
Mass Segregation in Eccentric Nuclear Disks: Enhanced

Tidal Disruption Event Rates for High Mass Stars

by

Hayden R. Foote

Bachelor of Arts – Department of Astrophysical & Planetary Sciences

Undergraduate Honors Thesis

Thesis Defense Committee:

Prof. Ann-Marie Madigan Thesis Advisor Department of APS

Prof. Erica Ellingson Honors Council Representative Department of APS

Prof. Scot Douglass External Faculty Member Herbst Program of Humanities

Defended on:

April 2, 2020



Draft version April 17, 2020

Typeset using LATEX preprint style in AASTeX62

ABSTRACT

Eccentric nuclear disks are a type of star cluster found in galaxy nuclei in which
the stars lie on highly elliptical, spatially–aligned orbits in a disk around the central
supermassive black hole. The closest such disk lies in our nearest large neighbor galaxy,
Andromeda. Gravitational interactions between stars stabilize these disks, and can also
send stars perilously close to the central black hole. If a star gets close enough, the black
hole’s extreme gravity will tear the star apart in a tidal disruption event. These tidal
disruption events are observable with Earth–based telescopes, and are of rising interest
to astronomers studying high–energy events. Computer simulations of eccentric nuclear
disks are a useful tool to constrain how often we might expect to see a tidal disruption
event from a galaxy that harbors an eccentric nuclear disk. In an e↵ort to make these
simulations more realistic, we conduct the first study of eccentric nuclear disks that
considers stars of di↵erent masses. We show that more massive stars tend to be found
at the inner edge of the disk, on orbits that lie close to the disk’s midplane. These
two e↵ects make heavy stars more susceptible to tidal disruption, which manifests as a
factor of 2-3 increase in the fraction of heavy stars that disrupt vs. light stars.
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1. INTRODUCTION

Every large galaxy harbors a supermassive black hole with a mass ranging from one million to over
ten billion times the mass of our Sun. These monster black holes lie at the very centers of their host
galaxies, and each is immediately surrounded by a cluster of stars that orbit the black hole under
the influence of its gravity.
Most of these star clusters, including the one at the center of our Milky Way, are spherical in shape

with stars on elliptical orbits that collectively form a roughly ball-shaped cluster. However, at the
center of our nearest large neighbor, the Andromeda Galaxy (M31), lies a very di↵erent arrangement
of stars. Hubble Space Telescope (HST) images of the nucleus of M31 show two bright clusters of
stars, both o↵set from the supermassive black hole (Lauer et al. 1993).
Tremaine (1995) explained this curious image, positing that the two bright clusters in the image

are actually a single collection of stars orbiting the black hole. The stars at the center of M31 lie
in an Eccentric Nuclear Disk (END), a thin disk of stars on elliptical orbits, where the orbits are
oriented in the same direction in space. The two bright spots on the Hubble image correspond to
the points of furthest and closest approach to the black hole of the disk stars.
Recently, Madigan et al. (2018) used simulations of ENDs to demonstrate that they are dynamically

stable, that is, they will retain their basic structure over long periods of time. Additionally, they
showed that ENDs throw stars towards the central black hole at very high rates. When a star passes
too close to the black hole, tidal gravity from the black hole overcomes the star’s self–gravity and
tears the star apart in a Tidal Disruption Event (TDE) (Rees 1988). These TDEs are comparable
in brightness to supernovae, and several have been observed as bright flares from the centers of their
host galaxies (van Velzen et al. 2011; Gezari et al. 2012; Arcavi et al. 2014; Chornock et al. 2014;
Holoien et al. 2016; Auchettl et al. 2017). The tendency of ENDs to produce many TDEs makes
them highly interesting structures to study.
Initial simulations by Madigan et al. (2018) were e↵ective at revealing the basic dynamics of an

END, but they were far from realistic. In particular, all of the stars in their simulations had the
same mass. In reality, the stars in any cluster have a wide spectrum of masses, and because the
stars in a cluster feel gravity from each other as well as the central black hole, stars of di↵erent mass
behave di↵erently. In this work, we conduct simulations including two di↵erent populations of stars
with di↵erent masses. This will trigger a dynamical mechanism called mass segregation, whereby the
more massive stars in the disk will sink to its inner edge, while the less massive stars move towards
the outer edge. We expect that this mass segregation will a↵ect the TDE rates from ENDs, and so
aim to quantify this e↵ect.
This work is organized as follows: In § 2, we provide necessary background information, including

how orbits are described, relevant dynamical processes, and more in-depth discussions of TDEs and
ENDs. In § 3, we present our methods, including setup and initial conditions of our simulations.
In § 4, we show the results of our simulations, including radial mass segregation, vertical mass
segregation, and how these a↵ect TDE rates from ENDs. In § 5, we discuss how this work may be
applied to real systems, and a few implications of our results. In § 6, we summarize our findings.
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2. BACKGROUND

2.1. Orbits and The Kepler Elements

Here, we discuss the orbit of a body around a central object, and various parameters that are used
to describe the orbit and the motion of the body.
In three-dimensional space, fully determining the motion of an object requires six numbers. In

orbital mechanics these six numbers are the Kepler elements, which together completely describe
the orbit of a body around a central object, as well as where the body is on that orbit. A visual
representation of the Kepler elements is shown in Figure 1.
Kepler’s first law of orbital motion states that orbits are ellipses, with the central object at one

focus of the ellipse. The first two orbital elements, semimajor axis and eccentricity, describe that
ellipse. Semimajor axis (a) is a distance describing how large the orbit is, and is equal to half of the

Figure 1. The Kepler elements that describe the motion of a body around a central object. The orbital
plane is shown in yellow, and the reference plane is shown in grey. Inclination (i) describes the tilt of
the orbit. Longitude of ascending node (⌦) and argument of periapsis (!) describe the orientation of
the orbit. True anomaly (⌫) describes the location of the body along its orbit. (Image Credit: https:
//en.wikipedia.org/wiki/Orbital elements#/media/File:Orbit1.svg)
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ellipse’s long axis. Eccentricity (e) describes the shape of the orbit, and ranges from 0 to 1. An orbit
with e = 0 is perfectly circular, and as e increases, the more elongated the orbit becomes. Orbits
with eccentricities close to 1 are very elliptical.
Two more useful numbers (though these are not Kepler elements) are the distances of closest and

furthest approach of the body to the central object. The body’s closest approach to the central object
is called periapsis or pericenter (rp), and can be calculated with these first two orbital elements as
rp = a(1 � e). The body’s furthest point from the central object is apoapsis or apocenter, and is
calculated as ra = a(1 + e).
The next three orbital elements are angles that describe the orientation of the orbit ellipse in space.

