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Model checking has become a widely adopted approach for the verification of hardware de-

signs. The ever increasing complexity of these designs creates a continuous need for faster model

checkers that are capable of verifying designs within reasonable time frames to reduce time to mar-

ket. IC3, the recently developed, very successful algorithm for model checking safety properties,

introduced a new approach to model checking: incremental, inductive verification (IIV). The IIV

approach possesses several attractive traits, such as stability and not relying on high-effort rea-

soning, that make its usage in model checking very appealing, which motivated the development

of another algorithm that follows the IIV approach for model checking ω-regular languages. The

algorithm, Fair, has been shown to be capable of dealing with designs beyond the reach of its

predecessors.

This thesis explores IIV as a promising approach to model checking. After identifying IIV’s

main elements, the thesis presents an IIV-based model checking algorithm for CTL: the first prac-

tical SAT-based algorithm for branching time properties. The algorithm, IICTL, is shown to

complement state-of-the-art BDD-based CTL algorithms on a large set of benchmarks. In addition

to fulfilling the need for a SAT-based CTL algorithm, IICTL highlights ways in which IIV algo-

rithms can be improved; one of these ways is addressing counterexamples to generalization, which

is explored in the context of IC3 and is shown to improve the algorithm’s performance consider-

ably. The thesis then addresses an important question: for properties that fall into the scope of

more than one IIV algorithm, do these algorithms behave identically? The question is answered

negatively, pointing out that the IIV framework admits multiple strategies and that there is a wide

spectrum of possible algorithms that all follow the IIV approach. For example, all properties in the

common fragment of LTL and CTL—an important class of properties—can be checked with Fair
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and IICTL. However, empirical evidence presented in the thesis suggests that neither algorithm

is always superior to the other, which points out the importance of being flexible in deciding the

strategy to apply to a given problem.
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and Niklas Sörensson for their valuable comments and suggestions on the work. I would also like

to thank instructors at CU. Not only I learned a lot from them, but they were also great sources

of inspiration. Sriram Sankaranarayanan especially helped broaden my view of formal verification.

It has been a pleasure to have the company of Michael Dooley, Saqib Sohail, Yan Zhang, and

Arlen Cox in the VLSI lab. I have especially benefited from hours of discussion with Michael whose

work was the closest to mine. Michael was also kind enough to provide feedback on my writing in

several occasions.

I would also like to thank Mentor Graphics’s formal team, especially Jeremy Levitt, for the

internship opportunities I have been given. The internships have helped my PhD tremendously.



vii

I am very grateful to my wife, Yassmin, without whom this thesis would not have been

possible. Yassmin has always been there for me and has supported me in every step of my PhD.

Whenever I was going through a busy period, she would take care of all our matters regardless of

how busy she herself was. I am also very grateful to my parents for the continuous encouragement

and support. I thank my dad for instilling in me the love of math and learning. I thank my mom

for providing me with so much love and care, and for spending countless hours studying with me

since my early years and up to college.

I am grateful to my friends in Boulder, especially Mohamed Nofal and Abdelati Hawwari,

who have always stood by me and were like my family throughout my stay in Boulder.

Special thanks to Laura Nash from the writing center who has diligently revised my thesis

and provided me with many comments that helped me improve my writing.

Above all, I thank Allah for His Guidance, and for helping me pass successfully through the

most difficult periods.



Contents

Chapter

1 Introduction 1

1.1 Overview of Incremental, Inductive Verification . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8

2.1 Finite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Invariance Properties and Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Computational Tree Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Linear Time Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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Chapter 1

Introduction

Integrated circuits (ICs) have become ubiquitous in today’s world. They exist in all electronic

devices from cell phones and computers, to engine control units in cars and electronic control

systems in aircrafts, to medical devices such as pacemakers. ICs have become very complex with

the number of transistors on an IC reaching a few billion. However, with the increase in the

complexity of the design comes an increase in the number of design errors. For example, in 2001,

Intel reported finding more than 7,800 bugs in its Pentium 4 microprocessor prior to tapeout—a

350% increase in the number of bugs over its predecessor, the Pentium Pro [9]. Not only can design

errors have serious effects, erroneous ICs are often difficult and costly to replace. Thus, IC designers

often allocate a great portion of the design budget to verifying the correctness of the design1 .

The correctness of a design is established by verifying that every behavior it exhibits conforms

to the specifications. Ideally, the verification process (a) is automatic, i.e., requires minimal human

input, (b) achieves high coverage, i.e., analyzes as many behaviors of the design as possible, and (c) is

fast enough to allow meeting time-to-market constraints. Model checking [33, 52] is a set of rigorous

mathematical techniques that mostly meets those requirements by performing an exhaustive search

of the design’s state space looking for behaviors that violate the specifications. The only inputs

model checking requires from the user are a description of the design in some modeling language,

and its specifications in some property specification language; it neither requires input stimulus

(which is required by simulation), nor requires guiding the proof (which is required by theorem

1 The International Technology Roadmap for Semiconductors (ITRS) estimates that functional verification con-
sumes 75% of the system-on-chip design resources [39].
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provers). The usefulness of model checking has been established by its ability to detect subtle bugs

that escape testing.

Since its introduction in the early 80’s, model checking has undergone considerable advance-

ment. On the theoretical side, researchers have defined different classes of properties and analyzed

their model checking complexities. On the practical side, careful engineering and clever heuristics

have been applied in designing model checkers to overcome the high complexity of the algorithms

and make worst case complexity scenarios as rare as possible. The practical advancement has

transformed model checking from being of purely academic interest into a widely adopted approach

in the microelectronics industry [9, 1, 8, 34].

The improvements in model checking technology have allowed model checkers to handle

industrial-size designs [36, 7, 4]. Yet, many designs and properties of interest are still out of the

reach of state-of-the-art model checkers in that such designs and properties require model checkers

to run for prohibitively long periods of time. Thus, the quest for faster model checkers is still

ongoing.

Modern model checkers rely on a collection of proof engines. A proof engine is an implemen-

tation of a model checking algorithm, which typically applies some form of state-space exploration

to find a counterexample to the property, or prove the non-existence of such a counterexample.

The earliest model checking algorithms were explicit: they dealt with individual states of the

model [26, 27], which limited their applicability to relatively small designs. This limitation created

a need for an alternative approach that can deal with large designs. As a result, symbolic model

checking [21, 45] was proposed circa 1990 to fulfill this need. Rather than dealing with individ-

ual states, symbolic model checking algorithms manipulate sets of states. The first symbolic model

checking algorithm [21] represented sets of states using binary decision diagrams (BDDs) [19] which

extended the reach of model checkers to designs with more than 1020 states. However, a problem

with BDD-based algorithms is that they often do more work than is required2 . This has led to the

2 A by-product of constructing a BDD for a Boolean function is the determination of the satisfiability and validity
of that function!
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introduction of another class of symbolic model checking algorithms that are based on satisfiability

(SAT) checking. Enabled by the advancement in SAT solver technology, SAT-based algorithms

manipulate propositional formulae, typically in conjunctive normal form (CNF), and employ SAT

solvers to check the satisfiability of such formulae. SAT-based algorithms have proven to be more

robust than BDD-based ones and are capable of efficiently dealing with designs far beyond the

reach of BDD-based algorithms.

Bounded model checking (BMC) [12] is the first SAT-based model checking algorithm. BMC

checks for the existence of a counterexample of length k by formulating a SAT query through un-

rolling the circuit k times. An unsatisfiable answer from the SAT solver triggers BMC to increment

k. In this form, BMC is incomplete: it is only capable of finding counterexamples. Nevertheless,

it can be made complete in various ways; for example, it can be augmented with a termination

check to determine if a bound has been reached that is high enough to conclude the absence of

a counterexample for any depth. The bound could be based on the (recurrence) diameter [12] or

the reachability (recurrence) diameter [41, 23]. The bound can often be reduced by resorting to an

induction check [13, 54, 5, 6]. An alternative approach to making BMC complete is to derive in-

terpolants [28] from unsatisfiable formulae to compute overapproximations of reachable states [47].

If the overapproximations reach a fixpoint (which can be checked via a SAT query), the property

holds.

Common to all BMC-based methods is the need to unroll the circuit with increasing depth,

although approaches based on induction and interpolation resort to unrolling less often. A funda-

mental limitation of unrolling-based algorithms is the exponential increase in the difficulty of the

SAT instances with the unrolling depth; unless the solution is determined at a sufficiently small

depth, the SAT solving times become prohibitively long, increasing the likelihood that the algo-

rithm runs out of time. While interpolation often finds the solution at much shallower depths, a

blow-up often occurs in the size of the interpolants which also increases the difficulty of the SAT

instances, albeit in a different way.

To overcome this limitation, Bradley developed a SAT-based method in 2010 that does not
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rely on unrolling [17, 14]. This method, called IC3, instead performs many relatively easy SAT

calls whose complexity does not increase much over time. Working with easy SAT calls gives it the

ability to continuously make steady progress towards determining a solution for the model checking

instance.

Similar to interpolation, IC3 attempts to find an inductive strengthening of the property, but

does so in an incremental fashion through deriving lemmas that hold relative to previously derived

ones. The lemmas are derived on demand to block states that interfere with the inductiveness of the

property. In deriving lemmas, IC3 draws its reasoning strength from inductive generalization [15].

These characteristics have made IC3 the best stand-alone model checking algorithm developed so

far [18]. Indeed, IC3 by itself lost by a small margin to two highly-tuned multi-engine model

checkers in the 2010 Hardware Model Checking Competition [37], triggering the addition of IC3

engines to most model checkers in the following year.

IC3’s approach to model checking is an incremental, inductive one. Its approach is incremen-

tal because of how it constructs a proof from simple lemmas and builds upon existing lemmas when

deriving new ones. Its inductiveness draws from using inductive reasoning in deriving lemmas. The

success of IC3 gives great promise to incremental, inductive verification (IIV). Indeed, an IIV-based

algorithm for model checking progress properties (Fair) [16] has been shown to complement exist-

ing BDD-based algorithms and state-of-the-art safety algorithms applied to liveness-to-safety [11]

converted models. Section 1.1 gives an overview of IIV.

1.1 Overview of Incremental, Inductive Verification

Incremental, inductive verification (IIV) is an approach for verification introduced by IC3.

IIV has proven to be a successful approach as demonstrated by IC3 and its counterpart for ω-regular

properties, Fair. Its success with these two algorithms suggests that it should be considered when

designing new model checking algorithms. The elements of the IIV approach are the following:
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• Abstraction: A suitable abstraction of the system is maintained and is refined on de-

mand. The choice of abstraction dictates the workings of the IIV-based algorithm and

could greatly impact its performance. The coarser the abstraction, the simpler the algo-

rithm usually is. For IC3, the system is abstracted as a set of over-approximations to

states reachable within i steps. This is a finer abstraction than the one used by IC3’s pre-

decessor, FSIS [15], which only abstracts the system as a single set of potentially reachable

states. This inflexibility of FSIS is what makes it inferior to IC3. For Fair, the system

is abstracted in the form of potentially reachable states and arenas of strongly connected

component (SCC)-closed sets.

• Analyzing Individual Counterexamples: When the current abstraction is not strong

enough to support the property (which occurs in the case of IC3 when none of the over-

approximate sets forms an inductive strengthening of the property, and in the case of Fair

when the set of potentially reachable states still contains fair SCCs), a specific reason—

generally a set of states—for why this is the case is examined. If analysis concludes that such

a reason is invalid, i.e., is not admitted by the system, the abstraction is refined accordingly.

In the process, the analysis may need to examine other related reasons. In the case of IC3,

the reason examined is a counterexample to induction (CTI). The analysis carried out tries

to prove this CTI unreachable within k steps. If the analysis fails, predecessors of that

CTI which are believed to be reachable are examined. In the case of Fair, the existence

of a skeleton, a set of states that fall in a single arena that satisfy all fairness constraints,

indicate that the criterion is not yet satisfied. Proving that any skeleton-state is unreachable

or that any pair of states cannot be connected is sufficient to rule out that skeleton.

• Generalization: Before refining the abstraction, the analysis is generalized to produce

a stronger refinement. Generalization uses inductive reasoning and is a crucial component

of IIV because it greatly reduces the number of counterexamples. However, there is a

tradeoff between the strength of the generalization and the speed of the procedure. IIV
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strikes a balance through fixing the domain of generalization—in particular to one in which

a generalization can be efficiently computed, and attempting to find the strongest possible

generalization in that domain. For example, in IC3, a proof of the unreachability of a CTI

within k steps is generalized to other states in order to reduce the number of CTIs that have

to be examined. The generalization of the proof is kept in the form of a single clause and

a minimal-size clause is sought. In Fair, a proof of unreachability of a skeleton-state from

the initial states or from another skeleton-state is generalized to include other states. The

purpose here is to reduce the number of skeletons to analyze. Fair limits the effort spent on

generalization by restricting the generalization domain to a CNF with state variables only.

• Incrementality: IIV uses the incremental approach of [44]. In contrast to the monolithic

approach, the incremental approach uses low-effort reasoning to derive pieces of the proof.

This makes the algorithm more effective in dealing with large systems for which the high-

effort reasoning used by monolithic approaches is likely to become a bottleneck.

Another advantage of the incremental approach is that any fact that is to be derived does

not need to hold by itself; it only needs to hold relative to already proven facts. This feature

turns out to be especially important to overcome the limitation of the fixed generalization

domain. In particular, not assuming already proven facts could lead to the failure of

generalization due to the impossibility of expressing the fact in the fixed domain.

1.2 Thesis Contributions

This thesis takes advantage of the incremental, inductive verification (IIV) approach to ad-

vance the state-of-the-art in model checking. In particular, this thesis makes the following contri-

butions:

• It develops an IIV, SAT-based algorithm for model checking CTL properties—the first

practical SAT-based algorithm for branching time logics. The algorithm, called IICTL,

follows the IIV approach outlined in Section 1.1. In particular, IICTL abstracts the system
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by over- and under-approximations of states satisfying each subformula of the CTL formula.

The individual counterexamples IICTL examines are undecided states: ones that are in

the over-approximation but not in the under-approximation of a certain subformula. To

decide a state, IICTL carries out a query depending on the CTL operator. Once a state

is decided, the result is generalized to other states. Experiments in Chapter 3 show that

IICTL is complementary to BDD-based approaches on a large set of benchmarks.

• It enhances an existing IIV algorithm, IC3, by improving its generalization procedure.

The improved generalization procedure addresses counterexamples to generalization

(CTGs), which are states that cause a certain strengthening of a clause to fail. Addressing

CTGs is shown to reduce the depth of IC3’s priority queue, resulting in a performance gain

to the algorithm as confirmed through testing the improved procedure in two independent

implementations of IC3.

• It compares the strategies of IC3 and Fair to that of IICTL; despite all being IIV algorithms,

the strategies of such algorithms greatly differ. This comparison points out that IIV is a

framework that admits multiple strategies and that the IIV–LTL approach (IC3 and Fair),

and the IIV–CTL approach (IICTL) are two extreme points on a spectrum of possible IIV

algorithms.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 defines terms used in the thesis, and gives an

overview of the IC3 and Fair algorithms. Chapter 3 describes IICTL, the IIV-based algorithm for

CTL properties. Chapter 4 lists the different types of generalizations needed by IIV algorithms

and outlines procedures for efficiently carrying such generalizations out. Chapter 5 describes IC3’s

improved generalization procedure. Chapter 6 analyzes the behavior of different IIV algorithms on

properties in the common fragment of CTL and LTL in order to understand the differences between

the strategies that these algorithms employ. Finally, Chapter 7 concludes the thesis.



Chapter 2

Preliminaries

This chapter reviews the definitions of terms, and the descriptions of algorithms referred to

throughout the thesis. Section 2.1 defines finite-state systems, which are used as models for hard-

ware designs for model checking purposes. Section 2.2 defines invariance properties and describes

induction, the classical approach for proving invariance properties and a principal component of the

incremental, inductive verification (IIV) approach. In Sections 2.3 and 2.4, two of the popular logics

used for specifying properties of finite-state systems—CTL and LTL—are described. Section 2.5

defines Büchi automata, which are used for model checking LTL properties. Sections 2.6 and 2.7

give an overview of the two existing IIV-based algorithms, IC3 and Fair, which deal with invariance

and ω-regular properties, respectively. Finally, model checking algorithms described in this thesis

are SAT-based; Section 2.8 explains common techniques employed by SAT-based algorithms to use

SAT solvers efficiently.

2.1 Finite-State Systems

Hardware designs at the register-transfer level (RTL) can be modeled as finite-state systems

to which model checking algorithms described in this thesis are applied. A finite-state system is

represented as a tuple S : 〈i, x, I(x), T (x, i, x′), B〉 consisting of primary inputs i, state variables

x, a propositional formula I(x) describing the initial configurations of the system, a propositional

formula T (x, i, x′) describing the transition relation, and a set B = {B1(x), . . . , B`(x)} of Büchi

fairness constraints. Primed state variables x′ represent the next state. A state of the system is an
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assignment of Boolean values to all variables x and is described by a cube over x, which, generally,

is a conjunction of literals, each literal a variable or its negation. A subcube of a cube q is a

conjunction of a subset of q’s literals. A clause is a disjunction of literals. A subclause d ⊆ c is

a clause d whose literals are a subset of c’s literals.

An assignment s to all variables of a formula F either satisfies the formula, s |= F , or falsifies

it, s 6|= F . If s is interpreted as a state and s |= F , then s is an F -state. A set of states D satisfies

a formula F if all states in D satisfy F : ∀s . s ∈ D ⇒ s |= F . A propositional function is the

characteristic function of a set of states; thus, when there is no ambiguity, propositional functions

and sets of states are used interchangeably. A formula F implies another formula G, written

F ⇒ G, if every satisfying assignment of F satisfies G. The (in)validity of F ⇒ G is established

by querying a SAT solver for the unsatisfiability of F ∧ ¬G.

The transition structure of a finite-state system is assumed to be complete. That is, every

state has at least one successor on every input: ∀x, i .∃x′ .(x, i, x′) |= T . A path in S, s0, s1, s2, . . .,

which may be finite or infinite in length, is a sequence of states such that for each adjacent pair

(si, si+1) in the sequence, ∃i.(si, i, s′i+1) |= T . A strongly connected component (SCC) of a

finite-state system S is a maximal set of states C in S such that there is a path from every state in

C to every other state in C. For a path s0, s1, s2, . . . in S, if s0 |= I, then the path is a run of S. A

state that appears in some run of the system is reachable. For an infinite path π, π(i) denotes the

i-th state in the sequence, i.e., π(i) = si, and πi denotes the suffix of π starting at si. An infinite

path s0, s1, s2, . . . is fair if, for every B ∈ B, infinitely many si satisfy B, si |= B; if s0 |= I then it

is a fair run or computation of S. S’s language is empty if it has no fair runs.

2.2 Invariance Properties and Induction

There are different types of properties that can be used for specifying finite-state systems.

