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Fluctuations in magnetized laboratory plasmas are ubiquitous and complex. In addition to

deleterious effects, like increasing heat and particle transport in magnetic fusion energy devices,

fluctuations also provide a diagnostic opportunity. Identification of a fluctuation with a particular

wave or instability gives detailed information about the properties of the underlying plasma. In

this work, diagnostics and spectral analysis techniques for fluctuations are developed and applied

to two different laboratory plasma experiments.

The first part of this dissertation discusses imaging measurements of coherent waves in the

Controlled Shear Decorrelation Experiment (CSDX) at the University of California, San Diego.

Visible light from ArII line emission is collected at high frame rates using an intensified digital

camera. A cross-spectral phase technique allows direct visualization of dominant phase structures

as a function of frequency, as well as identification of azimuthal asymmetries present in the sys-

tem. Experimental dispersion estimates are constructed from imaging data alone. Drift-like waves

are identified by comparison with theoretical dispersion curves, and a tentative match of a low-

frequency spectral feature to Kelvin-Helmholtz-driven waves is presented. Imaging measurements

are consistent with previous results, and provide non-invasive, single-shot measurements across the

entire plasma cross-section. Relationships between imaging and electrostatic probe measurements

are explored.

The second part of this dissertation discusses the design and construction of diagnostics for

the Colorado Field-Reversed Configuration (CFRC), as well as preliminary results. A triple probe,

a Mach probe, a multi-chord heterodyne interferometer, Rogowski coils, a single-point, three-axis

magnetic probe, and a 16-point, three-axis magnetic probe have been constructed. Each diagnostic

is designed for fluctuation measurements up to the data acquisition Nyquist frequency of 20MHz.



iv

A histogram cross-spectral analysis technique allows experimental dispersion estimates to be made

from multi-channel magnetic measurements. Hints of waves in the range of ion-cyclotron frequency

harmonics are observed, but lack of global information about the plasma objects formed in CFRC

prevents definitive interpretation.
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Chapter 1

Introduction and General Background

1.1 Overview and Organization of Dissertation

This dissertation describes work from two distinct projects, related by the theme of spectral

analysis. Fluctuations are a ubiquitous feature of plasma systems, both in nature and in the

laboratory. Of particular interest are fluctuations that correspond to linear waves, since these can

be described by a characteristic dispersion relation. The major contribution of this work is the

development and application of techniques to measure dispersion properties experimentally.

Chapter 2 discusses the measurement of fluctuation using high-frame-rate visible-light imag-

ing in the Controlled Shear Decorrelation Experiment (CSDX) at the University of California, San

Diego. CSDX produces a cold (Te ∼ 3 eV), dense (ne ∼ 1018m−3), plasma column in a static

solenoidal background field using a helicon source. The details of the experiment and imaging sys-

tem are described, and a technique for measuring two-dimensional spectral density is elaborated.

The technique is validated in the case of previously-identified electron drift waves, and a new type

of fluctuation is observed. We present a tentative identification of these new modes with the Kelvin-

Helmholtz instability. A discussion of the strengths and weakness of visible light as a representation

of plasma fluctuations is provided in the context of comparison with probe measurements.

Chapter 3 discusses the construction and preliminary results from the Colorado Field-Reversed

Configuration experiment (CFRC). CFRC is a merged-spheromak device designed to produce pro-

late field-reversed configurations (FRCs). Work performed towards the completion of this dis-

seration includes development and construction of pulsed-power hardware, high-vacuum compo-
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nents, plasma diagnostics, data acquisition software, and analysis software. Preliminary results

are given for operational diagnostics, and two-dimensional spectral densities are calculated from

multi-channel magnetic measurements. For future reference, ‘status notes,’ describing the state of

current hardware and any known issues, are included for most of the sections in this chapter.

Work on both experiments makes heavy use of two-dimensional spectral-density estimation,

so an overview is given next to orient the reader.

1.2 Spectral Density Estimation

1.2.1 Overview

It is increasingly apparent that waves and fluctuations play a central role in many plasma

phenomena, especially for confinement of laboratory plasmas. Waves in plasma are often presented

as a complicated ‘zoo’ of solutions to the combined Maxwell-plasma system of equations. Although

the complexity of this zoo can be intimidating [1], the ubiquity of waves in both natural and

laboratory settings is a rich diagnostic opportunity. In this thesis, ‘fluctuation’ is taken to mean

any departure from an average value (defined as appropriate in each particular situation) in the

sense of a Reynolds decomposition [2]: x = 〈x〉+x̃. The term ‘wave’ is reserved for fluctuations that

have characteristic frequencies for a given wavelength. This means that a wave obeys a dispersion

relation, ω(k). The definition of a particular wave incorporates the plasma model employed as well

as the approximations and limits used to obtain a solution for the dispersion relation. As such,

an experimental measurement of a dispersion relation allows both identification of a class of waves

and a direct check on the validity of various approximations 1 .

Experimental measurement of dispersion curves is not a well-defined task; to the best of

our knowledge, it has not been attempted previously in a plasma context. For the purposes of

this dissertation, we define a ‘measured’ dispersion relation as a map of the spectral power of

fluctuations as a function of both frequency and wavenumber. In the case where multiple modes

on a given dispersion branch are unstable or excited, spectral power is localized along the relevant

1 See, for example, the discussion of the drift-wave dispersion relation in Section 2.4.2.
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dispersion curve. Although the techniques described may operate effectively in other situations,

for the following discussion we assume that multiple modes are oscillating and that the plasma

is not (fully) turbulent. This section gives an overview of two techniques used for estimating

two-dimensional spectral densities, with the goal of measuring dispersion relations.

1.2.2 Spectral Density

There are various (equivalent) ways of defining the spectral density (SD) in the case of

discretely-sampled signals, but we choose the Fourier transform method for its clarity and ease of

implementation. The calculation proceeds as follows [3]: Two time series x(tj) and y(tj) of length

T = N∆t are sampled at points tj , j = 0, 1, ..., N and transformed into the frequency domain using

a fast Fourier transform (FFT). The resulting amplitudes Xi(fj) and Yi(fj) are multiplied together

to construct a raw estimate of the SD at each frequency fj :

Gxy(fj) = CjX
∗(fj)Y (fj). (1.1)

If x(tj) and y(tj) are the same signal, Gxx is called the autospectral density (ASD) and represents

the power in each Fourier mode contributing to the signal. In this case, Cj = 2/T for j = 1...N/2−1

and Cj = 1/T for j = 0, N/2 (the factor of two overcounts for first and last points if the signals

are the same). If x(tj) and y(tj) are distinct, Gxy is called the cross-spectral density (CSD) and

represents the power in shared frequency content. In this case, Cj = C = 2/T for all j.

This single estimate of spectral density is not sufficient for quantitative measurements. In

fact, if each time series is modeled as a Gaussian random variable, the relative statistical uncertainty

in Gxy is unity[3]. In order to recover a ‘smooth’ estimate of the true spectrum, a number of raw

estimates are typically averaged together. When a true ensemble of repeated measurements is

unavailable, the signals for each raw estimate can be constructed by either dividing x(tj) and y(tj)

into shorter time records (for signals with time-stationary statistics), or using simultaneous signals

separated in space (for a spatially uniform system). For evenly sampled data, a straight average

across estimates is appropriate. For unevenly sampled data, histogramming provides the required
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smoothing. Using an ensemble of nd distinct measurements of x(tj) and y(tj), the smooth estimate

is defined to be:

Ĝxy(fj) =
Cj

nd

nd∑

i=1

X∗
i (fj)Yi(fj). (1.2)

where i is the index of each raw estimate. The relative statistical uncertainty in the spectral power

given by a discrete ASD estimate is 1/
√
nd, where nd is the number of distinct estimates in the

ensemble. For the CSD[3], the relative uncertainty is 1/|γxy|
√
nd, where γxy is the cross coherence

of the smoothed estimate:

γ2xy(fj) =
|Ĝxy(fj)|2

Ĝxx(fj)Ĝyy(fj)
(1.3)

The spectral density technique described thus far are functions of frequency, but yield no

wavenumber information. In order to extract information about the spatial structure of fluctuations

in addition to frequency information, time series data from multiple locations is required. In the

following sections, we describe the details of the two techniques implemented in Chapters 3 and 2

to obtain two-dimensional spectral density estimates (functions of both ω and k).

1.2.3 The Two-Point Technique

Many studies over more than 25 years [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] have used probe

pairs to estimate the wavenumber spectrum and statistical dispersion relation [16] for plasma fluc-

tuations. The “two-point technique” estimates the power spectral density, s(k, w), using a condi-

tional wavenumber spectral density, s(K|ω) = S(K,ω)/S(ω), where K is the local estimate of the

wavenumber. This approximation holds under the condition that the fluctuations being measured

can be represented by a superposition of wave packets[16]. The procedure involves calculating the

cross-phase between two signals with known spatial locations. The CSD defined by equation (1.2)

is a complex quantity, and the cross-phase as a function of frequency is given by the phase angle

of Ĝxy(fj):

tanφxy = Im Ĝxy/Re Ĝxy. (1.4)

For two probe signals (time series), a local wavenumber can be calculated for each frequency
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by dividing the cross-phase by the separation between the probe locations rx and ry:

Kl =
φxy

(rx − ry)l
. (1.5)

The spacing of the probe tips must be smaller than the true wavelength of the fluctuations to avoid

aliasing. For one pair of time-series, the above method produces a single K value at each frequency

fj . This limitation means that only the average K (power-weighted) and its uncertainty is mea-

sured. The statistical uncertainty in K comes from the uncertainty in the cross-phase (disregarding

position and other measurement uncertainties), and is an estimate of the spectral width:

σφ =
(1− γ2xy)

1/2

|γxy|
√
2nd

(1.6)

For a single coherent wave, or a collection of coherent waves all lying on a single-valued disper-

sion curve, interpretation of K(fj) is straightforward. In cases where multiple bands of coherent

fluctuations are present in the (k, ω) plane, the average K value may not describe any of the fluc-

tuations present. In a turbulent case, K and σφ provide limited information about the location of

the fluctuations in spectral space and the width of the spectrum, respectively.

Alternatively, the local wavenumber at each frequency can be calculated from each raw CSD

estimate, rather than from the smooth estimate. The resulting ensemble of (|Gxy|,K, ω) triplets

are then assembled into a histogram, summing the power in each bin (Km, fj) and dividing by nd.

Construction of the histogram is analogous to the ensemble averaging discussed above and produces

a smooth estimate Ĥxy(Km, fj). Although the histogram technique provides a two-dimensional

result, it still reflects only the mean K and spectral width at each frequency. This is a fundamental

limitation of using only two measurement locations; a single pair can provide only two constraints

on the spatial properties. A little-cited work by Carlson [17] illustrates this by calculating the

distribution of K values for fluctuations in the Gaussian random-phase model. The two point

estimate of Ĝ(K) =
∑

ω Ĝxy always drops off as K−5 for fluctuations represented by Gaussian

random variables, independent of K and σφ [17]. Thus, although Ĥxy(Km, fj) seems to contain

information on the shape of the wavenumber spectrum, this is in fact an artifact of the technique

used to construct the estimate.
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In order to circumvent this limitation, multiple probe pairs with unequal spacing can be

employed. Carlson discusses this in terms of the “orthogonality” or independence of cross-spectra

from sets of probe measurements. Under the spatially-uniform, time-stationary assumptions that

lend validity to the two-point technique, Ĝxy is only a function of the separation |rx − ry| [17].

Using multiple probe pairs with the same spacing improves the estimates of K and σφ, but does not

give more information on the the shape of the K spectrum. Thus, in order to extract a fully two-

dimensional spectral density estimate, multiple pairs of signals with distinct spatial separations

must be employed. Implementation of a multi-point histogram technique for estimates of the

spectral density of magnetic fluctuations is discussed in Chapter 3.

1.2.4 Two-dimensional Fourier Transform Technique

In the case where fluctuations are well-sampled in both time and space, such as with imaging

or large arrays of probes, the histogram technique is unnecessary. Each estimate of the spectral

density can simply be extended by performing the FFT along both the time and space dimesions.

A single raw estimate is now defined from the two-dimensional transforms of x(tj , rl) and y(tj , rl)

as

Ĝxy(fj , kl) = CjX
∗(fj , kl)Y (fj , kl) (1.7)

where the signals are now functions of (discrete) position rl, and kl = 2πl/N∆r indicates the

corresponding spatial Fourier component (wavenumber). A smooth estimate is obtained by aver-

aging, since each estimate in the ensemble has the same length (by construction). The smooth

two-dimensional CSD is thus given by:

Ĝxy(fj , kl) =
Cj

nd

nd∑

i=1

X∗
i (fj , kl)Yi(fj , kl) (1.8)



Chapter 2

Imaging Measurements of Fluctuations in the Controlled Shear Decorrelation

Experiment

2.1 Motivation

One of the most useful features of imaging is the ability to measure a two-dimensional array

of signals simultaneously. The advent of commercially available fast-framing digital cameras has

opened the possibility of imaging studies using visible light in small, low-temperature laboratory

plasma experiments, where diagnostics such as microwave imaging reflectometry [18], electron cy-

clotron emission imaging (ECEI) [19], and beam emission spectroscopy [20] are impractical. Many

studies have used visible fast-imaging techniques in both qualitative and quantitative measurements

of spatial structure and plasma motion in tokamaks and stellarators [21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31], basic confinement machines [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42], and other plasma

devices [43, 44, 45]. The conventional method of measuring spatial properties of fluctuations in

low-temperature plasma uses the phase lag between multiple probe tips to estimate the size and

velocity of structures moving past [16], as discussed in Sections 1.2.3 and 3.4. This procedure is

robust for sufficient record length and stationarity, but a single pair of probes can provide only lim-

ited information [17]. Global measurements using many probes are possible [10, 46, 47], but limited

port space and probe-induced perturbations [43] are severe obstacles to making measurements of

this kind. Visible-light imaging, on the other hand, is non-perturbative, can have broad spatial

coverage, and can be robust to asymmetries when the full cross-section of the plasma is imaged (as

in this study). The major limitation of imaging is the absence of a formulaic link across param-



8

eter regimes between visible light fluctuations and plasma property fluctuations. Nevertheless, if

the fluctuations at hand influence a property on which light emission depends (e.g. temperature,

density, etc.), we can extract their spectral properties using imaging.

In this chapter, we present a study of the spectral properties of low-frequency modes in

a linear, magnetized plasma column using fluctuation data from fast imaging in the Controlled

Shear Decorrelation eXperiment - Upgrade (CSDX-U)[48]. We also construct a detailed comparison

between imaging and probe measurements of fluctuations, including temporal, spatial, and spectral

properties.

2.2 Theoretical Background

2.2.1 Instabilities in a Linear, Magnetized Plasma Column

The classes of fluctuations naturally present in a plasma often correspond to the sources of

free energy that may be tapped by perturbations. A brief overview of relevant plasma instabilities is

given here to provide context for the analysis presented in Sections 2.4 and 2.5. The current work is

focused on the dispersion of steady, saturated fluctuations. Therefore, the real frequency is generally

of more interest than the growth rate. Where dispersion relations are given, the frequency is denoted

by ω, the wavenumber by k, and the growth rate by γ = Imω. For the purposes of comparison with

CSDX-U, we consider a cylindrical plasma column (r, θ, z) immersed in a uniform magnetic field

aligned with the column axis (B = Bẑ). We assume that both ions and electrons are magnetized

to a significant degree (ωci,ce > νcoll). Centrally-peaked density and electron temperature profiles

are common, and are assumed here for simplicity. The plasma β is typically below 0.1% in CSDX,

so that an electrostatic treatment (E = −∇φ) is sufficient to capture the relevant physics. Ions are

treated as cold (Ti = 0), and the plasma is collisional (no resonant particles). Because the plasma is

weakly ionized in the edge region [49], we include collisions with neutrals where relevant. In keeping

with observations in the device, we look for fluctuations with low frequencies (ω ≪ ωci ≪ ωce),

and assume long parallel wavelengths (kz ∼ 0). Equations of motion for fluctuations in a two-fluid
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description under the above assumptions yield terms for four instability mechanisms [50, 51, 52]:

Electron drift [53], Simon-Hoh [54, 55], Centrifugal Rayleigh-Taylor [50, 51], and Kelvin-Helmholtz

[50, 51].

2.2.1.1 Collisional Electron Drift Instability

The drift instability consists of transport-inducing density and potential perturbations driven

by a pressure gradient. It is often termed the “universal instability,” because it is nearly ubiquitous

in laboratory plasma devices [56]. Indeed, drift waves are observed routinely in CSDX [57].

As described in many texts and reviews (see, for example, Refs. [58, 59]), the physical mech-

anism for drift waves involves E ×B advection of particles across a pressure gradient (taken to be

in the vertical direction for this illustration). Because CSDX is cold and the temperature profile is

rather flat (see Figure 2.3a), we neglect the contributions from any temperature gradient. The wave

exists in the frequency range where the phase velocity is much faster than the ion thermal speed and

much slower than the electron thermal speed: kvti ≪ ω ≪ kvte. Boltzmann response means that

electron density and electrostatic potential fluctuations are proportional (in-phase). The electron

motion is primarily along the field lines on the time scale of the wave. The lowest-order response for

the ions is the E×B drift, since they are considered to be cold (no parallel motion on the timescale

of the wave). As illustrated in Figure 2.1a-b, a localized increase in electron density causes an

E×B advective cell to form. Because of the density gradient, fewer particles are advected into the

right edge of the perturbation than are advected into the left edge (Figure 2.1c). The increase in

ion density on the left edge of the cell increases corresponds to a proportional change in electron

density and thus potential. Thus, the initial perturbation propagates in the electron diamagnetic

direction due to the combination of parallel electron motion and perpendicular ion motion (Figure

2.1d).

If the electron response deviates from the in-phase Boltzmann dynamics described above,

drift waves can become unstable. In particular, if the electron parallel motion is inhibited by

collisions (among other effects), the potential perturbation lags behind the density perturbation.
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Figure 2.1: Illustration of the drift wave mechanism. (a) Initial conditions: An ion perturbation in
the presence of a background magnetic field and density gradient. (b) The accompanying potential
perturbation generates a local E × B circulation. (c) The E × B brings higher density towards
one side of the perturbation and lower density to the other. (d) Thus the density perturbation
propagates in the electron diamagnetic direction.

With proper phasing (a lag of 0 < δφ . π/4), E × B advection is still moving high-density fluid

elements into the space at the edge of the original perturbation when the peak of the perturbation

arrives there. Thus, the initial disturbance both propagates and is continually reinforced by the

influx of particles from the high-density side of the gradient.

In a slab geometry, the dispersion relation can be derived in a two-fluid treatment [58]. Here,

the static magnetic field is along ẑ, the density variation is along x̂, and ŷ is the direction of

propagation. Retaining the ion polarization drift in addition to the E × B drift allows this model

to capture finite-Larmor-radius (FLR) effects to some degree. Since the ion Larmor radii are on

the order of the wavelengths we observe in CSDX, this correction is necessary. The real frequencies

for drift waves in this model are given by [58]

ω =
ω∗

1 + k2yρ
2
s

, where ω∗ = kyvde = ky
kBTe
eB

1

n

∂n

∂r
. (2.1)

The two relevant scales are the ion sound gyroradius, ρs =
√
Te/miω2

ci, and the density gradient

scale length, L−1
n = 1

n
∂n
∂r . For kyρs ≪ 1, the phase speed of the wave is the electron diamagnetic

velocity, vde.

In the steady-state plasma produced by CSDX, observed drift waves are saturated. This

means that the imaginary part of the dispersion relation (growth rate) is less useful for comparing
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with experiment. It is, however, useful to note whether there is a maximum growth rate, and for

what value(s) of k it occurs. A peak in the growth rate generally predicts the modes most likely to

appear in an experimental context, since the fastest-growing modes can use up the available free

energy before slower-growing modes become large. For the slab model, the imaginary part of the

drift dispersion is given by [58]:

γ = ω∗

(
ω∗τ‖

) k2yρ
2
s(

1 + k2yρ
2
s

)3 (2.2)

Since the factor k2yρ
2
s/
(
1 + k2yρ

2
s

)3
has a maximum for kyρs = 1/

√
2, the most unstable modes

have relatively large wavelengths. For the canonical CSDX case, the fastest growing mode has

λ ∼ 25ρLi ∼ 2πr0, where r0 is the Gaussian width of the density profile. Thus, in the slab model

we expect the m = 1 mode to be dominant.

Although the slab model is adequate for describing the wave in certain contexts, it is not

directly applicable to CSDX. In addition to the cylindrical geometry, CSDX is likely to exhibit

non-local effects because k−1
θ ∼ ρs ∼ Ln for much of the parameter space. For these reasons, in

Section 2.4.2 we employ a cylindrical model described by Ellis, et al. [53]. In cylindrical geometry,

the dispersion relation is found by solving an eigenvalue equation for the potential fluctuation,

ψ = eφ̃/kBTe:

d2ψ

dr2
+

(
1

r
+

1

n

dn

dr

)
dψ

dr
+

(
Q(r)− m2

r2

)
ψ = 0. (2.3)

Here, m is the azimuthal mode number, k ≡ m/r, and Q(r) is an effective value for k2⊥. Solutions

are tabulated in Ref. 53 for a Gaussian density profile. The eigenvalues determining Q in the

Gaussian model depend only on m and on the ratio of the column width, a, to the Gaussian profile

width, r0. The ion saturation current profile presented in the following section is nearly Gaussian, so

that no new numerical computation is necessary to apply the Ellis model. The resulting dispersion

relation is the same as 2.1, but with k2θρ
2
s replaced by b = Qρ2s:

ω =
ω∗

1 + b
. (2.4)

Values of b are determined from Fig. 2 of Ref. 53. An annotated version of the figure is shown
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Figure 2.2: An annotated copy of Fig. 2 of Ref. 53, showing the points used for computation of the
b parameter. A parabola fit to these points is used to extrapolate b values beyond m = 5.

in Fig. 2.2. A parabola is fit to the designated points, using a Gaussian fit to the Is profile to

determine r0 (see Fig. 2.3a).