These angles are defined with respect to a reference plane (usually the equatorial plane of the central
object) and a reference direction on the reference plane. Longitude of ascending node (⌦) is the
angle on the reference plane between the reference direction and the orbit’s ascending node, where
the body crosses the reference plane from below. Inclination (i) measures the tilt of the orbital plane
with respect to the reference plane, measured at the ascending node. Argument of periapsis (!) is
the angle on the orbital plane between the ascending node and the orbit’s periapsis.
The last element, true anomaly (⌫), is the angle on the orbital plane between the orbit’s periapsis

and the location of the body on the orbit. Together, these six elements are su�cient to fully describe
the location of a body at any point in time.
There are two more useful properties of an orbit that we will refer to in subsequent sections. Related

to an orbit’s inclination is its out-of-plane inclination, (ip). Put simply, ip measures how much the
orbital plane is tilted o↵ of the reference plane. While regular Kepler inclination i must be measured
at the ascending node and has some dependence on the other orbital elements, ip does not, making it
a simpler measure of the tilt of an orbit. Due to its simplicity, we will use the out-of-plane inclination
instead of the Kepler inclination throughout this work. Lastly is an orbit’s eccentricity vector, a
vector that points from the central object towards the pericenter of the orbit, with a magnitude
equal to the eccentricity of the orbit.

2.2. Dynamical Processes

Here, we describe the dynamical processes and terms relevant to eccentric nuclear disks and two-
population models of stellar clusters. For each term, we first describe the process simply while
retaining the information essential to understanding the following material. If applicable, we then
include a more technical and detailed discussion for those who are interested and/or familiar with
stellar dynamics.
Two-body relaxation. In a star cluster, each individual star feels the force of gravity from not

only the central object, but also from every other star in the cluster. When two stars pass close
to each other, they interact gravitationally in a two-body encounter, in which the stars scatter each
other onto new orbits. Over time, the stars of the cluster undergo many two-body encounters, and
this spreads out the cluster in a process called two-body relaxation.
Secular dynamics. When two-body encounters are rare, stars in the cluster stay on the same orbit

for many trips around the central black hole. When this happens, we can describe the interactions
between stars using the secular approximation. In this approximation, the interactions between
stars become orbit-averaged. To do this, we can think of the stars as being spread out along their
orbits to produce a collection of massive orbit wires that interact gravitationally. Unlike two-body
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encounters, which are random, secular interactions are coherent, adding up to change the orbits of
stars predictably over long timescales.
The Secular dynamical timescale, or secular time for short, is the typical time that it takes for

secular e↵ects to have a meaningful e↵ect on a system. This time is given by

tsec ⌘

✓
M•

Mdisk

◆
P, (1)

where M• and Mdisk are the the black hole and disk mass respectively, and P is the orbital period of
a star at the inner edge of the disk (Rauch & Tremaine 1996).
Angular Momentum and Torque. Angular momentum is the orbital equivalent to linear mo-

mentum. An object travelling in a straight line possesses linear momentum proportional to its mass
and velocity. A star orbiting a black hole has angular momentum, which is again proportional to its
mass and velocity, but also to its distance from the black hole. Stars with lower angular momentum
move more slowly, and have higher eccentricities at a given semimajor axis. Just as objects moving in
a straight line change their momentum through force, bodies on orbits change their angular momen-
tum through torque, the rotational equivalent of force. Torque acting on a body changes its angular
momentum and thus the eccentricity (and potentially orientation) of its orbit. When no torque is
acting on a body, its angular momentum is conserved.
More precisely, while linear momentum is p = mv, orbital angular momentum is given by

J = mr⇥ v (2)

where m is the body’s mass, r is the position vector of the body pointing from the central object
to the body, and v is the body’s velocity vector. Note that the direction of the angular momentum
vector is normal (perpendicular) to the orbital plane, following the right-hand-rule. The magnitude
of the angular momentum is also given by

J = m
p

GMa(1� e2) (3)

where m and M are the masses of the body and central object, respectively.
Torque is given by

⌧ =
dJ

dt
= r⇥ F (4)

where F is the force on the body. In this work, torque is important in the context of secular dynamics,
where torques between an orbit and the rest of the END add to radically change the eccentricity of
the orbit, as discussed in Section 4.3.1.
Apsidal Precession. In any system that contains more than one star orbiting the black hole, the

gravitational forces between the stars cause the orbit wires of the stars to rotate around the central
object like clock hands. Apsidal precession refers to this rotation of the orbit pericenters around the
central body.
This can equivalently be thought of as the eccentricity vector of the orbit rotating slowly around

the central object in the orbital plane.
Dynamical Friction. The more massive a star is, the larger its gravitational influence on the

other stars in the cluster. Heavy stars moving through a collection of more numerous light stars will
experience dynamical friction, which can be thought of as gravitational drag, analogous to a baseball
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experiencing aerodynamic drag as it moves through a large amount of much lighter air molecules.
This e↵ect slows down the heavy stars over time while “slingshotting” the light stars to higher speeds.
Dynamical friction operates through two-body encounters between the heavy star and the lighter

stars around it. As a heavy star moves through a “sea” of lighter stars, its gravity pulls the light
stars towards it and creates a “wake” of light stars behind it. This wake is more dense than the
surrounding cluster, and exerts a net gravitational pull on the heavy star opposite to its direction of
motion, slowing it down over time.
Mass Segregation. Put simply, radial mass segregation is the tendency of heavier stars to sink

towards the center of a cluster while pushing the lighter stars out. In the context of a disk, this means
that the heaviest stars concentrate at the inner edge of the disk and the light stars concentrate at the
outer edge. Vertical mass segregation is a similar process, where heavier stars tend to concentrate
closer to the rotation plane of the cluster while pushing light stars above the rotation plane. Applied
to a disk, heavier stars will be found on orbits that lie in the disk midplane, while light stars’ orbits
will be more tilted. Both kinds of mass segregation become weaker as the number of massive stars
increases relative to the number of light stars.
Explained more thoroughly, mass segregation is a consequence of two-body relaxation. Two-body

encounters tend to equate the kinetic energies of the participant stars. This drives the cluster towards
energy equipartition, where the kinetic energy of all the stars is equal. Once equipartition is reached,
the more (less) massive a star is, the more slowly (quickly) it will be moving. The slower-moving
heavy stars will concentrate towards the center of the cluster, and the more quickly-moving light
stars will be driven out.
Mass segregation has previously been well-studied in both spherical clusters like that at the center

of our Milky Way (e.g. Alexander & Hopman 2009, hereafter AH09; Bahcall & Wolf 1977; Spitzer
1987) and in axisymmetric disks (disks in which the orbits are spread out, as opposed to aligned as
they are in ENDs) (Alexander et al. 2007; Mikhalo↵ & Perets 2017). AH09 found that the strength
of the mass segregation can be described by the relaxational coupling parameter (�), given by