Invariance properties are the simplest type of properties; they state that something must hold

in every state of the system. Formally, an invariance property P (x), a propositional formula,

asserts that only P -states are reachable. P is invariant for the system S (that is, S-invariant) if
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indeed only P -states are reachable. If P is not invariant, then there exists a finite counterexample

run s0, s1, . . . , sk such that sk 6|= P . An invariance property P (x) is inductive if

(1) (initiation) every initial state satisfies the property: I(x)⇒ P (x); and

(2) (consecution) every transition from a P -state leads to a P -state: P (x) ∧ T (x, i, x′) ⇒

P (x′).

While an inductive property P is invariant, the converse is not necessarily true. In such cases, it

is customary to seek an inductive strengthening of P , which is a formula F such that F ∧ P is

inductive.

An assertion F is inductive relative to another assertion G, possibly containing primed

variables, if

(1) every initial state satisfies F : I(x)⇒ F (x); and

(2) F satisfies consecution under assumption G:

G(x, x′) ∧ F (x) ∧ T (x, i, x′)⇒ F (x′).

2.3 Computational Tree Logic

Computational Tree Logic (CTL [25, 52]) is a branching-time temporal logic. Its formulae

are inductively defined over a set A of atomic propositions which in this thesis are taken to be

propositional functions defined over the state variables x. Every atomic proposition is a CTL for-

mula. In addition, if ϕ and ψ are CTL formulae, then so are ¬ϕ, ϕ ∧ ψ, EXϕ, EψUϕ, and EGϕ.

Additional operators are defined as abbreviations. In particular, EFϕ abbreviates E(ϕ ∨ ¬ϕ)Uϕ,

AXϕ abbreviates ¬EX¬ϕ, AGϕ abbreviates ¬EF¬ϕ, and AFϕ abbreviates ¬EG¬ϕ. A model of

a CTL formula is a finite-state system S. Satisfaction of a CTL formula at state s0 of S is then

defined as follows:
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S, s0 |= a iff s0 |= a for a ∈ A

S, s0 |= ¬ϕ iff S, s0 6|= ϕ

S, s0 |= ϕ ∧ ψ iff S, s0 |= ϕ and S, s0 |= ψ

S, s0 |= EXϕ iff ∃ a fair path s0, s1, . . . of S such that S, s1 |= ϕ

S, s0 |= EGϕ iff ∃ a fair path s0, s1, . . . of S such that for i ≥ 0, S, si |= ϕ

S, s0 |= EψUϕ iff ∃ a fair path s0, s1, . . . of S such that there exists i ≥ 0 for which S, si |= ϕ,

and for 0 ≤ j < i, S, sj |= ψ.

Then S |= ϕ if ∀s .(s |= I)⇒ (S, s |= ϕ). That is, S models formula ϕ if all its initial states do. In

model S, the set of states that satisfy ϕ is written [[ϕ]].

The fact that every CTL formula is interpreted as a set of states makes model checking easier

than for the more expressive CTL∗. Working bottom-up on the parse graph of ϕ, the standard

symbolic CTL model checking algorithm [45] annotates each node with a set of states. Boolean

connectives are dealt with in the obvious way, while temporal operators are handled with fixpoint

computations. The bottom-up approach is also known as global model checking. In contrast,

local model checking [42, 55, 10, 29] proceeds top-down. A local model checker starts from the

goal of proving that initial state s satisfies ϕ and applies inference rules to reformulate the goal as

a list of subgoals in terms of subformulae of ϕ and states in the vicinity of s. While local model

checking can sometimes prove a property without examining most of a system’s states, in its basic

formulation it does not play to the strengths of symbolic algorithms. For that reason, local model

checkers for finite-state systems tend to employ explicit search.1

2.4 Linear Time Logic

Formulae of Linear Time Logic (LTL [51]) are defined inductively over a set A of atomic

propositions which in this thesis are taken to be propositional functions defined over the state

variables x. Every atomic proposition is a formula. In addition, if ϕ and ψ are LTL formulae,

then so are ¬ϕ, ϕ ∧ ψ, Xϕ, ϕUψ, and ϕRψ. Additional operators are defined as abbreviations.

1 Some BDD-based model checkers incorporate elements of local algorithms. For instance, the CTL model checker
in VIS [57] uses top-down early termination conditions to define conditions that a safe approximation of a set of
states must satisfy. However, it is still fundamentally a bottom-up algorithm.
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Fϕ abbreviates (ϕ ∨ ¬ϕ)Uϕ, and Gϕ abbreviates (ϕ ∧ ¬ϕ)Rϕ. A model of an LTL formula is a

finite-state system S. Satisfaction of an LTL formula along path π of S is defined as follows:

S, π |= a iff π(0) |= a for a ∈ A

S, π |= ¬ϕ iff S, π 6|= ϕ

S, π |= ϕ ∧ ψ iff S, π |= ϕ and S, π |= ψ

S, π |= Xϕ iff S, π1 |= ϕ

S, π |= ϕUψ iff there exists i ≥ 0 for which S, πi |= ψ and for 0 ≤ j < i, S, πj |= ϕ

S, π |= ϕRψ iff for all i ≥ 0, S, πi |= ψ, or there exists j ≥ 0 such that S, πj |= ϕ and for

all i, 0 ≤ i ≤ j, S, πi |= ψ.

Then S |= ϕ if ∀π . π(0) |= I ⇒ S, π |= ϕ. That is, S models formula ϕ if every infinite path of S

that starts with an initial state models ϕ.

2.5 Büchi Automata

A (generalized) Büchi automaton [20] is a tuple 〈Σ, Q, q0, δ,F〉, where Σ = 2A is the input

alphabet defined over a set of atomic propositions A which in this thesis are taken to be propositional

functions over the state variables x, Q is the finite set of states, q0 ∈ Q is the initial state,

δ ⊆ Q×Σ×Q is the transition relation, and F ⊆ 2Q is the set of acceptance conditions. A run of

the automaton, ρ is an infinite sequence of states q0, q1, q2, . . . such that for i ≥ 0, (qi, σi, qi+1) ∈ δ.

A run ρ is accepting if for every F ∈ F , there is at least one F -state that occurs infinitely often in

ρ. A Büchi automaton can be encoded as a finite-state system.

LTL is less expressive than Büchi automata [40, 35]: every LTL formula is representable by a

Büchi automaton. Building on this fact, Vardi and Wolper devised an automata-theoretic approach

to model checking LTL formulae which checks whether a finite-state system S satisfies a given LTL

formula ϕ by constructing a Büchi automaton that accepts ¬ϕ, composing it with S, and checking

the composition for language emptiness [56].
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2.6 An Overview of IC3

IC3 [17, 14] is a model checking algorithm for invariance properties. The algorithm operates

in a demand-driven manner, generating relatively inductive lemmas in response to states that

interfere with the inductiveness of the property. Lemma generation proceeds incrementally until an

inductive strengthening is discovered or the lemmas guide the backward search to a counterexample

trace. IC3 is SAT-based but, in contrast to other SAT-based approaches, poses numerous, relatively

easy SAT queries that arise from considering single steps of a transition relation. This style of using

a SAT solver keeps IC3’s memory footprint small.

IC3 maintains a sequence of overapproximations Fi to sets of states reachable within i steps,

for 0 ≤ i ≤ k, where k = 1 initially. Each Fi is a conjunction of the property P with an initially

empty set of clauses. For each k > 0, IC3 refines the Fi’s for i ≤ k as needed to prove inductiveness of

P relative to Fk. This refinement is property-driven: for every counterexample to the inductiveness

(CTI) of the property, which is an Fk-state with a ¬P -successor, IC3 derives a clause to block the

CTI. If successful, IC3 applies induction to generalize the clause to block many more states than

the CTI alone.2 IC3 then adds the generalized clause to Fi for all i ≤ k.

If unsuccessful in blocking a CTI, IC3 explores (transitive) predecessors of the CTI to derive

supporting strengthening clauses until the original CTI can itself be addressed relative to Fk. This

exploration of concrete predecessors is guided by a priority queue of pairs of states and frame indices:

(s, i) represents the obligation that state s must be inductively excluded relative to Fi, i.e., proved

unreachable for at least i+1 steps. Obligations are handled in lowest-index-first order, guaranteeing

termination. IC3 aggressively generalizes from states: once it addresses (s, i) by finding a clause

c ⊆ ¬s that is inductive relative to some Fj , j ≥ i, IC3 adds obligation (s, j + 1) to the queue if

j < k. This aggressive strategy not only facilitates early discovery of mutually inductive clauses, it

also allows IC3 to find deep counterexamples even when k is small.

When no CTIs remain (for Fk), IC3 checks each clause of each Fi to determine if it can

2 IC3’s inductive generalization procedure is described in Section 4.1.1.
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be propagated forward, i.e., if it has become inductive relative to Fi since its creation because

of subsequent strengthening of Fi. In the process, IC3 determines whether any Fi has become

an inductive strengthening of the property, in which case the property is declared to hold. If

not, it increments k and seeds the new frontier Fk with all clauses that are inductive relative to

Fk−1. This process continues until IC3 finds an inductive strengthening of the property or finds a

counterexample by following a sequence of CTIs back to an initial state.

Listing 2.1: IC3 pseudocode.

1 boo l IC3 (S , P ) :
2 i f I 6⇒ P or I ∧ T 6⇒ P ′ :
3 return fa l se
4 F0 := I , F1 := P
5 for k := 1 to ∞ :
6 Fk+1 := P
7 while Fk ∧ T 6⇒ P ′ :
8 queue := (CTI , k − 1) { CTI i s s a t i s f y i n g assignment from l i n e 7 }
9 while queue not empty :

10 (s , i) = pop (queue) { P r i o r i t i z e d by second element o f p a i r .
11 Lower v a l u e s have h i g h e r p r i o r i t i e s . }
12 j := max({−1} ∪ {j : i ≤ j ≤ k and Fj ∧ ¬s ∧ T ⇒ ¬s′})
13 i f j = −1 :
14 i f i = 0 : { Counterexample }
15 return fa l se
16 with (Fi ∧ ¬s)−s t a t e t : { t i s p r e d e c e s s o r o f s from l i n e 12 }
17 { Add t to queue }
18 push (queue , (t , i− 1 ) )
19 else :
20 ŝ = MIC(s , j )
21 clauses(Fl) := clauses(Fl) ∪ ¬ŝ for 1 ≤ l ≤ j + 1
22 i f j < k :
23 push (queue , (s , j + 1 ) )
24 { Propagate c l a u s e s }
25 for i := 1 to k :
26 foreach Clause c in clauses(Fi) :
27 i f Fi ∧ c ∧ T ⇒ c′ :
28 clauses(Fi+1) := clauses(Fi+1) ∪ c
29 i f clauses(Fi) = clauses(Fi+1) { Fi i s an i n d u c t i v e s t r e n g t h e n i n g }
30 return true

The pseudocode for IC3 is shown in Listing 2.1. The algorithm first checks for the existence of

1- and 2-state counterexamples (line 2). If none exist, it initializes the first two overapproximating
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assertions F0 and F1 to I and P , respectively (line 4).3 The algorithm continues to increment k

(effectively creating a new overapproximation) as long as none of the current Fi’s for i ≤ k forms an

inductive strengthening of the property, and no counterexamples are found. The loop on lines 7–23

refines the overapproximations through addressing CTIs and their transitive predecessors. Line 12

finds the highest level at which the negation of a CTI is inductive. On the one hand, if ¬s is not

inductive relative to any Fj for i ≤ j ≤ k, an (Fi ∧ ¬s)-predecessor t is added to the queue (line

18), unless i = 0 which signals the completion of a trace from a bad state back to an initial state.

On the other hand, if ¬s is inductive relative to some Fj for j ≥ i, the proof obligation has been

handled. In this case, ¬s is generalized (line 20) and the generalized clause is added to all Fl’s for

1 ≤ l ≤ j + 1. The loop on lines 25–30 checks if any Fi now forms an inductive strengthening.

Several algorithms described in this thesis pose reachability queries to determine whether a

target is reachable from a source via some (possibly constrained) path. For this purpose, we define

a function, reach(S,C, F,G), that accepts a system S, a set of constraints C(x, x′) on the transition

relation, an initial condition F , and a target G. reach returns either a counterexample run from

an F -state to a G-state on a path with C-states,4 or an assertion P (x), inductive relative to C,

separating F from G. This function can be implemented using IC3 (or any other safety model

checker) by setting the system’s initial condition I = F , its transition relation T = TS ∧C, and the

property P = ¬G.

2.7 An Overview of Fair

Fair [16] is an algorithm that answers the question of whether the language of a given finite-

state system S is empty. Fair arrives at the answer by examining a sequence of skeletons; each

skeleton is a set of states that satisfy all fairness constraints of S. For each skeleton, Fair checks

whether the skeleton forms a reachable cycle, i.e., that the skeleton-states are reachable from an

initial state, and that every skeleton-state can reach all other skeleton-states. To check whether

3 Note that F0 is exact and is never refined by the algorithm.
4 Note that an F -state that is also a G-state constitutes a counterexample since every state on the path to a

G-state (there are none in this case) is (vacuously) a C-state.
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the skeleton forms a reachable cycle, Fair chooses a cyclic order for the skeleton-states, and checks

whether every state in the order can reach the next, and whether one of the skeleton-states is

reachable from some initial state.5 Reachability is checked using an invariant model checker like

IC3. If all reachability queries succeed, then there is a fair run and the language of S is not empty.

Otherwise, Fair tries to learn information about S from the failed reachability query that guides the

future choice of skeletons. The type of information that Fair learns is dependent on the type of the

reachability query: whether it is a stem query that checks whether a skeleton-state is reachable

from some initial state, or a cycle query which checks whether a skeleton-state is reachable from

another. From a failed stem query, Fair learns about unreachable S-states, and from an unreachable

cycle query, Fair learns about SCC-closed regions in S. Every skeleton chosen in the future must be

from states that are not known to be unreachable, and must be from the same SCC-closed region.

The non-existence of such a skeleton indicates that the language is empty.

Listing 2.2: Fair pseudocode.

1 boo l F a i r (S ) :
2 R := > , W := ∅
3 while

(∧
i∈{1,...,l}Bi(x

i) ∧R(xi)
)
∧
∧

W∈W
[(∧

i∈{1,...,l}W (xi)
)
∨
(∧

i∈{1,...,l} ¬W (xi)
)]

:

4 (s0, . . . , sl−1) := (x1, . . . , xl)
5 i f ¬reach(S , R , I , s0 ) : {with proo f P }
6 R := R ∧ P
7 continue
8 i f ¬reach(S , R , si , si⊕1 ) for any 0 ≤ i ≤ l − 1 : {with proo f P }
9 W := W ∪ P

10 continue
11 return fa l se
12 return true

The pseudocode for a basic version of the algorithm is shown in Listing 2.2 (see [16] for a

more complete pseudocode). Initially, all states are presumed reachable (hence R = >) and the

set of inductive walls W is empty. Line 3 checks whether any skeletons exist given the current

reachability information R and the set of walls W. To that purpose, l copies of the system’s state

5 Note that constraining the path to R-states is not necessary for correctness but helps the safety model checker
converge faster through constraining its search space.
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variables x are created that would represent the l skeleton-states. The first big conjunction in the

SAT query of line 3 ensures that each fairness constraint Bi is satisfied by a skeleton-state si = xi+1

that is not known to be unreachable. The second big conjunction ensures that for each inductive

wall, all skeleton-states lie on the same side of the wall. If the query is unsatisfiable, the language is

empty. Otherwise, reachability queries are performed to check whether the skeleton-states can form

a reachable fair cycle. The stem query on line 5 checks if s0 is reachable from some initial state.

If not, the inductive proof returned by the safety model checker is added to R. If s0 is reachable,

the algorithm proceeds to perform cycle queries (line 8). If any query fails, the inductive proof is

added to the set of walls.

The IIV-based algorithm for model checking CTL properties described in Chapter 3 poses

queries to determine whether a reachable fair cycle exists. For that, it is convenient to define a

function fair(S,C, F ) that accepts a system S (possibly with fairness constraints {B1, . . . , B`}),

a set of constraints C(x, x′) on the transition relation, and an initial condition F . Function fair

returns either an F -reachable fair cycle, or an inductive assertion P (x), where F ⇒ P , describing

a set of states that lack reachable fair cycles. Function fair can be implemented using the Fair

algorithm through setting the system’s initial condition to F and its transition relation to T ∧ C.

2.8 Efficient Usage of Incremental SAT Solvers

SAT-based model checking algorithms pose many queries to a SAT solver. The different

queries often share a common set of clauses, e.g., the transition relation clauses. Incremental SAT

solvers, for example zChaff [48] and MiniSat [32], efficiently handle such usage pattern by providing

mechanisms to add clauses to an existing SAT database, and keeping the conflict clauses between

the different calls to the solver in order to avoid repeating the work needed to derive those clauses.

In some cases, clauses added to the SAT database are to be asserted in some queries and

disabled in others. This is achieved through the usage of activation literals. An activation literal

is a “fresh” variable that is added to a clause that would need to be enabled in some queries and

disabled for others. Such a clause c = l1∨ . . .∨ ln is added to the SAT database as ¬a∨ l1∨ . . .∨ ln,
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where a is an activation literal, so that one can then assert a or ¬a depending on whether it is

desired to enable or disable c, respectively. To allow asserting a literal or a set of literals for a single

query, incremental SAT solvers provide a mechanism for passing a list of unit assumptions, which

they conjoin with their current clause database for a specific query.

If the SAT instance turns out to be UNSAT, incremental SAT solvers also provide a mech-

anism by which a subset of the unit assumptions necessary to make the instance UNSAT can be

extracted.



Chapter 3

Incremental, Inductive CTL Model Checking

Incremental, inductive verification (IIV) algorithms construct proofs by generating lemmas

based on concrete hypothesis states. Through inductive generalization, a lemma typically provides

significantly more information than is required to address the hypotheses. A principle of IIV is

that each lemma holds relative to previously generated lemmas (hence the term incremental), so

that the difficulty of lemma generation is fairly uniform throughout execution. Because lemmas are

generated in response to concrete hypothesis states, property-directed abstraction is achieved. The

safety model checker IC3 [17, 14] and the progress model checker Fair [16] are both incremental,

inductive model checkers. IC3 generates stepwise relatively inductive clauses in response to states

that lead to property violations. Fair generates inductive information about reachability and SCC-

closed sets in response to sets of states that together satisfy every fairness constraint. This chapter

describes an incremental, inductive model checker, IICTL, for deciding CTL properties of finite

state systems, possibly with fairness constraints.

An investigation into an IIV model checker for CTL properties is important for several rea-

sons. First, CTL is a historically significant specification language. Second, some properties like

resetability (AGEF p in CTL) require branching time semantics. Third, on properties in the frag-

ment common to CTL and LTL, traditional CTL algorithms are sometimes superior to traditional

LTL algorithms. CTL model checking is inherently hierarchical in that a CTL property can be an-

alyzed according to its parse graph. In the context of IIV, the strategy that IICTL applies to such

properties is different than that applied by Fair. Finally, CTL offers a conceptual challenge that
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previous IIV algorithms, IC3 and Fair, do not address: branching time semantics. In particular,

CTL motivates generalizing counterexample traces in addition to using proof-based generalization.

