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Thesis directed by Dr. Andrew Lucas, Thesis Advisor, Department of Physics

We present the simulation of Markov chains which can simulate kinematically constrained many-

body dynamics. Our method gives Markov chains with a desired stationary distribution, and spatially

local dynamics, while controllably breaking time-reversal symmetry. To break time-reversal symmetry we

developed an algorithm that finds transitions that break detailed balance and transitions that maintain

charge/dipole conservation, and then chooses which set of transitions will give the largest signal when

simulated.
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Chapter 1

Introduction

1.1 Hydrodynamics

If one were to place a drop of creamer into their coffee, they would see initially the creamer concentrated

in one spatial region, and as time steps forward the creamer would blend into the coffee, eventually reaching

an equilibrium when the solution is fully mixed. This behavior is called diffusion, and many different

systems follow that same behavior. Tracking any individual particle would be incredibly complex and not

very informative, since every individual molecule is strongly interacting with its environment in a very

complicated way. However, over large time scales for some relatively large sample, we have a description of

the dynamics of how the system reaches equilibrium. The effective theory that governs these dynamics is

hydrodynamics.

An effective theory describes a set of behaviors that systems obey over large time and/or length scales.

At these scales we are able to integrate the microscopic degrees of freedom out of our model. We use these

equations to mathematically ’zoom out’ and look at a system spatially or temporally to model and predict

the emergent behavior. This ’zooming out’ reduces the degrees of freedom for a system to just quantities

that are conserved, like particle number, since every other type of degree of freedom (such as the velocity of

a particle) quickly decays in a microscopic time scale associated with inter-particle collisions. Focusing only

on the hydrodynamic, slow, degrees of freedom allows for feasible simulation of the dynamics.

The minimal theory of hydrodynamics is diffusion of a single conserved charge. For this case the
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microscopic equation of motion is given by the continuity equation:

∂tρ = −∇ · J (1.1.1)

This minimal theory differs in scope from the traditional formulation of hydrodynamics, but the conceptual

starting point is the same.

Traditionally called fluid mechanics, hydrodynamics looks at how water and other fluids move over a

long time scale with sufficient samples. This traditional formulation asks questions like how does water flow

through a pipe, or how does water flow in a waterfall. These classical questions have quantum analogs such as

how do electrons flow through a constriction in graphene [12]. We have answers to the classical questions of

hydrodynamics because we only look at long time scales, and due to that we only keep track conserved quan-

tities like energy or momentum. These conserved quantities exist whether or not the microscopic dynamics

are classical or quantum. If we can use a mechanical theory that doesn’t depend on the nature of a system

being quantum or classical, like statistical mechanics, to answer the classical questions of hydrodynamics,

we should be able to use the same formulation to predict the hydrodynamic behaviors of quantum systems.

For example, many classical fluids obey the Navier-Stokes equations, but the Navier-Stokes equations are

not sensitive to microscopic details of the particles themselves. The example of electrons flowing through a

constriction in graphene is a quantum fluid that is observed to obey the Navier-Stokes equations. [12]

In the modern formulation of hydrodynamics, we study how some complex many body system ther-

malizes, or achieves thermal equilibrium. This question involves foundational principles of physics, and

ultimately allows us to model “simple” questions about how fluids move around obstacles. Importantly, we

look at why fluids thermalize the way they do, rather than focusing on peculiarities of a particular experi-

mental geometry, boundary conditions, or initial conditions to describe how a fluid moves. Diffusion can be

described using Fick’s laws where ρ is the density of the single conserved quantity and J is the conserved

current or diffusive flux: the amount of substance that will diffuse through a unit area:

Ji = −D∂iρ (1.1.2)

Combining with the continuity equation (1.1.1) we find

∂tρ = D∂2
xρ (1.1.3)
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(a) Mass transfer diffusion example [10] (b) Self Diffusion of toleune example [5]

Figure 1.1: Fick’s law of diffusion in different media

This scaling occurs anywhere there is diffusion with a single conserved quantity, so mass transfer[10],

toluene vapor diffusion[5], and conserved charges diffusing all obey this scaling at hydrodynamic time scales.

Using dimensional analysis we can say that

[ρ]

time
∼ [ρ]

length2
(1.1.4)

length2 ∼ time (1.1.5)

x2 ∼ t (1.1.6)

so our relaxation time, or the time to reach equilibrium, scales quadratically with our system size. Saying

that all of these systems obey the same hydrodynamic scaling is another way of saying they all exist in the

same universality class. A universality class is a collection of dynamical systems that asymptotically have

the same behavior.

