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Abstract:
Although recent articles have stressed the importance of testing for unit-roots and
cointegration in time series analysis, practitioners have been left without a straight-
forward procedure to implement this advice. I propose using the autoregressive
distributed lag model and bounds cointegration test as an approach to dealing with
some the most commonly encountered issues in time series analysis. Through Monte
Carlo experiments I show that this procedure performs better than existing coin-
tegration tests under a variety of situations. I illustrate how to implement this
strategy with two step-by-step replication examples. To further aid users, I have
designed software programs in order to test and dynamically model the results from
this approach.

Replication Materials: The data, code, and any additional materials required to
replicate all analyses in this article are available on the American Journal of Political
Science Dataverse within the Harvard Dataverse Network, at:
http://dx.doi.org/10.7910/DVN/MPQQC0.
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Recent work in the time series literature has stressed the importance of testing

for unit roots as well as the existence of long-run relationships—or cointegration—

between variables.1 Since the presence or absence of each of these characteristics ul-

timately determines the appropriate model, failure to perform such pretesting makes

spurious inferences more likely. Even with existing tools designed to identify unit-

roots and test for cointegration, short series, the weak power of statistical tests, and

the dangers of overfitting make pretesting time series data particularly problematic.

Although recent articles have helped to identify these issues (Grant and Lebo 2016;

Keele, Linn and Webb 2016), users have been left without a straightforward solution

about how to deal with such problems.2

I propose using the autoregressive distributed lag model and associated bounds

testing procedure (ARDL-bounds) developed by Pesaran, Shin and Smith (2001) as a

comprehensive approach to model specification and cointegration testing. Depending

on the results of the cointegration test, this strategy absolves users from having to

distinguish between stationary (henceforth I(0)) and first-order non-stationary (I(1))

regressors. This is an advantage since unit-root testing is difficult in short series, and

introduces, “a further degree of uncertainty into the analysis” (Pesaran, Shin and

Smith 2001, p. 289). The ARDL-bounds procedure involves:
1Covariance stationary series exhibit constant mean, variance, and covariance.

A linear combination of two or more first-order non-stationary series that yields a

stationary series is said to be cointegrating.
2Grant and Lebo (2016) provide two solutions, including the one discussed herein.

However, their discussion is brief.
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1. Ensuring the dependent variable is I(1).

2. Ensuring the independent variables are not explosive or higher orders of inte-

gration than I(1).

3. Estimating the ARDL model in error-correction form, and ensuring there is no

autocorrelation.

4. Performing the bounds test for cointegration. Three possibilities result: (a)

all regressors are I(1) and cointegrating (b) all regressors are I(0)—by defini-

tion, they cannot cointegrate—or (c) indeterminate. An indeterminate result

may still find cointegration among some of the independent variables, although

further testing and re-specification (in Step 3) is required.

Surprisingly, while this method is popular in other fields (over 5,300 cites on Google

Scholar as of September 2016), it has been cited and implemented only twice among

the American Political Science Review, American Journal of Political Science, Jour-

nal of Politics, and Political Analysis: Dickinson and Lebo (2007) and Grant and

Lebo (2016).

Four contributions stand out in this article. First, I discuss why an additional

time series procedure is necessary, given recent debates about the role of error-

correction models (Esarey 2016; Grant and Lebo 2016; Helgason 2016; Keele, Linn

and Webb 2016). Second, I use Monte Carlo experiments to compare the perfor-

mance of the ARDL-bounds cointegration test against existing alternatives, under a

variety of scenarios that practitioners typically encounter. I also examine how well
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the model recovers substantively interesting effects, such as long-run multipliers or

adjustment parameters. Third, I demonstrate the utility of the ARDL-bounds ap-

proach and the merits of dynamic interpretation through two replications. Finally,

I conclude with guidelines for implementing this procedure, and introduce software

programs designed to help practitioners with cointegration testing and exploring the

substantive implications of their results.

Unit Roots and Cointegration in Time Series

Consider a general autoregressive distributed lag ARDL(p,q) model where a series,

yt , is a function of a constant term, α0, past values of itself stretching back p periods,

contemporaneous and lagged values of an independent variable, xt , of lag order q,

and an independent, identically distributed error term:

yt = α0+
p

∑
i=1

αiyt−i +
q

∑
j=0

β jxt− j + εt , εt ∼ N(0,σ2) (1)

The data-generation process for the dependent and independent variables determines

how Equation 1 is estimated. If variables on both the left- and right-hand side are

I(0), they will exhibit constant mean, variance, and covariance, and the ARDL(p,q)

shown in Equation 1 may be used.3 Since additional lags may induce multicollinear-

ity, lag order restrictions are often imposed. A common restriction is the ARDL(1,1)
3The stationarity condition for yt is given as |∑p

i=1αi|< 1. Such variables are said

to be covariance stationary.
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model:

yt = α0+α1yt−1+β0xt +β1xt−1+ εt (2)

The contemporaneous effect of xt on yt is given by β0. The magnitude of α1 informs

us about the “memory” of yt (De Boef and Keele 2008). Assuming 0< α1 < 1, larger

values indicate that movements in yt take longer to dissipate.4 The long-run effect

(or long-run multiplier) is the total effect that a change in xt has on yt . It is given

as κ1 =
(β0+β1)
(1−α1)

, and its variance is typically approximated using the delta method.

The generalized error-correction model (GECM) may also be used if all variables

are I(0); the most common form is the one-step GECM:

∆yt = α0+α∗
1yt−1+β0∆xt +β∗

1xt−1+ εt (3)

where the first-difference of yt is a function of a constant term, α0, its own lag, yt−1,

the first-difference of xt and its lag, xt−1, and an i.i.d. error term, εt . Although the

GECM is algebraically equivalent to the ARDL(1,1) model, interpretation changes.