� '

NHM2
H

NLM2
L

⇥

4

3 +MH/ML

, (5)

where MH and ML are the mass of a heavy and light star, respectively, and NH and NL are the
number of heavy and light stars respectively.1

AH09 also find that mass segregation separates into two strength regimes. In the weak regime
(� � 1), heavy stars are relatively common and interact with both light and other heavy stars. In
the strong regime (� ⌧ 1), heavy stars are too rare to scatter each other frequently, and so sink to
the center of the cluster primarily through dynamical friction with the larger number of light stars.
In summary, fewer heavy stars corresponds to lower values of � and stronger mass segregation.

1 AH09 define � as the ratio of the energy–space di↵usion coe�cients from heavy–heavy interactions to the di↵usion
coe�cients from heavy–light interactions in a Fokker–Planck formalism, but also give this as an equivalent expression.



8 Foote

Figure 2. A computer simulation of the tidal disruption of a white dwarf star. The white circle shows the
event horizon of the black hole. As the star passes through its pericenter, it is torn apart. The debris forms
two streams of gas, called tidal tails. (Adapted from Fig. 4 of Rosswog et al. (2009))

2.3. Tidal Disruption Events

In general, the force of gravity between two objects decreases in strength the farther away the two
objects are from each other. This di↵erence in strength with distance can also be felt over the size
of the objects themselves, as gravity pulls slightly harder on the side of the objects that face each
other. The di↵erence in gravity’s strength between the near and far side of an object is called the
tidal force, which has the net e↵ect of stretching the objects it acts upon. Tidal forces are so named
because they are responsible for Earth’s tides. The tidal force from the Moon on Earth stretches the
Earth’s oceans towards the Moon, creating slight bulges. As the Earth rotates, these bulges move
across its surface, which we experience as the rise and recession of the oceans in two cycles every day.
In most systems, including the Earth and Moon, tidal forces are very weak compared to gravity’s
attraction between the objects.
Near a black hole however, tidal forces become extremely strong. Occasionally, a star orbiting a

supermassive black hole at the center of a galaxy may be scattered onto an orbit that takes it very
close to the black hole. If the star gets close enough, the tidal forces from the black hole will overcome
the gravity holding the star together, and the star is torn apart in a Tidal Disruption Event (TDE).
The radius at which the tidal force exactly balances the internal gravity of the star is called the black
hole’s tidal radius, given by

rt =

✓
M•

M⇤

◆1/3

R⇤ (6)

where M• and M⇤ are the black hole and stellar mass, respectively, and R⇤ is the star radius (Rees
1988). A star is tidally disrupted when it passes through its pericenter if the pericenter distance,
rp = a(1� e), is less than the tidal radius of the black hole.
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Several dozen candidate TDEs have been observed as optical/UV (van Velzen et al. 2011; Gezari
et al. 2012; Arcavi et al. 2014; Chornock et al. 2014; Holoien et al. 2016) and soft X–ray (Auchettl
et al. 2017 and the references therein) flares from the centers of their host galaxies that are typi-
cally observable for several years. These flares are comparable in brightness to supernovae, and are
extremely interesting targets for observers.
Figure 2 shows a computer simulation of the tidal disruption of a white dwarf star by Rosswog

et al. (2009). The debris from the star is pulled into two long streams of gas. Half of this gas will
continue to orbit the black hole, forming a disk of gas that the black hole will slowly swallow up. A
large active area of research in astrophysics studies how black holes eat such gas disks in a process
called accretion, and TDEs provide natural laboratories for this vein of research (Stone 2015). In
addition, TDEs can provide useful tests of the theory of general relativity (i.e. Lu et al. 2017, van
Velzen 2018), as well as mass estimates of their host black holes (Stone & Metzger 2016a). For these
reasons, TDEs are an emerging area of interest within astrophysics.

Figure 3. Left Panel : An image of the nucleus of the Andromeda Galaxy (Lauer et al. 1993). The two
bright spots, P1 and P2, are labeled. Their separation is ⇠ 2 pc. Center Panel : A top-down view schematic
of the orbit wires in an END. The yellow dot (not to scale) is the position of the black hole. The regions of
the END that produce the bright spots seen in the image are labeled. Right Panel : A side view of the END
orbit wires. A real END would likely include thousands of stars, but we show only 40 orbits here for clarity.

2.4. Eccentric Nuclear Disks

An Eccentric Nuclear Disk (END) is a collection of stars orbiting a supermassive black hole in the
center of a galaxy, where the stars lie on aligned, highly eccentric orbits in a thin disk (technically, we
say that the orbits are apsidally aligned ; this means the eccentricity vectors of the orbits all point in
the same direction). The closest END to our Milky Way galaxy is in the nucleus of the Andromeda
Galaxy (M31) (Tremaine 1995). Figure 3 shows a Hubble Space Telescope image of the nucleus of
the Andromeda Galaxy, along with a schematic of the orbit wires of an END. The image of M31’s
nucleus shows two brightness peaks, created by the points of furthest and closest approach of the
END’s stars to the black hole. Additional observational evidence for the existence of ENDs was
presented by Lauer et al. (2005), who showed that up to ⇠ 20% of nearby elliptical galaxy nuclei
could be ENDs. This evidence along with the presence of an END in our nearest large neighbor
galaxy suggests that ENDs may be a common type of galaxy nucleus.
Madigan et al. (2018) helped explain why ENDs might be so common, showing that they are