The first approaches to SAT-based CTL model checking [3, 46] were global algorithms that

leveraged the ability of CNF formulae and Boolean circuits to be reasonably sized in some cases

when BDDs are not. These approaches differ from IICTL, which is an incremental, local algorithm.

A few attempts [50, 60, 59, 49] have been made to extend bounded model checking to branching

time; they are all restricted to universal properties, though, and they have not received an extensive

experimental evaluation. Their effectiveness thus remains unclear.

The lack of practical SAT-based model checkers for CTL is the gap that IICTL fills. The

success of IC3 and Fair motivates following the IIV approach in the design of a SAT-based CTL

model checker. IICTL builds on traditional parse graph-based analyses, except that it eschews

the standard global, or bottom-up, approach in favor of a task-directed top-down strategy. IICTL

assigns a task to a node in the parse graph to decide whether a state satisfies the subformula

rooted at this node. States for which tasks are created—task states—are those on which the truth

or falsity of the CTL property depends; the first task states are the initial states of the system

for which the root node decides whether they satisfy the CTL formula. In the process of making

a decision, a node can in turn generate a set of tasks for its children, and so on. Depending on

the root operator of the node, it applies a SAT solver (for EX nodes), a safety model checker such

as IC3 (for EU nodes), or a fair cycle finder such as Fair (for EG nodes), to investigate the status

of the task states. Once it reaches a conclusion, it generalizes the witness—either a proof or a

counterexample trace—to extend the decision reached for the task state to other states.

Section 3.1 gives an overview of IICTL. Section 3.2 describes the algorithm in detail. Sec-

tion 3.3 proves total correctness of the algorithm. Section 3.4 discusses an essential component

of IICTL: generalizing decisions. Then Section 3.5 describes a refinement to the basic algorithm,

while Section 3.6 describes the additions for handling fairness constraints. Section 3.7 presents the

results of an implementation of IICTL within the IImc model checker [38].
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3.1 An Overview of IICTL

Global, or fixpoint-based, CTL model checkers compute exact sets of states satisfying each

subformula of the CTL formula, hence the need to proceed bottom-up on the formula’s parse graph.

IICTL instead maintains overapproximations and underapproximations of the set of states satis-

fying each subformula. The approximations are represented using propositional formulae and are

initialized bottom-up, leveraging properties of CTL temporal operators, for example that states

that satisfy EGψ are a subset of those that satisfy ψ (hence the overapproximation of EGψ-states

can be initially set to the overapproximation of ψ-states), and that all states that satisfy ϕ also

satisfy EψUϕ (hence the underapproximation of EψUϕ-states can be initially set to the under-

approximation of ϕ-states), and so on.

Using these approximations, IICTL attempts to answer questions that relate to the truth or

falsity of the property. In some cases, the answer to a question can be inferred from the current

approximations, and in other cases, refinement of the approximations is necessary to arrive at an

answer. The first question IICTL asks is: does every initial state satisfy the formula? To infer an

answer with only approximations to the actual set of states satisfying the formula available, IICTL

resorts to asking two questions (via performing SAT queries):

(1) Is every initial state contained in the underapproximation of the states that satisfy the

formula?

(2) Is there an initial state not contained in the overapproximation of the states that satisfy

the formula?

On the one hand, if the answer to the first question is yes, then every initial state definitely sat-

isfies the formula, which indicates that the property holds. On the other hand, nothing can be

deduced from a negative answer: an initial state not contained in the underapproximation may

still satisfy the property. IICTL, thus, proceeds to the second question. A positive answer to

the second question—an initial state that is not contained in the overapproximation—implies that
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such initial state definitely does not satisfy the formula, and thus the property fails. But, again,

a negative answer does not necessarily imply that the property holds: a state that is contained in

the overapproximation is not guaranteed to satisfy the formula. Thus, when both questions are

answered negatively, nothing can be inferred; an initial state s is not contained in the underapprox-

imation but every initial state (including s) is contained in the overapproximation. Such a state s

is therefore an undecided state with respect to the current approximations. Answering the original

question—does every initial state satisfy the formula?—depends on whether s satisfies the formula.

Hence, IICTL proceeds by creating a task to decide whether s satisfies the formula. The task is

assigned to the node for which s is undecided—the root node in this case.

A node decides a state by performing an action that depends on the node’s type: CTL

temporal operators perform an appropriate query, and Boolean connectives push the task down to

their children. Consider for example an EX node: for s to satisfy EXϕ, it must have a successor to

a ϕ-state, which can be determined via a SAT query. However, ϕ-states are not precisely known:

only approximations of them are. Therefore, IICTL is instead forced to perform two SAT queries

to determine whether s satisfies EXϕ: a lower bound query to determine if s has a successor

that satisfies ϕ’s underapproximating formula, and an upper bound query to determine if s has

a successor that satisfies ϕ’s overapproximating formula. Similar to before, a positive answer to

the lower bound query immediately determines that s satisfies the formula, and a negative answer

to the upper bound query immediately determines that it does not. However, when the lower

bound query is answered negatively and the upper bound query is answered positively, there is a

successor to s (say t) in the overapproximation of ϕ, but no successors in its underapproximation

(not even t). This indicates that t is undecided for ϕ and that deciding t is necessary for deciding s.

The node labeled ϕ is therefore tasked with deciding t. Once t is decided and the approximations

are updated, the upper and lower bound queries involving s are repeated1 . The same two-query

approach applies to EU and EG nodes, except that SAT queries are replaced with reachability and

fair-cycle queries, respectively.

1 In some cases, repeating both queries is not necessary.
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An important aspect of IICTL (as well as other IIV algorithms) is the generalization of

conclusions. For example, once it is determined whether t satisfies ϕ, this result is generalized to

include other states, which, otherwise, IICTL may have had to decide later. The way to generalize

a conclusion depends on the type of query performed (a SAT, a reachability, or a fair-cycle query)

and on the conclusion (whether a proof or a counterexample). Chapter 4 presents procedures for

generalization for the different situations that arise in IICTL.

Several refinements of the basic algorithm described above are possible. One of the most

important is to maintain an approximation of states reachable from the initial states of the system.

This approximation, initially >, is refined using inductive invariants generated by the safety model

checker, and is used to constrain all queries—which often speeds them up significantly—and as

don’t care information during generalization—which often allows much stronger generalizations.

3.2 Algorithm

The input to IICTL consists of a finite-state system S and the parse graph of a CTL formula

ϕ. Each node of the parse graph is a natural number v and is labeled with a token from ϕ. Node 0

is the root of the graph. The formula rooted at v is denoted by ψv, so that, in particular, ψ0 = ϕ.

IICTL annotates each node v with two propositional formulae over the state variables: Uv and Lv

that are used to compute an upper bound formula Uv and a lower bound formula Lv (discussed

later) which approximate the satisfying set [[ψv]] of the formula ψv in S. Initial approximations are

computed bottom-up as shown in Table 3.1. A global approximation of the states of S reachable

from the initial states is maintained as inductive propositional formula R. Initially, R = >; that

is, all states are presumed reachable2 .

Throughout execution, IICTL maintains the following invariant3 :

[[R ∧ Uv ∧ Lv]] ⊆ [[R ∧ ψv]] ⊆ [[R ∧ Uv]] . (3.1)

2 R can also be initialized with reachability information available from a previous IICTL run or derived by a
different proof engine.

3 This invariant is weaker than the more intuitive one, [[Lv]] ⊆ [[ψv]] ⊆ [[Uv]]. Maintaining the weaker form is a key
enabler to much stronger generalizations in IICTL.
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Table 3.1: Initial bounds for IICTL

ψv Lv Uv

a ∈ A a a
¬ψi ¬Ui ¬Li

ψi ∧ ψj Li ∧ Lj Ui ∧ Uj

ψv Lv Uv

EXψi ⊥ >
Eψj Uψi Li Ui ∨ Uj

EGψi ⊥ Ui

All states of the left set definitely satisfy ψv, thus the set underapproximates [[R ∧ ψv]]; all states

not in the right set definitely do not satisfy ψv or are unreachable, thus the set overapproximates

[[R ∧ ψv]]. A state s of the system S such that s |= R ∧ Uv but s 6|= R ∧ Uv ∧ Lv—together,

s |= R ∧ Uv ∧ ¬Lv—is undecided for ψv. The algorithm incrementally refines the approximations

by considering undecided states until either every initial state of S is determined to satisfy ϕ,

proving S |= ϕ, or an initial state ŝ is found such that ŝ 6|= U0, proving S 6|= ϕ.

Let Lv = R ∧ Uv ∧ Lv designate the lower bound states: those states that are known

to satisfy ψv. Let Uv = R ∧ Uv designate the upper bounds states: those states that are not

known not to satisfy ψv. Invariant (3.1) is then written [[Lv]] ⊆ [[R ∧ ψv]] ⊆ [[Uv]]. Finally, let

Av = Uv ∧ ¬Lv = R ∧ Uv ∧ ¬Lv designate the undecided states of node v.

If ever I ∧ ¬U0 becomes satisfiable, then IICTL concludes that S 6|= ϕ: not even the overap-

proximation U0 of ϕ contains all I-states, so neither can ϕ itself. If instead I ∧¬(L0 ∧U0) becomes

unsatisfiable, then S |= ϕ: the underapproximation L0 of ϕ contains all I-states, so ϕ itself must

as well.

Otherwise, one or more initial undecided states must be decided. At the top level, a witness

s to the satisfiability of I ∧ U0 ∧ ¬L0 is undecided; it is decided by calling the recursive function

decide with arguments s and 0, the root of the parse tree of ϕ, which eventually returns true if

S, s |= ϕ and false otherwise. In general, decide(t, v) return true iff S, t |= ψv. A call to decide(t,

v) can update Lv or Uv (or both) so that state t becomes decided for ψv; moreover, the call can

trigger a cascade of recursive calls that update the bounds of descendants of v and, crucially, may

decide many states besides t. The pseudocode for decide in Listing 3.1 provides structure to the

following discussion.
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Listing 3.1: Basic version of the main recursive function.

1 boo l d e c i d e (t : s t a t e , v : node ) :
2 i f t |= R ∧ Uv ∧ Lv : return true { a l r e a d y dec ided : S, t |= ψv}
3 i f t 6|= R ∧ Uv : return fa l se { a l r e a d y dec ided : S, t 6|= ψv}
4 match ψv with :
5 ψu ∧ ψw : [ update Lv , Uv := Lu ∧ Lw , Uu ∧ Uw ]
6 return de c i d e (t , u) ∧ de c i d e (t , w )
7 ¬ψu : [ update Lv , Uv := ¬Uu , ¬(Lu ∧ Uu) ]
8 return ¬de c i d e (t , u)
9 EXψu :

10 i f t ∧ Uv ∧ T ∧ U ′u i s unsat : {with t̂ ⊆ t from core }
11 Uv := Uv ∧ ¬ g e n e r a l i z e ( t̂)
12 return fa l se
13 else : {with t−s u c c e s s o r s}
14 i f t ∧ T ∧ L′u ∧ U ′u i s sat :
15 Lv := Lv ∨ g e n e r a l i z e (t)
16 return true
17 else :
18 de c i d e (s , u)
19 return de c i d e (t , v )
20 Eψu Uψw : [ update Lv , Uv := Lv ∨ Lw , Uv ∧ (Uu ∨ Uw) ]
21 i f ¬reach(S, Uu ∧ Uv ∧R ∧ U ′v, t, Uw) : {with proo f P }
22 Uv := Uv ∧ ¬ g e n e r a l i z e (P )
23 return fa l se
24 else : {with t r a c e s0 = t, s1, . . . , sn}
25 i f reach(S, Lu ∧ Uv ∧ U ′v, t, Lv ∧ Uv) : {with t r a c e r̄}
26 Lv := Lv ∨ g e n e r a l i z e ( r̄ )
27 return true
28 e l i f de c i d e (si , u ) , 0 ≤ i < n , and de c i d e (sn , w ) are true :
29 Lv := Lv ∨ g e n e r a l i z e (s0, . . . , sn )
30 return true
31 else : return de c i d e (t , v )
32 EGψu : [ update Uv := Uv ∧ Uu ]
33 i f ¬fair(S, Uv ∧R ∧ U ′v, t) : {with a s s e r t i o n P }
34 Uv := Uv ∧ ¬ g e n e r a l i z e (P )
35 return fa l se
36 else : {with t r a c e s0 = t, . . . , sk, . . . , sn, sk}
37 i f fair(S, Lu ∧ Uv ∧R ∧ L′u ∧ U ′v, t) : {with t r a c e r̄}
38 Lv := Lv ∨ g e n e r a l i z e ( r̄ )
39 return true
40 e l i f de c i d e (si , u ) , 0 ≤ i ≤ n , are true :
41 Lv := Lv ∨ g e n e r a l i z e (s0, . . . , sn )
42 return true
43 else : return de c i d e (t , v )
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3.2.1 Atomic Propositions and Boolean Nodes.

According to Table 3.1, no state can be undecided for a propositional node because the initial

approximations are exact; since decide is never called with a state that does not satisfy R, in the

case that v is a propositional node, one of the conditions of lines 2–3 holds.

If ψv = ψu ∧ ψw, the following invariant is maintained:

Uv = Uu ∧ Uw and Lv = Lu ∧ Lw . (3.2)

If t is undecided on entry, then recurring on nodes u and w decides t for v (line 6). The update

statement (line 5; also lines 7, 20, and 32) indicates that Lv and Uv should be updated whenever

a child’s bound is updated during recursion. It does not express an invariant.

If ψv = ¬ψu, the following invariant is maintained:

Uv = ¬(Lu ∧ Uu) and Lv = ¬Uu . (3.3)

If t is undecided on entry, then recurring on node u decides t for v (line 8).

3.2.2 EX Nodes.

If ψv = EXψu, then the undecided question is whether t has a successor satisfying ψu. IICTL

executes two SAT queries in order to answer this question. First, it executes an upper bound

query. Naively, this query is t ∧ T ∧ U ′u, which asks whether t has a Uu-successor. However, for

better generalization, the following is used instead (line 10):

t ∧ Uv ∧ T ∧ U ′u . (3.4)

If unsatisfiable, the core reveals cube t̂ ⊆ t such that all t̂-states (including t) lack Uu-successors

(and thus ψu-successors) or are unreachable. Uv is then updated to Uv ∧¬t̂ (line 11)—no t̂-state is

a ψu-state (or it is an unreachable ψu-state).

However, if query (3.4) is satisfiable, the witness reveals successor Uu-state s (line 13). A

lower bound query is executed next (line 14):

t ∧ T ∧ L′u ∧ U ′u . (3.5)
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If satisfiable, then t itself has been decided: it definitely has a ψu-successor, since it has a (Uu∧Lu)-

successor (recall invariant (3.1)). Forall-exists generalization (Section 4.2) then produces a cube

t̂ ⊆ t of states that definitely have ψu-successors (or are unreachable), and Lv is updated to Lv ∨ t̂

(line 15). If the query is unsatisfiable (line 17), then state s is undecided for u. In this case,

decide(s, u) is called (line 18), which results in updates to at least one of Uu and Lu, which is a

form of progress. The entire process iterates until t is decided (line 19).

3.2.3 EU Nodes.

An EU-node, ψv = Eψu Uψw, maintains the following invariant:

[[Lw]] ⊆ [[Lv]] , [[Lv]] ⊆ [[Lu]] ∪ [[Lw]] , [[Uw]] ⊆ [[Uv]] , [[Uv]] ⊆ [[Uu]] ∪ [[Uw]] . (3.6)

The undecided question is whether t has a ψu-path to a ψw-state. To answer this question, it

executes two reachability queries using an engine capable of returning counterexample traces and

inductive proofs, such as IC3 [17, 14] (see Section 2.6 for a description of reach).

The upper bound query asks whether t leads to a Uw-state (line 21). The following query

determines if it can reach a Uw-state via a Uu-path:

reach(S, Uu ∧ Uv ∧R ∧ U ′v, t, Uw) . (3.7)

The transition relation constraint Uu ∧ Uv ∧ R ∧ U ′v mixes the necessary (Uu) with the optimizing

(Uv ∧R∧U ′v). If the query is unsatisfiable, the returned inductive proof P shows that no Uw-state

can be reached via a potentially reachable (Uu ∧ Uv)-path, deciding at least t and leading to the

update of Uv to Uv ∧¬P (line 22). If query (3.7) is satisfiable, let s0 = t, s1, . . . , sn be the returned

counterexample trace (line 24).

Lower bound queries are executed next (line 25). decide asks whether t can reach a known

ψv-state via a known ψu-path:

reach(S, Lu ∧ Uv ∧ U ′v, t, Lv ∧ Uv) . (3.8)
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The target set has those states that are known to have ψu-paths to ψw-states. If the query is

satisfiable, t also has a ψu-path to a ψw-state. Forall-exists generalization (Chapter 4) produces a

set of states F , including t, that definitely have ψu-paths to ψw-states or are unreachable. Lv is

updated with F (line 26).

However, if the query is unsatisfiable, then attention returns to the trace s0, . . . , sn of the

upper bound query (3.7) to decide whether its states satisfy the appropriate subformulae (lines

28–31). Each si, 0 ≤ i < n, is queried for node u, and sn is queried for node w. If all states of the

trace are decided positively (line 28), then t is decided positively for v; therefore, Lv is expanded

by the generalization of the trace (line 29). If one of the states is decided negatively, the upper

and lower bound queries are iterated until t is decided (line 31): either a trace is found, or the

nonexistence of such a trace is proved.

3.2.4 EG Nodes.

An EG-node, ψv = EGψu, maintains the following invariant:

[[Lv]] ⊆ [[Lu]] and [[Uv]] ⊆ [[Uu]] . (3.9)

The undecided question is whether there exists a reachable fair cycle all of whose states are

ψu-states. To answer this question, it executes two fair cycle queries using an engine capable

of returning (1) fair cycles and (2) inductive reachability information describing states that lack a

reachable fair cycle. The function fair(S,C, F ) defined in Section 2.7 can be used for this purpose.

The upper bound query asks whether a reachable fair cycle whose states satisfy Uu ex-

ists. The constraint on the transition relation uses Uv because states of a counterexample should

potentially be EGψu states (line 33):

fair(S, Uv ∧R ∧ U ′v, t) . (3.10)

If the query is unsatisfiable, the returned inductive assertion P describes states, including t, that

do not have reachable fair cycles (line 33); hence, Uv is updated to Uv ∧ ¬P (line 34). Otherwise,

a reachable fair cycle s0 = t, . . . , sk, . . . , sn, sk is obtained (line 36).
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Before exploring the trace, a lower bound query is executed (line 37) to determine whether

a reachable fair Lu-cycle exists4 :

fair(S, Lu ∧ L′u, t) . (3.11)

If it is satisfiable, the resulting run is generalized (Chapter 4) to a formula F , and Lv is updated

to Lv ∨ F (line 38).

