Empirical Measurements of Six
Allocation-intensive C Programs

Benjamin Zorn Dirk Grunwald
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

CU-CS-604-92 July 1992

&

University of Colorado at Boulder

Technical Report CU-CS-604-92
Department of Computer Science
Campus Box 430
University of Colorado

Boulder, Colorado 80309

Copyright (©) 1992 by
Benjamin Zorn Dirk Grunwald
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

1

Empirical Measurements of Six

Allocation-intensive C Programs*

Benjamin Zorn Dirk Grunwald
Department of Computer Science

Campus Box #430
University of Colorado, Boulder 80309-0430

July 1992

Abstract

Dynamic memory management is an important part of a large class of computer programs and
high-performance algorithms for dynamic memory management have been, and will continue to
be, of considerable interest. This paper presents empirical data from a collection of six allocation-
intensive C programs. Extensive statistics about the allocation behavior of the programs measured,
including the distributions of object sizes, lifetimes, and interarrival times, are presented. This data
is valuable for the following reasons: first, the data from these programs can be used to design high-
performance algorithms for dynamic memory management. Second, these programs can be used as
a benchmark test suite for evaluating and comparing the performance of different dynamic memory
management algorithms. Finally, the data presented gives readers greater insight into the storage
allocation patterns of a broad range of programs. The data presented in this paper is an abbreviated
version of more extensive statistics that are publically available on the internet.

Introduction

This paper presents empirical data about the allocation behavior of six allocation-intensive C programs.
The data presented describes the distributions of objects sizes, holding times, and interarrival times in
each of the programs measured. This data is valuable to designers of dynamic memory management
(DMM) algorithms for the following reasons:

It has been long observed that tailoring a DMM algorithm to the observed empirical behavior of
programs results in a more efficient algorithm [9]. The data from these programs provides designers
with specific information about the allocation behavior of a broad class of C/Unix programs.

Such data, specifically about the allocation behavior of C programs, is rarely published.

The programs measured in this study provide DMM algorithm designers with a test suite of
allocation-intensive programs with which they can fairly compare alternative DMM algorithms.
We have already used these programs for this purpose [6].

Such data provides readers with insight into the allocation behavior of a broad class of programs.
This insight may help the reader understand the trade-offs in DMM implementations, including the
relative advantages and disadvantages of using automatic memory management techniques such
as garbage collection.

*This material is based upon work supported by the National Science Foundation under Grants No. CCR-9010624,
CCR-9121269, and CDA-8922510

CFRAC Cfrac is a program to factor large integers using the continued fraction method.
The input is a 22-digit number that is the product of two primes.

ESPRESSO Espresso, version 2.3, is a logic optimization program. The input file was one of the
larger example inputs provided with the release code (cps).

GHOSTSCRIPT | GhostScript, version 2.1, is a publicly available interpreter for the PostScript page-
description language. The input used is the Users Guide to the GNU C++ Libraries
(126 pages). This execution of GhostScript did not run as an interactive application
as it is often used, but instead was executed with the NODISPLAY option that
simply forces the interpretation of the Postscript without displaying the results.
GAWK Gnu Awk, version 2.11, is a publicly available interpreter for the AWK report and
extraction language. The input script processes a large file containing numeric data,
computing statistics from that file.

PERL Perl 4.10, is a publicly available report extraction and printing language, commonly
used on UNIX systems. The input used was a perl script that reorganizes internet
domain names located in the file /etc/hosts.

CHAM Chameleon is an N-level channel router for multi-level printed circuit boards. The
input file was one of the example inputs provided with the release code (ex4). We
also measured another channel router (YACR), but the results obtained were not
significantly different that those from cHAM.

Table 1: General Information about the Test Programs

Dynamic memory management has always been an important part of a large class of computer pro-
grams. Recently, interest in this field has increased, as evidenced by the number of workshops devoted
entirely to the subject (garbage collection workshops at recent Object-oriented Programming Languages
and Systems (OOPSLA) Conferences and the 1992 International Workshop on Memory Management
to name a few). One reason for this increased interest is that object-oriented design encourages pro-
gramming with large interconnected dynamic structures and broadens the class of programs that use
dynamic memory allocation. The increasing use of dynamic memory management brings with it the
need to reevaluate the performance of old algorithms for memory management and consider new ones.