2.2.1.2 Simon-Hoh Instability

The Simon-Hoh instability is a radial E×B drift instability driven by the difference in neutral

drag acting on ions and electrons [54, 55]. Because of its mechanism of action, this instability is

variously called the Simon-Hoh instability, the E × B instability, the crossed-field instability, or

the neutral-drag instability [60]. In the edge of CSDX, the neutral density may be comparable

to the plasma density and collisions with neutrals cannot be neglected [49]. Because of their low

thermal velocity (ions are cold and have large mass), ions collide more frequently with neutrals
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and therefore experience a greater drag force. Under the influence of an electric field, the effective

E × B drift of the ions is thus smaller than that of the electrons (ion terminal velocity is lower).

The physical mechanism relies on the differential motion of ions and electrons in combination with

gradients in density and potential that are oppositely directed. Because the circumstances favoring

instability are somewhat esoteric, the Simon-Hoh mechanism is not commonly discussed in the

research literature. In particular, it has appeared seldom in fusion-relevant studies because the

plasmas in question are taken to be fully ionized 1 .

The physical picture of the instability is as follows. In our cylindrical geometry, the zero-

order E×B velocity is in the azimuthal direction (θ̂). The density gradient points inward (−r̂), as

does the electric field. As a starting point, we take an outward radial excursion of a fluid element

from a higher density region into a lower density region. This quasi-neutral density perturbation

will separate into an electron perturbation (faster propagation) and an ion perturbation (slower

propagation) due to differential neutral drag. The resulting charge separation creates a first-order

local azimuthal electric field Ẽθ, which produces a first-order outward radial Ẽ × B drift in the

perturbed region. The induced drift amplifies the original radial excursion, leading to instability. If

the electric field points outward (anti-parallel to the density gradient), the induced drift is radially

inward and the Simon-Hoh mechanism does not cause instability.

Simon [54] has derived a dispersion relation and calculated the growth rate for the instability

in a model situation similar to the conditions of CSDX. Although it is not necessary to reproduce

the full equation here, it is important to note that it depends on the details of the neutral collision

rates in both perpendicular and parallel directions. The full set of parameters required to calculate

a dispersion curve includes parallel and perpendicular neutral collision rates, diffusion rates, and

mobilities, for both ions and electrons. Neutral profiles and dynamics are not well studied in CSDX,

so quantitative evaluation of Simon-Hoh dispersion relation is not possible at this time. Instead,

we simply consider plausibility in Section 2.4.2 based on the discussion presented by Light, Chen,

1 The “collisionless Simon-Hoh Instability” [61] is a similar process with more relevant application to hot plasmas.
Here the mechanism of charge separation is due to a finite-Larmor-radius effect.
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and Colestock [52]. If the plasma is significantly magnetized when considering neutral collisions,

the Simon-Hoh instability is not likely to be dominant. Thus the plausibility condition for the

Simon-Hoh mechanism is νen/ωce, νin/ωci > 1.

2.2.1.3 Centrifugal Instability

The centrifugal or rotational instability is a gravitational interchange mode, where the ef-

fective gravity is provided by rotation of the plasma column. When the mass density gradient

is opposite to the the gravitational force, exchange of fluid parcels in a direction parallel to the

gradient lowers the potential energy of the system and leads to Rayleigh-Taylor instability [62, 63].

As an illustration, the dispersion relation below describes the stability of a horizontal interface

between two fluids of constant density [64]. The gravitational force g is downward. Mass densities

of the lower and upper fluids are represented by ρ1 and ρ2, respectively, and the effective surface

tension is given as T .

ω2 = −g|k|
[
ρ2 − ρ1
ρ2 + ρ1

− k2T

g(ρ1 + ρ2)

]
(2.5)

Surface tension is stabilizing and is provided by internal electric fields (quasi-neutrality) [65]. Al-

though the modes we will consider have kz ∼ 0, magnetic tension can also contribute when the

relevant perturbation has a wavenumber component along the magnetic field [64]. In addition to

reducing the growth rate, surface tension plays an important role in the unstable case by select-

ing the most-unstable wavenumber. Because γ ∼
√
k, smaller structures are likely to grow faster

when the surface tension is negligible. In practice, howevever, the local curvature of the perturba-

tion increases as the instability progresses until the surface tension term becomes non-negligible.

Nonetheless, we expect that centrifugally-driven fluctuations will be found at higher mode num-

bers than drift waves. Note that ω is either purely real (ρ2 − ρ1 < k2T/g) or purely imaginary

(ρ2 − ρ1 > k2T/g); the modes do not propagate in the fluid frame. Thus, the lab-frame phase

velocity of centrifugally driven perturbations is simply the rotation velocity of the column.

In CSDX, the typical density profile peaks at the center of the column, which exhibits sig-

nificant time-average rotation [49]. Given sufficiently low surface tension, therefore, the system is
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unstable to the centrifugal mode.

When there is velocity shear in the system, the centrifugal instability may be suppressed.

One measure of whether the rotation or the shear will be the dominant instability mechanism is

the centrifugal Richardson number. This dimensionless quantity measures the ratio between the

changes in potential energy, due to buoyancy, and changes in kinetic energy, due to mixing when

two fluid elements are exchanged. When buoyancy effects are large, rotational instability is likely

to occur. If the velocity shear scale length Lv is small compared to the other relevant length scales

in the system, shear is likely to be dominant. As defined by Perkins and Jassby for a cylindrical

column [50], the Richardson number is:

|Ri| = L2
v

r

∣∣∣∣
1

n

dn

dr

∣∣∣∣ =
L2
v

rLn
. (2.6)

We will use the Richardson number to make a plausibility argument against centrifugal instability

in section 2.4.2.

2.2.1.4 Transverse Kelvin-Helmholtz Instability

The Kelvin-Helmholtz (KH) instability is a well-known mixing instability driven by sheared

fluid flow. Small scale perturbations are accelerated by the mean flow, extracting energy into a

vortex-chain-like wave. More precisely, the vorticity fluctuations driven by shearing of the perturbed

surface are phased relative to the cross-streamwise displacement of the surface, such that the initial

distortions of the interface are reinforced [66, 67]. The dispersion relation for perturbations to a

plane interface between fluids with velocities u1 and u2 gives a complex value for ω[64]:

ω = −kx
ρ1u1 + ρ2u2
ρ1 + ρ2

±
√
−g|k|

[
ρ2 − ρ1
ρ2 + ρ1

− k2T

g(ρ1 + ρ2)

]
− k2x

ρ1ρ2
(ρ1 + ρ2)2

(u1 − u2)2. (2.7)

As above, the gravitational force, g, is downward, mass densities of the lower and upper fluids are

represented by ρ1 and ρ2, respectively, and the effective surface tension is given as T . The terms

involving the velocity shear depend only on the component of the wavevector parallel to the flow

interface (denoted by kx). We shall consider only pure KH modes, where k = kx. In contrast to the
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centrifugal instability, the Kelvin-Helmholtz instability can generate propagating waves, as viewed

in the frame of either fluid. The real part of the phase velocity is, in fact, the mass-density-weighted

average velocity in the vicinity of the shear layer.

As with the centrifugal instability, surface tension is stabilizing. Note that stratification can

be stabilizing or destabilizing2 . Even more so than for the centrifugal instability, the fastest growing

KH modes are small-scale (neglecting surface tension, γ ∼ kx). Again, the practical implication is

that higher mode numbers are likely to be excited than in the case of the drift instability.

2.3 CSDX-U Device

2.3.1 Overview

The Controlled Shear Decorrelation eXperiment - Upgrade (CSDX-U) is a linear machine,

which generates a cold (Te ∼ 3 eV, Ti ∼ 0.5 eV), dense (ne ∼ 1018m−3), magnetized (ρLi/rplasma ∼

0.03−0.3) plasma column in argon using a recently-upgraded helicon source. Early work established

the presence of a sheared azimuthal velocity profile in the absence of external momentum input

[68] and documented the structure of fluctuations using measurements of ion saturation current,

floating potential, and visible-light emission [33, 57, 69]. Drift waves were identified as the dominant

class of fluctuations in the plasma [57]. Efforts to date on CSDX have found evidence for turbulent

stresses [70, 49], nonlinear energy transfer [71, 72], and localized structures [33, 41].

The machine has recently been upgraded and now uses a 15-cm-diameter, 13.56MHz radio-

frequency (RF) source, operated at up to 5 kW in the m = 0 helicon mode. The vacuum system

is the same as for previous studies, with a 20-cm-diameter cylindrical chamber. The canonical

parameters for the experiments described here are chosen to be similar to previous work on CSDX.

The working gas is argon, at a pressure of 3.2 × 10−3Torr and a flow rate of 25 sccm. The RF

power is 1600W with less than 1% reflected, and the background magnetic field is 900G for the

baseline case. Time-average profiles for these parameters are shown in Figure 2.3. The raw Is data

2 In fact, the Rayleigh-Taylor or centrifugal instability can provide initial perturbations, which are then sheared
and rolled up by the velocity differential across the perturbed structure.
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Figure 2.3: Time average profiles for plasma parameters. (a) Electron density and temperature
profiles. The black solid line is a Gaussian fit to the density data (gray dots). (b) Measured plasma
potential and resulting azimuthal E ×B velocity.

has a nearly Gaussian profile, as does the corresponding density data. A fit is shown in 2.3(a)

for comparison. The E × B velocity derived from plasma potential profiles is shown in 2.3(b).

Evidence for sheared flow has been documented in the previous CSDX source [69, 68], but the

presence of a time-varying flow component [39] means that this average profile provides incomplete

information. In addition, the uncertainties in the derived velocity profile are large, so that vE×B is

not particularly well constrained by swept probe measurements.

2.3.2 Device Hardware

2.3.2.1 Vacuum System

A diagram of the CSDX device, including dimensions and locations for diagnostics, is shown

in Figure 2.4. The experiment volume consists of a cylindrical stainless-steel chamber with length

2.8m and internal diameter (ID) 20 cm. The plasma source bell jar is mounted concentrically on

one end, and a glass window is mounted on the other. The axial location z = 0m is defined

by the mating surface of the bell jar flange with the cylinder flange, with ẑ pointing away from

the source. The vacuum system consists of roughing pump and a 1000L/s turbomolecular pump,

separated from the main chamber by a butterfly valve. The valve and pump are mounted on an
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Figure 2.4: Technical drawing of the CSDX device. Labeled distances are as follows: (a) Length of
experimental section. (b) Axial distance from z = 0 to location of 4-tip probe. (c) Axial distance
from location of 4-tip probe to end window (optical path length from the camera focal plane to the
window). (d) Magnet spacing. (e) Diameter of experimental section.

extension tube, which is electrically insulated from the plasma by a teflon liner (hatched in Figure

2.4). The minimum base pressure is ∼ 10−6Torr, and the pressure and flow rate of the working

gas is controlled by adjusting both the gas input rate and the butterfly valve (pumping rate). Gas

input is determined by a mass flow controller in units of 1 sccm (standard cubic centimeters per

minute). Typical flow rates are between 15 and 35 sccm at a pressure of several milliTorr.

2.3.2.2 Plasma Source

CSDX plasmas are produced by a 13.56 MHz RF source, coupled into the helicon mode via

an antenna with either m = 0 or m = 1 mode structure. The antenna wraps around a glass bell

jar attached to one end of the vacuum chamber, and is coupled to the RF power supply via an

automated matching network. Reflected power is generally < 1%. The room is shielded from the

antenna via a slotted aluminum cylinder placed between the matching network and the vacuum

chamber (see Figure 2.4 ). Given the bright blue core, high density, and low temperature of the

plasma typical for these sources, we assume plasma production via a true helicon wave. Wave

field measurements verifying helicon operation have been made in a similar source with diverging
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magnetic field geometry [73], but have not been repeated in the current device geometry. The

diameter of the bell jar has recently been increased from 10 cm to 15 cm, and the RF power supply

has been upgraded from 2 kW to 5 kW. The source is run in steady state, with water cooling for

the antenna and forced air cooling for the bell jar. The cooling is not sufficient to maintain ambient

temperature with the upgraded source, so care must be taken to ensure that wall conditions do

not change appreciably over the course of an experiment. For example, at PRF = 1800W, the

operating temperature of the chamber stabilizes near 75◦C, but at PRF = 4500W, the chamber

temperature rapidly increases to above 110◦C.

2.3.2.3 Magnet System

The vacuum chamber is located in the bore of a set of 29 pancake magnet coils, spaced every

12 cm (see Figure 2.4). Current is supplied to the coils by computer-controlled high-current power

supplies, adjustable in increments of 10A. The coils are water cooled and can be run at currents

up to 800A in steady-state. Provided that the source can couple into the plasma, the range of

accessible background field values is 400 to 2400G. The field is quite uniform over the cross section

of the vacuum chamber, so that field values at the center and at the edge differ by ∼ 1%. The axial

profile of the field is also quite uniform in the middle 50% of the experimental secion, where data

is acquired. Figure 2.5(a) shows the axial variation in field strength along the entire coil set. For

reference, the current-to-field calibration plot is shown in Figure 2.5(b).

2.3.2.4 Probe Diagnostics

In addition to the fast imaging system described below, several probe diagnostics are employed

for profile and fluctuation measurements. Time-average properties are measured with a single-tip

swept Langmuir probe, compensated for RF rejection [74].

Fluctuations are measured as a function of both time and space by an electrostatic probe

array. The array has four tips, each digitized at approximately 500 kSamples/s. One tip of the

probe is biased to collect ion-saturation current (Is). The other three tips are arranged as in Figure
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Figure 2.6: (a) Layout of the electrostatic probe used for measuring fluctuations. The view is end
on, from the center of the plasma column. Tips 2, 3, and 4 are in the same (radial) plane while tip
1 protrudes farther into the plasma (darker shading). This geometry allows radial and azimuthal
electric fields to be estimated from differences in floating potential. (b) Photograph of the actual
probe (side view), including stabilizer disk to ensure that the geometry remains fixed even if the
probe stalk droops.

2.6 to measure the floating potential (Vf ) at three points in the plasma, two separated azimuthally

by 5mm and two separated radially by 5mm. The radius of each cylidrical tip is rt = 0.6mm. In
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comparison, the plasma column radius is rp ∼ 8 cm, and the ion cyclotron radius and Debye length

for the canonical parameters listed above are ρLi ∼ 7mm and λD ∼ 10µm. Because ρLi ≫ rt, an

unmagnetized probe theory is used to interpret the data [75].

The entire probe stalk is mounted on a translating stage. Motion is roughly aligned with

the radial coordinate of the experiment, allowing a radial profile to be extracted from a single

acquisition. Translation has been accomplished by means of a pneumatic actuator (maximum

translation speed ∼ 10 cm/s).

In addition to recovering mean and fluctuation profiles of Is and Vf , the geometry of the

probe allows finite difference gradients in floating potential to be calculated in the azimuthal and

radial directions. If temperature fluctuations are negligible, floating potential fluctuations should be

equivalent to plasma potential fluctuations [75]. For reference, we summarize here the relationship

between floating and plasma (Vp) potentials given by Stangeby [76]. The difference between Vf and

Vp is proportional to the electron temperature, Te, multiplied by a logarithmic factor:

Vp − Vf =
kBTe
e

ln

[(
2π
me

mi

)(
1 +

Ti
Te

)
1

(1− γ)2

]
(2.8)

where e is the elementary charge, kB is the Boltzmann constant, me and mi are the electron and

ion masses, Ti is the ion temperature, and γ is the secondary electron emission coefficient of the

probe surface. For the case of CSDX, Ti ≪ Te, so that we may treat the logarithm as a constant

even in the presence of moderate temperature fluctuations. For argon at canonical conditions, we

have approximately

Vp − Vf ≃ 5.18Te (2.9)

where Te is measured in units of electron volts (eV). In many low temperature plasma experiments,

including previous work on CSDX[57], the assumption of small temperature fluctuations (T̃e/Te ≪

1) is made so that plasma potential and floating potential fluctuations become approximately equal:

Ṽp − Ṽf
〈Te〉

≃ 5.18
✓
✓
✓✓✼
0

T̃e
〈Te〉

. (2.10)

The usual arguments for the validity of this assumption in CSDX are twofold: 1) Fluctuation
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levels are approximately proportional to the gradient strength, and Te profile is rather flat (Figure

2.3a); 2) The different functional relationships of Is and Vf to Te should manifest in the relative

fluctuation levels as T̃e/Te changes, yet Ĩs/〈Is〉 ≈ Ṽf/〈Vf 〉 across parameter combinations [57].

Nevertheless, comparisons of experimental CSDX data with simulation may hint at the importance

of temperature fluctuations [77]. Further questions about the magnitude and effects of temperature

fluctuations are addressed in Section 2.5.

Under the above assumption, Ẽ⊥ ≈ −∇⊥Ṽf can be measured by the four-tip probe. Since

magnetic field fluctuations are negligible in regimes explored to date [78], we may then calculate

fluctuating E ×B velocities from electrostatic measurements.

2.3.2.5 Imaging System

Image sequences of up to several hundred thousand frames are acquired using a Phantom

v7.10 CMOS camera. Visible light from the plasma is collected through an end window by a

1200mm, f/8 telescope (Celestron C6-RGT) at a distance of ∼ 7m from the focal plane using a

180mm, f/4 lens as an objective. The image is projected onto the camera sensor using a standard

25mm, f/1.4 C-mount lens. The long focal distance allows the sight-lines of the camera to be

aligned with the background magnetic field to within ±0.6◦, minimizing parallax. Additionally,

parallel dynamics are not expected to contribute to imaging measurements because the depth of

field (DOF) around the image plane is much less than the machine length, L (DOF ≪ L ∼ 1/k‖).

Using our optical arrangement, each pixel images a volume of width ∆x = ∆y = 1.5mm in the

focal plane (rplasma/∆x ∼ 50) and depth ∆z ∼ 10 cm (L/∆z ∼ 30).

In this study, we present analysis of a single sequence of 10,000 frames of 488-nm (ArII)

light, referred to as I488 (shot label 12215f488). The narrowband optical filter (±10 nm FWHM)

we use reduces the collected intensity significantly, so that the minimum exposure time is on the

order of 20µs. Images are acquired with 128x128-pixel resolution at a rate of 50,000 frames/second

(50 kfps). We record images with wider spatial coverage than the extent of the visible plasma column

(∼ 110 pixels in diameter) to ensure accurate pixel-to-cm calibration and to reduce edge effects when
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Figure 2.7: (a) Raw image example (single frame). White corresponds to zero intensity. (b)
Normalized radial profiles of mean I488 (solid black), RMS I488 fluctuation amplitude (dashed
black), and mean Is (solid gray).

calculating velocity fields. The raw unit of I488 is an unsigned integer (uint) corresponding to the

intensity level within the 12-bit (0− 4095) range of the images. Data presented here is normalized

to the maximum intensity value in the image sequence, so that I488 lies in the range [0, 1].

A sample raw image frame for shot 12215f488 is shown in Fig. 2.7(a). Black corresponds to

approximately 60% of the maximum I488 value in the sequence and white to zero intensity. The

spatial scale shown here applies to all images presented in this study. The mean I488 profile and the

profile of the root-mean-square (RMS) I488 fluctuation level about the mean, both normalized to

the maximum mean brightness, are plotted versus radius in (b). Averages to obtain mean profiles

are performed over both time and azimuth. Also shown in Fig. 2.7b is the Is profile from Fig.

2.3a, normalized. The width of the mean brightness profile closely matches the width of the Is

profile, indicating that the entire ionized column is visible in the 488-nm wavelength band. For

reference, a more detailed comparison of the normalized electron density, ion saturation current,

and intensity profiles is shown in Figure 2.8. Note that Is is a good proxy for ne. Further study of

the relationship between probe and imaging measurements is presented in Section 2.5.
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2.4 Imaging Measurements of Coherent Modes

2.4.1 Cross-spectral-density Phase Mapping

In order to extract information about the spatial structure and coherence of recorded fluctu-

ations, we use a cross-spectral-density (CSD) technique to map spatial variations in phase onto the

pixel grid. This map provides a two-dimensional picture of the coherent spatial features present at

each frequency. Unlike spatial Fourier filtering, the phase map preserves azimuthal asymmetries.

The estimated discrete CSD is defined in the standard way [3], as described in Section 1.2.2 (a de-

scription is provided here as well, to facilitate a self-contained discussion). Each pixel is considered

to be a discrete-time signal, sampled at points tj , j = 0, 1, ..., N . To calculate the relative phase

between two pixels, the signals x(tj) and y(tj) are divided into nd distinct (non-overlapping) blocks

of length Td with appropriate windowing, and each block is transformed into the frequency domain.

