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For many organisms, foraging for food and resources is integral to survival. Mathematical

models of foraging can provide insight into the benefits and drawbacks of different foraging strate-

gies. We begin by considering the movement of a memoryless starving forager on a one-dimensional

periodic lattice, where each location contains one unit of food. As the forager lands on sites with

food, it consumes the food leaving the sites empty. If the forager lands consecutively on a certain

number of empty sites, then it starves. The forager has two modes of movement: it can either dif-

fuse by moving with equal probability to adjacent lattice sites, or it can jump uniformly randomly

amongst the lattice sites. The lifetime of the forager can be approximated in either paradigm by

the sum of the cover time plus the number of empty sites it can visit before starving. The lifetime

of the forager varies nonmontonically according to the probability of jumping. The tradeoff be-

tween jumps and diffusion is explored using simpler systems as well as numerical simulation, and

we demonstrate that the best strategy is one that incorporates both jumps and diffusion. When

long range jumps are time-penalized, counterintuitively, this shifts the optimal strategy to pure

jumping. We next consider optimal strategies for a group of foragers to search for a target (such

as food in an environment where it is sparsely located). There is a single target in one of several

patches, with a greater penalty if the foragers decide to switch their positions among the patches.

Both in the case of a single searcher, and in the case of a group of searchers, efficient deterministic

strategies can be found to locate the target.
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Chapter 1

Introduction

Virtually all motile organisms must forage for resources such as food, habitats, or mates.

Optimal foraging theory typically examines what strategies best balance search cost with reward [2].

An integral component of foraging is the balance between exploiting the known and/or nearby

resources versus exploring one’s broader environment for new resources [13]. Organisms typically

deplete resources in their immediate vicinity over time [27], unless depletion is slow and resources

are renewable [10]. Thus, organisms often invoke strategies in which they compare the known yield

at their current location with distribution of yields from distant sites [28].

The predictions of theoretical models of foraging strongly depend on the information available

to the forager. If foragers have partial knowledge of the statistical distribution of resources, optimal

foraging strategies are usually straightforward to identify and typically balance an explore/exploit

tradeoff [2, 9]. In contrast, foragers may possess no knowledge of their environment and may be

incapable or unwilling to learn based on their foraging history [5]. Recent models along these

lines study the dynamics of foragers moving in environments organized on a lattice, according to

a random walk. Previous work has examined the effect of making the forager more or less likely

to pursue food [6], making the forager wait before consuming food [3], and giving the forager a

chance not to consume encountered food [22]. In particular, this recent work has studied the

added constraint of starvation, whereby the forager cannot go longer than s steps without food.

Exploration/exploitation tradeoffs are then determined by how search strategy parameters shape

the lifetime of the forager, corresponding to the number of steps until it starves.
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In Chapter 2, we explore a model of a starving forager executing a random walk similar to

that developed in [5, 6]. We consider the movement of a forager on a one-dimensional periodic

lattice with n sites, where each location contains one unit of food. If the forager lands on a site

with food, the forager consumes the food, leaving the site empty. After the forager lands on s

consecutive empty sites, it starves. Since the food is depleted and never regenerated, the forager

will eventually starve, and can survive at most s · n steps, though the mean lifetime T is typically

much less than this upper limit.

Recent analyses have focused on cases in which foragers only move locally, according to biased

or unbiased random walks [3,5,6]. In contrast here, we explore the effects of allowing the forager to

make large jumps. Food is typically distributed heterogeneously in an environment, and animals

can adapt their foraging strategy as such [2]. For example, penguins alternate between foraging

locally on patches of krill and moving ballistically between them [30]. One foraging strategy for

this situation is a Lévy-type movement, where animals combine small-scale movements with long-

distance displacements [1, 17,19,23]. Our model will emulate this type of movement as follows.

Our forager has two modes of movement [Fig. 1.1(a)]: it can either diffuse, by moving with

equal probability to adjacent points on the lattice [Fig. 1.1(b)], or it can jump to a uniformly

randomly chosen site on the lattice [Fig. 1.1(c)]. In particular, we examine a hybridized approach,

where the forager jumps with probability pj , or diffuses with probability 1 − pj [Fig. 1.1(d)].

Providing our forager with both types of movement allows us to consider how much time the

forager should spend exploiting a given location, and how frequently the forager should move to

other locations. We demonstrate that the mean lifetime T of the forager varies non-monotonically

with respect to pj , and the forager’s lifetime is maximized through a mixture of jumping and

diffusion.