Otherwise, the reachable fair cycle from query (3.10) is considered (line 40). If all si proved

to be ψu-states, decide finishes as with a satisfiable lower bound query (lines 41–42). Otherwise,

the exploration updates Uv, so that some progress is made, and the process is iterated (line 43).

Even if generalize were to return what it is given, the sound updates to Lv (lines 15, 26, 29,

38, 41) and Uv (lines 11, 22, 34), combined with the progress guaranteed by each call to decide,

make the basic version of IICTL correct.

3.3 Proof of Correctness

This section proves the correctness of IICTL for a system with no fairness constraints (i.e.,

B = ∅). Section 3.6 describes how IICTL deals with fairness constraints, and extends this proof of

correctness to systems with fairness constraints.

The following lemmas state the correctness of reach and fair, which derive from the correctness

of the safety and fair cycle model checkers they invoke.

Lemma 1. reach(S,C, F,G) terminates and returns true iff ∃s .(s |= F )∧ (S, s |= EC UG). When

it returns false, it also returns an assertion P (x) such that

F (x)⇒ P (x) ,

P (x) ∧ C(x, x′) ∧ T (x, i, x′)⇒ P (x′), and

P (x)⇒ ¬G(x) ,

4 Note that the fair cycle query could potentially be avoided by asking if known ψv-states are reachable from t
via a ψu-path: reach(S, Lu ∧ L′

u, t, Lv).
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Lemma 2. fair(S,C, F ) terminates and returns true iff ∃s .(s |= F ) ∧ (S, s |= EGC). When it

returns false, it also returns an assertion P (x) such that

F (x)⇒ P (x) ,

P (x) ∧ C(x, x′) ∧ T (x, i, x′)⇒ P (x′), and

∀s .(s |= P )⇒ (S, s 6|= EGC) .

The following lemmas establish that IICTL maintains invariant (3.1). In particular, Lemma 3

proves the initial bounds satisfy the invariant.

Lemma 3. The bounds initialized according to Table 3.1 satisfy invariant (3.1).

Proof. We prove by structural induction that the initial bounds satisfy the stronger invariant:

[[Lv]] ⊆ [[ψv]] ⊆ [[Uv]] .

For the base case, the bounds on an atomic proposition a are exact:

Lv = ψv = Uv = a ,

and thus obviously satisfy the invariant.

For the inductive step, consider the following cases:

Case (ψv = ¬ψu). In this case, Lv = ¬Uu and Uv = ¬Lu. By the inductive hypothesis, Lu ⇒ ψu,

which implies that ¬ψu ⇒ ¬Lu, and therefore ψv ⇒ Uv. Also, the inductive hypothesis states that

ψu ⇒ Uu, which implies that ¬Uu ⇒ ¬ψu, from which Lv ⇒ ψv follows.

Case (ψv = ψu ∧ ψw). In this case, the initial bounds are Lv = Lu ∧ Lw and Uv = Uu ∧ Uw. By

the inductive hypothesis, Lu ⇒ ψu and Lw ⇒ ψw. Therefore, Lu ∧ Lw ⇒ ψu ∧ ψw. It follows that

Lv ⇒ ψv. By similar arguments, ψv ⇒ Uv can be proven.

Case (ψv = EXψu). The trivial bounds Lv = ⊥ and Uv = > obviously satisfy the invariant.

Case (ψv = Eψu Uψw). The initial bounds are Lv = Lw and Uv = Uu ∨Uw. First, consider a state

s such that s |= Lv. We have

s |= Lv ⇐⇒ s |= Lw .



31

By the inductive hypothesis, s |= ψw. The semantics of CTL (see Section 2.3) imply that s |=

EϕUψw for any assertion ϕ, and in particular ϕ = ψu. Therefore

s |= Lv =⇒ s |= Eψu Uψw =⇒ s |= ψv .

For the upper bound, consider a state s such that s 6|= Uv. Thus,

s |= ¬Uv =⇒ s |= ¬Uu ∧ ¬Uw =⇒ s |= ¬Uu and s |= ¬Uw =⇒ s 6|= Uu and s 6|= Uw.

From the inductive hypothesis, it follows that

s 6|= ψu and s 6|= ψw .

From the semantics of CTL,

s 6|= Eψu Uψw ,

and therefore

s 6|= ψv .

Case (ψv = EGψu). The trivial lower bound obviously satisfies the invariant. For the upper bound

Uv = Uu, consider a state s such that s 6|= Uv,

s 6|= Uv =⇒ s 6|= Uu =⇒ s 6|= ψu =⇒ s 6|= EGψu =⇒ s 6|= ψv .

The main reason IICTL maintains invariant (3.1) rather than its stronger, more intuitive form

([[Lv]] ⊆ [[ψv]] ⊆ [[Uv]]) is that (3.1) allows expanding [[Lv]] beyond [[ψv]], and shrinking [[Uv]] beyond

[[ψv]]. The following two lemmas prove the sufficient conditions for generalization to maintain

invariant (3.1).

Lemma 4. If an assertion P satisfies ∀s .(s |= P ) ⇒ (s 6|= ψv ∧ R ∧ Uv) (i.e., s 6|= ψv ∧ Uv), then

updating Uv through conjoining ¬P maintains invariant (3.1).
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Proof. Let Uold
v and Unew

v be the values of Uv before and after the update, respectively. Before the

update, invariant (3.1) holds, thus,

R ∧ ψv ⇒ R ∧ Uold
v . (3.12)

After the update, the consequent becomes R∧Unew
v = R∧Uold

v ∧¬P . Every state that gets removed

is either a ¬ψv-state, and is thus not an (R ∧ ψv)-state, or a ¬(R ∧ Uold
v )-state, which by (3.12) is

also not an (R ∧ ψv)-state. Thus, the invariant is maintained.

Lemma 5. If an assertion W satisfies ∀s .(s |= W )⇒ (s |= ψv∨¬R∨¬Uv∨Lv) (i.e., s |= ψv∨¬Av),

then updating Lv through disjoining W maintains invariant (3.1).

Proof. Let Lold
v and Lnew

v be the values of Lv before and after the update, respectively. Since

invariant (3.1) holds before the update, then:

R ∧ Uv ∧ Lold
v ⇒ R ∧ ψv . (3.13)

By updating Lv to Lnew
v = Lold

v ∨W , the antecedent becomes R ∧ Uv ∧ (Lold
v ∨W ) = (R ∧ Uv ∧

Lold
v ) ∨ (R ∧ Uv ∧W ). By 3.13, the first disjunct satisfies the invariant. For the second disjunct, a

W -state s can be one of the following:

Case (s |= ψv). In this case, the second disjunct also satisfies R ∧ ψv.

Case (s |= ¬R or s |= ¬Uv). In either case, the second disjunct reduces to ⊥ and thus vacuously

satisfies R ∧ ψv.

Case (s |= Lold
v ). By (3.13), s also satisfies R ∧ ψv.

Thus, the invariant is maintained.

Section 3.4 shows that generalization in IICTL produces assertions that satisfy the conditions

of Lemma 4 (for proofs) or Lemma 5 (for counterexamples). This is stated in the following lemma:

Lemma 6. Given a proof (a counterexample), generalize produces an assertion that satisfies the

condition of Lemma 4 (Lemma 5).
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Generalization, in fact, satisfies a stronger condition, but the conditions of Lemmas 4 and 5

are sufficient for proving partial correctness of decide as stated in the following lemma:

Lemma 7. The recursive function decide(t, v) updates the bounds of node v while maintaining

invariant (3.1), and returns true iff S, t |= R ∧ ψv.

Proof. The proof is by induction on the structure of ψv. For the base case, v can only be an atomic

proposition node, ψv = a. Since no updates occur to the bounds of atomic proposition nodes, Lv

and Uv remain at their initial value of a. Because of that, the conditions on lines 2 and 3 reduce

to t |= R∧ a and t 6|= R∧ a. Clearly, t must satisfy one of the two conditions, and therefore, decide

returns true iff t |= R ∧ ψv.

For the inductive step, state t is either decided or undecided for node v. If it is decided, one

of the conditions on lines 2 or 3 is satisfied, and if it is not, decide proceeds to decide t depending

on its type. If the condition on line 2,

t |= R ∧ Uv ∧ Lv ,

is satisfied, by the inductive hypothesis, since no updates to the bounds have been made in the

current decide call, invariant (3.1) holds, which implies that t |= R∧ψv. Thus, decide returns true.

Otherwise, if the condition on line 3:

t 6|= R ∧ Uv

is satisfied, then, again, the inductive hypothesis implies that t 6|= R ∧ ψv, and therefore decide

returns false.

If the conditions on line 2 and 3 are not satisfied, t is undecided:

t |= R ∧ Uv ∧ ¬Lv , (3.14)

so decide proceeds to match ψv, and one of the following cases occurs:

Case (ψv = ¬ψu). In this case, decide(t, v) returns false iff decide(t, u) returns true. By the

inductive hypothesis, decide(t, u) returns true iff t |= R ∧ ψu, i.e., t is potentially reachable and
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satisfies ψu. But if it satisfies ψu then it must not satisfy ψv = ¬ψu. Therefore, t 6|= ψv, and

consequently, t 6|= R ∧ ψv. Therefore, returning false is correct. For the bound updates on line 7,

the inductive hypothesis guarantees that decide(t, u) updates the bounds of ψu such that invariant

(3.1) is maintained. Now, consider a state s such that s |= R ∧ Uv ∧ Lv. We have:

s |= R ∧ Uv ∧ Lv ⇐⇒ s |= R ∧ (¬Lu ∨ ¬Uu) ∧ ¬Uu

⇐⇒ s |= R ∧ ¬Uu

But if s satisfies ¬Uu, by the inductive hypothesis, it satisfies ¬(R ∧ ψu), which implies that

satisfies ¬(R ∧ ¬ψv). But, by the previous argument, s |= R, and thus, s |= R ∧ ψv. Therefore,

[[R ∧ Uv ∧ Lv]] ⊆ [[R ∧ ψv]].

Next, consider a state s such that s |= R ∧ ψv. Then,

s |= R ∧ ψv ⇐⇒ s |= R ∧ ¬ψu

By the inductive hypothesis, if s 6|= ψu, it must also be the case that s 6|= R ∧ Uu ∧ Lu, i.e.,

s 6|= R ∧ ¬Uv. But since s is potentially reachable, s |= R ∧ Uv. Therefore, [[R ∧ ψv]] ⊆ [[R ∧ Uv]].

Thus, the updates on line 7 maintain invariant (3.1).

Case (ψv = ψu ∧ ψw). In this case, decide(t, v) returns true iff both decide(t, u) and decide(t, w)

return true. By the inductive hypothesis, decide(t, u) and decide(t, w) return true iff t |= R ∧ ψu

and t |= R ∧ ψw, which holds iff t |= R ∧ ψu ∧ ψw, which is equivalent to t |= R ∧ ψv.

For the bound updates, the inductive hypothesis implies that invariant (3.1) holds for ψu and

ψw. Thus, v’s new lower bound: R ∧ Uv ∧ Lv ⇔ R ∧ Uu ∧ Uw ∧ Lu ∧ Lw ⇒ R ∧ ψu ∧ ψw ⇔ R ∧ ψv

satisfies the invariant. A similar argument applies to v’s new upper bound.

Case (ψv = EXψu). If t ∧ T ∧ U ′u is unsat, then none of the successors of t is a Uu-state. By

the inductive hypothesis, none of the successors of t are ψu-states. Therefore, t 6|= EXψu, and

consequently t 6|= R ∧ ψv; accordingly, decide returns false. The addition of Uv to the query does

not affect its satisfiability since by (3.14), t |= Uv. However, the addition of Uv may reduce the

subset of t’s literals that are used by the solver to prove the query unsat: every t̂-state can either
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be a ¬Uv-state or a ¬ψv-state. But then, t̂ satisfies the condition of Lemma 4. In addition, by

Lemma 6, generalize(t̂) also satisfies the condition of Lemma 4, and thus, the update maintains

invariant (3.1).

Otherwise, if t∧T ∧L′u∧U ′u is sat (line 14), then, by the inductive hypothesis, the (Lu∧Uu)-

successor of t also satisfies ψu. It follows from the semantics of CTL that t |= EXψu. But by (3.14),

t |= R. Therefore, t |= R ∧ ψv, and decide returns true. By Lemma 6, generalize(t) satisfies the

condition of Lemma 5, and thus, invariant (3.1) is maintained.

If neither t ∧ Uv ∧ T ∧ U ′u is unsat nor t ∧ T ∧ L′u ∧ U ′u is sat, decide(s, u) is called with the

state s that is a successor to t, and that satisfies5 :

s |= R ∧ Uu and s 6|= R ∧ Uu ∧ Lu .

and is thus undecided for node u. By the inductive hypothesis, decide(s, u) returns true iff

s |= R ∧ ψu, and either adds s to Lu—in which case t ∧ T ∧ L′u ∧ U ′u becomes sat—or removes

it from Uu—in which case t ∧ Uv ∧ T ∧ U ′u either becomes unsat or provides another satisfying

assignment. Assuming this process terminates (see Lemma 8), one of the conditions on line 10 or

14 is eventually satisfied in which case decide(t, v) returns true iff t |= R ∧ ψv.

Case (ψv = Eψu Uψw). If the upper bound query, reach(S, R∧Uu, t, R∧Uw), returns false, then

by Lemma 1, t 6|= E(R ∧ Uu)U(R ∧ Uw). By the inductive hypothesis, t 6|= E(R ∧ ψu)U(R ∧ ψw).

However, by (3.14), t |= R, and because the transition structure is complete, it must be the case

that t |= AGR. This implies that t 6|= Eψu Uψw, and thus t 6|= R ∧ ψv. Therefore, decide returns

false. The addition of Uv ∧ U ′v to the constraints of the reach query on line 21 does not affect its

result: every state on a ψu-path to a ψw-state satisfies Eψu Uψw, and therefore, satisfies Eψv Uψw.

Since Uv characterizes the potential ψv-states, adding Uv ∧ U ′v does not affect the result of the

reach query. Also notice that adding R to the target of the reach query is redundant because

R is an inductive assertion, and thus, the successor of every R-state is also an R-state. For the

bound update on line 22, the inductive hypothesis, and Lemmas 1 and 6 guarantee that P and

5 Note that since t |= R, and s is a t-successor, s |= R
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generalize(P ) satisfy the condition of Lemma 4. Thus, the update maintains invariant (3.1).

Suppose the upper bound query at line 21 returns true. If the lower bound query, reach(S,

R∧Uu ∧Lu, t, R∧Uw ∧Lw), returns true, then by Lemma 1, t |= E(R∧Uu ∧Lu)U(R∧Uw ∧Lw),

and therefore also satisfies E(R ∧ ψu)U(R ∧ ψw) by the inductive hypothesis, which consequently

implies that it satisfies Eψu Uψw. Thus, t |= ψv. Because t |= R, t |= R ∧ ψv and decide returns

true. The same reasoning above applies to why it is sound to add Uv ∧ U ′v to the constraints

and remove R from the target. Finally, by Lemma 6, the update to the lower bound on line 26

maintains invariant (3.1).

If neither the query on line 21 returns false nor the one on line 25 returns true, then decide

is called on every state of the counterexample trace of the satisfiable upper bound query. Similar

reasoning to the one for the EX case shows that when the process terminates, one of the conditions

on line 21 or line 25 is triggered.

Case (ψv = EGψu). If the upper bound query, fair(S, R ∧ Uu, t), returns false, then by Lemma 2,

t 6|= EG(R∧Uu). By the inductive hypothesis, (R∧ψu)⇒ (R∧Uu), it follows that t 6|= EG(R∧ψu).

But since, by (3.14), t |= R, and since the transition structure is complete, it must be the case that

t |= AGR. The latter fact, together with t 6|= EG(R∧ψu), implies that t 6|= EGψu, and consequently

t 6|= ψv; thus, decide(t, v) returns false. The addition of Uv ∧ U ′v to the constraints of the fair

query on line 33 does not affect its result because every state on a path that is a witness to the

satisfaction of t |= EGψu, also satisfies EGψu and thus, must satisfy EGψv. Finally, by noticing

that the update on line 32 guarantees that Uv ⇒ Uu, Uu is redundant and is therefore not included

in the query on line 33.

Before returning, decide updates Uv to Uv ∧¬P where P is the assertion returned by fair. By

Lemma 2, P satisfies:

∀s .(s |= P )⇒ (S, s 6|= EG(Uu ∧R)) .

But because a reachable state s satisfies AGR, it follows that every P -state is either unreachable
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or does not satisfy EGψu; formally:

∀s .(s |= P )⇒ [(s |= R)⇒ (S, s 6|= EGψu)] .

from which it can be concluded that

∀s .(s |= P )⇒ (S, s 6|= ψv ∧R)] .

Thus, P satisfies the condition of Lemma 4 and consequently invariant (3.1) is maintained.

Suppose the upper bound query returns true. If the lower bound query, fair(S, Lu ∧Uu ∧R,

t), returns true, then by Lemma 2, t |= EG(Lu∧Uv∧R), which by the inductive hypothesis implies

that t |= EG(R ∧ ψu). By the CTL semantics, t must also satisfy EGψu. Finally, because t is

potentially reachable, it follows that t |= R ∧ EGψu, and consequently decide returns true. By

reasoning similar to the one above, the addition of Uv ∧ L′u ∧ U ′v to the query does not affect the

result of the lower bound query.

Since every state on the trace resulting from the satisfiable fair query satisfies ψv, it satisfies

the condition of Lemma 5, and therefore adding it to the lower bound maintains invariant (3.1).

Lemma 8. decide(t, v) terminates for any state t and node v.

Proof. The proof is by induction on the structure of ψv. For the base case, atomic proposition

nodes, one of the conditions on lines 2 or 3 is satisfied as argued in the proof of Lemma 7, and thus

decide terminates without making any recursive calls.

For the inductive step, if the conditions on lines 2 or 3 is satisfied, decide terminates. Other-

wise, consider the following cases:

Case (ψv = ¬ψu). By the inductive hypothesis, decide(t, u) terminates. In addition, since t is

undecided for v, it must be undecided for u, and thus the recursive call makes progress, and

consequently decide(t, v) also does.
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Case (ψv = ψu ∧ ψw). By the inductive hypothesis, decide(t, u) and decide(t, w) terminate. In

addition, because t is undecided for v, it must be undecided for at least one of its children. Thus,

one of the recursive decide calls is guaranteed to make progress. decide(t, v), thus, also makes

progress.

Case (ψv = EXψu). If the condition on line 10 or the one on line 14 is satisfied, decide(t, v) termi-

nates. Otherwise, the satisfying assignment s from the upper bound query must be an undecided

state for node u. By the inductive hypothesis, the call to decide(s, u) terminates. In addition,

Lemma 7 guarantees that s is decided for node u, i.e., is either added to Lu or removed from Uu.