Contemporaneous effects of a change in xt on yt are still given by β0. The rate of

adjustment, or the speed at which the total effect of a change of xt accumulates

in yt , is given by α∗
1. It is used in calculating the long-run multiplier, κ1 = − β∗

1
α∗
1
.

Although obtaining variance estimates of the short-run effect is straightforward, the

variance around κ1 must be approximated using the Bewley transformation or the
4Values of α1 greater than one suggest an explosive series or model mis-

specification. Values less than zero suggest the series is over-correcting or oscillating;

this is rare in the social sciences.
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delta method (De Boef and Keele 2008).

The GECM is also ideal for when the dependent and independent variables are

I(1) and cointegrating. In our bivariate example, if there exists some linear com-

bination of the two I(1) series that results in a stationary series, they are said to

be cointegrating. Testing is often performed using the Engle-Granger “two-step”

approach (Engle and Granger 1987), which involves regressing yt on xt :

yt = κ0+κ1xt + zt (4)

If both variables are I(1), there exists one cointegrating relationship if the residuals

in Equation 4, zt , are stationary.5 More generally, a sufficient condition to use an

error-correction model is if all variables are I(1) and cointegrating.6

Even if both series are I(1), there may not always be an underlying cointegrating

relationship between them. Practitioners often conflate re-equilibration with error-

correction, and fail to test for cointegration (Grant and Lebo 2016).7 Even if xt and

yt are I(1), without cointegration, there cannot be a long-run relationship between

them, since (rewriting Equation 4) the linear combination of the series, zt = (yt−1−
5The is true for any k series, which can have up to k−1 cointegrating relationships.
6This condition is sufficient but not necessary; one could use other models (e.g.

first-differences). I focus on I(1) series since higher orders of integration are rare in

political science, although this excludes the possibility of multi-cointegration (Enders

2010, pp. 380-382).
7While cointegrating relationships can be estimated using GECMs, estimating

GECMs does not necessarily mean two or more series are cointegrated.
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κ0−κ1xt−1) will not be stationary. If all variables are I(1) but not cointegrating, the

series can only be analyzed in first-differences, since there still may exist a short-run

relationship.

The recommendations above are straightforward in theory. In practice, identify-

ing the correct model is non-trivial. For one, unit-root tests often have size distortions

and low power in small samples, making it difficult to determine whether a variable

is I(0) or I(1) (Maddala and Kim 1998; Choi 2015). This difficulty is compounded

since users must test each variable in order to use models such as the GECM. Se-

ries may be so highly autoregressive (near-integrated) that testing procedures cannot

distinguish it from an I(1) series (De Boef and Granato 1997). Moreover, series may

be fractionally integrated. While some scholars argue that these are common in

political science (Box-Steffensmeier and Smith 1998; Lebo, Walker and Clarke 2000;

Grant and Lebo 2016), others remain skeptical (Pickup 2009; Keele, Linn and Webb

2016).8 In other words, with short series (less than 100), we are often at the mercy

of our tests, and risk choosing models that are not reflective of the characteristics of

our data.

As recent work has shown, many scholars have overlooked the crucial steps of

testing for unit roots and cointegration (Grant and Lebo 2016). Others find that

complex model specifications tend to overfit and perform poorly in small samples

(Keele, Linn and Webb 2016; Esarey 2016). While these important contributions

have identified potential problems, they leave users without a clear and easy-to-
8Helgason (2016) and Esarey (2016) investigate treating data as fractionally in-

tegrated versus I(1) through Monte Carlo simulations.
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implement solution. As I show in the next section, a procedure already exists that

greatly eases unit-root testing, includes a test for cointegration, and is simple to

estimate. Moreover, when combined with dynamic simulations, these models can

provide additional substantive interpretations.

A Comprehensive Approach to Time Series Analysis

The autoregressive distributed lag (ARDL) model and associated bounds test of

Pesaran, Shin and Smith (2001) is already popular in economics, but relatively un-

known in political science. It is ideal for four reasons. First, although we may

suspect that all regressors are I(1), an initial model can be estimated without having

to rely on unit-root testing to distinguish between I(0) or I(1) regressors. Restric-

tions on the independent variables can then be imposed to avoid spurious conclusions

of cointegration. Second, the one-step procedure for the initial cointegration test is

similar to the GECM, making it easy to estimate. Third, the cointegration test is

often straightforward to interpret. Fourth, this framework provides a comprehensive

approach for practitioners.

The ARDL-bounds approach is shown in schematic form in Figure 1.9 As shown

in step a, users must first establish if the dependent variable is I(1). To mitigate

difficulties with unit-root testing, users should employ a suite of unit-root tests and

account for the possibility of periodicity, drift, and deterministic trends. If the
9For brevity I do not consider fractionally integrated relationships. I discuss

strategies for handling these data in the Supplemental Materials.
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dependent variable is stationary, then cointegration is not possible, and any I(1)

regressors must be first-differenced (step f ). After ensuring that all independent

variables are stationary (step c), we must also check that no autocorrelation remains

in the residuals (step i). As shown by step h in Figure 1, if there is autocorrela-

tion we can incorporate lags of the dependent and independent variables, or lagged

first-differences if a regressor is I(1). Lag structures are typically chosen based on

theoretical expectations about the data-generation process, and by minimizing in-

formation criteria such as AIC or SBIC. If no autocorrelation remains, the resulting

ARDL model is one where all variables are I(0), as shown in step j, a version of

which was shown in Equation 1. There is no need to check for cointegration, since

all variables are stationary.

[Figure 1 about here]

If the dependent variable is I(1), there may be cointegration. As shown in step b

in Figure 1, we do not have to establish whether the regressors are I(0) or I(1); we of

course suspect I(1), since we are testing for cointegration. However, we must ensure

that there are no explosive series, seasonal unit-roots, or series higher than I(1) in

any of the variables. Violation of these conditions invalidates the testing procedure.