This work extends the recent studies of [3, 5, 6] by incorporating long-range motion into

the dynamics of a starving forager. Those previous studies were primarily concerned with how

additional considerations like greed or frugality could affect the lifetime of a starving forager that

moves via local diffusion. Note that in the limit of pj → 0 our model reduces to the basic form of
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(a)

(b)

(c)

(d)

Figure 1.1: Jump-diffusion foraging model parametrized by pj the probability of jumping. (a)
The forager moves to non-adjacent sites with probability

pj
n and to adjacent sites with probability

pj
n

1−pj
2 , accounting for the possibility of diffusion. (b)-(d) Example forager paths (blue lines/dots)

for pj = 0, 1, 0.03. Green represents sites with food, while white represents empty sites.
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those previous models.

Obtaining an explicit formula for the forager lifetime proves difficult, perhaps even intractable.

Thus, we employ a number of alternative methods for gaining insight into how the mean forager

lifetime T depends on model parameters. First, we study separately the two boundary cases of

pure diffusion and pure jumping. In both cases, we can determine an upper bound for the forager

lifetime as the sum of the cover time and survival time, and explicitly derive formulas for the

forager lifetime. This reveals that a diffusive strategy is more advantageous when the survival time

s is longer, whereas a jumping strategy is better for short survival times. Next, we analyze the

jump-diffusion model in a very small environment (with n = 4 food sites) and short survival time

(s = 2), showing mean lifetime is optimized by using a mix of jumping and diffusion. Finally, we

analyze a jump-wait model, where we replace the diffusive behavior with waiting behavior where

the forager remains in the same location until jumping. The qualitative performance of this model

is similar to the jump-diffusion model, suggesting that foragers extend their lifetime by simply not

consuming food when they have recently fed.

We conclude by considering several extensions of our model in which long-range jumps require

more time than diffusion. In this extended model, the non-monotonicity of the forager lifetime in

pj mostly disappears. Typically, the forager does best when enacting a strategy of pure jumping

in these cases. Although, when time penalties scale linearly with distance, pure diffusion becomes

optimal, as most jumps result in death. In either case, a forager’s lifetime can be lengthened by

allowing a mixed jump-diffusion strategy whereby the forager only makes jumps that do not kill

them and diffuse otherwise.

In Chapter 3, we consider the problem of foraging in a ‘patchy’ environment where food is

difficult to come by. This type of search for a hidden target can be applied outside of foraging (for

example in finding a mate or shelter) and is faced by a variety of organisms [4]. A common metric

of the efficiency of a search strategy is the amount of time it takes to find the target [2], so that

the best strategy is the one which minimizes the time spent searching. Search processes frequently

occur in patchy environments where the target can be in specific regions, but is guaranteed not to
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be in the intermediate regions [15,29]. While individual organisms can, and do, search for resources,

efficient search is a problem that is also important to coordinated groups of organisms [20].

Collective decision making is frequently seen in nature as a way of transmitting the informa-

tion of individuals to the collective. Bees can choose the best of multiple nectar sources [24], and

ants can communicate to the rest of their colony the quality of new nesting sites [20]. In both cases,

information collected by an individual is passed on to the group as a whole. We can utilize these

insights from ecology by applying this type of decentralized collective decision making to finding

targets, allowing us to exploit the patchy nature of the domain by having searchers explore different

patches and communicate their findings to one another.

Our model describes the search for a target in a ‘patchy’ domain. We consider the movement

of y foragers among z patches searching for a single target. If a subset of the foragers are in the same

patch as the target, then on each time step, each of these foragers independently has probability

α of finding the target. If the target is found, the process terminates. In order to find the target

more efficiently, the foragers can decide how to distribute themselves among the patches. However,

if the foragers need to change how they are distributed, then this reorganization take τ time steps.

Given these constraints, we wish to describe how the foragers should move in the patches so that

the total time to find the target is minimized.

We begin by detailing how our model can be formulated as a Partially Observable Markov

Decision Process (POMDP). We then develop several heuristics in the cases of a single searcher,

and of multiple searchers, by restricting the set of policies to choose from. In doing so, we are able

to demonstrate that in the case of a single searcher, a thresholding strategy has good performance,

where the searcher rotates between the patches in order. For multiple searchers, we show that

spreading the searchers out across the patches is a more efficient strategy than clustering them all

together. We validate the results from these heuristics by comparing them to numerical solutions

to the POMDP.



