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Abstract

Saturn’s F ring is the solar system's principal natural laboratory for direct
observation of accretion and disruption processes. Among the structures contained in its
meager ~10 km radial width are jets, strands, and moonlets over an azimuthally
asymmetric span. The nearby moons Prometheus and Pandora stir up ring material and
create observably changing structures on timescales of days to decades.

In addition to the observations over the last three decades, the Cassini Ultraviolet
Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101
occultations by Saturn’s F ring since July 2004. Visual classification of the shapes of these
27 features divides the data set into three classes: Moonlet, Icicle, and Core. Two features
are classified as Moonlets because each is opaque in its occultation, which makes them
candidates for solid objects. A majority of features are classified as Icicles, which partially
block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation.
The density enhancements responsible for such signal attenuations are likely due to
transient clumping of material, evidence that aggregations of material are ubiquitous in the
F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps,
moonlets are possible solid objects, and cores show the variety of F ring morphology. We
suggest that Icicles may evolve into Moonlets, which are an order of magnitude less
abundant. The locations of the Icicles and Moonlets are weakly correlated to the location of

Prometheus.
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Motivated by the observations and previous models, I develop a more rigorous
model of the evolution of aggregates in Saturn’s F ring via tidally-modified accretion. For
the first time, I assess the multimodal distribution resultant of collisional models and
diagnose the cause. I apply the model to the F ring for constant body densities; then I
assess how the system evolves when compaction is allowed. I develop an additional
production term describing enhanced accretion of larger bodies in high-density regions
produced by Prometheus, which results in the modeled distribution evolving to a state
consistent with observations. Finally, I discuss the model’s applicability to other

astrophysical collisional systems.
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1. Introduction

Planetary rings are astrophysical disks in our own backyard. We have access to four
in our Solar system, one of which is so easily observed it was first spotted in 1610 by
Galileo with a simple 20-power telescope. Since that observation of Saturn’s rings, both
ground- and space-based observations have revealed varied and complex rings systems
around Jupiter, Saturn, Uranus, and Neptune. Spacecraft, such as Voyager 1 and 2, Galileo,
and Cassini missions, have traveled to these planets for close-up looks at their rings. Most
notably the Cassini mission, as a dedicated mission to the Saturn system spanning over
seven years, has compiled a large catalog of observations of the rings at multiple
wavelengths, phase angles, and seasons. This opportunity to observe a system in real time
has increased our understanding of the structural and compositional evolution of the ring
system.

None of these systems exists independent of moons. These are, in fact, ring-moon
systems. Moons play a very large role in the dynamics, structure, and evolution of a ring
system. Moons like Enceladus in Saturn’s E ring are the sources of ring material, while
other moons constrain the orbits of ring particles from afar through resonances. Large,
distant moons (e.g. Titan) and small, nearby moons (e.g. Pan) both can create ring
structures. The interplay of rings and moons creates systems much more complex than
Huygens would ever have guessed from his “solid disk” model of Saturn’s rings.

Section 1 of this introduction reviews rings by system, both known and speculated.
Section 2 discusses the ring-moon dynamics that build ring structures and new moonlets.
In Section 3, I discuss the F ring as a laboratory for accretion processes and the ring moon

interplay that leads to the creation and destruction of aggregates. Finally, in Section 4, I



discuss how studies of accretion and fragmentation in the F ring can shed light on

processes in other astrophysical disks.

1.1 Rings by system

Each of the four giant outer planets in the Solar system hosts a ring-moon system.
Galileo first discovered Saturn’s broad, dense rings through his 20-power telescope in 1610
(Drake 1995). The rings of Jupiter, Uranus, and Neptune were not discovered until
centuries later and are much different than Saturn’s. In this section, I briefly review each
system.
1.1.1 Jupiter

Jupiter hosts a ring system comprised of tenuous, dusty rings. Itis the least massive

of those in the Solar system (Burns, et al. 2004). Because it contains no dense component,
it is also the only ring system discovered by spacecraft observations. The first indications
of the system came from Pioneer 11 charged particle detectors (Fillius et al. 1975; Acuna
and Ness 1976; Burns et al. 2004). Later, Voyager 1 images captured the Main ring (Owen
et al. 1979), and Voyager 2 images allowed for a description of the system’s structure

(Showalter et al. 1987).
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Figure 1. Image of Jupiter’s rings with over laying schematic. Underlying image is near-
edge-on Galileo mosaic of Jupiter’s rings. Credit:
http://photojournal.jpl.nasa.gov/catalog/PIA01623

There are four main components of the Jupiter ring system: the Halo ring, the Main
ring, and two Gossamer rings. The Main and two Gossamer rings are centered on their
embedded moons, which act as sources of ring material (Esposito 2002). Particles enter
the rings by micrometeroid bombardment of those embedded moons (Burns, et al. 1999).
The particles then spiral inward due to Poynting-Robertson drag. The Halo is a thick torus
of material interior to the other rings. These rings have a significant vertical extent due to
the source moons’ vertical movement resulting from orbital inclination.

Because ring material moves inward, let’s review the system this way as well. The

two Gossamer rings are exterior to the Main ring and named for their source moons. The



inner ring is the Amalthea Gossamer ring; the outer is the Thebe Gossamer ring. The moon
Adrastea bounds the Main ring, which is relatively thin (6500 km), with an optical depth of
5.0 x 10-6 (Ockert-Bell 1999). Between the orbits of Metis and Adrastea exists a region of
cm-sized and larger particles rather than dust. This region appears bright at low phase
angles because it contains larger particles and is composed of several ringlets. Showalter,
et al. (2007) find no moons >0.5 km in this region in New Horizons images, but they do find
azimuthally-extended clumps in a ringlet interior to the orbit of Adrastea, which may be
related to Metis. Thus, the Main ring may be the remnant of a population of smaller moons
(Esposito 2002).

The Halo ring arises as material from the Main rain reaches the 3:2 Lorentz
resonance (Burns et al. 1985) between its orbital period and the rotation period of Jupiter's
magnetic field. Inward of this resonant location, the vertical extent of the ring increases to
over 1.2 x 10% km, although the radial extent of the torus is ~3 x 104 km and much of the
material is in the central few hundred km thereof (Burns et al., 2004).

For the interested reader, Burns, et al. (2004) provides a comprehensive review of
the Jupiter ring system.

1.1.2 Saturn

Saturn hosts the most recognizable ring system. It is the most massive, most
diverse, and, until the last century, the only known ring system. The main part of the rings
consists of a broad, dense disk (Figure 2) composed of bright water ice divided into the A
and B rings by the Cassini Division (A exterior). The Cassini Division is not a gap, but a

region of lower surface density. The C and D ring are interior to the B ring, while the F, G, E,



and Phoebe rings are exterior to the A ring. Naming is a historical convention, not

alphabetical by distance from the planet (Figure 2).
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: . .
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Figure 2. Image of Saturn’s ring-moon system. Credit: NASA/JPL

Few true gaps exist in the system. There are some within the C ring and the Cassini
Division and two (Encke and Keeler) in the outer A ring. All of them have sharp edges. The
Cring’s Colombo gap is held open by the Titan resonance. The two in the A ring are opened
by moons in the gaps. The rest are not yet well explained, although some are speculated to
be related to moon resonances (e.g. Mimas 2:1; Hedman et al. 2010a; Spitale and Porco
2010). I discuss these in more depth in Section 1.2.2. Many of these gaps contain ringlets,
some diffuse and others sharply-constrained.

Saturn’s rings include several dusty components, specifically the D, F, G, and E. The
D, G, and E rings are diffuse dusty rings, but the F ring is dense and narrow (~10 km radial
extent). These dusty rings share many properties with rings in other systems. The
dedicated studies of these allow us to learn more about the varied rings around lesser-
observed planets (Section 1.4)

The ongoing Cassini mission has provided a great wealth of new insight into rings.

Several review articles are Cuzzi et al. (2010) and Esposito (2010). A comprehensive



review is available in five very specific parts: the rings' structure (Colwell et al. 2009b),
dynamics (Schmidt et al. 2009), particle sizes and composition (Cuzzi et al. 2009), diffuse

rings (Horanyi et al. 2009), and origins (Charnoz et al. 2009a).

1.1.3 Uranus

The definitive discovery of Uranus’s rings was by Elliot, etal (1977). They
discovered four inner rings, which they named with the first four lower case letters of the
Greek alphabet (o, B, v, 8). Later analysis led to the discovery of the € ring, a dusty inner
ring ¢, and rings 4, 5, and 6 (Millis et al. 1977). Voyager 2 images then revealed two new
faint rings, 1 and A (Smith et al. 1986). Using Hubble Space Telescope (HST) images,
Showalter and Lissauer (2006) found two outer rings, which brings the total to 13 rings: 9
narrow main rings, 2 dusty rings, and 2 outer rings (Figure 3). All have azimuthal
brightness variations. Unlike the relatively bright water-ice composition of the Saturnian
ring system, the Uranian ring system is composed of dark (2% Bond albedo), dusty
material (Ockert 1987, Karkoshka 1997).

Twelve small moons orbit exterior to the main rings, and Cordelia orbits just
interior to the € ring. The “Portia group” of eight moons orbits within an annulus from
59,100 to 76,500 km from Uranus' center. This group of moons is dynamically unstable on
timescales of 106 to 108 years (Duncan and Lissauer 1997; Showalter and Lissauer 2006).
Between two of these moons, Rosalind and Portia, is the dusty v ring. This ring could be the
debris from a recent catastrophic disruption of a moon or it could be the continual
recycling of ring material, via competing accretion and fragmentation in the Roche zone,

into small moonlets as proposed in Saturn’s F ring (Section 3; Showalter and Lissauer



2006; French and Showalter 2011). Beyond the Portia group, the p ring is centered on the
orbit of Mab (Showalter and Lissauer 2006).
A two-part comprehensive review of the Uranian ring-moon system discusses rings'

structure (French et al. 1991) and particle properties (Esposito et al. 1991).

* \x Cressida
\ ‘wDesdemona 0
ilet . Cordelia

Figure 3. The scheme of Uranus's ring-moon system. Solid lines denote rings; dashed lines
denote orbits of moons. Credit: Wikipedia

1.1.4 Neptune
Voyager 2 first imaged the rings of Neptune in 1989 (Miner et al 2007). These rings are

similar to those of Uranus. They are made of dark material, probably organics (Smith et al,,



1989), in the form of mostly micrometer-sized dust. However, the rings around Neptune
are more diffuse and at larger semi-major axes than those of Uranus. Figure 4 displays the
locations of the rings, which are named for the discoverers of Neptune. The Le Verrier,
Arago, and Adams rings are narrow. The Galle and Lassell rings are tenuous dust sheets.
The Adams ring contains a series of ring arcs, which were the first of their kind discovered.

Moons play a significant role in the Neptune system. The moons are interspersed
between rings (Figure 4), causing interesting dynamics we do not observe in other systems,
like the ring arcs. Galatea is an inner shepherd moon to the Adams ring (Porco 1991), like
Prometheus is to Saturn’s F ring. The ring arcs are the densest components of Neptune's
ring system (with Tnormal =0.1). There are five arcs that extend over ~20° out of a ~40°
span of longitude. The three main arcs were named for the French revolutionary slogan:
Liberté, Egalité, and Fraternité. Then Egalité was divided in two upon closer inspection and
a dimmer fourth arc was named Courage. Section 1.2 discusses formation mechanisms of
ring arcs more in depth.

For the interested reader, Porco et al. (1995) give a comprehensive review of the

Neptunian rings.



Figure 4. The scheme of Neptune's ring system. Solid lines denote rings; dashed lines
denote orbits of moons. Credit: Wikipedia



1.2 Ring dynamics that build clumping structures

The rings host a variety of structures: embedded moons, self-gravity wakes, ring edges,
arcs, and propellers. All of these structures are related to moons. A moon perturbs ring
particle orbits to create a new structure, or those structures themselves create the
conditions that allow aggregates to accrete.
1.2.1 Roche Limit/Zone/Critical density

The Roche limit is the distance from a planet within which the planet’s tides can tear

apart a body held together by its own self-gravity. Rings should arise interior to the Roche
limit, while any disk of material outside the limit could be expected to accrete into a
moon(s). The Roche limit is the location where tidal forces from a central mass (the
difference in gravitational force on the near and far sides of a satellite) balance the self-
gravity of the satellite. For a rigid, spherical body, Murray and Dermott (1999) (their Eq.

4.131) derive

1/3
aRoche = (2&) Rp
Py

Equation 1

where R;, is the radius of the central planet, ps is the internal density of the satellite, and p,
is the internal density of the central planet. Thus, the Roche limit is not strictly one value,
rather it is dependent on the internal density of the satellite. A denser, more compact
object may exist closer to the central planet than a “fluffy” aggregate can. Internal strength
of the satellite comes into play as well. Satellites held together by more than just self-

gravity, like spacecraft, can orbit well inside the classical Roche limit.
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In the context of planetary ring-moon systems, it is more useful to define a critical
density rather than a critical orbital distance. At any given distance a from the central
planet, the critical density proche at which the moon's size entirely fills its “Roche lobe” or
volume of gravitational dominance. I rearrange Equation 1 to obtain

2M,

p Roche — 3
a

Equation 2

where M, is the mass of the central planet and y = 41t/3 for a sphere and y =1.6 for an
aggregate filling its Roche lobe (Porco, et al. 2007). If p< proche, Wwe can expect no bodies to
coalesce and a ring to persist. Saturn’s rings extend so far from the planet that proche
reaches values as low as ~0.4 g cm-3, which is much lower than the density of solid water
ice. In aregion like the F ring, where accretion and disruption are in balance (c.f. Section
1.3), a low critical density indicates a high degree of porosity.
1.2.2 Gap edges and moonlet wakes

As discussed in Section 1.1.2, there are few truly empty gaps in Saturn’s rings.
Saturn's main rings contain 14 named gaps: 4 in the C ring, 8 in the Cassini Division, and 2
in the A ring. Some of the gaps in the C ring coincide with Lindblad resonances, others are
unexplained, and the A ring gaps are opened by moons within them. This section focuses
on the gaps containing moons.

The A ring gaps, Keeler and Encke, each contain a moon, Daphnis and Pan
respectively, that exerts a torque on neighboring ring material, thus clearing and
maintaining the gap. When a ring particle passes through conjunction with a nearby moon,

the moon's gravity “kicks” the particle, which increases both the particle’s eccentricity and

11



the separation in semi-major axis from the moon. On this new orbit, a ring particle interior
to the moon will now orbit faster; likewise an outer particle will orbit slower. In the
moon’s reference frame, the particle’s separation distance in one orbital period will be
3nAa. This is the characteristic length of gap moon phenomena. It is the wavelength of the
wave structure that forms at the gap edges. Streamlines at the gap edge also have that
wavelength; therefore, streamlines farther from the gap edge have larger Aa and larger
wavelengths. In turn, the separations of the streamlines create a pattern called “moonlet
wakes” (Figure 5). Thus, moonlet wakes are kinematic phenomena caused by a gap moon
organizing the orbital properties of the ring material around it into streamlines. Because
streamline spacing is related to surface density (higher densities where streamlines
crowd), the wakes create a structure that enhances the local surface density encountered
by individual ring particles on their individual orbits. The pattern speed of the moonlet
wakes is equal to the orbital speed of the gap moon, while the individual ring particles
maintain their individual orbital speeds and local dispersion velocity. Moonlet wakes are
not restricted to gaps. Prometheus creates a similar phenomenon in Saturn’s F ring (c.f.

Section 2.6 and 3.1.5).
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7:6 Janus

Keeler Gap

Figure 5. From Murray 2007. a) Streamline diagram showing 3wAa wavelength set up as
ring material passes a gap moon. This establishes the moonlet wake pattern observed in

the Keeler Gap in panel (b). Panel (a) is in the gap moon’s reference frame. Ring material
moves faster with decreasing orbital semi major axis (red arrows), which results in the
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moon experiencing inner material moving forward, outer material moving backward (black
arrows). b) Cassini image courtesy of NASA/]JPL/Space Science Institute.

Before the gap moons had been discovered, the moonlet wakes were tracked. For
example, Cuzzi and Scargle (1985) and Showalter et al. (1986) tracked the Encke Gap
moonlet wakes. This analysis allowed Showalter (1991) to discover Pan in archival
Voyager images using the description of the wake pattern discussed above.

1.2.3 Self-gravity wakes

As discussed in Section 1.2.1, no sharp boundary exists between the region where
accretion dominates and the region where disruption dominates. In the transition region
called the “Roche Zone,” clumping caused by gravitational instabilities or satellite
perturbations can be torn apart on orbital timescales by tides or more satellite
perturbations. A particular phenomenon arises when gravitational instabilities are
disrupted by tides, which is known as self-gravity wakes (SGWs) (Figure 6). Toomre's Q
parameter characterizes this balance:

c,K
aGx

QToomre -

Equation 3

where cs is the radial velocity dispersion, X is the local surface density, and k=0 for a
Keplerian disk. If Qroomre>1, then the disk is stable to gravitational collapse and unstable
otherwise. In practice, gravitational instabilities will occur if Qroomre iS near unity, which
can happen as the surface density increases and random velocities are damped. SGWs
occur near Qroomre~2, and are seen over a wide radial region in the A ring (Tiscareno, et al.,

2007).
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The SWGs are elongated in a direction of a few degrees to tens of degrees from the
azimuth. They are spaced perpendicular to the elongation direction by a distance

described by the Toomre wavelength:

A7°Go
AT vomre 2

K

Equation 4

SGW have many implications for Saturn’s rings. Colombo, et al. (1976) suggest that
SGWs are responsible for the azimuthal brightness asymmetry. Further, stellar
occultations from Cassini UVIS (Colwell, et al. 2006, 2007) and VIMS (Hedman, et al. 2007a;
Nicholson and Hedman 2010) show that the distribution of optical depths in SGWs is
bimodal, with the wake as near opaque and space between at a much lower optical depth.
Additionally, numerical simulations by Robbins, et al (2010) indicate that SGWs can “hide”
mass because increased surface density adds more mass to the already-opaque wakes but
weakly increases the overall optical depth. They estimate a mass for the B ring that could
be ten times higher than Voyager-era estimates. SGW are structures that allow for

clumping in regions of competing accretion and disruption processes.

Figure 6. From Robbins, et al. (2010), Figure 2. This is a simulated self-gravity wake for a
density of 0.45 g cm-3 and particle size R=1 m. Optical depth is 0.707.
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1.2.4 Ring Shepherds

Saturn’s F ring and Uranus’ € ring are the only two narrow rings to have known
“shepherd” moons orbiting on either side of them. Despite the title “shepherd,” there is no
conclusive evidence that either Prometheus or Pandora actually constrain Saturn’s F ring in
its place. Rather, they seem to stir things up more than they constrain (Section 1.3.1 and
2.6). Closer and more massive, the interior moon Prometheus dips near the F ring
periodically and creates a subsequent streamer channel. This streamer channel then
moves downstream via Keplerian shear (Fig. 24, Murray et al. 2005). Likewise, Cordelia
and Ophelia orbit interior and exterior to Uranus’s brightest ring, the € ring (Smith, et al.
1986). Other than location, there is really no indication that these moons perform any
shepherding of that ring.

Alternatively, Salo and Hanninen (1998) show that Galatea may be a shepherd of
Neptune’s Adams ring. The moon is in 42:43 resonance with the ring arcs, so it may be
responsible for their maintenance (Namouni and Porco, 2002). No outer shepherd for the
Adams ring has yet been observed, however.

1.2.5 Propellers

In the case that a moon is too small to open a circumferential gap in the rings, it creates
a local disturbance known as a “propeller.” Keplerian motion of ring material results in
disturbed material interior (exterior) to the moon orbiting faster (slower) and moving
forward (backward) from the moon’s reference frame. This creates a structure that
resembles propeller blades, hence the name.

Propellers had been predicted and modeled (Spahn and Sremcevic 2000; Sremcevic,

et al. 2002; Seif, et al. 2005) before their discovery in Cassini observations (Tiscareno, et al.
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2006; Sremcevic, et al. 2007; Tiscareno, et al. 2008, 2010). The propeller structure itself is
the observed object, as the central moon is below the detection threshold. Three propeller
belts in the A ring have been identified to date between 127,000 and 132,000 km. These
contain many small propellers with radial extents of 0.3 to 1.4 km and azimuthal lengths of
several km (Tiscareno, et al. 2008). In the outer (trans-Encke) A ring, a belt of “Giant
Propellers” has been found. These are outward of the Encke Gap (133,700 km), with radial
widths upwards of 6 km and azimuthal extent of up to several thousand km (Tiscareno, et
al. 2010). Cassini UVIS occultations have recorded several propeller-created gaps in the B
ring, one of which also appears in ISS images (Sremcevic, private communication).