The change to the bounds of ψu is monotonic and affects one of the queries on line 10 or 14. Since

the system has a finite number of states, decide(t, v) can only make a finite number of calls before

one of the conditions on line 10 or line 14 is satisfied. Therefore, decide(t, v) terminates.

Case (ψv = Eψu Uψw). If the condition on line 21 or the one on line 25 is satisfied, decide(t, v)

terminates. Otherwise, at least one of the states on the counterexample trace from the upper bound

query is undecided for one of ψv’s children. Thus, at least one of the calls on line 28 is guaranteed

to make progress. As in the case of the EX, this changes at least one the queries on lines 21 and

25. Thus, by the same finiteness argument, after a finite number of calls, either the condition on

line 21 or the one on line 25 is satisfied.

Case (ψv = EGψu). Similar reasoning to the EU case applies.

Theorem 1. IICTL terminates and returns true iff S |= ϕ.

Proof. The top-level function of IICTL calls decide(t, 0) for every undecided initial state t. Since

there are a finite number of initial states, it follows from Lemmas 7 and 8 that eventually, either

an initial state is found not to satisfy ψ0 in which case the property fails, or all initial states are

found to satisfy ψ0 in which case the property holds.

Example 1. Consider resetability, ϕ = AGEF p = ¬EF¬EF p, whose parse graph, with initial
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upper and lower bounds is shown in Figure 3.1. Because the initial states are undecided for 0,

IICTL chooses some initial state s and calls decide(s, 0), which in turn calls decide(s, 1). To

determine if s is a ψ1-state, decide queries a safety model checker for the existence of a path from

s to U2, i.e., to a ¬p-state. If none exist, inductive proof P is returned, and U1 is updated by ¬P .

If counterexample trace s, . . . , t is found, decide asks whether a path from s to L2 exists, which is

currently impossible. The disagreement between U2 and L2 on t triggers calls to decide(t, 2) and

decide(t, 3). With equal bounds for node 4, only one reachability query is needed. If t cannot

reach p (case 1), the inductive proof eliminates t from U3 and adds it to L2. Then s can reach a

ψ2-state, deciding s for 1 positively, and s, . . . , t are added to L1. Finally, s is removed from node

0, indicating failure of the property.

Otherwise (case 2), the discovered trace at node 3 is generalized to F , included in L3, and

eliminated from U2. Then the upper bound reachability query of node 1 is repeated, asking for

the existence of a path from s to a ¬p ∧ ¬F -state. The procedure continues until either case 1

occurs (failure), or until this query fails, establishing at least that s |= ψ0. Then, decide is invoked

again for node 1 with a remaining undecided initial state if any exist, or success of the property is

declared.



40

3.4 Generalization

3.4.1 Generalizing Proofs from Upper Bound Queries

Proofs from upper bound queries provide generalization in one direction: unsatisfiable cores

for EX-nodes, inductive unreachability proofs for EU-nodes, and inductive reachability information

from fair cycle queries for EG-nodes. Chapter 4 discusses ways to manipulate such proofs to obtain

better generalizations.

3.4.2 Generalizing Counterexamples from Lower Bound Queries

An essential aspect of making IICTL work in practice is the ability to generalize from coun-

terexample traces. Chapter 4 describes a powerful generalization technique for traces, called forall-

exists generalization. This section explains how the procedure is applied in the context of IICTL.

Forall-exists generalization provides two functions: generalize(s,G,D) and generalize(r̄, C,G,D)

where s is a state, r̄ is a sequence of states that form a path, C, G, and D are propositional formulae

that denote a path-constraint, a target, and a don’t care set. The semantics of the functions are

as follows:

• generalize(t, G,D): Given a state t that is a witness to a satisfiable EX query, generalize(t, G,D)

returns a cube t̂ whose literals are a subset of those of t (i.e., t̂ ⊆ t), such that every t̂-state

either satisfies D or has a G-successor; formally, ∀x . t̂(x)→ (x |= D) ∨ (x |= EXG).

• generalize(r̄, C,G,D): Given a trace r̄ = s0, s1, . . . , sn that is a witness to a satisfiable EU

or EG query, generalize(r̄, C,G,D) generalizes r̄ to a sequence of cubes ŝ0, ŝ1, . . . , ŝn where

∀0 ≤ i ≤ n . ŝi ⊆ si, such that every state ŝi-state either satisfies D or is on a C-path to a

G-state; formally: ∀0 ≤ i ≤ n, x . ŝi(x)→ (x |= D) ∨ (x |= EC UG).

The implementation of the two generalize functions is described in Chapter 4. The remainder

of this section describes how to use the functions to generalize traces from satisfiable EX, EU, and

EG queries.
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3.4.2.1 EX Nodes.

For an EX-node, ψv = EXψu, a satisfiable lower bound query (see (3.5)) gives a satisfying

assignment t such that t |= EX(Lu ∧ Uu). It is desired to generalize t to a cube t̂ such that every

t̂-state also has a (Lu ∧Uu)-successor. This can be achieved by calling generalize(t,Lu,⊥). For the

returned cube t̂, it is guaranteed that every t̂-state satisfies EXLu, which implies that it satisfies

EXψu. Thus Lv can be updated to Lv ∨ t̂. One observation that allows a stronger generalization

is that since Lv conjoins Lv with R and Uv, it is safe to include in Lv states that are not in R

or are not in Uv without violating invariant 3.1. Why is this necessary? With generalize(t,Lu,⊥),

dropping a literal from t could fail if the expanded cube has a mixture of states that have Lu-

successors, ¬R-states, and ¬Uv-states. Thus, allowing the inclusion of ¬R-states and ¬Uv-states

could result in a successful generalization that would fail otherwise. This can be achieved by passing

¬Av = ¬(R∧Uv ∧¬Lv) as the third argument to generalize. The resulting cube t̂ is such that every

t̂-state either has an Lu-successor, is unreachable (such states will be filtered by conjoining Lv with

R), is not in Uv (such states will be filtered by conjoining Lv with Uv), or is already in Lv. Thus,

t̂ satisfies the condition of Lemma 5, and thus, maintains the truth of invariant 3.1.

3.4.2.2 EU Nodes.

For an EU-node, ψv = Eψu Uψw, a satisfiable lower bound query (see (3.8)) gives a witness

r̄ = s0, s1, . . . , sn such that ∀0 ≤ i < n . si |= Lu ∧ Uv and sn |= Lv ∧ Uv. By invariant 3.1,

∀0 ≤ i ≤ n . si |= Eψu Uψw. Calling generalize(r̄,Lu,Lv,⊥) returns a generalized trace of cubes

ŝ0, ŝ1, . . . , ŝn such that every ŝi-state has an Lu-path to an Lv-state. But since every Lv-state

satisfies Eψu Uψw, then every ŝi-state also does. Similar to the case of EX-nodes, ¬Av can be

passed as a don’t care set to allow stronger generalizations.

3.4.2.3 EG Nodes.

For an EG-node, ψv = EGψu, a satisfiable lower bound query (see (3.11)) gives a witness

r̄ = s0, s1, . . . , sn such that ∀0 ≤ i ≤ n . si |= EGLu, which by invariant 3.1 implies that ∀0 ≤ i ≤
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n . si |= EGψu. Calling generalize(r̄,Lu,Lv,Av) returns a generalized trace of cubes ŝ0, ŝ1, . . . , ŝn

such that every ŝi-state has an Lu-path to an Lv-state. But since every Lv-state is on an infinite

path of ψu-states (i.e., satisfies EGψu), then every ŝi-state also is.

3.5 Early Termination

One refinement is immediate. To detect early termination, each time some node u’s Lu or Uu

is updated, its parent v is notified, and the proper update is made to its Lv and Uv, as explained

in Section 3.2. If there is a (semantic) change in at least one of Lv and Uv, then the upward

propagation continues. If the root node is modified so that a termination criterion is met (I ∧¬U0

is satisfiable or I ∧ ¬(L0 ∧ U0) is unsatisfiable), then the proof is complete. Consider the property

of Example 1. If it fails, there is at least one trace leading from an initial state to a state s that

falsifies EF p. The outer EF node would direct IICTL to find such a trace, after which the upper

bound query of the inner EF-node would return a proof that s cannot reach a p-state. As soon as

the proof is generated, it is evident that the property is false.

3.6 Fairness

Fairness in CTL cannot be handled completely within the logic itself. Instead, model checkers

must be able to handle fairness constraints algorithmically when deciding whether a state satisfies

an EG formula, a task that IICTL accomplishes by passing the constraints to fair. To show that

finite paths computed for other types of formulae can be extended to fair paths, it suffices to show

that they end in states that satisfy EG>. Hence, it is customary in BDD-based CTL model checkers

to pre-compute the states that satisfy EG> and constrain the targets of EU and EX computations

to them [45].

IICTL instead tries to decide the fairness of as few states as possible. To achieve that, it
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computes from the given CTL formula ϕ a modified formula τ(ϕ) recursively defined as follows:

τ(p) = p τ(EGϕ) = EG τ(ϕ)

τ(¬ϕ) = ¬τ(ϕ) τ(EXϕ) = EX(τ(ϕ) ∧ ψ)

τ(ϕ1 ∧ ϕ2) = τ(ϕ1) ∧ τ(ϕ2) τ(Eϕ1 Uϕ2) = E τ(ϕ1)U(τ(ϕ2) ∧ ψ) ,

where

• p is an atomic proposition, and

• ψ = > if ϕ is a positive Boolean combination of EX, EU and EG formulae; ψ = EG>

otherwise.

For example, τ(AGEF(p∧¬q)) = τ(¬EF¬EF(p∧¬q)) = ¬EF(¬EF((p∧¬q)∧EG>)∧EG>), while

τ(AGAF p) = τ(¬EFEG¬p) = ¬EFEG¬p.

While the definition of τ(ϕ) is closely related to the one implicitly used by most BDD-based

model checkers—the difference is that in the latter, ψ always equals EG>. This definition minimizes

checks for fairness by taking into account that every path with a fair suffix is fair.

For instance, in the case of AGAF p, IICTL does not check whether any state satisfies EG>

because the states that satisfy EG p are known to be fair. For the resetability property AGEF(p∧¬q),

however, a state that satisfies p∧¬q is not assumed to satisfy the inner EF node unless it is proved

fair.

When applying IICTL to a system S with fairness constraints, the fairness constraints are

ignored in the EX and EU computation, but they are passed to fair. This is possible because the

transformation from ϕ to τ(ϕ) above guarantees that the target of an EX or EU computation is

always fair.

3.7 Results

The IICTL algorithm has been implemented in the IImc model checker [38], and it has

been evaluated on a set of 79 models (mostly from [57]) for a total of 1245 CTL properties (1058
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passing and 187 failing). Of the 79 models, 22 had fairness constraints. The performance of IICTL

is compared to that of the BDD-based CTL model checker in VIS-2.4 [57] (with and without

preliminary reachability analysis). The experiments have been run on a machine with 2.8 GHz

Intel Core i7 CPUs and 9 GB of RAM. A timeout of 900 s was imposed on all runs.

The total run times for the complete collection were: 1952 minutes for IICTL; 5513 minutes

and 3390 minutes for VIS with and without reachability analysis. Table 3.2 shows for each of the

three CTL algorithms the numbers of timeouts (TO) and the numbers of properties that could be

solved by only one technique (US). Only the models for which timeouts occurred are listed. While

IICTL obtains the lowest number of timeouts and the highest number of unique solutions, it is

apparent that the three methods have different strengths and thus are complementary. This point

is further brought out by the plots of Figure 3.2 that shows the comparison of IICTL to VIS in the

form of scatter plots.
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Table 3.2: Timeouts and Unique Solves (nr = no reachability)

model IICTL VIS VIS-nr
TO US TO US TO US

abqueues4 1
abqueues8 7 11 16 18

abqueues8m 1 7 1
am2901 1 2 1
am2910 4
amba16 8
amba32 130

andersonSQ 3
blackjack 1 13 13 1 50

bufferAlloc 9
CAB 6 6 11

checkers 45 15 60 60
fifteen 6 2 8 8

gcd 2
newnim 5

palu 4
redCAB 5 3

retherRTF 1
retherRTFfair 3

rgraph 1
simple16 2 14 15 1 17
simple8 1

soap 10 10 10
swap 2
twoQ 3 1

vcordic 1 1 1
viper 3

vsa16a 1 6 1
vsaR 11
vsyst 1 1 1

total 112 56 300 8 186 1



Chapter 4

Generalization in Incremental, Inductive Verification

Generalization is a crucial component of IIV. Without generalization, IIV algorithms reduce

to state-enumerating strategies. IIV algorithms generalize facts they discover about the system to

produce a more thorough refinement of the abstraction. Each type of property—hence every IIV

algorithm—has its own generalization requirements. In some cases, an IIV algorithm may need

to generalize a claim that has been proven to hold in the system, and in other cases, it may need

to generalize a counterexample that explains why a claim does not hold. This chapter discusses

different types of generalizations and ways in which they can be carried out.

Table 4.1 summarizes the generalizations required by the different IIV algorithms. For each

generalization, the table lists the section of this chapter that describes a procedure for carrying out

this specific generalization.

Section 4.1 describes procedures for generalizing proofs, and Section 4.2 describes procedures

for generalizing counterexamples. Procedures described in this chapter are assumed to have access

to the components of the system S that is being model checked, in particular its initial states I,

its transition relation T , and its fairness constraints {B1, . . . , Bl}.

4.1 Generalizing Proofs

IIV algorithms prove many lemmas on their way to deciding the property. This section

describes procedures for generalizing such lemmas. Section 4.1.1 describes a procedure for gener-

alizing a relatively inductive clause. Section 4.1.2 explains how to generalize a state that cannot
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IIV Fact Type Required Section
Algorithms Discovered Generalization

IC3 A clause ¬q is rela-
tively inductive:

Proof A subclause ¬q̂ ⊆ ¬q
that is relatively in-
ductive:

4.1.1

I ⇒ ¬q, and I ⇒ ¬q̂, and
Fi ∧ ¬q ∧ T ⇒ ¬q′ Fi ∧ ¬q̂ ∧ T ⇒ ¬q̂′

Fair A state s is unreach-
able from the initial
states:

Proof A set of states that are
unreachable from the
initial states:

4.1.3.1

I 6|= EF s I 6|= EFG where
s⇒ G

Fair A state s cannot reach
another, t:

Proof A set of states that
cannot reach t:

4.1.3.2,
4.1.3.3

s 6|= EF t G 6|= EF t where s⇒ G

IICTL A state s cannot reach
a target in one step:

Proof A cube ŝ ⊆ s of states
that cannot reach the
target in one step:

4.1.2

s 6|= EXϕ ŝ 6|= EXϕ

IICTL A state s cannot reach
a target via a con-
strained path:

Proof A set of states that
cannot reach the tar-
get via a constrained
path

4.1.3.2

s 6|= EϕUψ G 6|= EϕUψ where
s⇒ G

IICTL A state s is not on a
fair path:

Proof A set of states that are
not on a fair path

4.1.4

s 6|= EGϕ G 6|= EGϕ where
s⇒ G

IICTL A state s can reach a
target in one step:

Counterexample A cube ŝ ⊆ s of states
that can reach the tar-
get in one step:

4.2.1

s |= EXϕ ŝ |= EXϕ

IICTL A state s can reach
a target via a con-
strained path:

Counterexample A set of states that can
reach the target via a
constrained path:

4.2.2

s |= EϕUψ G |= EϕUψ where
s⇒ G

IICTL A state s is on a fair
path:

Counterexample A set of states are on a
fair path:

4.2.2

s |= EGϕ G |= EGϕ where
s⇒ G

Table 4.1: Types of generalizations required by IIV algorithms.
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reach a target in one step into a cube of states that all lack successors into the target. Section 4.1.3

describes procedures for manipulating a proof of unreachability through strengthening, weakening,

or minimizing the proof CNF. Finally, Section 4.1.4 describes a procedure for generalizing a state

that is not on a fair path to a set of states that are all not on fair paths.

4.1.1 A State’s Negation is Relatively Inductive

Listing 4.1: IC3 generalization procedure.

1 Cube MIC(q : Cube , i : Le v e l ) :
2 L := l i t e r a l s (q )
3 foreach L i t e r a l l in L :

4 L̂ := down(L \ {l} , i)

5 i f L̂ 6= ∅ :

6 L := L̂
7 return

∧
l∈L l

8

9 L i t e r a l S e t down(L : L i t e r a l S e t , i : Le v e l ) :
10 while true :
11 q :=

∧
l∈L l

12 i f I 6⇒ ¬q :
13 return ∅
14 i f Fi ∧ ¬q ∧ T ⇒ ¬q′ :
15 return L
16 with (Fi ∧ ¬q)−s t a t e s : {s i s the s a t i s f y i n g assignment from l i n e 14}
17 Ls := l i t e r a l s (s)
18 L := L ∩ Ls

When IC3 proves a counterexample to induction (CTI) unreachable within i + 1 steps (by

proving that the CTI’s negation is inductive relative to Fi), it tries to extend this conclusion to

other states. It does so by expanding the CTI cube s (or equivalently finding a subclause of ¬s)

using induction to guide the dropping of literals. IC3’s generalization procedure (called MIC for

minimal inductive clause [15]) is described in Listing 4.1.1 Given a cube q that represents a state

or a set of states that have been proven unreachable in i+ 1 steps, the procedure attempts to drop

each literal in turn from q, calling down to validate each potential expansion of the cube (and, as

1 The original MIC procedure described in [15] uses two procedures internally: up and down. However, the up
procedure is not central to this thesis so we omit it for clarity.
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a side effect, to further expand the cube). If down reports that the literal cannot be dropped, MIC

returns it to q.

Given the literals of a cube q, the down procedure finds the largest subcube q̂ ⊆ q that does

not contain any initial states, and whose states are unreachable in one step from (Fi ∧ ¬q̂)-states

(or equivalently, the largest subclause ¬q̂ ⊆ ¬q that is inductive relative to Fi). Procedure down

returns the literals of the subcube, if found, and ∅ if such a subcube does not exist. For a cube’s

states to be unreachable, all their predecessors must also be. Thus, starting with q, down checks if

any q-state is reachable from an (Fi∧¬q)-state. If there is one, its predecessor must also be proven

unreachable; down, therefore, includes the predecessor in the cube and recurs. But, as a result

of representing the set of states to be proven unreachable in the form of a single cube (which is

important for efficiency), including a predecessor in the cube results in the inclusion of other states

as a side effect. If at some point, an initial state gets included, the procedure declares failure.

Denoting the cube at iteration j by qj (line 11), each fixpoint iteration queries the SAT solver

for the existence of an (Fi ∧¬qj)-predecessor to some qj-state. The procedure concludes if no such

predecessor exists. Otherwise, down must include the predecessor (Fi ∧ ¬qj)-state s in the cube.

Including s is done by taking the literals common to qj and s (line 18), which is equivalent to

finding the largest subcube whose equivalent set of states includes all qj-states as well as s. The

number of literals in the cube thus strictly decreases in every iteration, effectively expanding the

cube qj and consequently its set of states.