1.2 Hydrodynamics with constrained kinematic motion

This thesis discusses the universality classes arising from kinematically constrained fluids. A kinematic

constraint means there is some microscopic restriction on the local mobility of individual particles, so a subset

of the degrees of freedom are unavailable. People experience this kind of constraint daily when driving. A

car can move freely in 2D but should only go forward or backward on a one lane road.

Kinematically constrained fluids, dubbed fracton fluids, belong to new hydrodyanmic universality

classes [6]. The kinematic constraint we are exploring is the conservation of the dipole moment. Adding this

conserved quantity changes (1.1.3) by requiring ∂t
∫
dxxρ = 0, or that the dipole moment (

∫
dxxρ) doesn’t
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change with time.

∂t

∫
dxxρ =

∫
dxx∂tρ (1.2.1)

= −
∫

dxx∂xJx by the continuity equation 1.1.1 (1.2.2)

=

∫
dxJx after integrating by parts (1.2.3)

Our boundary values vanish because we are considering dynamics with periodic boundary conditions. (1.2.3)

only vanishes if Jx = ∂xJxx, so we obtain ∂tρ+ ∂xJx = ∂tρ+ ∂2
xJxx = 0. This gives [8]

∂tρ = −B∂4
xρ (1.2.4)

since with time reversal symmetry

Jxx = B∂2
xρ (1.2.5)

where Jxx is the symmetric dipole current. In ideal hydrodynamics, lowest order with no derivatives in

the current, time-reversal symmetry must be respected. Importantly, the sub-diffusive result arises because

we cannot write Jxx as a function of ρ [8], we must use derivatives of ρ. This is because fractons are

an isotropic fluid, meaning they exhibit the same properties regardless of the direction of measurement.

Being homogeneous and isotropic means we have spatial and temporal inversion symmetry [3]. The nature

of Jxx being time reversal odd then forces only derivatives of ρ, a time reversal even function, to appear

since time reversal symmetry is not broken in ideal hydrodynamics. The existence and conservation of this

dipole moment adds another conserved quantity that constrains how particles move around the system as

thermalization occurs, so a sub-diffusive scaling (t ∼ x4) is sensible. This sub-diffusive scaling has been

verified experimentally with cold atoms in a tilted atomic lattice [7].

This relationship between Jxx and ρ begs the question: is hydrodynamics stable to fluctuations?

Given that Jxx is time-reversal odd and ρ is time-reversal even, we can explore hydrodynamic stability by

controllably breaking time-reversal symmetry.
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Figure 1.2: KPZ scaling for sound mode of 1D Navier-Stokes[2]

1.3 Breaking Time-Reversal Symmetry

Why do we want to introduce instability by breaking time-reversal symmetry? In classical fluids,

hydrodynamics is unstable to fluctuations in 1D. If we take a quadratic perturbation in the density term of

the 1D Navier-Stokes equations, rather than finding the Gaussian fixed point, the endpoint of the dynamics

actually belongs to the Kardar-Parisi-Zhang (KPZ) universality class [9]. As an example, if we look at a 1D

chain of interacting particles and take correlation functions of the density, the correlation function is not

given by a solution to the hydrodynamic PDEs. A correlation function is an expectation value of a product

of two variables separated by time or space. We see this in Figure 1.2.

In this thesis we want to understand the breaking of time-reversal symmetry to learn whether new

Kardar-Parisi-Zhang-like dynamical universality classes can arise in this theory. We can visualize time-

reversal symmetry by imagining a video of some dynamics. If we were to rewind the video and not be able

to tell, then those dynamics are time-reversal symmetric. Immediately, the idea of a time reversible diffusive

system might cause alarm, dye mixing with water does not look like dye being removed from water. This

diffusive behavior because there are more water/dye mixed states than unmixed states, but every possible

configuration is equally likely. This means that any transition from a state looks like any transition back

into that state, so the video looks the same playing forward and backward. The dynamics in this example

are modeled by the transitions between microscopic states of the system, or microstates.
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Thermal systems that obey this same behavior are subject to the fluctuation-dissipation theorem, and

Kubo-Martin-Schwinger (KMS) symmetry generates time-reversal symmetry for dissipative thermal systems

[1]. Our formulation uses systems that obey detailed balance, and transformations that look like KMS

symmetry [8], so even in our non-thermal dissipative system we have a reasonable notion of time-reversal

symmetry.

With this notion of time-reversal symmetry, we can controllably break it by emulating a biased random

walk. A biased random walk is a walk on a graph where the probability to transition to any state is not

uniform, there are some preferred transitions. When we say controllably, in this context we mean that our

system is constructed such that we control how large a bias we implement

We will do this through specific construction of Markov chains that break detailed balance but main-

tain stationarity.