As with moonlet wakes, propellers contain surface density enhancements and
depletions. The actual structure of these regions is still under debate. The smaller
propeller belts contain numerous structures, each with an inferred moonlet. These
moonlets and the density enhancements they induce appear to be transient (Tiscareno, et
al. 2010), much like the moonlet and aggregate belts of other ring regions where accretion

and disruption compete.
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1.3 Fring as a laboratory for accretion processes

The F ring is by far the best-studied narrow dusty ring. Initially detected in 1979 by
the Pioneer 11 imaging team (Gehrels, et al. 1980), the ring now has over three decades of
observations by instruments including: HST, Voyager 1, and Cassini. It lies approximately
3000 km outside the A ring in a region where accretion and disruption continuously
compete. Among the structures contained in it's meager ~10 km radial width are jets,
strands, and moonlets over an azimuthally asymmetric span. In addition, the nearby
moons Prometheus and Pandora stir up ring material and create an observably changing
structure on timescales of days to decades. The well-observed, transient phenomena
occurring in it make the F ring the solar system's principal natural laboratory for direct
observation of accretion and disruption processes.
1.3.1 Introduction to F ring properties

The F ring has been called an “enigma” (Barbara and Esposito 2002), but the general
properties of the ring are thoroughly known. The F ring sits at 140,221.3 km from Saturn’s
center (Albers, et al. 2012), which is a few thousand kilometers from the outer edge of
Saturn's A ring. The F ring has both a vertical thickness and inclination of approximately
10 km, which is larger than that of the main rings. While this frustrates any attempt to
study the main rings edge on, it allows for excellent ring plane crossing studies of the F ring
itself.

Variations in the core's internal structure and in the surrounding dust have taken place
between the Voyager and Cassini spacecraft visits (Colwell, et al. 2009). However, despite

being notorious for the transient structures it hosts, the F ring core maintains over decadal
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timescales the shape of a freely precessing eccentric inclined ellipse; the orbital solution
formulated to account for Voyager and other pre-Cassini data (Bosh, et al. 2002) remains a
good predictor of the core's position through the Cassini mission (updates in Murray, et al.
2008; Albers, et al. 2012).
1.3.2 Studies of the F ring

Cuzzi and Burns (1988) interpreted Pioneer 11 depletions in magnetospheric
particles in the region, which they attribute to small moonlets (<10km). Later, Voyager
observations revealed broad strands and burst events that showed the F ring as variable on
short time scales and over azimuthal distances (e.g. Lane, et al. 1982; Smith, et al. 1982;
Murray 1992; Murray, et al. 1997; Showalter 2004). Kolvoord, et al. (1990) found periodic
brightness enhancements in Voyager images of the F ring that are consistent with
Prometheus apoapse passages. During the 1995 ring plane crossing, edge-on observations
identified small bodies (Bosh and Rivkin 1996; Nicholson, et al. 1996). These observations
show the F ring is a mix of large and small particles with significant spatial and temporal
variability. This large-scale variability is apparent in imaging of both the F ring core
including kinks, knots, braids, and clumps (Smith, et al. 1981,1982; Showalter 1998; Poulet,
et al. 2000; Murray, et al. 2005, 2008) and the F ring strands in the form of a kinematic
spiral (Charnoz, et al. 2005).

The search has been on for an unseen belt of km-size moonlets since the Cuzzi and
Burns (1988) prediction. “Fan” structures such moonlets create in surrounding dust
(Murray, et al. 2008; Beurle, et al. 2010), direct detection by occultations (Meinke, et al.
2012; Esposito, et al. 2008; Hedman, et al. 2010b), and shadows cast during the 2009

Saturnian equinox (Beurle, et al. 2010) all indicate such a moonlet belt does exist.
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Since the Cassini spacecraft reached Saturn, the F ring has been a target for study of
small body formation and ring evolution. Esposito, et al. (2008) report 1-10 km bodies,
double core regions, and temporal variability from UVIS stellar occultation observations.
VIMS (e.g. Hedman, et al. 2007) co-observed at least one of these features. ISS images show
kinks, knots, braids, strands, clumps, and spirals in the F ring (Charnoz, et al. 2005 ;
Murray, et al. 2005, 2008; Showalter 2004; Poulet, et al. 2000). Murray, et al. (2008)
observe structures created by Prometheus in ISS images. Beurle, et al. (2010) show that
Prometheus makes it possible for “distended, yet long-lived, gravitationally coherent
clumps” to form.

The 2009 Saturnian equinox serendipitously coincided with the 19 year alighment
of Prometheus' apoapse with the F ring's periapse. This allowed observation of moonlet
shadows. These inferred moonlets have a clear correlation of abundance with longitude
relative to Prometheus (Beurle, et al. 2010). Similarly, Esposito, et al. (2012) find evidence
from UVIS occultations that clumping in the F ring is correlated to the location of
Prometheus, indicating that accretion of small bodies in the F ring may be triggered by the
moon’s influence.

Models have attempted to explain the distribution of small bodies in the F ring as
the equilibrium between accretion and fragmentation. Barbara and Esposito (2002)
(hereafter BE02) predict that the F ring evolves to a bimodal distribution of bodies that has
a large population of dust as well as few km-sized bodies. In addition, numerical and semi-
analytical works have predicted clumping in narrow rings (Longaretti 1989) and rings in a
planet’s Roche zone (Ohtsuki 1993; Salo 1995; Karjalainen and Salo 2004). N-body

simulations of the A and B rings show short-lived clumping of material that could also
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occur in the F ring (Lewis and Stewart 2009). Thus, the F ring is an interesting place of
exploration as a testing ground to compare to clumping processes elsewhere in the rings

(e.g., A ring propeller belt or B ring edge).

1.4 Applications beyond the F ring

Studies of ring systems in our Solar system can provide insight into other astrophysical
disks, both far away and long ago. For example, the number of extrasolar planets observed
has grown from a handful to over 700 in the last decade (Schneider 2011). A large fraction
of those planets are gas or ice giants and probably host ring systems. Furthermore,
observations of the protoplanetary disks from which they form are of increasing resolution
and number. Synergy among these studies of flattened orbital systems can tell us about
moon and planet formation, collisional fragmentation, disk structures, and the like. This in
turn can tell us about the history of our own Solar system with studies of the asteroid belt

and Kuiper belt’s collisional evolution.
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2. Observations
2.1 Introduction

Since its discovery (Gehrels et al., 1980), the F ring of Saturn has been the focus of
many observations and revealed new insights into ring dynamics and evolution. Cuzzi and
Burns (1988) interpreted Pioneer 11 depletions in magnetospheric particles in the region,
which they attribute to small moonlets (<10km). Later, Voyager observations revealed
broad strands and burst events that showed the F ring as variable on short time scales and
over azimuthal distances (e.g. Lane et al.,, 1982; Smith et al., 1982; Murray, 1992; Murray et
al., 1997; Showalter, 2004). Kolvoord et al. (1990) found periodic brightness
enhancements in Voyager images of the F ring that are consistent with Prometheus
apoapse passages. During the 1995 ring plane crossing, edge-on observations identified
small bodies (Bosh and Rivkin, 1996; Nicholson et al., 1996). These observations show the
F ring is a mix of large and small particles with significant spatial and temporal variability.
This large-scale variability is apparent in imaging of both the F ring core including kinks,
knots, braids, and clumps (Smith et al. 1981,1982; Showalter 1998; Poulet et al. 2000;
Murray et al. 2005, 2008) and the F ring strands in the form of a kinematic spiral (Charnoz
et al., 2005).

Since the Cassini spacecraft reached Saturn, the F ring has been a target for study of
small body formation and ring evolution. Esposito et al. (2008) report 1-10 km bodies,
double core regions, and temporal variability from UVIS stellar occultation observations.
VIMS (e.g. Hedman et al,, 2007) co-observed at least one of these features. ISS images show
kinks, knots, braids, strands, clumps, and spirals in the F ring (Charnoz et al. 2005 ; Murray
et al. 2005, 2008; Showalter 2004; Poulet et al. 2000). Murray et al. (2008) observe

structures created by Prometheus in ISS images. Beurle et al. (2010) show that
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Prometheus makes it possible for “distended, yet long-lived, gravitationally coherent
clumps” to form. Esposito etal. (2011) find evidence that clumping is correlated to the
location of Prometheus, indicating that accretion of small bodies in the F ring may be
triggered by the moon’s influence.

Models have attempted to explain the distribution of small bodies in the F ring as
the equilibrium between accretion and fragmentation. Barbara and Esposito (2002)
(hereafter BE02) predict that the F ring evolves to a bimodal distribution of bodies that has
a large population of dust as well as few km-sized bodies. In addition, numerical and semi-
analytical works have predicted clumping in narrow rings (Longaretti, 1989) and rings in a
planet’s Roche zone (Ohtsuki, 1993; Salo, 1995; Karjalainen and Salo, 2004). N-body
simulations of the A and B rings show short-lived clumping of material that could also
occur in the F ring (Lewis and Stewart, 2009). Thus, the F ring is an interesting place of
exploration as a testing ground to compare to clumping processes elsewhere in the rings
(e.g., A ring propeller belt or B ring edge). Additionally, UVIS affords us the opportunity to
detect aggregates tens of meters to a few kilometers in size. UVIS has much better spatial
resolution than the cameras, which have achieved 500m/pixel thus far in the F ring (Porco
et al.,, 2005, Murray et al., 2008), so we can probe deeper to understand the processes

occurring at scales as small as tens of meters.

2.2 Ring Observations
The Cassini Ultraviolet Imaging Spectrograph (UVIS) has a High Speed Photometer
(HSP) channel designed to observe stellar occultations (Esposito et al., 1998, 2004, 2005).

The effective wavelength for this channel is about 1500 A. As of September 22, 2010, UVIS

23



has observed 101 stellar occultations by the F ring. We identify individual occultations in
this dissertation by the occulted star and the “rev” number during which the F ring occulted
it, where “rev” refers to a Cassini orbit (apoapse to apoapse), which are numbered
sequentially (0,A,B,C,3,4,5...). These data are available on the PDS, arranged by instrument,
year, and day of year. Occultation data file names start with HSP.

The geometry of each occultation is calculated based on the positions of the star and
the position of the spacecraft derived from the appropriate SPICE kernels. The individual
reconstructed Cassini spacecraft trajectory SPICE kernels that have coverage of the
occultations were used (all reconstructed kernels except for
‘090415BP_SCPSE_09105_09115.bsp’, '101222BP_SCPSE_10353_11015.bsp’, and
‘101229AP_SCPSE_10363_11015.bsp'). These are available via anonymous ftp
at ftp://naif.jpl.nasa.gov/pub/naif /CASSINI/kernels/spk. This information was used to
predict the position (radius and inertial longitude) of the star in Saturn’s ring plane as a
function of time, listed as radial position and longitudes in Table 1. The Saturn pole
direction used was from ‘cpck17Dec2010.tpc’.

These observations allow us to measure the F ring’s opacity at various times,
longitudes, and angles (Colwell et al., 2006, 2007, 2010), from which we identify individual
structures throughout the ring. In addition to observing long-lived features consistent with
“strands” (Albers et al. 2009,2012), we also identify smaller, non-repeatable structures in
isolated occultation profiles. With occultations, follow-up observations are extremely
difficult if not impossible, so we use optical depth of such small features as an estimator of

longevity as did Esposito et al. (2008). The higher a feature’s optical depth, the longer it
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takes to diffuse apart, so it will be a longer-lived (meaning surviving multiple orbits) object
(Shu and Stewart, 1985).
2.3 Search Method

The method used to identify significant attenuations in the stellar signal during
occultations is adapted from the search method described in Esposito et al. (2008). The
search method consists of two parts: a test for statistical significance and a subsequent
persistence test. We have improved the method presented by Esposito et al. (2008) by
searching over a uniform radial range of distance from Saturn, probing different bin sizes,
and requiring features to be of greater statistical significance than they did.

First, we considered a feature that was independently verified by VIMS. The feature,
nicknamed “Pywacket,” was simultaneously observed by VIMS and UVIS during the
occultation of & Sco rev 13 (Esposito et al. 2008). Both instruments observed a significant
increase in opacity ~600 m in radial width. Since this detection is in both UV (~1500 A)
and near IR (2.92 pm), it assures this event was not a statistical fluctuation but a real event.
Figure 7 shows the two observations. We used this confirmed detection to refine our

search algorithm for similar features in the UVIS data.
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Figure 7. VIMS (solid, smooth curve) and UVIS (thinner curve) & Sco egress, rev 13
occultation data overplotted. The UVIS curve is scaled to match the VIMS unocculted stellar
flux (outside the plotted range). The two instruments have different spatial resolutions,
but both clearly detect Pywacket outside the F ring core. UVIS identifies the clump at ~8
km, VIMS at ~10 km because the instruments sample different inertial longitudes of the
ring; while separately observing each of the stars comprising the double star & Sco. This
situation allows for the observation of an offset that is indicative of an elongated clump.

The search algorithm has two completely automated parts. The first searches for
statistically significant attenuations in the stellar signal, while the second requires a feature
to have a minimum optical depth.

1) For each occultation, the data in the radial range 139,000 km to 141,000 km are
binned at a given radial size. The number of integrations per bin varies among
occultations as the geometry and thus resolution varies; therefore, we choose a fixed radial

bin size and sample over a fixed radial range in order to make this test more consistent
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than Esposito et al. (2008). Then, we offset the start of binning, creating N different
occultation profiles for a bin size of N time integrations for every possible distinct binning
of the data. Next, we determine a smoothed baseline value for the F ring opacity. To do so
we take a running mean from approximately 5 km of stellar signal, or number of photons
detected, surrounding and including each bin. This definition for the baseline was
compared to alternatives, including medians, polynomial fits, splines, and various other
radial ranges for the running mean; however, we select this method because the Pywacket
feature is most statistically significant using this particular baseline (specifically, a running
mean of 81 bins of 5 integrations surrounding and including the center bin).

Assuming the HSP signal is described by a Poisson distribution, well-satisfied for
our data and confirmed by observations of blank regions, where p corresponds to the
baseline value and C is the binned stellar signal at a particular bin, the probability of

measuring a value of exactly C'is given by

-u . C
_etu

Equation 5

To find the probability that the stellar signal would be less that or equal to C at that

bin, we sum the distribution over all signal values less than C:

C
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J

Equation 6

We perform this calculation for each bin, i, in the data set to find P,=P(y,<C;)). We
then multiply P; by the number of tested bins in the data set, v. This gives m =vP;(Colwell
etal.,, 1990). Events with m < mgguiscane are statistically significant because it is unlikely that
such an event would occur by chance in the profile. Mathematically, the critical m value

Mgignificant 1S 1 and used for most occultations; however, for a handful of observations of
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bright stars when raw stellar signal exceeds 128 counts the value is set at a more
conservative 0.1. This is due to compression of the UVIS data (square root nine
compression, see Esposito et al. 2004) that reduces the transmitted data to 8 bits, which
can produce spuriously low counts. The value migisican=0.1 was estimated from testing a
number of surrogate Poisson processes after compression was applied. This is a new
requirement beyond that reported in Esposito et al. (2008).

If a feature is flagged in at least one of N different starting point binnings, we count
in exactly how many different binnings it is flagged. This number K is then compared to
[N-W]/, the difference in bin size N and feature size W, where W is full width at half
maximum (FWHM) in unbinned data. For a feature of width W, just barely detected by our
method, [N-W/ is the expected number of arbitrary starting points where it passes the
statistical test (for W=<Z2ZN). For a feature to be significant, K (the number of configurations
in which the feature was flagged) must be greater than [N-W/. This procedure is repeated
for six different radial bin sizes: 25 m, 100 m, 250 m, 500 m, 1 km, and 2 km. We impose a
more rigorous requirement than Esposito et al. (2008); only if a feature is significant in at
least two different bin sizes will it be reported and flagged for the next test, the
“persistence” test.

2) In the “persistence” test, each flagged event is examined to determine its width and
peak opacity at the radial bin size in which it was significant. To be included in our list, the
maximum binned normal optical depth ( T.= Topservea SinB) of the feature must be at least as

large as Pywacket (7., = 0.4 when binned to 500 m). It should be noted that since we use

a statistical test, it is possible that some spurious events are recorded and that some real
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features are missed. The largest uncertainty of this test is the unknown F ring background
model (without features) with which to compare our possible features.

The radial width is the full width at half maximum of the consecutive integration
periods that are part of the feature in an unbinned profile. Peak normal optical depth is the
maximum value for the feature from the binned data. Because of the optical depth
requirement, T,,.,>0.4, the ring particles in such aggregations collide multiple times each
orbit (Shu and Stewart, 1985). The collision rate is proportional to the observed optical
depth T, and the number of collisions for a particle to escape the clump is proportional to
T2. The clump lifetime is estimated by the ratio of the number of collision required for
particle escape to the collision rate, 72/7, thus it scales as the clump optical depth. An
aggregate will diffuse apart as it suffers more collisions and eventually will break apart
entirely. This means that more opaque structures will persist for multiple orbits.

Our search method introduces two qualifications to the characteristics of found
features. First, star brightness varies from occultation to occultation. The Poisson
statistics of a weak star are noisier than those of a bright star. Because peak normal optical
depth is a feature-selection criterion, the brightness of a star may have some effect on
selection; however, the persistence test requires a minimum optical depth that is derived
from a confirmed feature (obviously not a statistical fluctuation), so we probably do not
exclude any real features based purely on low statistical significance from dimmer stars.
Another characteristic of our search method is a bias toward azimuthally elongated
features in the F ring. An occultation that slices through the F ring has a higher probability
of the occultation path intersecting a clump if the clump is elongated in azimuth. It follows

from this bias that the features detected in this study may be elongated in longitude.
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Simulations of ring material (Lewis and Stewart, 2009) and observed propeller structures
(Tiscareno et al., 2008) have shown how ring material shears out over azimuth, thus
elongating clumps. UVIS HSP occultations cut the ring almost radially from an inertial
reference frame. The radial speed of the occultation is typically a few km/s, but ring
material orbits beneath the occultation track at ~17 km/s; therefore, the occultation cuts
are typically very slanted in the corrotating frame providing some azimuthal component to
the observed ring structure. We account for the elongation and corotation biases in the
size distribution of features reported later in this section (2.5). We report only the
apparent radial width of features here, but such features likely are not spherical and may
have different widths in other dimensions.

2.4 Data Analysis

We apply this search algorithm to all 101 occultation profiles of the F ring. This
yields 27 events, distributed in radial width from 22m to 3.7 km (see Table 1). We
performed the same search for each of the 101 occultations in the region 138,000 + 1,000
km, where we expect unattenuated stellar signal. As expected, we found no features that
pass our search criteria in this region; therefore, we conclude the features we find in the F
ring region almost certainly represent real structures in the F ring.

