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Levet, Michael (Ph.D., Computer Science)

On the Combinatorial and Logical Complexities of Algebraic Structures

Thesis directed by Prof. Joshua A. Grochow

In this thesis, we investigate the combinatorial and logical complexities of several algebraic

structures, including groups, quasigroups, certain families of strongly regular graphs, and rela-

tion algebras. In Chapter 3, we leverage the Weisfeiler–Leman algorithm for groups (Brachter &

Schweitzer, LICS 2020) to improve the parallel complexity of isomorphism testing for several fami-

lies of groups including (i) coprime extensions H ⋉N where H is O(1)-generated and N is Abelian

(c.f., Qiao, Sarma, & Tang, STACS 2011), (ii) direct product decompositions, and (iii) groups

without Abelian normal subgroups (c.f., Babai, Codenotti, & Qiao, ICALP 2012). Furthermore,

we show that the weaker count-free Weisfeiler–Leman algorithm is unable to even identify Abelian

groups. As a consequence, we obtain that FO fails to capture all polynomial-time computable

queries even on Abelian groups. Nonetheless, we leverage the count-free variant of Weisfeiler–

Leman in tandem with bounded non-determinism and limited counting to obtain a new upper

bound of β1MAC0(FOLL) for isomorphism testing of Abelian groups. This improves upon the pre-

vious TC0(FOLL) upper bound due to Chattopadhyay, Torán, & Wagner (ACM Trans. Comput.

Theory, 2013).

Weisfeiler–Leman is equivalent to the first in a hierarchy of Ehrenfeucht–Fräıssé pebble games

(Hella, Ann. Pur. Appl. Log., 1989). In Chapter 4, we explore the descriptive complexity theory

of finite groups by examining the power of the second Ehrenfeucht-Fräıssé bijective pebble game

in Hella’s (Ann. Pure Appl. Log., 1989) hierarchy. This is a Spoiler-Duplicator game in which

Spoiler can place up to two pebbles each round. While it trivially solves graph isomorphism, it

may be nontrivial for finite groups, and other ternary relational structures. We first provide a

novel generalization of Weisfeiler-Leman (WL) coloring, which we call 2-ary WL. We then show

that the 2-ary WL is equivalent to the second Ehrenfeucht-Fräıssé bijective pebble game in Hella’s
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hierarchy.

Our main result is that, in the pebble game characterization, only O(1) pebbles and O(1)

rounds are sufficient to identify all groups without Abelian normal subgroups. In particular, we

show that within the first few rounds, Spoiler can force Duplicator to select an isomorphism between

two such groups at each subsequent round. By Hella’s results (ibid.), this is equivalent to saying

that these groups are identified by formulas in first-order logic with generalized 2-ary quantifiers,

using only O(1) variables and O(1) quantifier depth.

In Chapter 5, we show that Graph Isomorphism (GI) is not AC0-reducible to several

problems, including the Latin Square Isotopy problem and isomorphism testing of several

families of Steiner designs. As a corollary, we obtain that GI is not AC0-reducible to isomorphism

testing of Latin square graphs and strongly regular graphs arising from special cases of Steiner

2-designs. We accomplish this by showing that the generator-enumeration technique for each of

these problems can be implemented in β2FOLL, which cannot compute Parity (Chattopadhyay,

Torán, & Wagner, ibid.).

Finally, in Chapter 6, we shed new light on the spectrum of the relation algebra we call

An, which is obtained by splitting the non-flexible diversity atom of 67 into n symmetric atoms.

Precisely, we show that the minimum value in Spec(An) is at most 2n6+o(1), which is the first

polynomial bound and improves upon the previous bound due to Dodd & Hirsch (J. Relat. Methods

Comput. Sci. 2013). We also improve the lower bound to 2n2 +Ω(n
√
log n). Prior to the work in

this thesis, only the trivial bound of n2 + 2n+ 3 was known.
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Chapter 1

Introduction

A central goal of mathematics is to classify given objects up to some notion of equivalence.

Perhaps the most well-known example of this stems from group theory, in which the goal is to

determine all groups of any given order n up to isomorphism. The classification problem for finite

groups is introduced almost immediately in standard undergraduate courses in Modern Algebra.

For instance, students begin by classifying (by hand) the groups of order n, where n is small.

Standard theorems such as those of Lagrange, Cauchy, and Sylow provide more powerful and

systematic means of determining the groups of order n. Still more powerful tools exist, such as

those from representation theory and group cohomology. Nonetheless, the key barrier in obtaining

classification results is one of combinatorial explosion: for certain values of n, there exist a rather

significant number of groups. Take for instance the class of p-groups: for a prime p and k ∈ N,

there are p2k
3/27+O(k8/3) such groups of order pk [112, 181, 44]. For groups of order 1024, there are

49, 487, 367, 289 such groups [42, 54], and > 99% of groups of order ≤ 1024 are of order exactly

1024. It is conjectured that the class of 2-groups (groups of order 2k for some k) is dense within

the class of finite groups.

We see this theme of classification in other areas of mathematics; we briefly highlight this in

the cases of Latin squares, graphs, and relation algebras, which will be investigated in this thesis

(a more thorough survey of the literature will be presented later). The study of Latin squares can

be traced back to Islam circa 1200 [5]. We refer to [60, Page 12] for a more detailed history of

Latin squares. Strongly regular graphs, which can be viewed as a generalization of Latin squares,
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actually admit a partial classification (see Section 1.1.3 for more discussion). For classification of

relation algebras, the next object we study in this thesis, the following monographs serve as key

references [153, 113, 88].

The powerful combination of modern computing and mathematical theory has led to ad-

vances in classification (e.g., [42, 54, 43]), as well as practical tools including computer algebra

systems such as Magma [47], GAP [86], and Sage [187], and graph isomorphism packages such as

nauty and traces [157], as well as saucy [59, 71]. Nonetheless, computation has not overcome the

combinatorial barriers associated with classification problems. It is thus natural to inquire as to

the easy instances that can be readily classified, as well as the hard instances that are resistant to

classification. To this end, we require some precise notion as to the complexity of an object.

There are several notions of complexity from which to select. The role of computation in classifi-

cation problems naturally suggests measures of computational complexity: algorithmic runtime,

space, randomness, the parallel complexity (circuit complexity) of the corresponding isomorphism

tests, compressibility (Kolmogorov complexity), and logical definability (descriptive complexity

theory). This thesis investigates combinatorial measures of complexity for algebraic objects in-

cluding those arising from Latin squares (e.g., (quasi)groups and certain families of strongly

regular graphs) and relation algebras. In particular, we examine the deep relationship between

these combinatorial measures of complexity and other measures of complexity, incuding the par-

allel complexity of their isomorphism tests and logical definability. These relationships in turn

yield insights on problems such as graph isomorphism testing and the Flexible Atom Conjecture

on relation algebras.

1.1 Graph Isomorphism

The Graph Isomorphism problem (GI) takes as input two graphs G and H, and asks if there is an

isomorphism φ : V (G) → V (H). The best known algorithm to solve this problem in general is due
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to Babai [26], who exhibited an nΘ(log2 n)-runtime1 procedure to test whether two graphs are the

same. It is known that GI belongs to NP∩coAM, and it is open as to whether GI belongs to coNP.

Recent works [84, 94] have established that for any field F, GI belongs to F-Tensor Isomorphism

(TIF), which effectively captures the complexity of testing two 3-way arrays for equivalence up to

simultaneous change of basis. That is, GI is no harder than multilinear algebra. When F is finite,

TIF ⊆ NP∩ coAM.2 In contrast, the best known lower-bound for GI is DET– the class of problems

that are NC1-Turing reducible to computing the determinant of an n × n integer matrix. So in a

precise sense, GI is sandwiched between linear algebra and multilinear algebra.

Key motivation for GI arises from the P vs. NP problem. One approach to settling P vs. NP

is to exhibit an NP-intermediate language- that is, a language belonging to NP that is neither in P

nor NP-complete. Ladner [140] established the converse: if P ̸= NP, then there must exist a strict

infinite hierarchy of NP-intermediate languages. Ladner’s proof utilized a diagonalization technique,

and so while he exhibited such languages under the assumption that P ̸= NP, his construction does

not yield insights as to natural candidates that might be NP-intermediate.

There has been considerable effort in identifying NP-intermediate candidates. Many of these

candidates, such as Primality Testing and Linear Programming have been placed into P. In

the case of Primality Testing, the polynomial-time algorithm is relatively recent [3]. For Linear

Programming, the Simplex algorithm was the long-standing algorithmic tool in this area. Despite

the fact that the Simplex algorithm performed well in practice, it still had a worst-case exponential

runtime [135]. In 1979, Leonid Khachiyan introduced the Ellipsoid algorithm, which was the first

polynomial-time algorithm for Linear Programming [131]. It is worth noting that neither the

AKS procedure nor the Ellipsoid algorithm are used in practical implementations.

The remaining candidate NP-intermediate problems under (historical) consideration are ei-

ther isomorphism problems such as GI or cryptographic problems, such as Integer Factoriza-

tion or Discrete Logarithm. There is a precise sense in which Integer Factorization and

1 Babai’s analysis [26] suffices to provide a quasipolynomial bound, but does not make the polylogarithm in the
exponent explicit. See [108] for a more explicit analysis, which yields the exponent of Θ(log2 n).

2 We refer the reader to [94, Remark 3.4] for discussion on TIF when F is infinite.
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Discrete Logarithmmay in fact be easier thanGI. For instance, both belong to NP∩coNP, while

GI is not known to belong to coNP. Furthermore, both Integer Factorization and Discrete

Logarithm reduce to the Hidden Subgroup Problem over Abelian groups, which admits an

efficient (BQP) quantum algorithm due to Shor [178]. In contrast, GI reduces to the Hidden

Subgroup Problem over the symmetric group, which is not known to admit an efficient quantum

algorithm. It is conjectured that no such efficient quantum algorithm exists, and it has been proven

that most of the current techniques do not achieve this [162].

While GI has been resistant to polynomial-time algorithms in general, there is considerable

evidence that it is unlikely to be NP-complete. For instance, as GI ∈ coAM, we have that if

GI were NP-complete, then PH = ΣP
2 ∩ ΠP

2 = AM (see for instance, [17]). As GI is solvable in

quasipolynomial-time (QP) [26], we have that if GI were NP-complete, then NP ⊆ QP. This would

violate the Exponential Time Hypothesis [122], as well as imply that EXP = NEXP [53]. It is

believed that EXP ̸= NEXP.

Additionally, GI does not behave like any known NP-complete problem in several ways. For

instance, GI is low for a number of complexity classes such as PP [136] and SPP [18]. Schöning

[176] established that GI belongs to the second level LP2 of the Low Hierarchy, which is contained

in NP. Thus, unless PH collapses to some level, GI is not NP-complete under several notions of

reducibility that are weaker than many-one polynomial-time computable reductions. Finally, we

note that Mathon [156] showed that the decision variant GI is polynomial-time equivalent to #GI,

which asks for the number of isomorphisms between two graphs. No NP-complete problem is known

to be polynomial-time equivalent to its counting version.

In light of Babai’s [26] breakthrough result, further advances on the general Graph Isomor-

phism problem seem difficult at this time. It is thus natural to consider special cases that might be

easier. We will consider special algebraic subproblems of GI that arise from Latin squares, includ-

ing Group Isomorphism (GpI), Latin Square Isotopy, and Latin Square Graph Isomor-

phism. In the setting of GpI, we will investigate the Weisfeiler–Leman dimension and iteration

number for several families of groups. To this end, we begin by introducing the Weisfeiler–Leman
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algorithm for graphs (see Section 1.1.1) prior to our discussions on GpI. By controlling both the

Weisfeiler–Leman dimension and the iteration number, we are able to improve the parallel and

descriptive complexities for isomorphism testing of several families of groups.

We will next consider the Latin Square Isotopy and Latin Square Graph Isomor-

phism problems. Precisely, we will show that these problems are strictly easier than GI under the

ordering induced by many-one AC0-computable reductions. This extends a result of Chattopadhyay,

Torán, & Wagner [57] who established the analogous result for Quasigroup Isomorphism. This

keeps with the secondary theme of parallel complexity. In light of the fact that AC0 = FO [161], our

results also suggest that, in logics extending FO, quasigroups (up to isotopism) and Latin square

graphs (up to isomorphism) might be definable via more succinct sentences in logics extending FO,

than in the case of general graphs.

1.1.1 Weisfeiler–Leman

In the setting of GI, there is a natural measure of combinatorial complexity arising from the family

of Weisfeiler–Leman (WL) algorithms (we will abuse notation and simply refer to this family as

the Weisfeiler–Leman algorithm). For fixed k ≥ 1, the k-dimensional Weisfeiler–Leman algorithm

(k-WL) works by iteratively coloring k-tuples of vertices in an isomorphism invariant manner (see

Section 2.7 for full details). To use k-WL as a non-isomorphism test, we run k-WL on the disjoint

union of graphs G and H. If at the end of round r, the multiset of colors for G differs from that for

H, then we can conclude that G ̸∼= H. For fixed k, we have that k-WL runs in polynomial-time.

The Weisfeiler–Leman dimension of a graph G is the minimum k such that k-WL distinguishes G

from all non-isomorphic graphs H. The iteration number is the minimum number of rounds that

suffice for WL to either distinguish two objects or for the coloring to stabilize – whichever comes

first.

The Weisfeiler–Leman algorithm can be traced back to the works of Boris Weisfeiler and

Andrei Leman [196, 197], who considered what is now known as 2-WL. This was generalized for

k > 2 independently by Babai & Mathon [23] in the direction of coherent configurations, and
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Immerman & Lander [120] (see as well [55]) in the direction of logics. On its own, Weisfeiler–Leman

serves as an efficient polynomial-time isomorphism test for several families of graphs including

trees [77, 120], planar graphs [134, 100], graphs of bounded treewidth [101, 104, 133, 144], graphs

of bounded rank width [102], graphs of bounded genus [95, 99], and graphs for which a specified

minor H is forbidden [96]. It is also worth noting that 1-WL identifies almost all graphs [173] and

2-WL identifies almost all regular graphs [45, 138]. In the case of graphs of bounded treewidth

[104, 144] and planar graphs [104, 100], Weisfeiler–Leman serves even as an NC isomorphism test.

Despite the success of WL as an isomorphism test, Cai, Fürer, & Immerman [55] exhibited

an infinite family of non-isomorphic pairs of graphs (Gk, Hk), for which Ω(|Gk|)-dimensional WL

was required to distinguish Gk from Hk. This yields a runtime of nΘ(n), which is worse than

simply enumerating over all possible bijections. The graphs in [55] have max-degree 4. Thus,

the group-theoretic techniques of Luks [151] serve as a polynomial-time isomorphism test for this

family. Recently, Neuen & Schweitzer [165] used the CFI construction in tandem with the mul-

tipede construction of Gurevich & Shelah [105] to give an exponential-time lower bound on the

individualize-and-refine technique, including when k-WL is used for the refinement step instead

of 1-WL. In light of the equivalence of WL with the logic FO + C (first-order logic with counting

quantifiers) [120, 55], we have a precise sense in which combinatorial techniques appear insufficient

to place GI into P, while group theoretic techniques appear to be necessary.

Despite the fact that WL is not sufficiently powerful to place GI into P, it remains an active

area of research. For instance, Babai’s algorithm [26] combines O(log n)-WL with group theoretic

techniques. Weisfeiler–Leman also has close connections to linear programming [20, 103, 155] and

machine learning [163, 164, 4, 106]. As an example, 1-WL has the same distinguishing power as a

graph neural network (GNN), where the number of iterations of 1-WL corresponds to the depth of

the GNN [164]. There is ongoing work to define generalized GNNs based on k-WL [164, 163]. We

refer the reader to Sandra Kiefer’s dissertation [132] for a comprehensive overview of the various

connections of Weisfeiler–Leman to other areas.
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1.1.2 Group Isomorphism

The Group Isomorphism problem takes as input two group G,H and asks whether there

is an isomorphism φ : G → H. The complexity of GpI depends on the manner in which the

groups are represented. When the groups are given by their multiplication tables, GpI is known

to be AC0-reducible to GI [160] (see as well the reduction used in Weisfeiler–Leman Version III

[48]). On the other hand, Chattopadhyay, Torán, & Wagner [57] ruled out several notions of parallel

reductions from GI to GpI, when the groups are given by their multiplication tables. This includes,

for instance, many-one AC0-computable reductions.

On the other hand, when the groups are given succinctly, such as by generating sets of

permutations [152] or matrices over finite fields (see for instance, [94]), GI reduces to GpI. Mekler’s

construction also provides a reduction from GI to GpI when the groups are given succinctly [159,

107]. When the groups are given by generating sequences of permutations or matrices, we have

that GpI belongs to ΣP
2 . In the setting of black-box groups [35], GpI belongs to PromiseΣP

2 – even

verifying the group axioms is only known to be ΠP
2 -computable. In the setting when the groups are

given by abstract generators and relations, GpI is undecidable [2, 168].

In this thesis, attention will be restricted to GpI in the Cayley table model. Progress on this

problem dates back to the mid-70’s. We note that a group of order n admits a generating set of

size at most ⌈logp n⌉, where p is the smallest prime dividing n. Tarjan [160] and Lipton, Snyder,

& Zalcstein [149] independently observed that this yields the generator-enumeration strategy, in

which we find a generating set S for G and consider all the possible ways to map S into H. Tarjan

[160] obtained an nlogp(n)+O(1)-time algorithm through this method. Lipton, Snyder, & Zalcstein

[149] obtained a stronger bound of DSPACE(log2 n). In particular, O(1)-generated groups admit a

polynomial-time isomorphism test. Lipton, Snyder & Zalcstein [149] also gave the first polynomial-

time isomorphism test for Abelian groups.

In more than 40 years, the nlogp(n)+O(1) bound has escaped largely unscathed: Rosenbaum

[172] (see [142, Sec. 2.2]) improved this to n(1/4) logp(n)+O(1). And even the impressive body of work
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on practical algorithms for this problem, led by Eick, Holt, Leedham-Green and O’Brien (e. g.,

[41, 78, 40, 56]) still results in an nΘ(logn)-time algorithm in the general case (see [199, Page 2]).

There has been considerable effort to improve the parallel complexity of the generator-

enumeration strategy. Wolf [200] leveraged non-deterministic circuit complexity classes, with the

key idea of using O(log2 n) existentially-quantified non-deterministic bits to guess generating se-

quences, and then to test whether the induced map extends to an isomorphism (so called marked-

isomorphism testing) in NC2. We refer to this complexity class as β2NC
2, where the β2 specifies

the O(log2 n) non-deterministic bits. A careful analysis of Wolf’s result actually yields a bound

of β2AC
1 – namely, we use the fact that the product of two group elements can be computed in

AC0 [38], while Wolf instead uses NC1 circuits for this task. In his dissertation, Wagner [195] fur-

ther improved this complexity to β2SAC
1. Finally, Tang [185] showed that marked isomorphism

testing in general was L-computable, placing GpI into β2L. As a consequence of Tang’s proof,

O(1)-generated groups admit an L-isomorphism test. By leveraging cube-generating sequences,

Chattopadhyay, Torán, & Wagner [57] independently showed that GpI belongs to β2L ∩ β2FOLL,

and Tang [185] placed GpI into β2SC
2. As cube generating sequences must have size Θ(log n), we

do not obtain further improvements on O(1)-generated groups. In particular, the proof of Chat-

topadhyay, Torán, & Wagner [57] that GpI belongs to β2L does not imply that O(1)-generated

groups admit an L isomorphism test.

We now turn our discussion towards Abelian groups. Following [149], the runtime complexity

of Abelian group isomorphism was subsequently improved due to Savage [174] who gave an O(n2)

algorithm, Vikas [193] who gave an O(n log n) algorithm, and finally Kavitha [129] who showed that

isomorphism testing of Abelian groups was O(n)-time computable. Iliopoulos [116] investigated

the complexity of Abelian groups in succinct input models. In the direction of parallel complexity,

Chattopadhyay, Torán, & Wagner [57] showed that isomorphism testing of Abelian groups was in

L∩TC0(FOLL). Prior to this the work in this thesis, only O(1)-generated and Abelian groups were

known to admit NC isomorphism tests.