Chapter 2

Mathematical Justification

To provably break time-reversal symmetry, we need to construct a Markov chain with preferred

transitions that still has some known distribution of states to relax to.

2.1 Markov Chains

A brief note on notation: Q represents a matrix and we represent column vectors as |x⟩. We use this

bra-ket notation because it is elegant, not because our model involves quantum mechanics. Our model and

all simulations are classical.

First we define a global probability distribution:

|P ⟩ =
∑
x

Px|x⟩ =
∑
x

P (x) |x⟩ (2.1.1)

Using this probability distribution, we can evolve our system by locally updating some q consecutive sites

and transitioning with some probability, P (x). These transitions are stochastic, and we can describe this

behavior using a Markov chain. Now we can define out transition matrix, Q

Qgate =
∑
y

Qgate
i (x → y)|y⟩⟨x| for i ≤ L (2.1.2)

A Markov chain is a stochastic process in which the future state of the system depends only on the present

state, satisfying the Markov condition. Schematically this means that we must construct stochastic transition

matrices, which have all columns summing to 1. The chains are made of every possible state that a system

can exist in, and each state has some associated probability to transition in and out (Pin and Pout). We model
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charge/dipole conserving dynamics by having each transition be an allowed move of particles, which must

move with other particles. The dipole constraint forces charges to move away from each other symmetrically,

or for +- charge pairs to always move together. Every possible transition is one allowed move of charges

(described explicitly in Figure 2.1). Since every state in a given sector can be transitioned into/out of

we say that all states communicate and are essential. This combination implies they exist in a unique

essential communicating class, which guarantees the existence of at least one stationary distribution[11]. The

stationary distribution, denoted |π⟩, describes the distribution of states once the Markov chain is done

evolving through time. Formally The stationary distribution is a +1 eigenstate of Q:

|π⟩ = Q|π⟩ (2.1.3)

Equivalently, an elementwise formulation gives

π(y) =
∑
x

π(x)P (x, y) (2.1.4)

Figure 2.1: Example microscopic transition matrix for m=q=4 with charge and dipole conserved. The blue
to purple transition is: 2 charges on site 2 splitting and moving away from each other equally. the blue to
red transition is: one charge at site 1 and one charge at site 2 moving away from each other equally. The
blue to green transition is all charges moving 1 site away from site 2, half right and half left.

Figure 2.1 is a microscopic chain for a transition of our systems, and it shows 2 important properties
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of our Markov chains. First, we see that every state in this microscopic chain communicates with each other,

i.e every state can transition to every other state. This makes every state essential and means that they are

all part of one unique essential communicating equivalence class. This also means that this microscopic chain

is irreducible, meaning that we cannot remove some collection of states from the chain without affecting

the transition probabilities. The second is that the Pin = Pout for all states, creating a uniform stationary

distribution.

Another important property of Markov chains is detailed balance. The detailed balance equation

is

Q̂(x, y) ≡ π(y)Q(y, x)

π(x)
(2.1.5)

and tells us that when a Markov Chain obeys detailed balance, time reversed chain is equal to the original.

We call Q̂(x, y) the time-reversed chain of Q(y, x). A Markov Chain that obeys detailed balance, then, has

time-reversal symmetry denoted T . If |π⟩ is uniform then (2.1.5) requires that Q is symmetric. If Q is

symmetric, we can also say that Pin = Pout for all states.

Let us more explicitly define some properties of the states of our Markov chain. We can define an

essential state as, for finite chains a state x is essential if and only if [11]

Qx{τ+x < ∞} = 1 (2.1.6)

Where τ+x is the hitting time, or the time it takes for the chain to first visit x, so if some state x has a

probability of 1 to be hit before t = ∞ then x is essential. If a state in a finite chain satisfies (2.1.6) then it

is recurrent.

Next, we say that x communicates with y if and only if x → y and y → x, and we write that as

x ↔ y. The equivalence classes for these relations are called communicating classes. For an irreducible

chain there is only one equivalence class. Communicating classes can be essential if all states within them

are essential, we call these essential communicating classes.

Proposition 1.29 in [11] says that the transition matrix Q has a unique stationary distribution if and

only if there is a unique essential class, and if there are distinct essential classes Q has at least one stationary

distribution.
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2.2 Many Body Dynamics

To simulate hydrodynamics using Markov chains we need to ensure the existence of a stationary dis-

tribution so that we can sample the equilibrium correlation functions, as that will determine the universality

class. This initially creates a problem because our Markov chain is reducible, and reducible chains are not

guaranteed a stationary distribution. This, however, is solved by our construction.