Chapter 2

A Jump-Diffusion Model of Optimal Foraging

2.1 Introduction

In this chapter, we discuss a jump-diffusion model of optimal foraging. This model permits

us to examine the exploit-explore balance which arises in a wide variety of fields [2]. This chapter

begins with Sec. 2.2 where we numerically explore the effect of the jump rate pj on the forager

lifetime. Specifically, a mixture of jumping and diffusion tends to be optimal. To further explore

this, in Sec. 2.3, we use cover times to analyze the boundary cases of pure diffusion and pure

jumping. The large n behaviour of the cover times demonstrates that jumping consumes resources

more rapidly, while diffusion increases the risk of starving between feedings. We follow up by

explicitly calculating the forager lifetime in these two boundary cases in Sec. 2.4. Sec. 2.5 describes

several tractable approximations to the full model, giving more insight into why a hybrid of jumping

and diffusion is optimal. An extension of the model to the cases where jumps take additional time is

presented in Sec. 2.6. This modification generally makes jumping far more beneficial. We conclude

by discussing the results of our analysis and their significance for foraging in Sec. 2.7. This chapter

is adapted from [14].

2.2 The optimal jump rate

To begin, we consider the full hybrid model, where the forager can both jump and diffuse. We

will numerically determine the effect of pj on the mean forager lifetime T (n, s, pj), while varying the

environment size n and survival time s. Across a wide range of parameters, a mixture of jumping
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and diffusion (0 < pj < 1) leads to higher values of T . For larger s relative to n, the value of

pj that maximizes T becomes smaller. This trend will be studied in detail by analyzing related

models in subsequent sections. Numerical results are shown in Fig. 2.1. As shown in Fig. 2.1(a),

T is non-monotonic in pj for different values of s, so there is an interior pj that maximizes T . As

we demonstrate in subsequent sections, a larger pj (more jumping) causes the forager to consume

food more rapidly, lowering the odds of starving between feedings, but depleting the resources

more rapidly. Thus, the optimal pj balances the tradeoff of slowing the rate of food consumption

(decreasing pj) with decreasing the probability of starving early on (increasing pj). For lower values

of s, there is a broad range of pj values over which T is relatively unchanged. This suggests that the

advantage gained by slowing the rate of food consumption is roughly counteracted by the increased

probability of starvation. As the survival time s is increased, the optimal value of pj decreases,

since the forager becomes less likely to die between feedings [Fig. 2.1(b)]. Utilizing diffusive motion

(lower pj) more often limits that rate at which food is consumed. On the other hand, as the size of

the environment is increased (larger n), the optimal pj increases. This is because there is more food

initially available, so the forager can afford to increase the rate of food consumption to decrease

their probability of starving.

Our interpretations of the mean lifetime T dependence on pj , s, and n can be analyzed in

further detail by considering a few different limiting cases and approximations of the jump-diffusion

model. We begin by studying the behavior of the model at the two extremes of pure diffusion [pj = 0:

Fig. 1.1(b)] and pure jumping [pj = 1: Fig. 1.1(c)]. Our two main findings in this analysis are that

(a) a diffusive forager covers the environment more slowly, decreasing the rate of food consumption

as discussed above; and (b) jumping is a better strategy in large environments (large n) with lower

survival times (small s). Indeed this is consistent with our numerical results above. We conclude

with an analysis of two simpler models that demonstrate the same nonmonotonicity of T in pj as

shown in Fig. 2.1.
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Figure 2.1: (a) Mean survival time T of a starving forager obeying jump-diffusion with jump rate
pj . Forager lifetime T varied nonmonotonically with pj for s = 320, 160, 80, 40, 20 (top-to-bottom).
The maximal lifetime is marked in black. Environment size n = 40. Means at each value of pj are
generated using 106 Monte Carlo simulations. (b) The jump rate pj that maximizes the forager
lifetime primarily decreases as a function of s. Shown for n = 400, 80, 20 (top-to-bottom). Maxima
are found using golden-section search [21] using 106 simulations per point.
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2.3 Cover times at extremes

Considering the boundary cases of pure diffusion pj = 0 and pure jumping pj = 1 allows us to

derive explicit formulas for how model parameters, such as the environment size n and starvation

time s impact the mean lifetime T of the forager. This can be approximated first by calculating

the mean cover time E(τcover) of the forager: the time it takes the forager to reach all of the food

sites in the environment. This quantity plus the starvation time s constitutes an upper bound on

the lifetime in general, but for large s it provides a reasonable approximation of

T (n, s, pj) ≈ s+ E(τcover(n, pj)). (2.1)

This is because, when s is large, the forager generally consumes almost all of the food in the domain

before dying, since it will typically have enough time between feeding to locate remaining food in

the environment.

The mean cover time E(τcover) can be computed explicitly. If tk denotes the time the kth

piece of food is eaten, then τcover = tn, t1 = 0, and by the linearity of expectation, we have:

E(τcover) =

n∑
k=2

E(tk − tk−1). (2.2)

In the case of both pure diffusion (pj = 0) and pure jumping (pj = 1), E(tk− tk−1) can be explicitly

calculated.