Many studies of the relative performance of DMM algorithms have been published through the years.
In addition to comparing the performance of DMM algorithms, a number of these papers also present
empirical measurements of the allocation behavior of particular programs or systems. In particular,
in 1971 Margolin et al presented empirical measurements of the dynamic allocation patterns they ob-
served in a time-sharing operating system [9]. This empirical data has been used in subsequent DMM
measurement studies, some as recent as 1985 [10]. Batson et al present empirical data concerning the
distribution of program segment sizes in the B5500 operating system [2]. In his book Data Structure
Techniques, Standish [11] presents data from Charles Weinstock’s thesis [12] showing the distribution of
size requests in the BLISS/11 compiler. Standish also mentions that Weinstock uses Batson’s empirical
data in comparing the performance of different DMM algorithms. In a later paper, Batson and Brundage
present empirical data about segment sizes and holding times collected from Algol-60 programs [1].

More recently, in 1984 Bozman et al [3] compared the performance of a large number of DMM al-
gorithms based on empirical data gathered from several days of execution on several different multiuser
operating systems. In the paper, they present the empirical data gathered, including the average inter-
arrival time and holding time for each of the block sizes allocated. This data represents some of the most
complete information published to date, and has been used in a 1989 performance evaluation of DMM
algorithms [4]. Most recently, DeTreville has published the results of extensive empirical measurements
of heap usage in the Topaz computing environment [5].

From this discussion, we can conclude two things. First, empirical measurements of actual programs
are valuable in both designing and evaluating DMM algorithms. For as long as these algorithms have
been proposed and evaluated, empirical data has been used in the measurement process. Second, there
is a relative lack of empirical data, as evinced by the use of the Margolin data 14 years after it was

Program | CFRAC | ESPRESSO | GHOSTSCRIPT | GAWK | PERL | CHAM |

Lines of Code 6,000 15,500 29,500 8,500 | 34,500 7,500

Execution Time 66.9 611.1 159.2 17.6 33.5 87.1

(instructions x10°)
Objects Allocated 227,091 186,636 108,550 32,165 | 26,390 | 103,548
Max Objects Allocated 1,231 2,959 6,195 2,447 483 | 103,413
Bytes Allocated 3,339,166 | 14,641,338 18,767,795 | 722,970 | 790,801 | 2,927,254
Max Bytes Allocated 17,395 136,966 467,739 63,834 | 24,452 | 2,711,158
Size Classes (SC) 22 328 177 48 79 22
Mean Size 14.7 78.4 172.9 22.5 30.0 28.2
Median Size 14 28 116 24 32 24
Mode Size 14 24 116 24 32 24

Interarrival Time

Classes (ITC) 911 13,425 3,502 856 587 4,316

Mean Interarrival Time 295 3,273 1,465 548 1,271 825
Median Interarrival Time 241 96 1,121 451 207 482
Mode Interarrival Time 37 15 69 122 44 66

Holding Time

Classes (HTC) 12,748 76,299 15,339 5,638 5,053 13,169
Mean Holding Time 172,000 467,000 5,670,000 | 1,287,000 | 574,000 | 565,000
Median Holding Time 600 25,593 794 89 6,137 479
Mode Holding Time 600 37 236 86 1570 99

Table 2: Test Program Performance Information. The SC, ITC, and HTC values indicate the number
of distinct size, interarrival times, and holding times respectively in each of the sample programs. All
times are presented in instructions.

published. In general, because empirical measurements of dynamic storage allocation in systems are
relatively scarce, algorithm evaluators must and do take whatever is available. The intent of this paper
is to make additional empirical measurements of allocation-intensive programs widely available. In a
companion paper we investigate how different models of allocation behavior, based on empirical data as
presented here, can be used to accurately evaluate DMM algorithms [14].