dynamically stable structures that keep themselves together through secular (orbit-averaged) grav-
itational torques between orbits (see Section 4.3.1 for a detailed description of this process). This
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stability mechanism can drive orbits to extremely high eccentricities (e > 0.999), resulting in the star
dipping below the black hole’s tidal radius at its closest approach and producing a TDE. Because
stars are driven close to the black hole very e�ciently in an END, the TDE rate for a young END can
be as frequent as one TDE per year,2 orders of magnitude higher than estimates of TDE rates from
a spherical star cluster like the one at the center of our Milky Way (⇠ 10�4 yr�1 gal�1 (Magorrian
et al. 1998; Wang & Merritt 2004; Stone & Metzger 2016b)). This suggests a significant fraction of
TDEs could come from ENDs. Additionally, many observed TDEs are in post–merger E+A/K+A
galaxies (French et al. 2016). This result is consistent with current theories of how ENDs form during
galaxy mergers (Hopkins & Quataert 2010), as these young ENDs would produce the high rate of
TDEs that we observe from these galaxies.

3. SIMULATIONS

We use N –body simulations to study how stars move in a two-population END. N –body simulations
are computer simulations which model the gravitational interaction of particles, or in our case, stars
orbiting a supermassive black hole. Each star in the simulation feels the force of gravity from every
other star in the simulation as well as the black hole, making this the most realistic and detailed
method currently available for studying clusters of stars.
We use the N –Body code REBOUND (Rein & Liu 2012) with the IAS15 adaptive-timestep integrator

(Rein & Spiegel 2015) to simulate an END. Following the example of AH09, we use two populations
of stars to study mass segregation in ENDs, where each heavy star is ten times as massive as a light
star, MH = 10 ML. This two-population model is a reasonable approximation of an evolved star
cluster, where the light stars in our simulations represent old main–sequence stars, white dwarfs, and
neutron stars of order one solar mass, and the heavy stars represent stellar–mass black holes of order
ten solar masses.
We vary two quantities in our simulations: (i) the number of heavy stars, NH , and (ii) their initial

inclination distribution, iH . We refer to simulations where the former (latter) is varied as “NH-vary”
(“iH-vary”). The “NH-vary” set aims to explore how changing the strength of the mass segregation
a↵ects the dynamics of the disk and the TDE rate of each population of stars. The “iH-vary” set
studies how vertical mass segregation is a↵ected when the orbits of heavy stars are initially tilted
above the plane of the disk.
All simulations are run for the time it takes a star at the inner edge of the disk to complete 500

orbits. For better statistics we run ⇠40 simulations for each set of parameters.3 We summarize the
simulation parameters in Table 1.
In our simulations, we use a special set of units that allows our simulations to be scaled to di↵erent

realistic black hole masses and disk sizes. The semimajor axis of the innermost orbit, the black hole’s
mass, and the gravitational constant are all 1, such that the orbital period at the inner edge of the
disk is 2⇡. All stars initially have semimajor axes between 1 and 2 with decreasing frequency towards
the outer edge of the disk (more precisely, with a surface density profile ⌃ / a�2), and eccentricities
of 0.7. All figures in this work that present simulation data will be in simulation units. The total
disk mass is one percent of the black hole’s mass, and there are 400 light stars.

2 Although if disruptions really occur once per year, the black hole may not return to quiescence between disruptions,
and such events would not currently be identified as TDEs. Instead, these nuclei would likely be classified as Active
Galactic Nuclei.

3 The precise number of simulations varies as simulations sometimes stall due to formation of binary systems.
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Table 1. Initial conditions for our N –body simulations. There are two main sets of simulations, broken down into groups
that share initial conditions. For each group, we list the number of simulations, the spread (three times the standard
deviation, �) of the orbit inclinations (rotation angles ✓a and ✓l described in § 3), the number of heavy stars (NH), and
the resulting coupling parameter (�; see eq 5 and the surrounding discussion). Each simulation has 400 light stars. The
standard deviation of the third orbit rotation angle (✓j) is three degrees.

Simulation Simulation Number of Simulations Inclination Spread Inclination Spread NH �

Set Group in Group (3�✓a , 3�✓l) of Heavy Stars (3�✓a , 3�✓l) of Light Stars

[degrees] [degrees]

NH = 5 35 5 5 5 0.384

NH = 10 44 ” ” 10 0.769

NH = 15 33 ” ” 15 1.15

NH -vary NH = 20 39 ” ” 20 1.54

NH = 25 43 ” ” 25 1.92

NH = 30 38 ” ” 30 2.31

NH = 35 42 ” ” 35 2.69

NH = 40 39 ” ” 40 3.08

iH = 5 10 5 5 25 1.92

iH = 10 10 10 ” 25 1.92

iH -vary iH = 15 10 15 ” 25 1.92

iH = 20 10 20 ” 25 1.92

iH = 25 10 25 ” 25 1.92

control 10 - ” 0 -

We initialize orbits with the same orientation, and then introduce a small scatter (a few degrees
at most) in the orientation of each orbit before starting the simulation. For the interested reader,
the exact procedure is as follows: Orbits are created with initially aligned eccentricity and angular
momentum vectors. We then introduce a small scatter in these vectors via three rotations. We draw
three random angles (✓a, ✓l, and ✓j) from a normal distribution with a standard deviation of a few
degrees (see Table 1 for details). We then rotate the angular momentum vector about the orbit’s
major axis by ✓a, the angular momentum vector about the latus rectum by ✓l, and the eccentricity
vector about the angular momentum vector by ✓j. After initializing the orbits, we search for binary
systems, and remove one of their stars in order to increase integration speed. The number of stars
removed is of order 5 in each simulation.
To detect TDEs, we use REBOUND’s built-in collision detection capability. To set a tidal radius we

have to set an overall length scale for the simulations; we choose the inner edge of the disk (a = 1)
to be at 0.05 pc. Then the supermassive black hole is given a radius equal to the tidal radius of a
sun-like star around a 107 solar mass black hole, which is 1.5⇥ 108 km (or 9.694⇥ 10�5 in simulation
units).
If REBOUND detects that a star has come within the tidal radius of the black hole particle, we record

a TDE. The stars that disrupt are not removed from the simulation and are allowed to continue on
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their orbits, however if they disrupt more than once, we do not count the subsequent disruption(s)
in our analysis. We keep disrupted stars to simplify analysis and to keep the disk as constant as
possible through the simulation.
For simplicity, we take the tidal radius to be the same for light and heavy stars in our initial