One strategy to obtain larger groups is to build them up from smaller groups. This leads us
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in the direction of group extensions. Independently, Wilson [198] and Kayal & Nezhmetdinov [130]

exhibited polynomial-time algorithms to decompose a group into a direct product of indecomposable

factors. Wilson’s [198] result holds in the more succinct setting where the groups are given as

quotients of permutation groups, while the algorithm of Kayal & Nezhmetdinov [130] is in terms

of the Cayley table.

Finite nilpotent groups generalize Abelian groups in that they are precisely the groups that

are direct products of their Sylow subgroups. (More generally, finite solvable groups are Zappa–Szép

products of their Sylow subgroups.) The fact that we can compute direct product decompositions

efficiently suggests that nilpotent groups – and in particular, p-groups – are natural to consider.

Nilpotent groups, however, have been resistant to algorithmic progress. In particular, class 2 p-

groups of exponent p are believed to be the hard cases of GpI, though there is little formal evidence.

Recently, Dietrich & Wilson [74] gave a nearly-linear time algorithm for groups of almost all orders.

The dense set of orders they considered, notably, did not include large prime powers. Grochow &

Qiao [94] exhibited the first family of groups for which there exists a reduction to class 2 p-groups

of exponent p. Precisely, they showed that for a class c p-group of exponent p (where c < p),

isomorphism testing can be reduced to the case of class 2 p-groups. On the algorithmic side,

few families of p-groups are known to admit a polynomial-time isomorphism test. Some notable

families that admit efficient isomorphism tests include groups with bounded genus [51, 125], certain

quotients of low-genus p-groups [145, 180], and the so-called CFI groups [48, 65, 64]. Garzon &

Zalcstein [87] gave a polynomial-time algorithm for P3 groups, which are class 2 nilpotent groups

(though not necessarily p-groups).

In another direction, coprime extensions are natural to consider. Namely, the Schur–Zassenhaus

theorem provides that in the case of coprime extensions, cohomology is trivial. When the normal

Hall subgroup is Abelian, coprime extensions admit nice structure (see Section 3.3.1 for more

details). Le Gall [85] leveraged this structure to obtain a polynomial-time isomorphism test for

coprime extensions H ⋉N , where H is a cyclic group acting on an Abelian group N . Building on

Le Gall’s [85] strategy, Qiao, Sarma, & Tang [167] generalized the result to obtain polynomial-time
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algorithms in the cases where H was either (i) O(1)-generated or (ii) Abelian (we still assume N to

be Abelian in both cases). Babai & Qiao [34] further extended the work of Qiao, Sarma, & Tang

[167] to the setting of groups with Abelian Sylow towers (iterated coprime extensions of Abelian

p-groups). Grochow & Qiao [92] further generalized [34] to the setting of so-called tame extensions,

where the extensions may not be coprime (in which case, the cohomology may be non-trivial), but

the representation theory is tame. In this setting, testing whether the two actions are equivalent

(the Action Compatibility problem) can be handled in polynomial-time.

Still in another direction, we consider for a finite group G the extension of its solvable

radical Rad(G) by the quotient G/Rad(G). Now G/Rad(G) has no Abelian normal subgroups.

We refer to G/Rad(G) as semisimple (following [29]) or Fitting-free. In [29], Babai, Codenotti,

Grochow, & Qiao set out to develop a polynomial-time algorithm for semisimple groups. Using

novel Code Equivalence techniques, they obtained an nO(log logn) algorithm in the general case

and polynomial-time algorithms in some special cases. In subsequent work [30], Babai, Codenotti,

& Qiao obtained a polynomial-time isomorphism test for semisimple groups. Building on [29, 30],

Grochow & Qiao [93] obtained nO(log logn) isomorphism tests for groups where (i) Rad(G) = Z(G)

or (ii) Z(G) ⪇ Rad(G) and Rad(G) is elementary Abelian, as well as a number of polynomial-time

algorithms in special cases.

In light of the fact thatGpI is strictly easier thanGI under the ordering induced by many-one

AC0-reductions, it is natural to ask as to whether techniques from GI can be fruitfully leveraged in

the case of GpI. This motivates the study of Weisfeiler–Leman in the setting of groups. Previous

works [146, 50] have attempted to use WL as a subroutine for GpI by reducing to some graph based

on a group action over a vector space. Brachter & Schweitzer introduced three natural variants

of WL in the setting of groups [48], and showed that they are equivalent up to a tradeoff of 2 in

dimension. As demonstrations of the power of their model, Brachter & Schweitzer showed (amongst

other results) that WL can distinguish the so called CFI groups (class 2 p-groups of exponent p > 2

arising from the CFI graphs [55] via Mekler’s construction [159, 107]) in TC1, as well as implicitly

compute direct product decompositions in polynomial time [49].
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In this thesis, we investigate the Group Isomorphism problem using both the Weisfeiler–

Leman dimension and the iteration number as measures of combinatorial complexity. Showing

that the Weisfeiler–Leman dimension is bounded for a class of groups implies that WL serves

as a polynomial-time isomorphism test. If we can further show that it suffices to run WL for a

polylogarithmic number of rounds, then we obtain NC upper bounds for isomorphism testing —

see Section 2.10. The Weisfeiler–Leman dimension and iteration number can also be viewed as

measures of logical complexity, in terms of an Ehrenfeucht–Fräıssé bijective pebble game — see

Section 2.8; as well as in terms of formulas in the logic FO + C (first-order logic with counting

quantifiers) — see Section 2.9. Thus, the work in this thesis also serves to develop the descriptive

complexity of finite groups.

In Chapter 3, we investigate the parallel complexity of Group Isomorphism using the

Weisfeiler–Leman algorithms for groups introduced by Brachter & Schweitzer [48]. We consider the

following threads.

(a) We first use the Weisfeiler–Leman Version II algorithm [48] to obtain NC bounds for isomo-

prhism testing in several families of groups, including most notably (i) coprime extensions

H ⋉N where H is O(1)-generated and N is Abelian, and (ii) implicitly computing direct

product decompositions. Our work on coprime extensions improves upon the upper bound

of P from Qiao, Sarma, & Tang [167], and our work on direct products improves upon the

previous result of Brachter & Schweitzer [49].

(b) Using the individualize-and-refine paradigm, we show that isomorphism testing of semisim-

ple groups can be handled using quasiSAC1 circuits of size nO(log logn). While this does not

improve upon the upper bound of P [30], it does improve the parallel complexity.

(c) We finally consider the weaker count-free variant of Weisfeiler–Leman, which compares the

set rather than multiset of colors at each iteration. We show that count-free WL requires

dimension Ω(log n) to distinguish even Abelian groups. As a consequence, we obtain that

FO fails to capture all polynomial-time computable queries for unordered groups. That is,
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intuitively, FO is not sufficiently powerful to capture GpI in polynomial-time.

Nonetheless, we show that count-free WL Versions I and III [48] can be used in tandem with

bounded non-determinism and a single Majority gate to improve the parallel complexity of

isomorphism testing for Abelian groups.

Remark 1.1.1. In follow-up work [65] with Nathaniel A. Collins (see also [64]), we extended and

applied the techniques of Chapter 3 regarding count-free WL. Precisely, we investigated the role of

counting in Group Isomorphism using the count-free Weisfeiler–Leman Version I algorithm. We

first showed that poly log log n rounds of count-free WL Version I in tandem with bounded non-

determinism and a single Majority gate yield novel parallel isomorphism tests for certain families

of coprime extensions, the CFI groups from [48], and direct products of non-Abelian finite simple

groups. In the special case of the CFI groups, we improved the parallel complexity from TC1 [48]

to β1MAC0(FOLL). Furthermore, we show that for any fixed q, Spoiler requires Ω(log n) pebbles to

distinguish even Abelian groups in the q-ary count-free pebble game. The q = 1 case corresponds

to count-free WL— see [120, 55] and Chapter 3.

Our work in Chapter 3 leaves open whether semisimple groups have bounded Weisfeiler–

Leman dimension (or even WL-dimension o(log n)). In Chapter 4, we further investigate the de-

scriptive complexity of semisimple groups. Our work is motivated by the Ehrenfeucht–Fräıssé game

for WL Version III. The key idea for WL Version III is that the multiplication table for a group is

encoded as a graph; we then run the classical graph WL algorithm and pull back the coloring to the

group elements. The multiplication relation in the group is encoded using graph gadgets. Thus,

in the Ehrenfeucht–Fräıssé game for WL Version III, Spoiler and Duplicator can pebble non-group

element vertices on these gadgets. Doing so fixes two elements at once. Brachter & Schweitzer [48]

refer to this as implicit pebbling. While Duplicator must select bijections that preserve (setwise)

the group element vertices, Duplicator does not need to select bijections where the multiplication

gadgets are mapped consistently with the group element vertices [48].

This subtlety— and in particular, a suggestion from Pascal Schweitzer— led us to investigate
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the second Ehrenfeucht–Fräıssé game in Hella’s hierachy [109, 110]. This game is played directly

on the groups, similarly as in the Ehrenfeucht–Fräıssé games corresponding to WL Versions I and

II. Duplicator selects a bijection on the group elements, and Spoiler may pebble up to two group

elements in a given round. Note that in the setting of graphs, this 2-ary game immediately decides

isomorphism. If two graphs G,H are non-isomorphic, then for any bijection f : V (G) → V (H) that

Duplicator selects, there is an edge {u, v} ∈ E(G) such that {f(u), f(v)} ̸∈ E(H) (or vice-versa).

Spoiler places pebbles on the vertices u, v and wins. As groups are ternary relational structures,

this 2-ary game does not immediately resolve isomorphism in the same manner as for graphs.

Our main result in Chapter 4 is that if G is semisimple and H is arbitrary, then Spoiler

has a winning strategy in this 2-ary game using O(1) pebbles and O(1) rounds. We also provide

a novel higher-arity Weisfeiler–Leman procedure, corresponding to the 2-ary game. Hella [109,

110] previously established that the 2-ary game is equivalent to FO(Q), where Q is the set of all

generalized binary quantifiers.

1.1.3 Strongly Regular Graphs

In one of the original papers onGraph Isomorphism (GI), by Corneil & Gotlieb, the authors

observed that in practice, strongly regular graphs serve as difficult instances [69]. A common

approach for producing such instances is to construct strongly regular graphs from combinatorial

objects, such as Latin squares, nets (partial geometries), and combinatorial designs [69, 175]. While

strongly-regular graphs have been perceived as hard instances, there is little evidence to suggest

that they are GI-complete.

There is a beautiful classification of strongly-regular graphs (of valency ρ < n/2, which is

without loss of generality by taking complements) due to Neumaier [166]. In using this classification

in isomorphism testing, Spielman [184] and Babai–Wilmes [36] organize it as follows:

(a) Latin square graphs,

(b) Line graphs of Steiner 2-designs satisfying ρ < f(n), for a certain function f(n) ∼ n3/4,
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(c) Strongly-regular graphs of degree ρ = (n− 1)/2 (a.k.a. conference graphs),

(d) Graphs satisfying a certain eigenvalue inequality referred to as Neumaier’s claw bound.

In this thesis, we show (in particular) that (a) Latin square graphs, (b) line graphs arising from

special cases of Steiner 2-designs, and (c) conference graphs are not GI-hard under AC0-computable

many-one reductions. As with [57], we show this by improving the parallel complexity of isomor-

phism testing in these classes of graphs to β2FOLL, which does not compute Parity. As Parity is

AC0-reducible to GI [189], this rules out AC0-reductions (and more strongly, for any i, c ≥ 0, rules

out βiFO((log logn)
c)-reductions).

Prior to our work, there were only a few pieces of complexity-theoretic evidence to suggest

that strongly-regular graphs are not GI-complete. Babai showed that there is no functorial reduction

from GI to the isomorphism testing of strongly-regular graphs [25]. In the case of Quasigroup

Isomorphism, Chattopadhyay, Torán, and Wagner improved the upper bound to β2L ∩ β2FOLL.

In particular, they showed that GI is not AC0-reducible to Quasigroup Isomorphism [57].

Let us briefly discuss why problems such as Quasigroup Isomorphism, Latin Square

Isotopy, and isomorphism testing of Steiner 2-designs are important from a complexity-theoretic

perspective. Several families of strongly regular graphs (e.g., Latin square graphs, and the block-

intersection graphs of Steiner 2-designs) arise naturally from the isomorphism problems for the

underlying combinatorial objects. Precisely, many of these problems, including Quasigroup Iso-

morphism, Latin Square Isotopy, and isomorphism testing of Steiner 2-designs, are polynomial-

time (and in fact, AC0) reducible to GI. Polynomial-time solutions for these problems have been

elusive. In particular, each of these problems are candidate NP-intermediate problems.

There has been significant work on isomorphism testing of strongly regular graphs. In 1980,

Babai used a simple combinatorial approach to test strongly regular graphs on n vertices and degree

ρ < n/2 in time exp(O((n/ρ) log2 n)) [37, 24]. We note that the complement of a strongly-regular

graph is strongly regular, hence the assumptions on the degree. As ρ ≥
√
n− 1, this gives an

algorithm in moderately exponential time exp(O(
√
n log2 n)) for all ρ. Spielman [184] subsequently
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improved this exp(O((n/ρ) log2 n)) bound to exp(O(n1/3 log2 n)). This improved upon what was

at the time, the best known bound of exp(O(
√
n log n)) for isomorphism testing of general graphs

[33, 21, 201] based on Luks’ group theoretic method [151].

We note that Babai’s [37] work already handled the case of conference graphs in time nO(logn).

Furthermore, the works of Babai and Spielman sufficed to handle isomorphism testing of strongly

regular graphs that satisfy Neumaier’s claw bound. Namely, Spielman [184] handled the case of

ρ ∈ o(n2/3) in time exp(O(n1/4 log2 n)), and Babai [37] handled the case of ρ ∈ Ω(n2/3) in time

exp(O(n1/3 log2 n)).

In the case of Latin square graphs, Miller [160] resolved this in time nO(logn). Wolf improved

the complexity theoretic bound to β2AC
1 (uniform AC1-circuits that accept O(log2 n) existentially

quantified non-deterministic bits).

The isomorphism problem for Steiner 2-designs also dates back to Miller [160], who considered

the special cases of Steiner triple systems (Steiner (2, 3, n)-designs), projective planes (Steiner

(2, q + 1, q2 + q + 1)-designs), and affine planes (Steiner (2, q, q2)-designs). In the case of Steiner

triple systems, Miller leveraged a standard reduction to Quasigroup Isomorphism to obtain an

nO(logn) upper bound. M. Colbourn [61] subsequently extended this result to obtain an vO(log v)

canonization procedure for Steiner (t, t+ 1)-designs.

For the cases of projective and affine planes, Miller [160] showed that isomorphism testing can

be done in time nO(log logn). In particular, Miller showed that the corresponding structures may be

recovered from the block-intersection graphs in polynomial-time, providing the block-intersection

graphs are of sufficiently high degree [160]. Thus, isomorphism testing of block-intersection graphs

arising from Steiner triple systems can be done in time nO(logn), and the block-intersection graphs

arising from projective and affine planes can be identified in time nO(log logn).

In 1983, Babai & Luks showed that Steiner 2-designs with blocks of bounded size admit an

nO(logn) canonization procedure (and hence, isomorphism test). In particular, isomorphism testing

of the corresponding block-intersection graphs is solvable in time nO(logn) [33]. Here, Babai & Luks

utilized Luks’ group theoretic method [151]. Huber later extended this result to obtain an nO(logn)-
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runtime isomorphism test for arbitrary t-designs, where both t and the block size are bounded, as

well as the corresponding block-intersection graphs [115].

Spielman solved the general case of strongly-regular graphs of degree f(n) ∼ n3/4 arising

from Steiner 2-designs in time exp(O(n1/4 log2 n)) [184]. Independently, Babai & Wilmes [36] and

Chen, Sun, & Teng [58] exhibited an nO(logn)-runtime isomorphism test for both Steiner 2-designs

and the corresponding block-intersection graphs. Babai & Wilmes extended their result to Steiner

t-designs. Here, each of these papers utilized the individualize and refine technique [184, 36, 58].

The isomorphism problem for combinatorial designs is another candidate NP-intermediate

problem. In the general case, testing whether two combinatorial designs are isomorphic is GI-

complete under polynomial-time Turing reductions [62]. Cyclic Steiner 2-designs of prime order

are known to admit a polynomial-time isomorphism test [63]. To the best of our knowledge,

the complexity of deciding whether two cyclic Steiner 2-designs are isomorphic remains open for

arbitrary orders.

1.2 Relation Algebras

The 2-dimensional Weisfeiler–Leman algorithm yields a natural family of relations that are

closed under composition. To see this, consider the following. Fix a graph G and consider the

stable coloring of 2-WL applied to G. The color classes under the stable coloring form binary

relations. Furthermore, as these relations are stable under color refinement, the composition of two

such relations yields another (union of) color class(es). Now relational composition is associative,

and so we have an algebraic structure. Abstracting the algebraic structure in turn motivates the

study of relation algebras. In the setting of WL, it is interesting to ask as to which relation algebras

arise in this way on n vertex graphs– see for instance [111, 196, 23]. In Chapter 6, we examine

the converse question: given an abstract relation algebra, what is the smallest graph on which it

is represented (without restricting as to whether the representation arises via WL). We note that

certain families of relation algebras arising from so called Ramsey schemes [67, 137, 154, 14, 9] also

have close connections with other combinatorial structures such as association schemes, coherent



17

configurations, and permutation groups [67, 66].

We now more generally discuss the representation question. Given a class of finite algebraic

structures, it is natural to ask which members can be instantiated or represented over a finite set S,

where there exist natural operations on S corresponding to the operations of the algebraic structure.

In the setting of finite groups, the representation question is answered by Cayley’s theorem: every

finite group can be instantiated as a finite permutation group. Similarly, Stone’s representation

theorem provides that every Boolean algebra is isomorphic to a Boolean algebra of sets. In this

thesis, we consider the class of finite relation algebras, which are Boolean lattices that satisfy certain

equational axioms that capture the notion of relational composition (see Section 2.11 for a more

precise formulation). Here, we can ask not only about whether finite representations exist, but also

as to the minimum sized representation. While there has been some work on the minimum size

faithful permutation representation of a group (see, e.g., [79] and the references therein). Here,

the minimum sized representation serves as a measure of combinatorial complexity of the relation

algebras in question.

There exist finite relation algebras that do not admit representations even over infinite sets-

see for instance [16] and the citations therein. It is essentially folklore that there are relation

algebras that admit representations over infinite sets, but are not finitely representable. The so

called point algebra is one such example and is essentially well-known amongst relation algebra

specialists — see [12, Appendix A] for a proof.

Comer [66, Theorem 5.3] showed that every finite integral relation algebra with a flexible

atom (i.e., an atom that does not participate in any forbidden diversity cycles) is representable

over a countable set. It is natural to ask whether Comer’s result can be strengthened to hold in the

setting of finite sets. This is precisely the Flexible Atom Conjecture, which states that every finite

integral relation algebra with a flexible atom is representable over a finite set. Jipsen, Maddux, &

Tuza showed that the finite symmetric integral relation algebras in which every diversity atom is

flexible (denoted En+1(1, 2, 3)), are finitely representable. In particular, the algebra with n flexible

atoms is representable over a set of size (2 + o(1))n2 [127]. We note that if all cycles are present,
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then all diversity atoms are flexible. Hence, the case considered in [127] is intuitively the big end

of the Flexible Atom Conjecture.

The other extreme is when just enough cycles are present for one atom to be flexible. This

case was handled by Alm, Maddux, & Manske [7], who exhibited a representation of the algebra An

obtained from splitting the non-flexible diversity atom of the relation algebra 67 into n symmetric

atoms. In particular, this construction yielded a representation of A2 = 3265 over a set of size

416, 714, 805, 914 (here, we use Maddux’s [153] numbering for relation algebras such as 67 and 3265).

The combinatorial complexity of 3265 has received much attention. Dodd & Hirsch [75] subsequently

improved the upper bound of the minimum representation size of 3265 to 63, 432, 274, 896. This

was subsequently improved to 8192 by Alm & Sexton (unpublished [10]), and later 3432 by Alm

& Andrews [11]. In Chapter 6, we will investigate the minimum-sized square representation of not

only 3265, but An for all n ≥ 2. Let f(n) denote the minimum-sized representation of An. We will

show that:

2n2 +Ω(n
√
log n) ≤ f(n) ≤ 2n6+o(1).