The remainder of this paper has the following organization: Section 2 describes the programs we have
measured and Section 3 presents empirical measures of the programs, including distribution of object
sizes, object holding times, and object interarrival times. In Section 4, we conclude by summarizing our
data and indicating how it can be obtained on the internet.

2 Programs

To gather the data for this paper, we instrumented six allocation-intensive C programs, described in
Table 1. The programs represent a wide range of memory intensive tasks, including number factoring,
interpreters, logic optimizers, and CAD/VLSI tools. In each case, we actually collected data from at
least two input data sets for each program. In order to simplify the presentation here, we show data
from only one of these input data sets. Data from all input sets is publically available via the internet.

The data was gathered by tracing the execution of each program using AE [8] on a Sun SPARC
processor. AE is an efficient program tracing tool that captures all instruction and data references,
as well as special indicators for calls to the malloc and free procedures used for memory allocation.
These large, complex traces were distilled to a time-ordered memory allocation trace including only
calls to malloc and free. Each memory allocation trace event was time-stamped using the number of
instructions since the beginning of the program.

The version of CHAM that we measured does not release much of its allocated memory by calling free.
For this program, we monitored the data references of the traced program, and artificially deallocated
memory when it was no longer referenced. The artificial free events were inserted in the memory
allocation trace, essentially modeling perfect memory deallocation.

After gathering the “allocation trace” of allocate and free events, we measured three data distributions
from each trace: object size, object holding time, and object interarrival time. These three distributions
capture the allocation behavior of the programs, allowing their empirical behavior to be characterized.

Table 2 summarizes the vital statistics of each program and presents some basic measures of each of
these distributions, including the total number of objects and bytes allocated by each program, as well
as the maximum number of objects and bytes allocated at any one time by each program. The programs
are allocation-intensive, allocating an object every 300-3000 instructions. The fraction of time spent
doing memory allocation for these programs depends on the DMM implementation used, but ranges
from approximately 5-30%.

The table shows the mean, median, and mode for each of the three distributions mentioned. In most
cases, the median is much smaller than the mean, indicating that the distribution is greatly skewed by
a very large range of values. As the table shows, the size distribution is less skewed than the others,
while the holding time distribution is greatly skewed. Even the size distribution is heavily skewed to
smaller objects, the table indicating that in all but one program the most common size class is 32-bytes
or smaller.

The table also shows the number of distinct sizes, interarrival times, and holding times (SC, ITC,
HTC, respectively). These values indicate that the number of distinct values observed in each distribution
is small compared to the total number of instructions executed by each program. For the interarrival
times and holding time distribution, this result suggests that program behavior is relatively regular,
resulting in a smaller number of distinct classes.

3 Data

This section presents more complete information about the observed data distributions in the test pro-
grams. In previous work, the distribution of object sizes has been the most widely reported distribution,
partly because it is the easiest to measure of the three. Here, we describe the distributions of object
size, interarrival time (IAT), and holding time (HT) equally.

The first set of tables (Tables 3, 4, and 5) show how many distinct classes of size, IAT, and HT are
required to cover from 50% to 100% of the observed data. This coverage data indicates how skewed the
distributions are and how many classes really represent the important aspects of program behavior.

The tables show that most of the data in each distribution is accounted for by a small number
of classes. In particular, Table 3 shows that at most two size classes are required to cover 50% of the
observed data in all of the test programs. Furthermore, 95% of the observed data is covered by at most 34
classes. Algorithms such as Oldehoeft’s adaptive exact-fit allocator [10] and our own CUsSTOMALLOC [6]
exploit this empirical behavior by adapting allocation policies to the most commonly observed object
sizes.

Interestingly, we observe that a small number IAT classes and HT classes also account for a large
percentage of the allocation in many of the programs measured. This empirical result, which indicates
a large degree of regularity, has yet to be exploited by proposed DMM algorithms.

One important statistical characterization of a distribution is a listing of the quantiles. We present
the 5% quantiles of the three distributions in Tables 6, 7, and 8.