Seven of the 13 features (Events 3,6, and 9-13) reported in Esposito et al. (2008)
were not found by this new search method. All seven are excluded because they do not pass
our stricter statistical test; the set bin size of the Esposito et al. (2008) search algorithm
was coincidently optimized for these features, but because they are not statistically
significant at different bin sizes they do not pass our more conservative test. The six

features from Esposito et al. (2008) that pass the new stricter test are reported as Events 1
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through 6 in Table 1 in this dissertation. We find the 21 other features in occultations not
searched in Esposito et al. (2008).
2.4.1 Classification

With 27 features detected over the course of 101 observed occultations by the F ring
(Table 1, Figure 8), the authors have found it useful to develop a classification scheme.
Three categories are apparent: Moonlet, Icicle, and Core (Table 2). These names describe
the shape of the feature as seen in signal attenuation in the occultation profile. As such, the
names are not intended to exactly identify the physical object obstructing stellar signal, as
different types of objects may be associated with one type of observed occultation feature
(and vice versa) because they are indistinguishable in the one-dimensional occultation
profile. Each class has defining characteristics that distinguish it from the others. Two of
the classes, Cores and Icicles, are broken down into sub-classes due to variations in the
morphology of constituent members. The number of features in each class is listed in Table

2. This system of classification seeks to order the types of features within the F ring.
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Figure 8. All 27 of the occultations where significant features were observed. Each is
labeled with the type of feature observed and the star name and rev number of the
occultation. The occultations are named with the rev number during which an observation
was made and include “I” or “E” to denote “ingress” or “egress,” respectively, for
observations that included both segments. Each feature is labeled with an arrow and the
event number from Table 1. All plots are over the same radial range, which is why & Ara,
rev 90, Ingress is labeled “Not in range” because the Moonlet appears in the core-like inner
strand region (Figure 9b). Longitudes and reference radii were computed using the
eccentric, inclined F ring model of Albers et al. (2011). “Distance to core” is the radial
position of the feature relative to the observed F ring core reference radius, which is
defined by the visually-determined point of greatest attenuation. The F ring “core” is the
region of greatest attenuation in an occultation, coincident with the highest density region
of the ring. All occultations have signal binned to 100 m.
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Event # Ni Occ (Rev) m value Radial Width (km) uTC Peak norm OD Radial Di: (km) Longit: Distance to core (km) category total mass (sphere) (kg)

*1 Mittens Alp Leo 9 7.15E-08 0.594 2005-159T705:06:35.057 0.564 139915.04 350.52 2.702 moonlet 2.53E+14
*2 Tiger 126 Tau 8 2.50E-02 0.022 2005-139T14:17:09.019 1.096 140067.33 227.21 1.722 multi-icicle 3.40E+11
*3 Pywacket  Alp Sco 13 E 1.71E-01 0.763 2005-232T14:17:45.714 0.401 140550.43 10.04 9.756 simple-icicle 4.17E+14
*4 Butterball ~ Alp Vir 34 E 1.31E-06 3.739 2006-337T04:05:24.518 0.434 140170.80 89.88 1.853 W-core
*5 Snowball 2 Gam Ara 371 8.11E-11 0.211 2007-022T701:40:20.764 2.415 140289.69 248.44 6.235 multi-icicle 3.19E+13
*6 Schmutz 2.35E-02 0.105 2007-022701:40:23.828 2.483 140278.89 248.44 -4.567 simple-icicle 7.90E+12
7 Garfield 205839 57 2.80E-02 0.531 2008-026T14:54:07.986 0.597 140400.06 186.88 0.597 multi-icicle 2.02E+14
8 Heathcliff 1 Alp Ara 63 6.48E-06 0.531 2008-092T12:09:48.285 2.460 140501.12 26.12 -1.331 multi-icicle 2.02E+14
9 Heathcliff 2 2.81E-01 0.097 2008-092T12:09:48.581 1.800 140503.51 26.12 0.894 simple-icicle 6.70E+12
10 Heathcliff 3 1.72E-05 0.774 2008-092T712:09:48.409 2.286 140502.12 26.12 -0.230 multi-icicle 4.30E+14
11 Fang 1 Eps Cen 65 1.01E-08 0.129 2008-110T10:16:33.513 1.809 140216.90 202.92 0.636 W-core
12 Fang 2 5.18E-04 0.090 2008-110T10:16:33.657 1.652 140216.18 202.92 -0.081 W-core
13 Whiskers 1 Bet Cen 75 3.78E-02 0.093 2008-188720:49:32.052 1.208 139945.52 173.03 1.176 multi-icicle 6.13E+12
14 Whiskers 2 1.08E-01 0.046 2008-188T720:49:32.211 1.494 139944.29 173.03 -0.053 simple-icicle 1.53E+12
15 Alp Ara 79 3.16E-03 0.574 2008-217T03:25:05.953 3.404 140146.11 138.32 2.293 W-core
16 5.04E-01 0.469 2008-217T03:25:06.373 2.879 140142.46 138.31 -1.364 W-core
17 Mohrle Bet Cen 81 8.80E-05 0.194 2008-231T711:39:21.682 1.786 140205.54 168.48 3.454 simple-icicle 2.69E+13
18 Vasska Bet Cen 89 2.89E-06 0.251 2008-290709:01:32.589 1.433 140333.58 167.80 -1.578 simple-icicle 4.50E+13
19 Sylvester  Alp Ara 90 I 1.17E-12 0.107 2008-298T701:39:13.119 2,518 139932.76 139.06 -127.592 moonlet 8.23E+12
20 Alp Ara 90 E 1.31E-03 0.553 2008-298T06:32:57.584 2.378 139960.08 37.36 3.403 W-core
21 Alp Ara 96 E 2.16E-04 0.663 2008-344709:59:12.483 2.684 140504.56 50.65 -0.411 V-core
22 Tabby Alp Ara 98 I 2.31E-01 0.213 2008-360T06:24:18.408 1.304 140322.79 134.53 -1.603 simple-icicle 3.25E+13
23 Socks Alp Ara 98 E 1.59E-06 1.168 2008-360T11:55:46.407 3.405 140526.72 57.38 -0.035 multi-icicle 9.77E+14
24 Eps Cas 104 E 4.15E-08 0.122 2009-058T17:39:08.413 1.682 140180.95 137.34 -4.342 W-core
25 Felix Alp Sco 29 2.61E-01 2.167 2006-269T06:35:35.921 0.658 139923.21 201.68 -11.427 multi-icicle 3.37E+15
26 Alp Vir 124 1.96E-03 0.852 2010-011T13:37:01.113 0.995 140331.91 306.20 0.000 W-core
27 Alp Vir 134 8.13E-03 0.030 2010-186T09:05:04.125 0.725 140558.10 136.70 0.000 V-core

Table 1. Characteristics of each significant feature found in 101 UVIS F ring occultation
profiles. The occultations are named with the rev number during which an observation
was made and include “I” or “E” to denote “ingress” or “egress,” respectively, for
observations that included both segments. Icicles and Moonlets are nicknamed because
they are likely associated with specific objects in the ring, while Cores are not because they
are varying shapes of the ring. Longitudes and reference radii were computed using the
eccentric, inclined F ring model of Albers et al. (2011). “Distance to core” is the radial
position of the feature relative to the observed F ring core reference radius, which is
determined by visually selecting the position of greatest attenuation. The F ring “core” is
the region of greatest attenuation in an occultation, coincident with the highest density
region of the ring. Note that the two opaque features, 1 Mittens and 19 Sylvester, are listed
with a finite optical depth because those values are the maximum optical depth values for
those particular occultations. Features noted with an “*” (Events 1-6) are also reported in
Esposito et al. (2008) as Events 1, 2, 4, 5, 7, and 8; however, the other seven features
reported in Esposito et al. (2008) did not pass the stricter test presented here. No new
features were found in previously searched occultations. The geometric values given here
are calculated using the individual reconstructed Cassini spacecraft trajectory SPICE
kernels that have coverage of the occultations used. These are available via anonymous ftp
at ftp://naif.jpl.nasa.gov/pub/naif. CASSINI/kernels/spk/ . For the geometry in this study,
‘cpck17Dec2010.tpc’ was used.

Class Number in Class
Moonlet 2
Icicle 15

Core 10
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Table 2. This table lists the number of significant features in each class.

2.4.1.1 Moonlets

These features are quite distinct from any other features yet observed. Members of
this class attenuate stellar signal to background levels, so we interpret them as opaque
features. This indicates that the objects causing these observed opaque features may be
solid objects, rather than completely loose aggregations of material that are capable of
letting light pass through their porous interiors. Unlike an atmosphereless-moon
occultation with vertical drop-offs in signal, the edges of these features exhibit a steep but
sloped decrease in signal, indicative of a thin, loosely-aggregated surface layer around a
solid object. Thus far, two Moonlets have been observed. One of the features, nicknamed
‘Mittens,’ observed during the occultation of & Leo during rev 9, blocks all stellar signal for
aradial distance of 594 m, with small transition regions of attenuation in signal on both
sides (Figure 9a). The other feature in this class, nicknamed ‘Sylvester,’ is observed in the
occultation of & Ara, Ingress, rev 90. This feature is interesting because it is the only one
that lies in the core-like inner strand of the F ring (Albers et al. 2012), while all of the other
26 observed significant features lie in or near the core of the F ring. Although smaller in
width (107 m) than the other Moonlet, Sylvester also exhibits steep drop-offs in stellar

signal to the background level (Figure 9b).
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Figure 9. The two features classified as Moonlets because both have sharp edges and
attenuate stellar signal to the background level. Our simple model demonstrates that a
realistic triaxial ellipsoidal body with a semi-transparent surface layer matches the data
from the two occultations in this figure. Since in both geometries the body is essentially
viewed from the side (B(a Leo, rev 9) = 9° and B( Ara, Ingress, rev 90) =-54°), the radial
and vertical dimensions are unconstrained. The thickness h directly gives the transition
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from the background to the ring level, which does not warrant a sophisticated model and
we simply employed a linear function.

a) Occultation profile of a Leo rev. 9 in raw counts. The feature at 139917 km is “Mittens.”
Fits of the occultation constrain the azimuthal body axis b to be 500m and unconsolidated
layer width h=200m.

b) Occultation of a Ara rev 90 in raw counts. The Moonlet nicknamed “Sylvester” is at
139930 km. The dimensions b=120m and h=150m are constrained by the fits for this
occultation.

2.4.1.2 Icicles

The Icicle class of F ring features has the largest number of members at 15. This
class is so named because the abrupt drop in stellar signal resembles an icicle hanging from
eaves. Members of this group are smaller formations, usually under a kilometer in radial
width (Figure 10), and can be divided into two subclasses. The Icicle nicknamed Pywacket
in Esposito et al. (2008) is an example of a simple Icicle, or one that is alone in a region.
The other subclass of Icicles is the multi-icicle, which occurs when several simple-icicles
cluster in a confined region. An example of this can be seen in & Ara rev 63 (Figure 10c),
with the inner, wider feature being a multi-icicle and the outer, smaller feature a simple-
icicle. Eight multi-icicle significant features are too many to be created by randomly located

independent events and demonstrate the tendency of multiple features to occur together.
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Figure 10. Members of the Icicles class. Features are labeled with an arrow and their
“Event number” from Table 1. Occultations are identified by the star occulted and the rev
number during which the observation occurred.

2.4.1.3 Cores

Another class of observed features is Cores. The F ring typically has one central core
region that is “U”-shaped and approximately 10 km wide. We identify two other variations
in core region shape: “V” and “W”. These designations describe the signal attenuation along
the radial direction of the ring in an occultation profile. The “V”-shaped core is likely a
concentration of material in a dense, ~500 m-wide stream surrounded by a linear decrease
in optical depth on both sides, as pictured in the & Ara, rev 96 egress occultation profile in
Figure 11e. Of the ten features included in the “cores” class there are two significant “V”-

cores seen (other “V”-shaped cores appear within the scope of this study, but those are not
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included in our list because they do not qualify as statistically-significant features).
Another common F ring core shape is the “W.” A possible explanation for the “W”-shaped
core could be that described by Brophy et al. (1990). They discuss such a configuration due
to particle-size segregation, leading to an inner region of low optical depth flanked by
roughly equal-sized regions of higher opacity, like the € Cen, rev 65 occultation profile in
Figure 11b (nicknamed Fang 1, 2). We identify a total of eight significant “W”-core features

over the specified observing campaign.
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Figure 11. Statistically-significant core regions. a. Occultation of & Ara rev 34 egress. We
classify this feature, nicknamed Butterball, as a W-core. b. Occultation of € Cen rev 65.
Example of W-core, nicknamed Fang 1 and Fang 2. ¢. Occultation of & Ara 79 shows W-
core structure. d. Occultation profile of & Ara 90 egress. We classify this as W-core
structure. e. Occultation profile of & Ara 96 egress. This is a V-core. f. Occultation profile of
€ Cas 104 egress shows another W-core. g. Occultation profile of & Vir 124 shows another
W-core. h. Occultation profile of & Vir 134 shows another V-core.
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2.5 Discussion

Table 1 lists our features, showing the broad range of size, shape, and optical depth
of the significant features we observe in the F ring. The table gives the location of each
feature with respect to the F ring core, the location of which is defined by the visually-
determined point of greatest attenuation. Features are seen inside, outside, and at the F
ring core location. From our sample of significant features, there is only one major outlier
from the ring core, the Moonlet nicknamed Sylvester, which is also the only feature found
in the core-like inner strand (Albers et al., 2011) region. The classification of this large
number of F ring events by morphology reveals the prevalence of certain shapes, sizes, and
opacities. Although these classes are based on the shape of the signal attenuation in the
occultation profile, we may associate them with different types of objects embedded in the
ring. Cassini UVIS occultations have certainly revealed that the F ring core takes many
different shapes and is not azimuthally symmetric. Certain longitudes experience a
narrowing of the core resulting in a “V”-shaped core (Esposito et al.,, 2008). Meanwhile,
particle size segregation may result in the “W”-shaped cores in other regions (Brophy, et
al,, 1990; Lewis and Stewart, 2009). Icicles are density enhancements that we conclude
indicate elongated clumps of ring particles (Lewis and Stewart, 2009). Itis important to
remember here that each occultation feature classification does not necessarily correspond
to one type of object in the ring. For example, the multi-icicle “Whiskers” is also consistent
with moonlet wakes (Albers et al,, 2012). We interpret the Icicles as temporary aggregates
that we call “clumps” and the Moonlets as possible solid bodies.

The two Moonlet-class features lead us to assess the type of object responsible for

such signal attenuations. As the name suggests, these objects may be solid objects

39



embedded in the F ring; however, their edges in occultations are not perfectly sharp (as
obtained in moon occultations, e.g. Hansen et al. 2006) but have a gradient. Works of Porco
et al. (2007) and Charnoz et al. (2007) have established that solid bodies within rings
accrete the material until their Roche lobe is filled. Further mass increase requires some
additional physical process, such as compaction. Thus, at any point the moonlets within the
F ring have roughly filled their Roche lobes, and, while their gravity still attracts the ring
particles, they are not bound to the moonlet. The attracted particles probably form a “skirt”
of loose material around the moonlets. In order to model this we envision the moonlet as a
triaxial solid body with axes (a in azimuthal, b in radial, and c in vertical dimensions) and a
“skirt” of loose material of width h. The attenuation of star light by loose material is
modeled as a linear decrease of transparency t=exp(-t/|sin(B)|) from opaque solid core to
the ring background. In this equation, Tt is optical depth and B is the elevation angle of the
occulation, which is 9° for the & Leo, rev 9 occultation with Mittens and -54° for &« Ara,
Ingress, rev 90 with Sylvester. Miodrag Sremcevic (Meinke et al, 2012) simulates an
occultation cut across the center of the Moonlet in the moonlet corotating frame. In both
cases of Mittens and Silvester the geometry is such that the moonlet is seen from the side,
making fits sensitive only to the azimuthal extent of the moonlet (a,h). The radial axis b and
vertical axis c are unconstrained. The azimuthal size of the body (a) gives the largest
contribution to the width of the opaque part. While the width itself is well constrained from
the data, the contribution from radial (b) and vertical (c) axes are not zero, thus giving
significant uncertainty for a. Thus, Sremcevic deems that a chi-squared minimization is not
warranted, and instead he present a possible solution for a and h that was found by visually

inspecting plots with varying values for a and h in increments of about 5% (Meinke, et al,,
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2012). A typical successful fit to UVIS data is shown in Fig 9a,b. Test fits with different
aspect ratios yield nearly the same body azimuthal axis of about a=500m (120m), and loose
material of width h=200m (150m) for Mittens (Silvester). Comparing the various plots we
can estimate that the uncertainty in a and h is at least 20%. In addition, UVIS and VIMS
observed features coincidently on two different occasions: simple-icicle Pywacket in & Sco
rev 13 egress and multi-icicle “Felix” in & Sco rev 29. We infer that the objects responsible
for the signal attenuation in these observations are elongated in the azimuth. & Sco is a
double star whose member stars can individually be observed in IR and UV, respectively.
Thus, an angular separation of the two observations during the rev 13 occultation means
that Pywacket was actually observed at two different inertial longitudes, first by UVIS and
then after 1.18s by VIMS, which is why the two observations are at different distances from
the core in Fig 7. Taking into account the projected speed of the occultation track and the
orbital motion of the body between two observations we obtain the actual azimuthal
separation of about 1.2 km, as compared to the 763 m radial width of the feature. This is
further evidence that such clumps of material are azimuthally elongated.

We compare these opaque features to models of moonlet belts in Saturn’s rings.
Cuzzi and Burns (1988) predict a moonlet belt surrounding the F ring, but none of the
opaque features occurred outside of the immediate region surrounding the core or
secondary-core region. BEO2 predict a bimodal size distribution of moonlets in the F ring,
but the observed number (2) is inconsistent with the number of such objects predicted
from their models (cf. Figure 12). From the one measurement of the 594 m feature,

classified as Moonlet Mittens, in one of 101 independent occultation profiles, we estimate
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1.5x10% Mittens-sized bodies in the F ring. From Esposito, et al. (2008), we have for
spherical objects

_ Ny 2R
o -
ring n W

occ obs

Equation 7

and from that we find the total mass of such objects in the F ring to be

T

3
otal T _ pclumpWobsNFring
clumps W,, 6

obs

Equation 8

where nops is the number of observed features (nons=1 for each individual feature), nocc is
the number of occultation profiles (nocc=101), Wops is the observed FWHM feature width, R
is the Saturnocentric distance of the F ring (R=140221.3 km), and pcump=0.235 g cm3 is
half the density of Prometheus. Likewise, 8.2 x 104 Sylvester-sized objects may exist in the
ring, as compared to ~100 such features in the BEO2 model. We estimate the total mass of
Moonlets and Icicles derived from observations using Equation 7 and 8 to be 6.1 x 101> kg.
Such additional mass would accelerate (e.g. Null et al., 1980) the precession rate of
Prometheus by 2.76 x 10-> degrees per day, which would have been observable (French et
al,, 2003, 2006). Furthermore, that mass equates to a surface density of 800 g cm2, a 20-
fold increase over the A ring. As we do not observe such a precession or surface density,
we reexamine our calculation. One thing to notice is that the few largest features in the
distribution contribute the most mass to the total. Table 1 lists the mass contribution from
each size of object. The largest feature, number 25 Felix, accounts for 56.1% of the total
extrapolated mass of spherical clumps in the F ring. The observation of a single large Icicle

may not represent the entire population of similarly-sized features in the F ring, which
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contributes to an overestimate of the total mass of clumps in the ring. This large mass
estimate supports that the features are likely not spherical, rather they are elongated
clumps more like triaxial ellipsoids, as suggested by the occultation geometries earlier in
the dissertation. The features are probably flattened and have a radial width about one
tenth that of the azimuthal length, an axial ratio typical of gravitational wakes and
propeller structures in the A ring (Colwell et al., 2007; Lewis and Stewart, 2009; Salo and
Schmidt, 2010; Tiscareno, et al., 2010).

For elongated objects, Wobs may significantly underestimate the length of the
feature, leading to an overestimate of Nrring. Since the orientation of the occultation cuts is
not random in the ring plane, and aggregations are likely more azimuthally elongated than
radial, Nrring must be considered an upper limit. We generalize Equation 9 as an upper limit
of the number of bodies of a certain size in the F ring, accounting for a triaxial ellipsoid by
including a factor paxes=a/b=b/c to account for the ratio of the azimuthal length of the body

to the radial width and radial width to vertical thickness.

N N, 27TR
Fring — W
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Equation 9
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Equation 10

Equation 9 reduces to equation 7 for a sphere (pPaxes=1). Figure 12 includes this upper limit
for Paxes=10. Assuming paxes=10, we can now extrapolate the total mass of vertically-
flattened, ellipsoidal clumps in the F ring from this number. Using Equation 10, we find a

total mass of 6.1 x 1014 kg, equivalent to a moon of Prometheus’s density with radius of 6.8
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km. Assuming the radial width of the F ring is ~6 km, this mass equates to a surface
density of 11.7g cm2, and would cause a change in Prometheus’ precession rate of 2.76 x
10-¢ degrees per day, which is below the detection threshold. Since the features we see are
likely elongated, this resolves the mass problem we found previously for spherical clumps
because there are fewer elongated clumps although each is as massive.