Independent variables that are non-stationary of higher orders than I(1) must be

differenced (step d) before moving forward.10

Next, estimate the ARDL model in error-correction form (step e). Recall that

a cointegrating relationship between an I(1) dependent variable, yt , and a weakly
10This excludes the possibility of multi-cointegration (Enders 2010, pp. 380-382).
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exogenous I(1) regressor, xt , can be written as:11

yt = κ0+κ1xt + zt (5)

If the residuals, zt , are stationary, there is evidence of cointegration.12 In order to

estimate this model, zt−1 is included in the following GECM:

∆yt = α0−α(zt−1)+β0∆xt + εt (6)

rewritten, it becomes:

∆yt = α0−α(yt−1− κ̂0− κ̂1xt−1)+β0∆xt + εt (7)

The unrestricted error-correction model referred to by Pesaran, Shin and Smith

(2001, p. 293) forms the basis of the ARDL-bounds procedure. It involves multiplying

through by −α and collecting terms in Equation 7:

∆yt = α∗
0+θ0yt−1+θ1xt−1+β0∆xt + εt (8)

11In the context of cointegration, a variable is weakly exogenous if it, “does not

respond to the discrepancy from the long-run equilibrium relationship” (Enders 2010,

p. 407).
12If a deterministic trend was suspected in yt , Equation 5 becomes: yt = κ̂0+ γ̂T +

κ̂1xt + zt . We could also exclude the drift term, κ̂0, or account for a deterministic

trend in xt .
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where α∗
0 = (α0 +ακ̂0) and θ0 = −α. As with the GECM, the coefficient on the

lagged value of xt , θ1 = ακ̂1, can be combined with the lagged dependent variable to

extract the long-run multiplier. The contemporaneous effect is given by β0. Since

residual autocorrelation may be problematic, up to q lags of the first-difference of

the independent variables, and up to p lags of the first-difference of the dependent

variable, may be included in order to purge serial autocorrelation from εt (steps g and

k) (Pesaran, Shin and Smith 2001, p. 299). Theory and information criteria should

be used to specify lag structure, and autocorrelation tests used to ensure white-noise

residuals. The resulting model appears as:

∆yt = α∗
0+θ0yt−1+θ1xt−1+

p

∑
i=1

αi∆yt−i +
q

∑
j=0

β j∆xt− j + εt (9)

After estimating the ARDL-bounds model in Equation 9, and ensuring white-

noise residuals (steps g and k), the next step is to conduct the bounds test (step

n). It tests the null hypothesis of no cointegration between the dependent variable

and any regressors included in the cointegrating equation (Pesaran, Shin and Smith

2001, pp. 294-295). Only regressors that enter into the equation in levels (e.g. xt−1)

in Equation 9 can (potentially) cointegrate with yt . The bounds F-test consists of

running a Wald- or F-test on the following restriction from Equation 9:

H0 : θ0 = θ1 = 0 (10)

under the null hypothesis that no cointegrating relationship exists between xt and yt .

Rejecting H0 indicates that there is a cointegrating relationship between the series.
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In addition to the F-test, a one-sided t-test may be used to test the null hypothesis

that the coefficient on the lagged dependent variable is equal to zero: H0 : θ0 =0. The

alternative hypothesis is that θ0 < 0, which suggests cointegration. This is known as

the bounds t-test.

The critical value bounds for the F- and t-statistics are non-standard, and depend

on the number of regressors appearing in levels, as well as the restrictions placed on

the intercept and trend.13 Asymptotic critical values for the t- and F-statistics can

be found in Pesaran, Shin and Smith (2001, pp. 300-304), while small-sample critical

values for the F-statistic can be found in Narayan (2005, pp. 1987-1990). No small-

sample critical values are currently available for the t-test, so in small samples it

should only be used for confirmatory purposes. Interpretation of the bounds test is

illustrated in Figure 2. Three possibilities result:

[Figure 2 about here]

If the value of the F-statistic is lower than the stationary critical value, then we

cannot reject the null hypothesis that there is no cointegrating relationship (step q in

Figure 1); in fact, we can conclude that all independent variables appearing in levels

are stationary, without having to conduct any further unit-root testing. If this is
13Dummy variables may be included without compromising the asymptotic prop-

erties of the tests, as long as they tend towards zero as the series increases (Pesaran,

Shin and Smith 2001, p. 307). The cointegration test does not account for the possi-

bility of seasonal unit roots (Pesaran, Shin and Smith 2001, p. 291), or other forms

of periodicity, so these should be pre-whitened out accordingly.
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the case, the final model specification is the first-difference of the dependent variable

regressed on up to l lags of the independent variables appearing in levels, as well as

up to p and q lags of the first differences of the dependent and independent variables

necessary to remove autocorrelation (step r):

∆yt = α0+
l

∑
k=0

δkxt−k +
p

∑
i=1

αi∆yt−i +
q

∑
j=0

β j∆xt− j + εt (11)

If the value of the F-statistic is higher than the I(1) critical value, not only

are all series I(1), there also exists a cointegrating relationship between them. No

further unit-root testing of the regressors is required, as shown by step o in Figure

1. Evidence suggests that the resulting ARDL model in error-correction form is

correctly specified, and that cointegration exists between the dependent variable and

any independent variables appearing in levels.