Prior to the work in this thesis, only the trivial lower bound of f(n) ≥ n2 + 2n+ 3 was known.



Chapter 2

Preliminaries

In this chapter, we introduce key background from group theory, isomorphism testing, and compu-

tational complexity.

Notation 2.0.1. Let n ∈ N. We use [n] to denote {1, . . . , n}, with the convention that [0] := ∅.

Notation 2.0.2. Let S be a set, and let k ∈ N. We use
(
S
k

)
to denote the set of k-element subsets

of S.

Notation 2.0.3. Let Σ be a finite set. We refer to Σ as an alphabet. Denote Σ∗ to be the set of

all finite strings over Σ. Precisely:

Σ∗ := {ϵ} ∪
⋃
i∈Z+

Σi,

where we denote ϵ to be the empty string or the string of length 0.

2.1 Graph Theory

Here, we recall preliminary notions from graph theory. A simple, undirected graph G(V,E) consists

of a set of elements V , which we refer to as vertices, together with a set of edges E ⊆
(
V
2

)
. For

an edge {u, v}, we write uv. Unless otherwise stated, we will only consider simple, undirected

graphs and will refer to them as graphs. To avoid ambiguity, the vertex set of the graph G will be

frequently referred to as V (G). Similarly, the edge set of the graph G will be referred to as E(G).

For a vertex v ∈ V (G), let N(v) = {u : uv ∈ E(G)} be the neighbors of v. The degree of v

is denoted deg(v) := |N(v)|. We say that G is regular if deg(v) = deg(u) for all u, v ∈ V (G). A
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strongly regular graph with parameters (n, k, λ, µ) is a simple, undirected k-regular, n-vertex graph

G(V,E) where any two adjacent vertices share λ neighbors, and any two non-adjacent vertices share

µ neighbors. The complement of a strongly regular graph is also strongly regular, with parameters

(n, n− k − 1, n− 2− 2k + µ, n− 2k + λ).

Let G,H be graphs. We say that G and H are isomorphic, denoted G ∼= H, if there exists a

bijection φ : V (G) → V (H) such that:

uv ∈ E(G) ⇐⇒ φ(u)φ(v) ∈ E(H).

Let G be a graph, and suppose we color the edges of G either red or blue. The classical Ramsey

number R(m, k) is the minimum number n, such that for any graph G on at least n vertices and

any coloring φ : E(G) → {red,blue}, there exists either a red clique of size m or a blue independent

set of size k. The Ramsey number R(m, k) is known to exist and be finite [169].

2.2 Group Theory

We assume familiarity with group theory at the level of a standard undergraduate Algebra course.

Unless stated otherwise, all groups are assumed to be finite and represented by their multiplication

(a.k.a. Cayley) tables. For a group of order n, the Cayley table has n2 entries, each represented by

a binary string of size ⌈log2(n)⌉. For an element g in the group G, we denote the order of g as |g|.

We use d(G) to denote the minimum size of a generating set for the group G.

The socle of a group G, denoted Soc(G), is the subgroup generated by the minimal normal

subgroups of G. If G has no Abelian normal subgroups, then Soc(G) decomposes as the direct

product of non-Abelian simple factors. The normal closure of a subset S ⊆ G, denoted ncl(S), is

the smallest normal subgroup of G that contains S.

Semidirect Products. We say that a normal subgroup N ⊴ G splits in G if there exists

a subgroup H ≤ G such that H ∩ N = {1} and G = HN . The conjugation action of H on

N allows us to express multiplication of G in terms of pairs (h, n) ∈ H × N . We note that the

conjugation action of H on N induces a group homomorphism θ : H → Aut(N) mapping h 7→ θh,
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where θh : N → N sends θh(n) = hnh−1. So given (H,N, θ), we may define the group H ⋉θ N on

the set {(h, n) : h ∈ H,n ∈ N} with the product (h1, n1)(h2, n2) = (h1h2, θh−1
2
(n1)n2). We refer

to the decomposition G into H ⋉θ N as a semidirect product demoposition. When the action θ is

understood, we simply write H ⋉N .

We are particularly interested in the case where gcd(|G/N |, |N |) = 1; such an N is called a

normal Hall subgroup. One of the key theorems for such groups is:

Theorem 2.2.1 (Schur–Zassenhaus (see, e. g., [171, (9.1.2)])). Let G be a finite group of order

n, and let N be a normal Hall subgroup. Then there exists a complement H ≤ G, such that

gcd(|H|, |N |) = 1 and G = H ⋉N . Furthermore, if H and K are complements of N , then H and

K are conjugate.

We now recall some key notions regarding Cayley graphs.

Definition 2.2.2. Let Γ be a group, and let S ⊆ Γ such that 1 ̸∈ S and S = S−1. The undirected

Cayley graph Cay(Γ, S) has vertex set Γ and edge set E = {{g, h} : (∃s ∈ S)[gs = h]}, where here,

gs = h denotes multiplication in the group.

We will use the following standard observation a few times:

Fact 2.2.3. Let G = ⟨g1, . . . , gd⟩. Then every element of G can be written as a word in the gi of

length at most |G|.

Proof. Consider the Cayley graph of G with generating set g1, . . . , gd. Words correspond to walks

in this graph. We need only consider simple walks — those which never visit any vertex more than

once — since if a walk visits a group element g more than once, then the part of that walk starting

and ending at g is a word that equals the identity element, so it can be omitted. But the longest

simple walk is at most the number of vertices, which is |G|.

2.3 Quasigroups

A quasigroup consists of a set G and a binary operation ⋆ : G × G → G satisfying the

following. For every a, b ∈ G, there exist unique x, y such that a ⋆ x = b and y ⋆ a = b. When the
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multiplication operation is understood, we simply write ax for a ⋆ x.

Unless otherwise stated, all quasigroups are assumed to be finite and represented using their

Cayley (multiplication) tables. For a quasigroup of order n, thet Cayley table has n2 entries, each

represented by a string of size ⌈log2(n)⌉.

A Latin square of order n is an n × n matrix L where each cell Lij ∈ [n], and each element

of [n] appears exactly once in each row or each column. Latin squares are precisely the Cayley

tables corresponding to quasigroups. An isotopy of Latin squares L1 and L2 is most easily defined

in terms of an isotopy of the corresponding quasigroups Q1 and Q2: an isotopy is an ordered triple

(α, β, γ), where α, β, γ : L1 → L2 are bijections satisfying the following: whenever ab = c in L1, we

have that α(a)β(b) = γ(c) in L2. Alternatively, we may view α as a permutation of the rows of L1,

β as a permutation of the rows of L2, and γ as a permutation of the values in the table. Here, L1

and L2 are isotopic precisely if (i) the (i, j) entry of L1 is the (α(i), β(j)) entry of L2, and (ii) x

is the (i, j) entry of L1 if and only if γ(x) is the (α(i), β(j)) entry of L2. We will frequently abuse

notation by treating the Latin square and its corresponding quasigroup as interchangeable.

As quasigroups are non-associative (which as usual in this corner of mathematics, indicates

that quasigroups are not necessarily associative rather than necessarily not associative), the paren-

thesization of a given expression may impact the resulting value. We restrict attention to balanced

parenthesizations, which ensure that words of the form g0g1 · · · gk are evaluated using a balanced

binary tree with k+1 leves. As every quasigroup is generated by a set of size at most log2 n [160],

this tree has depth O(log log n).

For a sequence S := (s0, s1, . . . , sk) from a quasigroup, define:

Cube(S) = {s0se11 · · · sekk : e1, . . . , ek ∈ {0, 1}}.

We say that S is a cube generating sequence if Cube(S) contains every element of the quasi-

group. Every quasigroup is known to admit a cube generating sequence of size O(log n) [57].

For a given Latin square L of order n, we associate a Latin square graph G(L) that has n2

vertices; one for each triple (a, b, c) that satisfies ab = c. Two vertices (a, b, c) and (x, y, z) are
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adjacent in G(L) precisely if a = x, b = y, or c = z. Miller showed that two Latin squares L1 and

L2 are main-class isotopic if and only if G(L1) ∼= G(L2) [160]. A Latin square graph on n2 vertices

is a strongly regular graph with parameters (n2, 3(n−1), n, 6). Conversely, a strongly regular graph

with these same parameters (n2, 3(n−1), n, 6) is called a pseudo-Latin square graph. Bruck showed

that for n > 23, a pseudo-Latin square graph is a Latin square graph [52]. While we are not aware

as to whether this bound can be improved, it is worth pointing out that pseudo-Latin square graphs

which are not also Latin square graphs exist- take for instance, the Shrikhande graph [179].

Albert showed that a quasigroup Q is isotopic to a group G if and only if Q is isomorphic to

G. In general, isotopic quasigroups need not be isomorphic [6].

2.4 Combinatorial Designs

Let t ≤ k ≤ v and λ be positive integers. A (t, k, λ, v) design is an incidence structure

D = (X,B, I). Here, X denotes our set of v points, B is a subset of
(
X
k

)
, and each t-element

subset of X belongs to exactly λ elements of B. The elements of B are called blocks. Now I is the

point-block incidence relation, where (x,B) ∈ X ×B belongs to I precisely if x ∈ B. If t < k < v,

we say that the design is non-trivial. If λ = 1, the design is referred to as a Steiner design. We

denote Steiner designs as (t, k, v)-designs when we want to specify v the number of points, or Steiner

(t, k)-designs when referring to a family of designs. We note that Steiner (2, 3)-designs are known

as Steiner triple systems. We assume that designs are given by the point-block incidence matrix.

Let D = (X,B, I) be a design, and let A ⊆ X. The derived design at A, denoted D(A), has

the set of points X \ A and blocks {B \ A : B ∈ B, A ⊊ B}. If D is a Steiner (t, k, v)-design, then

D(A) is a Steiner (t− |A|, k − |A|, v − |A|)-design.

For a design D = (X,B, I), we may define a block intersection graph (also known as a line

graph) G(V,E), where V (G) = B and two blocks B1, B2 are adjacent in G if and only if B1∩B2 ̸= ∅.

In the case of a Steiner 2-design, the block-intersection graph is strongly regular. For Steiner triple

systems, the block-intersection graphs are strongly regular with parameters (n(n − 1)/6, 3(n −

3)/2, (n + 3)/2, 9). Conversely, strongly regular graphs with the parameters (n(n − 1)/6, 3(n −
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3)/2, (n + 3)/2, 9) are referred to as pseudo-STS graphs. Bose showed that pseudo-STS graphs

graphs with strictly more than 67 vertices are in fact STS graphs [46]. We are not aware as to

whether this bound is tight.

A net or partial geometry of order n ≥ 1 and degree k ≥ 1, denoted N (n, k), consists of a set

P of n2 points and a set L of kn lines satisfying the following.

(a) Each line in L has exactly n points.

(b) Each point in P lies on exactly k distinct lines.

(c) The kn lines of L fall into k parallel classes. No two lines in the same parallel class intersect.

If ℓ1, ℓ2 ∈ L are in different parallel classes, then ℓ1 and ℓ2 share exactly one common point.

Necessarily, k ≤ n + 1. If k = n + 1, then the net is called an affine plane of order n. A

projective plane is the extension of an affine plane N by adding n+1 new points p1, . . . , pn+1 (one

per parallel class). The point pi is then added to each line of the ith parallel class. We finally add

a new line containing {p1, . . . , pn+1}. We may recover an affine plane from a projective plane by

removing a line and the associated points from the projective plane. Note that projective planes are

Steiner (2, q+1, q2+q+1)-designs, and affine planes are Steiner (2, q, q2)-designs. When k = 3, the

net corresponds to a Latin square (quasigroup) in the following manner: one parallel class specifies

the rows, a second specifies the columns, and the third specifies the values. We assume that nets

are given by the point-block incidence matrix.

Given a net N (n, k) where k ≤ n, we may construct a net graph of order n and degree k

G(V,E) on n2 vertices corresponding to the points in N . Two vertices are adjacent in G if their

corresponding points in N determine a line. We note that a net graph uniquely determines the net

N (n, k) [52]. Miller showed that, provided n > (k − 1)2, this equivalence holds under polynomial-

time reductions [160]. A net graph is strongly-regular with parameters (n2, k(n− 1), n− 2 + (k −

1)(k−2), k(k−1)). Conversely, a strongly regular graph with parameters (n2, k(n−1), n−2+(k−

1)(k− 2), k(k− 1)) is referred to as a pseudo-net graph. Bruck showed that for n sufficiently large,
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a pseudo-net graph of order n and degree k is a net graph [52]. We are not aware as to whether

this bound is tight.

2.5 Computational Complexity

For a comprehensive overview, we refer the reader to standard references [202, 17, 194]. We assume

familiarity with standard notions of Turing machines at the level of an undergraduate Theory of

Computation course, including multitape and non-deterministic Turing machines. We begin by

recalling the complexity classes P,NP, L, and NL.

Time-Based Complexity Classes. Let T (n) : N → N. Define DTIME(T (n)) to be the set

of languages L, such that there exists a deterministic, multitape Turing machine M such that M

decides L, and for all x ∈ {0, 1}∗, M(x) halts in at most O(T (|x|)) steps. The complexity class

NTIME(T (n)) is defined analogously, where we instead use a non-deterministic, multitape Turing

machine. Define:

P :=
⋃
k∈N

DTIME(nk).

Equivalently, a language L belongs to the complexity class P if there exists a polynomial p(n)

depending only on L and a deterministic, multitape Turing machine M such that M decides L and

runs in time O(p(n)).

We analogously define NP:

NP :=
⋃
k∈N

NTIME(nk).

Equivalently, a language L belongs to the complexity class NP if there exists a polynomial p(n)

depending only on L and a multitape deterministic Turing machine M such that for every x ∈ L,

there exists a certificate C ∈ {0, 1}∗ such that M(x,C) = 1. Furthermore, for every string y ̸∈ L

and every C ′ ∈ {0, 1}∗, M(y, C ′) = 0.

Space Complexity. A logspace transducer is a 3-tape Turing machine with a read-only

input tape, a write-only output tape, and a work tape where only O(log n) tape cells may be used.

Here, n is the length of the input string. The complexity class L is the set of languages decidable by
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deterministic logspace transducers, and NL is the set of languages decidable by non-deterministic

logspace transducers.

Remark 2.5.1. It is well-known, though not obvious, that the composition of two logspace trans-

ducers is again a logspace transducer. We refer the reader to [182] for a proof.

Reductions. Given two computational problems, we often wish to determine which is more

difficult. To this end, we introduce several notions of reduction. We restrict attention to decision

problems (languages).

Definition 2.5.2. Let L1, L2 be languages. We say that L1 is many-one reducible to L2 if there

exists a computable function φ : {0, 1}∗ → {0, 1}∗ such that the following conditions hold:

� φ preserves yes instances; that is, x ∈ L1 =⇒ φ(x) ∈ L2; and

� φ preserves no instances; that is, x ̸∈ L1 =⇒ φ(x) ̸∈ L2.

Here, we write L1 ≤m L2. Now let C be a complexity class. If φ is C-computable, we write L1 ≤Cm L2

to indicate this.

We now turn towards recalling the notion of a Turing reduction. We first recall the notion of

an oracle Turing machine. An oracle Turing machine is a Turing machine with a separate oracle

tape and oracle query state. When enters the query state, it transitions to one of two specified

states based on whether the string on the oracle tape belongs to the oracle. When the oracle is

unspecified, we write M□. When the oracle O is specified, we write MO.

We now formalize the notion of a Turing reduction. Let L1, L2 be languages. Intuitively,

we say that L1 is Turing reducible to L2 if given an algorithm to decide L2, then we can design

an algorithm to decide L1. This notion makes precise key barriers to improving the complexity of

solving certain problems. For instance, suppose that L1 is not known to admit an efficient solution.

If L1 can be decided efficiently given an oracle for L2, then solving L1 efficiently is an obstacle to

solving L2 efficiently. This is made precise with our next definition.
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Definition 2.5.3. Let L1, L2 be languages. A Turing reduction from L1 to L2 is an oracle Turing

machine M□ such that ML2 decides L1. If there exists a Turing reduction from L1 to L2, we write

L1 ≤T L2.

We will be particularly interested in Turing reductions from L1 to L2, where M
L2 runs in

polynomial time. In such instances we write L1 ≤P
T L2.

The last notion of reduction that will be used here is a truth-table reduction. Rather than

providing the original definition, we will instead use the following characterization due to Ladner,

Lynch, & Selman [139].

Proposition 2.5.4 ([139, Proposition 3.4]). Let L1, L2 be languages. We have that L1 is polynomial-

time truth-table reducible to L2, denoted L1 ≤P
tt L2, if and only if there exists an oracle Turing ma-

chine ML2 and a polynomial-time computable function f such that ML2 decides L1 in polynomial-

time, and on each input x, ML2 only asks questions from the list f(x).

We now turn towards formalizing the notion of completeness and hardness for a given com-

plexity class.

Definition 2.5.5. Let C be a complexity class, and let ≤r be the order induced by r-reductions.

We say that a function f is C-hard under r-reductions if for every g ∈ C, g ≤r f . If furthermore,

f ∈ C, we say that f is C-complete under ≤r.

Remark 2.5.6. The usual notion of NP-completeness is defined in terms of many-one polynomial-

time computable reductions (≤P
m).

We will on occasion reference the following complexity classes of functions, which contain

more than languages (decision problems). Let FP denote the set of functions f : {0, 1}∗ → {0, 1}∗

computable by deterministic Turing machines that halt in polynomial time, and let FL denote the

set of functions f : {0, 1}∗ → {0, 1}∗ computable by deterministic logspace transducers.

Circuit Complexity. We now turn towards introducing notions from circuit complexity. Here, we

consider Boolean circuits over the gates AND,OR,NOT, and Majority, where Majority(x1, . . . , xn) =

1 if and only if ≥ n/2 of the inputs are 1. Otherwise, Majority(x1, . . . , xn) = 0.
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Definition 2.5.7. Fix k ≥ 0. We say that a language L belongs to uniform NCk if there exist a

family of circuits (Cn)n∈N over the AND,OR,NOT gates such that the following hold:

� The AND,OR gates take exactly 2 inputs. That is, they have fan-in 2.

� Cn has depth O(logk n) and uses (has size) nO(1) gates. Here, the implicit constants in the

circuit depth and size depend only on L.

� x ∈ L if and only if C|x|(x) = 1.

The complexity class ACk is defined analogously as NCk, except that the AND,OR gates are permit-

ted to have unbounded fan-in. That is, a single AND gate can compute an arbitrary conjunction,

and a single OR gate can compute an arbitrary disjunction. The complexity class TCk is defined

analogously as ACk, except that our circuits are now permitted Majority gates of unbounded fan-

in. The complexity class SACk is defined analogously to ACk, except that the AND gates have

bounded fan-in (while the OR gates may still have unbounded fan-in). For every k, the following

containments are well-known:

NCk ⊆ SACk ⊆ ACk ⊆ TCk ⊆ NCk+1.

In the case of k = 0, we have that:

NC0 ⊊ AC0 ⊊ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ SAC1.

The complexity class FOLL is the set of languages decidable by uniform circuit families with AND,

OR, and NOT gates of depth O(log log n), polynomial size, and unbounded fan-in. It is known that

AC0 ⊊ FOLL ⊊ AC1, and it is open as to whether FOLL is contained in NL [38].

The complexity classMAC0 is the set of languages decidable by constant-depth uniform circuit

familes with a polynomial number of AND, OR, and NOT gates, and at most one Majority gate.

The class MAC0 was introduced (but not so named) in [19], where it was shown that MAC0 ⊊ TC0.

This class was subsequently given the name MAC0 in [126].
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For a complexity class C, we define βiC to be the set of languages L such that there exists

an L′ ∈ C such that x ∈ L if and only if there exists y of length at most O(logi |x|) such that

(x, y) ∈ L′. Chattopadhyay, Torán, and Wagner [57] established the following.

Theorem 2.5.8 ([57, Theorem 4.1]). For any i, c ≥ 0, βiFO((log log n)
c) cannot compute Parity.