The resulting Fourier signals Xi(fj) and Yi(fj) are multiplied together to construct a raw estimate

of the CSD for each block i at each frequency fj . These block estimates are averaged together to

calculate the smooth estimate (cf. Equation 1.2)

Ĝxy(fj) =
2

ndTd

nd∑

i=1

X∗
i (fj)Yi(fj). (2.11)
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We use nd = 50 blocks of Nd = N/nd = 200 time points each to calculate Ĝxy(fj), corresponding

to a frequency resolution of 250Hz. Because CSDX is a steady-state system, and its time-average

properties are stable and well-converged [49], we rely on the assumption of time-stationarity over

the length of the image sequence to reduce the uncertainty in our estimates3 . In a statistically-

stationary system, averaging over calculations for the nd separate time blocks amounts to ensemble

averaging.

The phase angle of the complex Ĝxy(fj) gives an estimate of the time-average phase difference

between x(tj) and y(tj) at each frequency, fj , and the coherence function

γ2xy(fj) =
|Ĝxy(fj)|2

Ĝxx(fj)Ĝyy(fj)
(2.12)

gives an estimate of the stability of this cross-phase in time and space. For the analysis pre-

sented here, x(tj) is the I488 time series for a fixed reference pixel, and Ĝxy represents the spectral

properties of pixel y relative to x. Explicit notation of the discrete frequency and time indices is

suppressed in further CSD expressions, and all quantities are assumed to be functions of frequency

unless otherwise noted.

Fig. 2.9 compares the coherence spectrum and CSD power spectrum, spatially-averaged over

pixels inside a 5-cm radius, showing that the spectrum is dominated by coherent modes for the fixed

plasma parameters of this study. Error bars in the cross-spectral power are given by the statistical

uncertainty in the discrete CSD estimate [3], δ|Ĝxy|/|Ĝxy| = 1/|γxy|
√
nd. At the frequencies where

there is a peak in the average coherence, we may expect to find coherent spatial structures. An

uncertainty for each pixel in the phase map can be estimated as a function of frequency by the

standard deviation of the cross-spectral phase[3] (cf. Equation 1.6):

σ =
(1− γ2xy)

1/2

|γxy|
√
2nd

(2.13)

Example phase maps are shown in Fig. 2.10, demonstrating mode structures for each of the

four frequency bands shaded in Fig. 2.9. The reference pixel for these calculations is located at

r = 3.5 cm and θ = π. Fig. 2.11 shows maps of this uncertainty (Eq. 1.6) corresponding to each

3 The necessity for time stationarity can be relaxed by using a smaller number of time blocks to obtain smooth
estimates, trading increased spectral variance for faster time-resolution.
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Figure 2.11: Standard-deviation maps (Eq. 1.6)
corresponding to Fig. 2.10. Note that particu-
larly asymmetric parts of the phase maps seem to
coincide with high uncertainty.

of the phase maps in Fig. 2.10. The uncertainty inside the visible column for coherent modes is

generally ≪ π/16 radians, though significant variation is present. The dark bands visible in (a)

and (b) are located in the space between the visible plasma column and the vacuum wall. Bright
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regions outside this band are due to reflections from the interior of the chamber. Similar features

are visible in Fig. 2.10. The lower average coherence value of frequency bands (c) and (d) in Fig. 2.9

reflects the non-uniform coherence at these frequencies (visible as phase uncertainty). Regardless

of the patches of high variance in the relative phase for (c) and (d), there are large regions where

the uncertainty in the phase is well under 5% of 2π (π/16 ≈ 3%). It is clear that multiple coherent

modes exist in the plasma, and the mean azimuthal and radial structure of each is well resolved by

cross-spectral-density phase mapping.

Although most of the coherent modes do exhibit a high degree of azimuthal symmetry, it is

important to note that the phase-mapping technique does not impose any symmetry constraints. In

particular, Fig. 2.10(c) shows a map with a distinctly asymmetric phase structure. The correspond-

ing uncertainty map shows that deviations from the expected symmetry seem to be concentrated

in regions of low coherence (relative to the reference pixel). Because the coherence is generally high

outside these regions, large phase uncertainty is taken to be a result of local variation in the mode

structure (either temporal or spatial).

Physical perturbations, such as the presence of a probe, could disrupt fluctuations in a

localized region of space and lead to asymmetries and temporal incoherence in the mode pattern.

In CSDX, various probes are present in the vacuum vessel, though during image acquisition they are

retracted beyond the radius where the plasma density becomes negligible. In addition to physical

perturbations, asymmetries in the source or dynamic equilibrium could be reflected in the mode

patterns. Fig. 2.12 shows average (a) and RMS (b) I488 frames, along with their azimuthal profiles

at r = 3 cm (c). Clear asymmetries are present in these phase-insensitive quantities. Because no

probe or other obstruction was inserted into the visible region during data collection, it is likely

that there is azimuthal variation intrinsic to the time-average plasma column. The presence of

these asymmetries means that care is needed when examining the average spatial properties of

fluctuations. Note that the profile of the average radial gradient of I488 does not line up with the

RMS profile. This behavior is an indication that using I488 as a proxy for Is is questionable, since

the Is fluctuation amplitude peaks where the Is gradient is steepest.
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Figure 2.12: (a) Time-average frame. (b) RMS frame. (c) Azimuthal variation at r = 3 cm for time-
average (mean) I488, RMS I488, and the radial gradient (negative) of I488. Intensity is normalized
to its maximum value in the image sequence.

2.4.2 Dispersion estimates from intensity

The relationship between the spatial and temporal properties of a wave, its dispersion relation

ω(k), provides a unique signature for identifying the wave. The presence of multiple, discrete

peaks in the coherence spectrum makes plausible the extraction of dispersion properties for these

modes. Previous studies over more than 25 years [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] have

used probe pairs to estimate the wavenumber spectrum and statistical dispersion relation [16]

for plasma fluctuations. The two-point technique estimates the power spectral density, s(k, w),

using a conditional wavenumber spectral density, sl(K|ω) = Sl(K,ω)/S(ω), where K is the local

wavenumber. This approximation holds under the condition that the fluctuations being measured

can be represented by a superposition of wave packets [16]. A statistical dispersion relation is then

calculated as the weighted average of K given sl(K|ω) (first spectral moment). Although two-

point measurements of wavenumber spectra have proven successful at identifying the dominant

wavenumber at a given frequency, it may be impossible to extract reliable information beyond the

mean and width of the wavenumber spectrum at each frequency [17].

In the case of imaging, where we have access to multi-dimensional signals, these restrictions

no longer apply. We obtain an experimental estimate for the dispersion relations of waves present

in the visible light measurements using a two-dimensional auto-spectral density technique (Section

1.2.4). The image array is mapped into polar coordinates, and the auto-spectral density is calculated
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for nd blocks of Nd time points, as above. Note that the result is insensitive to the uncertainty in

the center position used for the mapping (δr ∼ 1 pixel). The raw estimate for each block i is:

G(i)
xx(r, θ, fj) = CjX

∗
i (r, θ, fj)Xi(r, θ, fj), (2.14)

where Cj = 2/Td for j = 1...Nd/2− 1 and Cj = 1/Td for j = 0, Nd/2. The dependence on position

(r, θ) is indicated explicitly for clarity. A fast Fourier transform is then performed along the

azimuthal index. Windowing is not required, as the data is truly periodic along the transform axis.

A basis of pure azimuthal modes is non-ideal, due to the presence of azimuthal asymmetries noted

above (Fig. 2.12), and results in broad mode spectra where there is significant frequency content.

We choose to use the azimuthal Fourier basis in spite of this limitation in order to estimate the

global spectral density for the plasma (averaged in both time and azimuth). The nd calculations of

G
(i)
xx are averaged to obtain a smooth estimate of the two-dimensional auto-spectral density, now a

function of radius (r), mode number (m), and frequency (f):

Ĝxx(r,m, fj) =
Cj

nd

nd∑

i=1

X∗
i (r,m, fj)Xi(r,m, fj). (2.15)

We again use nd = 50 blocks of Nd = 200 time points, corresponding to a fractional uncertainty

in measured power of 1/
√
nd = 14% and a frequency resolution of 250Hz. For consistency with

theory conventions, we transform from units of mode-number (m) and frequency (f) to those of

wavenumber (kθ = m/r) and angular frequency (ω = 2πf).

To identify the waves contributing to the measured spectral power, we plot theoretical disper-

sion relations over the experimental estimates. Theory calculations use temperature and density

values from the Langmuir probe measurements shown in Fig. 2.3. If there are multiple unsta-

ble modes driven by the same mechanism, they should lie along a single theoretical dispersion

curve. The mode most often observed in previous CSDX experiments is the electron drift wave

[57], where the natural length scale is the ion sound gyroradius, ρs =
√
kTe/miω2

ci ∼ 1 cm. Because

k−1
θ ∼ ρs ∼ r for much of the parameter space, we may expect that cylindrical effects are impor-

tant. Therefore, we adopt the cylindrical model of Ellis et al. for calculating theoretical drift wave
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dispersion curves [53]. The nearly Gaussian density profile (see Fig. 2.3) allows us to compare to

this model directly, without additional numerical computations. The leading order approximation

to the drift frequency is

ω =
ω∗

1 + b
, where ω∗ = kθvde = kθ

Te
eB

1

n

∂n

∂r
(2.16)

and b is an effective cylindrical value for k2θρ
2
s including cylindrical and non-local effects. To this

order, the cylindrical dispersion relation is of the same form as the slab dispersion relation, including

finite-Larmor-radius effects. For b≪ 1 (low-order modes at large radius), the phase velocity of these

waves is simply the electron diamagnetic velocity, vde. The b parameter is calculated here by fitting

a parabola to the appropriate trace in Fig. 2 of Ref. 53. Dispersion curves are plotted as dotted

lines for m > 5 to reflect the fact that b is tabulated only for m = 1− 5.

Fig. 2.13(a) shows Ĝ(r=3 cm, kθ, ω), normalized to the total spectral density at r = 3 cm. To

enable comparison with theory curves, white circles are overlaid to indicate maxima in the k-spectra

for frequencies with summed spectral power above the background level. The summed spectral

power is defined as G(ω) =
∑

k Ĝ(k, ω). In quantitative terms, a circle is plotted for each frequency

where log10G(ω) is larger than its linear trend (a linear background as in the power spectrum of Fig.

2.9 is universal in the data presented here). These points constitute the experimentally measured

dispersion relation, ω̂(k). For comparison, calculations of the power spectral density using two-point

measurements from both probe and imaging data are shown in Fig. 2.13(c) and (d). Fig. 2.13(c)

shows the estimate obtained from two floating potential tips separated by 6mm in the vertical

direction (∆θ ∼ 6mm), while 2.13(d) shows the estimate from two pixels at the approximate

position of the probe tips (retracted during imaging). Fig. 2.13(b) shows an azimuthal average over

32 separate two-point estimates from pixel data at r = 3 cm, which produces a result similar to the

auto-spectral density calculation (a). The two-point estimates are generally noisier than the 2D

auto-spectral-density estimate, and vary less smoothly in (k, ω) space.

Since the measurements are taken in the laboratory frame, measured phase velocities may

be shifted by local E × B flow. Several traces are plotted on Fig. 2.13(a) to demonstrate the
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Figure 2.13: Normalized spectral density and measured dispersion relations at r = 3 cm from (a)
2D auto-spectral density of image data, (b) average of 32 two-point estimates from pixel data, (c)
two-point floating-potential data (probe), and (d) two-point pixel data. The color scale for each
plot indicates the power relative to the total spectral power at the given radius. White circles
represent the maxima of the k-spectra for frequencies where the total spectral power is more than
1% above background. The dashed line in (a) represents the raw theoretical expectation [Eq.
(2.16)] calculated from the profiles in Fig. (2.3). The hashed region in (a) indicates likely bounds
for Doppler-shifted theory curves based on the E ×B profile of Fig. 2.3(b). The solid line in each
plot is the theoretical expectation including the best-fit Doppler shift for (a).

sensitivity of the drift dispersion curve to these Doppler shifts. The dashed white line indicates

the raw estimate, corresponding to vE×B = 0. The hashed region between dotted white lines

shows likely bounds for Doppler-shifted curves. These lines indicate Doppler shifts corresponding

to the measured vE×B at r = 3 cm plus and minus half the uncertainty in the measured value

(vE×B = −178 ± 357m/s). A best fit value of vE×B = 103m/s is calculated using a least squares

fit of the shifted drift dispersion curve to ω̂(k) (shown as a solid line). The only parameter in the
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fit is the E ×B velocity, which remains within the error bounds of the swept-probe measurements

for all best-fit lines in this study. Other parameters are kept fixed at their measured values, since

the uncertainty in vE×B is much larger than that of the other profile quantities used as inputs to

the theoretical curves. In comparison with the standard two-point probe techniques [Fig. 2.13(c)],

the imaging auto-spectral density puts tighter constraints on a theoretical fit. For reference, the

best-fit dispersion curve in Fig. 2.13(a) is also plotted in (b)-(d).

The measured drift frequencies do not change appreciably with radius. The theoretical ra-

dial profile of ω∗ depends on the details of the plasma parameter profiles, but is determined in

the Gaussian model by the (rather flat) Te profile in Fig. 2.3(a) (for a Gaussian density profile,

kθ∂n/∂r ∼ (1/r)r). Dispersion measurements for three radii are plotted in Fig. 2.14, along with

corresponding theoretical dispersion curves using a best-fit Doppler shift as above. For reference,

these best fit values are vbest(2 cm) = 66m/s, vbest(4 cm) = 222m/s, and vbest(6 cm) = 49m/s.

The range of mode numbers included changes with radius, since kθ ≡ m/r. The theoretical drift

dispersion matches imaging spectral-density estimates quite well at radii across the plasma column.

A low-frequency feature with poor localization in (k, ω) becomes visible in Fig. 2.14(c), and

is only prevalent at large radii where the pressure gradient is low. As considered in previous work

[79], there are four classes of instability that are likely to drive fluctuations in this frequency range:

drift [53], centrifugal [51, 50], Kelvin-Helmholtz (KH) [51, 50], and Simon-Hoh [54, 55]. Though

definitive identification of an instability requires measurements of true plasma parameters (i.e.

density and potential fluctuations for comparison of phase and amplitude), dispersion properties

can give an indication of what is most plausible.

Calculating the Simon-Hoh eigenfrequencies for our case requires significant modeling of the

neutral profiles, which is not currently available. Although the instability cannot be ruled out, it

is likely subdominant at the plasma parameters considered here4 . Simple estimates of the neutral

collision rate give νen/ωce ≪ νin/ωci < 1.

The centrifugal Richardson number, Ri, as defined in Ref. 50, is an indication of the relative

4 See the discussion in Ref. 52, for example.
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Figure 2.14: Comparison of dispersion estimates at various radii: (a) 2 cm, (b) 4 cm, and (c) 6 cm.
The solid line is the theoretical curve from the Ellis model including the Doppler shift from the
best-fit E × B velocity. Best fit values for vE×B are vbest(2 cm) = 66m/s, vbest(4 cm) = 222m/s,
vbest(6 cm) = 49m/s. White circles represent the maxima of the k-spectra for frequencies where
the total spectral power is more than 1% above background. The dashed line in (c) is the Kelvin-
Helmholtz dispersion curve calculated from Eq. (2.17).
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importance between centrifugal force and velocity shear. Where Ri ≪ 1, we expect that the

centrifugal instability will also be subdominant [51, 50]. An estimate using the swept-probe probe

data gives Ri ≈ 0.03. Given the large uncertainty in the swept-probe measurements, we cannot

rule out Ri ≥ 1, but we cannot say more based on the current data.

We can check whether a KH mechanism is a plausible match to the fluctuation data by

approximating the velocity shear near r = 6.0 cm with a step-function velocity profile. In our case,

kθθ̂ ‖ u ⊥ B0, so the KH dispersion relation is equivalent to its hydrodynamic analogue [64]:

ω = kθ

[
uθ,1

ρ1
ρ1 + ρ2

+ uθ,2
ρ2

ρ1 + ρ2

]
(2.17)

where the fluid velocity uθ and the mass density ρ are sampled at two radial points, r1 < r2. The

velocities are taken from the swept-probe E × B profile, because the best-fit drift wave Doppler

shift is not well constrained at r ≥ 6.0 cm5 . Because stratification may affect the phase speed if the

density changes over the region of velocity shear, the theoretical model to which we compare includes

density variations. Note that the density decreases with radius and the effective (centrifugal) gravity

vector points outward, so the stratification is never stabilizing. The values of r1 and r2 are chosen

to be the positions of the nearest swept-probe measurements on either side of r = 6.0 cm. There

are no other free parameters in this comparison.

Fig. 2.14(c) shows Ĝ(r=6 cm, kθ, ω) with equation (2.17) overlaid for r1 = 5.5 cm and r2 =

6.5 cm. Based on the above considerations, the most likely candidate for driving the observed

fluctuations is the Kelvin-Helmholtz (KH) instability, although further work is needed to claim

definitive identification. The degree to which measurements based on visible-light intensity alone

match with theoretical predictions is striking, especially since no mapping between intensity and

plasma parameters is attempted.

5 Measurements of the drift Doppler shift above r = 6.0 cm were not possible due to the low number of significant
points present in the imaging dispersion measurements. Even at r = 6.0 cm, there are no points on the drift curve
for m > 2, meaning that the drift curve is not as well-constrained as at smaller radii. Therefore, we rely on the swept
probe measurements despite the large uncertainties.
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2.4.3 Implications for Dynamics

A notable feature of the measured power spectral densities is that the mode spectrum at

any given frequency is quite broad, despite the presence of narrow peaks in the frequency and

coherence spectra. Although much of this breadth can be accounted for by modeling the azimuthal

asymmetries shown in Fig. 2.12, there remains excess power in mode numbers above the dominantm

at each frequency. Nonlinearities in the system have been observed in previous CSDX experiments

[57], and may play a role even in the relatively coherent regime studied here. Disentangling the

relative contributions of asymmetry and nonlinearities is a delicate problem that we do not address

here. While time evolution of spatial structures is especially interesting where nonlinear effects

are important, and is a natural application for imaging diagnostics, care is needed when spectral

features overlap in frequency or mode number.

A recent imaging study of drift waves used Fourier filtering in θ to separate out an image

sequence for each mode number (Fourier component) [80]. Each filtered sequence was interpreted

as a record of the time evolution of a particular mode and the subsequent analysis showed this

evolution to be consistent with Kuramoto-type [81] nonlinear coupling between modes. Given the

broad k-spectrum of Ĝ(kθ, ω) in each of the dominant frequency bands (Figs. 2.13-2.14), filtering the

images by mode number alone (across all frequencies) may not be sufficient to separate the various

bands of fluctuations from each other in our case. Fig. 2.15 shows frequency spectra for image

sequences filtered by mode number, each containing only a single azimuthal Fourier component.

These spectra are averaged over all pixels inside a radius of 5 cm, as in Fig. 2.9. It is immediately

clear that much of the power is concentrated in the same frequency bands as for the unfiltered image

sequence. The difference between the spectra at low frequency may hint at non-trivial evolution,

but a more sophisticated analysis is required to differentiate non-stationary or nonlinear evolution

from a linear superposition of saturated modes.

While we leave a detailed investigation of temporal mode evolution for a future study, it is

interesting to compare the apparent mode structures between data filtered in mode number (m)
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Figure 2.15: Frequency spectra of image sequences filtered in mode number, demonstrating shared
frequency content. Shaded regions (a), (b), and (c) correspond to the frequency pass bands used
for for the filtered sequences in Fig. 2.16.

alone and data filtered in both m and frequency. If fluctuations of more than one type overlap in

mode number, such as KH and drift modes, it may be necessary to consider each branch separately.

As an example of the possible complications in interpreting mode evolution, Fig. 2.16 shows a

sequence of three frames for the m = 2 image component. Each row corresponds to a different

frequency filter, and each column corresponds to a particular frame. The first row shows the image

sequence with no frequency filtering applied. The next three rows show the same sequence with

bandpass filters applied around each of the peaks (a), (b), and (c) in Fig. 2.15. Pass-bands for

these image sequences are chosen to encompass the entirety of the respective peak in the frequency

spectrum Ĝ(ω). The most striking feature of the comparison is the difference in radial structure

between the various frequency contributions. Note that the amplitudes of sequences (a), (b), and

(c) are of the same order, so that no one of these structures is completely dominant. More precise

quantitative comparison of the amplitudes is hampered by the effects of effective integration over

the exposure time. For the case at hand, the observed (integrated) amplitude decreases slightly as

ω increases. The effect is relatively small because ωtexp . π/2 for the frequencies in question.

There is significant change in radial structure over a short time scale in the unfiltered case,

corresponding to large variations in local amplitude. The frequency filtered sequences are (by defi-
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Figure 2.16: Time evolution of m = 2 image component with various frequency filters applied. The
rows (a,b,c) correspond to the pass-bands around the peaks distinguished in Fig. 2.15. The color
scale for each mode is normalized to the maximum intensity value in the entire image sequence.

nition) constrained at each radius to propagate with a quasi-steady phase velocity (ω/k), and any

variations are limited to a maximum frequency corresponding to the width of the passband (∆ω).

The relative phase between radial locations, however, is not constrained by the filtering operation.