If the F-statistic is between the stationary and I(1) critical values, the test is in-

conclusive. There could be a mix of stationary and I(1) regressors, and cointegration

among the I(1) variables and the dependent variable may still exist. However, fur-

ther testing is required. As shown by step m in Figure 1, the next step is to conduct

unit-root tests for each independent variable. Since I(0) variables cannot possibly

have a cointegrating relationship with an I(1) dependent variable, they should only

enter into the model in first-differenced form.14 After re-running the ARDL model

in error-correction form (step e), conduct the bounds test for cointegration (step n)
14Of course, I(0) series could still appear in levels in the final model specification

without risking spurious regression.
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on the remaining I(1) regressors. If a conclusive result is reached, no further testing

is required. If the test is still inconclusive, the next step is to start excluding com-

binations of I(1) regressors from appearing in the cointegrating equation (having a

θ coefficient in Equation 9), and repeat steps e and n. If, after iterating through

the possible combinations of independent variables, there is still no conclusive re-

sult from the bounds test, then we can conclude no cointegration. Since short-run

effects between I(1) variables may still exist, the final model can be estimated in

first-differences.

Evaluating the t-statistic is exactly the opposite as the F-statistic; if the value

of the t-statistic is lower than the I(1) critical value, than we can reject the null

hypothesis of no cointegrating relationship. If the value of the t-statistic falls above

the I(0) critical value, then we cannot reject the null hypothesis. Just as with the

F-statistic, if the critical value falls between the bounds, the test is inconclusive, and

more precise testing of the regressors is necessary. That is to say, we would next use

unit-root testing to isolate out only the I(1) variables and iterate through them as

needed in order to conclude either cointegration (step o) or all I(0) regressors (step

q).

Monte Carlo Evidence

The key component to the ARDL-bounds procedure is the cointegration test, since

it ultimately determines our conclusions about the relationships between variables.

How does its performance compare to existing approaches? To evaluate this, I present
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two Monte Carlo experiments. The first focuses on finding evidence of cointegration

when it does not exist (Type I error), while the second investigates failing to detect

cointegration when it exists (Type II error).

To evaluate the ability of the bounds cointegration test to avoid Type I error, I

generated an I(1) dependent variable, yt , for series of length T = 35,50,80.15 Next,

four independent variables, xkt (where k = 1,2,3,4), were generated. These were

completely unrelated to yt , or to one another:

yt = yt−1+ηt (12)

xkt = ϕkxkt−1+νkt (13)

The stochastic components ηt and νkt are i.i.d. and independent from each other. As

discussed earlier, detection of stationary variables is difficult in short series. To see

the consequences of erroneously including an I(0) regressor when all other variables

are I(1), I allow the autoregressive process for x1t , ϕ1, to vary from 0.0 to 1.0 by

increments of 0.20. All other independent variables are I(1) (i.e., ϕk = 1 ∀k ̸= 1).

Next, I ran the ARDL-bounds model:

∆yt =α0+θ0yt−1+θ1x1t−1+· · ·+θkxkt−1+
p

∑
i=1

αi∆yt−i+
q1

∑
j=0

β1 j∆x1t− j+· · ·+
qk

∑
j=0

βk j∆xkt− j+εt

(14)

The number of lagged first-differences of yt and each xkt to include in Equation 14 was
15To mitigate issues involving initial conditions (Balke and Fomby 1997), I created

a burn-in period of T = 100 for all simulations.
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determined via SBIC for each of the 500 simulations conducted for all combinations

of T , k, and ϕ1x.16 After estimating Equation 14, an F-test of the null hypothesis

that θ0 = θ1 = · · ·= θk = 0 was conducted for each simulation. The resulting statistic

was compared against the associated critical values of the bounds test from Narayan

(2005, p. 1988). Since these series were independently generated, evidence of cointe-

gration (a F-statistic greater than the I(1) critical value) is an incorrect rejection of

the null hypothesis and thus a form of Type I error.17

I compare the performance of the bounds test to two other procedures. I included

the Engle-Granger two-step procedure by implementing an augmented Dickey-Fuller

unit-root test on the residual series, zt , from the cointegrating equation: yt = κ0+

κ1x1t + · · ·+ κkxkt + zt .18 I also used the Johansen procedure for cointegration to

test for the existence of a single cointegrating relationship, using both the multiple

trace testing procedure as well as the number of cointegrating ranks as chosen by
16A restriction of p,qk ≤ 3 was placed on the maximum number of lag lengths

in Equation 14 for T = 35, and 4 for T = 50,80. This restriction appeared to be an

ideal trade-off between overfitting and ensuring white-noise residuals; I discuss issues

regarding overfitting in the Supplemental Materials.
17F-statistics between the I(0) and I(1) bound, or below the I(0) bound, were

treated as avoiding Type I error. Treating them as Type I error does not change the

substantive results, as shown in the Supplemental Materials.
18The same lag restrictions were placed on the additional augmenting lags of ∆yt−i

needed to remove autocorrelation, as determined by minimizing SBIC. Critical values

are from MacKinnon (1994).
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minimizing SBIC (Johansen 1995).19 Although cointegration tests are only supposed

to be run on all-I(1) series, the purpose of this Monte Carlo experiment is to evaluate

test performance when a stationary regressor is erroneously included, given that in

small series an autoregressive I(0) variable may be indistinguishable from an I(1)

series.

The results from the first Monte Carlo experiment are shown in Figure 3. The

level of autoregression, ϕ1, in the single stationary series—x1t—is on the horizontal

axis. The proportion of simulations finding evidence of cointegration is on the vertical

axis; higher values indicate Type I error. When there are only 35 observations, it is

clear that the bounds test is the only cointegration procedure that comes close to the

conventional five percent rejection rate (shown by the thin black line). As the number

of independent variables increases (each column shows the number of k regressors),

all tests tend to have increased Type I error. For instance, when there are four

regressors, we find spurious evidence of cointegration about 60 percent of the time

when using the Engle-Granger test; surprisingly, its high rate of Type I error does not

change as T increases. This finding underscores recent work on overfitting in short

time series (Helgason 2016; Keele, Linn and Webb 2016). Despite this, the bounds

test excels at successfully failing to reject the null hypothesis of no cointegration

under all scenarios. Only the Johansen test appears to have the same low rate of

Type I error, but only when the level of autoregression in x1t approaches a unit-root

process.
19Lag-order selection was the same as the Engle-Granger procedure. Results of

r ̸= 1 were recorded as no evidence of Type I error.
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[Figure 3 about here]