2.6 Colored Graphs

Let k ∈ N, and let Γ be a graph. A k-coloring1 over Γ is a map γ : V (Γ)k → K, where K is

our finite set of colors. A k-coloring partitions V (Γ)k into color classes. When k = 1, we refer to the

coloring as an element coloring. For another natural number m < k, a k-coloring γ(k) : V (G)k → K

induces an m-coloring γ(m) : V (G)k → K via:

γ(m)((g1, . . . , gm)) := γ(k)((g1, . . . , gm, gm, . . . , gm)).

Definition 2.6.1. A colored graph is a pair (Γ, γ), where Γ is a graph and γ : V (G) → K is

an element-coloring. We say that two colored graphs (Γ1, γ1), (Γ2, γ2) are isomorphic if there is a

graph isomorphism φ : V (Γ1) → V (Γ2) that respects the colorings; that is, γ2 ◦ φ = γ1. We define

Autγ(Γ) = {φ ∈ Aut(Γ) : γ ◦ φ = γ}.

2.7 Weisfeiler–Leman

In this section, we introduce the Weisfeiler–Leman algorithm in both the settings of graphs and

groups. We refer the reader to standard references on Weisfeiler–Leman and Descriptive Complexity

Theory [147, 97, 76, 119]. We begin by recalling the Weisfeiler–Leman algorithm for (colored)

graphs, which computes an isomorphism-invariant coloring. Let (Γ, χ) be a colored graph, and

let k ≥ 2 be an integer. The k-dimensional Weisfeiler–Leman, or k-WL, algorithm begins by

constructing an initial coloring χ0 : V (Γ)k → K, where K is our set of colors, by assigning each

1 Not to be confused with the usual “proper k-coloring” of a graph, that is, an assignment of one out of k colors
to each vertex such that no two adjacent vertices receive the same color. Despite this terminological overloading, we
stick with this terminology for consistency with [49].
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k-tuple a color based on its isomorphism type. That is, two k-tuples (v1, . . . , vk) and (u1, . . . , uk)

receive the same color under χ0 if and only if the following conditions hold:

� The map vi 7→ ui (for all i ∈ [k]) is an isomorphism of the induced subgraphs Γ[{v1, . . . , vk}]

and Γ[{u1, . . . , uk}],

� For all i, j, vi = vj ⇔ ui = uj , and

� For all i, χ(vi) = χ(ui).

For r ≥ 0, the coloring computed at the rth iteration of Weisfeiler–Leman is refined as follows.

For a k-tuple v = (v1, . . . , vk) and a vertex x ∈ V (Γ), define

v(vi/x) = (v1, . . . , vi−1, x, vi+1, . . . , vk).

The coloring computed at the (r + 1)st iteration, denoted χr+1, stores the color of the given

k-tuple v at the rth iteration, as well as the colors under χr of the k-tuples obtained by substituting

a single vertex in v for another vertex x. We examine this multiset of colors over all such vertices

x. This is formalized as follows:

χr+1(v) =(χr(v), {{(χr(v(v1/x)), . . . , χr(v(vk/x))
∣∣x ∈ V (Γ)}}),

where {{·}} denotes a multiset. Note that the coloring χr computed at iteration r induces a partition

of V (Γ)k into color classes.

The Color Refinement (or 1-dimensional Weisfeiler–Leman) algorithm works similarly by

iteratively coloring the vertices of G in an isomorphism invariant manner. The algorithm begins

by assigning each vertex an initial color based on their degree; that is, χ0(v) = deg(v). Now for

r ≥ 0, we refine the coloring in the following manner:

χr+1(u) = (χr(u), {{χr(v) : v ∈ N(u)}}),

where {{·}} denotes a multiset. The count-free variant of Color Refinement works analogously,

except the refinement step considers the set rather than multiset of colors at each round:

χr+1(u) = (χr(u), {χr(v) : v ∈ N(u)}).
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The Weisfeiler–Leman algorithm terminates when this partition is not refined, that is, when the

partition induced by χr+1 is identical to that induced by χr. The final coloring is referred to as the

stable coloring, which we denote χ∞ := χr.

Weisfeiler–Leman is employed as an isomorphism test on colored graphs (Γ1, χ1) and (Γ2, χ2)

by running the algorithm on the disjoint union Γ1∪̇Γ2. We compare the multiset of colors for V (Γ1)
k

and V (Γ2)
k. If they differ at the end of a given round r, then we may conclude that Γ1 ̸∼= Γ2.

For fixed k, k-WL has runtime O(nk+1 log(n)), where n is the number of vertices [120, 121].

Grohe & Verbitsky also observed that each round of k-WL can be implemented using a TC0 circuit

[104] (see Section 2.10 for more discussion). In particular, controlling the number of rounds may

yield improved complexity-theoretic upper bounds for classes contained within P.

Remark 2.7.1. The Weisfeiler–Leman algorithm is classically defined on ordinary graphs. We

may view these input graphs as colored with all vertices having the same color (prior to the start

of the algorithm).

Brachter & Schweitzer [48] introduced three variants of WL for groups, as well as notions

of colored groups. We first introduce the notions of Weisfeiler–Leman for groups. We state these

versions for uncolored groups. However, if initial colorings are provided, we may take them into

account in the analogous manner as for graphs. WL Versions I and II are both executed directly on

the groups, where k-tuples of group elements are initially colored. For WL Version I, two k-tuples

(g1, . . . , gk) and (h1, . . . , hk) receive the same initial color iff (a) for all i, j, ℓ ∈ [k], gigj = gℓ ⇐⇒

hihj = hℓ, and (b) for all i, j ∈ [k], gi = gj ⇐⇒ hi = hj . Here, we say that (g1, . . . , gk) and

(h1, . . . , hk) are partially isomorphic.

For WL Version II, (g1, . . . , gk) and (h1, . . . , hk) receive the same initial color iff the map

gi 7→ hi for all i ∈ [k] extends to an isomorphism of the generated subgroups ⟨g1, . . . , gk⟩ and

⟨h1, . . . , hk⟩. Here, we say that (g1, . . . , gk) and (h1, . . . , hk) are marked isomorphic.

For both WL Versions I and II, refinement is performed in the classical manner as for graphs.
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Figure 2.1: The multiplication gadget that encodes the group multiplication g · h [48].

Namely, for a given k-tuple g of group elements,

χr+1(g) =(χr(g), {{(χr(g(g1/x)), . . . , χr(g(gk/x))
∣∣x ∈ G}}).

WL Version III works as follows. Given the Cayley table for a group G, we first apply a

reduction from GpI to GI in the setting of simple, undirected graphs. We then apply the standard

k-WL for graphs and pull back to a coloring on Gk.

Given the Cayley table for a group G, we construct the graph ΓG as follows. We begin with

a set of isolated vertices, corresponding to the elements of G. For each pair of elements (g, h) ∈ G2,

we add a multiplication gadget M(g, h), which is constructed as follows (see Figure 2.1).

� We add vertices agh, bgh, cgh, dgh.

� We add the edges:

{g, agh}, {h, bgh}, {bgh, cgh}, {cgh, dgh}, {gh, dgh}.

Observe that ΓG has Θ(|G|2) vertices. By consideration of vertex degrees, we also note that

G forms a canonical subset of V (ΓG), in that any isomorphism between ΓG and ΓH must map

(setwise) G 7→ H.

Remark 2.7.2. We note that the construction of ΓG can be done in AC0. We may store ΓG as

an adjacency matrix. Adding a single edge can be done using an AC0 circuit. Each edge can be

added independently and in parallel; and thus, without increasing the depth of the circuit. As

|ΓG| ∈ Θ(|G|2), we need only a polynomial number of gates to add the appropriate edges. So ΓG

can be constructed using an AC0 circuit.
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In the setting of groups, Brachter & Schweitzer [49] defined notions of colored groups in

analogue of Weisfeiler–Leman Versions I and II [48]. Namely, we color the group elements directly

as we do vertices in the setting of graphs.

It is also possible to define a notion of colored groups in the case of Weisfeiler–Leman Version

III. Let G be a group, and let γ : G → K be a coloring. Let ΓG be the graph produced from G,

using the reduction in the classical WL Version III algorithm. We obtain a colored graph ΓG by

constructing a coloring γ′ : V (ΓG) → K, where γ′(g) = γ(g) for all g ∈ G.

To the best of our knowledge, the notion of colored group isomorphism was first introduced

by Le Gall & Rosenbaum [142]. Brachter & Schweitzer [49] subsequently introduced a notion of a

colored group in close analogue to that of a colored graph.

2.8 Pebbling Game

We recall the Hella style pebble game [109, 110] for WL on graphs. This game is often used to

show that two colored graphs (X,χX) and (Y, χY ) cannot be distinguished by k-WL. The game is

an Ehrenfeucht–Fräıssé game, with two players: Spoiler and Duplicator. We begin with k+1 pairs

of pebbles, which are placed beside the graph. Each round proceeds as follows.

(1) Spoiler picks up a pair of pebbles (pi, p
′
i). These could be pebbles on the graphs or unused

pebbles to the side of the board.

(2) We check the winning condition, which will be formalized later.

(3) Duplicator chooses a bijection f : V (X) → V (Y ).

(4) Spoiler places pi on some vertex v ∈ V (X). Then p′i is placed on f(v).

Let v1, . . . , vm be the vertices of X pebbled at the end of step 1 of the given round, and

let v′1, . . . , v
′
m be the corresponding pebbled vertices of Y . Spoiler wins precisely if either (i) the

map vℓ 7→ v′ℓ does not extend to an isomorphism of the induced subgraphs X[{v1, . . . , vm}] and

Y [{v′1, . . . , v′m}], or (ii) χX(vℓ) ̸= χY (v
′
ℓ) for some ℓ ∈ [m]. Duplicator wins at the end of the given
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round otherwise. Spoiler wins, by definition, at round 0 if X and Y do not have the same number

of vertices. We note that X and Y are not distinguished by the first r rounds of k-WL if and only

if Duplicator wins the first r rounds of the (k + 1)-pebble game [109, 110, 55].

For groups instead of graphs, Versions I and II of the pebble game are defined analogously,

where Spoiler pebbles group elements. Precisely, for colored groups (G,χG) and (H,χH), each

round proceeds as follows.

(1) Spoiler picks up a pair of pebbles (pi, p
′
i).

(2) We check the winning condition, which will be formalized later.

(3) Duplicator chooses a bijection f : G→ H.

(4) Spoiler places pi on some vertex g ∈ G. Then p′i is placed on f(g).

Suppose that (g1, . . . , gℓ) 7→ (h1, . . . , hℓ) have been pebbled. In Version I, Duplicator wins

at the given round if this map satisfies the initial coloring condition of WL Version I: (a) for all

i, j,m ∈ [ℓ], gigj = gm ⇐⇒ hihj = hm, (b) for all i, j ∈ [ℓ], gi = gj ⇐⇒ hi = hj , and (c)

for all i ∈ [ℓ], χG(gi) = χH(hi). In Version II, Duplicator wins at the given round if (i) the map

(g1, . . . , gℓ) 7→ (h1, . . . , hℓ) extends to an isomorphism of the generated subgroups ⟨g1, . . . , gℓ⟩ and

⟨h1, . . . , hℓ⟩, and (ii) for all i ∈ [ℓ], χG(gi) = χH(hi). Brachter & Schweitzer established that for

J ∈ {I, II}, (k, r)-WL Version J is equivalent to version J of the (k + 1)-pebble, r-round pebble

game [48].

Remark 2.8.1. In our work, we explicitly control for both pebbles and rounds. In our theorem

statements, we state explicitly the number of pebbles on the board at the end of the given round.

So if Spoiler can win with k pebble pairs on the board, then we are playing in the (k + 1)-pebble

game. Note that k-WL corresponds to k-pebbles on the board.

The pebble game for graphs is the same pebble game used to analyze the k-WL Version III

algorithm for groups. Note that placing a pebble pair on vertices corresponding to the multiplication
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gadgets M(g1, g2) and M(h1, h2) (but not on the vertices corresponding to the group elements)

induces a pairing of group elements. Here, we adopt the convention from Brachter & Schweitzer

[48] in saying that (g1, g2) 7→ (h1, h2) are implicitly pebbled if a pebble is placed on a non-group-

element vertex of the multiplication gadget M(g1, g2). Pebbling such a vertex is nearly as strong

as pebbling two pairs of group elements simultaneously, though there is some subtlety. Namely,

unless a non-group element vertex on M(g1, g2) is pebbled, Duplicator need not select bijections

f : G → H that map M(g1, g2) 7→ M(f(g1), f(g2)). This distinction led us to our results in

Chapter 4.

Brachter & Schweitzer showed that Duplicator must respect the multiplication structure of

the implicitly pebbled elements, as well as the subgroups induced by the (implicitly) pebbled group

elements [48]:

Lemma 2.8.2 (Brachter & Schweitzer [48, Lemma 3.10]). Consider the k-pebble game on graphs

ΓG and ΓH . If k ≥ 4 and one of the following happens:

(a) Duplicator chooses a bijection on f : V (ΓG) → V (ΓH) with f(G) ̸= H,

(b) after choosing a bijection f : V (ΓG) → V (ΓH), there is a pebble pair (p, p′) for which pebble

p is on some vertex of M(g1, g2) that is not a group element and p′ is on some vertex of

M(h1, h2) that is not a group element, but

(f(g1), f(g2), f(g1g2)) ̸= (h1, h2, h1h2),

or

(c) the map induced by the group elements pebbled or implicitly pebbled by k − 2 pebbles does

not extend to an isomorphism between the corresponding generated subgroups,

then Spoiler can win with at most two additional pebbles

Remark 2.8.3. The original statement of [48, Lemma 3.10] did not specify the number of additional

rounds. However, in Section 3.2, based on joint work with J.A. Grochow [90], we are able to modify

the proof of [48, Lemma 3.10(c)] to show that only log2(n) +O(1) additional rounds suffice.
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In light of Lemma 2.8.2 (a), we may – even in Version III – simply consider bijections that

Duplicator selects on the group elements. That is, we may without loss of generality consider

bijections f : G → H. We stress that condition (b) applies only when there is already a pebble

on some element of a multiplication gadget. A priori, Duplicator need not select bijections that

respect multiplication gadgets. That is, if there is no pebble on a multiplication gadget M(g1, g2),

then Duplicator need not map f(M(g1, g2)) =M(f(g1), f(g2)). This is the same subtlety regarding

implicit pebbling as discussed on the previous page.

We also note that Lemma 2.8.2 (c) provides that if Duplicator does not respect the subgroup

structure of the (implicitly) pebbled group elements, then Spoiler can quickly win.

Brachter & Schweitzer [48, Theorem 3.9] also previously showed that WL Version I, II, and

III are equivalent up to a factor of 2 in the dimension.

Theorem 2.8.4 ([48, Theorem 3.9]). Let G and H be groups of order n. Let k ≥ 2. We have the

following.

(a) If k-WL Version I distinguishes G and H, then k-WL Version II distinguishes G and H.

(b) If k-WL Version II distinguishes G and H, then (⌈k/2⌉+ 2)-WL Version III distinguishes

G and H.

(c) If k-WL Version III distinguishes G and H, then (2k + 1)-WL Version I distinguishes G

and H.

In Theorem 3.2.1 of Section 3.2, based on joint work with J.A. Grochow [90], we strengthen

their analysis to explicitly control for rounds.

2.9 Logics

We recall the central aspects of first-order logic. While we considered Weisfeiler–Leman and the

pebble games for colored groups and colored graphs, we consider the logics for only the uncolored

setting. We have a countable set of variables {x1, x2, . . . , }. Formulas are defined inductively. As
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our basis, xi = xj is a formula for all pairs of variables. Now if φ,ψ are formulas, then so are the

following: φ ∧ ψ,φ ∨ ψ,¬φ,∃xi φ, and ∀xi φ. Variables are permitted to be reused within nested

quantifiers.

The quantifier depth of a first-order formula φ, denoted qd(φ), is the depth of the quantifier

nesting. More formally, we have:

� If φ has no quantifiers, then qd(φ) = 0.

� qd(φ) = qd(¬φ).

� Let φ1, φ2 be first-order formulas. qd(φ1 ∨ φ2) = qd(φ1 ∧ φ2) = max{qd(φ1), qd(φ2)}.

� Let Q be a quantifier. We have that qd(Qxφ) = qd(φ) + 1.

In order to define logics on groups, it is necessary to define a relation that relates the group

multiplication. We recall the two different logics introduced by Brachter & Schweitzer [48].

� Version I: We add a ternary relation R where R(xi, xj , xℓ) = 1 if and only if xixj = xℓ

in the group. In keeping with the conventions of [55], we refer to the first-order logic with

relation R as LI and its k-variable fragment as LI
k. We refer to the logic CI as the logic

obtained by adding counting quantifiers ∃≥nxi φ (there exist at least n distinct xi that

satisfy φ) and ∃!nφ (there exist exactly n distinct xi that satisfy φ) and its k-variable

fragment as CI
k . If furthermore we restrict the formulas to have quantifier depth at most r,

we denote this fragment as CI
k,r.

� Version II:We add a relationR, defined as follows. Let w ∈ ({xi1 , . . . , xit}∪{x−1i1
, . . . , x−1it

})∗.

We have that R(xi1 , . . . , xit ;w) = 1 if and only if multiplying the group elements according

to w yields the identity. For instance, R(a, b; [a, b]) holds precisely if a, b commute. Again,

in keeping with the conventions of [55], we refer to the first-order logic with relation R

as LII and its k-variable fragment as LII
k . We refer to the logic CII as the logic obtained

by adding counting quantifiers ∃≥nxi φ and ∃!nφ and its k-variable fragment as CII
k . If
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furthermore we restrict the formulas to have quantifier depth at most r, we denote this

fragment as CII
k,r.

Remark 2.9.1. Brachter & Schweitzer [48] refer to the logics with counting quantifiers as LI and

LII . We instead adhere to the conventions in [55].

Let J ∈ {I, II}. Brachter & Schweitzer [48] established that two groups G,H are distinguished by

(k, r)-WL Version J if and only if there exists a formula φ ∈ CJ
k+1,r such that G |= φ and H ̸|= φ. In

the setting of graphs, the equivalence between Weisfeiler–Leman and first-order logic with counting

quantifiers is well known [120, 55].

2.10 Weisfeiler–Leman as a Parallel Algorithm

Grohe & Verbitsky [104] previously showed that for fixed k, the classical k-dimensional Weisfeiler–

Leman algorithm for graphs can be effectively parallelized. More precisely, each iteration (including

the initial coloring) can be implemented using a logspace uniform TC0 circuit. As they mention [104,

Remark 3.4], their implementation works for any first-order structure, including groups. However,

because here we have three different versions of WL, we explicitly list out the resulting parallel

complexities, which differ slightly between the versions.

� WL Version I: Let (g1, . . . , gk) and (h1, . . . , hk) be two k-tuples of group elements. We

may test in AC0 whether (a) for all i, j,m ∈ [k], gigj = gm ⇐⇒ hihj = hm, and (b)

gi = gj ⇐⇒ hi = hj . So we may decide if two k-tuples receive the same initial color

in AC0. Comparing the multiset of colors at the end of each iteration (including after the

initial coloring), as well as the refinement steps, proceed identically as in [104]. Thus, for

fixed k, each iteration of k-WL Version I can be implemented using a logspace uniform TC0

circuit.

� WL Version II: Let (g1, . . . , gk) and (h1, . . . , hk) be two k-tuples of group elements. We

may use a result of Tang [185] to test in L whether the map sending gi 7→ hi for all i ∈ [k]
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extends to an isomorphism of the generated subgroups ⟨g1, . . . , gk⟩ and ⟨h1, . . . , hk⟩ (if

this map extends to an isomorphism, we say that (g1, . . . , gk) and (h1, . . . , hk) are marked

isomorphic). So we may decide whether two k-tuples receive the same initial color in L.

Comparing the multiset of colors at the end of each iteration (including after the initial

coloring), as well as the refinement steps, proceed identically as in [104]. Thus, for fixed

k, the initial coloring of k-WL Version II is L-computable, and each refinement step is

TC0-computable.