analysis. We discuss how the tidal radius would vary as a function of stellar properties in Section
5.1 and the e↵ect this would have on TDE rates.
Choosing real-world values for the black hole mass and length scale of the disk means that we can

also define a timescale for our simulations by using Kepler’s third law. One orbital period at the
inner edge of the disk (P ) is 331.4 years. The secular timescale is then about 33,000 years, and a
simulation runs for just under 166,000 years.
It is important to note that including two stellar masses is a useful step towards realism, however

our simulations include too few stars to be considered realistic. We use low particle numbers due to
computational limitations, though a real END could have tens of thousands of stars. The ratio of
the disk mass to black hole mass (10�2) a↵ects the dynamics of the disk4, so we choose to keep this
constant between the simulations for consistency. Thus, our heavy (light) star particles have masses
of order 10�4 (10�5) times the black hole mass, though the precise masses vary based on the number
of heavy stars in a particular simulation. Our stars are therefore much more massive than what is
realistic, which causes two–body interactions in our simulations to be stronger than in realistic disks.
My collaborators quantified the e↵ect of this stronger two-body relaxation in our simulations, and
used a di↵erent model to extend our results to systems with realistic numbers of stars (See Section
3.4 of Foote et al. 2020).

4. RESULTS

4.1. Radial Mass Segregation

As in spherical clusters and axisymmetric disks, we find that ENDs show both strong and weak
radial mass segregation, by which heavy stars sink to the inner edge of the disk while scattering light
stars out. Figure 4 shows the semimajor axis evolution for simulations with di↵erent numbers of
heavy stars (“NH-vary” in Table 1).
Simulations with five heavy stars are in the strong regime, where massive stars actively sink to the

center of the cluster. All other simulations are in the weak regime, where the heavy stars simply
reach lower semimajor axes than the light stars. The � cuto↵ between the strong and weak regime
in ENDs is thus likely between 0.4 and 0.8, consistent with previous results from spherical clusters
(� ⇡ 1).

4.2. Vertical Mass Segregation

We find that stars in ENDs also undergo vertical mass segregation in which heavy stars orbit in the
midplane of the disk, while light stars are more likely to have higher inclinations. Figure 5 shows the
evolution of the out-of-plane inclination for both populations of stars in each simulation group from
the NH-vary set. Recall that out-of-plane inclination measures how tilted an orbit is with respect to
the midplane of the disk.

4 Specifically, it a↵ects precession of the disk orbits. More massive disks have faster precession and shorter secular
timescales, but if the disk is too massive the black hole’s gravity will no longer be the dominant force on the stars,
and the disk would not be stable. Our choice of disk to black hole mass ratio provides a good balance between disk
stability and a short enough secular time that our disks evolve significantly over the course of a simulation.
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Figure 4. Left panel: Mean semimajor axis of the heavy and light populations as a function of time
for simulations with di↵erent numbers of heavy stars (“NH -vary” from Table 1). Each line is the mean
semimajor axis of all stars from all of the simulations in the group. Simulations with five heavy stars are
clearly separated from the rest, suggesting the presence of weak and strong mass segregation regimes as in
spherical star clusters. Right panel: Mean semimajor axis of the light population as a function of time for
the same simulations.

Figure 5. Mean out-of-plane inclination of the heavy and light populations as a function of time for
simulations with di↵erent numbers of heavy stars (“NH -vary” from Table 1). Each line is the mean out-
of-plane inclination of all stars from all of the simulations in the group. Vertical mass segregation occurs
after two secular times (⇠ 200 orbital periods). As with radial segregation, vertical segregation shows both
strong and weak regimes.
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Figure 6. Mean out-of plane inclination versus time for simulations with di↵erent initial heavy star incli-
nations (the “iH -vary” simulations in Table 1). Each solid line is the mean out-of-plane inclination of all
stars from all of the simulations in the group. The dashed line shows the mean out-of-plane inclination in
simulations with no heavy stars. Left Panel : The heavy stars relax to roughly the same inclination after
⇠ 150 orbital periods, regardless of their initial inclinations. Right Panel : The light stars do not show any
dependence on the initial conditions.

As with radial mass segregation, vertical mass segregation shows both a strong and weak regime. In
simulations with the fewest heavy stars, the heavy population shows much stronger segregation than
in other simulation groups. We also explore how resistant vertical mass segregation is to changes in the
initial conditions by varying the initial inclination distribution of the heavy stars. These simulations
(“iH-vary” in Table 1) use 25 heavy stars each, placing them in the weak mass segregation regime.
Each group of simulations in this set uses a di↵erent spread for the initial tilt of the heavy star orbits.
Figure 6 shows the mean ip of each group in the “iH-vary” set. Heavy stars drop to low inclinations

very quickly, with the simulation groups becoming very similar between 100 and 150 orbital periods,
which is of order the secular time. Our choice of � for this set ensures that the overall inclination
behavior we observe will also be qualitatively valid in the strong regime, where the mass segregation
will be only be more e↵ective at dropping the inclinations of the heavy stars. Thus, after a few
secular times, we expect to find heavy stars in an END preferentially at lower inclinations than light
stars.
In order to more clearly show the di↵erence between the two populations, Figure 7 condenses the

di↵erent simulation groups from Figure 6, showing the mean and standard deviation of ip for all stars
in the entire “iH-vary” set. This figure shows that despite starting at high inclinations, heavy stars
drop to lower inclinations than the light stars on a timescale of ⇠ 20 orbital periods, and remain at
lower inclinations than light stars on average for the remainder of the simulation. The initial violent
drop in heavy star inclinations is due to two-body relaxation being stronger in our simulations than
what is realistic.
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Figure 7. Mean out-of-plane inclination for the
simulations with di↵erent initial heavy star incli-
nations (“iH -vary” from Table 1). Each line shows
the mean and standard deviation of ip for all of
the stars from all of the simulations in the entire
iH -vary set. The blue line shows the heavy stars,
the red line shows the light stars, and the dashed
line shows the control simulations. The heavy stars
behave more like the control stars, while they scat-
ter the light stars to higher inclinations than they
would reach without heavy stars present.

