak intensity. Resulting in both larger ionization probability and a somewhat different 

intensity dependence, we also observe partial saturation at a lower intensity. 
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Figure 29: Photoionization of Neon 

Same as Figure 25, but for Neon with 𝜆 = 56𝑛𝑚 (22.1 𝑒𝑉). 
 
 

 
Figure 28: Multi-Photon Ionization of Hydrogen (Various Envelopes) 

Same as Figure 26, but for 𝜆 = 800𝑛𝑚 (1.55 𝑒𝑉). 

 
 iii) Noble Gas Ionization 

 While showing the same qualitative features of single-photon Hydrogen 

ionization, there are a number of interesting factors to be noted for the Neon ionization 

data (Figure 29). First, the calculation takes significantly longer due to the need of a 

finer spatial grid (to capture the more complex potential structure). Even with the fine 
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spacing, the “zero” ionization level, 1.7 × 10−6, is much higher than desired. The data 

fits a power law quite well for all points with probability above the zero-level. However, 

this data does not fit the 𝑃(𝐼𝑜𝑛) ∝ 𝐼 relationship expected given Neon’s outermost 

electron binding energy of 21.5 𝑒𝑉. Instead, we see 𝑃(𝐼𝑜𝑛) ∝ 𝐼1.6, suggesting a multi-

photon process. In fact, the electron energy we calculate for the chosen grid parameters 

is −28 𝑒𝑉, making this indeed a two-photon process. Tests with a finer grid show much 

better agreement (−23 𝑒𝑉 if we halve the spacing), suggesting the issue is not with the 

special form of the potential. Unfortunately, these finer grids result in propagation 

computation times that we deemed unreasonable for this project.  

 

 

 

 

Discussion and Further Research   

 We have seen that simple Gaussian filters can be used to refine high harmonic 

spectra, resulting in pulses on the 100 attosecond scale. These low-duration pulses are 

ideal for probing electron dynamics within atoms and molecules. The HHG spectra for 

an 800nm driving field provides short pulses with energies suitable for valence-shell 

ionization, while the 2μm HHG can supply short pulses with a wide range of higher 

energies suited for inner-shell ionization. In both cases, duration is dominated by the 

variation of the phase in the HHG spectrum, with relatively little dependence on the 

intensity spectrum. 
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 Our solution of the time-dependent Schrödinger equation allows simulation of 

photoionization for a variety of atomic and laser parameters. With Hydrogen, we 

observe single- and multi- photon processes without resorting to perturbation theory. In 

both cases, a simple probability-intensity power law is observed up to intensities of at 

least 1014 𝑊/𝑐𝑚2 (after which expected saturation occurs). Results for different pulse 

envelopes are likewise understood theoretically. Multi-electron systems can be 

approximated through the use of the SAE model and analytic fits, but require long 

computation times to ensure accuracy. 

 In the near-term, we hope to continue to understand the development of the 

phase-pulse duration relationship for HHG spectra. We pursue a more general model for 

other driving laser and target parameters. In addition, attention will be given to the 

shape of time domain pulses, considering possible uses for the non-Gaussian structure. 

Then, we may collaborate with experimental researchers, suggesting procedures and 

comparing theory to their observation. Considering photoionization, we plan to 

optimize our computational methods so that noble gases can be efficiently simulated. 

Likewise, we will analyze ionization due to filtered HHG pulses and constant-phase HHG 

pulses. Hopefully, comparison with more traditional envelopes (sin2, Gaussian) on 

similar time scales will reveal experimentally-visible features particular to HHG pulses.  

   



51 
 

Bibliography  

[1]  “Attosecond science: Recent highlights and future trends,” L. Gallmann, C.  Cirelli, & 

U. Keller, Annual Review of Physical Chemistry, 63, p. 447-469 (2012). 

[2]  “Attosecond physics,” F. Krausz, M. Ivanov, Reviews of Modern Physics 81(1), p. 163-

234 (2009). 

[3]  “Absolute photoionization cross-section tables for helium, neon, argon, and krypton 

in the VUV spectral regions,” J. B. West, G. V. Marr, Atomic Data and Nuclear 

Data Tables 18(5), p. 497-508 (1976). 

[4]  “Atomic subshell photoionization cross sections and asymmetry parameters: 1⩽ Z ⩽ 

103,” J. J. Yeh, I. Lindau, Atomic Data and Nuclear Data Tables 32(1), p. 1-155 

(1985). 

[5]  “Coherent attosecond light sources based on high-order harmonic generation: 

influence of the propagation effects,” C. Hernández García, Ph.D. Thesis 

(University of Salamanca, Spain) (2012). 

[6]  “Zeptosecond high harmonic keV X-ray waveforms driven by midinfrared laser 

pulses,” C. Hernández García, et al., Physical Review Letters 111(3), 033002 

(2013). 

[7]  “Theoretical Analysis and Numerical Simulation of Attosecond Time Delays in 

Photoionization,” J. Su, Ph.D. Thesis (University of Colorado Boulder) (2014). 

[8]  "Absorbing boundaries in numerical solutions of the time-dependent Schrödinger 

equation on a grid using exterior complex scaling," F. He, C. Ruiz, and A. Becker. 

Physical Review A 75(5), 053407 (2007). 

[9] Michelle Miller, unpublished SAE fitting methods (2014-5). 

[10]  “Empirical formula for static field ionization rates of atoms and molecules by lasers 

in the barrier-suppression regime,” X. M. Tong, C. D. Lin, Journal of Physics B: 

Atomic, Molecular and Optical Physics 38(15), p. 2593–2600 (2005). 

[11] Fastest Fourier Transform in the West www.fftw.org  

http://www.fftw.org/