The following lemma states the correctness of the MIC procedure.

Lemma 9 ([15]). Given a cube q and the index i of an overapproximate set Fi such that I ⇒ ¬q

and Fi ∧ ¬q ∧ T ⇒ ¬q′, MIC returns a cube q̂ ⊆ q such that I ⇒ ¬q̂ and Fi ∧ ¬q̂ ∧ T ⇒ ¬q̂′

4.1.2 A State Cannot Reach a Target in One Step

In IICTL, if an upper bound EX query is unsatisfiable—a task state s does not have ϕ-

successors for some target assertion ϕ—it is desirable to generalize this to other states by finding

a subcube ŝ ⊆ s such that no ŝ-state has a ϕ-successor. As pointed out in Section 2.8, one can
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immediately obtain from the SAT query a subcube of s that satisfies this condition by passing s

as a list of unit assumptions to the SAT solver, and requesting the subset of assumptions needed

to make the query UNSAT. However, the subset of assumptions returned by the SAT solver is not

guaranteed to be minimal. Therefore, one can obtain a better generalization by iterating over the

remaining literals and attempting to drop each of them, querying the SAT solver every time if the

query is still UNSAT. If it is, the subset of assumptions can be extracted. Otherwise, the literal is

added back to the cube.

4.1.3 A State Cannot Reach a Target

Both Fair and IICTL invoke a proof-producing safety model checker through a function,

reach(S,C, F,G), that accepts a finite-state system S, and propositional formulae for the constraint

C(x, x′), the initial states F (x), and the target G(x). The function reach checks whether a G-state

is reachable from an F -state via a path constrained by C. Fair calls reach for its stem and cycle

queries, and IICTL calls reach for its upper and lower bound EU queries, for queries that determine

whether a counterexample to generalization is reachable (see Section 4.2), and indirectly through

calling Fair. A negative answer from reach is accompanied by a 1-step inductive strengthening of

the property, that is, an assertion H such that

F ⇒ H

and

¬G ∧ C ∧H ∧ T ⇒ ¬G′ ∧H ′.

The safety model checker used by IIV algorithms described in this thesis is IC3. IC3 im-

plements reach(S,C, F,G) by setting its initial condition I to reach’s F argument, its property P

to ¬G, and its transition relation T to TS ∧ C, where TS is S’s transition relation. The inductive

strengthening H produced by IC3 is a CNF that is formed of the clauses in IC3’s l-th overap-

proximation Fl, where l is the level at which IC3 converged. Depending on the algorithm and

the particular query that is answered via reach, it might be desirable to strengthen, weaken,
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or minimize the CNF for Fl. Procedures for carrying out each of these generalizations, and the

contexts in which they are needed are described next.

In what follows, let C = {c1, c2, . . . , cn} be the set of clauses in Fl, i.e., Fl =
∧

ci∈C ci.

4.1.3.1 Proof Strengthening

For an unreachable stem query in Fair, the inductive strengthening returned by reach is

an overapproximation of the states reachable from the initial states. Future skeletons that Fair

examines must fall within this overapproximation. Thus, having an overapproximation that is as

tight as possible can reduce the number of skeletons that Fair has to examine.

A CNF can be strengthened by either strengthening the individual clauses or by adding new

clauses. The former is easier to carry out algorithmically. Listing 4.2 describes a procedure that

strengthens each clause of the CNF by applying the MIC procedure to it. The level parameter of

MIC is passed the value l so that induction is applied relative to Fl.

Listing 4.2: Strengthening a proof of unreachability.

1 C lau s eSe t strengthenProof (C : C lau s eSe t )
2 do :
3 changed := fa l se
4 foreach Clause ci in C :
5 oldSize := |ci|
6 ¬ci := MIC(¬ci , l )
7 i f |ci| < oldSize :
8 changed := true
9 while changed

10 return C

Strengthening a clause ci can enable strengthening another, cj , even if a previous attempt

of strengthening cj failed. This is due to the strengthened induction hypothesis in the consecution

query. Thus, the proof strengthening procedure iterates until a full pass on all clauses does not

produce any further strengthening.

The following lemma establishes the correctness of strengthenProof.

Lemma 10. Applying the procedure described in Listing 4.2 to an inductive strengthening Fl of a
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property P , produces an assertion F̂l that is also an inductive strengthening of P , and is at least

as strong as Fl.

Proof. By Lemma 9, every call to MIC with a clause c is guaranteed to produce a relatively inductive

clause ĉ. Because ĉ is at least as strong as c, the relative inductiveness of all other clauses is

maintained.

4.1.3.2 Proof Weakening

An unreachable upper bound EU query in IICTL indicates that a state s does not satisfy a

subformula, and thus can be removed from the subformula’s upper bound. In such a case, the proof

from IC3 represents states that all do not satisfy the subformula. By weakening such a proof, the

set of states can be enlarged.

A CNF can be weakened by either dropping clauses or expanding them, i.e., adding more

literals. The former can be done algorithmically using a procedure similar to MIC but applied to

clauses instead of literals. The procedure is described in Listing 4.3.

Listing 4.3: Proof weakening procedure.

1 C lau s eSe t weakenProof (C : C lau s eSe t ) :
2 foreach Clause c in C :

3 Ĉ := downClauses(C \ {c})

4 i f Ĉ 6= ∅ :

5 C := Ĉ
6 return C
7

8 C lau s eSe t downClauses(C : C lau s eSe t ) :
9 while true :

10 i f P ∧
(∧

ci∈C ci
)
∧ T 6⇒ P ′ :

11 return ∅
12 i f P ∧

(∧
ci∈C ci

)
∧ T ⇒ P ′ ∧

(∧
ci∈C c

′
i

)
:

13 return C
14 with (¬(P ′ ∧

(∧
ci∈C c

′
i

)
))−s t a t e t :

15 foreach Clause c in C :
16 i f t |= ¬c :
17 C := C \ {c}

The procedure iterates over the clauses of C and attempts to drop them one at a time. For
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each clause c, the procedure downClauses (line 8) is called with C \{c} (line 3) to determine whether

c is necessary. Given a set of clauses C, downClauses returns a maximal subset of clauses Ĉ ⊆ C

such that
∧

ci∈Ĉ ci is an inductive strengthening of the property, if it exists. First, downClauses

checks if the property is inductive relative to the reduced set of clauses (line 10). If it is not,

then the reduced set of clauses is no longer an inductive strengthening, and cannot become one

through dropping more clauses; downClauses returns the empty set indicating that c is a necessary

clause. Otherwise, downClauses checks whether the reduced set of clauses is inductive relative to

the property2 (line 12). If it is, the set is returned. Otherwise, the satisfying assignment of the

next-state, t′, is examined: t is a state that is not in the weakened proof, but is reachable from a

state in the weakened proof. For the weakened proof to obey consecution, t must be included in

the set. This is done by dropping every clause c that t violates; the loop in lines 15–17 drops such

clauses.

The usage of activation literals is important for efficiency. For this procedure, an activation

literal is created for each clause, which is used to activate or deactivate that clause. Doing so is

useful for two purposes:

(1) It prevents having to modify the CNF in the SAT database between the different queries.

(2) By passing the activation literals as a set of unit assumptions to the SAT solver in the

consecution query on line 12, if the query is unsatisfiable, literals that are not in the

unsatisfiable core correspond to clauses in C that are not necessary for consecution to hold.

Such clauses can be excluded from C before it is returned on line 13.

Lemma 11. Applying the procedure described in Listing 4.3 to an inductive strengthening Fl of a

property P , produces an assertion F̂l that is also an inductive strengthening of P , and that is at

least as weak as Fl.

Proof. The set of clauses returned by the procedure obviously satisfies consecution since downClauses

2 Note that while P was proven in line 10 to be inductive relative to
∧

ci∈C ci, including P ′ in the consequent is
useful for the purposes of extracting an unsatisfiable core that represents a subset of C that obeys consecution.
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only returns a subset of the clauses if they form an inductive strengthening of the property. It re-

mains to prove that they also satisfy initiation. But since the procedure only drops clauses, and

because if I ⇒
∧

ci∈C ci, then for Ĉ ⊆ C, I ⇒
∧

ci∈Ĉ ci, then the returned clauses also satisfy

initiation.

4.1.3.3 Proof Minimization

The size of a CNF is determined by the number of clauses and literals it contains. The

procedures described in Sections 4.1.3.1 and 4.1.3.2 drop literals and clauses, respectively, from

a CNF and thus can be iterated to reduce its size. This is useful to apply for unreachable cycle

queries in Fair, where minimizing the size of the proof can reduce the difficulty of all future queries.

Iterating the two procedures until convergence results in a prime CNF, one in which no literal or

clause can be dropped without losing inductiveness.

4.1.4 A State is not on a Fair Path

IICTL (see Chapter 3) invokes Fair to check whether s |= EGϕ for an undecided state s. If

Fair concludes that s 6|= EGϕ, it is desirable to generalize this result to states other than s, i.e., to

find an assertion G such that

∀x .G(x)⇒ (x 6|= EGϕ).

Fair concludes that s 6|= EGϕ when it refines its set of potentially reachable states, R, to

the point where the skeleton query becomes UNSAT indicating that R lacks fair SCCs. In this

case, all R-states—not just s—are not on a fair path. Furthermore, states that lack fair SCCs

can be generalized more by weakening R using a procedure similar to the one described in Section

4.1.3.2 but that guarantees that weakening does not result in including skeletons. The procedure

is described in Listing 4.4.

Similar to the procedure described in Listing 4.3, this procedure tries to drop the clauses one

by one. For each dropped clause, downFairClauses finds the maximal inductive subset of clauses

that is skeleton-free and thus fair-SCC-free. Checking if the subset of clauses is skeleton-free (line
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Listing 4.4: Procedure for generalizing a Fair proof.

1 C lau s eSe t weakenFairProof (C : C lau s eSe t ) :
2 foreach c l a u s e c in C :

3 Ĉ = downFairClauses(C \ {c})

4 i f Ĉ 6= ∅ :

5 C := Ĉ
6 return C
7

8 C lau s eSe t downFairClauses(C : C lau s eSe t ) :
9 while true :

10 i f
(∧

i∈{1,...,l}Bi(x
i) ∧

∧
ci∈C ci ∧

∧
W∈W

[(∧
i∈{1,...,l}W (xi)

)
∨
(∧

i∈{1,...,l} ¬W (xi)
)]

:

11 return ∅
12 i f

(∧
ci∈C ci

)
∧ T ⇒

(∧
ci∈C c

′
i

)
:

13 return C
14 with (¬

(∧
ci∈C c

′
i

)
)−s t a t e t :

15 foreach c l a u s e c in C :
16 i f t |= ¬c :
17 C := C \ {c}

10) uses the skeleton query described in Section 2.7. The information needed by the query is stored

in the state of the Fair solver.

Lemma 12 states the correctness of this procedure.

Lemma 12. Applying the procedure in Listing 4.4 to an assertion G for which ∀x .G(x) ⇒ (x 6|=

EGϕ) produces an assertion H such that ∀x .H(x) ⇒ (x 6|= EGϕ), and that is at least as weak as

G.

Proof. Similar to the proof of Lemma 11, downFairClauses guarantees that the returned clause set

is both inductive and skeleton-free. In addition, since the procedure only drops clauses, the CNF

of the resulting clause set is at least as weak as the original.

4.2 Generalizing Counterexample Traces

Unlike IC3 and Fair, generalizing counterexample traces is an essential component of IICTL.

In particular, when IICTL discovers via a lower bound query that a task state satisfies a subformula,

it is important to generalize this discovery to other states such that they can all be added to the
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corresponding node’s lower bound. Chapter 3 describes generalizing traces from satisfiable EX,

EU, and EG queries in terms of two procedures: generalize(t, G,D) and generalize(r̄, C,G,D). This

section describes the implementation of those two procedures.

We consider the problem of generalizing a trace, where in the case of an EX, the trace

consists of two states. A first approach to generalize a given trace s0, i0, s1, i1, . . . , sn−1, in−1, sn

with interleaved states and primary input values, is to use the unsatisfiable cores of the query

sj ∧ ij ∧ T ∧ ¬s′j+1 in which the literals of sj are used as assumptions, to reduce sj to a subcube.

This query is applied starting with j = n − 1 down to 0 [53, 22]. One can also seek a minimal

unsatisfiable core by dropping each literal if that does not make the query satisfiable. The (minimal)

unsatisfiable core describes a set of states that include sj , and that all have transitions on ij to sj+1.

This restriction to predecessors with ij-transitions limits the generalization power of this approach.

For greater generalization power, forall-exists generalization is introduced in this section.

The overall idea of forall-exists trace generalization is to (1) select a cube c of the trace, (2)

flip a literal of c to obtain c̄, and (3) decide whether all c̄-states satisfy the formula that the states

of the trace satisfy. If they are, c can be replaced with the resolvent of c and c̄, that is, the cube

obtained by dropping the literal of step (2). This process continues until no further literal of the

trace can be dropped.

Selecting the cube (step (1)) and one of its literals (step (2)) can be heuristically guided. The

following describes step (3) of the procedure for the two generalize functions.

4.2.1 generalize(t, G,D)

Given a state t, a target G, and a don’t care assertion D, generalize(t, G,D) returns a cube

t̂ ⊆ t such that ∀x . t̂(x) → (x |= D) ∨ (x |= EXG). Thus, if the candidate cube c̄ obtained by

flipping a literal of a subcube c ⊆ t satisfies:

∀x . c̄(x)→ D(x) ∨ ∃i, x′ . T (x, i, x′) ∧G(x′) , (4.1)

then c̄ satisfies the postcondition of generalize(t, G,D).
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The challenge with checking condition (4.1) is quantifier alternation. Rather than using a

general QBF solver, forall-exists adopts a strategy in which two queries are executed iteratively.

The first SAT query is the following:

c̄ ∧ ¬D ∧ T ∧ ¬G′ . (4.2)

It asks whether any “care” c̄-state has a ¬G successor. If the query is unsatisfiable, then every

c̄-state is either a D-state (a don’t care) or has all its successors in G, i.e.,

∀x . c̄(x)→ D(x) ∨ ∀i .∃x′ . T (x, i, x′) ∧G(x′) . (4.3)

This is clearly stronger than (4.1), and therefore c̄ also satisfies (4.1).

If, however, query (4.2) is satisfiable, then there exists a care c̄-state s with at least one

successor outside of G. If s only has ¬G-successors, then it represents a counterexample to (4.1).

This is checked via a second SAT query:

s ∧ T ∧G′ . (4.4)

If the query is satisfiable, then s does not prevent the generalization to c̄. Query (4.2) can be

repeated after adding the clause ¬s. However, before doing so, it is desirable to find states other

than s that also do not prevent the generalization so that the procedure does not have to repeat

queries (4.2) and (4.4) too many times. Finding states similar to s can be achieved by extracting

from query (4.4) the satisfying assignment j for the primary inputs, and performing the following

SAT query:

s ∧ ¬D ∧ j ∧ T ∧ ¬G′ . (4.5)

This query is unsatisfiable, since on j, s goes to a G-state3 . The set of literals of s that do not

appear in the unsatisfiable core can be dropped from s to obtain subcube ŝ. Each ŝ-state is either in

D or goes to G under input j; ŝ-states therefore satisfy condition (4.1) and need not be reconsidered

3 While query (4.5) is unsatisfiable even without the conjunction of ¬D, the presence of ¬D allows generalizations
of s that include D-states.
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when checking (4.2). The procedure, thus, proceeds by repeating query (4.2) after adding to it the

clause ¬ŝ.

If query (4.4) is unsatisfiable, s is considered a counterexample to generalization (CTG).

It explains why c̄ is not a valid generalization: a c̄-state (s in this case) is neither a don’t care state

nor has a G-successor. However, all is not lost: the question remains whether s is even reachable. If

it is not reachable, then it is a don’t care state for the purposes of IICTL. Because generalization is

unnecessary for correctness but necessary for (practical) completeness, answering this question re-

quires balancing computational costs against the potential benefits of greater generalization. There

are three reasonable approaches to addressing the question: (1) ignore it, obtaining immediate

speed at the cost of generalization; (2) apply a semi-decision procedure for reachability, such as

the MIC procedure of FSIS and IC3 [15, 14] to establish whether there is a subclause of ¬s that is

inductive; (3) apply a full reachability procedure such as IC34 .

With approach (3), if IC3 finds that s is reachable (hence c̄ does not satisfy (4.1)), it is useful

to cache this result by adding s to a set of states known to be reachable. Henceforth, whenever

a cube c̄ is considered as part of generalization, s |= c̄ is first tested; if so, then query (4.4) is

immediately applied. If this query is satisfiable because G has expanded, then s is no longer a

CTG and can be removed from the list. This reuse of known reachable states during generalization

significantly mitigates the cost of approach (3) on some benchmarks.

4.2.2 generalize(r̄, C,G,D)

generalize(r̄, C,G,D) generalizes a given trace r̄ such that every state in the generalized trace

either satisfies the don’t care assertion D, or is on a C-path to a G-state (∀0 ≤ i ≤ n, x . ŝi(x) →

(x |= D) ∨ (x |= EC UG)). The condition:

∀x . c̄(x)→ D(x) ∨G(x) ∨ C(x) ∧ ∃i, x′ . T (x, i, x′) ∧G(x′) (4.6)

is sufficient for the candidate cube c̄ to satisfy the postcondition of generalize(r̄, C,G,D): every

c̄-state is either a don’t care, a G-state, or a C-state with a G-successor.

4 Option 2 is the default in the implementation.
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To address (4.6) without a QBF solver, several queries are executed iteratively. First, a

necessary condition for the satisfaction of (4.6) is checked, which is that every c̄-state has to be a

D-state, a G-state, or a C-state. This is addressed with the following query:

c̄ ∧ ¬D ∧ ¬G ∧ ¬C . (4.7)

If satisfiable, a care c̄-state s is neither a G-state nor a C-state, and therefore cannot satisfy (4.6).

s is therefore a CTG that can be analyzed for reachability. A reachable CTG ends consideration of

c̄. For every unreachable CTG, its negation is added as a clause to (4.7). Once query (4.7) becomes

unsatisfiable, every (remaining) c̄-state is a don’t care state, a G-state, or a C-state. c̄-states that

are don’t care states or G-states certainly satisfy (4.6); C-states, on the other hand, do not satisfy

(4.6) unless they have G-successors. Therefore, focus turns to the existence of G-successors for all

such c̄-states:

c̄ ∧ ¬D ∧ ¬G ∧ T ∧ ¬G′ . (4.8)

If unsatisfiable, c̄-states that are neither D-states nor G-states (and therefore by the unsatisfiability

of (4.7) must be C-states) only have G-successors, which, again, is a stronger condition than (4.6).

Therefore, c̄ satisfies (4.6), and generalization is complete.