We report the cumulative size distribution of the number of features in the F ring,
calculated using Equation 9 and the 9 features reported as Moonlets and Simple Icicles. We
consider only the Moonlets and Simple Icicles because those are the feature classes that are
identified with individual triaxial clumps, whereas the core class is instead identified with
core-shape dynamics and the multi-icicles are likely composed of multiple simple icicles.
This observed cumulative size distribution is compared to simulations of aggregation and
disaggregation in the F ring by BEO2 in Fig 12. BE02 simulated the evolution of the F ring
including tidally-modified accretion. This led to a predicted bimodal differential
distribution of bodies in the F ring, with a peak in the size at a few kilometers. It is obvious
that we do not observe the bimodal distribution predicted by BE02, but rather a

continuous power law n«r-Q that is best fit by cumulative power law index Q = 1.5, which is

equivalent to a differential power law index of g=Q+1=2.5 (see the next paragraph for
another method of Q-value determination). In variables we defined in this dissertation,
Nrring(>Wobs/2) x(Wops/2) Q. At sizes under one kilometer, the BEO2 prediction of the number
of bodies is much larger than the observed distribution; however, for an azimuthal axis to
radial axis ratio of 10, we only have a 0.57 chance of observing a feature in 101 occultations
that would match BEO2's larger size mode (width = 1-10 km), so we cannot yet compare

our observations to the BE0O2 distribution at sizes above a kilometer. The two distributions
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may be different for several reasons. First, BEO2 simulate the equilibrium distribution of a
model of solid, spherical moonlets in the F ring, but not loose-packed, probably-elongated
aggregates of material as is indicated by Cassini observations. Also, BEO2 include only
tidally-modified accretion. If other processes like melting, sticking, sorting, or compaction
are important, this would most likely modify the predicted distribution. Additionally, BEQ2
assumed a sharp threshold for accretion. If the ratio of colliding bodies’ masses is large
enough they fragment 100%, otherwise they accrete 100%. In Fig 12, one can see the BE02
model (solid curve) does not match the observed cumulative size distribution of our
features. In fact, for the lower end of the size range sampled, BEO2 predictions are

significantly larger than the number UVIS detects.
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Figure 12. Cumulative size distribution of significant features in the Moonlet and Simple
[cicle classes extrapolated from UVIS observations reported in this dissertation (black
diamonds) and predicted by BEO2 (solid line). We do not include the core class of features
in this distribution because they are not comparable to the objects described by BE02. We
also exclude the multi-icicles from this analysis because we describe them as
accumulations of simple icicles rather than one triaxial object. The black diamonds plotted
are calculated upper limits on the number of ellipsoidal clumps in the F ring (Equation 9
for paxes =10), accounting for observational biases due to clump elongation. The observed
distribution, with a fitted cumulative power law index of Q=1.5 (overplotted in red) does
not match the bimodal distribution predicted by BE02 for sizes smaller than a kilometer;
however, for paxes =10, we only have a 0.57 chance of observing a feature in 101
occultations that would match BE02’s larger size mode, so we cannot yet compare our
observations to the BEO2 distribution at larger sizes.

We use another method to obtain the most likely differential slope q of the
distribution, which was developed by Sremcevic (Meinke, et al., 2012). He first examines
the raw data presented in Table 1 and then corrects the (size-dependent) correction factor
due to observational biases (see below) present in equations 7 and 9. The small number of
data points presents the major challenge, and he uses a simple surrogate model of power-
law random numbers with the differential slope gr«w and sizes between [s1,52] to match the
data. Drawing random numbers to represent the observed distribution mimics what UVIS
does; that is to say, randomly observe occultation cuts through the F ring at random
longitudes and times. Numerical experiments indicate that distributions with slope graw>2
are ruled out for two reasons. First, the distribution does not meet the data points at
smaller sizes, while in the numerical experiments it is exactly the more numerous smaller
sizes that are the most indicative of the underlying distribution as seen in Figure 13.
Second, the drawn random numbers cluster at the smallest sizes, while if we look at Table 1
we see that sizes are almost equally distributed between smallest and largest. In Fig 13, one
can see that by far the better fit is obtained with distributions with 1<grew<1.5. This

conclusion stands in both cases if we consider all data (including multi-icicles) or only the
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sub-selection of moonlets and simple icicles. The shallow distributions with grew<1.5 are
also sensitive to the upper size cut-off s2 (contrary to qr.w>2). While it is tempting to
conclude that there is indeed an upper cut-off, or at least a knee between 1 and 10km, it is
best to refrain due to the scarcity of the data. The last step is to consider the bias in the
detected sizes. UVIS occultations are only one-dimensional cuts across the F ring and
provided that the features scale roughly the same in all three dimensions, the smallest
features are hardest to detect, since the potential target is proportional to the feature size.
Thus the simplest model is to consider a factor of 1/s that links the real F ring distribution
and the actually observed UVIS data (as in eqs 7 and 9). In other words, even if there was
the same number of 100 m and 1km objects in the F ring, UVIS experiment is 10 times more
likely to detect 1 km objects. Therefore, we conclude that the true differential slope of the
size distribution of F ring features is 2<q<2.5, which is consistent with the simple power-

law fit to the cumulative distribution in Fig 12.
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Figure 13. Comparison of observed and surrogate cumulative size distributions. Black is
used for UVIS data, which includes only moonlets and simple icicles, and blue for all UVIS
data (excluding Cores), while red represents the surrogate random number

distribution. UVIS data points are the raw data from Table 1, without correcting for the
1/s bias (eq 7). Since the cumulative distribution is insensitive to the possible binning (by
the definition) we choose the bins to correspond to actual data points (UVIS or surrogate).
We display three different random number realizations (from top to bottom: seeds are -7, -
8, -9), each normalized to 1 and offset for ease of viewing.

A) Top panel shows surrogate random number distributions for graw=2

B) Bottom panel shows surrogate random number distributions for graw=1.2.

The sample of significant features in the Icicles and Moonlets classes sheds some
light on the evolution of clumps. The largest class by far is that of Icicles. Itis natural to

imagine Moonlets as a possible future stage of the Icicle. Optical depth indicates clumping
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because more densely aggregated material blocks more light. Thus, if looser clumps of
material (Icicles) compact into denser, less porous aggregates they may be observed as an
opaque Moonlet in an occultation. Since the Moonlet class is the smallest class with only
two observed members, it seems that this compaction state is rare. We note that when
Icicle and Moonlet optical depths are compared to the relative position of Prometheus
optical depths are largest for features located near the antipode of Prometheus’s orbit
(separated from Prometheus in longitude by 180°) (Esposito et al., 2012). This rarity of
opaque Moonlets compared to clumps is consistent with Esposito’s proposal that
Prometheus triggers a cycle of aggregation and disaggregation that only infrequently

results in formation of a coherent object.
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2.6 Correlation of Feature and Prometheus location

Esposito et al (2012) propose a predator-prey system to describe the behavior of
ring particles. In their model, the mean aggregate size is the prey, and the velocity
dispersion is the predator. As mean aggregate size increases, so does the velocity
dispersion. However, as dispersion increases, it breaks up the aggregates. Esposito et al
(2012) argue that “[m]oons may trigger clumping by streamline crowding, which reduces
the relative velocity, leading to more aggregation and more clumping” (see Section 3.1.5).
Conversely, collisions or tidal shedding leads to disaggregation as the clumps stir the
relative velocity. UVIS observations motivate and support their predator-prey model. The
significant F ring features reported in Section 2.4 are among the evidence that supports the
model, specifically the correlation between feature location and Prometheus’ location.
They conclude “that the agitation by the moons in the F ring and at the B ring outer edge
drives aggregation and disaggregation in the forcing frame.” Furthermore, this “agitation”
by Prometheus may allow for the occasional formation of solid objects (e.g. Moonlets) from
the temporary clumps (e.g. Icicles). As a result, Esposito et al (2012) predict the formation
of clumps and some more permanent objects at the other perturbed regions in the rings. In
this section, I review how the significant F ring features discussed previously and in Meinke
et al (2012) indicate stimulated clumping by Prometheus and support the Esposito et al
(2012) model.

Prometheus is the inner shepherding satellite of Saturn’s F ring. Because it has a
smaller semi-major axis than the F ring, it orbits at a faster speed around Saturn and
encounters a specific patch of F ring material once per its synodic period of ~68 days (with

respect to the center of the F ring, semi-major axis from Bosh (1996) model). Figure 14
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displays the orientation of the ring and moon and defines where “leading” and “trailing”

features lie with respect to Prometheus’ orbital position.

To Saturn

Trailing Leading
F'r:}ﬂrr;eﬁt-hﬂehu_ s—‘. o

F Ring Direction of orbit
Increasing L

Figure 14. Schematic of F ring and Prometheus’ orbits. A leading feature has not
encountered Prometheus in over 34 days (half a synodic period), whereas trailing features
have very recently encountered Prometheus.

A leading feature has not encountered Prometheus in over one half of a synodic period
(>34 days), whereas trailing features have very recently encountered Prometheus.
Esposito et al. (2008) identified 13 statistically significant features in the first UVIS
occultations. They interpreted these as temporary clumps and a possible moonlet,
“Mittens”, which is opaque and has sharp edges in the occultation profile. At least one of
the features, nicknamed “Pywacket”, was simultaneously observed by a VIMS occultation.
Comparing the double star results for Pywacket, Esposito et al. concluded that it was likely
elongated. The sharp edges indicate it is also significantly flattened. Meinke et al. (2012)

(and Section 2.4 of this dissertation) now catalog and classify 27 features found in the first

52



101 stellar occultations by the F ring. Two features are opaque and candidates for solid
objects: Mittens and a new feature, Sylvester. Both features’s occultation profiles are
consistent with a solid object surrounded by a skirt of loose material (Meinke et al., 2012).
Fifteen other statistically-significant features (“Icicles”) have been observed in Cassini UVIS
occultations that are associated with loosely accumulated aggregates (Meinke et al., 2012).
These 17 features that represent aggregations, classified as “Icicles” and “Moonlets” by
Meinke et al.,, show significant variation in optical depths based on their location relative to
Prometheus.

Optical depth is a measure of the density of material, thus we can use optical depth
as a proxy for clumping. A higher optical depth indicates more clumping. Thus, we
interpret higher optical depths at certain longitudinal separations from Prometheus as
evidence that the moon perturbs ring material as it passes by, which in turn leads to
clumping later in the synodic period.

All features are plotted versus Prometheus-relative longitude in Figure 15 along
with the quadrant average optical depth, indicated with its standard deviation. In Fig 15, 0
to 180 degrees indicates leading features, whereas the other half of the range, 180 to 360
degrees relative longitude, indicates trailing features. Both the number and optical depth
are enhanced at the point opposite Prometheus (antipode). Of 17 features, nine have
longitude relative to Prometheus of AA= 189° + 20. The maximum feature optical depth is
found at 4A= 161°. A sinusoidal fit gives a peak optical depth at 41 = 191°, but with Pearson
correlation only r? = 0.1. With r? so low, there is a significant probability (p = 0.25, Taylor,
1997) that this correlation could occur purely by chance. We note that Hedman et al.

(2011), using a different method to detect clumps in the F ring, find no significant
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correlation with Prometheus longitude. This disagreement with our result shows the F
ring features correlation with Prometheus should be treated with caution. Even if the result
we propose here is real, then other phenomena like the eccentric Prometheus orbit which

brings it repeatedly close to the F ring may also contribute to observable structures (Beurle

etal,, 2010).
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Figure 15. Optical depth of icicles and moonlets (Meinke et al., 2011) versus the time since
the feature last encountered Prometheus. The synodic period (_68 days) is divided into
quadrants and the mean of optical depth for each quadrant is denoted by triangles with
standard deviations. Stars: moonlets. Diamonds: icicles. The measured peak optical depth is
plotted. The time on the ordinate shows one complete synodic period.
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Figure 16. Optical depth of icicles as a function of their separation in longitude from
Prometheus. Icicles are those reported in Meinke et al. (2011). Dashed line is the sinusoidal
fit of optical depth as a function of longitudinal separation from Prometheus. The fit gives a
maximum optical depth at 191° separation from Prometheus.

2.7 Conclusion

Stellar occultations show features in Saturn’s F ring that indicate azimuthally-
elongated clumping of ring material. Classification of such significant features
demonstrates that while clumping may be a common process, consolidation into an opaque
object, like a Moonlet, is not. The location of clumps is correlated to their relative distance

from Prometheus, indicating that perturbations from Prometheus may stimulate clumping.
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3. Models
3.1 Model of Accretion and Fragmentation in Saturn’s F ring

Cassini UVIS has observed 17 statistically-significant features in the F ring that are
associated with aggregates of ring material. Cassini Imaging has also observed larger
(~few km) bodies that “disappeared” after a few orbits (Porco, et al, 2005; Charnoz, 2009).
Location in the Roche zone and perturbations from Prometheus allow fragmentation to
compete with accretion in the construction of aggregates on time scales of days to months.
Observations and previous models motivate a more rigorous model of the evolution of
aggregates in Saturn’s F ring. In this section, I introduce the method for modeling the
evolution of the size distribution of a collisional system, assess the resulting multimodal
shape of such models, apply it to the F ring for constant and varying body densities, and

discuss the model’s applicability to other astrophysical collisional systems.

3.1.1 Analytical confirmation of numerical implementation

The Smoluchowski coagulation equation describes the evolution of a system of
particles undergoing accretion (Smoluchowski 1916). As a general equation it can be used
in many fields, and I employ it to describe tidally-modified accretion of ring material in
Saturn’s F ring. Given two particles of masses m: and mgy, the time evolution of the

differential size distribution of particles, n(m,t), is:

on(m,,t) 1 pm o
a—tl = Efo n(m,,t)n(m, —m,,t)K(m, —m,,m,)dm, —n(ml,t)fO n(m,,t)K(m,,m,)dm,

Equation 11

In this case, n(m, t) describes the differential distribution of the number density of F ring

particles between m and m+dm at time t. The kernel, K, is specific to each application of the
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coagulation equation because it includes the appropriate physics of the problem. In this
case, I consider collisions between masses in a particle-in-a-box (PIAB) approximation.
Thus, K is related to the collision frequency of the two aforementioned masses as:
=x(r+n)v,,

K(m,m,)=o0(m,m,)v

rel
Equation 12

For specificity, I assume vrei=5 m/s because it is in the range of values representative of
velocities achieved by excitation from Prometheus and Pandora (Cuzzi and Burns 1988). |
also assume that the collisional cross section is simply the geometrical cross section.

In order to treat the coagulation equation numerically, [ discretize it. I use a
differential approach to this model rather than the incremental approach used in similar
models (Canup and Esposito (1995), Barbara and Esposito (2002)). As such, I calculate the
kernel corresponding to each mass pairing K;;. I consider n(m,t) as a continuous
distribution, but m; is a discretization such that m is a vector of mass values of particles. In
the following equations, n(m;, t) = n;, and imax OT jmax are the total number of bins in the mass
vector. Also, I include the bin sizes Amjin

the summation:
I« \
on, = Ezni—Jani—f»fAmf - niEnJ.Ki,jAmj
Jj=0 j=0

Equation 13

To further demonstrate n(m, t), I calculate N and M here, which are the total number

density of particles in the system and the total mass density in the system, respectively.

57



Equation 14

Solving Equation 13 in successive, variable time steps (see later description),  model the

evolution of the size distribution as a function of time:

)ds

Gain Loss

n(8) = 0)+ [ (g, + Aps + Foin + T,
0

Equation 15

d (iminimiAmi)

i=0

The preceding equations yield =0. That is to say, system mass is conserved,

dt
as should be the case because I assume no sources or sinks of ring material.

The numerical method undertaken here benefits from a variable time step in order
to accurately track the evolution of the equation. I accomplish this by setting a threshold on
the amount by which n(m,t) is allowed to change over one time step. As I found in checking
my numerical solutions against the analytical solutions (see below), I balance run time with
allowed evolution by choosing a threshold of 1%. If the threshold is larger than about 5%,
a small perturbation in the initial distribution may suddenly evolve to a larger depletion or
addition than it realistically would, yielding an unrealistic final size distribution. On the
other hand, if the threshold is too small, evolution speed is hampered and the computing
time becomes prohibitive. The only real difference between time steps computed using a

1% threshold and a.0001% threshold is run time.

58



In order to confirm that my method is sound mathematically and numerically, I
perform a check on my numerical model of the coagulation equation. Such a check gives
me confidence in my results and helps improve my accuracy (or how well the numerical
model solves the coagulation equation) and mass conservation through a tune on the

parameters governing the variable time step.

Silk and Takahashi (1979) (ST79 from here on) use the coagulation equation to
model the stages of fragmentation of a collapsing molecular cloud. As tests they solve the
coagulation equation to find exact or approximate analytical solutions that exist for certain
kernels in the equation. I use their “approximate solution to the velocity-averaged
coagulation equation”(Eq 11) for three different kernel types: one is constant, the other
two are particle-mass dependent. Their analytical solutions to the equation serve as a
preliminary check on the accretion portion of my numerical implementation. The “testing
process” I employ consists of three steps. First, [ compare the analytic solutions given in
ST79 using the same initial conditions and scaling for the size distribution of particles.
Examples of my replications of figures from the papers are shown below (Figure 17 and 18).
Next, I apply my own binning scheme for the mass range appropriate to my investigation.
By producing the analytical solution to my parameters, [ determine the shape, evolution,
and scale of the numerical solution to be expected. Lastly, I run my model to numerically
solve for my parameters using the analytically solvable kernel and initial mass distribution
function condition. Comparing this numerical solution to the analytical solution, I verify

the efficacy of my code.
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The first analytically solvable kernel for the coagulation equation is a constant, K(mj,
mz)= Ko =1. ST79 derive the solution for a continuous mass function by Laplace transform

technique and an initial value of n(m,0)= N,6(m -m,) to find a solution of the form

n(m.t)="0 g £()]n", where

m,
as=s %KON0
g =+at)” Equation 16

f=1-1+at)™"

ST79 set No=105 (the initial total number density of particles), Ko=1, mo is the smallest
mass bin (mo=1 kg in ST79 and me=2x10? kg in my model, but since it’s plotted in terms of

mass ratios on a log scale, this value is not important), and t is time. Here, g(t) and f{t) are

factors defined by ST79 to simplify the equation for n(s,r) the Laplace transform of n(m,t),

before applying the inverse transform to find the solution of the coagulation equation,
n(m,t). Figure 17b demonstrates my reproduction of this analytical result with the
parameters I use in my model. That is to say, | have only plotted the analytical solution
ST79 reports in order to assure that it matches and that it is available to compare to my

numerical solution. I have repeated this process with two other analytical solutions.
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Figure 17 a) from Silk and Takahashi (1979), Figure 1a. The analytical solution to the
coagulation equation with a mass-independent constant-valued kernel for various values of the
product a * t. Mass function relaxation plotted when K,=1 and N,=10° . b) This investigation’s
reproduction of the analytically derived mass function using the mass range and parameters of
this investigation (and BE02). It is evident that the two figures are identical because the plots
scale with mass ratio.

The second analytically solvable kernel for the coagulation equation is additively mass
dependent, K(mj;, mz) = Ko(m;+ mz). Again, ST79 take the Laplace transform of the
coagulation equation to derive the solution for a continuous mass function. In this case, the

initial value of the size distribution was n(m,0) = N,6(m —m,) and the long-time limit is

2
found to be n(m,t) ~ C(t)m,’m>" exp mC (tz)
m, 2N,

] , Where

C(t)= N,e "
. Equation 17
M EfO mn(m,t)dm

In this case, No =105, Ko=1, C(t) is the total number density of particles at time ¢, and M is
the total mass density of the system. The analytical and numerical solutions of this case are

plotted in Figs 18 and 20.
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Figure 18 a) from Silk and Takahashi (1979), Figure 2. The analytical solution to the
coagulation equation with a power-law mass-dependent kernel for various values of the
exponential power. Mass function relaxation plotted when K«(mass)A and N,=10. b) This
investigation’s calculation of the analytically derived mass function for the mass range and
parameters of this investigation. I have normalized the total mass density of the system in a
different way (such that the total optical depth of the F ring is 0.1), which is why they are not of
the same scale as a).

The third analytically solvable kernel for the coagulation equation has a power law
mass-dependence, K(mji, mz) = Ko(mass)* . Again, ST79 set the initial distribution to be a

delta function, n(m,0)= N,6(m-m,), and find

N -A2 A2
n(m,t)z—‘(ﬂ) g (mﬂ) f] i

my \ My,
in the previous case is replaced by a, = %NlméLKo. Figure 18 displays the resulting mass

m_

A2 g
(ﬂ) t] , where the definition of a in g(t) and f{t)

my,

functions for different values of A and my reproductions of those analytical solutions. This
case is most relevant to my investigation because the kernel in my model reflects the
collision frequency of particles and is thus dependent on the cross section of interaction.
Cross section is proportional to rZ, or m?/3; therefore, A=2/3 is the appropriate check of my
numerical solutions.

The analytical results using my model’s parameters are consistent with the ST79
results; therefore, the next step in assessing the efficacy of my numerical model is a
comparison of the analytical and numerical solutions. Figure 19a,

b, and c display the comparison for each test. For a quantitative comparison, I compare the

mean mass (<m> =—= ) of the numerical and analytical number density

M f: mn(m,t)dm
N f :n(m,t)dm
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distributions at the same time step. In the case of a constant kernel (Figure 19a), the

(1)
(1)

=0.945. A ~5% difference is a close match for these purposes (see discussion

()

of a match as [ would like (Figure 19 b), but in the ST79 approximation, the analytical

below). For the case of an additive kernel (m1+m3), =0.567. This case is not as good

solution given is actually a long-time limit, so although this comparison was done at ~ 1 yr,
the fact that the numerical does not match the analytical by a factor of 2 is not surprising.
The test most relevant to my purposes in the F ring model is the power-law solutions (Fig
19c¢), specifically when A=2/3. At a time step threshold of 1% (that is, n(m,t) not allowed to
vary by more than 1% per time step), the numerical solution’s mean mass is 1.24 times that
of the analytical solution. [ believe this agreement to be good enough to continue on to
apply the numerical technique to my problem. I define “good agreement” under a couple of
conditions. First, I consider this a “good agreement” because of the effects of having such
steep initial and final distributions. Such a steep distribution allows orders of magnitude
difference between the two results at the same mass even though they appear to be
narrowly separated in the plot. This could result in the mean mass of the numerical
solution being a considerable fraction larger than the analytical solution, so any numerical
technique being 25% larger still matches the analytical solution well. Also, the “good
agreement” assessment comes from the implementation of the initial conditions. For all
three analytical solutions, the initial distribution is a delta function. Several ways exist to
numerically simulate a delta function, including a narrow Gaussian or one bin filled with N,

particles, surrounded by several bins with a small fraction (say 1%) that of the central bin.