� WL Version III: From Remark 2.7.2, we have that constructing the graph from the Cayley

table is AC0-computable. We now appeal directly to the parallel WL implementation for

graphs due to Grohe & Verbitsky [104]. Thus, each iteration of WL Version III can be

implemented with a logspace uniform TC0-circuit, and constructing the graph does not

further increase the asymptotic complexity.

2.11 Relation Algebras

We recall preliminary notions from lattice theory and relation algebras. We refer the reader to

[158] for background on lattice theory and [153, 88, 113] for background on relation algebras.

Definition 2.11.1. A lattice ⟨A,≤,∨,∧⟩ is a poset (A,≤) together with binary operations ∨,∧ :

A×A→ A that are both commutative and associative. Furthermore, ∨,∧ satisfy the following for

every a, b ∈ A:

a ∨ (a ∧ b) = a

a ∧ (a ∨ b) = a.

a ≤ b ⇐⇒ a = a ∧ b ⇐⇒ b = a ∨ b.

We refer to ∨ as join and ∧ as meet. When the lattice is understood, we simply write A. We say

that A is distributive if it satisfies one (and therefore both) of the distributive laws, that for every
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x, y, z ∈ A:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Definition 2.11.2. A Boolean lattice ⟨A,≤,∨,∧,¬, 0, 1⟩ is a distributive lattice ⟨A,≤,∨,∧⟩ and a

unary complementation operation ¬ : A→ A satisfying the following, for all x, y ∈ A:

x ∧ ¬x = 0

x ∨ ¬x = 1

x ∨ 0 = x

x ∧ 1 = x

¬(¬x) = x

¬(x ∨ y) = ¬x ∧ ¬y

¬(x ∧ y) = ¬x ∨ ¬y.

Definition 2.11.3. A relation algebra is an algebra ⟨A,≤,∧,∨,¬, 0, 1, ◦,̆ , 1′⟩ that satisfies the

following.

� ⟨A,≤,∧,∨,¬, 0, 1⟩ is a Boolean lattice, with ¬ the unary negation operator, 0 the identity

for ∨, and 1 the identity for ∧.

� ⟨A, ◦, 1′⟩ is a monoid, with 1′ the identity with respect to ◦. We refer to ◦ as (relational)

composition. So we have that relational composition is associative, and there is an identity

1′ with respect to ◦.

� ˘ is the unary converse operation, which is an anti-involution with respect to composition.

Namely, ˘̆a = a for all a ∈ A, and

(

a ◦ b = b̆ ◦ ă for all a, b ∈ A.

� Converse and composition both distribute over disjunction. Precisely, for all a, b, c ∈ A, we
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have that:

(

(a ∨ b) = ă ∨ b̆, and

(a ∨ b) ◦ c = (a ◦ c) ∨ (b ◦ c).

� (Triangle Symmetry) For all a, b, c ∈ A, we have that:

(a ◦ b) ∧ c = 0 ⇐⇒ (c̆ ◦ a) ∧ b̆ = 0 ⇐⇒ (b ◦ c̆) ∧ ă = 0.

When the relation algebra is understood, we simply write A rather than ⟨A,≤,∧,∨,¬, 0, 1, ◦,̆ , 1′⟩.

Definition 2.11.4. Let A be a relation algebra. We say that A is integral if whenever x ◦ y = 0,

we have that x = 0 or y = 0.

Definition 2.11.5. Let A be a relation algebra. We say that a ∈ A is an atom if a ̸= 0 and

b < a =⇒ b = 0. Furthermore, we say that a is a diversity atom if a also satisfies a ∧ 1′ = 0. We

say that a diversity atom is symmetric if a = ă.

In this thesis, attention will be restricted to finite relation algebras. This ensures that every

element of a relation algebra can be written as the join of finitely many atoms.

Remark 2.11.6. In the special case when a, b, c are diversity atoms, the Triangle Symmetry axiom

defines an equivalence relation on such triples that corresponds to the symmetries of the triangle.

Definition 2.11.7. For atoms a, b, c, the triple (a, b, c) – usually denoted abc – is called a cycle.

We say that the cycle abc is forbidden if (a ◦ b) ∧ c = 0 and mandatory if a ◦ b ≥ c. If a, b, c are

diversity atoms, then abc is called a diversity cycle.

Any cycle that is not forbidden is mandatory [153, Chapter 6]. We now have the following

observation.

Observation 2.11.8. Let A be an integral relation algebra. The composition operation ◦ is

determined by the mandatory diversity cycles.
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Proof. Let a, b ∈ A be diversity atoms. We note that if c ∈ A is an atom such that abc forms a

diversity cycle, then a ◦ b ≥ c. Now we note that if b = ă, then a ◦ b ≥ 1′. Define:

C := {c ∈ A : c is an atom s.t. a ◦ b ≥ c}.

By the definition of a mandatory cycle, C contains the diversity atoms c such that abc is a mandatory

diversity cycle. Now if b = ă, then ab1′ is a mandatory cycle, in which case 1′ also belongs to C.

As any cycle is either mandatory or forbidden, there are no other elements in C. Now as A is finite

and a, b are atoms, we have that:

a ◦ b =
∨
c∈C

c.

Now for any R1, R2 ∈ A, we have that:

R1 ◦R2 =
∨

{a ◦ b : a ≤ R1, b ≤ R2, and a, b are atoms}.

The result now follows.

Definition 2.11.9. Let f be a diversity atom. We say that f is flexible if for all diversity atoms

a, b, we have that abf is mandatory.

Definition 2.11.10. We say that a relation algebra A is representable if there exists a set U and

an equivalence relation E ⊆ U × U such that A embeds into

⟨2E ,⊆,∪,∩,c , ◦,−1 , ∅, E, IdU ⟩.

Here, c is set complementation, and −1 is the relational inverse.

We will only be concerned with simple relation algebras, in which there exists a set U such

that E = U × U . We call such a representation square.

Definition 2.11.11. Let A be a finite relation algebra. Denote:

Spec(A) := {α ≤ ω : A has a square representation over a set of cardinality α}.
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If Spec(A) contains a natural number, then we say that A admits a finite representation. The

minimum element in Spec(A) serves as a measure of combinatorial complexity for the relation

algebra.

Definition 2.11.12. Let G be a group. Define the complex algebra:

Cm(G) = ⟨2G,⊆,∪,∩,c , ·,−1 , ∅, G, {e}⟩,

where c is the setwise complementation, · : 2G × 2G → 2G is the map sending :

X · Y = {xy : x ∈ X, y ∈ Y, and xy is considered in the group},

−1 : 2G → 2G maps X 7→ X−1 := {x−1 : x ∈ X}, and e is the identity in the group. A

group representation of the relation algebra A over the group G is an injective homomorphism

φ : A→ Cm(G). Given a group representation φ, we may construct a representation A as follows.

Take U = G. Now for each X ⊆ G in Im(φ), map X to the relation {(u, v) : uv−1 ∈ X} ⊆ G×G.

Remark 2.11.13. In light of Observation 2.11.8, deciding whether an integral relation algebra A

admits a finite representation is equivalent to finding a finite complete graph with an appropriate

edge coloring. Note that if A is symmetric, we consider the undirected complete graph. If A is not

symmetric, then we instead consider the directed complete graph. In this thesis, attention will be

restricted to the symmetric case.

Given a complete graph on m vertices, we seek to color the edges using the diversity atoms

as colors. Now suppose a ∈ A is a diversity atom, and uv is an edge colored a (we abuse notation

by using the diversity atom as the label for the edge color). If abc is a mandatory diversity cycle,

then there must exist a vertex w such that vw is colored b and uw is colored c. If instead abc is a

forbidden diversity cycle, then for any vertex w, we have that either vw is not colored b or uw is

not colored c. Now if there exists such a finite m, then A is finitely representable. In analyzing the

combinatorial complexity of a relation algebra, we will be interested in finding the smallest such

m.



Chapter 3

Parallel Complexity of Group Isomorphism and Canonization via

Weisfeiler–Leman

3.1 Overview

In this chapter, we show that Weisfeiler–Leman serves as a key subroutine in developing

efficient parallel isomorphism tests for several families of groups. This is based upon joint work

with J.A. Grochow [90].

Brachter & Schweitzer [48] introduced three different versions of WL for groups. While they

are equivalent in terms of pebble complexity up to constant factors, their round complexity may

differ by up to an additive O(log n) (see Theorem 2.8.4), and their parallel complexities differ (see

Section 2.10). Because of these differences we are careful to specify which version of WL for groups

each result uses.

We first examine coprime extensions of the form H ⋉N , where N is Abelian and H is O(1)-

generated. Qiao, Sarma, & Tang [167] previously established an upper bound of P for isomorphism

testing of this family of groups. We improve this bound as follows.

Theorem 3.1.1. Groups of the form H⋉N , where N is Abelian, H is O(1)-generated, and |H| and

|N | are coprime are identified by (O(1), O(1))-WL Version II. Consequently, isomorphism between

a group of the above form and arbitrary groups can be decided in L.

We next parallelize a result of Brachter & Schweitzer [49], who showed that Weisfeiler–Leman

can identify direct products in polynomial-time provided it can also identify the indecomposable
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direct factors in polynomial-time. Specifically, we show:

Theorem 3.1.2. For all G = G1 × · · · ×Gd with the Gi directly indecomposable, and all k ≥ 5, if

(k,O(logc n))-WL Version II identifies each Gi for some c ≥ 1, then (k+1, O(logc n))-WL identifies

G.

More specifically, we show that for k ≥ 5 and r(n) ∈ Ω(log n), if a direct product G is not

distinguished from some group H by (k, r)-WL Version II, then H is a direct product, and there is

some direct factor of H that is not distinguished from some direct factor of G by (k − 1, r)-WL.

Prior to Theorem 3.1.2, the best-known upper bound on computing direct product decom-

positions was P [198, 130] (we note that [198] works in polynomial-time even in the more succinct

and practical model of groups given by generating sets of permutations). While Weisfeiler–Leman

does not return explicit direct factors, it can implicitly compute a direct product decomposition

in O(log n) rounds, which is sufficient for parallel isomorphism testing. In light of the parallel WL

implementation due to Grohe & Verbitsky, our result effectively provides that WL can decompose

direct products in TC1.

We next consider groups without Abelian normal subgroups. Using the individualize-and-

refine paradigm, we obtain a new upper bound of quasiSAC1 for not only deciding isomorphisms, but

also listing isomorphisms. While this does not improve upon the upper bound of P for isomorphism

testing [30], this does parallelize the previous bound of nΘ(log logn) runtime for listing isomorphisms

[29].

Theorem 3.1.3. Let G be a group without Abelian normal subgroups, and let H be arbitrary. We

can test isomorphism between G and H using an SAC circuit of depth O(log n) and size nΘ(log logn).

Furthermore, all such isomorphisms can be listed in this bound.

In the case of serial complexity, if we restrict the number of simple direct factors of Soc(G)

to be just slightly less than maximal, even listing isomorphisms can be done in FP [29]. Under the

same restriction, we improve this to FL:
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Corollary 3.1.4 (Cf. [29, Corollary 4.4]). Let G be a group without Abelian normal subgroups,

and let H be arbitrary. Suppose that the number of non-Abelian simple direct factors of Soc(G)

is O(log n/ log logn). Then we can decide isomorphism between G and H, as well as list all such

isomorphisms, in FL.

It remains open as to whether isomorphism testing of groups without Abelian normal sub-

groups is even in NC.

Given the lack of lower bounds on GpI, and Grohe & Verbitsky’s parallel WL algorithm, it

is natural to wonder whether our parallel bounds could be improved. One natural approach to this

is via the count-free WL algorithm, which compares the set rather than the multiset of colors at

each iteration. We show unconditionally that this algorithm fails to serve as a polynomial-time

isomorphism test for even Abelian groups.

Theorem 3.1.5. There exists an infinite family (Gn, Hn)n≥1 where Gn ̸∼= Hn are Abelian groups

of the same order and count-free WL requires dimension ≥ Ω(log |Gn|) to distinguish Gn from Hn.

Remark 3.1.6. Even prior to [55], it was well-known that the count-free variant of Weisfeiler–

Leman failed to place GI into P [120]. In fact, count-free WL fails to distinguish almost all graphs

[80, 117], while two iterations of the standard counting 1-WL almost surely assign a unique label to

each vertex [32, 31]. In light of the equivalence between count-free WL and the logic FO (first-order

logic without counting quantifiers), this rules out FO as a viable logic to capture P on unordered

graphs. Finding such a logic is a central open problem in Descriptive Complexity Theory. On

ordered structures such a logic was given by Immerman [118] and Vardi [190].

Theorem 3.1.5 establishes the analogous result, ruling out FO as a candidate logic to capture

P on unordered groups. This suggests that some counting may indeed be necessary to place GpI

into P. As DET is the best known lower bound for GI [189], counting is indeed necessary to place

GI into P. There are no such lower bound known for GpI. Furthermore, the work of [57] shows that

GpI is not hard (under AC0-reductions) for any complexity class that can compute Parity, such

as DET. Determining which families of groups can(not) be identified by count-free WL remains an
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intriguing open question.

While count-free WL is not sufficiently powerful to compare the multiset of colors, it turns

out that O(log log n)-rounds of count-free O(1)-WL Version III will distinguish two elements of

different orders. Thus, the multiset of colors computed by the count-free (O(1), O(log log n))-WL

Version III for non-isomorphic Abelian groups G and H will be different. We may use O(log n)

non-deterministic bits to guess the color class where G and H have different multiplicities, and

then an MAC0 circuit to compare said color class. This yields the following.

Theorem 3.1.7. Abelian Group Isomorphism is in β1MAC0(FOLL).

We note that this and Theorem 3.1.3 illustrate uses of WL for groups as a subroutine in

isomorphism testing, which is how it is so frequently used in the case of graphs. To the best of our

knowledge, the only previous uses of WL as a subroutine for GpI were in [146, 50].

Remark 3.1.8. The previous best upper bounds for isomorphism testing of Abelian groups are

linear time [129, 193, 174] and L∩TC0(FOLL) [57]. As β1MAC0(FOLL) ⊆ TC0(FOLL), Theorem 3.1.7

improves the upper bound for isomorphism testing of Abelian groups.

Methods. We find the comparison of methods at least as interesting as the comparison of

complexity. Here we discuss at a high level the methods we use for each of our three main theorems

above, and compare them to the methods of their predecessor results.

For Theorem 3.1.1, its predecessor in Qiao–Sarma–Tang [167] leveraged a result of Le Gall

[141] on testing conjugacy of elements in the automorphism group of an Abelian group. (By further

delving into the representation theory of Abelian groups, they were also able to solve the case where

H and N are coprime and both are Abelian without any restriction on the number of generators; we

leave that as an open question in the setting of WL.) Here, we use the pebbling game. Our approach

is to first pebble generators for the complement H, which fixes an isomorphism of H. For groups

that decompose as a coprime extension of H and N , the isomorphism type is completely determined

by the multiplicities of the indecomposable H-module direct summands (Lemma 3.3.3). So far, this
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is the same group-theoretic structure leveraged by Qiao, Sarma, and Tang [167]. However, we then

use the representation-theoretic fact that, since |N | and |H| are coprime, each indecomposable

H-module is generated by a single element (Lemma 3.3.4); this is crucial in our setting, as it allows

Spoiler to pebble that one element in the WL pebbling game. Then, as the isomorphism of H is

fixed, we show that any subsequent bijection that Duplicator selects must restrict to H-module

isomorphisms on each indecomposable H-submodule of N that is a direct summand.

For Theorem 3.1.3, solving isomorphism of semisimple groups took a series of two papers

[29, 30]. Our result is really only a parallel improvement on the first of these (we leave the second

as an open question). In Babai et al. [29], they used Code Equivalence techniques to identify

semisimple groups where the minimal normal subgroups have a bounded number of non-Abelian

simple direct factors, and to identify general semisimple groups in time nO(log logn). In contrast,

WL—along with individualize-and-refine in the second case—provides a single, combinatorial al-

gorithm that is able to detect the same group-theoretic structures leveraged in previous works to

solve isomorphism in these families.

In parallelizing Brachter & Schweitzer’s direct product result in Theorem 3.1.2, we use two

techniques. The first is simply carefully analyzing the number of rounds used in many of the proofs.

In several cases, a careful analysis of the rounds used was not sufficient to get a strong parallel

result. In those cases, we use the notion of rank, which may be of independent interest and have

further uses.

Given a subset C of group elements, the C-rank of g ∈ G is the minimal word-length over C

required to generate g. If C is easily identified by Weisfeiler–Leman, then WL can identify ⟨C⟩ in

O(log n) rounds. This is made precise (and slightly stronger) with our Rank Lemma:

Lemma 3.1.9 (Rank lemma). If C ⊆ G is distinguished by (k, r)-WL, then any bijection f chosen

by Duplicator must respect C-rank, in the sense that rkC(g) = rkf(C)(f(g)) for all g ∈ G, or Spoiler

can win with k + 1 pebbles and max{r, log d + O(1)} rounds, where d = diam(Cay(⟨C⟩, C)) ≤

|⟨C⟩| ≤ |G|.
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One application of our Rank Lemma is that WL identifies verbal subgroups where the words

are easily identified. Given a set of words w1(x1, . . . , xn), . . . , wm(x⃗), the corresponding verbal

subgroup is the subgroup generated by {wi(g1, . . . , gn) : i = 1, . . . ,m, gj ∈ G}. One example that

we use in our results is the commutator subgroup. If Duplicator chooses a bijection f : G → H

such that f([x, y]) is not a commutator in H, then Spoiler pebbles [x, y] 7→ f([x, y]) and wins in

two additional rounds. Thus, by our Rank Lemma, if Duplicator does not map the commutator

subgroup [G,G] to the commutator subgroup [H,H], then Spoiler wins with 1 additional pebble

and O(log n) additional rounds.

Brachter & Schweitzer [49] obtained a similar result about verbal subgroups using different

techniques. Namely, they showed that if WL assigns a distinct coloring to certain subsets S1, . . . , St,

then WL assigns a unique coloring to the set of group elements satisfying systems of equations over

S1, . . . , St. They analyzed the WL colorings directly. As a result, it is not clear how to compose

their result with the pebble game. For instance, while their result implies that if Duplicator does

not map f([G,G]) = [H,H] then Spoiler wins, it is not clear how Spoiler wins nor how quickly

Spoiler can win. Our result addresses these latter two points more directly. In particular, recall

that the number of rounds impacts the parallel complexity (see Section 2.10).

3.2 Parallel Equivalence Between WL Versions

In this section, we show that WL Version I-III are equivalent up to a tradeoff of O(log n)

rounds.

Theorem 3.2.1. Let G and H be groups of order n. Let k ≥ 2, r ≥ 1. We have the following.

(a) If (k, r)-WL Version I distinguishes G and H, then (k, r)-WL Version II distinguishes G

and H.

(b) If (k, r)-WL Version II distinguishes G and H, then (⌈k/2⌉+2, 3r+O(log n))-WL Version

III distinguishes G and H.
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(c) If (k, r)-WL Version III distinguishes G and H, then (2k+1, 2r)-WL Version I distinguishes

G and H.

We begin by strengthening Lemma 2.8.2 (c).

Lemma 3.2.2 (Lemma 2.8.2 (c)). Let G,H be groups of order n. Let k ≥ 4. Consider the k-

pebble game on the graphs ΓG and ΓH . Suppose that at most k − 2 pebbles on the board. If the

map induced by the group elements pebbled or implicitly pebbled does not extend to an isomorphism

between the corresponding generated subgroups, then Spoiler can win with 2 additional pebbles and

O(log n) additional rounds.

Proof of Lemma 2.8.2 (c). By assumption, there are at most m := 2(k−2) implicitly pebbled pairs

of group elements corresponding to at most k − 2 pebbles currently on the board. Without loss

of generality, we may assume there are exactly m such pairs of group elements (g1, . . . , gm) 7→

(h1, . . . , hm) pebbled. Let f : G → H by the bijection Duplicator selects. By Lemma 2.8.2

(b), Duplicator must select bijections respecting the pairing induced by implicitly pebbled group

elements. By assumption, this correspondence does not extend to an isomorphism of ⟨g1, . . . , gm⟩

and ⟨h1, . . . , hm⟩. Let w := gi1 · · · git be a minimal word such that

f(w) ̸= f(gi1) · · · f(git).