Otherwise, a witness state s exists; it is checked for G-successors:

s ∧ T ∧G′ . (4.9)

If the query is satisfiable, then there exists s-successor state t and input j such that t |= G and

(s, j, t′) |= T . In this case, the following query is unsatisfiable:

s ∧ ¬D ∧ ¬G ∧ j ∧ T ∧ (¬C ∨ ¬G′) . (4.10)

Its unsatisfiable core reveals a cube ŝ ⊆ s that satisfies (4.6)5 , and can therefore be added as a

blocking clause to (4.8). Adding the blocking clause eliminates s as a counterexample to query

(4.8), and therefore the query can be repeated. If query (4.9) is unsatisfiable, then s is a CTG to

be handled as described for generalize(t, G,D).

5 Note that while s is a C-state, the ¬C term in the disjunction is necessary to guarantee that states in the
unsatisfiable core that are neither D-states nor G-states not only have G-successors, but are also C-states.
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Better Generalization in IC3

One of the key components of IC3—as well as other IIV algorithms—is inductive general-

ization. While IC3 has an element of explicit state model checking in that it examines individual

states called counterexamples to induction (CTIs), inductive generalization makes IC3 symbolic

allowing it to handle huge state spaces. IC3’s success on a model, thus, hinges on its ability to

generalize facts that it discovers from considering specific states. The effectiveness of generalization

depends on the connectivity of a model’s state graph and its encoding. The overapproximate na-

ture of inductive generalization causes it to fail frequently for some encodings, and for some models

independent of their encoding. Unsuccessful generalization forces IC3 to examine more individual

states.

Addressing counterexamples to generalization (CTGs) has proven to be a crucial aspect

of effective generalizations in the context of IICTL, the IIV algorithm for CTL properties (see

Chapter 4). In particular, addressing CTGs often allows generalizations to succeed that would

have otherwise failed, helping alleviate the restriction caused by fixing the domain of generalization.

Moreover, every successful generalization can have a ripple effect that allows other generalizations

to succeed, and so on. This chapter examines what CTGs in IC3 represent, and proposes ways

to address them. Addressing CTGs is shown to greatly enhance the performance of IC3 in two

independent implementations of the algorithm.

Consider the state graph in Figure 5.1, where 000 is the initial state, 001 is the bad state.

This model has two counterexamples to the inductiveness of the property: 110 and 100, two good
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Figure 5.1: Failure to generalize a clause.

states with a bad successor. Suppose state 100 is the first CTI that IC3 finds. Since this state

does not have predecessors, its negation is inductive, so that IC3 concludes it is unreachable. The

unreachability of this state is a specific fact that IC3 next tries to generalize in order to prove that

other states are unreachable as well. It does so by attempting to drop as many literals as possible

which, in this case, is not possible for any of the literals of 100. For example, if IC3 attempts to

drop the third literal, the negation of the resulting cube 10−, where − indicates a don’t care, is not

inductive because of the transition from 011 to 101. If there is a cube whose negation is inductive

and excludes both 100 and 101, that cube must also include 101’s predecessor, 011. However, the

smallest cube that includes all three states is − − −, which includes the initial state and whose

negation is therefore not inductive. Similar reasoning shows that IC3 also cannot drop either the

first or the second literal. Thus the strongest clause that can be derived through generalization

only blocks the CTI itself. IC3 then has to prove that the other CTI (110) is unreachable without

having learned much from the first CTI.

A state that hinders a generalization attempt (011 in the example) is a counterexample to

generalization (CTG): it prevents dropping a literal (the third in the example), i.e., generalizing

to a larger cube. Despite being itself unreachable, state 011 causes the inclusion of an initial state

into the cube that covers both it and 10−, which in turn causes generalization to fail. In this case,

it is useful to focus some effort on the CTG rather than only on the CTI. Since the negation of the

CTG is inductive, IC3 can block it by adding the CTG’s negation as a clause to the reachability

sets. Then, with the CTI’s predecessor blocked, generalization succeeds in dropping the third literal
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of 101. Indeed, the second literal can be dropped as well, as all predecessors of the cube 1−− are

blocked. This further expansion takes care of state 110 as well, ending the proof to the property.

This example motivates the improved generalization procedure described in this chapter. The

proposed procedure addresses CTGs that appear during the generalization of some CTI-derived

relatively inductive clause. CTGs are often deep backward reachable states, and addressing them

reduces the depth of the explicit backward search IC3 performs and allows stronger inductive

generalizations.

The proposed generalization procedure is evaluated within the implementations of IC3 in the

model checkers IImc [38] and ABC [2]. Both show considerable improvement on Hardware Model

Checking Competition (HWMCC) benchmarks [37].

Several improvements orthogonal to the generalization method presented here have been

described for IC3. Ternary simulation [31] and SAT-based [22] methods of enlarging CTI cubes

significantly improve running time. A scheme for integrating lazy abstraction with IC3 has also

been developed [58].

Section 5.1 describes the proposed generalization procedure. Section 5.2 presents the results

of IC3 with improved generalization on the HWMCC 2010–2012 benchmark suites. To confirm

the intended purpose of addressing CTGs—reducing IC3’s explicit backward search, Section 5.3

analyzes the behavior of IC3 with the improved procedure and compares it to its behavior with the

standard generalization procedure.

5.1 Addressing Counterexamples-to-Generalization

5.1.1 Presentation of the Procedure

In IC3’s down procedure (see Section 4.1.1), if induction does not hold with an expanded

cube qj due to the existence of an (Fi ∧ ¬qj)-predecessor s to a qj-state, the procedure proceeds

by dropping from qj all literals not in s. Keeping only the common literals of qj and s provides an

overapproximating union over state sets—a join in the cube lattice. While this operation responds
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to the need to include the qj-predecessor s in the state set described by qj+1, it also typically brings

in other Fi-states. Therefore, even when all q0-states are unreachable, down (eventually) fails if,

through overapproximation, it incorporates a reachable state.

If down fails, state s is a possible cause of its failure. State s is a counterexample to

generalization (CTG) since it is encountered in the context of dropping a literal (in MIC) in order

to generalize a cube. Unlike CTIs, states brought in as a result of dropping a literal or joining

cubes are not necessarily backward reachable from the error. On the one hand, if s is backward

reachable—and it represents a set of deep backward reachable states—then addressing it could save

IC3 from having to explicitly traverse the state graph from the error state to s. On the other hand,

if s is neither backward nor forward reachable, it could still obstruct generalization: when it is

joined with qj to form qj+1, it could cause the inclusion of a reachable state. Nevertheless, IC3

would never attempt directly to block s since it only generalizes from backward reachable states.

Yet blocking s, rather than joining with it, could enable generalization to succeed, thereby helping

IC3 produce stronger clauses and potentially find a proof faster.

The arguments presented motivate the potential benefits of addressing CTGs. A general-

ization procedure that addresses CTGs, ctgDown, is presented in Listing 5.1. Similarly to down

(Section 4.1.1), ctgDown first checks whether ¬q is inductive (lines 16–19). However, if it is not

inductive, ctgDown does not immediately join q with the discovered predecessor s. Rather, it at-

tempts to block s at level i by proving ¬s inductive relative to Fi−1 (line 23). If this attempt

succeeds, ctgDown tries to block s at higher levels (lines 25–27), and then strengthens the clause at

the highest level relative to which it was found to be inductive by applying MIC (line 28). Having

addressed one cause for the non-inductiveness of ¬q, ctgDown returns its attention to q.

To maintain its focus on the main goal of strengthening ¬q, ctgDown considers at most

maxCTGs CTGs between joins (line 23). If the limit is exceeded or a CTG is not found to be

inductive, the CTG is joined with q (line 33). New states brought in as a result of the join present

an opportunity to explore behaviors farther from the error, so ctgDown re-enables considering CTGs

by resetting the number of allowable CTGs to maxCTGs (line 31) to allow examining potentially
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Listing 5.1: Proposed generalization procedure.

1 Cube MIC(q : Cube , i : Le v e l ) :
2 return MIC(q , i , 1)
3

4 Cube MIC(q : Cube , i : Leve l , d : RecDepth ) :
5 L := l i t e r a l s (q )
6 foreach L i t e r a l l in L :

7 L̂ := ctgDown(L \ {l} , i , d)

8 i f L̂ 6= ∅ :

9 L := L̂
10 return

∧
l∈L l

11

12 L i t e r a l S e t ctgDown(L : L i t e r a l S e t , i : Leve l , d : RecDepth ) :
13 ctgs := 0
14 while true :
15 q :=

∧
l∈L l

16 i f I 6⇒ ¬q :
17 return ∅
18 i f Fi ∧ ¬q ∧ T ⇒ ¬q′ :
19 return L
20 with (Fi ∧ ¬q)− s t a t e s :
21 i f d > maxDepth :
22 return ∅
23 i f ctgs < maxCTGs and i > 0 and (I ⇒ ¬s) and (Fi−1 ∧ ¬s ∧ T ⇒ ¬s′) :
24 ctgs := ctgs+ 1
25 for j := i to k :
26 i f Fj ∧ ¬s ∧ T 6⇒ ¬s′ :
27 break
28 s := MIC(s , j − 1 , d+ 1)
29 clauses(Fj ) := clauses(Fj) ∪ ¬s
30 else :
31 ctgs := 0
32 Ls := l i t e r a l s (s)
33 L := L ∩ Ls
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deeper CTGs.

Since ctgDown calls MIC, the version of MIC associated with ctgDown monitors the recursion

depth through its d parameter. The recursion depth is initialized by the wrapper function to 1

(line 2) and updated by the call to MIC from ctgDown (line 28). At a recursion depth of 1, ctgDown

examines CTGs that are encountered during generalization of a CTI-induced clause. For larger

depths, an encountered CTG is one that interferes with the generalization of a CTG-induced clause.

A parameter, maxDepth, limits the effort spent on addressing CTGs of CTG-induced clauses. When

this limit is exceeded (line 21), CTGs are not examined, and joins are disabled; as a result, ctgDown

fails immediately if ¬q is not inductive (line 22).

5.1.2 Discussion

The limit on handling CTGs, which gets reset after every join, results in an interesting pattern

of state exploration. IC3 itself explores the state space in an explicit manner backward from the

error through its priority queue. A state s in the priority queue can reach the error in a relatively

few number of steps. If IC3 is forced to consider a predecessor of s, then it is known that the

predecessor can reach the error too. In contrast, when MIC is applied to s, the first step is to drop

a literal, enlarging the represented state set. In ctgDown, up to maxCTGs times, predecessors of the

enlarged cube are then considered as CTGs. They are likely to be backward reachable; they are

also likely to be about as close to an error as s is1 .

Eventually maxCTGs is exhausted, forcing a join. Predecessors to the enlarged cube are then

considered as CTGs. These predecessors are less likely to be backward reachable but more likely

to be “farther” from an error than s. Deep backward reachable states may be particularly valuable

to prove unreachable from the initial states early because this may facilitate proving other states

unreachable. This cycle can continue for several iterations, each iteration exploring states that are

increasingly far from the error but at the cost of being increasingly likely not to be able to reach

1 While there are models for which this assumption is invalid, the fraction of state bits of a large digital system
that changes at each clock cycle is often less than one tenth. This fraction supports the view that similarity between
states decreases with their distance in the state graph.
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the error. Further iterations of dropping literals by MIC add layers of likelihoods of depth and

backward reachability to the state exploration.

Another behavior worth noting is that unlike down, the effort spent on a ctgDown call that

in the end fails, is not always wasted. When down fails, the only gained information is that the

dropped literal is actually required. In contrast, ctgDown may successfully handle some CTGs on

the way to failing to prove the inductiveness of the given cube. These CTG-derived lemmas could

well prove useful in addressing the overall model checking problem.

In early attempts at considering CTGs, we investigated a scheme that delayed the handling

of CTGs as much as possible. Rather than prioritizing the direct handling of CTGs over joining

with them, it aggressively joined and only handled CTGs upon failure. If ¬qj failed initiation,

the last-encountered CTG s was addressed directly. Successful elimination of s would enable the

reconsideration of qj−1; failure would cause the CTG leading from qj−2 to qj−1 to be addressed

instead, and so on. This version was inferior to ctgDown, possibly because too much effort was

put into addressing states that were either not actually backward reachable or too removed from

the original CTI to be relevant to the generalization effort. While ctgDown explores CTGs in an

outwardly expanding set from the error, the unsuccessful variant explored CTGs in an inwardly

contracting set.

While these explanations assume characteristics of a state space that need not hold for a given

model, they offer an intuitive motivation for using ctgDown instead of down: with some trade-offs, it

jumps to deep states, complementing IC3’s conservative top-level behavior. Section 5.3 compares,

empirically, the behavior of IC3 with down versus with ctgDown.

5.2 Results

In this section, IC3 with ctgDown is compared empirically to existing standard implementa-

tions of IC3. The new procedure was implemented within the IC3 engines in IImc v1.3 [38] and

in ABC vbb0deac (Apr 3, 2013) [2]. The following parameter values were used in the experiments
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for both implementations of ctgDown: maxDepth = 1 and maxCTGs = 32 . The implementations of

ctgDown differ from the pseudocode of Listing 5.1 in the following respects:

• In the IImc implementation, the consecution call in line 26 was implemented as a call to

down. This change enables blocking a CTG at a (higher) level at which its negation is

not inductive but contains an inductive subclause. The experiments are inconclusive with

regards to which version is better.

• In the ABC implementation, the CTG cube is expanded through ternary simulation before

it is checked for inductiveness (line 20) [31].

Note that, unlike IImc’s standard implementation of IC3, ABC’s standard implementation does not

employ down in its generalization procedure; in particular, it never joins. Thus, experiments with

IImc compare the effects of ctgDown against down, while experiments with ABC compare the effects

of ctgDown against ABC’s generalization procedure. While a variant of ctgDown in which joins are

disabled can be implemented, experiments with ABC (whose details are not reported here) show

that this variant of ctgDown is inferior to full ctgDown.

The benchmark suite was gathered from the HWMCC 2010–2012 benchmarks [37]—with one

exception. Backward-encoded BEEM models (distinguished by the names beem*ibj) were replaced

with their corresponding “functional” versions (also available from [37]). The backward encoding

of these models involves two features3 :

(1) Serial exists-step transition relation [30]: this feature adds “shortcut” transitions to the

state graph.

(2) Reverse relational encoding: the transition relation is inverted, and the initial states are

swapped with the bad states. The latch updates are directly from primary inputs, and a

valid bit is added to track whether a state is backward reachable in the original design.

2 Generally, small values for maxCTGs (2–5) gave the best performance. For higher values, IC3 tended to derive
too many clauses and lose property focus.

3 See http://fmv.jku.at/aiger/README.beemaigs for details.
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IImc has a “reverse” option to invert the transition relation and exchange the initial and error states.

With this option, IImc typically works better on reverse-encoded models and worse on forward-

encoded ones. A possible explanation is that a clause is a natural logical means of describing a design

intention; moreover, conjunctions of clauses capture local arguments. In contrast, disjunctions of

cubes—which is what IC3 produces from the forward perspective on reverse-encoded designs—

are less capable of capturing local arguments. For this reason, with both the functional and the

backward encodings of these models available, one would never choose to use the backward encoding

with IC3. Conclusions drawn from data based on such benchmarks are misguided.

As a preprocessing step, IImc’s sr simplification tactic was applied to each benchmark.

Then, IImc and ABC with and without the new generalization procedure were run on the sim-

plified benchmarks only invoking their IC3 engines. No other features of IImc or ABC—e.g.,

multi-threading, other proof engines, or more powerful simplification techniques—were used. Each

benchmark was run for up to 900 seconds. To account for variability, each benchmark was run

five times with different random seeds. The experiments were performed on two identical ma-

chines with four 2.80 GHz Intel cores and 9 GBs of memory. The full results can be found at

http://vlsi.colorado.edu/fmcad13.

A comparison between the performance of IC3 with and without ctgDown is presented in

Figures 5.2–5.4. Figure 5.2 shows cactus plots for IImc and ABC and Figures 5.3 and 5.4 show

scatter plots. All the plots use the results of the median runs. For the easier models, the use of

ctgDown does not typically reduce CPU time (Figures 5.3 and 5.4).

Detailed results by benchmark family are presented in Table 5.1. Benchmark families with at

least 60 benchmarks are listed separately. The remaining benchmarks are included in the “other”

category. The “Solved” columns show the minimum, median, and maximum number of solved

instances over the five runs. The “Time” columns reports the median CPU time in seconds.

Overall, IImc and ABC with ctgDown solve 17 and 27 more instances, respectively, than their
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standard counterparts4 . The same trend was observed when the timeout was increased to one

hour: IImc and ABC solved 17 and 24 more instances respectively.

5.3 Analysis of IC3’s Behavior

An observed weakness in IC3 with down is that, on some models, it handles long chains

of states explicitly rather than symbolically. ctgDown is intended to address this weakness by

addressing CTGs to accelerate IC3’s exploration of deep backward reachable states while still

maintaining its characteristic focus on the property. As discussed, CTGs interfere with generalizing

from CTIs and so are worthwhile candidates for blocking with generalization, even when they are

not backward reachable. Through measuring several metrics, this section presents an analysis that

suggests that ctgDown achieves its intended behavior. It highlights differences in the behavior of

IC3 with the standard (down) and improved (ctgDown) generalization procedures. The data in this

section were collected from IImc’s IC3 runs. Data collected from ABC’s runs also support the

observations made.

Data points for scatter plots in this section are divided into two categories: those for which

IC3 performs better with ctgDown, marked by a × in the plots, and those for which IC3 performs

better with down, marked by a +.

The first experiment compares the average distances of CTGs and CTIs from an error. To

measure the depths of CTGs, exact BDD-based backward reachability is performed; the resulting

“onion rings” can be used to compute the depth of a given state. Of the CTGs handled in these

experiments, 42% were backward reachable. For CTIs, their depths are considered to be the length

of the chains through which the CTIs were found; this length provides an upper bound on a CTI’s

actual backward depth. Figure 5.5 shows a plot for the average CTI depth against the average

CTG depth for the 294 benchmarks for which the preliminary BDD-analysis managed to complete

within 12 hours. The plot confirms that CTGs are typically deeper than CTIs—sometimes by

4 Since the median is used, the sum of the gains for the individual families is not necessarily equal to the overall
gain.
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several orders of magnitude. The plot also indicates that ctgDown helps in the cases where IC3 is

forced to explore deep CTIs.

Next, several metrics of IC3 runs were analyzed to understand when the proposed general-

ization procedure helps or harms the performance of IC3. The metrics are the maximum length

of traces from states in the priority queue to an error; the average size of derived clauses; the

convergence level, i.e., the level at which a proof or a counterexample is found; and the average

number of clauses derived per level.

Plots comparing IC3 with and without the proposed generalization procedure on the four

metrics are shown in Figures 5.6a–5.5d. The same information is presented with box-and-whisker

plots in Figure 5.4e. The plots report the ratio of each metric with ctgDown to without.