Because the radial structure of each filtered sequence is steady on timescales longer than 1/∆ω, at

least part of the apparent dynamics of each azimuthal Fourier component is caused by the over-

lap of quasi-steady structures propagating with different phase velocities. On the other hand, if

the breadth of the mode spectrum is an indication of nonlinear coupling, excluding parts of the

frequency spectrum from analysis of the dynamics is quite artificial. Separating nonlinear contri-

butions to the spectrum from mode-overlap and asymmetry contributions is a difficult problem,

and cannot be addressed by simple filtering. A time-frequency technique such as wavelet analysis is

required to study temporal mode properties, and higher-order quantities are needed to characterize
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nonlinearities.

2.4.4 Discussion of Imaging Results

We have identified the spatial and spectral structure of coherent modes in CSDX using fast-

imaging data. The high quality of the power spectral density obtained from imaging allows direct

comparison to theory. With the use of average profile data from Langmuir probes, we are able

to suggest plausible fluctuation types by matching theoretical dispersion curves to experimental

measurements. Inside r = 6 cm, the dominant fluctuations are consistent with cylindrical drift

waves, as observed in previous work on CSDX [57]. At the edge of the plasma (r ≥ 6 cm), a

newly identified spectral feature becomes important. This new feature is consistent with transverse

Kelvin-Helmholtz fluctuations, and matches well with a simple theoretical estimate. The natural

extension to this work is an exploration of the full parameter space of CSDX. Detailed studies of

the mode dynamics using imaging are also possible, especially with increased frame rates. Faster

time resolution can be obtained by taking advantage of the wide spectral separation between ArI

and ArII lines. Using broadband high/low-pass interference filters would increase the collected

intensity, reduce exposure times, and allow higher frame rates.

Imaging remains a qualitative aid for many studies, because intensity cannot often be mapped

onto a single physical variable for use in a theoretical model. For spectral quantities, however,

quantitative comparisons may not require such a mapping. The wavelength of the collected light

gives a general indication of the physics responsible for visible-light emission and therefore which

plasma parameters are likely to contribute to intensity fluctuations. The frequency and wavenumber

ranges of these fluctuations provide strong limitations on the relevant physics of the waves in the

plasma. More subtle distinctions between possible modes can be elucidated through the phase

mapping or dispersion analysis presented here.

We emphasize that the measured dispersion relations ω̂(k) are obtained from imaging data

alone. Although computing theoretical dispersion curves requires profile data for true plasma

parameters, such data is generally available. Non-perturbative fluctuation data with high spatial
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and temporal resolution, recorded simultaneously at many locations, however, is very challenging

to obtain with non-imaging diagnostics. Visible light imaging can recover detailed fluctuation

information on a single-shot basis, despite the lack of mapping between I488 and physical plasma

parameters. Even so, detailed comparisons between imaging and electrostatic probe measurements

are needed to understand the limitations of imaging techniques and to establish regimes where they

are applicable. Preliminary work to this end is presented in Section 2.5.

2.5 Relationship between Probe and Imaging Measurements

The experimental run for this dissertation work was not optimized for probe/imaging correla-

tions (probe and imaging data were not recorded simulaneously, to avoid introducing the probe into

the images), but a small number of supplementary shots were taken with simultaneous probe and

image acquisition after some imaging features failed to appear in probe data. Analysis of this data

is presented here, and suggests that an in-depth study comparing the strengths and weaknesess of

both diagnostics is in order.

2.5.1 Intensity as a Proxy for Density

Visible light intensity is often considered to be proportional to ion saturation current Is

[38, 33]. In principle, visible light emission is a function of many parameters, including electron,

ion, and neutral densities and temperatures, as well as any auxilliary heating (such as RF waves):

I488 = f(ne, ni, nn, Te, Ti, Tn, PRF ) (2.18)

In CSDX, the ions and neutrals are too cold to produce collisional excitation at the relevant

frequencies (hν488 = 2.54 eV, hν750 = 1.66 eV). Since we use narrowband atomic line filters, we

may also neglect neutral density effects for ion radiation and vice versa. In the absence of local

measurements, we assume that the source microwave power is constant on the time scales of data

acquisition (i.e. we may neglect PRF ). On the time and space scales of interest, the plasma is

quasi-neutral, so that we may let ni = ne. Thus, visible emission from ions should reflect primarily
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electron parameters (emission from neutrals, of course, still depends on the neutral density):

I488 = f(ni = ne, ne, Te) (2.19)

Temperature fluctuations are generally neglected in CSDX and similar machines, as discussed in

Section 2.3.2.4, so that visible light fluctuations are simply a proxy for density fluctuations 6 :

Ĩ488 ∝ ñe +O(ñe
2) (2.20)

Two figures from previous work are reproduced here to illustrate the general validity of this

approximation. Figures 2.17a-b show plots from Ref. 38, demonstrating high correlations between

Is, floating potential, and visible light fluctuations. Note the similarity between the time series (a),

as well as the high values of the cross-correlation function (b). Similar behavior was observed in

CSDX with the original plasma source [33], and is shown in Figures 2.17c-d. Note that the work in

Ref. 33 was performed at similar source conditions to those described in Section 2.3, but imaging

measurements recorded broadband visible light (no interference filter).

2.5.2 Correlations Between Intensity and Electrostatic Quantities

In the current CSDX source, correlations between probe quantities and visible light are rather

poor. Correlations here are defined in terms of the time-lag correlation function[3]:

Mk
AB =

1

N − 1
σAσB

∑

n

AnBn+k. (2.21)

A plot of the cross-correlation functions for I488/Is and I488/Vf is shown in Figure 2.18. Since the

probe is moving during the acquisition, the correlation time window is selected based on a small

radial range around the location of interest. The time-base of the probe is ∼ 10× faster than that

of the camera, so probe data is interpolated at the frame times of the camera signal. In this case,

approximately 3000 time points covering nearly 60ms are used, corresponding to probe motion

of 2mm in the radial direction. In order to make the correlation as meaningful as possible, the

6 Work on helicon devices has observed that I488 is proportional to n
2

e[82], suggesting that the dominant excitation
process starts from the ionic ground state rather than the neutral ground state.
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Figure 2.17: Examples of the correlation between Is and visible light in previous experiments. (a)
Time series in the Mirabelle device (Fig. 3 of Ref. 38). (b) Correlation functions in the Mirabelle
device (Fig. 4 of Ref. 38). (c) Time series in the original CSDX source (Fig. 2 of Ref. 33). (d)
Correlation functions in the original CSDX source (Fig. 2 of Ref. 33). (a)-(b) reprinted with
permission from S. Oldenbürger, C. Brandt, F. Brochard, N. Lemoine, and G. Bonhomme, Review
of Scientific Instruments, 81, 063505 (2010). Copyright 2010, AIP Publishing LLC. (c)-(d) reprinted
with permission from G. Y. Antar, J. H. Yu, and G. Tynan, Physics of Plasmas, 14, 022301 (2007).
Copyright 2007, AIP Publishing LLC.

imaging time series used to construct the correlation function approximates the spatial resolution

of the probe and follows it in space. The pixels covering an area equivalent to the projection of the

probe measurement volume and just above the probe itself (+y direction in image coordinates) are

averaged together at each time to form the imaging signal. Close to the center of the plasma, the

probe trajectory deviates from the radial direction, passing ∼ 7mm below the center of the column.

Thus, although the pixels are displaced from the probe in the azimuthal direction for most of the

probe scan, the displacement inside r ∼ 1.5 cm is as much in radius as in azimuth, or more so.

The cross-correlations between I488 and Is are surprisingly low compared to previous findings

(cf. Fig. 2.17). The cross-correlations between I488 and Vf are somewhat higher, and the oscillations
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Figure 2.18: Comparison of (a) I488/Is and (b) I488/Vf time-lag correlation functions at r = 3.0 cm.
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Figure 2.19: I488/Is time-lag correlation functions across the plasma radius. Pixels are chosen to
match the probe radial position for each radial bin of width 1mm. The time-average normalized
Is profile is shown at left for comparison.

in the correlation function are more regular. Note that Vf is anti-correlated with I488 at zero lag.

These features persist across the plasma radius. Figure 2.19 shows the cross correlation function

for I488 and Is as a function of radius and time lag. The correlations are weak almost everywhere,

with the peak values near ∼ 0.4 occuring near the center. The nearest peak to zero time lag is

displaced slightly because of the azimuthal drift of the plasma in combination with the primarily
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Shot 13770, Vf/I488 cross-correlation functions
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Figure 2.20: I488/Vf time-lag correlation functions across the plasma radius. Pixels are chosen to
match the probe radial position for each radial bin of width 1mm. The time-average normalized
−Vf profile is shown at left for comparison.

azimuthal separation of the signal locations. The cross correlation function for I488 and Vf , shown

in Figure 2.20, shows anti-correlations across the radius of the plasma. There is an interesting shift

in the phase of the signals near r = 5 cm, but we cannot say much about it since the imaging and

probe measurements were no longer simultaneous for probe radii larger than r = 5 cm.

In addition to the generally poor correlations between the two diagnostics, clear fluctuations

are visible in the image sequences that do not appear in the probe profiles. For example, Figure

2.21 shows a sequence of frames from a frequency-filtered image set (shot label 12228). A nar-

row bandpass filter has been applied to each pixel, restricting the frequency content to the range

[7.6, 7.9] kHz. No other processing has been performed. There is a clear spatial structure, in both

the radial and azimuthal directions. The radial 〈Ĩ488〉 profile, averaged over time and azimuth,

shows two distinct radial ‘lobes’ (blue curve in Figure 2.22). The root-mean-square (RMS) fluctu-

ation amplitudes for Is and Vf , restricted to the same frequency range, do not show this structure

(black and green curves, respectively, in Figure 2.22). Either the probe signals are dominated by

other fluctuations in this frequency band, or the fluctuations measured by the imaging are not

picked up by the probes.

The relationship between probe and visible-light measurements may also depend on the

particular features being measured. For example, there is considerable similarity in the frequency
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Figure 2.21: Image sequence showing fluctuations with coherent spatial structure in the
[7.6, 7.9] kHz band.

content of Is and I488. Fig. 2.23 shows frequency power spectra on a logarithmic scale for each

quantity. Several curves are shown to represent the structure of the spectra as a function of radius.

Each spectrum is an average over a radial range of 1 cm, centered on the labeled r value. Traces

are separated by factors of ten so that all are visible. The prominent peaks just below 5 and 10 kHz

indicate that both Is and I488 are sensitive to the dominant coherent fluctuations, in spite of the

low correlation values between the two signals. It is interesting to note that the Is spectrum does

not reflect the clear fluctuations near the 14 and 18 kHz peaks in the I488 spectrum. Even more

striking is the difference in low frequency power content. A broad feature below 5 kHz in frequency

dominates the Is spectra in the outer half of the plasma, whereas the higher-frequency coherent

peaks dominate the I488 spectra at all radii.
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Figure 2.22: Radial fluctuation amplitude profiles for visible light and probe quantities (shot label
12228).

Figure 2.23: Comparison of (a) Is and (b) I488 frequency spectra at various radii. The innermost
radial trace is not shifted, while each successive radial trace is shifted downward by a factor of ten
to allow all traces to be visible.
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These findings challenge the intepretation of visible light intensity fluctuations as propor-

tional to electron density fluctuations and suggests that closer examination of the underlying ap-

proximations is necessary. In particular, the role of electron temperature fluctuations should be

reconsidered. No measurements of Te fluctuations in CSDX have been made. Electron temperature

fluctuations were deemed negligible in the original CSDX source for two reasons [57], as discussed

in Section 2.3.2.4. First, the electron temperature gradient is much flatter than the electron density

gradient (this applies to the new source as well). Since the strength of gradient-driven fluctuations

is proportional to the steepness of the gradient, we should expect T̃e/〈Te〉 ≪ ñe/〈ne〉7 . Second, if

temperature fluctuations are important, we should see their influence reflected in the fluctuation

amplitudes of Is and Vf . The relative fluctuation strengths, Ĩs/〈Is〉 and Ṽf/〈Te〉, reflect different

functional dependences on T̃e/〈Te〉:

Ĩs
〈Is〉

=

[
1 +

ñi
〈ni〉

] [
1 +

T̃e
〈Te〉

]1/2

− 1, (2.22)

Ṽf
〈Te〉

≃ Ṽp − 5.18 T̃e
〈Te〉

(2.23)

where the plasma potential, Vp, itself depends on the electron temperature. Because the two

fluctuation amplitudes were quite similar at their common peaks (same radial location), significant

electron temperature fluctuations were deemed unlikely [57]. Changes in Ĩs/〈Is〉 relative to Ṽf/〈Te〉

as a function of background field, Bz, were noted in Ref. 57, but not analyzed in the context of

neglecting temperature fluctuations.

A recent paper from the ASDEX-Upgrade team [83] studied the effects of temperature fluc-

tuations on measurements of Is and Vf in the tokamak scrape off layer, using both simulation and

experimental measurements. A primary finding is that that when Te fluctuations are important

(LTe ≃ Lne/2), Is is a good proxy for density, but Vf is not a good proxy for Vp. In addition, condi-

tionally averaged floating potential fluctuations are anti-correlated with plasma potential fluctua-

tions. The positive correlations between Is and Vf and the somewhat adiabatic drift-wave dynamics

that have been observed in CSDX [57, 79] (implied positive correlation between ne ∼ Is and Vp)

7 Note that this does not consider the possibility of non-gradient-driven fluctuations.
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seem to indicate that the current CSDX source is likely not in the regime studied in Ref. 83, but

further work is needed to confirm this.

A suggestion for reconciling the positive correlation between Is and Vf with the disparity

between the correlation functions of each with I488 is based on the relative sensitivity of the three

quantities to Te fluctuations. For ease of notation, we define T̂e = T̃e/〈Te〉, n̂ = ñe/〈ne〉, Îs =

Ĩs/〈Is〉, and V̂p,f = Ṽp,f/〈Te〉. For the sake of simplicity in our suggestion, we assume that T̂e ≪ 1,

as indicated by the above considerations, and that the emission intensity should not depend on the

plasma potential directly. The sensitivities for the probe quantities are then (cf. Eqns. 2.22-2.23)

∂Îs

∂T̂e
=

1

2

[1 + n̂]
[
1 + T̂e

] 1

2

≃ 1

2
(n̂+ 1)

(
1− 1

2
T̂e

)
, and (2.24)

∂
(
V̂f − V̂p

)

∂T̂e
≃ −5.18. (2.25)

Determination of I488 sensitivity is slightly more complicated. A small number of studies

explore the parameterization of argon emission from helicon-generated plasmas [82, 84, 85]. The

last calculates I488 sensitivity at parameters closest to ours (ne = 1012 cm−3) and suggests that

the sensitivity is large. The data from Figure 6.11 of Ref. 85 is reproduced here in Figure 2.24

to demonstrate the full sensitivity curve derived from a collisional-radiative model (validated by

experimental measurements). A finite difference estimate of ∂I488/∂T̂e derived from the same data

is shown in Figure 2.25. Here, the normalization is done with respect to a reference temperature

of 3.2 eV. The estimated sensitivity of Î488 to T̂e is as high as 12/eV between Te = 2.5 and 3.0 eV.

In order to make a concrete comparison of the sensitivities described above, the estimated

fluctuation level of each quantity is evaluated for the parameters ne = 2 × 1012 cm−3, Te =

3.2 eV, and n̂e = 0.1, with T̂e = 0.05 or 0.1. The results are shown in Table 2.1. For the in-

tensity calculation, the sensitivity was averaged over T̂e = 1 ± 0.05 or 1 ± 0.1. If the relationship

between the plasma potential and the density is known, the high sensitivity of the relationship

between floating and plasma potential should make any finite temperature fluctuations readily

apparent.
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Figure 2.24: Comparison of experimental intensities with collisional-radiative model for the relevant
488-nm argon line (reproduced from Fig. 6.11 of Ref. 85). Note that temperatures are normalized
to 3 eV.
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Figure 2.25: Finite difference estimate of emission sensitivity to electron temperature derived from
Fig. 6.11 of Ref. 85.

Quantity T̂e = 0.05 T̂e = 0.1
∂Îs
∂T̂e

0.5 0.5

∂(V̂f−V̂p)
T̂e

-5.2 -5.2

∂ ˆI488
∂T̂e

0.6 1.9

Table 2.1: Comparison of partial derivatives of with respect to normalized electron temperature

fluctuation amplitude. If the dynamics are adiabatic (Vp ∼ ne), the high sensitivity of
(
V̂f − V̂p

)

to the temperature fluctuation level should make it obvious when temperature fluctuations cannot
be neglected.
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The quasi-adiabatic electron approximation that has often been invoked in CSDX and similar

experiments assumes that normalized electron density fluctuations and normalized plasma potential

fluctuations are nearly proportional, with the possibility of a small phase shift, δ:

ñ

〈n〉 ≃ eṼp
〈Te〉

(1− iδ). (2.26)

As discussed above, temperature fluctuations are usually neglected. If these approximations are

valid, the maximum time-lag correlation value between the ion saturation current, Is and and

floating potential, Vf should be close to one. In the opposite (isothermal electron) limit, density and

potential are completely decoupled and the maximum correlation value should be close to zero. The

dissertation of M. Burin [79] discusses at length the variation in adabiaticity in the original CSDX

source. The usual parameterization is that of Hasegawa and Wakatani [86], C1 = k‖vth,e/νeωci.

For C1 ≪ 1, the electron parallel dynamics are not affected by collisions on the time scale of the

ion motion and the response is adiabatic. This limit can be described by the single-field model of

Hasegawa and Mima [87], where density and potential are equivalent. For C1 ≫ 1, electron collisions

dominate, and the electron density is completely decoupled from the potential. For C1 ∼ 1, density

and potential are coupled, but not tightly enough that the evolution can be reduced to a single-

field equation. This intermediate regime requires at a minimum the coupled system of differential

equations of the Hasegawa-Wakatani model [86]. For the parameters used in this study, C1 is of

order unity, placing the plasma dynamics squarely in the two-field regime. We should therefore

expect that the density and potential should be somewhat correlated, but not perfectly so. A

plot of the time-lag correlations between probe tips aligned along the background magnetic field is

shown in Figure 2.26. The zero-time correlation value between Is and Vf is ∼ 0.4, suggestive of

an intermediate adiabaticity regime and in agreement with previous work on the original CSDX

source. Given this result, we cannot simply assume that differences between the floating potential

and ion saturation current profiles are due to temperature fluctuations.

Although I488 should be somewhat more sensitive to temperature than Is, we cannot account

for the disparity in fluctuation intensity profiles based on sensitivity alone. A logical next step is
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Figure 2.26: Comparison of time-lag correlation functions for field-aligned probe tips at r = 2.9 cm.

to attempt temperature fluctuation measurements in CSDX. The high density of helicon plasmas

makes the use of emissive probes difficult, but it may be possible to construct a fast-sweep Langmuir

probe [88, 89, 90], or use other fast Langmuir probe techniques [91].



Chapter 3

The Colorado FRC Experiment

3.1 Motivation and Overview

Compact toroids (CTs) are a class of plasma objects that exhibit toroidal magnetic structure

in a simply connected volume [92]. No external field coils or material structures link the plasma

torus, and the plasma magnetic field is generated almost entirely by internal currents. The two

most-studied objects in this class of plasma configurations are the spheromak [93, 94] and the field-

reversed configuration (FRC) [95, 96]. Spheromaks represent magnetically dominated plasmas with

helical field structure. The poloidal and toroidal field magnitudes are similar in the bulk of the

plasma. FRCs are kinetically dominated plasmas whose fields are primarily or entirely poloidal. In

contrast to tokamak plasmas, whose shape and profiles are prescribed to a large degree by external

manipulation, FRCs and spheromaks are self-organized objects. Both can be produced using more

than one type of device, relaxing from various initial conditions to a preferred state. Because of

this property, they are intriguing objects in their own right, as well as interesting candidates for

possible fusion reactor applications. Self-organization is a common theme in natural plasmas, and

CTs provide a unique laboratory context for studying this physics. Indeed, studying properties and

dynamics of FRCs and spheromaks has given insight into various astrophysical processes[97, 98],

especially magnetic reconnection [99, 100, 101, 102].

The lack of internal material structures linking the plasma makes compact toroids attrac-

tive from the perspective of fusion reactor development. Compact toroids are often produced in

confinement vessels with a linear geometry, allowing for simple engineering and a natural diverter
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configuration. FRCs are particularly attractive because the FRC equilibrium is instrinsically high-β

(high ratio of plasma pressure to magnetic pressure). In comparison with “high” average tokamak

values of 〈β〉 ∼ 0.1, FRC values are of order 〈β〉 ∼ 10 [96]. High plasma pressure suggests the pos-

sibility of fusion reactions with lower cross sections than deuterium-tritium (DT), some of which

produce only charged reaction products (aneutronic). FRCs are typically ion-dominated, often with

Ti > Te. This suggests the possibility of a higher efficiency fusion system, with less of the energy

absorbed (and radiated) by electrons. FRCs can also survive the process of translation over many

axial lengths of the plasma, allowing for a fusion burn chamber to be separated from formation

equipment (fewer neutron damage issues in a DT system) [96].

The Colorado FRC Experiment (CFRC) was designed to investigate turbulence and flows

in a prolate field-reversed configuration. In comparison with tokamaks and stellarators, the level

of turbulence measurement in FRCs has been quite rudimentary. As of 1996, “Little or nothing

is known about the internal magnetic structure, fluctuations, electrostatic potentials, and flows”

in FRCs [103]. Even given the significant progress made since then [96], the understanding of

macroscopic stability is quite incomplete. There are hints that shear flow and kinetic effects are

important, but the role that fluctuations play, directly or indirectly, in FRC formation, confinement,

equilibrium, and heating is mostly unknown. Given the recent intense interest in fluctuation-driven

shear flows as players in the L-H transition in tokamaks [104, 105, 106], an understanding of the

role of turbulence in FRC physics is more desirable than ever.