Spoiler pebbles w 7→ f(w). Let f ′ : G → H be the bijection Duplicator selects on the next

round. Suppose that f ′(gi2 · · · git) = f(gi2 · · · git). By the minimality of w, we have that:

f(gi2 · · · git) = f(gi2) · · · f(git).

So in this case, Spoiler pebbles gi2 · · · git 7→ f ′(gi2 · · · git) = f(gi2 · · · git) and wins with 2

additional pebbles and O(1) additional rounds by Lemma 2.8.2 (b).

Suppose instead that f ′(gi2 · · · git) ̸= f(gi2 · · · git). Then at least one of the following must
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hold:

f ′(gi2 · · · git) ̸= f ′(gi2 · · · gi⌈t/2⌉) · f
′(gi⌈t/2⌉+1

· · · git),

f ′(gi2 · · · gi⌈t/2⌉) ̸= f ′(gi2) · · · f ′(gi⌈t/2⌉), or

f ′(gi⌈t/2⌉+1
· · · git) ̸= f ′(gi⌈t/2⌉+1

) · · · f ′(git).

We now consider the following cases.

� Case 1: Suppose that either

f ′(gi2 · · · gi⌈t/2⌉) ̸= f ′(gi2) · · · f ′(gi⌈t/2⌉), or

f ′(gi⌈t/2⌉+1
· · · git) ̸= f ′(gi⌈t/2⌉+1

) · · · f ′(git).

Suppose first that:

f ′(gi2 · · · gi⌈t/2⌉) ̸= f ′(gi2) · · · f ′(gi⌈t/2⌉)

Spoiler pebbles gi2 · · · gi⌈t/2⌉ 7→ f ′(gi2 · · · gi⌈t/2⌉). The alternative case when

f ′(gi⌈t/2⌉+1
· · · git) ̸= f ′(gi⌈t/2⌉+1

) · · · f ′(git)

is handled identically.

� Case 2: Suppose that Case 1 does not occur. Then we necessarily have that:

f ′(gi2 · · · git) ̸= f ′(gi2 · · · gi⌈t/2⌉) · f
′(gi⌈t/2⌉+1

· · · git).

In this case, Spoiler begins by pebbling gi2 · · · gi⌈t/2⌉ 7→ f ′(gi2 · · · gi⌈t/2⌉). At the next round,

Duplicator must select a bijection f ′′ : G→ H mapping f ′′(gi⌈t/2⌉+1
· · · git) so that

f ′(gi2 · · · git) = f ′(gi2 · · · gi⌈t/2⌉) · f
′′(gi⌈t/2⌉+1

· · · git).

Otherwise, by Lemma 2.8.2 (b), Spoiler wins with one additional pebble and O(1) additional

rounds. But then

f ′′(gi⌈t/2⌉+1
· · · git) ̸= f ′′(gi⌈t/2⌉+1

) · · · f ′′(git).

Spoiler pebbles gi⌈t/2⌉+1
· · · git 7→ f ′′(gi⌈t/2⌉+1

· · · git).
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After at most two rounds, we have pebbled a word w′ such that |w′| ≤ |w|/2. Thus, at most

2 log2(t) + 1 rounds are required until we can reduce to Lemma 2.8.2 (b). By Fact 2.2.3, we have

t ≤ n. So only O(log n) rounds are required. To see that only two additional pebbles are required,

at the round after Spoiler pebbles w′, Spoiler picks up the pebble pair on w 7→ f(w). The result

now follows.

To prove Theorem 3.2.1, we follow the strategy of [48, Section 3.5].

Proof of Theorem 3.2.1 .

(a) Suppose that Spoiler wins with k pebbles on the board at round r of Version I of the pebble

game. Suppose that (g1, . . . , gk) 7→ (h1, . . . , hk) have been pebbled. As Spoiler wins, there

exist i, j,m ∈ [k] such that WLOG, gigj = gm but hihj ̸= hm. So the map (g1, . . . , gk) 7→

(h1, . . . , hk) does not extend to an isomorphism of ⟨g1, . . . , gk⟩ and ⟨h1, . . . , hk⟩. So Spoiler

may use the same strategy in Version II of the pebble game and win with k pebbles and r

rounds.

(b) Suppose that Spoiler wins with k pebbles on the board at round r of Version II of the pebble

game. Suppose that (g1, . . . , gk) 7→ (h1, . . . , hk) have been pebbled. As Spoiler wins, the

map (g1, . . . , gk) 7→ (h1, . . . , hk) does not extend to an isomorphism of ⟨g1, . . . , gk⟩ and

⟨h1, . . . , hk⟩.

Brachter & Schweitzer [48, Lemma 3.11] previously established that, using ⌈k/2⌉ pebbles

and 3r rounds in the Version III pebble game, that Spoiler can obtain a configuration

(g′1, . . . , g
′
k) 7→ (h′1, . . . , h

′
k) that does not extend to an isomorphism of ⟨g′1, . . . , g′k⟩ and

⟨h′1, . . . , h′k⟩.

Now by Lemma 2.8.2 (a), we may assume in the Version III pebble game that Duplicator

selects bijections f : V (ΓG) → V (ΓH) that restrict to bijections f |G : G → H; otherwise,

Spoiler may win with 2 pebbles and 2 rounds. Thus, without loss of generality, we may
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assume that if Duplicator selects f : V (ΓG) → V (ΓH) at round 1 ≤ i ≤ r of the Version

III pebble game that Duplicator selects f |G at round i of the Version II pebble game. So

without loss of generality, we may assume that

(g′1, . . . , g
′
k) = (g1, . . . , gk), and

(h′1, . . . , h
′
k) = (h1, . . . , hk).

Now recall that as the map (g1, . . . , gk) 7→ (h1, . . . , hk) does not extend to an isomorphism

of ⟨g1, . . . , gk⟩ and ⟨h1, . . . , hk⟩, Spoiler wins at round r of the Version II pebble game. By

Lemma 2.8.2 (c), Spoiler can win in the Version III pebble game using 2 additional pebbles

and O(log n) additional rounds. The result now follows.

(c) Brachter & Schweitzer [48, Lemma 3.12] showed that (k′, r′)-WL Version III can be simu-

lated by (2k′ + 1, 3r′)-WL Version I. Now take k′ = ⌊k/2⌋+ 2 and r′ = 3r+O(log n). The

result follows.

3.3 Weisfeiler–Leman for Coprime Extensions

In this section, we consider groups that admit a Schur–Zassenhaus decomposition of the form

G = H ⋉ N , where N is Abelian, and H is O(1)-generated and |H| and |N | are coprime. Qiao,

Sarma, and Tang [167] previously exhibited a polynomial-time isomorphism test for this family of

groups, as well as the family where H and N are arbitrary Abelian groups. This was extended by

Babai & Qiao [34] to groups where |H| and |N | are coprime, N is Abelian, and H is an arbitrary

group given by generators in any class of groups for which isomorphism can be solved efficiently.

Among the class of such groups where H is O(1)-generated, we are able to improve the parallel

complexity to L via WL Version II.
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3.3.1 Additional preliminaries for groups with Abelian normal Hall subgroup

Here we recall additional preliminaries needed for our algorithm in the next section. None of

the results in this section are new, though in some cases we have rephrased the known results in a

form more useful for our analysis.

Coprime extensions (see Section 2.2) are determined entirely by their actions:

Lemma 3.3.1 (Taunt [186]). Let G = H ⋉θ N and Ĝ = Ĥ ⋉θ̂ N̂ . If α : H → Ĥ and β : N → N̂

are isomorphisms such that for all h ∈ H and all n ∈ N ,

θ̂α(h)(n) = (β ◦ θh ◦ β−1)(n),

then the map (h, n) 7→ (α(h), β(n)) is an isomorphism of G ∼= Ĝ. Conversely, if G and Ĝ are

isomorphic and |H| and |N | are coprime, then there exists an isomorphism of this form.

Remark 3.3.2. Lemma 3.3.1 can be significantly generalized to arbitrary extensions where the

normal subgroup is characteristic. When the characteristic subgroup is Abelian, this is standard

in group theory, and has been useful in practical isomorphism testing (see, e.g., [114]). In general,

the equivalence of group extensions deals with both Action Compatibility and Cohomology

Class Isomorphism. Generalizations of cohomology to non-Abelian coefficient groups was done

by Dedecker in the 1960s (e.g. [73]) and Inassaridze at the turn of the 21st century [123]. Unaware

of this prior work on non-Abelian cohomology at the time, Grochow & Qiao re-derived some of it in

the special case of H2—the cohomology most immediately relevant to group extensions and the iso-

morphism problem—and showed how it could be applied to isomorphism testing [93, Lemma 2.3],

generalizing Taunt’s Lemma. In the setting of coprime extensions, the Schur–Zassenhaus Theo-

rem provides that the cohomology is trivial. Thus, in our setting we need only consider Action

Compatibility.

A ZH-module is an abelian group N together with an action of H on N , given by a group

homomorphism θ : H → Aut(N). Sometimes we colloquially refer to these as “H-modules.” A

submodule of an H-module N is a subgroup N ′ ≤ N such that the action of H on N ′ sends N ′
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into itself, and thus the restriction of the action of H to N ′ gives N ′ the structure of an H-module

compatible with that on N . Given a subset S ⊆ N , the smallest H-submodule containing S is

denoted ⟨S⟩H , and is referred to as the H-submodule generated by S. An H-module generated

by a single element is called cyclic. Note that a cyclic H-module N need not be a cyclic Abelian

group. As an example, we note that if |H| is coprime to p, then any irreducible representation of

H of dimension > 1 over Fp will be a cyclic H-module, but not a cyclic Abelian group.

Two H-modules N,N ′ are isomorphic (as H-modules), denoted N ∼=H N ′, if there is a group

isomorphism φ : N → N ′ that is H-equivariant, in the sense that φ(θ(h)(n)) = θ′(h)(φ(n)) for all

h ∈ H,n ∈ N . An H-module N is decomposable if N ∼=H N1 ⊕ N2 where N1, N2 are nonzero

H-modules (and the direct sum can be thought of as a direct sum of Abelian groups); otherwise

N is indecomposable. An equivalent characterization of N being decomposable is that there are

nonzero H-submodules N1, N2 such that N = N1 ⊕N2 as Abelian groups (that is, N is generated

as a group by N1 and N2, and N1 ∩ N2 = 0). The Remak–Krull–Schmidt Theorem says that

every H-module decomposes as a direct sum of indecomposable modules, and that the multiset

of H-module isomorphism types of the indecomposable modules appearing is independent of the

choice of decomposition, that is, it depends only on the H-module isomorphism type of N . We

may thus write

N ∼=H N⊕m1
1 ⊕N⊕m2

2 ⊕ · · · ⊕N⊕mk
k

unambiguously, where the Ni are pairwise non-isomorphic indecomposable H-modules. When we

refer to the multiplicity of an indecomposable H-module as a direct summand in N , we mean the

corresponding mi.
1

The version of Taunt’s Lemma that will be most directly useful for us is:

Lemma 3.3.3. Suppose Gi = H ⋉θi N (i = 1, 2) are two semi-direct products with |H| coprime

to |N |. Then G1
∼= G2 if and only if there is an automorphism α ∈ Aut(H) such that each

1 For readers familiar with (semisimple) representations over fields, we note that the multiplicity is often equiv-
alently defined as dimF HomFH(Ni, N). However, when we allow N to be an Abelian group that is not elementary
Abelian, we are working with (Z/pkZ)[H]-modules, and the characterization in terms of hom sets is more compli-
cated, because one indecomposable module can be a submodule of another, which does not happen with semisimple
representations.
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indecomposable ZH-module appears as a direct summand in (N, θ1) and in (N, θ2 ◦ α) with the

same multiplicity.

The lemma and its proof are standard but we include it for completeness.

Proof. If there is an automorphism α ∈ Aut(H) such that the multiplicity of each indecomposable

ZH-module as a direct summand of (N, θ1) and (N, θ2α) are the same, then there is a ZH-module

isomorphism β : (N, θ1) → (N, θ2 ◦α) (in particular, β is an automorphism of N as a group). Then

it is readily verified that the map (h, n) 7→ (α(h), β(n)) is an isomorphism of the two groups.

Conversely, suppose that φ : G1 → G2 is an isomorphism. Since |H| and |N | are coprime, N

is characteristic in Gi, so we have φ(N) = N . And by order considerations φ(H) is a complement

to N in G2. We have θ1(h)(n) = hnh−1. Since φ is an isomorphism, we have φ(θ1(h)(n)) =

φ(hnh−1) = φ(h)φ(n)φ(h)−1 = θ2(φ(h))(φ(n)). Thus θ1(h)(n) = φ−1(θ2(φ(h))(φ(n))). So we may

let α = φ|H , and then we have that (N, θ1) is isomorphic to (N, θ2 ◦ φ|H), where the isomorphism

of H-modules is given by φ|N . The Remak–Krull–Schmidt Theorem then gives the desired equality

of multiplicities.

The following lemma is needed for when N is Abelian, but not elementary Abelian. A

(Z/pkZ)[H]-module is a ZH-module N where the exponent of N (the LCM of the orders of the

elements of N) divides pk.

Lemma 3.3.4 (see, e. g., Thevénaz [188]). Let H be a finite group. If p is coprime to |H|, then

any indecomposable (Z/pkZ)[H]-module is generated (as an H-module) by a single element.

Proof. Thevénaz [188, Cor. 1.2] shows that there are cyclic (Z/pkZ)[H]-modules M1, . . . ,Mn,

each with underlying group of the form (Z/pkZ)di for some di, such that each indecomposable

(Z/pkZ)[H]-module is of the form Mi/p
jMi for some i, j, and for distinct pairs (i, j) we get non-

isomorphic modules.
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3.3.2 Coprime Extensions with an O(1)-Generated Complement

Our approach is to first pebble generators for the complement H, which fixes an isomorphism

of H. As the isomorphism of H is then fixed, we show that any subsequent bijection that Duplicator

selects must restrict to H-module isomorphisms on each indecomposable H-submodule of N that

is a direct summand. For groups that decompose as a coprime extension of H and N , the isomor-

phism type is completely determined by the multiplicities of the indecomposable H-module direct

summands (Lemma 3.3.3). We then leverage the fact that, in the coprime case, indecomposable

H-modules are generated by single elements (Lemma 3.3.4), making it easy for Spoiler to pebble.

Lemma 3.3.5. Let G = H ⋉N , where N is Abelian, H is O(1)-generated, and gcd(|H|, |N |) = 1.

Let K be an arbitrary group of order |G|. If K does not decompose as H ⋉ N (for any action),

then (O(1), O(1))-WL Version II will distinguish G and K.

Proof. Let f : G→ K be the bijection that Duplicator selects. As N ≤ G, as a subset, is uniquely

determined by its orders—it is precisely the set of all elements in G whose orders divide |N |—we

may assume thatK has a normal Hall subgroup of size |N |. For first, if for some n ∈ N , |n| ≠ |f(n)|,

Spoiler can pebble n 7→ f(n) and win immediately. By reversing the roles of K and G, it follows

that K must have precisely |N | elements whose orders divide |N |. Second, suppose that those |N |

elements do not form a subgroup. Then there are two elements x, y ∈ f(N) such that xy /∈ f(N).

At the first round, Spoiler pebbles a := f−1(x) 7→ x. Let f ′ : G → K be the bijection Duplicator

selects at the next round. As K has precisely |N | elements of order dividing |N |, we may assume

that f ′(N) = f(N) (setwise). Let b ∈ N s.t. f ′(b) = y. Spoiler pebbles b 7→ y. Now as N is a

group, ab ∈ N . However, as f(a)f ′(b) ̸∈ f(N), |ab| ̸= |f(a)f ′(b)|. So the map (a, b) 7→ (x, y) does

not extend to an isomorphism. Spoiler now wins.

Now we have that f(N) is a subgroup of K, and because it is the set of all elements of these

orders, it is characteristic and thus normal. Suppose that f(N) ̸∼= N . We have two cases: either

f(N) is not Abelian, or f(N) is Abelian but N ̸∼= f(N). Suppose first that f(N) is not Abelian.

Let x ∈ f(N) such that x ̸∈ Z(f(N)), and let g := f−1(x) ∈ N . Spoiler pebbles g 7→ x. Let
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f ′ : G→ K be the bijection that Duplicator selects at the next round. We may again assume that

f ′(N) = f(N) (setwise), or Spoiler wins with two additional pebbles and two additional rounds.

Now let y ∈ f(N) such that [x, y] ̸= 1. Let h ∈ G such that f ′(h) = y. Spoiler pebbles h 7→ y. Now

the map (g, h) 7→ (x, y) does not extend to an isomorphism, so Spoiler wins. Suppose instead that

f(N) is Abelian. As Abelian groups are determined by their orders, we have by the discussion in

the first paragraph that Spoiler wins with 2 pebbles and 2 rounds.

So now suppose that N ∼= f(N) ≤ K is a normal Abelian Hall subgroup, but that f(N)

does not have a complement isomorphic to H. We note that if K contains a subgroup H ′ that is

isomorphic to H, then by order considerations, H ′ and f(N) would intersect trivially in K and we

would have that K = H ′ · f(N). That is, K would decompose as K = H ⋉ f(N). So as f(N)

does not have a complement in K that is isomorphic to H, by assumption we have that K does

not contain any subgroup isomorphic to H. In this case, Spoiler pebbles the O(1) generators of H

in G. As K has no subgroup isomorphic to H, Spoiler immediately wins after the generators for

H ≤ G have been pebbled. The result follows.

Theorem 3.3.6. Let G = H⋉N , where N is Abelian, H is O(1)-generated, and gcd(|H|, |N |) = 1.

We have that (O(1), O(1))-WL Version II identifies G.

Proof. Let K ̸∼= G be an arbitrary group of order |G|. By Lemma 3.3.5, we may assume that K =

H ⋉N ; otherwise, Spoiler wins in at most 2 rounds. Furthermore, from the proof of Lemma 3.3.5,

we may assume that Duplicator selects bijections f : G → K mapping N ∼= f(N) (though f |N

need not be an isomorphism), or Spoiler wins with a single round.

Spoiler uses the first k := d(H) rounds to pebble generators (g1, . . . , gk) 7→ (h1, . . . , hk) for H.

As K = H ⋉N , we may assume that the map (g1, . . . , gk) 7→ (h1, . . . , hk) induces an isomorphism

with a copy of H ≤ K; otherwise, Spoiler immediately wins. Let f : G → K be the bijection that

Duplicator selects. As G,K are non-isomorphic groups of the form H ⋉N , they differ only in their

actions. Now the actions are determined by the multiset of indecomposable H-modules in N . As

|H|, |N | are coprime, we have by Lemma 3.3.4 that the indecomposable H-modules are cyclic. As
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G ̸∼= K, we have by Lemma 3.3.1 that there exists n ∈ N ≤ G such that ⟨n⟩H is indecomposable,

and ⟨n⟩H and ⟨f(n)⟩f(H) are inequivalent H-modules. Spoiler now pebbles n 7→ f(n). Thus, the

following map

(g1, . . . , gk, n) 7→ (h1, . . . , hk, f(n))

does not extend to an isomorphism. So Spoiler wins.

Remark 3.3.7. We see that the main places we used coprimality were: (1) that N was charac-

teristic, and (2) that all indecomposable H-modules (in particular, those appearing in N) were

cyclic.

3.4 A “rank” lemma

Definition 3.4.1. Let C ⊆ G be a subset of a group G that is closed under taking inverses. We

define the C-rank of g ∈ G, denoted rkC(g), as the minimum m such that g can be written as a

word of length m in the elements of C. If g cannot be so written, we define rkC(g) = ∞.

Our definition and results actually extend to subsets that aren’t closed under taking inverses,

but we won’t have any need for that case, and it would only serve to make the wording less clear.

Remark 3.4.2. Our terminology is closely related to the usage of “X-rank” in algebra and ge-

ometry, which generalizes the notions of matrix rank and tensor rank: if X ⊆ V is a subset of an

F-vector space, then the X-rank of a point v ∈ V is the smallest number of elements of x ∈ X such

that v lies in their linear span. If we replace X by the union F∗X of its nonzero scaled versions

(which is unnecessary in the most common case, in which X is the cone over a projective variety),

then the X-rank in the sense of algebraic geometry would be the FX-rank in our terminology above.