We simulate hydrodynamics by randomly swapping q-gates with other configurations of charges with

the same charge and dipole moment. Remember that this random swapping represents possible movements

of the charges according to the kinematic constraint. This creates unique essential communicating classes

and as per the discussion in Section 2.1 means that there exists a unique stationary distribution. Since

the transition is uniform inside the communicating classes, the transition matrix inside each communicating

class is doubly stochastic. After normalizing the sum of every communicating class transition matrix the Q

for the fully symmetric system is doubly stochastic and so |π⟩ is uniform.

We are creating these 1D Markov chains with periodic boundary conditions. Each site can have a

charge of 0, 1, ...m− 1. We update q sites locally in each time step. We define the total charge for a state as

the sum of all charges in that state, and the total dipole moment as
∑q

x=1 xρ[x] where ρ[x] is the charge at

site x. From these initial conditions we are interested in the behavior of gates with q sequential sites inside

them called q-gates. For Figure 2.1 our m = q = 4, so we look for sets of 4 sequential sites where each

site can have charge 0, 1, 2, or 3, and where all q-gates only update to q-gates with the same charge and

dipole moment. Requiring all allowed transitions to have the same charge and dipole creates communicating

classes within those sectors. In this full symmetry case each transition inside the communicating classes

looks like the figure, so every state is essential and every communicating class is unique and essential. From

the previous section we know that this guarantees the existence of at least one stationary distribution. This

is vital because we have mL total microstates, |x⟩ so our state space is exponential in L.

We can construct a local Qgate
i such that we have a stochastic process since the transition must occur,

and our states are essential. Since we only want to act on one q-gate at a time, we enforce spatial locality.

Locality refers to the principle that physical interactions can only occur at points in space-time that are



11

close to each other, so in our case we define close to be within the q-gate. This is a fundamental postulate

for physics and hydrodynamics. Globally we can describe acting on an individual arbitrary state |x⟩ with:

Qgate
i = 11 ⊗ 12 ⊗ · · ·1i−1 ⊗ Qgate

i ⊗ 1i+q ⊗ · · · ⊗ 1L for i+ q ≤ L (2.2.1)

where every operator acts on a q-gate. From here we are looking for the average trajectory of the multiple

transition matrices we use to act Q on the entire state rather that one q-gate, so we look at the classical

probability of selecting some gate j out of a total of L gates. Then we can rewrite Q as

Q =

L∑
j=1

1

L
Qgate

j (2.2.2)

So ∑
y

Q(x → y) =

L∑
j=1

1

L
Qgate

j (x → y) =
1

L
L = 1 (2.2.3)

where now we can have a stochastic transition matrix Q acting globally. Note that we are assuming periodic

boundary conditions on the microstates.

j ∼= j + L (2.2.4)

2.3 Parity and Time-Reversal symmetry

We are interested in exploring the time reversal symmetry (T ) and parity symmetry (P) of our Markov

chains. We looked at the time reversed transition matrix in the detailed balance discussion (2.1.5). Parity

symmetry is defined as Q = ΠQΠ−1 for some operator Π and can be interpreted as the system behaving the

same if we label j → −j. This is simply changing the basis of our Q, so conjugation by Π where Π flips the

sign of j describes the transformation. A symmetry is a transformation that leaves the equation of motion

invariant (if it is obeyed), and the ’equations of motion’ in our model are the transition probabilities in Q.

Now the question is what can guarantee with specific construction when we want to break T ?

As an example, we can break T by constructing a biased random walk that biases towards moving

charge to the right. To build this transition matrix we are creating two local transition matrices, a T broken

transition matrix and a transition matrix with both P and T , and adding them together. We can then

construct a macroscopic transition matrix by combining our local microscopic transition matrices. A simple
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example is with charge conservation and m = q = 2. In this example our motifs are: 00, 01, 10, and 11 so

to bias right 10 and 01 both must prefer transitioning to 01.