The current chapter addresses the first four years of doctoral work contributing to this dis-

sertation, primarily focused on the construction of the CFRC experimental apparatus. Section 3.2

addresses the theoretical context of the questions CFRC was meant to study. Section 3.3 describes

the device itself, including the formation scheme and hardware (3.3.1), diagnostics for the device

(3.3.2), diagnostics for the plasma (3.3.3), and the status of the machine just prior to the shutdown

of the program (3.3.4). General characteristics of the plasmas produced in the CFRC are also

presented in Section 3.3.4. Section 3.4 illustrates the diagnostic technique we developed to map

out fluctuation properties using a multi-channel magnetic probe. An effort is made throughout to
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Figure 3.1: Sketch of a spheromak flux surface and accompanying field lines.

be somewhat comprehensive in the description of relevant hardware and software because it is not

collected together in any other document.

3.2 Theoretical Background

3.2.1 The Spheromak and the Woltjer-Taylor Relaxation Paradigm

The CFRC formation scheme involves merging two spheromaks to form an FRC, so that a

discussion of spheromak properties is necessary for understanding the operation of the machine.

The spheromak is a low-β, magnetohydrodynamic (MHD) equilibrium state with nested toroidal

flux surfaces, diagrammed in Figure 3.1. The magnetic fields are helical, with poloidal and toroidal

fields of similar magnitude. Radial variation (magnetic shear) is parametrized in terms of the safety

factor, q, as in a tokamak. The safety factor is defined in terms of the ratio of toroidal to poloidal

flux at the location of each poloidal flux surface, q(Ψ) = dΦ/dΨ. In a typical spheromak, q is near

unity at the magnetic axis and decreases slightly (∼ 25%)towards the wall [93]. Compared to a

tokamak, which can have variation in q of up to an order of magnitude, a spheromak has very little

magnetic shear. Consequently, spheromaks are unstable to interchange instabilities at relatively

low β. Theoretical calculations indicate a β limit of order 1%, although spheromaks have been
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observed with β ∼ 20% [93].

The modern formulation of spheromak equilibrium relies on ideas formulated in the 1950s

in regards to astrophysical plasmas [107, 108, 109].The equilibrium force condition in the MHD

framework is

J ×B = ∇P. (3.1)

An equilibrium where the plasma pressure is small compared to the magnetic energy density obeys

J ×B ≈ 0 and is called ‘force-free’, since the Lorentz force is negligible. The condition J ×B = 0

leads to a field solution defined by the equation:

∇×B = λB. (3.2)

The parameter λ can be any scalar function of space satisfying ∇λ · B = 0. The solutions are

helical, since the plasma current and the resulting field are everywhere parallel.

In 1958, Woltjer demonstrated [109] that force-free fields with constant λ represent a min-

imum magnetic energy state for a given magnetic helicity1 . Magnetic helicity is defined as

K =
∫
V B · Ad3r, where A is the magnetic vector potential. Helicity is a topological quantity

related to the twisted-ness of the magnetic field and dates back even to Gauss [110]. In a system

with no dissipation, the helicity and the magnetic energy are both conserved.

Nearly twenty years after Woltjer, Taylor argued that magnetic reconnection preserved global

helicity while dissipating magnetic energy [111]. This is a consequence of the dimensional scaling of

the two quantities [93], since the ratio of magnetic energy decay to helicity decay is proportional to

the inverse length scale of the dissipation process. Reconnection occurs on small scales (sub-MHD),

so that magnetic energy is dissipated at a much higher rate than helicity in reconnection events.

Taylor’s argument provides a means for a plasma with a given helicity to relax to the minimum

energy force-free state through microscopic dissipation mechanisms. For this reason, force-free

magnetic field configurations are often dubbed ‘Woltjer-Taylor states’ or simply ‘Taylor states’.

1 A Lagrange multiplier is used to apply the helicity conservation constraint during the minimization procedure.
At the end of the calculation, it is this multiplier that becomes the proportionality constant between J and B in the
solution. Hence the calculation strictly applies only to the situation where λ is a constant.
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The process of ‘Taylor relaxation’ is a special case of the general self-organization framework of

selective decay [112].

Solutions of the force-free equilibrium fields (Eq. 3.2) for an isolated configuration in a circular

cylinder of length L can be written in terms of orthonormal solutions known as Chandrasekhar-

Kendall functions [93, 113]:

Br(r, φ, z) = −B0

γ

[
mλ

γr
Jm(γr) + kJ ′

m(γr)

]
sin(imφ+ ikz)

Bφ(r, φ, z) = −B0

γ

[
mk

γr
Jm(γr) + λJ ′

m(γr)

]
cos(imφ+ ikz)

Bz(r, φ, z) = B0Jm(γr) cos(imφ+ ikz)

where λ is the force free parameter defined above, m is the azimuthal mode number, k is the axial

wave number, γ =
√
λ2 − k2 is a separation constant, and Jm are cylindrical Bessel functions The

m = 0, k = 0 case reduces to the ‘Bessel function solution’ given by Lundquist [107]. Typically, a

detached spheromak in a cylindrical flux conserver corresponds to a finite-k, m = 0 (axisymmetric)

solution. Further discussion of the field solutions is deferred to Section 3.3.1, because the plasma

in a real experiment is not isolated during formation. Flux is introduced through at least one of

the walls, and this changes the boundary conditions for the solution of Equation 3.2.

3.2.2 The Field-Reversed Configuration - High β

Typical FRCs have little or no toroidal magnetic field, and consist of a region of nested

toroidal flux surfaces. In cylindrical geometry, the field-line structure resembles nested ‘slinkies’ of

elliptical or racetrack cross-section wrapped around the axis of the cylinder (Fig. 3.2). FRC equi-

libria are much more difficult to describe than spheromak equilibria for several reasons [96]. High

β means that the equilibrium is far from force-free and that E×B and diamagnetic drifts produce

the primary flows (U ⊥ B). Strong flow shear has been observed, especially near the separatrix[96].

In addition, FRCs are highly kinetic objects, resisting description by a pure MHD model. Not only

are there field nulls at O-points and X-points (see Fig. 3.2) due to the lack of toroidal field, but the

ion gyroradius is typically large compared to the overall size of the configuration.
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Magnetic Axis

(Null or O-point)

Figure 3.2: Diagram of FRC magnetic field structure in cylindrical geometry.

An important parameter for FRC scaling is the ratio between kinetic and macroscopic length

scales. Three such parameters are common in the literature:

s =

∫ rs

R

rdr

rsρi
(3.3)

is the ratio of the separatrix radius, rs, to the average ion gyroradius, ρi, over the minor radius of

the closed flux region;

S =
R0

ρi,e
(3.4)

is the ratio of the magnetic axis radius R0 (field null location) to the ion gyroradius in the external

field (ρi, r > rs); and

S∗ =
rs

c/ωpi
(3.5)

is the ratio of the separatrix radius to the ion skin depth. Most FRCs produced before the 1990s had

s . 2, indicating that strong kinetic effects should be expected [95]. Even the Large S eXperiment

(LSX), designed to investigate a less kinetic regime, produced FRCs with a maximum value of 8

[114, 115]. CFRC is expected to be kinetic, with S∗ ∼ 1− 3.

FRC equilibria are also characterized by their elongation, E = Ls/2rs, where Ls is the

separatrix length (Fig. 3.2), and by the ratio of the separatrix radius to the inner radius of the
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conducting wall or formation coil, xs = rs/rw. Expected values of E for CFRC are 2− 4, meaning

that our plasmas will be moderately elongated and some simplifying assumptions can be made in

estimating equilibrium properties.

3.2.2.1 Equilibrium

Despite the assertion that kinetic effects are strong, MHD models have proven useful in

practice as first order estimates. A very simple MHD equilibrium description can be made for

axisymmetric elongated FRCs (E & 2). The field at the midplane is almost entirely axial, and

curvature forces can be neglected. In this case, radial force balance at the midplane (z = 0) is

simply a pressure balance:

P (r) +
B2

z (r)

2µ0
= PM , (3.6)

where Bz is the axial field strength and PM is a constant determined by the intial energy density

(maximum pressure). In the case of θ-pinch FRCs, where there is an initial externally applied

field Be, PM = B2
e/2µ0. If we assume that the plasma pressure is only a function of poloidal flux

(constant along field lines) we can calculate the location of the magnetic axis (R0) relative to the

separatrix using radial force balance. Bz points in opposite directions on the inner and outer side

of the magnetic axis, so that we have from Eq. 3.6:

Bz =





√
2µ0(PM − P (Ψ)) = f(Ψ) for R0 < r < rs

−
√
2µ0(PM − P (Ψ)) = −f(Ψ) for 0 < r < R0

(3.7)

where P (Ψ) is the plasma pressure, written as a function of the poloidal flux coordinate. The

poloidal flux function is defined by the integral of dΨ = Bzrdr. Because of the assumption that

the pressure is a function of poloidal flux, we also have Bz = Bz(Ψ). Therefore, we can calculate

the integral quantitity
∫ ΨM

0

dΨ

Bz(Ψ)
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inside and outside the null. By definition, the flux function is zero on the geometric axis and at

the separatrix and maximum at the null. Thus, from the definition of the flux function,

∫ ΨM

0

dΨ

−f(Ψ)
=

∫ R0

0
rdr =

R2
0

2
, (3.8)

∫ ΨM

0

dΨ

f(Ψ)
=

∫ R0

rs

rdr =
R2

0

2
− r2s

2
. (3.9)

Because f(Ψ) is the same function regardless of radius, we can equate the two integrals (taking

care with the negative sign in the first) to recover the location of the magnetic axis:

R0 =
rs√
2
. (3.10)

Measurement of the separatrix radius is useful not only for radial structure, but also for

measuring the thermal energy density of the plasma [95]. When the flux conserving volume is

extended enough to have approximately straight open field lines at the ends, integration of the

axial component of the force balance equation produces a balance between plasma pressure and

field line tension [116]. The calculation is performed by noting that J ×B is the divergence of the

Maxwell stress tensor with E = 0 so that the MHD equilibrium condition becomes

∇ · P = −∇ · T , (3.11)

where P is the pressure tensor and T is the appropriate Maxwell stress. This equation can be

integrated over a volume encompassing the transition from closed to open field lines (from z = 0 to

z ≫ Ls) and converted to a surface integral using Gauss’ theorem. In our simple model, we assume

B = Bzẑ at the midplane and far from the midplane, as well as zero plasma pressure outside the

separatrix . Contributions to the surface integral vanish except on the planes z = 0 and z ≫ Ls.

The equilibrium condition then reduces to:

∫ rs

0
Prdr =

∫ rw

0

B2
z (r, z = 0)

2µ0
rdr −

∫ rw

0

B2
z (r, z ≫ Ls)

2µ0
rdr (3.12)
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where rw is the radius of the conducting wall or external coil. If we assume a conducting boundary,

the open flux at z ≫ Ls (no closed flux in this region) must equal the open flux surrounding the

FRC at the midplane:

∫ rw

rs

Bz(r, z = 0)rdr =

∫ rw

0
Bz(r, z ≫ Ls)rdr (3.13)

so that B2
z (r, z ≫ Ls) = PM

(
1− r2s

r2w

)2

(3.14)

Given this relationship, we can express Equation 3.12 in terms of the maximum pressure defined

above:
∫ rs

0
Prdr =

∫ rw

0
(PM − P ) rdr −

∫ rw

0
PM

(
1− r2s

r2w

)2

rdr. (3.15)

Dividing by PM and simplifying then gives

〈β〉 = 1− 1

2

r2s
r2w
, (3.16)

where 〈β〉 = 2
r2s

∫ rs
0

P
PM

rdr is the volume averaged β inside the separatrix.

Because no large-aspect ratio approximations can be made in FRC geometry, there is only

one fully analytic solution for both the open and closed field-line regions [96]. This model is not

useful for describing CFRC plasmas, since it is only valid for E = 1. The most widely employed

simple equilibrium model for elongated FRCs is the 1D rigid-rotor (RR) model [96],

Bz(u) = B0 tanh(Ku), n(u) = n0 sech
2(Ku), (3.17)

where u = 2r2/r2s − 1 is the (minor) radial coordinate, B0 is the (uniform) magnetic field value

far outside the separatrix, n0 is the peak density, and K is the “shape” parameter constrained

by axial force balance (Eq. 3.16). Unfortunately, this equilibrium solution, while it is a kinetic

model [117], does not adequately represent observed scrape-off-layer widths or strong spontaneous

flow shear [96]. Slightly more adjustable “two-point” models have been applied, but are also semi-

empirical [118, 119]. Although numerous computations of FRC equilibria have been performed

[95, 96], including MHD, extended MHD, two-fluid, hybrid, and kinetic, no single set of defining

features has emerged. The relevance of these difficulties is that there is no well-defined single set

of measurements that can verify that objects produced in CFRC are in fact FRCs. If and when
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Figure 3.3: Illustration of counter-helicity merging. (a) Two spheromaks are launched towards the
center of the chamber, with the same poloidal field direction but opposing toroidal fields (indicated
by orange and blue shading). (b) The outer flux surfaces reconnect, creating a new poloidal
flux surface around the remaining private flux regions and annihilating toroidal field. (c) The
reconnection process proceeds, heating the ions (primarily) and establishing a new equilibrium. (d)
When the merging process is complete, the toroidal field has been completely annihilated, leaving
a purely poloidal field.

an equilibrium state is observed (see Section 3.3.4), characterization of the magnetic structure in

combination with as many other features as possible will be required to demonstrate that it is an

FRC.

3.2.2.2 Formation by Spheromak Merging

The formation scheme employed by CFRC involves colliding two spheromaks with opposite

helicities. The poloidal fields are arranged to have the same sense, while the toroidal fields are

opposite. A diagram of the process is shown in Figure 3.3. The spheromaks are launched towards

one another so that the flux surfaces are pushed together (a). The magnetic fields reconnect,

annihilating the antiparallel component and forming a new flux surface around the remaining

private flux surfaces from the original spheromaks (b). This state is sometimes referred to as a

“doublet CT” [120], or “partially-merged” configuration, with global outer flux surfaces and inner,

“private,” flux surfaces. The reconnected flux surfaces establish a new self-consistent equilibrium

(c), with most of the dissipated magnetic energy heating the ions [121]. If the merging process

continues, all of the toroidal field is annihilated and an FRC is formed (d). FRCs have been

produced by this method in several devices, including TS-3 [122, 123], SSX [120], and MRX [124].
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Figure 3.4: CAD cross-section of vacuum vessel showing dimensions of coaxial guns and diagnostic
ports.

3.3 Device and Diagnostics

The CFRC experiment is a merged-spheromak device, with two coaxial plasma guns facing

each other from either end of a cylindrical vacuum vessel. The design similar to the Swarthmore

Spheromak eXperiment (SSX) [125], but has larger guns and a larger experimental volume. An

annotated schematic of the vessel and ports is shown in Figure 3.4. The chamber is approximately

2m in length and 0.5m in diameter. The machine was designed with prolate geometry, L/2R ∼ 4,

to form and study tilt-unstable FRCs. Vacuum is maintained by two 7000L/s diffusion pumps

operated with Santovac V oil (ultra-low vapor pressure). A −30◦C cold trap separates each pump

from the chamber and minimizes backstreaming of pump oil. Typical base pressure is ∼ 5 ×

10−7Torr.
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Figure 3.5: Illustration of plasma gun operation [after Ref. 126, Fig. 4]. (a) Gas is puffed into the
gap between the cylindrical conductors and a high voltage is applied. (b) Arc breakdown occurs,
forming plasma that carries a radial current. The plasma is pushed along the gun by the magnetic
pressure of the field generated behind the current (J × B force). (c) The plasma is pushed out of
the gun, and the stuffing fields are distended by the induced currents in the plasma being ejected.
(c) Distended flux reconnects around plasma and a detached spheromak is formed (reconnected
fields now supported by plasma currents).

3.3.1 Plasma Guns

Spheromaks are formed at each end of the machine by magnetized coaxial guns . The process

has been described as analogous to blowing a soap bubble [125]. Typical gun operation is illustrated

in Figure 3.5. Gas is puffed into the gap between two concentric, cylidrical electrodes. A high

voltage is applied using a triggered capacitor bank, causing arc breakdown in the gas (a). The
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current carried by the inner conductor generates an azimuthal field, and the plasma, which carries

a radial current, is ejected from the gun by the resulting axial J ×B force (b). In our case, the gun

is seeded with ‘stuffing flux’, from a coil behind the gun. The fringing fields from this flux provide

magnetic tension analogous to the surface tension of a soap film stretched across the gap. If the

magnetic pressure in the gun is high enough, the plasma is ejected, carrying stuffing flux with it

(c). The distended stuffing field reconnects to form a detached object (d).

A more rigorous analysis of the process can be provided in the context of Taylor states (see

Section 3.2.1). The Taylor eigenvalue, λ, for objects formed in the gun can be calculated if it is

assumed that the gun current changes slowly in comparison with the relevant plasma relaxation

time scales. In this regime, the plasma is modeled as progressing through a series of Taylor states

defined by a time-varying λ. The eigenvalue is calculated by integrating the axial component of the

force-free field equation over the cross section of the inner electrode. Denoting the amount of flux

connecting the electrodes as Φgun and the current carried by the electrode as Igun, we have [93]:

λ(t) =
µ0Igun(t)

Φgun
. (3.18)

There is a critical value, λ = λc, at which the object being formed can access a lower energy state

by disconnecting from the gun. Because the gun flux is approximately constant on the timescale

of the plasma current, this corresponds to a threshold current for launching a spheromak.

Axisymmetric solutions of the force-free equilibrium fields (Eq. 3.2) allowing for open field

lines (flux injection) can be written as Bessel-Fourier series [93, 127]:

Br(r, z) = −Ψgun

2π

∞∑

n=1

cnγnJ1(γnr)
∂Sn(z, λ)

∂z

Bφ(r, z) = λ
Ψgun

2π

∞∑

n=1

cnγnJ1(γnr)Sn(z, λ)

Bz(r, z) =
Ψgun

2π

∞∑

n=1

cnγ
2
nJ0(γnr)Sn(z, λ)

where γn = x1n/rgun are the normalized roots of J1, cn are the dimensionless expansion coefficients,
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and

Sn(z, λ) = −
sinh

(√
γ2n − λ2(z − L)

)

sinh
(√

γ2n − λ2L
) .

The boundary conditions here assume that flux is only injected from the z = 0 boundary and that

other walls are flux conserving. These solutions demonstrate a topological transition from sinh-like

to sine-like axial field dependence when λ exceeds the first normalized Bessel root, γ1. At this

point, fields begin to fill the volume of the cylinder. Although closed flux surfaces do not begin to

form until there is a local maximum in Sn(z) away from z = 0[93], the launch threshold is typically

determined by the onset of topological change[125]:

λc = γ1 = 3.83/rgun. (3.19)

For the CFRC plasma guns, rgun = 0.19m corresponds to the outer electrode radius, and a launch

threshold of λc = 20.1m−1. For the chamber itself, λc = 10.2m−1, so that objects protruding from

the gun may detach at a lower gun current than the gun-geometry threshold.

Status notes:

In a typical implementation, the stuffing field is tailored to maximize the flux linking the

electrodes. Some implementations use a solenoid inside the center electrode, with optional shaping

coils [128, 129]. SSX, which the CFRC was largely modeled after, uses a slug of high-permeability

material inside the center electrode that acts as a guide for flux generated by an external coil

[130]. Ideally, this guide is matched to the inner radius of the stuffing flux coil, so that all of

the flux generated by the coil is captured in the guide. Such a configuration confines the stuffing

flux radially, so that it only exits the center electrode cylinder through the circular end-cap. This

allows straightforward calculation of the gun flux, given the parameters of the coil. In our case, the

permeable guide was never procured, so the gun field is essentially dipolar. The formation process

may differ from that of SSX and other spheromak experiments due the resulting geometry of the

stuffing field, which is distributed throughout the gun volume rather than being concentrated at

the muzzle.
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Figure 3.6: Circuit diagram for gas valve driver.

3.3.1.1 Gas Injection

The plasma guns operate by arc breakdown between two coaxial electrodes. Eight ports

are drilled through the outer electrode near the back to inject gas into the gap (Fig. 3.4). These

ports allow up to eight fast puff valves to operate in parallel. Currently, only two valves per

gun are in operation. Rather than manufacture entirely custom gas puffers as other groups have

done [131, 132], we employ Parker/General Valve model #099-0036-900 solenoid valves driven by

a custom pulse circuit [133]. The valves are driven with a 400V pulse (beyond the 270V rating) to

decrease the response time. Our short pulse durations ensure that the high drive current does not

burn out the solenoid (operated successfully for hundreds of shots). For reference, a diagram of the

pulse circuit as implemented2 is shown in Figure 3.6. The opto-isolator allows the trigger ground

and the valve (vessel) ground to be independent. T1 re-inverts the isolated pulse so that when the

trigger (5V) input is high, Q1 conducts. This allows current to flow through the valve, which is

protected from long input pulses by the high-pass filter, C2/R6. The shunt diode, D1, protects Q1

from the inductive kick of the valve at turn-off. Six driver channels are installed to provide room

for extra valves to be added.