The performance of the bounds test is notable in a number of ways. Not surpris-

ingly, I find evidence that it, along with other cointegration tests, perform poorly in

small samples. However, this is only when the length of the series is small and the

number of regressors large. Even then, the rate of Type I error using the bounds test

is often half that of the other cointegration tests, and remains robust to erroneously

including an I(0) regressor. Only the Johansen-BIC test has a similar level of Type I

error, but only when all variables are at or near I(1). The fact that the performance

of the bounds test is barely affected by autoregression indicates that it is a good test

for cointegration in small samples; this is exactly when we might erroneously include

an I(0) variable. Finally, while the Engle-Granger procedure is robust to autoregres-

sion in a single regressor, it has much larger Type I error as the number of regressors

increase. Taken together, this evidence suggests that the bounds cointegration test

has lower Type I error than other tests, and remains robust to short series, multiple

regressors, and erroneously including stationary regressors.

I next explore the likelihood that the bounds test fails to detect cointegration

when it exists (Type II error). As before, I vary the number of regressors and the

number of observations. However, now the independent variables cointegrate with
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the dependent variable:20

xkt = xkt−1+νkt (15)

ut = 0.75ut−1+ηt (16)

yt = 0.25x1t + · · ·+0.25xkt +ut (17)

The errors νkt and ηt are independent. This data-generation process yields an adjust-

ment parameter of −0.25 and a long-run multiplier of 0.25 for each of the k indepen-

dent variables. The cointegration tests are the same as in the previous experiment,

and conducted on 1,000 simulations across each combination of observations and

regressors.

The results of the second experiment are shown in Figure 4. Each bar depicts the

proportion of cointegrating relationships for a particular cointegration test, across

each combination of observations and regressors. Higher values correspond with a

lower rate of Type II error. For all tests, as the length of the series increases, Type

II error decreases. In addition, as the number of cointegrating regressors increase,

the Engle-Granger test correctly identifies cointegration at a greater rate than other

tests. The bounds test has the largest Type II error rate when T = 35, although this

improves sharply as the series lengthen. In addition, the proportion of simulations

correctly identifying cointegration varies significantly across tests; the Engle-Granger

procedure has between one-third and one-half the rate of Type II error as the bounds

test, and the bounds test has about one-half the Type II error as the Johansen tests.
20A proof of this is in the Supplemental Materials.
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[Figure 4 about here]

A number of important findings stand out from these two experiments on cointe-

gration. The bounds test has the lowest Type I error across all scenarios; moderate

Type I error (20 percent) occurs only when there are four regressors and 50 observa-

tions or less. While the bounds test is largely unaffected, the Johansen test tends to

experience a rapid increase in Type I error rates when an I(0) regressor is included.

Although the Engle-Granger test has the lowest Type II error rates, the bounds test

tends to perform better than the Johansen tests in all scenarios, except for a single

regressor or short series.

In the Supplemental Materials I conduct eight additional Monte Carlo exper-

iments. These include varying the adjustment parameter and long-run multiplier,

using fractionally (co)integrated series, and examining the percentage of time a given

cointegration test correctly or incorrectly diverges from the other three cointegration

tests. I also examine the ability of the GECM and ARDL-bounds models to recover

substantively interesting effects (e.g., short- and long-run effects, or the adjustment

parameter). Many of the findings are consistent with those above; interested readers

are directed to the brief summary in Table 1 in the Supplemental Materials.

Taken together, the Monte Carlo results suggest that the bounds test offers an

ideal compromise between Type I and Type II error. Given calls for more conservative

cointegration tests (Grant and Lebo 2016), the bounds test seems the prudent choice

since it strongly avoids spurious cointegration, yet can still identify true cointegrating
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relationships, at least for weakly exogenous regressors.21 I show two applications of

this approach below.

Application I: Kelly and Enns (2010)

Kelly and Enns (2010) examine how income inequality affects public mood liberalism

and support for welfare policy. The authors find that in the long run, increases in

inequality are associated with the public becoming more conservative and less sup-

portive of welfare. They find no evidence that policy liberalism, income inequality,

unemployment, or inflation have any effect on public mood in the short run. There

are two reasons to believe these results may be suspect. First, the number of obser-

vations is small. Second, although Kelly and Enns perform unit-root testing on the

dependent variable, the authors make no mention of testing the regressors.

I replicated their model of public support for welfare policy.22 Results from their

GECM are shown in Table 1, Model 1. First, I ensured that the dependent variable

is I(1) (see step a in the Figure 1 schematic). Results from five unit-root tests are

shown in Table 2. While we can reject the null hypothesis of an I(1) series using

the augmented Dickey-Fuller test, more powerful ones such as the DF-GLS, or ERS

test, find evidence of a unit-root process.23 Although the KPSS test also provides
21Were the regressors endogenous, methods such as the Johansen approach should

be used.
22Table 1, Model 4, p. 864 in their article.
23The augmented Dickey-Fuller and Phillips-Perron tests suffer from size distor-

tions and weak power, and are often outperformed by the ERS and DF-GLS tests
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mixed evidence, we can tentatively confirm that the data-generating process of the

dependent variable is I(1).24

[Table 1 about here]

[Table 2 about here]

After ensuring that all regressors are first-order non-stationary or less (step b

in Figure 1), I then estimated the ARDL model in error-correction form (step e).25

Using SBIC, I found that the lag structure in the original model used by Kelly and

Enns (2010) was optimal, given the data. This specification produced white-noise

residuals, as evidenced by a battery of post-estimation diagnostics. Thus, the ARDL-

bounds model shown in Model 2 in Table 1 is identical to the original ECM in Model

1.