Figure 5.6a indicates a significant reduction in the depth of the explicit search performed by

IC3 when ctgDown is used. Statistics indicate an average reduction of 22.3% in the depth of IC3’s

explicit search over all benchmarks. A higher reduction in the depth of the search often indicates

better performance for IC3 as confirmed by the non-overlapping notches in the box plot, which

indicate a significant difference in the median depth ratios between cases with better and those

with worse performance.

The point in the lower right corner of Figure 5.6a (benchmark eijks420) represents an

extreme case in which IC3 with ctgDown proved the property with very little explicit backward

search; with down, the depth of the priority queue went up to 2049.

Figure 5.6b points out ctgDown’s ability to produce stronger CTI-induced clauses. Again, a

stronger clause indicates improved performance. On average, ctgDown drops 14% more literals than

down, which is statistically significant as indicated by the box plot.

A characteristic of the new procedure is that it often increases the convergence level of IC3,

as indicated in Figure 5.5c. This potentially undesirable side effect is probably attributable to

the aggressiveness of ctgDown in deriving clauses to block CTGs—which, again, need not actually

be backward reachable. In contrast, the standard procedure only derives clauses in response to

truly backward reachable states. A clause that blocks a forward reachable state is certainly not
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inductive and thus cannot appear in the final inductive strengthening. Such clauses can cause

overstrengthening of the Fi’s forcing IC3 to propagate to higher levels in order to drop the clauses.

Points to the far right in Figure 5.5 represent cases in which such behavior is exhibited: although

CTGs are much deeper than CTIs, the percentage of handled CTGs that are forward reachable is

higher than average causing overstrengthening. Also, as Figure 5.5c shows, a higher convergence

level is significantly correlated with worse performance. Similar observations hold for ABC with

ctgDown as Figure 5.5 indicates. The box plot in Figure 5.4e shows that 75% of the runs in which

ctgDown was beneficial did not increase the convergence level. In contrast, for 75% of the runs

that did not benefit from ctgDown, the convergence level was higher. On the other hand, statistics

indicate that the increase in convergence level only occurs for passing properties; for 75% of the

failing properties, the convergence level is not affected.

Points on the y-axis in Figure 5.5c correspond to benchmarks for which IC3 with down

converges at level 1 while IC3 with ctgDown converges at higher levels. A characteristic behavior of

IC3 with down is that clauses generated at level 1 are globally inductive until IC3 is forced to step

back to level 0. Subsequently, all derived clauses have the support of clauses that were generated

relative to F0, and thus need not be globally inductive. Aggressive handling of CTGs interferes

with this initial behavior. To overcome this behavior, a variant implementation was tried in which

CTG handling was disabled until IC3 was forced to step back to level 0. IC3 with this variant

ctgDown then converged at level 1 on these benchmarks; however, the performance difference across

the benchmark suite was insignificant.

Finally, Figure 5.5d and the corresponding box plot indicate a clear correlation between the

performance difference and the average number of clauses derived per level. An excessive number

of clauses derived to block CTGs is often accompanied by longer runtimes.



Chapter 6

Strategies of Incremental, Inductive Verification Algorithms

The incremental, inductive CTL algorithm developed in this thesis (IICTL) expands the

portfolio of incremental, inductive verification (IIV) algorithms. Despite being IIV-based, IICTL’s

strategy differs considerably from IC3 and Fair. This chapter sheds some light on the strategies

employed by IIV algorithms in an attempt to develop a deeper understanding of the IIV approach.

Both IC3 and Fair can be viewed as goal-driven: they start from the goal—a bad state in the

case of IC3, and a skeleton of a fair cycle in the case of Fair—and proceed by checking whether the

goal is achievable given facts known about the system—for IC3, whether the bad state is reachable,

and for Fair, whether the skeleton can be connected to a reachable fair cycle. If they determine

that the goal is not achievable, they proceed to a different one after deriving as much information

as possible to guide the future selection of goals. In contrast, IICTL uses a data-driven strategy:

starting from facts known about the system—its initial states—and guided by the structure of the

CTL parse graph, IICTL checks whether the system can evolve in a manner that constitutes a

violation of the CTL property.

This difference in strategies between IC3 and Fair vs. IICTL becomes more apparent on

properties that are in the scope of both approaches. In what follows, we give two examples of such

properties and describe the behavior of the two approaches on them.

Example 1. Consider the LTL property ϕ = G(p→ G q), which is equivalent to the CTL property

AG(p→ AG q). (See Appendix A for a proof of their equivalence.) The LTL property is a safety one

and thus can be model checked using IC3. Applying IC3 requires constructing a Büchi automaton
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Figure 6.1: Büchi automaton for F(p∧ F¬q)

¬

EF

∧

p EF

¬

q
q

q

¬q

¬q

>

¬q

p

p

p

p ∧ ¬q

>

p ∧ ¬q

¬p ∨ q

⊥

Figure 6.2: CTL parse graph for AG(p →
AG q)

that accepts the negation of the LTL formula and composing the automaton with the system. The

automaton that accepts ¬ϕ = F(p∧F¬q) is shown in Figure 6.1. The automaton has one accepting

state: s2. IC3’s task is to check whether an s2-state is reachable in the composed system,1 which it

does by examining CTIs and attempting to prove them unreachable within k steps or extending a

counterexample trace from them back to some initial state. In this case, CTIs are either (s1 ∧¬q)-

states or (s0 ∧ p ∧ ¬q)-states.

Since the property is expressible in CTL, it can also be model checked using IICTL. Unlike

IC3, IICTL operates on the system directly but uses the parse graph of the CTL formula to infer

the queries to perform. The parse graph of AG(p→ AG q) = ¬EF(p∧EF¬q) is shown in Figure 6.2

with the initial upper and lower bounds shown to the right of each node. The bounds are initialized

according to Table 3.1. IICTL starts by checking if any of the initial states does not satisfy the

1 A simple yet effective optimization for safety properties is to instead consider the precondition of the accepting
state(s) as the reachability target. For this example, the target would be (s0 ∧ p ∧ ¬q) ∨ (s1 ∧ ¬q). This strengthens
the inductive hypothesis from ¬s2, which does not provide any useful information, to (¬s0∨¬p∨q)∧ (¬s1∨q), which
through including system variables can help prune unreachable states.
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upper bound of the root node; if so, the property fails. Otherwise, it proceeds by carrying out an

upper bound reachability query to check for the existence of a counterexample trace from some

initial state to a state satisfying p; the absence of such a trace indicates that the property passes.

If a p-state is reachable, a lower bound query checks whether any (p ∧ ¬q)-state is reachable; any

such reachable state indicates a violation of the property. If no (p ∧ ¬q)-state is reachable, the

reachable p-state t from the upper bound query is undecided for the ∧-node and is passed down the

right branch of the graph. IICTL next attempts to complete the counterexample trace by checking

whether t can reach any ¬q-state. If no ¬q-states are reachable from t, an inductive proof that

excludes t is used to refine the upper bound of the bottom EF node, triggering a refinement to the

corresponding bound of the ∧-node, and forcing IICTL to search for a reachable p-state different

from t.

This example illustrates the differences between the goal-driven strategy of IC3 and the data-

driven strategy of IICTL. Whereas IICTL proceeds forward from the initial states and breaks down

the reachability problem into two (supposedly easier) problems, IC3—enabled by the composition

of the automaton with the model—uses one global query that proceeds backwards from the bad

states, pruning out unreachable states until it either finds a counterexample trace or proves the

absence of any.

When would one approach work better than the other? On the one hand, if the model is such

that the property passes vacuously because no p-states are reachable, IICTL would immediately

find the proof through the first reachability query. On the other hand, depending on the structure

of the unreachable state-space, IC3 might struggle to discover this fact. In a different model in

which every p-state—whether reachable or not—only has p successors and p ⇒ q, IC3 is likely

to discover the inductiveness of p quickly because it proceeds backwards and use it to prove the

property. IICTL can also arrive at this fact, depending on how well it is able to generalize a proof of

unreachability of a particular p-state to any ¬q-state. However, it may take it several iterations of

finding reachable p-states that cannot reach a ¬q-state before it converges. This discussion points

out that the structure of the model could give an edge to one approach over the other.
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Example 2. Consider the LTL property GF p whose CTL equivalent is AGAF p. (See Appendix A

for a proof.) The Büchi automaton for the negation of the LTL property is shown in Figure 6.3.

Fair can be used to determine whether a fair cycle exists in the composition of the model with the

automaton. Fair picks a fair state, an s1-state in the given automaton, and attempts to complete

a fair cycle by checking whether this state is reachable and can reach itself. If so, the property is

violated. Otherwise, an inductive proof excludes the s1-state—and many other states—from future

consideration. This process continues until either a fair cycle is found or the reachable state space

is found to contain none.

The parse graph for the equivalent CTL formula is shown in Figure 6.4. IICTL first performs

a query that checks for any reachable ¬p-state; the absence of one indicates that the property

holds. Otherwise, it proceeds by checking if the reached ¬p-state t is on a cycle in which every

state satisfies ¬p. If so, a counterexample is found. Otherwise, the inductive proof is used to

exclude t from the upper bound of the EG-node and the EF query is repeated.

Similar to the previous example, this example contrasts the goal-driven approach of Fair to the

data-driven approach of IICTL. Since both incoming edges to state s1 in the automaton are labeled

¬p, the s1-state that Fair picks must be a ¬p-state. Fair then checks whether this state is reachable.

In contrast, IICTL starts by checking for any reachable ¬p-state. If the model has no reachable

¬p-states, IICTL would conclude with one reachability query. At the other extreme, suppose the
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model does have reachable ¬p-states, but each of them is on a cycle of ¬p-states. Because IICTL

checks for reachability through invoking a safety model checker, and because safety model checkers

tend to produce short counterexamples, IICTL would likely refute the property faster than Fair,

which randomly picks ¬p-states that have no guarantees of being of close proximity to the model’s

initial states, and thus might increase the difficulty of the reachability queries. However, for models

in which it is hard to find a reachable ¬p-state but it is easy to prove that they are not on a cycle

of ¬p-states (for instance, if every ¬p-state only has p-successors), then Fair would likely prove the

property quickly.

CTL Formula Equivalent LTL Formula Safety or Progress

AG(p→ AG q) G(p→ G q) Safety
AG(p→ A qW r) G(p→ qW r) Safety
AG(p→ AXn q) G(p→ Xn q) Safety
AG(p→ AXAG q) G(p→ XG q) Safety

AG(p→ (q → AX r ∧ ¬q → AX¬r)) G(p→ (q ↔ X r)) Safety
p→ AG(q → AX r) p→ G(q → X r) Safety

A pU q pU q Progress
AGAF p GF p Progress

AG(p→ AF q) G(p→ F q) Progress
AG(p→ AXn AF q) G(p→ Xn F q) Progress

Table 6.1: The subset of properties from Section 3.7 expressible in both CTL and LTL.

The previous examples highlight cases in which one of the two IIV approaches—goal-driven

or data-driven—may perform better than the other. However, it remains to see whether in practice

one of the two approaches dominates the other. To determine if this is the case, we extracted

the subset of properties from the experiments in Section 3.7 that are expressible in both CTL

and LTL, and compared the performance of IICTL to that of IC3 on safety properties for models

with no fairness constraints, and to Fair on the others. For 697 of the 1245 properties used in the

experiments in Section 3.7, we could easily determine if they satisfy the syntactic restrictions of

ACTLdet and are thus known to be in CTL ∩ LTL (see Appendix A). Table 6.1 lists the CTL

formulae that were found to be in CTL ∩ LTL, their equivalent LTL formulae, and whether they

are safety or progress properties. Each property was given a timeout of 900 seconds.
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Figure 6.5: Comparing IICTL to IC3/Fair on properties in CTL ∩ LTL.

Figure 6.5 shows a scatter plot that compares the performance of the two approaches, where

properties run by IC3 (281 out of the 697) are marked by a ×, and those run by Fair (416 out

of the 697) are marked by a +. Whereas IICTL timed out on 45 properties, IC3 and Fair timed

out on 17 properties only. The total CPU time for IICTL was 49058 seconds, and for IC3 and

Fair was 21831 seconds. While IC3 and Fair performed better overall, and were >5% faster than

IICTL on 227 properties, there were 75 properties for which IICTL was >5% faster than IC3 or

Fair. These results indicate that neither approach dominates the other on properties in CTL ∩

LTL, and point out the potential advantage of having a flexible strategy; for example one which

applies both approaches in parallel.

It is interesting to note that a data-driven, i.e., IICTL-like, approach can be applied to the

automaton directly. Queries performed by the approach have a direct correspondence with those

performed by IICTL on the CTL parse graph. For example, for the automaton shown in Figure 6.1,
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the approach first checks the viability of the transition from s0 to s2 through a query that checks

for a reachable (p∧¬q)-state. This query corresponds to the first lower bound EF query that IICTL

carries out. If this transition is not viable, the only way the property could be violated is to reach

an s2-state via some s1-state. Thus, a query is carried out to check for a reachable s1-state, or

equivalently a reachable p-state. This query corresponds to IICTL’s upper bound EF query. If no

s1-states are reachable, the property holds. Otherwise, the reachable s1-state t is potentially on a

counterexample path. To see whether this is the case, a reachability query is performed that checks

whether t can reach any s2-state (equivalently any ¬q-state). This reachability query corresponds

to the one that IICTL carries out to decide whether t satisfies the subformula rooted at the EF-node

in the right branch of the CTL parse graph of Figure 6.2. A negative answer to this query triggers

refinement of the label on the (s0, s1)-edge of the automaton, which forces the search for a reachable

p-state other than t. This refinement of the label corresponds to IICTL’s refinement of the upper

bound of the EF node in the right branch of the CTL parse graph.

The above discussion also points out another important observation: IIV is a framework that

admits multiple strategies. The goal-driven approach of IC3 and Fair and the data-driven approach

of IICTL are the two extremes on a spectrum of possible IIV strategies. It remains open whether

it is possible to develop hybrid algorithms that combine the best of the two approaches. Such a

hybrid algorithm might not be feasible for the full CTL or LTL classes, but could be viable for

fragments of these classes, for example the common fragment of CTL and LTL, or the LTL safety

class.



Chapter 7

Conclusions

Model checking has witnessed several major developments in its history that have greatly

contributed to efficiency and applicability: from the symbolic representation and manipulation of

systems, to the employment of SAT solvers as reasoning engines, to automatic abstraction and re-

finement, to interpolation-based model checking, to IC3. This thesis attempted to, once again, push

the efficiency boundaries of model checking through adopting the incremental, inductive verification

(IIV) approach introduced by IC3. The thesis developed an IIV-based model checking algorithm

for CTL properties, proposed improvements to IC3’s generalization procedure, and pointed out the

wide space of strategies that the IIV framework admits.

IICTL, the IIV-based algorithm for CTL model checking, fills a long-standing gap created

with the introduction of bounded model checking for LTL, which is the absence of practical SAT-

based algorithms for branching time properties. Similar to how IC3 outperformed other safety

model checking algorithms and how Fair outperformed other fair-cycle detection algorithms, IICTL

was shown to outperform existing CTL algorithms. This provides further evidence of the effective-

ness of the IIV approach.

We then turned our attention in Chapter 5 to improving IC3 because of the potential high

impact since IC3 is a core decision engine in Fair and IICTL and is an algorithm that deals with the

most commonly used type of properties—safety properties. A point that was made repeatedly in the

thesis is the central role of generalization in IIV. It is clear that improvements to the generalization

procedures of IIV algorithms can significantly enhance their performance. The improvement to
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IC3’s generalization procedure presented in the thesis is motivated by the performance boost that

addressing counterexamples to generalization (CTGs) provides to IICTL. CTGs, in the context of

IC3, turn out to be deep backward reachable states and addressing them significantly reduces the

depth of IC3’s explicit traversal of the state graph.

Chapter 6 highlighted the difference in strategies between the existing IIV algorithms, IC3

and Fair, and the one introduced in this thesis, IICTL; whereas IC3 and Fair follow a goal-driven

approach, IICTL follows a data-driven one. The chapter also gave empirical evidence that for some

models, one strategy works better than the other, which points out the importance of being flexible

in the usage of strategies.
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Appendix A

Properties Expressible in Both ACTL and LTL

Maidl [43] characterized the fragment of properties expressible in both ACTL and LTL.

A sufficient condition for an ACTL formula to be expressible in LTL is to satisfy the syntactic

restriction of the class ACTLdet [43]. ACTLdet is inductively defined as follows:

Definition 1 (ACTLdet). Every atomic proposition is an ACTLdet formula. In addition, if ϕ

and ψ are ACTLdet formulae, then so are ϕ ∧ ψ, AXϕ, (p ∧ ϕ) ∨ (¬p ∧ ψ), A(p ∧ ϕ)U(¬p ∧ ψ),

A(p ∧ ϕ)W(¬p ∧ ψ).

Theorem 2 ([43]). Let ϕ be an ACTL formula. Then there exists an LTL formula ψ which is

equivalent to ϕ iff ϕ can be expressed in ACTLdet.

In the following theorem, ϕd denotes the formula resulting from dropping all path quantifiers

from a CTL formula ϕ.

Theorem 3 ([24, 43]). Given an ACTL formula ϕ, if ϕ ∈ ACTLdet, then the LTL formula ϕd is

equivalent to ϕ.

Claim 1. The ACTL formula ϕ = AG(p→ AG q) is equivalent to the LTL formula G(p→ G q).



95

Proof. First we show that ϕ is in ACTLdet through the following equivalences1 :

AG(p→ AG q)⇔ AG(p→ A qW⊥)

⇔ AG(p→ A(> ∧ q)W(⊥ ∧⊥))

⇔ AG(¬p ∨ A(> ∧ q)W(⊥ ∧⊥))

⇔ AG(¬p ∨ (p ∧ A(> ∧ q)W(⊥ ∧⊥)))

⇔ AG((¬p ∧ >) ∨ (p ∧ A(> ∧ q)W(⊥ ∧⊥)))

⇔ A((¬p ∧ >) ∨ (p ∧ A(> ∧ q)W(⊥ ∧⊥)))W⊥

⇔ A(> ∧ ((¬p ∧ >) ∨ (p ∧ A(> ∧ q)W(⊥ ∧⊥))))W(⊥ ∧⊥)

Finally, by Theorem 3, the equivalent LTL formula is ϕd = G(p→ G q).

Claim 2. The ACTL formula ϕ = AGAF p is equivalent to the LTL formula GF p.

Proof. First we show that ϕ is in ACTLdet:

AGAF p⇔ AGA¬pU p

⇔ AGA(¬p ∧ >)U(p ∧ >)

⇔ A(A(¬p ∧ >)U(p ∧ >))W⊥

⇔ A(> ∧ (A(¬p ∧ >)U(p ∧ >)))W(⊥ ∧⊥)

By Theorem 3, the equivalent LTL formula is ϕd = GF p.

1 Note that both ⊥ and > are in ACTLdet. The latter is equivalent to p ∧ ¬p, and the former is equivalent to
(p ∧ p) ∨ (¬p ∧ ¬p).