Figure 8. Mean eccentricity for the light and
heavy stars in simulations that have di↵erent ini-
tial heavy star inclinations(“iH -vary” from Table
1). Each line shows the mean of e for all of the
stars from all of the simulations in the entire iH -
vary set. As the inclination of both populations
increases (Figure 7), the eccentricity of both pop-
ulations decreases after one secular time. Whereas
two-body interactions would cause both inclination
and eccentricity to increase, this opposite evolution
of inclination and eccentricity is characteristic of
secular e↵ects.

Despite artificially strong two–body relaxation, we can still use these N –body simulations to show
that secular e↵ects play an important role in the inclination evolution of ENDs. Figure 8 shows
the eccentricity evolution of both populations shown in Figure 7. If vertical mass segregation was
driven purely by two-body interactions, we would expect both the inclination and eccentricity to
increase over time as the disk relaxes (e.g. Stewart & Ida 2000). Instead, as the inclination of both
populations increases, the eccentricity of both populations decreases after one secular time. This
opposite (and smooth) evolution of eccentricity and inclination is a result of angular momentum
conservation and is characteristic of secular dynamics. This suggests that vertical mass segregation
(unlike radial mass segregation, which is purely a two-body e↵ect) is driven at least partially by
orbit-averaged dynamics.

4.3. TDEs

In this section, we first present a discussion of why ENDs cause so many TDEs compared to other
clusters, and then discuss the results of our simulations with regard to TDEs.

4.3.1. How do ENDs Cause so Many TDEs?

ENDs are exciting objects of study in large part because they have a TDE rate up to 3 or 4 orders of
magnitude higher than what would be expected from other types of star clusters. Before presenting
our results with regard to TDE rates, it is necessary to explain why ENDs throw so many stars
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towards their central black holes. The following discussion is adapted from Madigan et al. (2018),
who first explained this property of ENDs.
ENDs keep themselves stable through secular torques between the disk orbits. The orbits of an

END undergo apsidal precession, where the orbit wires rotate coherently around the black hole like
clock hands, on timescales of many orbital periods of the stars. In a stable END, this precession is
prograde–in the same direction that the stars move on their orbits. For example, if the stars orbit
counterclockwise as seen from above the disk, the orbit wires rotate counterclockwise as well.
If any orbit precesses ahead of the rest of the disk, it will begin to feel a gravitational force from the

collection of disk stars that it has left behind. This force manifests as a secular torque on the orbit
wire, which decreases the angular momentum of the orbit, raising its eccentricity. More eccentric
orbits precess more slowly, so the orbit slows its precession rate and allows the rest of the disk to
catch back up to it. Similarly, if an orbit lags behind the disk, the torque lowers its eccentricity, the
orbit precesses more quickly, and catches back up with the disk. In this manner, the disk structure
is kept stable.
ENDs produce such a high rate of TDEs because of this stability mechanism. As orbits that move

ahead of the disk have their eccentricities raised, their pericenters, given by rp = a(1�e), drop closer
and closer to the tidal radius, and in some cases dip below it. When an orbit’s pericenter is below
the tidal radius, the star is tidally disrupted when it passes through its closest approach to the black
hole. Figure 9 shows this process, or how an orbit that precesses ahead of the disk leads to a TDE.
In summary, TDEs are a direct consequence of the method by which ENDs are kept stable. In other
types of clusters, TDEs require a two-body encounter to randomly place a star on an orbit that takes
it within the tidal radius, but in an END, stars are systematically funneled towards the black hole.

Figure 9. Schematics showing how ENDs produce TDEs. In these diagrams, the orbits precesses counter-
clockwise, and the view rotates with the disk. (1) An orbit, highlighted in red, starts in the disk. (2) The
highlighted orbit precesses ahead of the disk. (3) Secular torques dramatically raise the eccentricity of the
orbit, and the orbit’s pericenter drops below the black hole’s tidal radius. The star will be tidally disrupted
as it passes through its pericenter.

Another relevant feature of a stable END is their negative eccentricity gradient, which means that
orbits with lower semimajor axes tend to have higher equilibrium eccentricities. An orbit’s equilibrium
eccentricity is the eccentricity at which the orbit will precess at the same speed as the rest of the
disk. In an END, an orbit precesses faster if it has a low semimajor axis and/or low eccentricity.
Thus, a low semimajor axis orbit must have a higher equilibrium eccentricity if it is to precess at
the same rate as a high semimajor axis orbit. The gradient is developed over a secular time as the
stability mechanism operates.
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Figure 10. Development of the eccentricity gradient in simulations with di↵erent initial heavy star inclina-
tions (“iH -vary” from Table 1). At the beginning of the simulation, t = 0, the eccentricity distribution of all
stars is flat at e = 0.7. Each panel shows the mean of the eccentricities of stars from all of the simulations in
the iH -vary set in bins of semimajor axis, broken down by population. Error bars show the standard error
of the mean. Bins that show an eccentricity of 0 contain no stars at the selected time. Top Left Panel : By
one secular time, the eccentricity gradient has started to take shape. Other Panels: Over the course of the
simulation, the gradient changes shape slightly, but the heavy stars always have higher eccentricities than
the light stars on average in bins where the bulk of TDEs come from, between a=0.6 and a=1.2.
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Now that we know why ENDs cause so many TDEs, we will explain what we expect for TDE rates
in our simulations based on the dynamics of a two-population END that we have already discussed.
Previous studies of ENDs found that stars at the inner edge of the disk are preferentially disrupted,
as they have higher eccentricities (and lower angular momentum) due to the negative eccentricity
gradient in ENDs. Higher eccentricity (lower angular momentum) stars are more easily torqued to a
high enough eccentricity to disrupt (Madigan et al. 2018). In our two-population simulations, heavy
stars tend to have lower semimajor axes (and hence higher eccentricities) than light stars due to
radial mass segregation, so we should expect to see a larger fraction of heavy stars disrupting than
light stars.
Vertical mass segregation is important too, dropping the heavy stars to lower inclinations than the

light stars. For low inclination orbits, the torque from the disk changes their eccentricity rather than
their orbital orientation. Thus, heavy stars are raised to higher eccentricities than the light stars
even at a fixed semimajor axis. This can be seen in Figure 10. This figure shows the development
of the eccentricity gradient in eccentric disks with and without two populations. While the shape
of the gradient changes over the course of the simulations, the heavy stars always have higher mean
eccentricities than light stars between semimajor axes of 0.6 and 1.2. The vast majority of orbits that
lead to tidal disruption also have semimajor axes in this range, confirming that heavy stars should
be easier to disrupt than light stars at any given semimajor axis.