Since the model appears to be dynamically stable, we next use the bounds

test to identify if a cointegrating relationship exists between support towards wel-

fare policy, policy liberalism, and income inequality (step n in Figure 1). An F-

test that the parameters on the variables appearing in lagged levels—Wel f aret−1,

Policy Liberalismt−1, and Income Inequalityt−1—are jointly equal to zero, yields an

(Maddala and Kim 1998, pp. 98-103; Choi 2015, pp. 37-54; Enders 2010, pp. 234-

237).
24I examine the consequences of concluding stationarity in the Supplemental Ma-

terials. Although the final model differs, the substantive results remain unchanged.
25Unit-root tests of the first-difference of policy liberalism and inequality rejected

the I(2) null hypothesis; results are in the Supplemental Materials.
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F-statistic of 4.15. Although Narayan (2005) provides the small-sample critical val-

ues necessary to evaluate this statistic, these are also available in Stata and R using

the programs pssbounds and pss, respectively (Philips 2016b; Jordan and Philips

2016). The critical values for 33 observations and two regressors are a lower sta-

tionary bound of 4.183 and an upper I(1) bound of 5.333. Strictly speaking, the

F-statistic is below the stationary lower bound, so we might conclude that all re-

gressors are stationary (step q in Figure 1). However, given that the test result was

so close to the I(0) lower bound of the test, we may want to treat the result as

inconclusive, which means that further testing is be needed.26

Although the results of the cointegration test were borderline inconclusive with

both policy liberalism and income inequality, a single regressor may still cointegrate

with welfare policy mood. The next step is to test that the regressors are I(1), since

any I(0) regressor can easily be excluded from the cointegrating equation (step m in

Figure 1). Unit-root testing (available in the Supplemental Materials) indicated that

both policy liberalism and income inequality are I(1).

Since unit-root testing did not narrow down which series should not appear in the

cointegrating equation, I estimated two different models (step n). In Model 3, I test

to see if only income inequality has a cointegrating relationship with public mood

towards welfare. Therefore, policy liberalism does not appear in levels in Model 3.

In order to produce white-noise residuals (steps g and k), the lagged first-difference
26Moreover, the one-sided bounds t-test on the significance of the lagged dependent

variable, -3.46, falls between the asymptotic upper I(0) and lower I(1) critical bounds

of -2.86 and -3.53, respectively; this supports the “inconclusive” decision.
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of policy liberalism was included. Because Model 3 reflects a data-generating process

where only income inequality is cointegrating, evidence of cointegration in Model 3

would indicate that income inequality, not policy liberalism, is cointegrating with

public mood towards welfare. An F-test of the significance of the lagged variables in

Model 3 yields an F-statistic of 1.72. Since this is below the critical value of 5.290

for the I(0) lower bound and 6.175 for the I(1) upper bound, we can conclude that

income inequality and public mood towards welfare are not cointegrating.

Next, I test to see if only policy liberalism has a cointegrating relationship with

public mood towards welfare. Therefore, in Model 4 income inequality does not

appear in levels. To produce white-noise residuals, one lag of the first difference

of income inequality was included. For Model 4, a rejection of the null hypothesis

using the bounds test would suggest that policy liberalism, not income inequality, is

cointegrating with public mood towards welfare. An F-test of the significance of the

lagged variables yields an F-statistic of 3.57. Since this falls below the I(0) critical

value of 5.290 (as well as the upper I(1) critical value, 6.175), we can conclude that

policy liberalism and public mood towards welfare are not cointegrating.

Since neither income inequality or policy liberalism on their own appear to have

a cointegrating relationship with welfare policy mood—nor do the three variables

altogether, as found in Model 2—we can conclude that there is no cointegration

(step q). Since the two independent variables may still affect public mood towards

welfare in the short-run, we may run a model of first-differences (step r). This is

shown in Model 5 in Table 1. The results indicate that income inequality and policy

liberalism do not have a statistically significant effect on the public’s feelings towards
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welfare policy in the short-run, a similar conclusion to what Kelly and Enns find.27

This replication is informative since it shows how one should proceed, given an

inconclusive bounds test result. After finding that all regressors were I(1), I pro-

ceeded to iterate through two different models, excluding one of the regressors from

appearing in the cointegrating equation in Models 3 and 4. Since there was no ev-

idence for cointegration when isolating out income inequality and policy liberalism,

the final model was one of first-differences, since the error-correction framework is

no longer appropriate.

While suggestive, this replication does not completely overturn the findings of

Kelly and Enns. Short series introduce a large amount of uncertainty into cointegra-

tion tests, so it seems reasonable that different researchers might come to different

conclusions.28 Overall, given the best available methods, there appear to be null

findings in their model of public mood towards welfare.29

27What differs is that the authors find evidence of a long-run effect, whereas the

ARDL-bounds approach does not.
28The Monte Carlo results show that while the bounds test tends to avoid spurious

conclusions of cointegration in small samples, it also tends to have a high rate of

false-negatives; thus, it is hard to ascertain whether their result holds.
29However, I find evidence of cointegration using this same approach when examin-

ing Kelly and Enns’ other dependent variable—public mood liberalism—as detailed

in the Supplemental Materials.
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Application II: Volscho and Kelly (2012)

Volscho and Kelly (2012) use a GECM to probe the determinants of the rise in

top income shares in the US from 1949 to 2008. I examine their power resource

model, which investigates if the share of income of the top one percent is determined

by political and institutional factors. Results from their original model are shown

in Table 3, Model 1. As Volscho and Kelly find, increases in Democratic strength

in Congress, union membership, and the presence of divided government, tend to

decrease the share of income held by the super-rich, but only in the long-run. In

contrast, Democratic presidents have no effect.