65



After experimenting with such options, I chose to simply fill the first mass bin with N,
particles. I believe this also contributes to a non-exact match because as you can see, the
m, bin of the numerical size distribution solution remains slightly spiked. Furthermore,
ST79 cannot solve analytically for a power-law kernel; rather, they approximate by

expansion of

173 173
2 m m
173 173 173 1/3 1/3_1/3
(ml +m2) =m,"m, 2+(—2) +(—') ~m,”m,
m
1

Equation 18

Evaluating the appropriate kernel numerically will result in a difference. Finally, from
private communication with N. Albers, it seems that it is not unusual for the numerical
solution to “outrun” the analytical solution. This is probably due to the factors discussed
above.

In addition to matching the analytical solution, the numerical solution should also
conserve total mass density, which all cases do to better than .005% per time step.
However, it is interesting to note that the numerical solution does seem to overtake the
analytical solution and slightly gains overall system mass as it evolves. This is experienced
in other such numerical comparisons (N. Albers, private communication). Figure 20
displays the numerical solution (solid lines) and analytical solution (dashed lines) for the
m*=2/3 case at different times in the

evolution.
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Comparison of Analytic Solution to Numerical Solution
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Figure 19. Comparison of analytical to numerical solutions to the coagulation equation when
plotted as mass functions. The solid line is the numerical solution, the dashed line is the
analytical solution at the same time. a) K=constant, b) K=m1+m2, ¢) K=(mass)A. The agreement
of the analytical to numerical solution for a power law mass dependent kernel in c) is good
(<Mpym>/<mgn,>=1.24). This is the most important part of this “testing” process, since
K=(mass)2/3 is most like the kernels I use to describe F ring dynamics.
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Figure 20 The evolution of the size distribution using the power-law kernel, with A=2/3.
The solid lines are numerical solutions and dashed lines are analytical solutions. As the
system evolves, the numerical solution “outruns” the analytical solution. Times for the
pairs of lines are (by color): t=6.6 s (red), t=1.3x10° s (green), t=2x10¢ s (blue), and t=9x10°
s (black).

To accurately model the evolution of the size distribution of material in Saturn’s F
ring, it is necessary to account for the major processes involved in the evolution of material.
Thus, in addition to coagulation, I include fragmentation in this model. The fragmentation
equations are similar in form to the coagulation equation, but the gain term includes factor,

Pr, to account for the redistribution of disrupted mass (Spahn et al. 2004, N. Albers private

communication).
dn(;';ll,t) _ % foml P.K, nyn, dim, - n, f: K, ,n, dm, Equation 19
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where Ki,2 is the collision frequency (ovrel/volume), as described in the “Particle in a Box”
approximation used in the “Coagulation Equation,” Section 3.1.1. The function Pf, which
describes the redistribution of disrupted fragments, is the number of fragments between m

and m+dm produced in a collision of bodies m1 and mz. The normalization of this function

- m, - - - - - -
is f . " mP, dm =m, + m, . Redistribution of material requires an assumption as to the

largest fragment resultant from a disruptive collision (mcr in the normalization equation),
as disrupted mass is redistributed up to this mass limit. Krivov et al (2005) calculate the
largest resultant fragment from impact energy considerations with an upper limit of
0.5marger - [ adopt the assumption that the largest fragment is 0.5 mearger. In testing the
numerical code for this addition to the coagulation equation, I use a Pr that places all
disrupted material into only 1 size bin and a Prthat redistributes according to a power law.
The function I adopt for this investigation, however, redistributes the total colliding mass
according to a power law.

Regardless of redistribution function, the steady-state mass distribution of the
collisional fragmentation cascade is n(m)=Am %, where a=11/6 (Tanaka et al, 1996;
Dohnanyi, 1969). Thus, I test the fragmentation portion of the numerical code for various
initial conditions and redistribution functions and find that when the model allows all
bodies to fragment upon collision, the distribution evolves to the predicted n(m)=Am~
distribution, where o= (v+3)/2=11/6 given that v is the collision rate mass dependence

(v=2/3 for geometric cross section) (Figure 21).
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In n(m)

In m

Figure 21 From Tanaka et al. (1996), Figure 1. “A schematic picture of the evolution of the
mass distribution for the self-similar collision cascade. All mass distributions approach the
power law solution with the exponent a=(v+3)/2.”

Now that fragmentation is included in the physics, four terms give a complete
description of the mass evolution of the number density of particles in the F ring. Again and
Avoss describe gain and loss, respectively, due to accretion, while Fgain and Fross are the gain

and loss terms due to fragmentation.

71



nmb _ o 4 L F

d t Gain Loss Gain

-F

Loss

m—my

AGam(m,t)=§ f n(m,,t)n(m—-m,,t)K(m,,m—-m,)dm,
0

A, (m,t)=n(m, t)j n(m',t)K(m,m"Ydm'

m,

1 o m
F,.,(m,t)= 5 f f n(m,,t)n(m,,t)K(m,,m,)P(m,m,;,m,)dm, dm,

my=0 m,=0

Fy i (m,t) = n(m,t) [ n(m',0K (m,m")dm’
0

Equation 20

With a description of the competing processes in the F ring, it is important to determine
which collisions result in accretion and which in fragmentation. The mass ratio, y, of
colliding particles forms the basis for this determination. When evolving the system in
terms of masses (constant mass density), the critical mass ratio of colliding moonlets above
which accretion occurs and below which objects fragment is pcrie. In the numerical solution
of this problem, a certain collision type is then treated by the appropriate terms in the
equation. In the Barbara and Esposito (2002) model, pcric = 100 and only applies to
moonlet-moonlet collisions. All moonlet-dust and dust-dust collisions result in accretion.
The numerical implementation of accretion and fragmentation processes in my
model is consistent with the aforementioned analytical solutions to the coagulation
equation and collisional cascades. These comparisons are rigorous tests of the numerical
kinetic code for F ring evolution including accretion and fragmentation processes. Next, |
combine accretion and fragmentation processes in an attempt to reproduce the result of

Barbara and Esposito (2002).

3.1.2 Introduction of the binary accretion model
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With over 101 UVIS-observed occultations by the F ring, we can construct the
distribution of clumps of material in the ring. As discussed in the last section, this observed
distribution is not consistent with the Barbara and Esposito (2002) (hereafter BE02)
model. In this section, [ develop a model of the F ring distribution’s evolution with an eye
toward explaining the shallow power law slope of the observed distribution.

The motivation for this model of the evolution of the size distribution of the F ring is
to expand upon the simple model of BEO2 because it does not match the observed
distribution of clumps in the ring (Meinke et al 2012). BE02 simulate the evolution of
tidally-modified accretion in the F ring. They numerically model a Markov process of
colliding bodies and find a final state that is a bimodal distribution of ring particle sizes
(Figure 22). The mode of larger bodies predicts a moonlet belt of kilometer-size bodies in
the F ring. Cassini UVIS observes such a belt (Meinke et al., 2009), but the size distribution
is a power law with differential index g~ 2.5 (Meinke et al 2012), rather than the predicted
bimodal. This difference may be due to the modeling assumptions of BE02, as discussed in
the “Observations” section. BE02 simulate steady-state distribution of solid, spherical
moonlets in the F ring, not loose-packed, probably-elongated aggregates as indicated by
UVIS observations. In addition, BEO2 only consider the effects of tidally-modified
accretion, not other processes like adhesion and compaction that are probably important in
the collisional evolution of the F ring and that would modify the distribution. Also, BE02
has a sharp threshold for accretion requiring 100% accretion if the ratio of colliding bodies’

masses is sufficient, 100% fragmentation otherwise.
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Figure 22. From Barabara and Esposito (2002), Figure 5b. “Initial continuous power law
distribution (dashed) and final bimodal distribution for ...number, where Qejecta=3.1 and
overall F-ring mass has been modified such that the average optical depth remains equal to
0.1. The dotted line ...marks unity.” Bin 0 is the “dust bin” of objects 10 pm to 100 m, and
bins 1-25 are logarithmically spaced by a factor of V2 over a size range of r=100 m to 20
km.

A bimodal distribution has been the expected state for F ring material in the
literature (Canup and Esposito, 1995; BE02), but such a distribution is inconsistent with
the observations (Meinke et al. 2012). In development of a new numerical model of F ring
evolution, I take an approach different from BE02. The evolving system can be described
using a kinetic approach, specifically the velocity-averaged coagulation equation (Spahn et

al, 2004).

The Smoluchowski coagulation equation (Eq 11) describes the evolution of a system

of particles undergoing accretion. As previously described in this section, [ adapt the
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coagulation equation to describe tidally-modified accretion of material in Saturn’s F ring.
Given two colliding bodies, the time evolution of the differential size distribution of bodies,

n(m,t), is:

n(m,t +dt) = n(m,t) + P g
dt
dn((ims t) = AGain —_ ALOSS + FGain - FLOSS
t

Agin(mt) = %fn(m1 Hn(m—-m,,t)K(m,m—-m,)dm,
0

ALy (m,1) = n(m,0) [ n(m',0)K (m,m")dm’

1 o m
F,..(mt)=— f f n(m,,t)n(m,,t)K(m,,m,)P(m,m,;,m,)dm, dm,

my=0 m,=0

Fppp (m,0) = n(m, 1) [ n(m',00K (m,m"ydm’
0

Equation 21

In this case, n(m, t) describes the differential distribution of the number density of F ring
bodies between m and m+dm at time t. P(m, m;, m;) is the redistribution function for post-
collisional fragments. [ use the PIAB approximation to calculate the kernel K such that it is
related to the collision frequency of the two aforementioned masses as in Equation 12.
Furthermore, [ assume vrel =5 m/s (Cuzzi and Burns 1988) and that the collisional cross
section is simply the geometrical cross section.

In order to treat the coagulation equation numerically, I discretize it. I use the

following discretized definitions of the accretion and fragmentation gain and loss terms:
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Equation 22

The model handles mass conservation, distribution evolution, and variable time step as
described in Section 3.1.1 (Equation 14 and 15).

In development of a new numerical kinetic model of F ring evolution, I consider the
possibility that the bimodal distribution is a consequence of a sharp
accretion/fragmentation threshold resulting in a final distribution that is generally
multimodal. In working with Nicole Albers (private communication) and using BE02
parameters and initial conditions, we could not independently reproduce their result. A
multimodal distribution results, the general trend of which follows the Dohnanyi-predicted
q=11/6 power law for a collisionally-evolved system. Upon investigation, we discovered
the separation of successive modes is dependent on the value of ycri. The first trough in the
distribution occurs where m/myg = pcric (Figure 23). When we extend the size scale or
reduce Ucri, more modes appear. Examination of the BEO2 results shows that the trough in
the BEO2 quasi-equilibrium distribution (Figure 22) occurs where m/mo= pcrie. Perhaps the
BE02 model suffered such effects but the size scale used coincidently cut off after one

oscillation, conveniently giving the appearance of the expected bimodal result.
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Figure 23. Quasi-steady state differential distribution. The blue solid curve is the modeled
differential distribution for the prescribed parameters of the BE0O2 model. The dotted
white line is the initial distribution. The modeled distribution is multimodal, not bimodal
like the BEO2 result. The break before the first mode occurs at m/mo= pcrit.
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3.1.3 Assessment of the multimodal distribution

The constant-density model produced from my numerical implementation of the
Smoluchowski coagulation equation (Equation 22; Spahn, et al., 2004) produces a result
that is multimodal. When one encounters it for the first time, he or she might suspect some
sort of numerical effect at work in the discretization of the coagulation equation for this
behavior. In fact, the behavior appears to be an evenly spaced pattern of oscillations
overlaying the Dohnanyi power law index of g=1.83 for a collisionally-evolved system.
Until recently, only one other author attempted to understand the origin of what he terms a
“wavy pattern.” This section details my exploration of this behavior, develops an equation
for the body sizes where modes exist for a set of input model parameters, and provides an
explanation of why these modes develop. Further, we explain why these modes appear in
dynamical evolution models of other collisional systems such as the Asteroid and Kuiper
belts.

As discussed in the last section, an attempt to model tidally-modified accretion in
the F ring to compare to BE02’s bimodal distribution resulted in a quasi-steady state
distribution that had more than two modes, each of which encompassed a smaller size
range of bodies than the large mode from BE02. The multimodal result of my model was
similar to other astrophysical size distributions discussed in the literature, but only one
author explored the origin of the behavior or sought to quantify it based on parameters of
specific models in which it appears. Campo Bagatin, et al. (1994) coin the term “wavy
pattern” to describe the multimodal behavior of their model of the Main Asteroid Belt
(Figure 23). They state that it is the use of a small-size cutoff of a distribution undergoing

fragmentation that results in this “wavy pattern.” A cutoff at either end of a size
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distribution is a necessity of any numerical model of such a system. For a small-enough
dynamical resolution, the size range of the distribution can be computationally expensive
for several decades of size. Campo Bagatin, et al. argue, however, that this is not simply a
numerical effect. Rather, small-size cutoffs exist in nature due to size-dependent erosion
processes. There is a long history of observing asteroids. There exist several populations
of asteroids, which can be studied as independent collisional systems, namely near Earth
asteroids (NEAs), the main belt asteroids, and various groups of Trojans. The observations
of some of these populations are statistically complete to small sizes, so we focus on the
observed size distributions of these Solar system bodies (Ceplecha, 1992; Jedicke, et al.,
2002; etc). For example, Ceplecha (1992) reports the observed distribution of 10-100 m
Near Earth Asteroids is multimodal (Figure 24). NEAs have a sharp small-size cutoff in
their distribution because bodies are preferentially removed from the system up to a
critical size. In addition, other dynamical systems may have size cutoffs due to other
erosion processes such as Pointing-Robertson drag, YORP effect, Yarkovsky effect, or
planet-crossing unstable orbits (Paddack, 1969; O’Keefe, 1976; Radzievskii, 1954; Opik,
1951; Poynting, 1903; Robertson, 1937). Morbidelli et al. (2009)’s more recent model of
post-accretion Main Asteroid Belt results in a multimodal distribution. Fraser (2009)
develops a model of the Kuiper belt size distribution that he uses to explain “rollover” in
the observed distribution at r~25-60 km and finds what he refers to as a “divot” in the
distribution at that size. A “wavy pattern” manifested in a natural collisional system
outside Saturn’s rings and other models thereof confirms such behavior in our model;

therefore, I argue a physical basis exists for such evolution outcomes and it is not simply a
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result of our numerical implementation. Thus, [ continue my investigation by

characterizing the pattern more quantitatively.
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Figure 24. From Campo Bagatin et al. (1994), Figure 1. “The size distribution resulting
from the numerical simlulations described in the text, with the population of every size bin
plotted vs the corresponding diameter in a log-log diagram (logarithmic incremental
diameter plot). Size-independent collisional response parameters have been used, with a
small-size cutoff set at about 50 cm (64 bins spanning a factor 2 in mass each). Three
different values for the impact strength S (in erg cm-3) have been tested.” Their simulated
distribution of the asteroid belt evolves into a multimodal distribution as my model does.
Also, the location of modes is dependent on the colliding material’s strength properties.
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Figure 25. From Ceplecha (1992), Figure 1. “Logarithm (base 10) of the cumulative
number, N, of interplanetary bodies with mass equal or greater than m coming to the Erath
is plotted against logarithm of the mass . The lower curve atlog m = 14 and 15 is from the
data of Shoemaker et al (1990); the upper curve is the adopted average.” These observed
data comprise a multimodal distribution, consistent with modeled distributions of
collisional systems.

Morbidelli et al’s post-accretion asteroid belt grows 100-1000 km bodies from sub-
meter particles via accretion without growing through intermediate sizes, hence the title
“Asteroids were born big.” Weidenschilling (2011) finds, however, that a primordial
population of <0.1 km bodies could reproduce the “bump” or mode at D~100 km in the
current observed distribution of Main Belt asteroids due to “a transition from dispersion-
dominated runaway growth to a regime dominated by Keplerian shear.” Not only does this
disagree with the Morbidelli et al model, it also shows a system can evolve to a multimodal
distribution without fragmentation, which was required for Campo Bagatin et al’s
explanation. These models of the same system achieve multimodal patterns that match

observations via differing mechanisms; meanwhile, Campo Bagatin et al (1994 ) postulated
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that the “wavy pattern” arose from a sharp cutoff of the distribution at small sizes, another
mechanism still. I explore what causes the multimodal behavior of the F ring distribution
model results and compare that to the previously postulated ones, in an effort to reconcile
the underlying physical mechanisms of collisional systems evolution.

To understand the multimodal distribution results of my model, [ examine the input
parameters. The initial setup of the model is based on the setup of BE02, excluding their
dust bin. Thus, binary collisions occur between bodies in a size range of 100 m to 20 km in
radius with initial distribution ninitiai @ m-9, where the initial differential power law index g;
=1.83, Dohnanyi’s derived value for a collisionally-evolved system. Tidally-modified
accretion in the F ring region allows for complete (100%) accretion of incoming mass if the
mass ratio of colliding bodies p=m1/mz; is larger than a critical mass ratio pcrit =100
(Ohtuski 1993, Canup and Esposito 1995) and complete fragmentation if p<pcrit.
Fragmented material is redistributed among all bins smaller than half the mass of the
larger colliding body as nejecta=m-9¢1, where the redistribution differential power law index
qe=1.23 is reported from laboratory studies of ice collisions (Stewart and Ahrens).

Simple checks of the model during the initial construction showed that the initial
distribution does not affect the quasi-steady state outcome. The size range of bodies in the
system also has no qualitative effect, the system still evolves to a multimodal distribution in
time. The power law index describing the redistribution of fragments does affect the final
distribution, but does not suppress multiple modes (cf. Figure 38). Considerable
quantitative differences are evident when the accretion conditions are modified, however.

Tidally-modified accretion depends on the critical mass ratio pcit above which

colliding bodies will accrete and below which they will fragment. For the location of the F
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ring (a=140221.3 km (Albers et al. 2012)), perie=100 (Canup and Esposito 1995). Complete
accretion or fragmentation of colliding mass on either side of this threshold makes for a
sharp transition in the dynamics of the system. To examine how the value of pci affects the
evolved distribution, I compare the model with different values of pcit. Figure 26 shows the
evolution of the model with pcir=100, 103, 104, and 105. The first mode of each of these
results is at a different value of m/mo. Upon initial inspection, the value of m/mg at which
the first mode appears is near the value of pit for that particular model. Further, one can
see the second modes appear at a value of m/mo roughly equal to pcrii?. Over a sufficiently
large size range compared to L.rit, One can observe many subsequent modes spaced at
regular intervals of m/mo compared to the prescribed value of it for that model. In order
to quantify this phenomenon, I found by visual inspection the value of m/mg at which the
peak value of each mode occurs for distributions over various size ranges and values of
Werit. In Figure 27, I plot the value of m/mo of a mode versus the pcric for that simulation. 1
fit the points for each mode to find the simple power-law index that relates pcrit to the
location of that particular mode. These are overplotted as solid lines in Fig 27. The
following fits were derived:

m(model)=mo peric!!

m(mode2)=mo Perit?3

m(mode3)=mo eric?3

m(mode4)=mo perit>’

Equation 23

Obviously, all simulations have a mode 1, but the appearance of subsequent modes

depends on the size range of the distribution; therefore, [ have the greatest number of data
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points for mode 1 at 23, and Fig 27 shows how good the fit to mode 1 location is. For mode
2, 13 points are found for the fit; mode 3 had 6 and mode 4 had 2. Mode 1 and mode 2
location fits are the most relevant because the peak n(m,t) for mode 3 is over ten orders of
magnitude lower than for mode 1, so the probability of observations is drastically reduced.
[t is important to note here that the width of a mode is dependent on the resolution of the
model. Larger bins distribute bodies over a wider range of sizes, and the mode is not as
well resolved, as seen in Fig 27. A bin spacing of V2 between masses provides sufficient

resolution for a discretized approach, which is why I use it for the fits reported in Equation

23 and from this point onward in my model, as do most other modelers.