For example, matrix rank is X-rank inside the space of n×m matrices under addition, where X is

the set of rank-1 matrices (which is already closed under nonzero scaling).

We first introduce the notion of what it means for WL to distinguish a set.
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Definition 3.4.3. Let G be a group, and let C ⊆ G. Let k ≥ 2, r ≥ 1, and J ∈ {I, II, III}. We

say that (k, r)-WL Version J distinguishes C if whenever g ∈ C and g′ ̸∈ C, then the coloring χr

computed by (k, r)-WL satisfies χr((g, . . . , g)) ̸= χr((g
′, . . . , g′)).

Lemma 3.4.4 (Rank lemma). If C ⊆ G is distinguished by (k, r)-WL Version II, then any bi-

jection f chosen by Duplicator must respect C-rank, in the sense that rkC(g) = rkf(C)(f(g))

for all g ∈ G, or Spoiler can win with k + 1 pebbles and max{r, log d + O(1)} rounds, where

d = diam(Cay(⟨C⟩, C)) ≤ |⟨C⟩| ≤ |G|.

Our primary uses of this lemma in this paper are to show that if C is distinguished by (k, r)-

WL, then ⟨C⟩ is distinguished by (k + O(1), r + log n)-WL. However, the preservation of C-rank

itself, rather than merely the subgroup generated by C, has found use in further applications- see

Chapter 4 and [65]. In particular, Lemma 3.4.4 shows that WL can identify verbal subgroups in

O(log n) rounds, provided WL can readily identify each word.

Proof. Note that since C is detectable by (k, r)-WL, there is a set C ′ ⊆ H such that for any

bijection f chosen by Duplicator, f(C) = C ′, otherwise Spoiler can win with k pebbles in r rounds.

We will thus use rk(x) to denote rkC(x) if x ∈ G, and rkC′(x) if x ∈ H. We proceed by induction

on the rank.

By assumption, rank-1 elements must be sent to rank-1 elements, since C = {g ∈ G : rk(g) =

1}, or Spoiler can win with k pebbles in r rounds.

Let r ≥ 1, and suppose for all 1 ≤ j ≤ r, if rk(x) = j, then rk(f(x)) = rk(x). Suppose x ∈ G

is such that rk(x) = r+ 1 but rk(f(x)) ̸= rk(x). Since f is a bijection on elements of smaller rank,

the only possibility is rk(f(x)) > r + 1. Spoiler begins by pebbling x 7→ f(x).

Let f ′ : G → H be the bijection that Duplicator selects at the next round. Write x =

x1 · · ·xr+1, where for each i, xi ∈ C. For 1 ≤ i ≤ j ≤ r + 1, write x[i, . . . , j] := xi · · ·xj . We

consider the following cases.

� Case 1: Suppose first that rk(y) = rk(f ′(y)) for all y ∈ G with rk(y) ≤ r. In this case,

Spoiler pebbles x[2, . . . , r + 1] 7→ f ′(x[2, . . . , r + 1]). Let f ′′ : G → H be the bijection that
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Duplicator selects at the next round. If rk(x1) = rk(f ′′(x1)) = 1, then f ′′(x1)·f ′(x[2, . . . , r+

1]) ̸= f(x), since rk(f ′′(x1)) = 1 and rk(f ′(x[2, . . . , r + 1])) = r, so their product has rank

at most r + 1 < rk(f(x)). In this case, Spoiler pebbles x1 and wins immediately since f ′′

does not extend to a bijection on the pebbled elements x1, x[2, . . . , r + 1].

If instead, 1 = rk(x1) < rk(f ′′(x1)), Spoiler pebbles x1 and wins with k − 1 additional

pebbles and r additional rounds by assumption. Note that once x1 7→ f ′′(x1) has been

pebbled, Spoiler can reuse the pebble on x. So we only need k−1 additional pebbles rather

than k pebbles.

� Case 2: Suppose instead that the hypothesis of Case 1 is not satisfied. Then rk(y) ̸=

rk(f ′(y)) for some y ∈ ⟨C⟩ with rk(y) ≤ r. In the next two rounds, Spoiler pebbles

x[1, . . . , ⌈(r+1)/2⌉] and x[⌈(r+1)/2⌉+1, . . . , r+1]. Let f ′′ : G→ H be the next bijection

that Duplicator selects. If

f(x) ̸= f ′′(x[1, . . . , ⌈(r + 1)/2⌉]) · f ′′(x[⌈(r + 1)/2⌉+ 1, . . . , r + 1]),

then Spoiler immediately wins. If

f(x) = f ′′(x[1, . . . , ⌈(r + 1)/2⌉]) · f ′′(x[⌈(r + 1)/2⌉+ 1, . . . , r + 1]),

then either

rk(x[1, . . . , ⌈(r + 1)/2⌉]) < rk(f ′′(x[1, . . . , ⌈(r + 1)/2⌉])) or

rk(x[⌈(r + 1)/2⌉+ 1, . . . , r + 1]) < rk(f ′′(x[⌈(r + 1)/2⌉+ 1, . . . , r + 1])),

since rk(f(x)) > rk(x) = rk(x[1, . . . , ⌈(r + 1)/2⌉]) + rk(x[⌈(r + 1)/2⌉+ 1, . . . , r + 1]).

Without loss of generality, suppose that rk(x[⌈(r + 1)/2⌉ + 1, . . . , r + 1]) < rk(f ′′(x[⌈(r +

1)/2⌉ + 1, . . . , r + 1])). As Spoiler has already pebbled x[⌈(r + 1)/2⌉ + 1, . . . , r + 1] 7→

f ′′(x[⌈(r + 1)/2⌉ + 1, . . . , r + 1]), we may iterate on this argument starting from x[⌈(r +

1)/2⌉+ 1, . . . , r + 1] 7→ f ′′(x[⌈(r + 1)/2⌉+ 1, . . . , r + 1]). Note that at most log(r + 1) + 1
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iterations are necessary until we hit the case when rk(x[⌈(r + 1)/2⌉+ 1, . . . , r + 1]) = 1 <

rk(f ′′(x[⌈(r+1)/2⌉+1, . . . , r+1])). By assumption, every element of ⟨C⟩ can be written as

a word of length at most d in the elements of C, so we have r ≤ d, and thus only O(log d)

rounds are required. (That d ≤ |⟨C⟩| follows from Fact 2.2.3.)

We claim that the preceding procedure can be implemented with at most k + 2 pebbles.

After Spoiler pebbles x[⌈(r + 1)/2⌉ + 1, . . . , r + 1], they may reuse the pebbles on x and

x[1, . . . , ⌈(r + 1)/2⌉]. We eventually reach a case in which there exists g ∈ C such that

Duplicator maps g to some element outside of C ′. In this case, Spoiler pebbles g, using the

pebble on x. Now Spoiler uses the pebbles on x[1, . . . , ⌈(r+1)/2⌉], x[⌈(r+1)/2⌉+1, . . . , r+1],

and k − 2 additional pebbles to win. In total, Spoiler has used k + 1 pebbles. In a similar

manner as Case 1, at most k − 1 additional pebbles are required to identify C.

Finally, we must handle the case of infinite rank. By symmetry, it suffices to show that

Spoiler can win in the case when rk(x) = r+1, but rk(f(x)) = ∞. In this case, the same argument

starting from the third paragraph works mutatis mutandis, as rk(f(x)) = ∞ > r + 1.

3.5 Direct Products

Brachter & Schweitzer previously showed that Weisfeiler–Leman Version II can detect direct

product decompositions in polynomial-time. Precisely, they showed that the WL dimension of a

group G is at most one more than the WL dimensions of the direct factors of G. We strengthen

the result to control for rounds, effectively showing that WL Version II can compute direct product

decompositions using O(log n) rounds.

In this section, we establish the following.

Theorem 3.5.1. Let G = G1 × · · · ×Gd be a decomposition into indecomposable direct factors, let

k ≥ 5, and let r := r(n) ∈ Ω(log n). If G and H are not distinguished by (k, r)-WL Version II,

then there exist direct factors Hi ≤ H such that H = H1 × · · · × Hd such that for all i ∈ [d], Gi

and Hi are not distinguished by (k − 1, r)-WL Version II.
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The structure and definitions in this section closely follow those of [49, Sec. 6] for ease of

comparison.

3.5.1 Preliminaries

We begin by introducing some additional preliminaries.

Definition 3.5.2. Let G1, G2 be groups, and let Zi ≤ Z(Gi) be central subgroups. Given an

isomorphism φ : Z1 → Z2, the central product of G1 and G2 with respect to φ is:

G1 ×φ G2 = (G1 ×G2)/{(g, φ(g−1)) : g ∈ Z1}.

A groupG is the (internal) central product of subgroupsG1, G2 ≤ G, provided thatG = G1G2

and [G1, G2] = {1}.

Remark 3.5.3. In general, a group may have several inherently different central decompositions.

On the other hand, indecomposable direct decompositions are unique in the following sense.

Lemma 3.5.4 (See, e.g., [171, 3.8.3]). Let G = G1× . . .×Gm = H1× . . .×Hn be two direct decom-

positions of G into directly indecomposable factors. Then n = m, and there exists a permutation

σ ∈ Sym(n) such that for all i, Gi
∼= Hσ(i) and GiZ(G) ∼= Hσ(i)Z(G).

By the preceding lemma, the multiset of subgroups {{GiZ(G)}} is invariant under automor-

phism.

Definition 3.5.5 ([49, Def. 6.3]). We say that a central decomposition {H1, H2} of G = H1H2

is directly induced if there exist subgroups Ki ≤ Hi (i = 1, 2) such that G = K1 × K2 and

Hi = KiZ(G).

Lemma 3.5.6 ([49, Lemma 6.4]). Let k ≥ 4, r ≥ 1. Let G1, G2, H1, H2 be groups such that Gi

and Hi (for all i ∈ [2]) are not distinguished by (k, r)-WL. Then G1 × G2 and H1 × H2 are not

distinguished by (k, r)-WL.
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Remark 3.5.7. Lemma 3.5.6 states that when the multiset of direct factors for G is indistinguish-

able from that of H (under (k, r)-WL), then (k, r)-WL will not distinguish G and H. However,

Lemma 3.5.6 does not address conditions under which G and H are distinguishable, with regards

to their direct factors. In particular, a group may admit multiple direct product decompositions,

even when the direct factors are indecomposable- see [128] for an example.

Remark 3.5.8. The statement of [49, Lemma 6.4] does not mention rounds; however, the proof

holds when considering rounds.

3.5.2 Abelian and Semi-Abelian Case

Definition 3.5.9 ([49, Def. 6.5]). Let G be a group. We say that x ∈ G splits from G if there

exists a complement H ≤ G such that G = ⟨x⟩ ×H.

We recall the following technical lemma [49, Lemma 6.6] that characterizes the elements that

split from an Abelian p-group.

Lemma 3.5.10 ([49, Lemma 6.6]). Let A be a finite Abelian p-group, and let A = A1 × · · · × Am

be an arbitrary cyclic decomposition. Then a = (a1, . . . , am) ∈ A splits from A if and only if there

exists some i ∈ [m] such that |a| = |ai| and ai ∈ Ai \ (Ai)
p. In particular, x splits from A if and

only if there does not exist a y ∈ A such that |xyp| < |x|.

We utilize this lemma to show that WL can detect elements that split from A.

Lemma 3.5.11. Let A,B be Abelian p-groups of order n, and let f : A → B be the bijection

Duplicator selects. If x ∈ A splits from A, but f(x) does not split from B, then Spoiler can win

with 2 pebbles and 2 rounds.

Proof. Spoiler begins by pebbling x 7→ f(x). Let f ′ : A→ B be the bijection that Duplicator selects

at the next round. As f(x) does not split from B, there exists z ∈ B such that |f(x) · zp| < |f(x)|.

Let y = (f ′)−1(z) ∈ A. Spoiler pebbles y 7→ f ′(y) = z. Now |xyp| ̸= |f(x) · zp|. So Spoiler

immediately wins.
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Remark 3.5.12. To characterize when an element splits in a general Abelian group A, we begin

by considering the decomposition of A into its Sylow subgroups: A = P1 × · · · × Pm. Now x =

(x1, . . . , xm) ∈ A splits from A if and only if for each i ∈ [m], xi is either trivial or splits from Pi.

See, e.g., [49, Lemma 6.8].

Lemma 3.5.13. Let A,B be Abelian groups. Let A = P1×· · ·×Pm and B = Q1×· · ·×Qm, where

the Pi are the Sylow subgroups of A and the Qi are the Sylow subgroups of B (for each i, Pi and

Qi are pi-subgroups for the same prime pi). Let f : A→ B be the bijection that Duplicator selects.

Let x = (x1, . . . , xm) be the decomposition of x, where xi ∈ Pi, and let f(x) = (y1, . . . , ym), where

yi ∈ Qi. Suppose that Spoiler pebbles x 7→ f(x). Let f ′ : A → B be the bijection that Duplicator

selects at the next round.

(a) If f ′(xi) ̸= yi, then Spoiler can win with 1 additional pebbles and 1 additional round.

(b) If x ∈ A splits from A, but f(x) does not split from B, then Spoiler can win with 2 pebbles

and 2 rounds.

Proof. We proceed as follows.

(a) Suppose there exists an i ∈ [m] such that f ′(xi) ̸= yi. Spoiler pebbles xi 7→ f ′(xi). Suppose

that Pi, Qi are Sylow p-subgroups of A,B respectively. As xi ∈ Pi, we have that ⟨x · x−1i ⟩

has order coprime to p. However, as f(xi) ̸= yi, ⟨f(x) · f(xi)−1⟩ has order divisible by p.

So |x · x−1i | ≠ |f(x) · f(xi)−1|. Thus, Spoiler wins at the end of this round.

(b) We recall that nilpotent groups are direct products of their Sylow subgroups. Furthermore,

for a given prime divisor p, the Sylow p-subgroup of a nilpotent group is unique and contains

all the elements whose order is a power of p. Thus, each Sylow subgroup of a nilpotent

group is characteristic as a set. So now by (a), we may assume that f ′(xi) = yi. Let

i ∈ [m] such that xi splits from Pi, but f
′(xi) = yi does not split from Qi. Spoiler pebbles

xi 7→ f ′(xi) = yi. Now by Lemma 3.5.11, applied to xi 7→ f ′(xi), Spoiler wins with 1

additional pebble (reusing the pebble on x 7→ y) and 2 additional rounds.
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We now show that Duplicator must select bijections that preserve both the center and com-

mutator subgroups setwise. Here is our first application of the Rank Lemma 3.4.4, which was not

present in [49]. We begin with the following standard definition.

Definition 3.5.14. For a group G and g ∈ G, the commutator width of g, denoted cw(g), is the

{[a, b] : a, b ∈ G}-rank (see Definition 3.4.1). The commutator width of G, denoted cw(G), is the

maximum commutator width of any element of [G,G].

Lemma 3.5.15. Let G,H be finite groups of order n. Let f : G → H be the bijection that

Duplicator selects.

(a) If f(Z(G)) ̸= Z(H), then Spoiler can win with 2 pebbles and 2 rounds.

(b) If there exist x, y ∈ G such that f([x, y]) is not a commutator [h, h′] for any h, h′ ∈ H, then

Spoiler can win with 3 pebbles and 3 rounds.

(c) If there exists g ∈ G such that cw(g) ̸= cw(f(g)), then Spoiler can win with 4 pebbles and

O(log cw(G)) ≤ O(log n) rounds.

Brachter & Schweitzer previously showed that 2-WL Version II identifies Z(G), and 3-WL

Version II identifies the commutator [G,G] [49]. Here, using our Rank Lemma 3.4.4 for commutator

width, we obtain that 4-WL identifies the commutator in O(log n) rounds.

Proof of Lemma 3.5.15 .

(a) Let x ∈ Z(G) such that f(x) ̸∈ Z(H). Spoiler begins by pebbling x 7→ f(x). Let f ′ : G→ H

be the bijection that Duplicator selects at the next round. Let y ∈ H such that f ′(x) and

y do not commute. Let a := (f ′)−1(y) ∈ G. Spoiler pebbles a 7→ f ′(a) = y and wins.

(b) Spoiler pebbles [x, y] 7→ f([x, y]). At the next two rounds, Spoiler pebbles x, y. Regardless

of Duplicator’s choices, Spoiler wins.
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(c) Apply the Rank Lemma 3.4.4 to the set of commutators. By part (b), this set is identified

by (4, O(1))-WL, so the Rank Lemma gives part (c).

By Lemma 3.5.15, Duplicator must select bijections that preserve the center and commutator

subgroups setwise (or Spoiler can win). A priori, these bijections need not restrict to isomorphisms

on the center or commutator. We note, however, that we may easily decide whether two groups have

isomorphic centers, as the center is Abelian. Precisely, by [49, Corollary 5.3], (2, 1)-WL identifies

Abelian groups. Note that we need an extra round to handle the case in which Duplicator maps

an element of Z(G) to some element not in Z(H). So (2, 2)-WL identifies both the set of elements

in Z(G) and its isomorphism type.

We now turn to detecting elements that split from arbitrary groups. To this end, we recall

the following lemma from [49].

Lemma 3.5.16 ([49, Lemma 6.9]). Let G be a finite group and z ∈ Z(G). Then z splits from G if

and only if z[G,G] splits from G/[G,G] and z ̸∈ [G,G].

We apply this lemma to show that WL can detect the set of elements that split from an

arbitrary finite group, improving [49, Corollary 6.10] to control for rounds:

Lemma 3.5.17 (Compare rounds cf. [49, Corollary 6.10]). Let G,H be finite groups. Let f : G→

H be the bijection that Duplicator selects. Suppose that x splits from G, but f(x) does not split

from H. Then Spoiler can win with 4 pebbles and O(log n) rounds.

Proof. By Lemma 3.5.15, we have that if x ̸∈ [G,G] but f(x) ∈ [H,H], then Spoiler can win

with 4 pebbles and O(log n) rounds. So suppose that x ̸∈ [G,G] and f(x) ̸∈ [H,H]. It suffices

to check whether x[G,G] splits from G/[G,G], but f(x)[H,H] does not split from H/[H,H]. By

[49, Lemma 4.11], it suffices to consider the pebble game on (G/[G,G], H/[H,H]). To this end, we

apply Lemma 3.5.13 to G/[G,G] and H/[H,H].
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As f([G,G]) = [H,H], f induces a bijection f : G/[G,G] → H/[H,H] on the cosets. As f

was an arbitrary bijection that preserves [G,G], we may assume WLOG that Duplicator selected

f in the quotient game on (G/[G,G], H/[H,H]). The result now follows.

We now consider splitting in two special cases.

Lemma 3.5.18 ([49, Lemma 6.11]). Let U ≤ G and x ∈ Z(G) ∩ U . If x splits from G, then x

splits from U .

Lemma 3.5.19 ([49, Lemma 6.12]). Let G = G1 ×G2, and let z := (z1, z2) ∈ Z(G) be an element

of order pk for some prime p. Then z splits from G if and only if there exists an i ∈ {1, 2} such

that zi splits from Gi and |zi| = |z|.

We now consider the semi-Abelian case. Here our groups are of the form H × A, where H

has no Abelian direct factors and A is Abelian.

Theorem 3.5.20 (Compare rounds cf. [49, Lemma 6.13]). Let G1 = H × A, with a maximal

Abelian direct factor A. Then the isomorphism class of A is identified by (4, O(1))-WL Version II.

That is, if (4, O(1))-WL fails to distinguish G and G̃, then G̃ has a maximal Abelian direct factor

isomorphic to A.