Although the valves are rated for pressures up to 1250 psi, they are typically operated at

2 Note that the diagrams in Ref. 133 do not reflect the circuit as constructed. If you have read this sentence and
can track me down, I will buy you a beer.
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Figure 3.7: Circuit diagram for capacitor bank operation.

150 psig. Higher pressures would increase the throughput and allow for more peaked gas injection,

but we are limited by the need for electrical breaks in the gas lines that feed the valves (required

to break ground loops). Current lines are primarily 1/4” copper refrigerator tubing, with electric

breaks made of 1/4” HDPE (rated to 456 psi) or LLDPE (rated to 358 psi) tubing.

3.3.1.2 Pulsed Power

Each coaxial gun is powered by a 154µF capacitor bank (11 parallel 14µF oil capacitors).

The capacitors are rated up to 20 kV, for a maximum stored energy of ∼ 60 kJ per gun. Both

banks of capacitors are enclosed in an expanded metal cage with an independent ground. The

cage prevents physical access to energized high-voltage equipment, since the cage door operates

an interlock switch (N/O). Each bank is powered through a charge/dump circuit, controlled by

interlocked vacuum relays. The diagram for the circuit is shown in Figure 3.7.

During operation, the charge switch is closed and the dump switch is opened. The high-

voltage supplies are set to the desired charge voltage, and the capacitors charge through Rcharge.

Discharge of each capacitor bank is controlled by an optically-triggered ignitor pulse (Northstar

High Voltage IG5F2) which energizes a D-size ignitron switch. Two ignitrons are installed for each

bank, one with the anode grounded to the vessel and the other with the cathode grounded to the
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vessel. This allows the discharge polarity to be changed with minimal intervention. Figure 3.7 shows

the connections for operation with a positively charged bank. When operations are complete, the

stored energy is dissipated by the dump resistors, each rated for 43 kJ. Because the dump switch

is spring loaded, the capacitor bank automatically dumps if any interlock condition is violated. In

addition to the charge/dump relays, the interlock system includes switches for normal operation,

as well as a safety switch on the door to the capacitor cage, and an emergency dump switch near

the operations computer console.

Aluminum buswork connects the capacitors to each other and to the transmission hardware.

Current is delivered to each gun via 8 parallel RG-217/U coaxial cables. The inner conductors are

attached to the buswork and to the gun via brass compression and pipe fittings so that they can

be easily disconnected and reconnected.

Status notes:

The charge resistors were designed for lower current, and tend to overheat at high charge

voltages (new supplies can source the maximum Vcap/Rcharge = 20mA current at Vcap = 20 kV).

As a precaution, computer fans were installed near each resistor to provide forced air cooling.

3.3.2 Discharge Diagnostics

In order to monitor the operation of the device, diagnostics were constructed to measure the

gun current. Changes in the plasma configuration during spheromak formation are reflected by

variation in the gun impedance, defined primarily by the inductance of the plasma [93]. Thus it is

desirable to have discharge diagnostics that respond on a fast timescale (reconnection timescale).

The gun voltage measurement that is also necessary to calculate the plasma impedance has not yet

been implemented.

3.3.2.1 Rogowski Coils

The gun current is measured using an inductive diagnostic, termed the Rogowski coil after

Ref. [134]. The high current levels of the discharge and the advantages of limiting the impedance
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of the capacitor bank transmission system make an in-line (resistive) measurement undesirable.

A Rogowski coil is a solenoidal winding that encircles the current element to be measured. The

precise shape of the solenoid is unimportant, as long as the cross sectional area and turn density

is consistent along the coil. Because of this feature, coils are often wound on flexible or hinged

forms so that they can be placed without interrupting the circuit under test. In contrast to a

transformer measurement, the Rogowski coil output is proportional to the time-derivative of the

current piercing the ring. The solenoid intercepts the magnetic field generated by the current it

surrounds. The integral form of Ampere’s law is the clearest way to express the convenience of the

method:
∮

B · dl = µ0Ienc, (3.20)

independent of the path of integration. For our timescales, we may neglect the displacement current.

If we express the field parallel to the path of the solenoid as B · dl = B · âdl, where â is the unit

vetor normal to the cross section of the solenoid, then we can express the current in terms of the

captured flux. The amount of flux captured per unit length is dΦ/dl = nAB · â, where n is the

number of turns per unit length and A is the cross sectional area of the solenoid. Thus,

µ0Ienc =

∮
B · âdl = 1

nA

∮
dΦ

dl
dl =

Φ

nA
. (3.21)

The voltage across the solenoid is given by Faraday’s law:

Vout = −dΦ
dt

= µ0nA
dIenc
dt

(3.22)

The time integral of the output voltage is therefore proportional to the enclosed current, indepen-

dent of the details of the path taken by the solenoid.

Our coils are wound of 18 AWG enameled magnet wire on 1/4′′ polyethylene tubing. The

output terminal of each solenoid is run back through the tubing so that the two electrical connections

are close to one another. Each coil can be wrapped around the current element to be measured

and secured with a press-fit pin matched to the inner diameter of the tubing. A photograph of

one coil is shown in Figure 3.8. The output voltage from the coil drives a passive integrator with

τRC ∼ 2ms, whose output is digitized by the data acquisition system.
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Figure 3.8: Photograph of a Rogowski coil built for measuring the plasma gun current.

3.3.3 Plasma Diagnostics

The diagnostic suite of the CFRC is designed for mapping out fluctuations, so high spatial

resolution and fast time response are required. All instruments are designed to have frequency re-

sponse limited only by the data acquisition rate (20MHz Nyquist frequency). Single-point plasma

properties are measured via an electrostatic triple probe and “b-dot” magnetic probes. A multi-

channel interferometry system gives somewhat broad coverage of the plasma in the (r, φ) plane.

Details of magnetic fluctuations are extracted using a 16-channel, 3-axis magnetic probe, as de-

scribed in section 3.4.

3.3.3.1 Triple Probe

The triple Langmuir probe is a well-developed diagnostic for making time-resolved measure-

ments of plasma density, potential, and temperature [75]. A simplified circuit is shown in Figure 3.9.

The biased pair of electrodes is floating relative to the wall. The voltage offset of the pair relative

to the plasma potential self-consistently adjusts due to electron collection so that the ion saturation

current, Is, is drawn between the biased tips (assuming the bias voltage is ≫ Te (eV)). The third

electrode measures the floating potential of the plasma, φf , and draws zero current by definition

(infinite impedance limit). Typically, the potential of the positive-bias electrode, the floating po-
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Figure 3.9: Schematic for triple Langmuir probe measurements.

tential, and the biased-pair current are measured. Electron temperature values are extracted by

taking the difference between the positive bias potential, V+ and the floating potential:

kBTe
e

=
1

ln 2
(V+ − Vf ) (3.23)

The density is then easily calculated from Te, Is, and the effective collecting area of the probe tips,

Aeff , since

Is = eneAeff

√
kBTe
mi

. (3.24)

Although still under development at the time the experiment was shut down, the triple probe circuit

designed for the CFRC is shown in Figure 3.10. Current between the biased tips is measured using

a handwound, high-bandwidth transformer. The turn ratio is 20:20, and each transformer coil is

wound using 32 AWG enameled magnet wire on a Titan CF-102-Q3 ferrite toroid. The measured

frequency response of the toroid is shown in Figure 3.11(a)-(b). Potentials are measured through

compensated RC voltage dividers into the high-impedance load of the digitizers (RDAQ = 100 kΩ).

When C1 is adjusted so that R1C1 = ReqCeq = (1/RDAQ + 1/R2)
−1(Ccable + C2), the theoretical

frequency response of the divider becomes flat [135]. The dividers are tuned in-place so that

individual cable capacitances are taken into account. For reference, the values of the divider

elements are: C1 = 3 − 30 pF, R1 = 1MΩ, C2 = 470 pF, R2 = 10 kΩ. The measured frequency

response of a capacitive divider is shown in Figure 3.11(c)-(d).
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Figure 3.10: Circuit for measuring triple probe quantities in CFRC. The probe tips are labeled
“V+”, “V−”, and “Vf”, according to convention. The actual quantities measured are labeled V+,
Vs, and Vf , proportional to positive-bias potential, ion saturation current, and floating potential
(respectively).

A photograph of the physical probe built for the CFRC is shown in Figure 3.12. The

probe head itself consists of three 0.5mm-diameter tungsten wires threaded through a 3/16′′ outer-

diameter, four-bore alumina tube. Each wire protrudes 2mm from the alumina into the plasma.

The 7′′ length of alumina is attached to a stainless steel tube with Torr-seal epoxy, and the tung-

sten wires are spot-welded onto enameled magnet wire leads. A double O-ring “Wilson” seal (MDC

part # 672008) allows radial motion of the probe while the chamber is under vacuum. The probe

signals are coupled to the outside through a commercial electrical feedthrough, and the circuit for

recovering the signals is placed in a cast aluminum box mounted at the end of the probe assembly.

The probe shaft is fixed to a linear actuator (Kerk Motion RGS6010T × 15”) to enable automated

radial motion via a stepper motor (not yet installed). The entire assembly is supported by an

aluminum frame bolted to the vacuum interface.

Status notes:

Four previous versions of the triple probe circuit were implemented, all of which failed to

meet our requirements. A basic voltage follower isolation circuit failed due to the high common-
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Figure 3.11: Frequency response curves for the key components of the triple probe circuit. Phase
measurements also show the data with a linear fit subtracted, since the inherent time delay in the
circuit will give a linear phase lag as the frequency increases. (a) Gain and (b) phase response for
the Is toroid. (c) Gain and (d) phase response for a representative capacitive voltage divider.

Figure 3.12: Photograph of the triple probe assembly.

mode voltages present on the triple probe tips. An opto-isolator-based circuit (HPCL-4562) proved

too slow, with high-frequency gain cutoff frequencies on the order of 200 kHz. A transformer
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scheme similar to the one detailed above was implemented, but incorrectly. The bias capacitor

was connected from the low side of the battery directly to the positive probe tip, instead of being

connected in parallel with the battery alone. Thinking that the transformer was to blame for the

low signal strength and poor quality, the transformer was replaced by a sense resistor, Rs, and

the voltage on the battery side, Vr, was measured by a third capacitive divider (V+ − VR = IsRs).

The equally poor signal output from this circuit was only understood after the incorrect capacitor

placement was discovered. The corrected circuit diagrammed in Figure 3.10 has yet to be tested

on the machine.

3.3.3.2 Mach Probe

The standard electrostatic probe technique for measuring bulk velocity is the Mach probe.

A Mach probe measures the ratio of ion-saturation currents between two oppositely-directed probe

faces. When the velocity distribution function is a drifting Maxwellian, this ratio may be related

directly to the Mach number of the ion drift speed [136] and approximated in a simple form [137]:

jups
jdown
s

= eKM (3.25)

where j
up(down)
s is the current density of the upstream(downstream) probe face, M = vdi/vth,i is

the Mach number, and K = K(Ti, Te) is a calibration constant. The difficulty in interpreting

Mach probe measurements in magnetized, flowing plasmas has been well documented [138], but

the method continues to be useful because it is relatively simple to implement.

The ion saturation current for each tip is measured by a circuit similar to that of the triple

probe Is tip. Four 20:20-turn handwound toroid transformers are used to collected the four currents.

These transformers are identical to the one employed in the triple probe circuit, and the calibration

is well represented by Figure 3.11a-b. A diagram of the circuit is shown in Figure 3.13.

The CFRC Mach probe is constructed of four-bore alumina tubing with a circular cross-

section. A radial slot is machined through the outer alumina into each bore, creating a sheltered

opening for each probe tip. Wires inserted into each bore thus form four directional collecting
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Figure 3.13: Mach probe bias and signal collection circuit. A detail of the transformer connection
to the digitizer is shown for one tip. The other three tips use identical transformer arrangements.

surfaces for measurement of upstream and downstream ion current in two orthogonal directions. A

photograph of the completed probe tip is shown in Figure 3.14. The rest of the probe assembly is

similar to the triple probe described above (Section 3.3.3.1). Stainless steel tubing passing through

a Wilson seal acts as the vacuum interface, and a linear actuator (Kerk Motion RGS6010T × 12”)

provides control over the radial position of the probe tips.

Status notes:

The Mach probe was biased incorrectly (collecting electrons instead of ions) until February

14th, 2010. Any measurements recorded before this time are not useful. In addition, the version of

the circuit used up until June of 2010 had an effective LC low pass filter that attenuated the output

of each probe tip sequentially. The circuit presented above is designed to solve this problem, but has

not yet been validated. We see sudden spikes in the currents measured by the probe, indicating that

arcing may be a problem. Most measurements were taken at a bias voltage of 75V, though values

as low as 30V were used in attempting to eliminate any arcs. At 50V, the spikes were still observed,
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Figure 3.14: Photograph of the Mach probe head.

and at 30V, the signals were so small that they were indistinguishable from noise. Unfortunately,

we have no measurement of the electron temperature in CFRC, so we cannot constrain the voltage

except by typical values from other experiments. The Mach probe is still in the development stage,

and none of its data is considered valid as of yet.

3.3.3.3 Interferometer

One of the two major diagnostics for the CFRC is a multi-channel infrared interferometer,

constructed as an undergraduate honors thesis project [139]. At typical laser frequencies, the

electron response is dominated by plasma oscillations, with dispersion:

c2k2

ω2
= 1−

ω2
pe

ω2
. (3.26)

Since the index of refraction (ck/ω) depends on the plasma frequency, ωpe =
√
nee2/ǫ0me, it is

possible to measure line-integrated electron density using an interferometric phase shift according

to the relation [75]
∫
nedl ≃ −2cnc

ω
∆φ. (3.27)
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Here ∆φ is the phase shift of the measurement beam, ω is the laser frequency, c is the speed of

light, ne is the local electron density, and nc is the cutoff density, defined as the electron density

at which the plasma frequency is equal to the laser frequency.

In order to measure an unambiguous phase shift with fast time resolution, we employ a

quadrature heterodyne technique following Jacobson [140]. In a typical interferometric measure-

ment, the detector signal is simply proportional to the intensity of the recombined signal and

reference beams, averaged over many cycles of beam oscillation (represented here by angle brack-

ets). Taking the electric field of the measurement beam to be Em = E1 cos (ωt+∆φ) and that of

the reference beam to be Er = E2 cos (ωt), the detector signal is:

V ∝ 〈|E1 cos (ωt+∆φ) + E2 cos (ωt)|2〉 (3.28)

= 〈E2
1 cos

2 (ωt+∆φ) + E2
2 cos

2 (ωt) + E1E2 [cos (∆φ) + cos (2ωt+∆φ)]〉 (3.29)

=
1

2

(
E2

1 + E2
2

)
+ E1E2〈cos (∆φ)〉. (3.30)

Without additional information, the phase shift measurement is ambiguous because cos (+∆φ) =

cos (−∆φ).

In order to eliminate this ambiguity, we employ quadrature detection. A quadrature scheme

involves mixing the measurement beam with two orthogonal phase references. These are termed

the “in-phase” (or cosine) reference and the “quadrature” (or sine) reference, whose phase is shifted

90◦ relative to the in-phase reference. Mixing with two orthogonal components allows both the even

and odd Fourier components of the signal to be recovered. Quadrature detection using multiple ref-

erence beams requires many more expensive optical components and twice the number of detectors,

so we project the phase shift from the laser-frequency carrier to an intermediate-frequency carrier

and perform the quadrature mixing using microwave electronics. The reference beam frequency is

shifted by an acousto-optic modulator operating at the intermediate frequency, ωmod ≪ ω. When

the measurement and reference beams combine on the detector face, the time-dependent interfer-

ence phase shift is transferred to the modulation-frequency beat wave. This can be illustrated by

repeating the above calculation of the detector signal, with the reference electric field now given by
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Er = E2cos (ωt+ ωmodt):

V ∝ 1

2

(
E2

1 + E2
2

)
+ E1E2 cos (∆φ+ ωmodt) . (3.31)

Now the mixing process is repeated, this time by combining the signal with in-phase and quadrature

references at the modulation frequency. Sum and difference outputs are obtained as above:

VI ∝ cos (∆φ+ 2ωmodt) + cos (∆φ) (3.32)

VQ ∝ sin (∆φ+ 2ωmodt) + sin (∆φ) (3.33)

Filtering out the component at twice the modulation frequency (low-pass) leaves one signal pro-

portional to the cosine of the time-dependent phase shift and one proportional to the sine. The

two signals together allow unambiguous determination of ∆φ.

The coherent source for the system is a CO2 laser (Synrad 48-1KWL) operating at λ =

10.6µm. The expected electron densities for CFRC are of order ne . 1022m−3, while the cutoff

density at the laser frequency is nc ∼ 1025m−3. For reference, a phase shift of ∆φ = 2π corresponds

to an electron density averaging 2.12×1020m−3 across the 1 m path (two 50 cm traverses) through

the plasma. Since the phase change is proportional to ω/nc ∼ λ, using 10.6µm light as opposed

to visible light (e.g. 632 nm) increases the sensitivity by a factor of ∼ 15. The reference beam is

split from the measurement beam by an ISOMET 1207B6 acousto-optic modulator driven by an

ISOMET RFA221B RF driver. This model was chosen over comparable models due to its higher

Q-value and increased optical isolation. The first-order diffracted beam emerges at 77.1 mrad (4.5◦)

with respect to the measurement beam, allowing convenient separation after propagating to the

next optical element. The modulation frequency was chosen to be ωmod = 40MHz, because it is

common enough to be found in stock items, within the bandwidth of our detectors, and equal to

the acquisition rate of our fastest digitizers (allows interferometer time resolution to be as high as

possible).

All optical components are secured to a 4′×2.5′ optical breadboard, supported by a frame of

80/20 R© aluminum. The frame is mounted on rails running perpendicular to the vacuum chamber.
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Figure 3.15: Optical table layout, courtesy of L. Ellison. a)CO2 laser. b)40MHz acousto-optic
modulator. c)Set of reference beam splitters. d)Set of measurement beam splitters. e)Diagonal
array of beam recombining optics. f)Periscope beam-steering elements

The interferometer may be translated away from the vessel easily for simplified alignment and

diagnostic port access, then placed adjacent to the vessel for measurements. To ensure that channels

beyond the first could be assembled without disturbing the existing channels, the optical table

configuration was designed using CAD software. Considerations taken into account include were

compactness, beam divergence, and preventing stray light. The final CAD representation is shown

in Figure 3.15. The full implementation of the diagnostics uses seven parallel channels with three-

inch chord separation, although to date only three channels have been installed. The primary optics

consist of 19 ZnSe beam splitters (Lambda Research Optics IPR-5005Z-50R-10.6-45-P, with 50-50

reflection-transmission at a 45◦ angle of incidence). The measurement and reference sides each

require six splitters to create seven beams (Figure 3.15c-d). This arrangement divides the laser

output into six beams with 1/8 of the initial power and one with 1/4 of the initial power. The
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Figure 3.16: 3D SolidWorks model of interferometer, courtesy of L. Ellison.

seven recombining optics are twice as large (2′′ diameter) to enable separation of the outgoing and

returning beams at the detectors (Figure 3.15e).

As the beams exit the table, they are vertically stacked with ∼ 1.5′′ spacing using periscope

mounts (Figure 3.15f). This leaves adequate clearance for staggered beam-steering optics, which

turn the outgoing beams to pass upward through the FRC vessel. Above the vacuum chamber,

the beams reflect from mirrors mounted on the top optical rail. This reflection sends the beams

back through the vessel with a slight angular offset to ensure adequate beam separation at the

recombining optics. The 3-D geometry, including the optical rails, is shown in Figure 3.16.

Graphite beam blocks absorb the unwanted transmitted and reflected beams at the recom-

bining optics. This minimizes back-propagation of stray light through the system so that phase

measurements and laser operation are not disturbed. Similarly, the metallic faces of the detector
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housings have been shielded with graphite. Each has a 4 mm diameter aperture which allows

beam transmission. At the vessel interface, 2.75′′ conflat flanges have been adapted to hold NaCl

transmission windows at a 3◦ angle with respect to the beam path. Any reflected light at the

air/salt/vacuum interface is directed away from the system. As an additional precaution, the

entire optical table is encased in acrylic, which is opaque at the laser frequency.

To manage Gaussian beam divergence, two sets of focusing optics are included. The first

focusing location is shortly after the AOM separates the reference beam, so that only one focusing

element is required for all seven beams (Fig. 3.15g). The second position is located at the top of the

optical rails, where the beams are reflected between the first and second pass through the plasma

(Fig. 3.16h). Both focusing elements are spherical mirrors. The reference beams are not focused,

as the beam diameter remains sufficiently small (< 7mm at the detectors).

Optimal focal lengths for the mirrors were determined using a Gaussian beam propagation

code. The beam waist is calculated throughout the system while checking for proper clearance at

each potentially limiting aperture. The optimized configuration includes a spherical mirror of focal

length 1.5m placed on the table just after the AOM and spherical mirrors of focal length 2m at

the top of the optical arms. These elements has proven satisfactory for managing beam divergence

in practice (4mm spot diameter at the detectors).