Figure 26. The evolution of the model with pcir=100, 103, 104, and 105. The first mode of
each of these results is at a different value of m/mo, which approximately corresponds to
each model’s pcric value.
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Figure 27. The value of m/mo of a mode versus the pcri: for various simulations. Solid lines
are fitted power-law indices that relate it to the location of that particular mode (color
coded). Fits are reported in eq 23.

The fits reveal that the value of m/my at which modes form is dependent on the
threshold value of mass ratio for accretion, ycri. Combining this relation with the
prescribed size range of a distribution, one may predict the largest-size mode possible in
the distribution and know that the distribution falls off sharply thereafter. The maximum
possible mass ratio of colliding bodies in a system is pmax= Mmax/Mo. The multiplicative
number of times larger the maximum size ratio is than the critical value is given by the
expression Uratio = Umax/Ucrie. FOr the mass size of mode number i, m; = m, Aipcric@, where A,
is a constant and ¢; is the power law index that relates ucrit to m; as found in Eq 23. So, if

Uratio< €1 N0 prediction is possible. If & <pratio< €i+1, the distribution drop off is predicted at
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a size just larger than m; = m, Aipcri#@. Thus, Maroposris a function of mo, Mmax, and perie, and
the number of modes possible equals i.

Because the modes trend with the value of ucrit, | propose that a sharp accretion
threshold is responsible for the buildup of multiple modes in a size distribution through
binary collisions. The tidally-modified accretion that governs the outcome of colliding
masses in a system has a sharp threshold: 100% of all incoming mass accretes to form one
new body if mi/mz> pcri,, and 100% of all incoming mass fragments into a distribution of
smaller bodies if m;/mz< pcrie. In @ numerical implementation of the coagulation equation
(Equation 111, Equation 21), tidally-modified accretion allows the smallest sized body in
the system, my, to accrete only when it encounters a body larger than pcritmg, but that body
can encounter many bodies of comparable size and fragment. As in all collisional system
distributions, there are a lot more small bodies than large ones; therefore, the smallest
bodies built via accretion are of size pcriemo, which build up quickly because of the large
number of bodies sized my. Meanwhile, bodies of all sizes produce a steady distribution of
fragments due to collisions with bodies of comparable sizes. This progresses to build a
mode at roughly m= pcriemo. Thus, one may predict a “throw distance” for accreted mass in
a system to be a factor of pcrit, which is the trend seen via simple visual inspection and
demonstrated via the more detailed fit to the simulations. This process continues to occur
once mode 1 reaches a sufficient size and then occurs again at a size roughly a factor prit
from the mass of mode 1. Building of modes continues to “echo” though the system until it
reaches an upper size cutoff and then the number of bodies just larger than the largest
mode possible quickly falls off. From this explanation, the reason modes develop is

because of the “all or nothing” way that accretion operates. The sharp threshold of the
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critical mass ratio builds modes at specific locations and keeps the continuous distribution
of fragments from overtaking them at those specific sizes.

To test the idea that a sharp accretion threshold is responsible for the multimodal
distribution I investigate how to remove modes from the system by softening the accretion
threshold. The accretion threshold we have used up to this point has been a step function
of 100% fragmentation below and 100% accretion above pcit (Figure 28); therefore, I
experiment with several functional forms of the accretion threshold that have a smoother
transition from fragmentation to accretion (Figure 29-36). Eight different accretion
threshold functions, which relate the percentage of total colliding mass that accretes to a
new body to the mass ratio of the colliding bodies, were examined. For each, the initial
conditions and physics are identical with the exception of the accretion threshold function.
The functions examined are listed below, each is accompanied by a figure of the fraction of
colliding mass accreted or fragmented as a function of mass ratio of colliding bodies and a
figure of the resulting evolution of the distribution (each color is a different time):

a) “Binary”
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Figure 28. Distribution Evolution via a Binary Accretion Function. a) Plot of the “accretion
threshold function.” The fraction of impacting mass that accretes or fragments as a
function of the mass ratio of colliding bodies. b) The resulting evolution of the distribution.
Colored lines distinguish various time steps. The earliest times are purple and run in time
through green to red and final is in black.
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BINARY:
Accretion:
P(uzperi) = 1

P(u<ieric) = 0

Fragmentation:

P(puzperi) =1

P(u<ieric) = 0

a) “Neg Combo”
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Figure 29. Distribution Evolution via a “Neg Combo” Accretion Function. a) Plot of the
“accretion threshold function.” The fraction of impacting mass that accretes or fragments
as a function of the mass ratio of colliding bodies. b) The resulting evolution of the
distribution. Colored lines distinguish various time steps. The initial distribution is the
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power law that begins and ends in flat sections. It then evolves to the near-power law
upper curve.

NEG_COMBO:
Accretion:
P(uzperi) =1
P(u<peri) =1-1/p
Fragmentation:
P(uzperit) =0

P(u<peri) =1/p
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Figure 30. Distribution Evolution via a “Combo” Accretion Function. a) Plot of the
“accretion threshold function.” The fraction of impacting mass that accretes or fragments
as a function of the mass ratio of colliding bodies. b) The resulting evolution of the
distribution. Colored lines distinguish various time steps. The earliest times are purple
and run in time through green to red and the final is the black multimodal distribution.
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COMBO:

for fraction F =1.0 (various values tested but not plotted here: 0.01,0.1,0.5,1.0)

Accretion:
P(uzpeni) =1-F/p
P(u<perit) =0
Fragmentation:
P(uzperie) =F/p

P(u<peri) =1
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Figure 31. Distribution Evolution via a “Smooth” Accretion Function. a) Plot of the
“accretion threshold function.” The fraction of impacting mass that accretes or fragments
as a function of the mass ratio of colliding bodies. b) The resulting evolution of the
distribution. Colored lines distinguish various time steps. The initial distribution is the
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power law that begins and ends in flat sections. It then evolves to the near-power law
upper curve.

SMOOTH:

Accretion:

P(W=1-1/u

Fragmentation:

P(W)=1/p

99



b)

FRACTION OF IMPACTING MASS

1.0

0.8

0.6

0.4

N ACCRETION
~. === FRAGMENTATION
i | | L |
102 104 10°
MASS RATIO

smoothroot6

100

O
Y



1 0720

1 0722

1072

107%¢ —
€ -z
= 10 —
107 —
1072 —
107 —
10° 10°
m/m
smoothréot6

Figure 32 . Distribution Evolution via a “Smooth Root” Accretion Function. a) Plot of the
“accretion threshold function.” The fraction of impacting mass that accretes or fragments
as a function of the mass ratio of colliding bodies. b) The resulting evolution of the
distribution. Colored lines distinguish various time steps. The earliest times are purple
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and run in time through green to red and the final is the black distribution that is
completely eroded to the smallest size bodies.

SMOOTHROOT:

for Nth root (tested values N=3 (not plotted here) and N=6 (plotted here))

Accretion:

P(W)=1-(1/W"(1/N)

Fragmentation:

P(w) = (1/W*(1/N)
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Figure 33. Distribution Evolution via a “Linear” Accretion Function. a) Plot of the
“accretion threshold function.” The fraction of impacting mass that accretes or fragments
as a function of the mass ratio of colliding bodies. b) The resulting evolution of the
distribution. Colored lines distinguish various time steps. The earliest times are purple
and run in time through green to red and the final is the black multimodal distribution.
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LINEAR:
Accretion:
P(1) = (0.5/Herit) * 1
Pmax=1
Fragmentation:
P(W) =1-(0.5/perit) *

Pmin=0
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Figure 34. Distribution Evolution via a “Logarithmic” Accretion Function. a) Plot of the
“accretion threshold function.” The fraction of impacting mass that accretes or fragments
as a function of the mass ratio of colliding bodies. b) The resulting evolution of the
distribution. Colored lines distinguish various time steps. The earliest times are purple
and run in time through green to red and the final is the black multimodal distribution.
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LOGARITHMIC:
Accretion:
P() = In(W)/In(perie) Pmax=1
Fragmentation:

P(u) =1 - In(p)/In(perit)

Pmin=0
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Figure 35. Distribution Evolution via a “Logarithmic Inverse” Accretion Function. a) Plot
of the “accretion threshold function.” The fraction of impacting mass that accretes or
fragments as a function of the mass ratio of colliding bodies. b) The resulting evolution of
the distribution. Colored lines distinguish various time steps. The earliest times are purple
and run in time through green and the final is the black distribution.
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LOGARITHMIC_INVERSE:
Accretion:
P(1) = In(perie) /In(W)
Pmax=1
Fragmentation:
P() =1 - In(perie) /In(p)

Pmin=0
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Figure 36. Distribution Evolution via a “Exponential” Accretion Function. a) Plot of the
“accretion threshold function.” The fraction of impacting mass that accretes or fragments
as a function of the mass ratio of colliding bodies. b) The resulting evolution of the
distribution. Colored lines distinguish various time steps. The initial distribution is the
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power law that begins and ends in flat sections. It then evolves to the near-power law
upper curve.

EXPONENTIAL:
Accretion:
P(p) = exp(W)/(2perit)
Pmax=1
Fragmentation:
P(p) =1 - exp(n)/(2perit)
Pmin=0
The accretion threshold functional forms for which a multimodal distribution
evolves are: Binary, Combo, Linear, and Logarithmic. These functional forms all have some
form of a hard transition from accretion to fragmentation and include a range of u for
which accretion or fragmentation is at 100%. The multimodal distribution does not evolve
when Neg_combo, Smooth, Smooth_root, or Exponential describe the accretion
percentages. None of these have a sharp transition from accretion to fragmentation.
Neg_combo, Smooth, Smooth_root, and Log_inverse all have a (1/ u)" dependence. The
Log_inverse suppresses accretion for almost all body sizes, so large bodies are all eroded
away, which is why I exclude it from the remainder of the analysis here. From this analysis,
it is evident that the sharp threshold between accretion and fragmentation of colliding
bodies causes a distribution to evolve to a multimodal state. Smoothing the transition from
complete accretion to complete fragmentation so there can be a percentage of each

outcome at certain values of y suppresses the modes.
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[ now investigate the physical plausibility of a natural mechanism that would allow
for such a smooth transition. As mentioned at the beginning of this section, other
modelers and observers have reported the appearance of multimodal size distributions of
collisional systems. Campo Bagatin et al (1994) postulate the cause to be the small-size
cutoff of the asteroid distribution. Weidenschilling suggests a “bump” in the observed
asteroid population as a result of accretional regime change, which has a sharp transition
between the physical processes that govern growth for bodies of different sizes.
Meanwhile, I find and explain mode formation as a result of the sharp threshold between
accretion and fragmentation of colliding masses. These causes of mode formation are all
more generally consistent with sharp transitions or thresholds in a physical property of a
system. This explanation also boosts the plausibility of multimodal distributions occurring
in natural systems. Sharp changes in physical parameters are realistic, such as loss
mechanisms for small particles or thresholds for sticking. [ move forward with my model
by keeping in mind the characterization of mode location and spacing just provided, the
causes thereof, and what they mean for the actual F ring.

Another aspect of the shape of the quasi steady-state distribution is the prescribed
value of the power law index, gej, of fragments redistributed after collision. The overall
trend of the model results, regardless of modes is along a differential power law index
q=1.83. This is the same value chosen for the initial distribution, g;=1.83, but the model
evolved to this regardless of initial condition (Figure 37). The value of g¢; does have an
effect on the evolution of the distribution. Because accreting material forms new bodies at
least pcrie larger in mass than the smaller of the colliding pair, the modes form at regularly-

spaced sizes. The small-size cutoff of the distribution establishes the location of
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subsequent modes from the value of my, as the smallest bodies with which they can accrete
are necessarily ucriimo in size. Thus, at certain locations, modes continuously build up.
Meanwhile, the source of bodies in the troughs of the “wavy pattern” is predominantly
fragments from collisions among larger bodies. Since the fragments are redistributed
according to qe;, the distribution in the troughs has this characteristic power law slope.
Figure 37 shows an extreme case for ease of visual inspection where gej>>q;. When q¢~qi,
however, the distribution shape exhibits much “softer” modes and troughs. For g.<0.5 (for
qi=1.83) or qe¢<<qi(generally), the fragments redistribute along a “flat” distribution such
that the overall appearance of the modes shifts. Figure 38 shows a fit to the first and
second mode locations for simulations using various gej values (qi=1.83 for all). The body
masses at which first and second modes occur move to larger m values as q.; decreases.
The fitted relationship is found to be:

Mode 1: 217 qej 000

Mode 2:  9X10% qe 072

Equation 24

Such small power law index values are not physically realistic in a system like the F ring, so
this has no effect on my model, but other modelers should note this effect if they have

particularly shallow redistribution functions.
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Figure 37. Differential size distribution outcomes for different initial distributions. Each
has a different power law index: q;=2.33 (green), gi=1.83 (cyan), qi=1.33 (blue), ¢i=0.83
(white). The model evolves to the same quasi-steady state distribution regardless of initial
distribution.
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Figure 38. An extreme case for ease of visual inspection where g¢>>q.. The fragments
redistribute along a very steep distribution such that the modes are sharp increases along
the general trend of the distribution. The solid light blue curve is the final distribution;
dotted white is the initial power law; and dashed white is the redistribution power law.
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Figure 39. Fit to the first and second mode locations for simulations using various q.;
values (qi=1.83 for all). The body mass at which first and second modes occur moves to
larger m values as q.j decreases. Fit reported in Equation 24.

In summary of this section, the binary collision model adapted from the coagulation
equation evolves to a multimodal distribution of bodies. Separation of the modes of the
distribution scales with the critical mass ratio necessary for accretion in the system.
Regardless of initial condition, the distribution forms around a differential power law index
of 1.83, but the redistribution of fragmented material may affect the sharpness of modes.
Fraser (2009) derives an analytic expression for the size at which a “divot” occurs in his
modeled distribution of the Kuiper belt. This expression is dependent on the energy
threshold for disruption and the strength parameters of colliding material. Comparison of
his result (Figure 40) shows that the “divot” is simply the trough that occurs before modes

[ report in this section. He overlooks any “echos” in the system that produce a multimodal
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shape. Thus, even though this behavior has been reported in other models and
observations, [ am the first to undertake a full investigation of the behavior and develop an

explanation for it.
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Figure 40. From Fraser (2009), Figure 10. “Results of collisional evolution after 2000 time
steps, starting from a distribution in collisional equilibrium (dotted line). The various lines
are the results when equilibrium was forced over 30, 40, and 50 bins.” When allowed to
evolve, the model develops multiple modes, but Fraser only comments on the locations of
the divot at a size just smaller than the first mode.

3.1.4 Attempts to match the modeled distribution to the observed distribution of F
ring clumps

As discussed in the “Observations” section, the observed distribution of clumps in
the F ring has a differential power law index of 2<q<2.5. Figure 41 compares the

incremental distributions of the observed features, BEO2 results, and my multimodal
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model. Obviously, the modeled distributions are significantly steeper than that observed.

In this section, [ present several attempted methods for flattening the modeled distribution

to match the observations.

Figure 41. Comparison of the incremental distributions of the observed distribution
(reported Moonlets and Icicles; diamonds), BEO2 result (dashed white line), and my binary
accretion model (blue solid line). Both modeled distributions are too steep to match the
observed distribution of aggregates.

In order to decrease the power law index of the modeled distribution, the
production of larger bodies must be faster than that of the smaller bodies. Increasing the
collision frequency of larger bodies could provide such an increase in the number of larger
bodies. Rather than the standard, fixed relative velocity of vre= 50 cm/s, I experiment with

larger collision velocities. For example, I select a collisional velocity equal to the escape

/¥ o«m ™. This weak mass-

Saturn target

velocity of the target body in a collision v, = \/ZGM
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dependent velocity results in smaller collisional velocities for larger objects. Figure 42
shows that the resulting distribution remains a multimodal distribution with a general

trend of g=1.83. Next, [ use a collisional velocity equal to the escape velocity of the

/r

model

dominant bodies in the system, those in the first mode, v, = \/2GM . Again, this

Saturn

velocity has no mass dependence and thus does not lessen the slope of the quasi-steady-

state distribution (Figure 43).

Figure 42. The collisional velocity equal to the escape velocity of the target body in a

o v =y2GM g T T : :
collision ~“* ‘/ Saturn © " target . This weak mass-dependent velocity results in

smaller collisional velocities for larger objects. The quasi-steady-state distribution (dotted
line) compared to the observed distribution (diamonds) is still steeper. The continuous
power law (solid line) is the initial distribution of the system.
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Figure 43. The collisional velocity equal to the escape velocity of bodies in the first mode,
v, =+2GM,,. /T,

model

Saturn

. Again, this velocity has no mass dependence and thus does not
lessen the slope of the quasi-steady-state distribution (solid white line). The continuous
power law (dotted green line) is the initial distribution of the system.

The next method I use fixes the collisional velocity at 50 cm/s, but artificially
increases the erosion of larger bodies in the system. For reriticai>1 km, accretion is only
Pacc% of the original, and fragmentation is (100-Pacc)%. The intent here is that erosion of
larger bodies builds up the amount of small material uniformly by mass, and would result
in a flatter distribution for the smaller sizes of the distribution. This model, however,
evolves to the multimodal distribution with a sharp cutoff at the prescribed reritical (Figure

44),
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Figure 44. The collisional velocity fixed at 50 cm/s, but model artificially increases the
erosion of larger bodies in the system. For reritical, accretion is only Pacc% of the original, and
fragmentation is (100-Pacc)%. Cyan curve is the overlap of purple, blue, and green curves
that all have reriticai=1 km.

Ruling out collision velocity and fragmentation as mechanisms that affect the final
distribution of F ring bodies, I experiment with various power law indices for the initial
distribution and the redistribution of fragments. The initial distribution of has no effect on
the evolution or final state of the distribution. Comparing distributions of various power
law indices, broken power laws, and the observed distribution, Fig 37 shows that the
system necessarily evolves to the same quasi-steady state. Evolution should progress
regardless of the initial distribution of material; thus, I have confirmed the expected

outcome. To test the effects of varying the redistribution of fragments, g, I set the initial

distribution to be n(m,t)dm < m *"dm, where qm=1.83, Dohnanyi’s prediction for a
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collisionally evolved system. Figure 45 compares final distributions for g.; values from 0.05
to 1.23. As discussed in the assessment of the “wavy pattern” (Section 3.1.3), the value of
qej does have an effect on the evolution of the distribution. The source of bodies in the
troughs of the “wavy pattern” is predominantly fragments from collisions among larger
bodies. Since the fragments are redistributed according to gej, the distribution in the
troughs has this characteristic power law slope. Figure 38 shows an extreme case for ease
of visual inspection where ge>>qi;. When g¢j~q;, however, the distribution shape exhibits
much “softer” modes and troughs. For g¢<0.5 (for gi=1.83), the overall appearance of the

modes shifts, but the overall distribution does not itself become “flatter.” The body mass at

which first and second modes occur move to larger m values as g.; decreases.

Figure 45. Final distributions for gej values from 0.05 to 1.23. As discussed in the
assessment of the “wavy pattern,” the value of g.; does have an effect on the evolution of the
distribution.
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Next, I investigate the possibility that the observed distribution is merely the small
range that coincides with a mode. This possibility can be dismissed because the size range
of observed clump-associated features spans over 2 orders of magnitude (Figure 46).
Because the critical mass ratio for accretion in the F ring is 100 (Ohtsuki 1993, Canup and
Esposito 1995), modes space out at approximately factors of perit. If perie=100, but the span
of sizes is a factor ~106>>100, then the observed distribution cannot be a subsection of a

larger multimodal distribution that coincides with the width of a mode. This is the case

here.

Figure 46. The observed distribution compared to the multimodal quasi-steady state of
the model. The observed features in the F ring span a size range of six decades, so they
cannot correspond to a mode that has a shallow power law index for ~2 orders of
magnitude in size.
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After the investigation into the simple methods available for changing the outcomes
of my model, I proceed to drastically change a principal component of the physics of the
system, namely accretion. The most plausible way to increase the number of large bodies
and flatten the size distribution is to increase accretion of specifically these large bodies.
The physical mechanisms possible would increase the effective collisional cross section,
thus increasing the collision frequency (Kacer=ov). Unlike increasing the collisional
frequency by increasing the collisional velocity, which at best scales as m-1/6, cross sections
scale with the size of the object, which preferentially allows larger bodies to grow faster.