Program Number of Size Classes to Cover
50% | 75% | 90% | 95% | 99% | 100%

CFRAC 2 4 5 6 6 22
ESPRESSO 2 3 14 34 88 328
GHOSTSCRIPT 2 3 7 11 19 177
GAWK 1 1 2 4 13 48
PERL 1 4 15 25 43 79
CHAM 1 2 3 4 5 22

Table 3: Size Classes Required to Cover Percentages of All Objects in the Test Programs.

Program Number of IAT Classes to Cover
50% | 75% | 90% | 95% | 99% [100%
CFRAC 7 25 53 85 185 911
ESPRESSO 12 | 222 | 1955 | 5002 | 11560 | 13425
GHOSTSCRIPT 31 | 119 413 849 2418 3502
GAWK 4 34 | 140 | 241 547 856
PERL 6 15 43 79 325 587
CHAM 44 | 320 | 1018 | 1573 | 3282 | 4316

Table 4: IAT Classes Required to Cover Percentages of All Objects in the Test Programs.

Program Number of HT Classes to Cover

50% | 75% [90% [95% [99% | 100%
CFRAC 24 187 | 2823 | 5230 | 10478 | 12748
ESPRESSO 9730 | 29640 | 57636 | 66968 | 74433 | 76299
GHOSTSCRIPT 13 194 4484 9912 | 14254 | 15339
GAWK 2 115 | 2422 | 4030 | 5317 | 5638
PERL 41 838 | 2416 | 3734 | 4790 | 5053
CHAM 93 641 | 3993 | 7992 | 12134 | 13169

Table 5: HT Classes Required to Cover Percentages of All Objects in the Test Programs.

Program

Quantile CFRAC | ESPRESSO | GHOSTSCRIPT | GAWK | PERL | CHAM
0 (min) 4 0 9 0 1 8
5 10 24 29 4 7 12

10 10 24 36 10 11 12
15 10 24 40 24 16 20
20 10 24 64 24 20 20
25 12 24 116 24 24 20
30 12 24 116 24 32 20
35 14 24 116 24 32 24
40 14 28 116 24 32 24
45 14 28 116 24 32 24
50 (median) 14 28 116 24 32 24
55 14 28 116 24 32 24
60 14 28 116 24 32 24
65 16 28 260 24 32 24
70 16 32 260 24 32 24
75 18 32 260 24 32 24
80 18 32 260 24 32 24
85 20 40 260 24 32 24
90 20 64 260 24 32 24
95 20 200 260 24 38 24
100 (max) 266 19680 20016 8192 5632 | 36788

Table 6: Quantiles of Object Sizes in the Test Programs. All sizes are in bytes.

Program

Quantile CFRAG | ESPRESSO | GHOSTSCRIPT | GAWK | PERL CHAM
0 (min) 8 5 67 9 5 19
5 37 15 69 14 44 66

10 37 15 113 73 44 66
15 37 15 475 122 44 66
20 46 41 737 122 89 66
25 46 47 812 122 99 186
30 118 50 932 122 99 250
35 152 61 958 224 127 343
40 184 65 994 299 127 416
45 228 87 1051 446 155 446
50 (median) 241 96 1121 451 207 482
55 252 128 1295 451 207 516
60 271 226 1639 451 279 577
65 293 290 1773 475 650 633
70 306 332 1821 562 912 722
75 350 475 1980 764 995 853
80 395 T76 2138 1046 2403 1000
85 560 2062 2310 1046 2491 1119
90 654 5510 2578 1175 4050 1444
95 803 8852 3068 1608 5206 1919
100 (max) 20987 7349826 417089 23914 | 18216 1182249

Table 7: Quantiles of Object Interarrival Times in the Test Programs. All times are measured in
SPARC machine instructions.