Figure 11. Disrupted fraction vs � (or mass segregation strength, lower � is stronger mass segregation)
for simulations with di↵erent numbers of heavy stars (“NH -vary” from Table 1). Each point shows the mean
disrupted fraction for all simulations in a group, broken down into heavy and light stars. Error bars show
the standard error of the mean. The disruption rate for light stars is independent of �, while heavy star
disruption rate increases at low � (due to stronger mass segregation).
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Figure 12. Disrupted fraction vs mean semima-
jor axis for simulations with di↵erent numbers of
heavy stars (“NH -vary” from Table 1). Horizon-
tal axis values are obtained by taking the mean
of all stars in all simulations from a group during
all timesteps after the first 100 orbital periods. We
consider times after 100 orbital periods to allow the
disk a full secular time to relax. Horizontal error
bars showing the standard error of this mean are
included, but are generally smaller than the points.
Populations spending more time at low semimajor
axes have a correspondingly higher disrupted frac-
tion.

Figure 13. Disrupted fraction for simulations
with di↵erent initial heavy star inclinations (“iH -
vary” in Table 1). Each point shows the mean of
the disrupted fraction from the simulations in the
group, with heavy stars shown in blue and light
stars shown in red. The errorbars are the stan-
dard error of the mean for each simulation group.
The dashed line shows the TDE rate per star of
the control simulations. The TDE rate is a weak
function of the initial inclination, with the heavy
star disrupted fraction always exceeding the light
star disrupted fraction.

4.3.2. TDE Rates in Two-Population ENDs

Here, we present the TDE rate results from our simulations. In order to quantify the TDE rate
of each population, we use the disrupted fraction, or the number of stars from a population that
disrupt during the simulation divided by the total number of stars in that population. Figure 11
shows the disrupted fraction for both populations in simulation groups with di↵erent numbers of
heavy and light stars (“NH-vary” in Table 1). Fewer heavy stars (lower �) translates to stronger
mass segregation, and the group’s heavy stars being closer to the inner edge of the disk at higher
eccentricity. In all cases, the disrupted fraction of the heavy stars is larger than that of the light stars
as expected. In particular, the heavy stars in the most strongly segregated group with � = 0.384
have the smallest mean semimajor axis and are the most likely to be disrupted.
Figure 12 again shows the disrupted fraction for each population from the NH-vary set (similarly to

Figure 11), but now as a function of the time- and star-averaged semimajor axis of the population.5

Populations with a lower mean semimajor axis have a correspondingly higher disrupted fraction.
Figure 13 shows the disrupted fraction of each population for simulations with di↵erent initial heavy

star inclinations (“iH-vary” in Table 1). Once again the fraction of heavy stars that are disrupted is
larger than the fraction of light stars. There is no significant di↵erence between the groups because

5 Time averages are taken between t = 100P and the end of the simulation. This is done to allow the disk a secular
time to relax, as the TDEs do not begin to happen until after one secular time.
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they all have the same �, and show the same degree of vertical mass segregation. In particular, the
heavy stars from di↵erent simulation groups have all reached the same inclination by the time the
TDEs begin to occur.
To summarize, in order to be disrupted, a star’s orbit must have a torque applied to it to raise

it to very high eccentricity. Stars at lower semimajor axes should be easier to disrupt because they
need less torque due to their higher equilibrium eccentricity, and stars at low inclination should be
easier to disrupt because the torque from the disk changes their orbital eccentricities rather than
their orientations. Radial mass segregation places heavy stars at low semimajor axes, and vertical
mass segregation places stars at low inclinations. Across all of our simulations, a larger fraction of
heavy stars are disrupted, as we would expect.

5. DISCUSSION

In this section, we present a discussion of our results in a wider astrophysical context. In a real
END, di↵erent stars have di↵erent tidal radii, so we explore the e↵ect that this would have on TDE
rates. Additionally, we speculate on how many heavy and light stars would likely be present in a real
END, including likely � values and the resulting mass segregation and structure of the disk. Lastly,
we consider the e↵ect that a di↵erent initial eccentricity would have on TDE rates.

5.1. E↵ects of Star Type on TDE Rates

Both heavy and light stars have the same tidal radius in our simulations. In reality, the tidal
radius depends on quantities such as the stellar mass, radius, and spin (Rees 1988; Golightly et al.
2019). Also, compact objects such as neutron stars and stellar-mass black holes (represented in
our simulations by the heavy star particles) are extremely dense and will not be tidally disrupted
by the central supermassive black hole, although they can be captured if they pass too close to it.

Figure 14. Mean disrupted fraction of heavy stars vs. tidal radius, for two simulation groups, one in each
mass segregation regime from the NH -vary set. rt,0 is the tidal radius of a light star. The disrupted fraction
is linear with the tidal radius in both cases.
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These captures could produce gravitational waves of a frequency that will be observable with future
detectors such as the upcoming Laser Interferometer Space Antenna (Amaro-Seoane et al. 2017).
In an END, when orbits’ pericenters drop below the tidal radius, they stop at a random distance

from the black hole (Madigan et al. 2018, Wernke & Madigan 2019). Therefore, we expect the TDE
rate to scale linearly with the tidal radius. By screening out heavy TDEs with pericenters above
other values of rt, we can see how the disrupted fraction of heavy objects changes with the tidal
radius. Figure 14 shows that the disrupted fraction indeed scales linearly with the tidal radius in our
simulations. In a real END, high-mass stars (of order 10 solar masses, comparable to the heavy stars
in our simulations) will exist at early times, and will have larger tidal radii than light stars.
A full exploration of how stellar properties and the presence of compact objects translates into

observable TDEs and gravitational wave bursts would require including stellar evolution in our sim-
ulations. However, my collaborators give a more detailed discussion of this, as well as the e↵ect of
the supermassive black hole’s properties on TDE rates, which may be found in section 4.1 of Foote
et al. (2020).