First, I change the simple geometric cross section to include a gravitational focusing factor,

2
1% . . . .
o =1+ (&) . This changes the scaling of the cross section with mass:
1%

rel

2
= = 2 3
K - Ovrel - .7'[(7'1 + r2) Vrel cm

accr

\% ’ 4
_ _ esc 2 3
Kaccr,GF - aGFavrel - 1 + v ]T(}’i + r2) vrel xm

rel

Equation 25
Equation 25 describes how including a gravitational focusing factor for a body scales its
collisional frequency, K, as m#/3, which allows larger bodies to accrete more efficiently.
However, the increase in effective accretion rate does nothing to affect the overall
evolution of the model.

[ further increase the collisional cross section my increasing the effective body size

to be described by the Hill radius of the body, R, = a,,, (L

Saturn

1/3
) . This scales with mass

as the geometrical cross section does (m?2/3) but is larger by a constant factor,
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aFring/ Msaturn/3=0.17. Thus, the use of the Hill radius to describe the body size increases
the collision frequency at a constant rate. Coupling Hill radius and gravitational focusing
factor does increase accretion for large bodies in the system, but, as seen in Fig 47, the
resulting distribution oscillates in time in the size range between mode 1 and mode 2. This

is not a match the to observations, though. These two physical mechanisms do not

sufficiently boost accretion to match the modeled distribution to the observed one.

Figure 47. Model using the Hill radius as the physical size of the body and including a
gravitational focusing factor for collisional cross section. This does increase accretion for
large bodies in the system, but oscillates in time between modes 1 and 2. Multiple colored
lines mark out different snap shots to show the temporal oscillations in the distribution.
Diamonds are the UVIS-observed distribution of Moonlets and Icicles.

[ artificially increase accretion to place a threshold on the amount of increased

accretion necessary to build larger bodies and match the modeled distribution to the
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observed one. I set a threshold size, mrp, above which bodies accrete at an accelerated rate.
For bodies below the threshold size, accretion proceeds as described in Section 3.1.2:
mi/mz > perie : Accretion =100% of colliding mass

mi/mgz < peric - Accretion =0%

For bodies above this threshold size, the following conditions apply:

mi/mz > lerie : Accretion increased by factor Xaccel

mi/mz < lerie : Accretion increased by factor Xresidual

First, I set Xucce=1 and only vary Xesigual from 0.001 to 0.1, which only increases the
accretion for collisions below e by 0.1% to 10%. This makes no difference in the
evolution of the system. Keeping Xresiguat =0.001, [ set Xacce=10. With this increased
accretion, the familiar multimodal behavior does not develop but the general trend of the
distribution does not flatten out to that of the observed distribution. Next, I change the
amount of accretion allowed regardless of mass ratio of colliding bodies such that
Xresiauai=50% of colliding material with u<ucc and m>myp accretes. This again, makes
accretion easier for large bodies even when they encounter comparable-sized bodies. A
collision between two large bodies under these conditions would not completely disrupt
the incoming mass, keeping more larger bodies in the distribution as evolution proceeds,
which in turn decreases the power law index of the overall distribution. Figure 48 displays
the model results with Xuccei=10 and Xresiqua=0.5. The distribution is a broken power law
with the slope at smaller sizes shallower than that at larger sizes. To create a model
consistent with observations, what is the minimum value of Xucces required? At Xocce=100,
the broken power law develops three sections. At Xucce;=1000, the power law that covers

the middle of the size range has the lowest q value and looks similar to the observed
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distribution (Figure 49). The minimum value of Xaccel required to remove multiple modes

from the system and begin to flatten the smaller-size end of the distribution is Xuccei=6.

Figure 48. Model results with Xuccei=10 and Xresiqua=0.5. Model results (solid white line) do
not match observation (blue *) because the model is still too steep, even at smaller-sized
bodies. Green dashed line is the model’s initial distribution.
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Figure 49. Model results with Xucce=1000 and Xresiquai=0.5. Model results (solid white line)
appear consistent with a portion of the observed distribution (blue *). The power law that
covers the middle of the size range in the model has the lowest power law index and looks
similar to the observed distribution for those sizes. Green dashed line is the model’s initial
distribution.

The evolution of the distribution is also sensitive to the size threshold for

XLB

accelerated accretion. The value of myp is set relative to the critical mass ratio, m,, = u,,, m,
. Producing models with X;5 =0.1 through 5.0, I find that the smaller the value of m;p the
larger the range over which the distribution has a shallow power law index. X3 must be
less than 3.0 in order to produce the flattened portion of the distribution. Thus, the smaller
the critical size above which a body has increased accretion, the more bodies in the

distribution that experience increased accretion.
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Tuning the parameters mentioned above to match the observed distribution of
clump-associated features in the F ring, I find accretion must be increased by a factor

Xaccer>6 for bodies m>myg and u>ucric , Xresiquar=0.5 for bodies m>myp and pu<ucric, and the

30

critical body size must be m,, < u,,m,.

Figure 50 displays the best-fit (by inspection) model to the observed incremental
distribution. The best-fit model has the following parameters:
Xaccer=1000,

XresiduaI=O-5

25
mpp = UM,

size range: 10m - 40 km

Collisional Cross Section: includes Ry and gravitational focusing factor for bodies

>MmLp
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Figure 50. The best-fit model to the observed incremental distribution achieved by
increasing accretion within the binary accretion model. The best fit model has the

25
following parameters: Xaccei=1000, Xresiquai=0.5, My =H “‘"mo, size range of 10m - 40 km,
collisional cross section that includes Ry, and gravitational focusing factor for bodies
>myp. It is important to note here that “best-fit” is by inspection. When tuning the values of
: Xaccel , the best fit was apparent by eye, no statistical assessment required. Additionally,
because this method has no plausible physical basis, an approximation to the “best-fit”
parameters is sufficient.

No plausible physical mechanisms or combination thereof support this best-fit
model, however. Gravitational focusing and Hill radii do not increase the accretion
anywhere near a thousand-fold. Furthermore, while consistent with UVIS observations, it
is inconsistent with Imaging results. If there was, in fact, a mode at m/my=10°
(corresponds to r~few km), then ISS would have seen many moonlets because this size is

above their detection threshold. To create a physically-plausible model that is consistent
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with observations, we must include an additional term that specifically accounts for the
production of large bodies.
3.1.5 Addition of a production term to the coagulation equation

In order to flatten the slope of the modeled distribution to match UVIS observations
of clumps, I introduce a production term to the coagulation equation. Recalling Equation
21, we can write the coagulation equation for binary collisions including accretion and
fragmentation. When numerically implemented, this equation does not produce a
distribution consistent with F ring observations. The incremental distribution of observed
clump-like features in the F ring has a much smaller (shallower) power-law index than my
simple binary collision model (Figure 46), thus an improvement to the model is data
driven. Furthermore, attempts in the last section to match the model to observations
comparisons show that accretion must be easier than fragmentation by a large factor to
seriously affect the modeled distribution. Exploration of mechanisms to increase
production of large bodies led to a new view of enhanced aggregate construction that is
motivated by work with Glen Stewart and Esposito et al (2012)’s predator-prey model.

As reported in Section 3.1.4, a drastic increase in the accretion coefficient efficiently
builds larger bodies and flattens the modeled distribution to match observations. Ata
factor of 1000, the increase is implausibly large. Another method that could boost
accretion is perhaps more physically plausible. Imagine a situation in which bodies larger
than a critical size could experience enhanced growth while they are in a high-density
region (HDR) of the ring. In this small region, such a body could efficiently sweep up

smaller bodies or aggregates. An additional “production term” in the coagulation equation
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incorporates this mechanism to create a modeled distribution consistent with
observations.

Satellite wakes are a phenomenon created when a moon perturbs nearby ring
particle orbits such that their streamlines create a pattern of compacted and rarefied
regions. As discussed in the Introduction, familiar satellite wakes occur at ring-gap edges,
but the moon Prometheus orbits just inside the semi-major axis of the F ring and creates a
pattern of satellite wakes known as “fans.” These fans, seen in Cassini images like Figure
51, are periodic regions of drastically increased surface density. The average optical depth
of the F ring is 0.1, but in these regions is well above unity. These HDR arise when particle
orbits crowd. Particles on the orbits pictured in Figure 52 create a HDR that travels at the
orbital speed of Prometheus, but specific particles continue to move through the HDR and
are not fixed with respect to it. Like a boat wake in the ocean, the structure (HDR or wake)
moves at a speed different from that of the particles (ring particles or water molecules).
This is the difference between pattern speed and particle speed, Vparticie # Vpattern. Thus, a

body passing though an HDR is unlike a bullet through a cloud.

Relative Radius (km)

255 260 265 270 275
Co-rotating Longitude (deg.)

Figure 51. PIA12784: Multiple F-Ring "Fans". Bright areas are “fans” created by
Prometheus, which has enhanced surface density. Image Credit: NASA/JPL/Space Science
Institute
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Figure 52. Satellite wakes. The blue curves are particle streamlines, which are perturbed
by Prometheus to form the pattern of compacted and rarefied regions. The regions boxed
by orange dotted lines are what are referred to as HDR in the text, where streamlines
crowd to create increased surface density that can lead to enhanced growth of bodies
passing through it.

When a body passes through a HDR it encounters a considerable increase in surface
density, thus a considerable increase in collision rate. From Esposito et al (2012) (which
they adapt from Eq 9 in Shu and Stewart 1985), the collision rate for a region of given

optical depth t is given by:

Equation 26

For the average F ring optical depth of 7=0.1, the time between collisions is Tcor=10° s,
which is about one orbit. Meanwhile, for the highest F ring core optical depth observed in
UVIS occultations 1=3.0 (Albers, et al., 2012), Tconi=4200 seconds, which would result in 12
collisions per orbit if the entire ring were that optical depth. We assume that one of the
HDRs is that optical depth and that the fan structure fills at best a quarter of an F ring
particle orbit; therefore, these satellite wakes produce the equivalent of a three-fold

increase in the number of collisions each particle experiences over the course of an orbit.
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An increase in collisions damps the dispersion velocity. Considering the Toomre
criterion for gravitational instability,

c.K
aGx

<1

QToomre -

)

Equation 27

we find that a decrease in the dispersion velocity, cs, results in instability, for optical depths
near unity. Thus, increased collisional “sweep up” leads to gravitational instability and
collective growth. Both are at work in these HDRs.

The next task in the derivation of a “production term” to add to the coagulation
equation is to approximate the bodies in the HDRs. As discussed in Meinke et al. (2012),
clumps in the F ring are likely azimuthally-elongated ellipsoids, like cigars. We can model
the aggregate shape as a wire in the azimuthal direction and write down an expression for

the characteristic surface density and line density of the cigar:

1{ ow
akitten (‘x) = _( . )

a\w?+x?

Mivien = f : O isron AX = O W
Equation 28
where x=r-ro (the radial direction) and oy is the incoming body’s surface density. The
production term describes the one-dimensional gravitational infall of material onto a body
ina HDR that leads to enhanced growth of that body. The collapse is along the radial
coordinate in a circular shear flow with self-gravity. Figure 53 is a cartoon of the infall and

the coordinate system.
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Figure 53. Radial one-dimensional infall of ring material onto a cigar-shaped aggregate as
it passes through a HDR. The radial coordinate is x, azimuthal is y. This is in the
aggregate’s coorbital reference frame.

From linearized fluid equations, neglecting azimuthal derivatives and assuming a body only
spends a fraction of an orbit in a HDR, we can derive a simplified expression for the
increase in the surface density of an aggregate. Then, we integrate over the radial width of
the aggregate to find the enhanced mass per unit length:

a =522 5
w

Equation 29

where w is half the body’s radial width and tupr is the amount of time spent in the high-
density region (1/4 of an orbit). The initial mass per (azimuthal) length of the body is
Ao=m/L, where L=2WRax.s (the radial width times the axial ratio). Later, we use 2=40 g cm-?
(that of the A ring) for the HDR. Figure 54 illustrates the scenario where a body
approaches a HDR, grows as it passes through the HDR and comes out the other side a
larger aggregate. Remember that the velocity at which the body moves through the HDR,
Vpass= Vorb — VHDR, 1S related to the difference in the angular speeds of F ring material and the

moonlet wake pattern speed 402 = Qr-Qupr and is not the relative speed at which particles
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collide. Thus vre#vpass. Putting together the change in line density and the speed at which
the body passes through the HDR, the change in mass of a body as it moves through the
HDR is:

AM =AAv_ ¢t

pass” HDR

Equation 30
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Figure 54. Cartoon depiction of aggregate growing as it passes through a HDR.

The production term Axp modifies eqs 11 and 21 to a new expression for the

coagulation equation:

N

— “HD Gain
dt

-A

Loss

+F

Gain

-F

Loss

Equation 31

Appis the change in number of bodies of a particular size (m) per time (t) as a result of
individual bodies increasing in size while in HDRs. An individual body of size m grows to a
size Maggregate by sweeping up bodies smaller than mswarm, thus increasing the number of

bodies of size maggregate and decreasing the number in the swarm size range (<mswarm).
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Thus, for bodies of size m entering the HDR with relative orbital speed described by vpass
and increasing by dm we can describe the increase in the number of bodies of size m+dm

das:
AL
A, (m+dm) = n(m)(L)
dm

Equation 32

This increase in bodies of size m+dm is balanced by the loss of bodies swept up in the new

aggregate:

A (my=n. A;,D (m+dm)mdm '

swarm

mdm

swarm

Equation 33

where nswarm describes the size distribution of bodies in the swarm. The size distribution of
the swarm is the size distribution of the fragments redistributed by binary collisions. The

discretized form of App is given by:

AAv
_ _ pass
AHD = App (mi+l) =n
i+l m. . — ml.

i+l

Aypm,, dm,,,
i+l

AHD (m = [mO S arm ]) = Nvarm Myarm

m.dm

swarm,j " j J
mj=m

Equation 34

When I include this production term in the model, [ find a quasi-steady state
distribution that is consistent with observations, as seen in Figure 55. The important

tuning that is required of this term is the threshold between the upper size of bodies in the
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“swarm,” rswarm, and the lower size cutoff of the bodies that undergo enhanced growth,
T'moonlet- AIlOWINEG Iswarm= Imoontet, | can establish the size of bodies in the F ring that
contribute to larger moonlets and the size of those moonlets. Figure 566 is a comparison of
this model with different values of rswarm (2 m, 20 m, and 200 m). As the figure clearly
shows, the smaller the value of rswarm, the worse the match to observations. No distribution
at r> rswarm develops that spans a wide enough range of sizes or has a small enough power
law index to match observations. The comparison does demonstrate that the larger the
value of rswarm, the better the match to observations appears. I have attempted models with
many values of rswarm to tune the best match to observations, the best of which is in Fig 55.
The model is consistent with observations when rswarm is larger than the largest icicle
observed (~640 m). Thus, the features reported in Meinke et al. (2012) and Section 2.4 are

members of the “swarm” and contribute to the enhanced growth of even larger moons.
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Figure 55. Model of F ring evolution including a production term. The incremental
distribution model (orange line) matches the observations (white diamonds) best when the
threshold size between the swarm of bodies swept up and bodies sweeping them up is
I'swarm=640 m. The white line is the initial distribution of the modeled system.
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Figure 56. Comparison of models of F ring evolution including a production term with
varying rswarm values. The incremental distribution models (colored lines) match the
observations (white diamonds) better as the threshold size between the swarm of bodies
swept up and bodies sweeping them up increases. The blue line has rswarm=2 m, purple has
20m, and cyan has 200 m.

In Fig 55, the break in the distribution occurs at rswarm. Below rswarm, the distribution
is shallower than that of the binary accretion model alone. Above rswarm, the distribution
breaks and then forms a “moonlet mode” of bodies a few kilometers in size. This moonlet
mode is transient. As the system evolves and the distribution below rswarm flattens, the
moonlet mode grows then slowly erodes away. This behavior is consistent with rapid
buildup of large bodies due to enhanced growth followed by erosion via binary collisions
with the largest bodies (thus p<ucric) in the swarm, the number of which increases as the
distribution of the swarm flattens. As Figure 57 shows, the model is consistent with

observations for rswarm=640 m. The UVIS-observed distribution does not have a break in it,
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so the model-predicted break must occur at larger sizes. Likewise, the number and size of
bodies in the moonlet mode is consistent with Imaging results. These could be like the
bodies seen and tracked for a few weeks and months (e.g.,, S/2004 S 6). To date, UVIS has
not observed any such body; therefore, | use Equation 9 from Section 2.5 to calculate an
upper limit of ~104S/2004 S 6 -like bodies to be in the ring and to have gone undetected in
UVIS occultations. This upper limit on a body like S/2004 S 6, estimated size 3-5 km

spherical (Porco, et al,, 2005), is in Fig 57.

Figure 57. Model of F ring evolution including a production term. This is the same as Fig
55 but overplotted with radial sizes of bodies (vertical cyan lines) and the upper limit on
the number of bodies like S/2004 S 6 (yellow star and arrow) The incremental distribution
model (orange line) matches the observations (white diamonds) best when the threshold
size between the swarm of bodies swept up and bodies sweeping them up is rswarm=640 m.
The white line is the initial distribution of the modeled system
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The doubling time of the number of bodies of a given size larger than rswarm is given
by Equation 35 and plotted in Figure 58. This doubling time is with respect to the

production term alone. Likewise, the numbers of bodies being swept up in the HDRs are

decreasing at a rate described by the “halving time,” Equation 36 and Fig 58.
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Figure 58. Doubling and Halfing times of enhance growth and swept up bodies,
respectively. Halfing time is 464 s; doubing time ranges from 4 minutes to 2 days.

145



The halving time (464 s) is independent of body size, but the doubling time is
dependent on body size. The time scale for most enhanced bodies to double their
population is roughly a few hours to a few orbits. Since bodies spend less than a quarter of
an orbit inside a HDR, these bodies will not double their populations. The doubling time is
larger than a quarter orbit for any thing larger than 5.5 km, which is consistent with the
dearth of observed bodies >5 km. In addition, there is likely a destruction mechanism not
accounted for here. Enhanced growth in a HDR could be balanced by enhanced destruction
due to perturbations from Prometheus or due to bodies ripping each other during close
radial passages. The F ring is a complex system and requires multiple mechanisms to
match models to observations; therefore, I do not believe the production term is the final
word in modeling the ring’s evolution.

In summary, the largest bodies in the system are the only ones that have increased
accretion in the HDRs because gravitational instabilities form around them. The numbers
of the smallest bodies decrease as the larger bodies sweep them up. This “flattens” the
distribution by preferentially removing small bodies. Thus, the “kittens” that UVIS sees may
themselves be swept up by even larger moonlets (e.g. S/2004 S 6).

The next step in the investigation of F ring particle-size distribution evolution is to
include other processes at work in the ring into the model, namely porosity and
compaction. From Cassini observations (Meinke et al., 2012; Charnoz, 2008), F ring
material appears generally to clump together like a rubble pile rather than form solid,
spherical moonlets. A loose aggregation of ring particles may compact when it collides

with other ring material, which changes the evolution of the size distribution
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3.2 Expansion of the model to include compaction

The UVIS-observed distribution of clump-associated features in Saturn’s F ring
motivates a new model for the evolution of the ring. BE02’s bimodal results do not match
the power law shape of the distribution, nor the shallow slope thereof (2<g<2.5) (see
Section 2.5). The model presented in this dissertation was undertaken in order to resolve
the discrepancies between observations and BE02; however, after modeling accretion due
to binary collisions that only accounts for the mass of each object (one dimensional), [
expand the model to evolve across two physical characteristics (two dimensional) of each
body: radial size and porosity. The observations of Moonlets and Icicles in the F ring have
varying optical depths, indicative of varying porosities (Meinke et al 2012). Icicles have
smaller optical depths, usually of the order a few tenths; therefore, the object allows some
starlight to pass though because it has some porosity. Meanwhile, Moonlets are opaque in
occultation, completely attenuating stellar signal to the background level, because they are
more densely consolidated than an Icicle. Meinke et al. (2012) speculate that these
observational characteristics of F ring features indicate an evolution of object density
(porosity) as well as radial size. Thus, [ now expand my model to evolve in two
dimensions, accounting for density of each object as well as size.