Program

Quantile CFRAC ESPRESSO | GHOSTSCRIPT | GAWK PERL CHAM
0 (min) 127 35 104 66 73 0
5 158 247 236 86 966 46
10 172 484 236 86 1157 99
15 316 715 267 86 1375 115
20 388 1330 298 86 1570 160
25 391 2443 329 86 1705 261
30 439 5763 391 86 2665 296
35 541 7113 512 86 3413 328
40 542 11021 594 86 3880 362
45 581 16533 635 89 6029 401
(median) 600 25593 794 89 6137 479
55 713 37571 953 89 6256 579
60 822 54098 1124 89 22603 797
65 848 73330 1225 197 24524 1082
70 1038 100872 1307 1082 24979 1201
75 3518 135314 1772 18147 25362 1559
80 4986 171381 4065 36353 25814 2458
85 7678 222732 15820 50289 26408 3830
90 9034 305620 24951 852702 26939 11399
95 11087 446868 33143577 | 17016325 30080 58356
100 (max) 66937238 | 611086817 159174866 | 17617998 | 33547661 | 87184842

Table 8: Quantiles of Object Holding Times in the Test Programs. All times are measured in SPARC
machine instructions.

The quantile tables show the three distributions are greatly skewed. In particular, the median is
a small fraction of the maximum in every case. As Jain points out [7], such a skew suggests that the
median value should used as a characterization of the central tendency of these distributions. As we
have already seen, because a few small size classes dominate the size distributions of these programs,
the quantile plot of object sizes is relatively uninteresting. The IAT quantiles show that the interarrival
time between object allocations in the test programs is very frequent, the median time ranging from
100-1000 instructions. Likewise, most of the allocated objects are very short-lived, as the holding time
quantiles show. The median object lifespan in the programs ranges from 90 to 26,000 cycles, with the
90th percentile less than 1 million cycles in all cases.

The final set of tables (Tables 9, 10, and 11) in this section present the ten most common classes
observed in each of the three distributions. These tables illustrate that a small number of classes cover
a large fraction of total observations in each of the distributions. From the percentages presented in
Table 9, we see that the top ten sizes account for almost 90% of all object allocation in the six test
programs. GHOSTSCRIPT has the most interesting size distribution with common objects of size 116 and
260 bytes. The other programs exhibit a very predictable distribution of object sizes with large fractions
of the total objects less than or equal to 64 bytes in size.

The interarrival times indicated in Table 10 show that some programs are dominated by a single
small interarrival time, on the order of 40-80 cycles. This regularity probably arises from an allocation
occurring in a small, frequent loop. As the table shows, approximately 15-20% of all allocations are
separated by this single, small IAT. Beyond the most frequent IAT, four of the six programs also captured
almost 50% of the total distinct IAT’s in the top ten. We see that the GHOSTSCRIPT program showed
the least regularity of the programs measured.

Table 11 shows that the top ten holding times in each program represent a significant percentage
of the total holding time distribution. GAWK, in particular, shows a great deal of regularity in object
holding time: 62% of all objects lived either 86 or 89 cycles. Surprisingly, GHOSTSCRIPT, which shows