2.3.1 Diffusion

We first consider the case where pj = 0, so the forager moves only to adjacent sites. Following

along the lines of [16], to calculate the cover time, we first consider the time between eating the kth

piece of food and the k − 1th piece of food. The kth piece of food here refers to the time-ordering

of food consumption in a single foraging realization. Since the forager can only move to adjacent

locations, after eating k − 1 pieces of food, it must be on the boundary of a contiguous region of

k − 1 sites with no food – a desert [6]. If we label the current location of the forager as site 1,

and the opposite end of the desert as site k − 1, then the time to consume the kth piece of food is
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simply the hitting time of either site 0 or site k. We let fi be the average time to hit either state 0

or state k starting at state i, as described by the recursion relation

fi =
1

2
(fi−1 + 1) +

1

2
(fi+1 + 1) (2.3)

with f0 = fk = 0. A detailed analysis of the time for a biased random walk to escape a finite

interval is given in [7], where the lifetime of a starving greedy forager is studied. In that work,

a parameter p determines the probability of moving towards a site containing food. Their results

(given in Appendix B of [7]) reduce to ours for the unbiased random walk when p = 1/2. We can

solve Eq. (2.3) for fi = i(k − i), and note that [11]

E(tk − tk−1) = f1 = k − 1, (2.4)

so by plugging into Eqs. (2.1) and (2.2), we find

T (n, s, pj = 0) ≈ s+
n(n− 1)

2
. (2.5)

Note, this approximation is linear in s and quadratic in n, the size of the environment. Fig. 2.2(a)

demonstrates that as s increases, Eq. (2.5) becomes more accurate, as the forager generally con-

sumes almost all of the food in the environment. For this to be true, s must be nearly an order of

magnitude larger than n. When s is too small, the forager will typically die before it can consume

all of the food, so the cover time approximation breaks down.

2.3.2 Jumping

We next study the case in which the forager always jumps to a uniformly randomly chosen site

on each timestep (pj = 1). The cover time is then precisely the solution to the ‘coupon collecting

problem’ [16]. Assume the forager has eaten k− 1 pieces of food. There are then n− (k− 1) pieces

of food remaining, and the time it takes to eat the kth piece of food is geometrically distributed:

(tk − tk−1) ∼ (k − 1)t−1(n− k + 1)

nt
.
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Plugging this result into Eqs. (2.1) and (2.2) yields

T (n, s, pj = 1) ≈ s+ n

n−1∑
k=1

1

k
. (2.6)

Fig. 2.2(b) shows the exact lifetime converges to this approximation as s is increased. Eq. (2.6) is

again linear in s, but now scales much more slowly in n than in the case of pure diffusion. In the

limit of large n, we can estimate the scaling in n as follows:

n

n−1∑
k=1

1

k
≤ n

n∑
k=1

1

k
≤ 2n

∫ n

1

dx

x
= 2n log(n).

In particular, if we compare the cover times of the two boundary cases, we see that τcover(pj =

0) = O(n2) while τcover(pj = 1) = O(n log(n)). This shows that if the forager can consume almost

all of the food, then for large n, it will live longer by diffusing rather than jumping. This suggests

that as s increases, the optimal value of pj goes to 0, and this is indeed the case.

2.4 Forager lifetime at extremes

We now determine the exact formula for the lifetime of the forager. While the formula we

derive actually applies to all values of pj ∈ [0, 1], we can only compute its constituent parts explicitly

in the boundary cases pj ∈ {0, 1}. Let Xk denote the time between eating the kth piece of food

and the k − 1th piece of food, where X1 = 0, since the forager immediately consumes food at their

initial position. The probability the forager, with starvation time s, consumes k pieces of food

before starving thus equals

P(k∗ = k) = P(X1, ..., Xk ≤ s,Xk+1 > s), (2.7)

so k∗ ∈ {1, ..., n} is a random variable arising from the stochastic movement and death of the

forager. We can determine the distribution of k∗ by first computing the cumulative distribution for

each Xk:

Fk(s) = P(Xk ≤ s) =

s∑
j=1

P(Xk = j), Fn+1(s) = 0. (2.8)



12

���D��

���G�����F��

���E��

Figure 2.2: (a),(b) Forager lifetime computed from Eq. (2.9) in the case of pure diffusion (a) and
pure jumping (b). Cover time approximations (dashed lines) computed from Eq. (2.1) agree in the
limit of large s: n = 15, 10, 5 for black, dark grey, and grey. Red dots are means computed using
106 numerical simulations. (c),(d) Ratio of forager lifetime for pure diffusion to forager lifetime for
pure jumping: Tdiff/Tjump. The contour on (d) marks where the ratio is one, marking the boundary
between where jumping vs. diffusion is the better strategy.






































