[Table 3 about here]

To implement the ARDL-bounds procedure, I first ensured that the dependent

variable, Top 1% Share, was I(1), as shown in Table 4 (step a in Figure 1). After

confirming that the regressors are I(1) or less (step b), I used SBIC to assist in lag

selection for the ARDL model in error-correction form, the result of which is shown

in Model 2 (step e). Although the authors may have had theoretical reasons to use

the “dead-start” GECM, I find instead that a model of contemporaneous short-run

effects has a lower SBIC. While theory should always guide model specification, users

must ensure that the residuals are white-noise in order to run the bounds test; in this

example, both the dead-start and standard GECM yielded white-noise residuals.30

[Table 4 about here]
30Therefore, one could use the bounds test on either model.
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Since Model 2 contains white-noise residuals, we can move onto cointegration

testing using the bounds test (step n in Figure 1). An F-test of the joint significance

of the five lagged variables (the four regressors plus the dependent variable) yields

an F-statistic of 5.02. Critical values for 61 observations and four regressors are

3.068 and 4.274 for the lower and upper bounds, respectively. Since the F-statistic

is greater than the I(1) upper bound, we can conclude that there is a cointegrating

relationship (step o). As further confirmation we can use the bounds t-test; the t-

statistic on the lagged dependent variable is -4.01, which is below the critical value of

the I(1) lower bound (-3.99). Thus, there is strong evidence that all four regressors

are cointegrating with the dependent variable.

The largest difference between Volscho and Kelly’s original model and the ARDL-

bounds model is the significance of the short-run effect of a Democratic president.

To see if this leads to different conclusions than the ones made by the authors, in the

Supplemental Materials I use dynamic simulations to help interpret how changes in

one regressor affects the dependent variable over time. Model-based dynamic sim-

ulations are growing in popularity in political science (King, Tomz and Wittenberg

2000; Williams and Whitten 2012), and are especially valuable for examining complex

model specifications such as autoregressive relationships with interactions (Williams

and Whitten 2011), or dynamic compositional dependent variables (Philips, Ruther-

ford and Whitten 2016, 2015). The ARDL-bounds procedure’s lag structure makes

it a prime candidate for dynamic simulations. Using the program dynpss to create

dynamic simulations of the ARDL-bounds model (Philips 2016a), I find that in the

short run, moving from a Republican to a Democratic president increases the income
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concentration of the top one percent. However, this effect loses statistical signifi-

cance after four years, is not statistically significantly different from the predictions

using Volscho and Kelly’s GECM, and the long run effect is nearly zero.31 These

results are available in the Supplemental Materials.

In summary, I find evidence for cointegration in the power resources model of

Volscho and Kelly. While the ARDL-bounds model had slight specification differ-

ences, the substantive findings do not change, as evidenced by dynamic simulations.

Institutional and political factors may affect the income share of the top one percent,

but only in the long-run.

Discussion and Conclusion

The two examples above represent a variety of situations that the ARDL-bounds

approach is designed to handle. For the Kelly and Enns (2010) replication, I find

no evidence of cointegration. Using the steps outlined in Figure 1, I find no evi-

dence that policy liberalism and income inequality affect welfare policy mood in the

long- or short-run. For the Volscho and Kelly (2012) replication, I find evidence

of cointegration; these findings support the authors’ conclusions about the long-run

effect of institutions and politics on the concentration of income of the top one per-

cent. In the Supplemental Materials I also replicate Ura (2014), and find evidence

of cointegration.
31This is confirmed analytically by calculating the long-run multiplier, which is

0.36 and is not statistically significantly different from zero.
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Although the examples above are representative of most situations practitioners

are likely to encounter, I briefly review how users should proceed, given their own

theoretically-specified model:

1. Unit-root testing of the dependent variable. If the dependent variable is I(1),

proceed with the ARDL in error-correction form.32

2. Ensure that no independent variables are of an order of integration higher than

I(1). The main advantage of the bounds approach is that users do not have

to make difficult decisions between I(0) and I(1) regressors; the results of the

bounds test informs us of these characteristics. However, users must ensure

that no variables are integrated more than I(1), explosive, or contain seasonal

unit-roots.33

3. Estimate the ARDL in error-correction form. Since the bounds testing pro-

cedure relies on white-noise residuals, add lags of the first-differences of the

dependent variable and regressors as needed. Use theory and information cri-

teria to aid in lag specification. Ensure that the residuals are white-noise.

4. Test the joint significance of all lagged variables appearing in levels using a

Wald/F-test. Use small-sample critical values of the bounds test in Narayan
32If the dependent variable is I(0), it is not first-differenced, leading to a lagged

dependent variable model as shown in the Figure 1 schematic.
33While the test statistics can be adjusted to account for deterministic trends in

the dependent variable, it is advisable to identify and de-trend instead.
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(2005). As an auxiliary test, use the one-sided t-test of the lagged dependent

variable using asymptotic critical values in Pesaran, Shin and Smith (2001).

5. If the results of the bounds test:

(a) Suggest cointegration: All variables appearing in levels appear to be I(1)

and have a cointegrating relationship with the dependent variable.

(b) Suggest stationarity: All regressors appearing in levels are I(0) and can-

not possibly be in a cointegrating relationship. A model of first-differences

must be estimated since the variables may still affect the dependent vari-

able in the short-run.

(c) Are inconclusive: Each regressor should be tested for a unit-root. Only

I(1) variables can appear in levels in the error-correction model. Station-

ary variables may still appear in first-differences.34 Repeat Steps 3 and

4. If the resulting statistic is still inconclusive, combinations of variables

appearing in levels may need to be tested. Continue testing until (5a) or

(5b) reached.

6. Interpretation: Use dynamic simulations and analytical calculations for hy-

pothesis testing.