Qlocal =

00 01 10 11



00 1
2 0 0 0

01 0 1
4

1
4 0

10 0 1
4

1
4 0

11 0 0 0 1
2

+

00 01 10 11



00 1
2 0 0 0

01 0 1
2

1
2 0

10 0 0 0 0

11 0 0 0 1
2

(2.3.1)

=



1 0 0 0

0 3
4

3
4 0

0 1
4

1
4 0

0 0 0 1


(2.3.2)

for some state |x⟩. This example shows a combination of the 0, 1, and 2 total charge sector microscopic

transition matrices. In this example we see that 01 is biased over 10, but 10 can still appear. The addition

of these transition matrices guarantees that the hitting time of any state obeys (2.1.6) since there is always a

probability to transition into and out (Pin, Pout) of any given state. This maintains our equivalence class and

thus the existence of our stationary distribution. We need to maintain the existence of a known stationary

distribution because our state space grows exponentially with the system size, mL, and we cannot sample

from every state for large systems. It is important to note that these transition probabilities include self

transitions. Furthermore, we ensure that Pin = Pout for each equivalence class. If Qgate is symmetric, or

obeys T then this result is trivial. We can prove that our construction guarantees this condition generally

with the following:

Let Q be the transition matrix from x for all y, and P (x, y) be the probability of x → y for a given y.
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P (x, y) = δxy[1−
∑

y,y ̸=x

Qyx] + Qyx (2.3.3)

πeq(x)P (x, y) = πeq(x)(δxy[1−
∑

y,y ̸=x

Qyx] + Qyx) (2.3.4)

∑
x

πeq(x)P (x, y) =
∑
x

πeq(x)(δxy[1−
∑

y,y ̸=x

Qyx] + Qyx) (2.3.5)

We can rewrite using (2.1.4) as

πeq(y) =
∑
x

πeq(x)δxy[1−
∑

y,y ̸=x

Qyx] + πeq(x)Qyx (2.3.6)

=
∑
x

πeq(x)δxy −
∑
x

δxyπeq(x)
∑

y,y ̸=x

Qyx +
∑
x

πeq(x)Qyx (2.3.7)

= πeq(y)− πeq(y)
∑

x,y ̸=x

Qxy +
∑
x

πeq(x)Qyx (2.3.8)

0 =
∑
x

[Qxyπeq(y)− Qyxπeq(x)] (2.3.9)

∑
x

Qxyπeq(y) =
∑
x

Qyxπeq(x) (2.3.10)

Pout =Pin (2.3.11)

Now we have a stationary distribution which we can sample from, and our Pin = Pout so we know

that our stationary distribution is uniform.



Chapter 3

Algorithm

How do we create these transition matrices that have some preferred transition, break detailed balance,

yet still guarantee the existence of a uniform stationary distribution and maintain charge/dipole conserva-

tion? We developed an algorithm that 1) finds the transitions that break detailed balance, 2) finds the

transitions that maintain charge/dipole conservation, 3) finds the intersection of those sets, and 4) chooses

the set of transitions that creates the largest signal.

3.1 Detailed Balance Breaking Transitions

To properly understand our algorithm it is easiest to start with what we are emulating. We are turning

a uniform random walk into a biased random walk. This creates some set of preferred transitions that do

not behave identically with time flowing forward or backward, breaking time reversal symmetry. We do this

by recognizing that, for q = m = 2 the number of 10 q-gates must equal the number of 01 q-gates, so we

can bias moving charges right by enforcing that 10 and 01 prefer to transition to 01. If we transition from

10 to 01 and then reverse time while maintaining our update rules, 01 will transition to 01 not back to 10,

breaking T . For small systems we can exhaustively see these update rules, but how can we explore larger

systems? We can exploit the fact that, like with small systems, certain sets of q-gates must have the same

number of occurrences. The problem then is to find these sets of q-gates.

Let’s start with the inherent properties of our system. All of our systems have periodic boundary

conditions, so x ∼ x + L, and we want to locally conserve charge and dipole moment. Forcing local

conservation of these quantities locks our system into only transitioning to microstates within the same
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charge and dipole sector. We define qx as the charge on some site, x, and f(qi) as arbitrary functions. This

allows us to write:

L∑
x=1

f(qx) =

L∑
x=1

f(qx+1) (3.1.1)

L∑
x=1

f(qx)− f(qx+1) = 0 (3.1.2)

L∑
x=1

f(qx, qx+1) = 0 where f(qx, qx+1) = f(qx)− f(qx+1) (3.1.3)

Periodic boundary conditions and conservation of charge/dipole give us (3.1.1), as it doesn’t matter where

in the system we start the sum if we sum over every index. This now becomes a question of what are the

allowed f(qx)? We first define fk(q) = qk for j, k ∈ {0, 1, ...,m−1}. Trivially, if k = 0 then f0(qx, qx+1) must

be identically 0, but can we find a nontrivial function for larger k? We can answer this by walking through

an example with m = q = 2. With these constraints our only potential nontrivial function is f1(q) = q, so

we have

L∑
x=1

qx =

L∑
x=1

qx+1 (3.1.4)

L∑
x=1

qx − qx+1 = 0 (3.1.5)