5.2. What is the Stellar Make-up of Real ENDs?

A real END would of course contain far more than two stellar masses, including a spectrum of stars
of all masses as well as their remnants (white dwarfs, neutron stars, and stellar mass black holes).
A cluster’s mass function describes how many of each type (mass) of star exist in the cluster. As
discussed by AH09, the two-population approximation we use here falls naturally out of “universal”
mass functions developed by Salpeter (1955), Miller & Scalo (1979), and Kroupa (2001). After
clusters formed with these mass functions evolve, they generally have � < 0.1 (AH09), placing them
firmly in the strong mass segregation regime. Merritt (2013) shows that a population evolving from
the Kroupa mass function reaches � ⇡ 0.05, again in the strong regime.
However, there is also evidence to suggest that star formation and mass functions in galactic nuclei

near supermassive black holes may be di↵erent from the aforementioned “universal” mass functions
used for stars elsewhere in galaxies (e.g. Levin & Beloborodov 2003; Milosavljević & Loeb 2004;
Paumard et al. 2006; Levin 2007; Bartko et al. 2010; Lu et al. 2013).
ENDs in particular should also have di↵erent mass functions depending on whether the disk stars

were formed on eccentric orbits, or if the disk was formed dynamically (e.g. during a galactic merger)
after the stars were formed. ENDs formed dynamically from stellar populations with universal mass
functions would have � < 0.1 as previously discussed, placing them in the strong segregation regime.
Conversely, ENDs formed from an initially eccentric thin gas cloud around the supermassive black hole
could have more heavy stars than these universal models would predict. Alexander et al. (2008) used
computer simulations to study the behavior of initially eccentric gas disks around supermassive black
holes. They found that smaller, loosely-bound gas clumps that formed in the disk were particularly
vulnerable to tidal disruption at closest approach to the black hole, leading to only the high-mass,
dense clumps surviving. Extending their results to star formation, these gas disks would form a larger
proportion of heavy stars. It is di�cult to predict what � would look like in this situation, but we
can say it would likely be higher than in other situations, that is � > 0.1. Thus, ENDs formed from
an initially eccentric gas disk would likely be more weakly segregated than ENDs formed dynamically
from existing stars.
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The present-day mass function of an END would depend on a myriad of factors, including the
formation history of the disk. The age of the disk is also very important, as it a↵ects the mass
function through stellar evolution and loss of disk stars to TDEs and captures over time.
Lastly, we note that for most reasonable mass functions, there are many more light stars than

heavy stars (Kroupa et al. 2013). Thus, while our results suggest a factor of 2-3 enhancement in the
disrupted fraction of heavy stars compared to light stars, TDEs from light stars will still dominate
the overall TDE rate of the END.

5.3. The E↵ect of Eccentricity

So far, we have only considered initial eccentricities of e = 0.7 in our simulations. Here, we briefly
discuss the e↵ect that changing the initial eccentricity has on TDE rates.
In principle, increasing the mean eccentricity of the disk should increase the TDE rate for both

populations as all orbits are more eccentric on average. Similarly, decreasing the mean eccentricity
of the disk should decrease the TDE rates for both populations.
In order to test this prediction, we use a third small set of simulations. In this third set, we start

both populations with the same � and inclination distribution, but change the initial eccentricity of
the disk orbits. Each simulation contains 25 heavy stars for easy comparison with the iH-vary set,
and there are ten individual simulations for each eccentricity considered.
The left panel of Figure 15 shows the mean disrupted fraction for both populations at each ini-

tial eccentricity for this set. The disrupted fraction for both populations increases with the initial
eccentricity as expected. This trend is consistent with Madigan et al. (2018), who found that as an
END loses mass through disrupted stars, the average eccentricity of the disk drops and the TDE rate
is lowered. The right panel of Figure 15 shows that the enhancement of the heavy star disrupted
fraction increases weakly with the initial eccentricity.

Figure 15. Disrupted fraction for simulations with di↵erent initial eccentricities. Left Panel : Each point
shows the mean of the disrupted fraction from the simulations in the group, with heavy stars shown in blue
and light stars shown in red. The errorbars are the standard error of the mean for each simulation group.
The disrupted fraction of both populations is correlated with the initial eccentricity of the disk orbits. Right
Panel : The ratio of the heavy disrupted fraction to light disrupted fraction vs. the initial eccentricity. The
enhancement of the heavy specific TDE rate is also correlated with the initial eccentricity.
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6. SUMMARY

In this paper, we presented the first study of an eccentric nuclear disk with two stellar populations.
Here, we give a summary of our results and their implications.

1. Radial Mass Segregation: Similar to previous studies with spherical clusters and axisymmetric
disks, two-population ENDs undergo radial mass segregation. The strength of the mass segre-
gation falls into two regimes, determined by the relaxational coupling parameter �. The cuto↵
between the strong and weak segregation occurs around � ⇠ 1.

2. Vertical Mass Segregation: In a two-population eccentric disk, heavy stars sink to lower incli-
nations than light stars on average. This process is highly resistant to artificially raising the
inclinations of the heavy stars in our simulations (though these simulations do have artificially
strong two-body relaxation). As with radial mass segregation, vertical mass segregation has
both a weak and strong regime.

3. TDE rates : The negative eccentricity gradient in stable eccentric disks causes stars at low
semimajor axes to have higher equilibrium eccentricities, where they are more easily driven
onto orbits that take the star within the tidal radius of the supermassive black hole. Stars at
low inclinations have their eccentricities altered by secular torques rather than their orienta-
tions, leading to these orbits reaching higher eccentricities where they are more susceptible to
disruption. Heavy stars are preferentially found at low semimajor axes and low inclinations
due to mass segregation, and are more likely to be disrupted than light stars.

Mass segregation can increase the disrupted fraction of heavy stars in an END by a factor of
2–3 relative to light stars, assuming the same tidal radius for both types of star. Due to the
much larger number of light stars, TDEs from light stars will still dominate the overall TDE
rate of the END. In a real system, the ratio of the heavy to light star disrupted fraction depends
on the age of the disk, as stellar evolution will a↵ect the numbers of each type of star. This
also depends on other factors such as the supermassive black hole properties. The larger tidal
radii of massive stars will further enhance their TDE rate.

Finally, we note that the END in Andromeda appears to have a di↵erent orientation depending on
what wavelength of light it is observed in (Lockhart et al. 2018). It is possible that mass segregation
could explain this, however, a broader range of stellar masses and stellar evolution would have to be
included in our model before we could make detailed comparisons with these observations.
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