CFRAC GAWK
Rank | Size | Frequency | Pct. Cum. Pct. Rank | Size | Frequency | Pct. Cum. Pct.
1 14 71617 31.54 | 31.54 1 24 28403 88.30 | 88.30
2 10 49107 21.62 | 53.16 2 2 1413 4.39 | 92.70
3 20 37979 16.72 | 69.89 3 7 457 1.42 | 94.12
4 18 26250 11.56 | 81.44 4 4 352 1.09 | 95.21
5 12 20763 9.14 | 90.59 5 5 301 0.94 | 96.15
6 16 19901 8.76 | 99.35 6 6 241 0.75 | 96.90
7 28 733 0.32 | 99.67 7 3 160 0.50 | 97.39
8 26 453 0.20 | 99.87 8 8 147 0.46 | 97.85
9 4 250 0.11 | 99.98 9 11 97 0.30 | 98.15
10 22 15 0.01 | 99.99 10 14 87 0.27 | 98.42
ESPRESSO PERL
Rank | Size | Frequency | Pct. Cum. Pct. Rank | Size | Frequency | Pct. Cum. Pct.
1 24 67828 36.34 | 36.34 1 32 18261 69.20 | 69.20
2 28 49132 26.33 | 62.67 2 7 731 2.77 | 71.97
3 32 33372 17.88 | 80.55 3 20 728 2.76 | 74.73
4 44 2717 1.46 | 82.00 4 15 575 2.18 | 76.90
5 8 2623 1.41 | 83.41 5 6 488 1.85 | 78.75
6 40 2430 1.30 | 84.71 6 19 462 1.75 | 80.50
7 36 2364 1.27 | 85.98 7 16 350 1.33 | 81.83
8 48 1668 0.89 | 86.87 8 14 344 1.30 | 83.13
9 52 1217 0.65 | 87.52 9 8 335 1.27 | 84.40
10 56 999 0.54 | 88.06 10 5 333 1.26 | 85.67
GHOSTSCRIPT CHAM
Rank | Size | Frequency | Pct. Cum. Pct. Rank | Size | Frequency | Pct. Cum. Pct.
1 116 | 40796 37.58 | 37.58 1 24 66983 64.69 | 64.69
2 260 | 40315 37.14 | 74.72 2 20 20888 20.17 | 84.86
3 40 7708 7.10 | 81.82 3 12 9967 9.63 | 94.49
4 32 2854 2.63 | 84.45 4 8 4068 3.93 | 98.41
5 92 2714 2.50 | 86.95 5 16 843 0.81 | 99.23
6 36 2415 2.22 | 89.18 6 422 | 350 0.34 | 99.57
7 26 1999 1.84 | 91.02 7 924 | 189 0.18 | 99.75
8 24 1551 1.43 | 92.45 8 1692 | 142 0.14 | 99.89
9 60 1362 1.25 | 93.70 9 1688 | 72 0.07 | 99.96
10 252 | 1357 1.25 | 94.95 10 88 13 0.01 | 99.97

Table 9: Frequency of the 10 Most Common Size Classes in the Test Programs. All sizes are in bytes.

CFRAC GAWK
Rank | IAT | Frequency | Pct. Cum. Pct. Rank | IAT | Frequency | Pct. Cum. Pct.
1 37 43530 19.17 | 19.17 1 122 | 5767 17.93 | 17.93
2 46 20028 8.82 | 27.99 2 451 5203 16.18 | 34.11
3 152 12758 5.62 | 33.61 3 14 2774 8.62 | 42.73
4 241 12050 5.31 | 38.91 4 1046 | 2510 7.80 | 50.53
5 228 11914 5.25 | 44.16 5 224 | 888 2.76 | 53.30
6 293 | 9965 4.39 | 48.55 6 454 | 576 1.79 | 55.09
7 118 | 5991 2.64 | 51.18 7 203 | 376 1.17 | 56.26
8 561 | 4583 2.02 | 53.20 8 181 374 1.16 | 57.42
9 361 | 4084 1.80 | 55.00 9 119 | 373 1.16 | 58.58
10 627 | 3576 1.57 | 56.58 10 1056 | 350 1.09 | 59.67
ESPRESSO PERL
Rank | IAT | Frequency | Pct. Cum. Pct. Rank | TAT | Frequency | Pct. Cum. Pct.
1 15 28301 15.16 | 15.16 1 44 3919 14.85 | 14.85
2 47 15455 8.28 | 23.44 2 127 | 2563 9.71 | 24.56
3 61 11067 5.93 | 29.37 3 207 | 2530 9.59 | 34.15
4 84 5816 3.12 | 32.49 4 99 2518 9.54 | 43.69
5 96 5585 2.99 | 35.48 5 89 1315 4.98 | 48.68
6 41 5238 2.81 | 38.29 6 155 | 1300 4.93 | 53.60
7 89 4289 2.30 | 40.59 7 279 | 1253 4.75 | 58.35
8 50 4052 2.17 | 42.76 8 2403 | 1186 4.49 | 62.84
9 87 3977 2.13 | 44.89 9 4350 | 1096 4.15 | 67.00
10 332 | 3684 1.97 | 46.86 10 2445 | 512 1.94 | 68.94
GHOSTSCRIPT CHAM
Rank | IAT | Frequency | Pct. Cum. Pct. Rank | IAT | Frequency | Pct. Cum. Pct.
1 69 8192 7.55 | 7.55 1 66 16805 16.23 | 16.23
2 958 | 4078 3.76 11.30 2 67 2009 1.94 | 18.17
3 1780 | 3649 3.36 14.67 3 39 1756 1.70 | 19.87
4 989 | 2726 2.51 17.18 4 224 | 1626 1.57 | 21.44
5 932 | 2635 2.43 19.60 5 494 | 1589 1.53 | 22.97
6 1651 | 2457 2.26 | 21.87 6 577 | 1516 1.46 | 24.43
7 1020 | 2208 2.03 | 23.90 7 433 | 1492 1.44 | 25.88
8 2151 | 2035 1.87 | 25.78 8 516 1402 1.35 | 27.23
9 1992 | 1709 1.57 | 27.35 9 455 | 1217 1.18 | 28.40
10 748 1578 1.45 | 28.80 10 967 | 1211 1.17 | 29.57