Our only q-gates are 00, 01, 10, and 11. We can see that f(0, 0) = 0 − 0 and f(1, 1) = 1 − 1 so 11 and 00

don’t contribute to the sum. We are left with f(1, 0) = 1 and f(0, 1) = −1, and this gives us what we need

to find the preferred transitions. (3.1.5) tells us that if there is more charge on the right our function will

have a negative value for that motif. Moreover, for (3.1.3) to be true then there must be an equal number

of motifs that shift charges left, giving a positive value. In this example we find n01 = n10. What are some

transitions on the entire microstate (L = 4) that maintain this added constraint? The first is bit-flipping

neighboring sites.

n01 = 1 = n10, 0100 → 0010, n01 = 1 = n10

n01 = 1 = n10, 1001 → 1010, n01 = 2 = n10

n01 = 1 = n10, 1100 → 0101, n01 = 2 = n10
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Similarly, only flipping one bit maintains this added constraint. However, this single bit flip violates charge

conservation, so we will have to impose another constraint to maintain our conservation rules in the final

update rules.

n01 = 0 = n10, 0000 → 0100, n01 = 1 = n10

n01 = 1 = n10, 0100 → 0110, n01 = 1 = n10

Immediately, if we can find these transitions by observation and some simple check-sums then why are

these f’s useful? The issue is that all of these transitions are guaranteed by detailed balance and a uniform

stationary distribution. If we act the bit-flipping operator twice on 0000 it will return 0000. However, if we

enforce T breaking updates these transitions are not guaranteed. Looking back at the non-trivial function

we found, we must ensure that we maintain Pin = Pout and
∑

x fx = 0. Since we bias charges to the right,

we identify Pin = λn01 and Pout = λn10 where λ is a normalization factor. We then see

∑
x

fx = (n01 − n10) (3.1.6)

= Pin − Pout = 0 (3.1.7)

Pout = Pin (3.1.8)

(3.1.8) shows that a transition that breaks detailed balance also maintains the existence of a stationary

distribution. We argue that the f’s show us what transitions break T while maintaining stationarity.

We can generalize this L = q = 2 case to arbitrary L and q. Consider the family of functions

fq
x = f(qx, qx+1, ..., qj+q−1) (3.1.9)

∝ (qkx
x q

kx+1

x+1 ...q
kx+q−1

x+q−1 − ftranslate(j)) (3.1.10)

Where ftranslate(q) is a translational term owing to the periodic boundary conditions of our system. (3.1.10)

enforces ∑
j

fq
j = 0 (3.1.11)
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For an arbitrary fj we say

Pin ∝
∑
j

fjΘ[fj ] (3.1.12)

Pout ∝
∑
j

(−fj)Θ[−fj ] (3.1.13)

Where Θ[x] is a Heaviside function. Rather than compute these sums outright, we recognize that since the

preferred motifs always appear with the same frequency as the unpreferred motifs a computation of the null

vector in the motif frequency basis suffices.

N⃗ = (n00...0, n00...1, ..., nmm...m) (3.1.14)

c⃗ · N⃗ = 0 (3.1.15)

Where, up to normalization, the values in c⃗ are the fj(s⃗) values for the corresponding motif s⃗. For m = q = 2

the c⃗ is (0,−1, 1, 0), where the negative values indicate a transition into that motif and the positive values

indicate a transition out of that motif. Our constraints limit the amount of allowed functions f , so that for

a general system there are mq−1 − 1 possible f ’s, and each f corresponds to a unique set of transition rules.

A full proof of the mq−1 − 1 result will be presented in future work, but our numerical simulations always

find mq−1 − 1 null vectors so we can be reasonably confident in this rule. To find all of the null vectors in

practice we numerically generate a matrix of N⃗i where k ≥ mq−1 − 1



N⃗0

N⃗1

...

N⃗k


and find the null space, C . This gives all possible update rules, but we need to ensure that we are using

update rules that conserve our desired symmetries.

3.2 Enforcing Conservation

If we remember the possible transitions that break detailed balance but maintain the n10 = n01

constraint, there were a subset of transitions that broke charge/dipole conservation as well. Thus, we need
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to enforce charge/dipole conservation on our possible preferred motifs, so that we are only swapping between

states that have the same charge and dipole moment. We can accomplish this by creating charge/dipole

projectors, that zero out the transitions that break these conservation rules. We create these projectors using

P = 1−M where, for each N ×N block of states with the same charge and dipole moment M has uniform

entries 1
N . This creates a null projector that eliminates transitions that do not stay within the charge and

dipole block.

As an example, let us look at charge conservation in m = q = 2.