The expansion of the model to include evolution of clump density is the only way the
model changes. All initial conditions and physical parameters are the same as they were in
the constant-density model. Laboratory experiments provide constraints on the outcomes
of collisions between bodies of porous water ice. Love, et al. (1993) find that “[p]orosity is
more important than strength in determining the outcome of disruption impacts.” They

perform hypervelocity impacts of soda lime glass projectiles into porous sintered aggregate
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glass targets to find that the disruption threshold scales with porosity as (1-P)-3¢. Thus, the
model modifies the critical mass threshold that separates accreting collisions from
fragmenting ones accordingly. The threshold mass ratio value for accretion is <pcric for
“porous” and “fluffy” bodies, with the more massive body in the collision determining the
threshold value. Stewart and Ahrens (1999) perform impacts on plaster of Paris (i.e.,
gypsum) with porosities in the range of 30-80%. They find fragments follow a cumulative
size distribution of N.dr= r?dr, b=2.7. Thus, I convert this value to a differential one with
respect to mass and use it as the prescribed differential redistribution power law for
fragments (qe¢=1.23) in the multi-density model. Further, Housen et al (1999) perform high
velocity impacts into porous material to simulate impacts on asteroid Mathilde, where no
ejecta blanket is observed (Chapman et al 1999, Veverka et al 1997, 1999). They find <2%
of crater mass is ejected, which means compaction plays an important role for impacts or
collisions on bodies with high porosities. The collision energy goes into compaction rather
than disruption. The only caveat here is that material must not be near the most efficient
packing state (like sand) for this to work; therefore, over time, bodies may compact to a
“fully dense state,” but this is not a concern for a system like the F ring where
fragmentation is also a regular process.

Evolving the system over two dimensions is computationally-intensive, so I do not
establish a vector of finely-spaced bins in density. Rather, [ designate three possible
density states: solid, porous, and fluffy. The porosities I associate with each of these
density states are Pso1ia=0%), Pporous=30%, and Pausty=70%; therefore, because the “solid”
body of the system is Prometheus (pprometheus=470 kg m-3), the densities are compared to

that moon: psolia=470 kg m3, pporous=329 kg m-3, and paury=141 kg m-3. Next, | prescribe
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collision outcomes for density. The compaction of Icicles to occasionally form Moonlets
motivates these prescriptions (Table 3). For accretion, the resulting body assumes the
density of the denser object, and if two like-density bodies accrete, they compact to the
next-denser state. For example, if a fluffy body collides with a porous body, the resulting
body is porous. For fragmentation, the ejecta from each of the colliding bodies retains the
density of its parent body. Thus, if a body of mass 2mg and porosity Pausy collides with a

body of mass mo and porosity Psolig, then twice as many fragments (determined by mass

fraction in each state: f =70, /(1’13101 + r23p2), in this case 2mo/3my) have porosity Pausty as

Psolia. Table 3 breaks down the outcomes by density for a pair of incoming colliding bodies.
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Table 3. Prescribed density outcomes for collisions. The Bold font first row and first
column of each table denotes the density if the incoming bodies. H means highest density,
M medium density, and L lowest density. For fragmentation outcomes, f is defined as the
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fraction of incoming mass which goes to each state: f=np, ( AT /Oz) )
Figure 59 shows the steady-state distribution for the model parameters described.
Naturally, the three density states evolve according to the prescribed collision outcomes,

which results in size segregation by porosity state. Bodies compact into higher densities,

which in turn grow to larger sizes. Thus, the percentage of mass that is in the densest
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states increases as it decreases from the more-porous states. To better track the mass
segregation by density state, [ report the resulting distributions with different numbers of
density states. Figure 60 shows the results of a model with two density states. Each has a
different critical mass ratio, which is why they each evolve to different multi-modal
distributions, but the size segregation is apparent. The denser state (solid lines) dominates
the distribution at larger-sized bodies, while the more porous state dominates the smaller
end of the size range. Although computationally expensive, I increase the number of
density states in the model. Figure 61 is a model with five density states that follow the
same collisional outcomes described above. The size segregation seen in the three-density
model is exaggerated here. The smallest objects are the least dense, and the largest objects
are the densest. At intermediate densities, the number of bodies of a particular size self-
segregate, but the middle density state dominates the first mode of body size (see Section
3.1.3). The first mode size of this multimodal distribution would be the bodies most likely
to be observed because of both their size and their numbers. This is consistent with 90% of
Meinke et al. (2012)’s clump-associated observed features being Icicles, as these structures
are speculated to be loosely-aggregated bodies. Only 10% of their reported features are
opaque Moonlets, bodies consistent with the densest state reported here, which dominate

the larger sizes end of the modeled distribution in Fig 59 through 61.
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Steady—state distributions

Figure 59. The steady-state distribution for the model parameters described in the text
and collision outcomes from Table 3.
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Figure 60. The quasi-steady state distributions for models with two density states.
Starting with the upper left panel and moving clockwise, the critical mass ratio for each
model is: 10, 103, 102 and 105. In each, the dotted colored line is the more porous (lower
density) state, while the solid white curve is the distribution of the lower porosity (i.e.
higher density) state.
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Steady—state distributions
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Figure 61. The quasi-steady state differential distribution for a model with five density
states. Each colored solid line is of the distribution of one of the density states, as listed in
the legend. The white dashed line is the quasi-steady state distribution of the entire
system, coadded across density states.

As with the constant density model, I investigate the effect of different initial
distributions on the final distributions. Figure 62a and b show the final distributions for
each density state plotted over the various initial distributions. The initial distributions are
broken power laws rather than the standard continuous power law previously used for this
model. From inspection, it is clear these all evolve to the same final distribution. This is
most obvious with the coadded distribution for each, which is consistent with the results
for the constant density model. The steady state distribution of these models is insensitive

to the initial distribution.
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Figure 62. The final distributions (white) for each density state plotted over the various

initial distributions (yellow). The initial distributions are all broken power laws, but the
final coadded distributions have all evolved to similar multimodal shapes.
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Upon examination of each density state independently I find that each has a
multimodal shape, and when coadded by size (n(r) over all densities), I recover the same
distribution as from the constant density model, n(m,t) (Figure 63). Consequently,
modeling the distribution of F ring clumps by allowing for compaction does not match the
observed distribution. Thus, the original motivation for this model does not come to
fruition, but see the previous section for the effect of enhanced accretion in a high-density
region; however, this expansion of the model opens up a wide range on investigations.
With different physics governing the collisional outcomes for different density states, one
can use this model to predict the probability of creating a solid, coherent object like a
moon. Further, one might introduce high-density seed to the model in order to stimulate

growth. In this way, this expansion can be used for other systems of bodies where

compaction is also important, such as asteroids and planetesimals.
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Figure 63. Coadded multi-density (solid lines) models compared to constant-density
(dotted) models, all of which have appeared in other figures throughout this dissertation.
Both types evolve to multimodal distributions. The differences among these are that some
have an upper size cutoff (see Section 3.1.4) and the multi-density models have mode
locations at a slightly smaller mass than the constant-density model does (due to summing
and plotting by object mass rather than radius because lower density objects skew the
distribution to smaller masses).
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3.3 Comparison of model results to those of BEQ2

Because BEO2 motivated this model, I compare it to the results of my model. BE02
reported an initially continuous size distribution evolves toward a bimodal distribution
under the conditions of a “tidally-modified” region. My results agree, but they are not
“bimodal” over the size range explored (Figure 64). Rather, the system evolves toward a
“multimodal” distribution, where the modes occur at body sizes that scale by the critical
mass ratio. In addition, BEO2 conclude from their model that the larger mode of the final
state represents a belt of moonlets (~1 km) as proposed in Cuzzi and Burns (1988). I find
that modes may represent possible “clump” belts, but these are transient and may be very
loosely accumulated; however, bodies in the larger modes are denser and may represent
the evolution of a sparse population of moonlets in the F ring. Finally, BEO2 predict that
complete disruption of loosely-bound, larger moonlets can give rise to burst events
observed by Showalter and in ring plane crossings. Combining my model and Meinke et al
(2012) observations and conclusions, burst events might be just the release of loosely-

bound outer layers of clumps before they compact into denser, longer-lived bodies.
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Figure 64. Binary accretion model described in this dissertation, using the BE02 model
result (adjusted to be “number density” in the F ring rather than the reported number) as
the initial distribution (black). The blue multimodal curve is the quasi-steady state that
evolves from the BEO2 result. The red curve is an intermediate stage of evolution;
obviously, the population of smallest bodies grows the fastest.

The model presented here is tuned to Saturn’s F ring, but many astrophysical
collisional systems exist that could be described using this model. Within the Solar System,
there are three other prominent ring systems. In addition, the Asteroid Belt and Kuiper
Belt are regions of bodies that trace the evolution of the Solar system. In the following

section, I discuss the applicability of my F ring model to these other systems.
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3.4 Applicability of this model in collisional systems beyond Saturn’s F ring

The first system I explore is the outer rings of Uranus, the v and p rings, first
detected in Hubble Space Telescope (HST) observations in 2003-2005 (Figure 65 is
reproduced from an HST news release with the v and p rings labeled as R/2003 U2 and
R/2003 U1, respectively). The v ring shares some key parameters with the F ring, and the p
ring contains the embedded moon Mab, which makes both rings places to explore moon
formation. Accretion and fragmentation compete in the “Portia group” (Showalter and
Lissauer 2006, French and Showalter 2011), which is comprised of the material between
Portia (a= 66097 km) and Rosalind (a= 69926 km), known as the v ring; meanwhile, Portia
continuously perturbs material. Rings exterior to Portia are dynamically unstable on
timescale ~10°¢ - 108 years (Duncan and Lissauer 1997, Showalter and Lissauer 2006).
Young rings would resemble the continuously recycling F ring. Further, if the v ring is due
to a recent moon disruption, there would be a source of small bodies distributed in the ring

that would undergo accretion and fragmentation processes to eventually build aggregates.
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Figure 65. The p and v rings of Uranus (R/2003 U1 and U2) in images from 2005. Credit:
NASA, ESA, and M. Showalter (SETI Institute).

I model the evolution of the v ring via binary accretion. Like the F ring, the v ring is

in the Roche zone (crit, inner~30 tO Lcrit, outer~ 103, average peric~225) where fragmentation
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and accretion compete. Unlike the F ring, material in the v ring has a mass density of
approximately 1.3 g cm3. Figure 66 shows the resulting distribution of the ring. Moonlet
belts arise at sizes m= 225mo and m~10my. From this distribution, one can predict the
probability of observing moons of certain sizes given the specifics of an observing

campaign as the current observational limit is ~5 km (Showalter and Lissauer 2006). In

turn, this can be a consistency check on the lack of an observed moonlet belt.

Figure 66. Modeled distribution of the v ring. Moonlet belts arise at sizes m= 225m¢ and
m~106mo. White continuous power law is the initial distribution of the system, and green
is the quasi-steady state to which it evolves.

The other outer ring [ modeled is the p ring, in which the moon Mab is embedded.
Currently, Mab is speculated to be the largest of an unobserved moonlet belt spanning the
17,000 km width of the ring. Mab’s orbit is the center of the p ring, but, at a, ring= 97736

km, perie~ 1 (Canup and Esposito 1995). A critical mass ratio of unity should result in all
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mass quickly accreting into one body as this ring is well outside Uranus’ Roche limit, and
my model is consistent with that prediction (Figure 67). The p ring appears blue in Keck
observations, which implies it is composed of mostly micron-sized water ice particles
(dePater et al. 2006). The model results, when considered with the composition, semi-

major axis, and width of the ring, suggest that the p ring has more in common with Saturn’s

E ring, where Enceladus is a continuous source of ring particles, than the F ring.

Figure 67. Modeled p ring, in which the moon Mab is embedded. Ring is far outside
Uranus’ Roche limit (a ring= 97736 km), so perie~ 1 (Canup and Esposito 1995). A critical
mass ratio of unity should result in all mass quickly accreting into one body. My model
evolves to a state (green curve) that is consistent with complete accretion into one body
from an initial power law distribution (white).

Many other collisional systems exist, from asteroids to protoplanetary disks. All of
these show a “bump” in their size distributions at ~100 km, which Sheppard and Trujillo

(2010) speculate is due to similar small body reservoirs. Many populations of asteroids
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exist: Main Belt, Trojans, and Near Earth Objects. The current size frequency distribution
of Main Belt asteroids shows an excess of bodies at ~100 km relative to a simple power law
(Morbidelli et al 2009, Fig 1; reproduced here as Figure 68). Davis et al (1985) constrain
the early SFD of the Main Asteroid Belt by arguing that Vesta’s crust would only have
survived if the asteroid population was only modestly larger than it is today. Further, the
existence of one impact basin on Vesta is consistent with the presence of ~1000 bodies
with D > 35 km (Morbidelli et al 2009) over the last ~4 Gy. Thus, the early SFD was
shallow in the D~100-1000 km range. Morbidelli et al (2009) argue that bodies in the
D~100-1000 km range accreted from sub-kilometer bodies such that there was no
accretion on intermediate scales. Meanwhile, Weidenschilling (2011) argues bodies <100
m accrete to the current SFD and the “bump” at ~100 km is due to a transition from
dispersion-dominated runaway growth to a Keplerian-shear-dominated regime. Thus, the
asteroid community seeks to resolve whether asteroid were “born big” or “born small.”

Also, Ormel et al (2010 a,b) define three stages of accretional growth based on collisional

velocities: super escape (dd—M o« M*”), dispersion-dominated (dd—M o« M*?), and shear-
t t
. M : . : o
dominated (7 o« M ). As discussed in my assessment of the multimodal distribution
t
(Section 3.1.3), Each of these hypotheses for the evolution of the asteroid belt distribution
contains sharp thresholds in the physics of the system. My model can be used to predict
how each of these affects the current distribution and resolve which mechanisms were

most important in its evolution.
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Figure 68. From Morbidelli et al (2009), Figure 1. “The size-frequency distribution (SFD)

of main belt asteroids for D > 15 km, assuming, for simplicity, an albedo of py=1/4 0:092

for all asteroids. According to Jedicke et al. (2002), D > 15 km is a conservative limit for
observational completeness.” An excess or “bump” occurs at D~100 km.

The observed mass distribution of the Kuiper beltis N(R)x R™**°* for the largest
KBOs (Fraser and Kavelaars 2009, Fuentes and Holman 2008, Bernstein et al. 2004). The
power law index is smaller for smaller, collisionally-dominated KBOs, but the overall SFD is
continuous rather than bimodal. Ormel et al. (2010b) use the SFD shape to rule out
oligarchic growth as a plausible growth mechanism in the Kuiper belt. Application of my
model to the Kuiper belt would be inappropriate because the bodies in the Kuiper belt do

not appear to be completely collisionally evolved.
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Another astrophysical collisional system is a protoplanetary disk. This is a
burgeoning field rich with opportunities to model accretion and fragmentation. Evolution
of protoplanetary bodies provides insight into primordial populations in our own Solar
system, including the asteroid belt and Kuiper belt. Protoplanetary disks are systems with
some very different conditions than the F ring. They include large quantities of gas,
magnetic fields, and radiative heating, all of which do not play a significant role in the F
ring’s evolution. After early attempts to model protoplanetary disks, the scientific
community encountered issues similar to my attempts to match the observations. As |
have included a production term to change the overall shape of the distribution, so did the
protoplanetary disk modelers introduce other physical mechanisms to boost localized
accretion of bodies to build planetary cores quickly enough. Among mechanisms
introduced is turbulence, like magneto-rotational instabilities (Balbus and Hawley, 1998),
which allows small particles to concentrate in overdense regions. Eventually, oligarchy
supersedes runaway growth in these isolated regions for bodies larger than some
threshold size (Ormel et al 2010a). This then allows planetesimals to grow to planet-sized
bodies. Thus, both protoplanetary disks and the F ring require the addition of a production
term. Few systems can be realistically described using a simple binary-accretion model.

In conclusion, the Main Asteroid Belt is a collisionally-evolved system. My model
could help resolve the current debate of whether we are we observing the post-accretion
population or a primordial one. The Kuiper Belt is primordial, not collisionally-evolved
enough for my model to apply. The protoplanetary disk community has been stymied by a
lack of quick accretion in basic models. The problem in these models is basically the same

as in my model without a production term. Plausible physical mechanisms employed to
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increase accretion of objects >1 m include turbulence, magneto-rotational instabilities, and
gravitational collapse. Addition of a production term is needed for both systems because
few systems can be realistically described using a simple binary-collision accretion model.
The expansion of my model using a production term could expand the applicability of the

model to other systems like protoplanetary disks.
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4. Discussion

Saturn’s F ring is a key natural laboratory for observations of accretion and
disruption processes. The ring contains transient phenomena such as clumps, azimuthal
asymmetries, and moon-induced structure. The F ring is located in an ideal location for
direct observation, of which researchers have taken advantage over the last three decades.
The wealth of observations allows modelers to develop more sophisticated models of the
ring to constrain the physical processes affecting the system. This dissertation investigates
accretion and disruption. It is motivated by observations of the F ring and complemented
with a model. Then the model is adjusted to be consistent with the observations. Finally, I
apply the model to another ring system and suggest where it could have further
applications.

Stellar occultations show features in Saturn’s F ring that indicate azimuthally-
elongated clumping of ring material. Classification of such significant features
demonstrates that while clumping may be a common process, consolidation into an opaque
object, like a Moonlet, is not. The location of clumps is correlated to their relative distance
from Prometheus, indicating that perturbations from Prometheus may stimulate clumping.

Because the F ring is in the Roche zone where accretion and fragmentation compete,
[ use a binary collision model to numerically track the evolution of the size distribution of
bodies in the F ring as they collide. A multimodal distribution results, the general trend of
which follows the Dohnanyi-predicted g=11/6 power law for a collisionally-evolved
system. Upon investigation, I discovered the separation of successive modes is dependent
on the critical mass ratio of colliding bodies that determines whether a collision results in

complete accretion or fragmentation. Examination of similar previous models revealed
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that multimodal distributions are ubiquitous for modeled collisional systems. The BE02
results shows that the trough in the BE02 quasi-equilibrium distribution (Figure 22) occurs
where m/mo= pcrie. Fraser (2009) derives an analytic expression for the size at which a
“divot” occurs in his modeled distribution of the Kuiper belt, which is dependent on the
energy threshold for disruption and the strength parameters of colliding material. Campo
Bagatin et al. (1994) report a “wavy pattern” that they argue is caused by a small-size cutoff
of their distribution. This dissertation is the first work that carefully investigates and
characterizes the multimodal behavior. Further, this dissertation argues that sharp
physical thresholds are responsible for the multimodal behavior, which is why it is seen in
different systems and has been linked to multiple physical mechanisms.

The binary accretion model of the F ring does not reproduce the UVIS-observed
distribution of clumps. Upon focused study of the inconsistency, the principal way to
match the power-law slope of the model result to the shallow slope of the observed
distribution is to increase the accretion coefficient of the coagulation equation by a factor of
1000. No plausible physical mechanisms or combination thereof support this best-fit
model, however. Gravitational focusing and Hill radii do not increase the accretion
anywhere near a thousand-fold. Furthermore, while consistent with UVIS observations, it
is inconsistent with Imaging results. If there was, in fact, a mode at m/my=10°
(corresponds to r~few km), then ISS would have seen many moonlets because this size is
above their detection threshold. To create a physically-plausible model that is consistent
with observations, we must include an additional term that specifically accounts for the

production of large bodies
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One physically-plausible mechanism that allows for the increase in the number of
large bodies and thus the “flattening” of the modeled distribution’s slope is an enhanced
growth region. In this scenario, the largest bodies in the system experience increased
accretion in the high-density regions created by Prometheus because gravitational
instabilities form around them. The numbers of the smallest bodies decrease as the larger
bodies sweep them up. This “flattens” the distribution by preferentially removing small
bodies. Thus, the significant features that UVIS sees may themselves be swept up by even
larger moonlets (e.g. S/2004 S 6).

Additionally, I expand the binary accretion model to account for compaction of
clumps; thus, I allow the model to evolve in size and density. The result is that bodies size-
segregate by porosity. That is to say, the largest bodies are the densest and the smallest are
the most porous. This is consistent with the observations reported in Section 2: solid
Moonlets are an order of magnitude less abundant than loosely-bound Icicles. Upon
examination of each density state independently I find that each has a multimodal shape,
and when coadded by size (n(r) over all densities), I recover the same distribution as from
the constant density model, n(m,t) (Figure 63). Consequently, modeling the distribution of
F ring clumps by allowing for compaction does not match the observed distribution. Thus,
the effect of enhanced accretion in a high-density region is the only method yet tested that
results in a model consistent with observations. Allowing the model to vary in density and
size opens up a wide range of applications. With different physics governing the collisional
outcomes for different density states, one can use this model to predict the probability of
creating a solid, coherent object like a moon. Further, one might introduce a high-density

seed to the model in order to stimulate growth. In this way, this expansion can be used for
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other systems of bodies where compaction is also important, such as asteroids and
planetesimals.

Studies of ring systems in our Solar system can provide insight into other
astrophysical disks, both far away and long ago. For example, the number of extrasolar
planets observed has grown from a handful to over 700 in the last decade (Schneider
2011). Alarge fraction of those planets are gas or ice giants that may host ring systems.
Furthermore, observations of the protoplanetary disks from which they form are of
increasing resolution and number. Synergy among these studies of flattened orbital
systems can tell us about moon and planet formation, collisional fragmentation, disk

structures, and the like. This in turn can tell us about the history of our own Solar system.
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