Table 10: Frequency of the 10 Most Common IAT Classes in the Test Programs. All times are measured
in SPARC machine instructions.

CFRAC GAWK
Rank | HT Frequency | Pct. Cum. Pct. Rank | HT Frequency | Pct. Cum. Pct.
1 600 11915 5.25 | 5.25 1 86 12852 39.96 | 39.96
2 391 11803 5.20 10.44 2 89 7178 22.32 | 62.27
3 541 | 9122 4.02 14.46 3 197 | 887 2.76 | 65.03
4 713 | 8722 3.84 | 18.30 4 158 | 374 1.16 | 66.19
5 847 | 8534 3.76 | 22.06 5 411 340 1.06 | 67.25
6 168 | 6712 2.96 | 25.02 6 464 | 102 0.32 | 67.57
7 148 | 6472 2.85 | 27.87 7 485 102 0.32 | 67.88
8 542 | 3611 1.59 | 29.46 8 408 | 102 0.32 | 68.20
9 714 | 3607 1.59 | 31.04 9 429 | 102 0.32 | 68.52
10 538 | 3582 1.58 | 32.62 10 540 | 95 0.30 | 68.81
ESPRESSO PERL
Rank | HT | Frequency | Pct. Cum. Pct. Rank | HT Frequency | Pct. Cum. Pct.
1 37 3989 2.14 | 2.14 1 1570 | 1226 4.65 | 4.65
2 246 1329 0.71 | 2.85 2 1375 | 1226 4.65 | 9.29
3 375 1037 0.56 | 3.41 3 1705 | 1099 4.16 | 13.46
4 247 | 812 0.44 | 3.84 4 3880 | 1096 4.15 | 17.61
5 42 685 0.37 | 4.21 5 1318 | 1096 4.15 | 21.76
6 304 | 682 0.37 | 4.57 6 936 | 1095 4.15 | 25.91
7 368 | 643 0.34 | 4.92 7 1127 | 1095 4.15 | 30.06
8 361 | 553 0.30 | 5.21 8 6068 | 336 1.27 | 31.33
9 358 | 532 0.29 | 5.50 9 6263 | 336 1.27 | 32.61
10 418 | 508 0.27 | 5.77 10 2705 | 303 1.15 | 33.76
GHOSTSCRIPT CHAM
Rank | HT Frequency | Pct. Cum. Pct. Rank | HT Frequency | Pct. Cum. Pct.
1 236 11239 10.35 | 10.35 1 99 3349 3.23 | 3.23
2 267 | T167 6.60 16.96 2 9 2332 2.25 | 5.49
3 1225 | 6262 5.77 | 22.73 3 46 1998 1.93 | 7.42
4 298 | 5870 5.41 | 28.13 4 291 1685 1.63 | 9.04
5 594 | 3731 3.44 | 31.57 5 115 1525 1.47 | 10.52
6 329 | 3550 3.27 | 34.84 6 123 | 1510 1.46 | 11.97
7 965 | 2780 2.56 | 37.40 7 1186 | 1251 1.21 13.18
8 635 | 2581 2.38 | 39.78 8 352 | 1226 1.18 | 14.37
9 794 | 2509 2.31 | 42.09 9 1125 | 1214 1.17 | 15.54
10 360 | 2501 2.30 | 44.39 10 117 | 1086 1.05 | 16.59

Table 11: Frequency of the 10 Most Common HT Classes in the Test Programs. All times are measured
in SPARC machine instructions.