M =

00 01 10 11



00 1 0 0 0

01 0 .5 .5 0

10 0 .5 .5 0

11 0 0 0 1

so the full projector is then

P = 1−M =



0 0 0 0

0 .5 −.5 0

0 −.5 .5 0

0 0 0 0


We can check that this result is a projector by checking if it is idempotent, P2 = P. In this example we find

that 00 and 11 cannot transition, and 01 ↔ 10. for this size the detailed balance breaking transitions are

a subset of the symmetry preserving transitions. Of course, this symmetry conservation restriction further

decreases the number of possible transitions.

To find all of the transitions that both break detailed balance and obey the desired conservation laws,

we want to find the intersection of our vector spaces. One way to find the intersection of these vector spaces

by taking the singular value decomposition (SVD) of

PdipoleCPdipole = UΣV †

In this decomposition, the rows of U are vectors that are in the union of our two vector spaces. Any row of
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U that corresponds to a singular value of 1 in Σ is a vector in the intersection of our vector spaces.

3.3 Optimization

Once we’ve extracted all vectors with a singular value of 1, we need to decide which set of update

rules will give the largest signal. To do this, we will again start by discussing the simplest case, where we

are just conserving charge. We still want to break T by moving charges to the right more often than to the

left, and we can measure charge movement by calculating the average increase in the dipole moment after

an update. If an update to some state s⃗ increases the dipole moment of s⃗, then the charges in that state

must have moved to the right on average. This behavior is governed by ∂tρ = ∂xρ. Using our example walk

from before with q = m = 2 where 01 and 10 bias towards transitioning to 01, the dipole moment tends to

increase from 1 to 2 or stay at 2, the maximum value. In this example we find:

∂t

∫
dxxρ =

∫
dxx∂tρ =

∫
dxx∂xρ = −

∫
dxρ (3.3.1)

which is always a positive value because ρdx is either -1 (1 swaps with a 0) or 0 (nothing happens). When we

want to extend this argument to preserve charge and dipole moment, we must increase the octopole moment.

We can’t maximize over the dipole moment because that is conserved, and if we maximize over the

quadrupole moment (
∫
dxx2ρ) we find dissipative behavior in the hydrodynamic description (∂tρ ∼ ∂2

xρ) [8].

We also know that Jxx ∼ ρ is not allowed from the discussion in Section 1.2, so we must have Jxx ∼ ∂xρ.

This then gives ∂tρ ∼ ∂2
xJxx = ∂3

xρ. The predicted behavior, ∂tρ ∼ ∂3
xρ, is then only visible by tracking

an increasing octopole moment. When we say optimizing over the octopole moment, what are we explicitly

doing? Let’s assume we have some set, V , of orthonormal vectors that correspond to the preferred transitions

described by the allowed fs, and let A⃗ · V⃗i represent the octopole moment of each motif with a non-zero f

in Vi.

A⃗ · a⃗ = 13a0 + 23a1 + ...+ (x+ 1)3ax (3.3.2)

where the ai represent the individual charges in the a motif. We are looking for the corresponding ci that

maximizes A⃗·ciV⃗i. The ci values obey the constraint
∑

i c
2
i = 1, and with this we can use Lagrange multipliers
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to maximize ci.

L = A⃗ · V⃗ici −
λ

2
(c2i − 1) (3.3.3)

∂L

∂ci
= A⃗ · V⃗i − λci = 0 (3.3.4)

ci =
A⃗ · V⃗i

λ
(3.3.5)

=
A⃗ · V⃗i√∑
i(A⃗ · V⃗i)2

(3.3.6)

With this calculation we are looking at the normalized sum of the octopole moment of every state in the

null vector block, and the largest sum will give us the largest signal when we simulate.



Chapter 4

Numerical Results

Now that we know the reasoning behind the algorithm, what results have we been able to produce?

4.1 Recovering previous results

We start by reproducing previous results from the literature. We are looking to recreate the dressed

Gaussian[4] and the z = 4 sub-diffusion.

Figure 4.1: Results from previous literature [4]. b) is sub-diffusive results for C(0, t) in dipole and quadrupole
conserving fluids. c) shows scaling collapse according to the long wavelength description

In Figure 4.2 we see the predicted (1.2.4) t ∼ x4 scaling. The plots in Figure 4.1 and Figure 4.2 show a

correlation function, which we track by calculating the correlation function C(x, t) = ⟨s(y, z)s(y+ x, z+ t)⟩,

which is the average over all y, z of the product inside the brackets where s(y, z) is the charge on some site y

at time z. When we simulate the full C(x, t) function we also see the predicted C(x, t) = t−
1
z f(xt−

1
z ). The
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Figure 4.2: Simulation for m = 3, q = 5 showing C(0, t) giving Z = 4 sub-diffusive behavior

predicted f(xt−
1
z ) is given by

f(xt−
1
4 ) =

∫
dxe−k4t cos kx (4.1.1)

Figure 4.3: C(x, t) correlation function following (4.1.1) and agreeing with Figure 4.1, finding the long
wavelength description.