While the ARDL-bounds procedure provides a comprehensive approach to mod-

eling time series and testing for cointegration, it is not a remedy for all problems.
34I(0) variables could appear in levels in the final model without risking spurious

regression.
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First, like all time series models, it tends to perform poorly in small samples. As a

precaution against overfitting, Keele, Linn and Webb (2016, p. 40) suggest a min-

imum of between 10 and 20 observations per parameter.35 However, as shown by

Monte Carlo simulations, the bounds cointegration test tends to perform at least as

well as other cointegration tests in small samples. Second, this single-equation model

imposes a causal ordering and assumes weak exogeneity of the regressors (Pesaran,

Shin and Smith 2001, p. 293), a disadvantage shared with GECMs. Users unwill-

ing to impose a causal ordering should consider alternative methods such as vector

error-correction models, which can account for multiple cointegrating relationships.

Third, the cointegration test serves as a substitute for unit-root testing to distin-

guish between I(0) and I(1) regressors only when the test results fall outside of the

critical bounds. Given an inconclusive test result, users must use unit-root tests on

all regressors, and identify the stationary, I(1), and I(1)-and-cointegrating variables

through an iterative process, as shown in the Kelly and Enns (2010) replication.

Last, this procedure still requires balanced equations (Keele, Linn and Webb 2016;

Grant and Lebo 2016); although stationary regressors can appear in levels in the

final model, I(1) regressors that are not cointegrating cannot appear in levels in the

final model without risk of spurious regression.

To aid in the use of this approach, this article has provided a step-by-step guide

for practitioners, which can be used with any software package that contains unit-

root, autocorrelation, and the F- and t-tests necessary for the bounds test (e.g., R,

Stata, or EViews). In addition, in the Supplemental Materials I discuss software
35I address concerns about overfitting in the Supplemental Materials.
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programs in Stata and R designed to help users test for cointegration and create

dynamic simulations.36

This article was motivated by a series of recent articles in the time series literature

that stress the importance of careful unit-root and cointegration testing. To achieve

this, I have advocated for the autoregressive distributed lag bounds approach. I have

shown that the ARDL-bounds procedure starts with a theoretically-specified model

and moves step-by-step to arrive at an informed conclusion. Through careful testing

and model specification, the ARDL-bounds procedure is a powerful approach to a

difficult problem in applied time series analysis.

36In Stata, these are pssbounds for displaying critical values of the bounds test

and dynpss for creating dynamic simulations of the ARDL-bounds model (Philips

2016a,b). The pss package implements these commands in R (Jordan and Philips

2016).
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t-statistic

F-statistic

I(0) critical 
value

I(1) critical 
value

I(0) critical 
value

I(1) critical 
value

inconclusive

inconclusive

I(1) crit. value < t-stat. < I(0) crit. value

I(0) crit. value < F-stat. < I(1) crit. value

Accept H0: No
cointegration, all xit I(0)

Accept H0: No
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Figure 2: Bounds Test Statistics
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Table 2: Public Mood Towards Welfare is I(1) (Kelly and Enns 2010)

Unit-Root Test Welfare
Augmented Dickey-Fuller (with drift) -2.05∗

Phillips-Perron -1.94
Dickey-Fuller GLS (with trend) -2.55
Elliott-Rothenberg-Stock -2.55
Kwiatkowski-Phillips-Schmidt-Shin (H0 = stationary) 0.49∗ (no lag), 0.29 (1 lag)
Conclusion: I(1)

Note: ∗ = p < 0.05. 33 observations with 1-year lag included for all tests unless otherwise noted.
H0 = series contains a unit-root for all tests except KPSS.
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Table 3: Results of the ARDL-Bounds Model (Volscho and Kelly 2012)

(1) (2)
Original GECM ARDL-Bounds

Top 1% Sharet−1 -0.36∗∗ (0.09) -0.30∗∗ (0.07)
∆ Democratic Presidentt 1.47∗∗ (0.53)
∆ Democratic Presidentt−1 0.14 (0.56)
Democratic Presidentt−1 -0.20 (0.36) 0.11 (0.34)
∆ % Congressional Democratt -0.03 (0.04)
∆ % Congressional Democratt−1 0.05 (0.04)
% Congressional Democratt−1 -0.12∗∗ (0.04) -0.12∗∗ (0.03)
∆ Divided Governmentt 0.37 (0.46)
∆ Divided Governmentt−1 -0.11 (0.50)
Divided Governmentt−1 -0.93∗ (0.42) -0.83∗ (0.37)
∆ Union Membershipt 0.29 (0.28) 0.04 (0.28)
Union Membershipt−1 -0.11∗∗ (0.03) -0.09∗∗ (0.02)
Constant 15.05∗∗ (3.83) 13.30∗∗ (2.81)
Observations 60 61
Adjusted R2 0.20 0.29
Breusch-Godfrey χ2 of: AR(1) 1.39 3.19

AR(2) 1.39 3.21
AR(3) 2.79 5.03

Durbin’s Alternative χ2 of: AR(1) 1.16 2.76
AR(2) 1.14 2.72
AR(3) 2.29 4.31

Cumby-Huizinga χ2 of AR(1)-AR(3) 4.41 5.09
Shapiro-Wilk z 0.17 0.99

Note: Dependent variable is the share of income of the top one percent. Model 1 shows results
from Volscho and Kelly (2012) and Model 2 shows results using ARDL-bounds procedure, with lag
structure determined by minimizing SBIC. Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01.
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Table 4: Top 1% Share is I(1) (Volscho and Kelly 2012)

Unit-Root Test Top 1% Share
Augmented Dickey-Fuller (with drift) 0.02
Phillips-Perron -0.21
Dickey-Fuller GLS (with trend) -1.35
Elliott-Rothenberg-Stock -1.35
Kwiatkowski-Phillips-Schmidt-Shin (H0 = stationary) 2.20∗
Conclusion: I(1)

Note: ∗ = p < 0.05. T = 60 with 1-year lag included for all tests. H0 = series contains a unit-root
for all tests except KPSS.
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