The interference signal is converted to a voltage by VIGO Systems PVM-10.6 infrared de-

tectors. Because of the quadrature scheme, the interferometer signal becomes a 40MHz oscillation

at each detector, with a time-dependent phase shift relative to the reference modulation waveform

(Eq. 3.31). Two amplifier stages (Perry 481-50X and Minicircuits ZKL-2R7+) boost each signal

from ∼ −51 dBm at the detector output to roughly 8 dBm at the mixer input. The AOM driver sig-

nal is combined with the amplified signal to produce sine and cosine outputs using a Mini-Circuits

MIQC-60WD+ in-phase/quadrature demodulator (Eqs. 3.32-3.33). Low-pass filters remove the

80MHz component of the mixer output.

Status notes:

The electronics stage (amplifiers and mixers) is connected to the digitizer channels using
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non-isolated SMA cables (shields are grounded at both ends). As a result, electromagnetic noise

from the discharge is picked up by ground loops between cable shields. As a temporary mitigation

strategy, most of the ∼ 19′ cable run is shielded by galvanized steel electrical conduit with a 1.5′′

inner diameter.

The vertical arrangement of the interferometer beams has a strong disadvantage that was

only realized close to the end of the project. Debris generated by plasma discharges settles in

the lower window ports, so that the quality of the transmitted beam degrades over time. Only

when the interferometer signal had degraded to an unusable level did we discover the problem. A

recommendation for future operation is to inspect the salt windows on the lower interferometer

ports often and clean or replace them every few months.

Additionally, we often had problems with ‘dropouts’ in the signal, where the amplitude of

both the x (cosine) and y (sine) channels would simultaneously drop. A plot of x(t) against y(t)

should trace out a circular arc, representing the time evolution of the interferometer phase shift.

The dropout behavior was an abrupt reduction in the radius of the circle, corresponding to some

failure of the carrier signal rather than a problem with the phase measurement. The cause was

never determined with certainty, though the SMA connections were often found to be intermittent

when investigating the problem (especially on channel 4). Replacing these cable ends fixed the

problem temporarily on at least two occasions, but we could not eliminate the possibility of other

simultaneous problems. As a mitigation strategy, the two signals are normalized to the time-varying

signal amplitude corresponding to the radius of the circle (r =
√
x2 + y2).

3.3.3.4 High-Resolution Magnetics Array

The second major diagnostic implemented on the CFRC is a high-resolution magnetic probe

array. Faraday or “B-dot” loops have been the standard tool for diagnosing the field structure of low-

temperature magnetized plasmas for over fifty years. Modern research on magnetic reconnection

and fluctuations in magnetized plasmas still relies on inductive probes [e.g. 141, 142]. A pair

of probes was designed and constructed to meet the needs of two experiments, the Swarthmore
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1 cm

a)                             b)

1 cm

Figure 3.17: a) CAD drawing of Macor stalk showing arrangement of winding holes. b) Complete
probe head.

Spheromak eXperiment (SSX) [99] and the Colorado Field-Reversed Configuration experiment

(CFRC) [143]. SSX research has been focused on aspects of reconnection and relaxation, including

energetic particles and flows during merging [99]. Both research programs require detailed mapping

of time-varying magnetic fields with fast response and high spatial resolution.

B-dot probes operate by Faraday’s law,

V = −dΦB

dt
,

where a voltage V is induced around a loop due to the change in the enclosed magnetic flux, ΦB.

In the case of a fixed coil of N turns and cross-sectional area A across which the magnetic field B

is uniform, this reduces to

V = −NAdB⊥

dt
,

where the subscript ⊥ indicates the component of the magnetic field perpendicular to the plane of

the loop. The raw signal must be integrated to obtain the magnetic field as a function of time:

B⊥(t) = − 1

NA

∫ t

0
V (t′)dt′ (3.34)

The probe described here has 16 spatial locations, high spatial (5mm) and time (1µs) res-

olution, and a simple and somewhat modular vacuum design. A drawing of the probe armature

layout and a photograph of the completed probe head are shown in Figure 3.17. Hand-wound coils

were chosen over commercial surface-mount inductors due to the difficulty of aligning the axes of

the surface mount coils [144] and the relative ease of winding coils by hand on a simple form. Two

orthogonal sets of 17 holes are drilled into a Macor ceramic stalk (4mm× 4mm× 90mm) to make

an armature for threading wire (Fig. 3.17a). Macor was chosen because of its high dimensional sta-

bility, machinability, and insulating properties. Two sets of coils are wound through these holes and
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AirAir

VacuumO-ring

Figure 3.18: O-ring seal for connecting glass envelope to stainless tube.

the third set is wound around the square cross-section of the armature (Fig. 3.17b). The number

of turns in each coil is restricted by the physical strength of the Macor. The allowable size of the

armature holes given the 5mm spacing of the coils is 2mm. For the low-frequency measurements

presented here, each coil has an area of approximately 4.5 × 4.5mm2 and consists of 20 turns of

36 AWG magnet wire, giving a calculated response constant of NA ∼ 0.4mVs/T. The true NA

product for each coil was measured using a calibrated Helmholtz pair, as decribed below. The

response time of the coil is given by its inductance combined with the 50Ω input impedance of the

amplifiers. For a typical 20-turn coil L ∼ 3µH, giving a maximum undistorted signal frequency of

R/2πL = 2.6 MHz. The self-resonant frequency of each coil is approximately 140 MHz.

The Macor probe stalk is protected from the plasma by a quartz envelope, which is attached

to a 304 stainless steel (304ss) shaft by way of a threaded vacuum seal. The interior of the probe is

at atmospheric pressure, which eliminates the need for an expensive and bulky multi-pin vacuum

feedthrough. The quartz is brazed to 304ss tubing. A threaded adapter was machined and welded

on to the existing tubing, while a mating adaptor was welded to the probe shaft. The adapter

forms a vacuum seal by compressing an o-ring against two flats as shown in Fig. 3.18. This setup

allows simplicity and facilitates repair or exchange of the probe stalk. The stainless shaft enters the

vacuum vessel through a commercial double-o-ring “Wilson” seal (MDC part # 672008). Each pair
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Figure 3.19: Diagram of aluminum support structure and linear actuator.

of coil leads is connected via a printed circuit board (PCB) terminal to an SMA plug inside a cast

aluminum breakout box on the air side of the steel shaft. This arrangement provides strain relief

and conversion from the twisted-pair coil leads to coaxial lines for shielded data transmission. Using

PCB terminals allows for compact, low-inductance connections. The breakout box is mounted to

the bushing of a screw-driven linear actuator (Kerk Motion RGS6010T × 18”) to enable translation

of the entire probe stalk. The assembly is supported by an aluminum frame bolted to the air side

of the Wilson seal (Fig. 3.19).

To enable measurement of low-level fluctuations, the probe system includes removable (inline)

active differential amplifiers with a gain of 5. The circuit diagram for a single amplifier is shown

in Fig. 3.20. Traces for a low-pass output filter are printed on the circuit boards. A filter with

cutoff frequency fc = 20MHz is included in the CFRC amplifiers to prevent aliasing above the

data acquisition Nyquist frequency. The LMH6703 was chosen as the active element because of its

flat frequency response up to 100 MHz (maximum SSX data acquisition Nyquist frequency). The

amplifiers were designed with high bandwidth so that fast fluctuations could be measured (using

low inductance windings). The 48 amplifiers are mounted inside a 0.25”-thick cast aluminum box

to shield them from electromagnetic noise generated by the discharge pulsed power. The inputs and

outputs are coupled to the outside of the box via SMA bulkhead connectors. The ambient noise
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a) b)

Figure 3.20: a) Fast amplifier circuit diagram. The theoretical gain is approximately five with a
bandwidth of 100 MHz. b) Gain and phase lag versus frequency for a typical amplifier.

level on the output of the amplifiers is < 1.5 mV. Crosstalk between amplifier channels is ≤ 0.5%

of the input signal voltage. Hardware integration is not built in to the amplifier system. For our

experiment, raw b-dot data is recorded and integrated numerically so that fluctuation details are

not compressed into a small portion of the digitizer dynamic range by the presence of a background

magnetic field.

The gain and phase delay for each fast amplifier were measured as a function of frequency

using an RF generator and a digital storage oscilloscope. The SSX amplifiers were calibrated up

to 100MHz, while the CFRC amplifiers were tested up to 20MHz (low-pass cutoff frequency).

The average gain for 48 SSX amplifiers is 4.8± 0.2(4%) and the average phase lag (neglecting the

∼ 0.2µs constant time delay in the test circuit) is 0.0◦ ± 0.7◦. The CFRC average gain and phase

lag, respectively are 4.8± 0.1(2%) and 0.0◦± 0.5◦. Calibration data for a typical amplifier is shown

in Fig. 3.20b. Each pickup loop is calibrated over the appropriate frequency range using a using

a sinusoidally-driven, low-inductance Helmholtz coil with external series resistance (Rs ∼ 100 Ω)

added to stabilize the coil current. The voltage across the current-limiting resistor is measured
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Figure 3.21: Calibration data for a single 3µH coil.

simultaneously with the output voltage of the probe coil. The calibration constant is determined

by dividing the output voltage by the product ωB, where B is determined from the coil current

and the Helmholtz coil constant. A sample calibration curve is shown in Fig. 3.21.

Original design specifications included a requirement that the configuration of the probe be

able to change for measuring propagation of fluctuations along an arbitrary axis. Due to cost

and time constraints, this capability was not implemented. All measurements to date have been

recorded with the probe channels aligned along the radius of the vacuum chamber. Nevertheless,

we have observed waves propagating along the probe axis, especially during merging. If primary

reconnection plane is at the midplane of the device, the radial coordinate of the chamber corresponds

to the poloidal direction of the merging spheromaks. Examples of magnetic measurements and

spectral analysis are described in Sections 3.3.4 and 3.4.

Status notes:

The only data recorded on CFRC so far uses high-gain, twenty-turn coils. These measure-

ments are restricted to low frequency wave observations because R/2πL = 2.6MHz.

The original breakout PCBs had a single ground for all 8 channels, which created many

ground loops. The PCBs were redesigned with separate grounds, and replaced in both the CFRC
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and the SSX probes. Cable connections need to be isolated from one another for the same reason,

and are currently wrapped in kapton tape. A comparison of the data before and after isolating the

channels grounds is shown in Figure 3.22. When compared with the discharge current waveform

(Fig. 3.26), it is clear that the magnetic signals were dominated by induced voltages from the gun

discharge. This means that data taken before August 6, 2010 is not useful for measurements of

field structure on the discharge time scale. Higher frequency fluctuation data may still reflect local

plasma behavior.

The probe was designed without capacitive signal rejection. In a single-ended measurement

scheme, fluctuations in the local plasma potential can drive non-negligible currents in the coils.

Many schemes are available to mitigate such electrostatic pickup [145], but the issue was not

considered during the original design. We assume that magnetic fluctuations are dominant for

our case, but nonetheless, the possibility of electrostatic signals mixing with the magnetic signals

should be kept in mind.

In addition, there is no hardware low-pass filter in place in the current setup. Because the

gain of the low-frequency coils is so large, the amplifiers (with integrated low-pass filter) are not in

use3 . Therefore, it is possible that fluctuations with frequencies larger than 20MHz contribute to

lower frequency components via aliasing.

3.3.3.5 Simple Magnetic Probe

Although funding opportunities made it a priority to construct the multi-channel magnetic

array before attempting more global measurements, a single point magnetic probe was constructed

“on-the-cheap” to provide field measurements at a second spatial point. Similar in principle to the

above multi-probe, this diagnostic provides of just one triplet of magnetic measurements. Glass

tubing was melted closed at one end to provide a suitable vacuum envelope. The envelope is

connected to 304ss tubing using Swagelok R© fittings. Electrostatic coupling was assumed to be

3 The low-frequency/high-gain coils were also too sensitive for SSX. Tim Gray reduced them to single-turn coils,
and there was still some saturation of the digitizer (without amplifiers).
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Figure 3.22: Comparison of magnetic field traces for a single triplet of coils at r = 27 cm (a)-(c)
before and (d)-(f) after isolating the channel grounds from each other. The signals in the first
column are dominated by pickup from the discharge current (cf. Fig. 3.26).
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Figure 3.23: Photograph of single B-dot probe installed in machine.

negligible for simplicity and quick construction. Each coil consists of 8 turns of AWG 36 wound

on a square PVC form 1/8′′ on a side, and the signal wires run the length of the probe tube as

twisted pairs before being connected to RG-58 coaxial cables for transmission to the digitizer. A

photograph of the probe is shown in Figure 3.23. The single bdot channels were calibrated in the

same way as the channels for the multi-probe. The average measured NA value for these coils is

79 ± 9µVs/T, compared to a theoretical value of 80µVs/T. A calibration curve versus frequency

is shown in Figure 3.24.

3.3.4 CFRC Plasma Properties and Machine Status

As a new experiment, the CFRC was still in development and shakedown when it was put

on hold due to lack of funding. This section describes the status of the machine at the time it was

shut down, and the properties of the plasma it produced.

CFRC was designed to allow flexible configurations for the electrode and magnet polarities.

A summary of the available merging configurations is shown in Figure 3.25. Each diagram indicates

the poloidal (in-plane) and toroidal (out-of-plane) fields expected in the final configuration. The

cases that do not correspond to a spheromak or FRC show the fields of the two spheromaks before

merging. To date, the machine has been operated successfully in only configurations 1 and 2. We

have been unable to fire the guns reliably with the center electrode negative. Much higher voltage

is required for breakdown than with positive center electrodes, and the discharge is intermittent.

Attempts to fire the guns in negative polarity often produced arcing outside the machine and

damaged several components. At low negative voltages, a glow-like discharge sometimes formed,
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Figure 3.24: Calibration data for a single 8-turn coil.

persisting for large fractions of a second. Addition of free electrons via a hot filament did not

improve success, nor did an attempt to increase the residence time of electrons in the gun gap by

using permanent magnets. A high-current-density lanthanum-hexaboride cathode was acquired to

flood the gun with electrons, but was never tested. Our inability to operate the guns with negative

center electrodes is puzzling because other coaxial-gun devices operate only in negative polarity

[131, 146]. In addition, the current during a discharge with a positive center electrode oscillates

(see Fig. 3.26b), so that we know plasma can be sustained with current in the opposite direction.

We believe our difficulties with negative polarity disharges are related to the initial breakdown, but

the problem remains unsolved.

Plasma objects studied to date have been produced using configuration 2. We have attempted

to form both spheromaks (using only one gun) and FRCs (using both). Typical waveforms for the

stuffing magnet current and the gun discharge current, acquired using the Rogowski coils described

in Section 3.3.2, are shown in Figure 3.26. The gun current rings at ∼ 8 kHz. The stuffing flux is

approximately constant during the plasma discharge.

The discharge is quite variable at all tested parameters. As an example, inteferometer data

is shown in Figure 3.27 for seven consecutive shots with identical settings. These discharges use

both guns, and in principle should form FRCs. The signal behavior seems to be consistent during

the first 50µs of the shot, and then becomes subject to large shot-to-shot variations. The shape,
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Figure 3.25: Matrix of possible merging arrangments for CFRC. Each diagram indicates poloidal
(in-plane) and toroidal (out-of-plane) fields. Only the final object is indicated for cases where
merging is expected.

timing, and amplitude of the signals are all somewhat variable. Some shots even lack the sharp

peak we identified with a merged structure (consistently absent from single-gun shots),resulting in

a peak amplitude disparity of more than a factor of four. When this peak is present, the time at

which it occurs can vary by as much as 50µs.

Given this large variation in a quantity somewhat insensitive to local values (line-integrated),

it is not surprising that local measurements from single-point probes are also variable. Figure 3.28

shows the magnetic field evolution for a set of consecutive shots for a single-gun discharge at similar
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Figure 3.26: Typical waveforms of the current (a) for the stuffing flux magnet and (b) for the gun
discharge. The stuffing flux is approximately constant on the timescale of the gun. The stuffing
flux current appears quantized because the amplitude of the signal is only ∼ 10 digitizer bits
peak-to-peak (Rogowski coils designed for the high current in the guns).

Figure 3.27: Most recent interferometer traces, demonstrating shot-to-shot variation in line-
integrated density during seven identical, consecutive shots.

parameters. Although the general timing of events has some consistency, and shape of the individual

traces is quite variable. Some shots demonstrate consistently-shaped traces with variable timing,

while others are only vaguely similar.
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Figure 3.28: Magnetic field traces for one channel of the 48-channel probe array located at r =
23.4 cm = 0.6rw in the midplane. Three consecutive shots at the same parameters are shown and
field components are labeled in cylidrical (chamber) geometry.

Plasma objects are being launched from the guns, as evidenced by correlations between

the simple b-dot probe and the 48-channel probe. Figure 3.29 shows the time-lag correlation

function between the toroidal field component measured by each probe, measured at the same

radius during a single-gun discharge. The simple b-dot probe is located 32 cm in front of the east

gun (z = −45.5 cm), while the 48-channel probe is located 77.9 cm in front of the gun at the
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Figure 3.29: Time-lag correlation function for toroidal field measurements separated by 45.5 cm.
Positive delay indicates that the probe farther from the gun receives the signal later in time.

midplane (z = 0). Given the spacing between them, the object measured in this discharge was

moving at vz ≈ 48 km/s. This velocity corresponds to a propagation time of 16.2µs between the

gun and the midplane. For reference, the Alfvén transit time to the midplane estimated using the

line-averaged density and measured magnetic field values is on the order of τA = rw/vA ∼ 1−10µs.

Calculating the time history of the gun eigenvalue gives some indication that the Taylor

formation paradigm applies. Figure 3.30 shows the calculated value of λ(t) = µ0Igun(t)/Φgun,

assuming that all of the flux generated by the stuffing magnet links the two electrodes. The dashed

horizontal line represents the threshold gun value, λc = 20.1m−1, calculated in Section 3.3.1. The

dotted horizontal line represents the threshold value calculated for the chamber outside the gun,

λw = 10.2m−1. Dashed and dotted vertical lines indicate where λ(t) exceeds each threshold as it

increases in time. The time axis of the density (b) is shifted by the propagation time calculated

above, so that increases in density may be tentatively identified with a λ value at the time of

launch. There is a reasonable match between the identified threshold crossings and increases in the

line-integrated density. It is interesting to note that the sharpest jump in density occurs without

λ(t) exceeding λc. Other experiments have found a formation threshold that is independent of the

dimensions of the chamber or flux-conserver outside the gun [125] (depending only on λc). In our

case, not all of the stuffing flux intercepts the electrodes (see Section 3.3.1), so that the calculation
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Figure 3.30: Comparison of spheromak launch threshold with plasma density. (a) Calculated
spheromak eigenvalue, λ(t). The dashed horizontal line represents the threshold gun value, λc =
20.1m−1, calculated in Section 3.3.1. The dotted horizontal line represents the threshold value
calculated for the chamber outside the gun, λw = 10.2m−1. Dashed and dotted vertical lines
indicate where λ(t) exceeds each threshold as it increases in time. (b) Line-integrated density,
shifted by the propagation time calculated from Figure 3.29. Density increases seem to coincide
with eigenvalue threshold crossings.

of λ(t) shown in Fig. 3.30(a) is likely an underestimate of the true value (perhaps even by a factor

of two).

Another complication arises because the discharge oscillates. If indeed, multiple spheromaks

are launched during a single shot, we are essentially performing counterhelicity merging experiments

whether we use one gun or both. Since the sense of the toroidal field of the spheromak is determined

by the sign of the discharge current, contiguous peaks in the lambda trace represent alternating

helicity spheromaks. Thus the first rise in density in Figure 3.30b may correspond to a spheromak,

while the second may correspond to a distinct, merged object. Even before λ crosses the launch
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threshold a second time, the gun may be injecting (counter) helicity into the chamber, so that it

may not be strictly correct to describe the first object observed as a standard spheromak.

Additional insight can be gleaned by observing the magnetic field evolution for a single-gun

discharge. Because of the lack of overlap in diagnostic measurements (see Status Notes below), we

are unable to analyze a simultaneous density trace. Figure 3.31 shows a zoomed-in view of the

first λc crossing, with accompanying traces for the magnetic field components in the midplane at

r = 27.4 cm = 0.73rw. For reference, the radial position of the magnetic null for an ideal spheromak,

disconnected from the gun and in the lowest Taylor state, is r0 = 0.63rw = 23.5 cm. Dashed and

dotted lines are as in Figure 3.30, and the time axis of the magnetic field components is again

shifted to take into account the measured propagation time for magnetic structures to reach the

midplane. Several features are notable:

(1) After the initial dynamic phase (∼ 35− 50µs), the toroidal field settles into a quasi-steady

value.

(2) The axial field assumes a value of one sign during the dynamic phase, then reverses.

(3) The radial field remains small, with departures from zero occuring simultaneously with

changes in the other components.

This data is potentially consistent with the formation of a ‘flipped’ spheromak [93], but more

global diagnostics are required to identify the object’s magnetic structure. Further evolution is

more complicated, due to the possibility of multiple launches. The full traces corresponding to Fig.

3.31 are shown in Figure 3.32 An abrupt change in the field structure near t = 95µs indicates that

a second object has detached from the gun and displaced or merged with the first object.

Due to the small extent of the magnetic probe (optimized for localized wave measurements),

there is limited information about the radial structure of the fields. Figure 3.33 shows a projection

of B for the same shot in the r-z plane as a function of time for all 16 positions of the 48-channel

magnetic probe. The abrupt reversal of both components is suggestive of the ‘flipping’ of the

spheromak that occurs when λ becomes large enough that open field lines are excluded from the
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Figure 3.31: Magnetic traces in the midplane for r = 27.4 cm. Data may be consistent with
formation of a flipped spheromak equilibrium.