4.2 Towards breaking time-reversal symmetry

To explore why this behavior occurs, we need to be able to controllably break time-reversal symmetry,

and we do this using the algorithm as described in Chapter 3. The first part of the algorithm finds the allowed

motifs, for m = q = 2 we expect only 01 and 10 to be allowed.

Figure 4.4: Null vector for m = q = 2, n01 = − 1√
2
, n10 = 1√

2
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We can read Figure 4.4 as giving the f value for the 00, 10, 01, 11 motifs respectively, and we see

that the allowed motifs part of the algorithm gives the null vector we expect for small systems. Further, for

m = 2, q = 3 with just charge conservation we expect to find 23−1 − 1 = 3 null vectors.

(a) (b)

Figure 4.5: a) Motifs corresponding to the vector entries. b) Null vectors for m = 2, q = 3. Each entry is
the f value for the corresponding motif. Similarly to Figure 4.4, we can read the columns in (b) as the f
values corresponding to the motif in the same row in (a). 001 can have an f value of -.596, .5 or .0958 etc.

In this figure, we can read the middle column as saying that n001 + n101 = n010 + n011. The motifs

100 and 110 are also non-zero, and would complete the pattern of the LHS being a cycle of 001 and the RHS

being a cycle of 101, but the value is so close to 0 that we’d need a larger run to be sure of the update rule.

From this set of null vectors we can optimize over the octopole moment to find our transition rules.

000 001 010 011 100 101 110 111
[ ]0.0 -.5963 -.1008 -.3677 .6702 .1008 .2668 0

Figure 4.6: Optimized vector for m = 2, q = 3. Each f value is underneath it’s corresponding motif, so 001
has an f of −.5963 etc.

Now that we can find the transition rules we can finally build the T -breaking transition matrix. As a

reminder, the T -breaking transition matrix is a sum of the fully symmetric transition matrix and the fully

T -broken transition matrix. For m = q = 2 we expect Figure 2.3.1, and we produce 4.7.

The ordering of the rows is not the same as the example because the code hashes the states using

H =
∑L

i qii which calculates from the value of a binary string as 10 = 1 and 01 = 2. We see a uniform
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Figure 4.7: T breaking transition matrix for m = q = 2, the columns are ordered 00, 10, 01, 11

stationary distribution by multiplying the matrix with |1111⟩ and getting |1111⟩ = Q|1111⟩. To turn the

optimal vector into the transition matrix, we create a dictionary with all possible values for the charge and

dipole moment being the keys. The associated values are a tuple containing: the states belonging to the

charge and dipole blocks and the f value the state is associated with. From there we iterate through each

q-gate, comparing if the f value is positive or negative, and calculating the transition probability from states

with positive f values to states with negative f values as described in Section 3.1. We add these transition

probabilities to an empty matrix of size mq × mq where the index for each q-gate is the unique hash as

given in the discussion above. To create the symmetric transition matrix we iterate through each charge and

dipole block assigning Qij =
1
N where N is the size of the block.

Unfortunately we were not able to do a a large scale numerical simulation due to time constraints and

errors in the main loop.



Chapter 5

Conclusion

The purpose of this thesis is to develop rigorous tools to probe new hydrodynamic universality classes

and determine if it is stable to fluctuations? These are the questions posed at the start of this thesis, and

while we have developed a framework to answer these questions, it remains to efficiently implement the

algorithm numerically to find the t ∼ x3 scaling.

In particular, we developed an algorithm to provably and controllably break time-reversal symmetry

in classical many-body Markov chains with charge and dipole conservation. This algorithm simulates a 3rd

derivative drift term in the generalized (dipole-conserving) Fick’s law and finds the preferred transitions

that break detailed balance while maintaining charge and dipole conservation. From these update rules we

are able to construct a Markov chain that preserves stationarity with a known stationary distribution, has

update rules which are spatially local (on q sites), while breaking detailed balance.

All of this was programmed in Python, and future work will include running a full simulation for large

m, q, L values to observe how the relaxation time scales with the system size, along with probing two-point

correlation functions of the charge density, and any other valuable probes of hydrodynamic behavior that

we develop.
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