10

less regularity in its IAT distribution, shows substantial regularity in its holding time distribution. It is
also interesting to note that all of the holding times in this table are less than 10,000, again indicating
that objects in all of these applications are most likely very short-lived. This result has implications for
generation-based garbage collection algorithms that might be used to collect these objects [13].

4 Summary

We have presented data from one input data set for each of the six programs measured. Using the
trace extraction and reduction techniques described, we have collected similar data from at least two
inputs to each of these programs. We have also collected other statistical characterizations of the test
programs and compared the accuracy of different synthetic models of program allocation in a companion
paper [14]. All of the collected data has been formated as a C program input file with declarations of
the distributions of object size, holding time, etc. These C files can easily be compiled and linked with a
program intended to manipulate the data. C files representing all inputs to all the programs described
in this paper are publically available via anonymous FTP from ftp.cs.colorado.edu in the directory
pub/cs/misc/MallocStudy. The compressed C files are labeled cfrac-1,2,3.c.Z, etc. where each number
represents a different input. In addition, a header file “DataHeader.h” is included that declares all the
data structures defined in the .c files. Please feel free to use the data provided in this directory but we
would appreciate your sending us e-mail ({zorn,grunwald}@cs.colorado.edu) indicating that you intend
to use the data and how you intend to use it.

References

[1] A. P. Batson and R. E. Brundage. Segment sizes and lifetimes in Algol-60 programs. Communica-
tions of the ACM, 20(1):36—44, January 1977.

[2] A. P. Batson, S. M. Ju, and D. C. Wood. Measurements of segment size. Communications of the
ACM, 13(3):155-159, March 1970.

[3] G.Bozman, W. Buco, T. P. Daly, and W. H. Tetzlaff. Analysis of free-storage algorithms—revisited.
IBM Systems Journal, 23(1):44-64, 1984.

[4] R. P. Brent. Efficient implementation of a first-fit strategy for dynamic storage allocation. ACM
Transactions on Programming Languages and Systems, 11(3):388-403, July 1989.

[5] John DeTreville. Heap usage in the Topaz environment. Technical Report 63, Digital Equipment
Corporation System Research Center, Palo Alto, CA, August 1990.

[6] Dirk Grunwald and Benjamin Zorn. CusToMaLLoc: Efficient synthesized memory allocators.
Technical Report CS-CS-602-92, Department of Computer Science, University of Colorado, Boulder,
Boulder, CO, July 1992.

[7] Raj Jain. The Art of Computer Systems Performance Evaluation. Wiley Professional Computing.
John Wiley and Sons, Inc., New York, 1991.

[8] James R. Larus. Abstract execution: A technique for efficiently tracing programs. Software—
Practice and Ezperience, 20(12):1241-1258, December 1990.

[9] B. H. Margolin, R. P. Parmelee, and M. Schatzoff. Analysis of free-storage algorithms. IBM Systems
Journal, 10(4):283-304, 1971.

[10] Rodney R. Oldehoeft and Stephen J. Allan. Adaptive exact-fit storage management. Communica-
tions of the ACM, 28(5):506-511, May 1985.

[11] Thomas Standish. Data Structures Techniques. Addison-Wesley Publishing Company, 1980.

11

[12] Charles B. Weinstock. Dynamic Storage Allocation Techniques. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1976.

[13] Benjamin Zorn. The measured cost of conservative garbage collection. Technical Report CU-CS-
573-92, Department of Computer Science, University of Colorado, Boulder, Boulder, CO, February
1992.

[14] Benjamin Zorn and Dirk Grunwald. Evaluating models of memory allocation. Technical Report
CS-CS-603-92, Department of Computer Science, University of Colorado, Boulder, Boulder, CO,
July 1992.

12