98

0 50 100 150 200 250
Time(µs)

0
5

10
15
20
25
30
35
40
45

|λ|
 (

m
−1

)

Spheromak Eigenvalue (λ=µ0 Igun/Φgun) for shot dt2010.09.28_hr10.27

50 100 150 200 250
Time (µs)

−400
−300
−200
−100

0
100
200
300

B
z
 (

G
)

Axial Field

50 100 150 200 250
Time (µs)

−400
−300
−200
−100

0
100
200
300

B
φ
 (

G
)

Azimuthal Field

50 100 150 200 250
Time (µs)

−400
−300
−200
−100

0
100
200
300

B
r
 (

G
)

Radial Field

Single-Gun Magnetic Field Evolution,
dt2010.09.28_hr10.27 6kV/300V, r = 27.4cm

(a)

(b)

(c)

(d)

Figure 3.32: Magnetic traces in the midplane for r = 27.4 cm. The abrupt change in the azimuthal
field direction near t = 95µs may indicate the formation of a second spheromak.
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Figure 3.33: Projection of magnetic field in the r-z plane as a function of time and radius. The
abrupt flip of both components near t = 50µs is present along the length of the probe. The axial
field is not observed to reverse as a function of position, suggesting that the probe does not cross
the magnetic axis.
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Figure 3.34: Projection of magnetic field in the r-φ plane as a function of time and radius. The
field evolution appears nearly uniform over the measured radii.
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center of the torus [93, 147]. The evolution of the field is relatively uniform along the probe,

suggesting that the magnetic axis is not close to the measured radii. The toroidal field evolution

also appears nearly uniform in radius. A projection of the field evolution in the r-φ plane is shown

in Figure 3.34. The approximate uniformity of the time evolution on the spatial scale of the probe

indicates that the magnetic probe is essentially a point measurement and cannot recover single-shot

information about the global structure.

The above interpretation relies on the assumption that a spheromak-like object is forming.

It is possible that the objects being formed are not volume-filling. Given that our gas injection

is highly asymmetric, each gun may launch a pair of flux ropes, one forming near each gas inlet.

Formation of distict flux ropes has been observed [98], and in fact engineered [148] in the CalTech

spheromak experiment.

The situation is similar during merged operation (firing both guns), although there is a

marked density increase in most shots that we do not see during single-gun discharges. Figure

3.35 shows this behavior along with the concurrent λ value for one gun. The single shot magnetic

data most easily interpreted in the FRC-merging model is shown in Figure 3.36, along with the λ

traces for both guns. Again, there is no simultaneous density measurement. It is possible that

the behavior of the magnetic field direction near t = 150µs indicates the formation of an FRC-like

object. The azimuthal field decays as the axial field increases. This corresponds to a decay in the

toroidal field of a (non-tilted) spheromak in the chamber and an increase the poloidal field of a

(non-tilted) FRC. For completeness, plots of the spatio-temporal projections of B (as above) are

shown in Figures 3.37 and 3.38.

Unfortunately, there are no other magnetic measurements for this shot, so we cannot rule out

a simple tilting of the structure. Both explanations seem somewhat unlikely, since the dynamics

are slow (tens of estimated Alfvén times). Single-point measurements are simply insufficient to

identify the objects created in CFRC.

Although we cannot describe the plasma objects created during two-gun operation in a global

way, we can infer that these objects are distinct from the single-gun plasmas. Figure 3.39 shows the
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Figure 3.35: Evolution of line-average density for two-gun discharge (merged). (a) Time evolution
of λ for west gun. (b) Time evolution of line-integrated plasma density. A trace for a single-gun
discharge using the same gun parameters is shown for contrast in light gray. Merged timestamp =
’dt2009.10.27 hr14.18’, single-gun timestamp = ’dt2009.10.27 hr11.22’.
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Figure 3.36: Magnetic traces in the midplane for r = 27.4 cm. The lighter (grey) trace in (a)
shows the λ value for the second gun. In the time period shortly after t = 150µs axial field
(b) increases while the azimuthal field (c) decays, indicating a possible FRC-like object with zero
toroidal (azimuthal field) but finite poloidal (radial/axial) field.
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Figure 3.37: Projection of magnetic field in the r-z plane as a function of time and radius. The
rotation of B near t = 125µs varies strongly along the probe. Both the radial variation and the
fast temporal scale for the motion suggest that a localized magnetic structure is passing by the
probe. The increase in Bz after t = 150µs may indicate the formation of a merged object.
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Figure 3.38: Projection of magnetic field in the r-phi plane as a function of time and radius. The
change in Br near t = 125µs is again visible, but Bφ is more or less uniform in radius. The strong
reduction of Bφ just after t = 150µs may indicate annihilation of toroidal field.
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Figure 3.39: Evolution of (a) line-average density, (b) local magnetic energy density, and (c) plasma
β. The temperature used for estimating β is 10 eV. Density timestamps = ’dt2010.02.15 hr +
[’14.30’,’14.35’,’14.39’,’14.51’,’14.56’,’15.05’,’15.12’,’15.17’,’15.21’,’15.31’]. Magnetic timestamps =
’dt2010.11.02 hr’ + [’11.17’,’11.35’,’11.45’,’12.15’,’12.54’].
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time history of the the density, magnetic energy, and estimated β value, averaged over a number

of two-gun shots at parameters as similar as possible (λmax ≈ 30m−1). Density measurements

are taking with gun voltages of 6 kV and magnet voltages of 300V, while magnetic measurements

are taken with gun voltages of 9 kV and magnet voltages of 500V. Plasma β is estimated using

the line averaged density and a temperature of 10 eV, similar to what is observed in SSX [126].

A change in temperature or density will change the overall scale of β, but not the time-evolution

profile. Strong increases in density (e.g. Fig. 3.35) are only observed during two-gun shots. The

local magnetic energy decays more quickly than the density, a potential indication of conversion of

magnetic to kinetic energy. However, the plasma β (ratio of kinetic to magnetic pressure) does not

reflect a high-beta, FRC-like equilibrium during the density peak (t ∼ 100− 130µs).

For comparison, Figure 3.40 shows shot-averaged density, magnetic energy, and estimated β

traces for single gun traces operating at 6 kV/300V (λmax ≈ 30m−1). Note that the scales are the

same as in Figure 3.39. The peak plasma density and magnetic energy density are both lower by

a factor of 3 than the two-gun average. This indicates that the objects produced from two-gun

merging are distinct from two single-gun objects.

The CFRC machine and diagnostics were still under development at the time of shutdown,

which makes physical interpretation difficult at best. If the project is resumed in the future, one of

the first steps to take will be construction and verification of a simple, but global, set of diagnostics.

I suggest that a set of magnetic coils with large coil spacing should be constructed for measurements

of the global magnetic field structure. Only after we are able to make a plausible identification of

the objects formed in CFRC can we proceed with linking fluctuations to the configuration itself.

Status notes:

Data not known to be invalid is sparse. There are no shots combining the interferometer with

the properly grounded/terminated 48-channel probe. The last interferometer data is from February

15th, 2010, and the 48-channel probe was not fixed until August 6th, 2010. It became almost

impossible to run the vacuum system and the interferometer simultaneously once the building

water pressure dropped in the spring of 2009. We installed a chiller for the diffusion pumps, the
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Figure 3.40: Evolution of (a) line-average density, (b) local magnetic energy density, and (c) plasma
β. The temperature used for estimating β is 10 eV. Density timestamps = ’dt2009.10.27 hr’ +
[’10.34’,’10.38’,’10.41’,’11.22’,’11.25’,’11.28’,’11.31’]. Magnetic timestamps = ’dt2010.09.28 hr’ +
[’10.27’,’10.30’,’10.33’,’10.40’,’10.44’,’10.48’].

AOM, and the laser in August of 2009, but the output pressure is not high enough to run all three

without small fluctuations tripping a flow interlock. In addition, the interferometer signal continued

to degrade, but the obstruction of the lower windows by dust and debris was not diagnosed until

the project had already ended. There are no shots at all with a functional triple probe (see status

notes for section 3.3.3.1). The Mach probe tips were biased incorrectly (for electron collection) until
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February 14th, 2010, and the circuit had a flaw that was not corrected until June of 2010 (see status

notes for Section 3.3.3.2). Essentially, there is no overlap between density measurements and proper

magnetic fluctuation measurements, there is no overlap between multiple density measurements,

and there are no temperature measurements at all.

Grounding is an issue with any pulsed-power environment, and CFRC is no exception. An

attempt was made to ground diagnostics only at the digitizer (no cable shields connected on the

machine end). Nevertheless, noise from the discharge is an issue for all the diagnostics.

A simple flux conserver was built in an attempt to bring CFRC closer to SSX parameters,

so that we might have better luck inferring spheromak formation by comparison with their results.

Although the resistive time of the stainless wall is ∼ 1ms, the shape of the CFRC chamber outside

the gun is not a simple cylinder (see Fig. 3.4). A simple calculation indicates that with the chamber

volume, CFRC can only operate at approximately 10% of the magnetic energy of SSX spheromaks

[131]. The flux conserver was meant to reduce the volume of the chamber by a factor of ∼ 4,

increasing the magnetic energy density by the same factor. The full implementation involves two

sections that can be bolted to the outer electrode of each gun. Each section is a 32′′ × 50′′ × 0.08′′

sheet of Cu 110 rolled into a cylinder and riveted at the seam. At one end, slits are cut in the

sheet and the tabs in between bent 90-degrees outwards to form a flange attaching to the outer

gun electrode. The thickness was chosen to match the upper limit of the roller in the professional

department machine shop, and corresponds to three skin depths at a frequency of 10 kHz. Only

one side has been constructed so far, and it was never installed or tested. The plan for installation

was to place the flux conserver inside the chamber, re-install the gun and close the door, then bolt

the flux conserver to the gun through the side ports.

3.4 Wave Measurements Using High-Resolution Magnetics

One of the major goals of CFRC was to estimate the spectral characteristics of fluctuations

in an FRC. Although we cannot yet describe our observations in the context of FRC equilibrium

or instability, we have developed a technique to extract the relevant spectral information. This
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section describes the extraction of experimental dispersion plots (cf. Section 2.4.2) from magnetic

probe data.

The extensive work by E.J. Powers and colleagues in the 1980s set the groundwork for spectral

estimation from probe data. Various techniques were explored, including cross-spectral-density [16],

maximum-entropy [149], and complex demodulation [150] methods. We have modified the standard

cross-spectral-density estimate described in Ref. 16 to study non-time-stationary fluctuations by

using channel-averaging instead of time-block-averaging. Conventional CSD analysis relies on the

statistical time-stationarity of the fluctuations in the discharge [3]. Maximum entropy or maximum

likelihood methods [149], which are well suited for spectral analysis of short time series, require

a somewhat arbitrary optimization process that can be computationally intensive [151]. By using

multiple spatial channels, we can avoid the time-block averaging typically used to weight CSD

phase information. In this way, we can obtain spatial fluctuation spectra from a short time series

with higher resolution than can be obtained by spatial Fourier transform of the same number of

channels. The method employed here is direct, simple to implement, not limited by the spatial

Nyquist frequency, and does not require intensive computation.

As described in Section 1.2.2, the typical two-point technique uses the CSD to estimate the

spectral power and mean wavenumber associated with each frequency. The procedure involves

calculating the cross-phase between two signals with known spatial locations. To facilitate a self-

contained discussion, the relevant mathematics is summarized here. A single CSD estimate for the

signals x(tj) and y(tj) is defined to be:

Gxy(fj) =
2

T
X∗(fj)Y (fj), (3.35)

where T is the length of the time record (T = N∆t), and X and Y represent the discrete Fourier

transforms (FFTs) of x and y. Because the statistical uncertainty in this estimate is of order

one, an average over multiple estimates is necessary to provide quantitative results. In the usual

implementation [16], each signal is broken into nd distinct time blocks of length Td and the full
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CSD is defined by Eq. 1.2:

Ĝxy(fj) =
2

ndTd

nd∑

i=1

X∗
i (fj)Yi(fj). (3.36)

Ĝxy(fj) is a complex quantity, and the cross-phase as a function of frequency is given by the phase

angle:

tanφxy = Im Ĝxy/Re Ĝxy. (3.37)

For two probe signals (time series), a local wavenumber can be calculated for each frequency

by dividing the cross-phase by the separation between the probe locations rx and ry:

Kl =
φxy

(rx − ry)l
, (3.38)

where l indicates a vector component. For one pair of time-series, the above method produces

a single K value at each frequency fj . This limitation means that only the average K (power-

weighted) and its uncertainty are measured. The statistical uncertainty in K comes from the

uncertainty in the cross-phase (disregarding position and other measurement uncertainties), and is

an estimate of the spectral width:

σφ =
(1− γ2xy)

1/2

|γxy|
√
2nd

(3.39)

Calculating the wavenumber is this way requires ndTd to be smaller than the characteristic time

for temporal variations in the spectrum, τs. This is a severe limitation in our case, since τs ∼ 10µs.

Our data acquisition (DAQ) rate of 40MS/s is sufficient to allow a small number of blocks, but the

frequency resolution is poor in this case.

In addition, we seek the full two-dimensional distribution of spectral power in frequency and

wavenumber space, (not just the power and mean wavenumber versus frequency). If the local

wavenumber at each frequency is calculated from each raw CSD estimate rather than from the

smooth estimate, a two-dimensional result can be obtained. The ensemble of (|Gxy|,K, ω) triplets

from the raw estimates are assembled into a histogram, summing the power in each bin (Km, fj) and

dividing by nd. Construction of the histogram is analogous to ensemble averaging and produces a

smooth estimate Ĥxy(Km, fj). Although the histogram technique provides a two-dimensional result
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(assuming sufficient statistical spread in Km), it still reflects only the mean K and spectral width

at each frequency. This is a fundamental limitation of using only two measurement locations; a

single probe pair can provide only two constraints on the spatial properties [17]. While appropriate

for cases where a single wave-like fluctuation is present, this technique cannot separate multiple

bands of fluctuations (more than one distinct k at each frequency).

Instead of dividing our time series into smaller blocks, we instead average across multiple

simultaneous measurement channels with varied spacings. By trading spatial resolution for time

resolution, spectral estimates of sufficient frequency resolution and statistical uncertainty can be

obtained from short-duration signals. We also collect non-redundant measurements in this way,

circumventing the two-probe limitation described above (see Section 1.2.3). An estimate Gxy is

calculated for each pair of probe channels over a time interval N∆t. These estimates are binned

together by frequency and wavenumber, and the histogram values, Ĥxy(Km, fj), are weighted by

the sum of the corresponding CSD amplitudes. This procedure averages out statistical errors in

each estimate while retaining signals that are coherent across multiple channels. The primary

limitation of the technique is that localized fluctuations are washed out (wavepackets with extent

smaller than some of the pair spacings are diluted by the histogram).

The range of measurable k-values is bounded by the spacing of the coils and by the signal-to-

noise ratio (SNR) of the measurement. The coil spacing of our probe gives an upper (Nyquist) limit

of kmax = 2π/∆zmin ≈ 1200m−1. For a long wavelength fluctuation, being able to distinguish the

signals at channels 1, 8, and 16 gives enough points to extract the amplitude, wavelength, and phase.

For a given SNR ∼ B/δB, kmin ≈
√
(8/L2)(δB/B), where L is the largest channel separation (∼

probe length). Using the best case (δB/B ∼ 0.002 = 4-bit signal / digitizer range) and worst

case (δB/B = 1) scenarios, we have 1m−1 < kmin < 30m−1. Since our noise level is relatively

consistent, the minimum k value is determined primarily by the amplitude of the fluctuations. The

spectral intensity maps calculated from data generally have a band of noise at low k due to this

measurement floor.

A variety of interesting spectral signatures are observed using this technique, but it is difficult
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Figure 3.41: Spectral intensity plot demonstrating fluctuations suggestive of ion-cyclotron-harmonic
or ion Bernstein waves. The time frame used is [130,210]µs.

to make any connection to a physical process. As discussed in Section 3.3.4, we do not know the

global structure or dynamics of the plasma objects produced in CFRC, so we cannot do more

than guess at what kinds of fluctuations are likely. From an empirical standpoint, there are few

observations where a separation of mean and fluctuation timescales can be made (dynamics are

non-stationary), which makes a discussion of waves in the traditional, linear sense inapplicable.

Nevertheless, as an example of the application of the technique, the two-dimensional spectral density

from an interesting case is shown in Figure 3.41. This shot was chosen because there exists a

simultaneous interferometer trace, although 48-channel probe was not properly grounded at this

time (see Section 3.3.3.4). The effects of ground loops on time scales much faster than the discharge

current are assumed to be negligible. Signatures of spectral power at approximate multiples of a

frequency in the ion-cyclotron range suggests that the fluctuations are associated with ion cyclotron

harmonics. Ion Berstein waves [152, 153] and ion-cyclotron-harmonic waves [154, 155, 156] have

both been discussed in the context of reconnection and particle heating [157, 158, 159]. If we are

forming a merged object, we might expect either or both of these waves to be driven by the merging
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process.

Despite our attempt to improve the effective time resolution of our spectral-density analysis

technique (eliminating time-block averaging), we still do not have a sufficient acquisition rate

to localize the result on the time scale of the evolution of CFRC plasma objects with adequate

frequency resolution. The above plot was constructed using a time window much longer than

the duration of the oscillations observed. A minimum signal length of ∼ 50µs = 200 points is

required to obtain sufficiently fine frequency resolution to detect the shape of the dispersion curves

(∼ 0.1fci). By shifting the time window and observing the change in the spectral density, we can

verify that the fluctuations whose dispersion pattern is shown in Figure 3.41 occur in the range

t = 130− 140µs. Care is needed to extract the spectral signature of fluctuations from a particular

time window (during an equilibrium phase or the linear growth phase of an instability, for example).

An illustration of the sensitivity of our technique to the non-stationarity of our data is given

in Figure 3.42. The density trace shown in (a) indicates an abrupt change in the plasma over a

period of a few microseconds. A dashed vertical line is drawn to indicate the onset of the abrupt

rise in density at t = 131µs [also indicated in (b) and (c)]. There is an accompanying change

in the magnetic signals for the azimuthal field component (b), although the magnetics indicate a

significant event beginning several microseconds before the density change. A zoomed-in plot of the

raw ∂tBφ data for the magnetic ‘event’ is shown in (c). Two features are particularly noteworthy.

First, there is a strong, slanted peak between 129 and 130µs, indicating a localized structure

passing across the probe. The constant slant of this peak (time location versus channel position)

corresponds to a velocity on the order of 50 km/s, consistent with the transit velocity of plasma

launched from the gun (see Figure 3.29 and accompanying discussion). Second, the fluctuations

following the onset of the density increase are non-uniform along the probe.

The spectral intensity corresponding to the entire magnetic event in shown in (d). In order to

obtain sufficient frequency resolution a large time window is used, centered on the event [indicated

by 45◦ hashed region in (b)]. The spectral signature is dominated by the propagating feature

described above. This is no longer true if only the latter part of the event is considered (after the
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Figure 3.42: Comparison of spectral intensity derived from different time windows. (a) Line-average
density trace. The vertical dashed line indicates the onset time of the density rise in (a)-(c). (b)
Intensity plot of raw ∂tBφ data surrounding a single magnetic ‘event’. Hashed regions indicate the
two different time blocks used for spectral intensity calculations. (c) Zoomed in plot of data during
the event. (d) Spectral intensity derived from a time window centered on the event, t = 93−153µs
(45◦ hash). (e) Zoomed in plot of data after signature of propagating structure subsides. (f) Spectral
intensity derived from a time window including only the latter part of the event, t = 131− 191µs
(135◦ hash).
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propagating feature occurs). A further zoomed-in plot of the raw data is shown in (e), and the

spectral signature corresponding to the (equal-length) time window indicated by the 135◦ hashed

region in (b) is shown in (f). The spectrum is no longer dominated by the propagating feature.

The data in Figure 3.41 is calculated using all possible pairs of probe channels. Given the non-

uniformity along the probe apparent in Figure 3.42(e), it is useful to compare spectral intensities

derived from a smaller number of pairs (higher statistical uncertainty) localized in radius. Figure

3.43 compares the spectral intensity calculated using only the outer (a) or inner (b) half of the

probe channels. It is clear that the cyclotron-harmonic spectral feature is localized primarily on

the inner probe channels (r <= 27.5 cm).

The above example makes explicit the limitations of the 48-channel probe and of our anal-

ysis technique. Many of the fluctuations observed to date on CFRC are non-stationary on both

the temporal and spatial scales of interest. In the current mode of operation, where brief mag-

netic events are separated by large zero-signal regions, it is still possible to extract some spectral

information with appropriate frequency resolution. In the future, an optimized time-frequency

technique, such as wavelet analysis [160], should be adapted to extract two-dimensional spectral

intensity from the magnetic probe data. By choosing an appropriate wavelet, the balance between

frequency resolution and time-localization can be adjusted as necessary. We are optimistic that

continued development of the method presented here can allow the identification of modes driven

by spheromak merging, as well as signatures of instability.
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Figure 3.43: Comparison of spectral intensity plots using (a) only the outer 8 channels and (b)
only the inner 8 channels. The time frame used is [130,210]µs. The feature with harmonic features
in the ion-cyclotron frequency range is localized to the inner half of the probe.
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