Proof. We adapt the proof of [49, Lemma 6.13] to control for rounds. Let G̃ be a group such that

(4, O(1))-WL fails to distinguish G and G̃. By Lemma 3.5.15 and the subsequent discussion, we

may assume that Z(G) ∼= Z(G̃) using (2, 2)-WL Version II. As Abelian groups are direct products

of their Sylow subgroups, it follows that Z(G) and Z(G̃) have isomorphic Sylow subgroups. Write

G̃ = H̃ × Ã, where Ã is the maximal Abelian direct factor. As Z(G) ∼= Z(G̃), we write Z for the

Sylow p-subgroup of Z(G) ∼= Z(G̃). Consider the primary decomposition of Z:

Z := Z1 × . . .× Zm,

where Zi
∼= (Z/piZ)ei , for ei ≥ 0. For each i ∈ [m], there exist subgroups Hi ≤ Z(H) and Ai ≤ A

such that Zi
∼= Hi × Ai. Similarly, there exist H̃i ≤ H̃ and Ãi ≤ Ã such that Zi

∼= H̃i × Ãi. As
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Z(G) ∼= Z(G̃), we have that Hi ×Ai
∼= H̃i × Ãi. It suffices to show that each Ai

∼= Ãi. As H does

not have any Abelian direct factors, we have by [49, Lemma 6.12] (reproduced as Lemma 3.5.19

above) that a central element x of order pi splits from G if and only if the projection of x onto Ai,

denoted Ai(x), has order p
i. The same holds for G̃ and the Ãi factors. By Lemma 3.5.13, we may

assume that Duplicator selects bijections f : G → H such that if x ∈ Z(G) splits from Zi, then

f(x) splits from f(Zi). The result follows.

We now recall the definition of a component-wise filtration, introduced by Brachter & Schweitzer

[49] to control the non-Abelian part of a direct product.

Definition 3.5.21 ([49, Def. 6.14]). Let G = L×R, and let πL (resp. πR) be the natural projection

map onto L with kernel R (resp., the natural projection onto R with kernel L). A component-wise

filtration of U ≤ G with respect to L and R is a chain of subgroups {1} = U0 ≤ · · · ≤ Ur = U , such

that for all i ∈ [r], we have that Ui+1 ≤ πL(Ui×{1}) or Ui+1 ≤ πR({1}×Ui). For J ∈ {I, II, III},

the filtration is k-WLJ -detectable, provided all subgroups in the chain are k-WLJ -detectable.

Brachter & Schweitzer previously showed [49, Lemma 6.15] that there exists a component-

wise filtration of Z(G) with respect to H and A that is 4-WLI -detectable. We extend this result to

control for rounds. The proof that such a filtration exists is identical to that of [49, Lemma 6.15];

we get a bound on the rounds using our Lemma 3.5.17, which is a round-controlled version of their

Corollary 6.10. For completeness, we indicated the needed changes here.

Lemma 3.5.22. Let G = H × A, with maximal Abelian direct factor A. The component-wise fil-

tration of Z(G) with respect to H and A from [49, Lemma 6.15] (reproduced above) is (4, O(log n))-

WLII-detectable.

Proof. Their proof that the filtration is 4-WL detectable uses only two parts: the fact that central

e-th powers are detectable, and their Corollary 6.10. Using our Lemma 3.5.17 in place of their

Corollary 6.10, we get 4 pebbles and O(log n) rounds, so all that is left to handle is central e-th

powers. Suppose Duplicator selects a bijection f : G → H where g = xe for some x ∈ Z(G) and
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f(g) is not a central eth power. We have already seen that Duplicator must map the center to the

center, so we need only handle the condition of being an e-th power. At the first round, Spoiler

pebbles g 7→ f(g). At the next round, Spoiler pebbles x and wins. Thus Spoiler can win with 2

pebbles in 2 rounds.

We now show that in the semi-Abelian case G = H ×A, with maximal Abelian direct factor

A, the WL dimension of G depends on the WL dimension of H.

Lemma 3.5.23 (Compare rounds to [49, Lemma 6.16]). Let G = H × A and G̃ = H̃ × Ã, where

A and Ã are maximal Abelian direct factors. Let k ≥ 5 and r ∈ Ω(log n). If (k − 1, r)-WL fails to

distinguish G and G̃, then (k, r)-WL fails to distinguish H and H̃.

Proof. By Theorem 3.5.20, we may assume that A ∼= Ã. Consider the component-wise filtrations

from the proof of [49, Lemma 6.15], {1} = U0 ≤ · · · ≤ Ur = Z(G) with respect to the decomposition

G = H ×A and {1} = Ũ0 ≤ · · · ≤ Ũr = Z(G̃) with respect to the decomposition G̃ = H̃ × Ã.

Let Vi,Wi, Ṽi, W̃i be as defined in the proof of [49, Lemma 6.15] and recalled above. We

showed in the proof of Lemma 3.5.22 that for any bijection f : G→ G̃ Duplicator selects, f(Vi) = Ṽi

and f(Wi) = W̃i, or Spoiler may win with 4 pebbles and O(log n) rounds.

In the proof of [49, Lemma 6.16], Brachter & Schweitzer established that for all 1 ̸= x ∈

Z(H) × {1} and all 1 ̸= y ∈ {1} × A, min{i : x ∈ Ui} ≠ min{i : y ∈ Ui}. Furthermore, by [49,

Lemma 4.14], we may assume that Duplicator selects bijections at each round that respect the

subgroup chains and their respective cosets, without altering the number of rounds (their proof

is round-by-round). It follows that whenever g1g
−1
2 ∈ Z(H) × {1}, we have that f(g1)f(g2)

−1 ̸∈

{1} ×A.

Furthermore, Brachter & Schweitzer also showed in the proof of [49, Lemma 6.16] that

Duplicator must map H × {1} to a system of representatives modulo {1} × Ã. Thus, Spoiler

can restrict the game to H × {1}. Now if (k, r)-WL Version II distinguishes H and H̃, then

Spoiler can ultimately reach a configuration ((h1, 1), . . . , (hk−1, 1)) 7→ (x1, a1), . . . , (xk−1, ak−1)

such that the induced configuration over (G/({1} × A), G̃/({1} × Ã)) fulfills the winning condi-
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tion for Spoiler. That is, considered as elements of G/({1} × A) (resp., G̃/({1} × Ã)), the map

(h1, . . . , hk−1) 7→ (x1, . . . , xk−1) does not extend to an isomorphism. This implies that the peb-

bled map ((h1, 1), . . . , (hk−1, 1)) 7→ (x1, a1), . . . , (xk−1, ak−1) in the original groups (rather than

their quotients) does not extend to an isomorphism. For suppose f is any bijection extending

the pebbled map. By the above, without loss of generality, f maps H × {1} to a system of

coset representatives of {1} × Ã, that is, if Duplicator can win, Duplicator can win with such a

map. Let f be the induced bijection on the quotients G/({1} × A) → G̃/({1} × Ã). Since the

pebbled map on the quotients does not extend to an isomorphism, there is a word w such that

f(w(h1, . . . , hk−1)) ̸= w(x1, . . . , xk−1). But then when we consider f restricted to H ×{1}, we find

that f(w((h1, 1), . . . , (hk−1, 1))) = f((w(h1, . . . , hk−1), 1)) ̸= (w(x1, . . . , xk−1), w(a1, . . . , ak−1)), be-

cause their H coordinates are different.

Lemma 3.5.23 yields the following corollary.

Corollary 3.5.24. Let G = H×A, where H is identified by (O(1), O(log n))-WL and does not have

an Abelian direct factor, and A is Abelian. Then (O(1), O(log n))-WL identifies G. In particular,

isomorphism testing of G and an arbitrary group G̃ is in TC1.

Proof. By Lemma 3.5.23, as H is identified by (O(1), O(log n))-WL, we have that G is identified by

(O(1), O(log n))-WL. As only O(log n) rounds are required, we apply the parallel WL implementa-

tion due to Grohe & Verbitsky [104] to obtain the bound of TC1 for isomorphism testing.

Remark 3.5.25. Das & Sharma [72] previously exhibited a nearly-linear time algorithm for groups

of the form H × A, where H has size O(1) and A is Abelian. Corollary 3.5.24 generalizes this to

the setting where H is O(1)-generated. While Corollary 3.5.24 does not improve the runtime, it

does establish a new parallel upper bound for isomorphism testing.

3.5.3 General Case

Following the strategy in [49], we reduce the general case to the semi-Abelian case. Consider a

direct decomposition G = G1× . . .×Gd, where each Gi is directly indecomposable. The multiset of
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subgroups {{GiZ(G)}} is independent of the choice of decomposition. We first show that Weisfeiler–

Leman detects
⋃

iGiZ(G). Next, we utilize the fact that the connected components of the non-

commuting graph on G, restricted to
⋃

iGiZ(G), correspond to the subgroups GiZ(G).

Definition 3.5.26. For a group G, the non-commuting graph XG has vertex set G, and an edge

{g, h} precisely when [g, h] ̸= 1.

Proposition 3.5.27 ([1, Proposition 2.1]). If G is non-Abelian, then XG[G \ Z(G)] is connected.

Our goal now is to first construct a canonical central decomposition of G that is detectable

by WL. This decomposition will serve to approximate
⋃

iGiZ(G) from below.

Definition 3.5.28 ([49, Definition 6.19]). Let G be a finite, non-Abelian group. Let M1 be the

set of non-central elements g whose centralizers CG(g) have maximal order among all non-central

elements. For i ≥ 1, define Mi+1 to be the union of Mi and the set of elements g ∈ G \ ⟨Mi⟩ that

have maximal centralizer order |CG(g)| amongst the elements in G \ ⟨Mi⟩. Let M := M∞ be the

stable set resulting from this procedure.

Consider the subgraph XG[M ], and let X1, . . . , Xm be the connected components. Set Ni :=

⟨Xi⟩. We refer to N1, . . . , Nm as the non-Abelian components of G.

Brachter & Schweitzer previously established the following [49].

Lemma 3.5.29 ([49, Lemma 6.20]). In the notation of Definition 3.5.28, we have the following.

(a) M is 3-WLII-detectable.

(b) G = N1 · · ·Nm is a central decomposition of G. For all i, Z(G) ≤ Ni and Ni is non-Abelian.

In particular, M generates G.

(c) If G = G1× . . .×Gd is an arbitrary direct decomposition, then for each i ∈ [m], there exists

a unique j ∈ [d] such that Ni ⊆ GjZ(G). Collect all such i for one fixed j in an index set

Ij. Then

Nj1Nj2 · · ·Njℓ = GjZ(G),
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where Ij = {j1, . . . , jℓ}.

We note that Lemma 3.5.29 (b)-(c) are purely group theoretic statements. For our purposes,

it is necessary, however, to adapt Lemma 3.5.29 (a) to control for rounds. This is our second use

of our Rank Lemma 3.4.4, this time applied to the set Mi from Definition 3.5.28.

Lemma 3.5.30. Let G and H be finite non-Abelian groups, let Mi,G (resp., Mi,H) denote the sets

from Definition 3.5.28 for G (resp., H). Let f : G → H be a bijection that Duplicator selects. If

for some i, rkMi,G
(g) ̸= rkMi,H

(f(g)), then Spoiler can win with 3 pebbles and O(log n) rounds.

Proof. LetMi,G,MG be the sets in G as in Definition 3.5.28, and letMi,H ,MH be the corresponding

sets in H. We show that f(Mi,G) = Mi,H and f(⟨Mi,G⟩) = ⟨Mi,H⟩. These statements imply

that f(MG) = MH . The proof proceeds by induction over i, and within each i, we use the

Rank Lemma 3.4.4 applied to Mi-rank. Note that each Mi is closed under taking inverses, since

CG(g) = CG(g
−1).

We first note that if |CG(g)| ̸= |CH(f(g))|, then Duplicator may win with 2 pebbles and 2

rounds. Without loss of generality, suppose that |CG(g)| > |CH(f(g))|. Spoiler pebbles g 7→ f(g).

Let f ′ : G → H be the bijection that Duplicator selects at the next round. Now there exists

x ∈ CG(g) such that f ′(x) ̸∈ CH(f(g)). Spoiler pebbles x 7→ f ′(x) and wins immediately.

Thus M1,G is identified by (2, 2)-WL. By the Rank Lemma 3.4.4 applied to M1-rank, we get

that f(⟨M1,G⟩) = ⟨M1,H⟩ or Spoiler can win with 3 pebbles in O(log n) rounds.

As Duplicator must select bijections f : G → H where f(⟨M1,G⟩) = ⟨M1,H⟩, we may iterate

on the above argument replacing 1 with i, to obtain that f(Mi,G) =Mi,H and f(⟨Mi,G⟩) = ⟨Mi,H⟩.

The result now follows by induction.

Definition 3.5.31. Let G = N1 · · ·Nm be the decomposition into non-Abelian components, and let

G = G1×· · ·×Gd be an arbitrary direct decomposition. We say that x ∈ G is full for (Gj1 , . . . , Gjr),

if

{i ∈ [m] : [x,Ni] ̸= 1} =
r⋃

ℓ=1

Ijℓ ,
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where the Ijℓ are as in Lemma 3.5.29 (c). For all x ∈ G, define Cx :=
∏

[x,Ni]={1}Ni and Nx =∏
[x,Ni] ̸={1}Ni.

We now recall some technical lemmas from [49].

Remark 3.5.32 ([49, Observation 6.22]). For an arbitrary collection of indices J ⊆ [m], the group

elements x ∈ G that have Cx =
∏

i∈J Ni are exactly those elements of the form x = z
∏

i∈J ni

with z ∈ Z(G) and ni ∈ Ni \ Z(G). In particular, full elements exist for every collection of non-

Abelian direct factors and any direct decomposition, and they are exactly given by products over

non-central elements from the corresponding non-Abelian components.

Lemma 3.5.33 ([49, Lemma 6.23]). Let G be non-Abelian, and let G = G1 × · · · × Gd be an

indecompsable direct decomposition. For all x ∈ G, we have a central decomposition G = CxNx,

with Z(G) ≤ Cx ∩Nx. The decomposition is directly induced if and only if x is full for a collection

of direct factors of G.

Lemma 3.5.34 (Compare rounds cf. [49, Lemma 6.24]). Let G = G1×G2. For k ≥ 4, r ∈ Ω(log n),

assume that (k, r)-WL Version II detects G1Z(G) and G2Z(G). Let H be a group such that (k, r)-

WL Version II does not distinguish G and H. Then for i ∈ {1, 2}, there exist subgroups Hi ≤ H

such that H = H1 ×H2 and (k, r)-WL does not distinguish GiZ(G) and HiZ(H).

Proof. The proof is largely identical to that of [49, Lemma 6.24]. We adapt their proof to control

for rounds.

As (k, r)-WL detects G1Z(G) and G2Z(G), we have that for any two bijections f, f ′ : G→ H

that f(GiZ(G)) = f ′(GiZ(G)) for i ∈ {1, 2}. It follows that there exist subgroups of H̃i ≤ H such

that f(GiZ(G)) = H̃i. As Z(G) ≤ GiZ(G), we have necessarily that Z(H) ≤ H̃i. Consider the

decompositions Z(G) = Z(G1)×Z(G2) and GiZ(G) = Gi ×Z(Gi+1 mod 2). By Lemma 3.5.19, we

have that if x splits from Z(G), then x also splits from G1Z(G) or G2Z(G).

Write H̃i = Ri ×Bi, where Bi is a maximal Abelian direct factor of H̃i.

Claim 1: For all choices of Ri, Bi, it holds that R1∩R2 = {1}. Otherwise, Spoiler
can win with 2 additional pebbles and 2 additional rounds.
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Proof of Claim 1. By assumption, H̃1∩ H̃2 = Z(H). So R1∩R2 ≤ Z(H). Suppose
to the contrary that there exists z ∈ R1 ∩ Z2 such that |z| = p for some prime
p. Then there also exists a central p-element w that splits from Z(H) and where

z ∈ ⟨w⟩ (for instance, we may take w to be a root of zp
N
, where N is the largest

p-power order in the Abelian group Z(H)). Write w = (ri, bi) with respect to the

chosen direct decomposition for H̃i. As z ∈ ⟨w⟩, we have that wm = z ∈ R1 ∩ R2.
So wm ̸= 1. Furthermore, we may write wm = (rm1 , 1) = (rm2 , 1). As w has p-power
order, we have as well that |bi| < |ri| for each i ∈ {1, 2}. Now w does not split from

H̃i; otherwise, by Lemma 3.5.19, we would have that ri splits from Ri. However,
neither R1 nor R2 admit Abelian direct factors.

It follows that w splits from Z(H), but not from H̃1 or H̃2. Such elements do
not exist in G1Z(G) or G2Z(G). Thus, in this case, we have by Lemma 3.5.17 that
Spoiler can win with 2 additional pebbles and 2 additional rounds.

We next consider maximal Abelian direct factors A ≤ G and B ≤ H. Write H = R × B. By

Theorem 3.5.20, we may assume that A ∼= B. We now argue that R1 and R2 can be chosen such

that R1R2 ∩B = {1}. For i ∈ {1, 2}, we may write:

H̃i = ⟨(r1, b1), . . . , (rt, bt)⟩ ≤ R×B.

As B ≤ H̃i, we have that:

H̃i = ⟨(r1, 1), (1, b1), . . . , (rt, 1), (bt, 1)⟩ = ⟨(r1, 1), . . . , (rt, 1)⟩ ×B.

It follows that we may choose R1R2 ≤ R. By Claim 1, we have that R1 ∩ R2 = {1}. So

R1R2B = R1 ×R2 ×B ≤ H. As (k, r)-WL fails to distinguish G and H, we have necessarily that

|R1| · |R2| · |B| = |H|. So in fact, H = R1 ×R2 ×B, which we may write as (R1 ×B1)× (R2 ×B2),

where Bi ≤ Hi are chosen such that B = B1×B2 and Bi is isomorphic to a maximal Abelian direct

factor of Gi. Furthermore, we have that RiZ(H) = H̃i, by construction. The result follows.

Lemma 3.5.35. Let G = N1 · · ·Nm and H = Q1 · · ·Qm be the decompositions of G and H into

non-Abelian components. Let G = G1 × . . . × Gd be a decomposition into indecomposable direct

factors. Let f : G→ H be the bijection that Duplicator selects. Let k ≥ 4, r ∈ Ω(log n). If x ∈ G is

full for (Gj1 , . . . , Gjr), but f(x) is not full for a collection (Hj1 , . . . ,Hjr) of indecomposable direct

factors of H, then Spoiler may win with 5 pebbles and O(log n) rounds.
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Proof. Spoiler begins by pebbling x 7→ f(x). Let f ′ : G → H be the bijection Duplicator selects

at the next round. By Lemma 3.5.30, we may assume that f ′(Nx) = Nf(x) and f
′(Cx) = Cf(x), or

Spoiler wins with 3 pebbles and O(log n) rounds. So suppose that x and f(x) are not distinguished

by (k, r)-WL. Then as the central decomposition G = CxNx is directly induced, we have that by

Lemma 3.5.34, the central decomposition H = Cf(x)Nf(x) has to be directly induced or Spoiler can

win with 4 pebbles and O(log n) rounds. So by Lemma 3.5.33, we have that f(x) is full.

As Duplicator preserves Cx and Nx, we obtain that if x is full for a collection of r direct

factors, then so is f(x).

Corollary 3.5.36. Let G = G1 × . . . × Gd be a decomposition of G into directly indecomposable

factors. Let H be arbitrary. Let FG be the set of full elements for G, and define FH analogously.

If Duplicator does not select a bijection f : G→ H satisfying:

f

 ⋃
g∈FG

Ng

 =
⋃

h∈FH

Nh,

then Spoiler can win using 5 pebbles and O(log n) rounds.

Proof. By Lemma 3.5.35, we may assume that f(FG) = FH (or Spoiler wins with 4 pebbles and

O(log n) rounds). Now suppose that for some g ∈ G that there exists an x ∈ Ng such that

f(x) ̸∈ Nh for any h ∈ FH . Spoiler pebbles x 7→ f(x). Let f ′ : G→ H be the bijection Duplicator

selects at the next round. Again, we may assume that f(FG) = FH (or Spoiler wins). Spoiler now

pebbles g 7→ f ′(g). Now on any subsequent bijection, Duplicator cannot map Ng 7→ Nf ′(g). So by

Lemma 3.5.30, Spoiler wins with 4 additional pebbles and O(log n) rounds.

Theorem 3.5.37. Let k ≥ 5, r ∈ Ω(log n). Let G be a non-Abelian group, and let G = G1×. . .×Gd

be a decomposition into indecomposable direct factors. If (k, r)-WL Version II fails to distinguish

G and H, then there exist indecomposable direct factors Hi ≤ H such that H = H1 × . . . × Hd

and (k − 1, r)-WL Version II fails to distinguish Gi and Hi for all i ∈ [d]. Furthermore, G and

H have isomorphic maximal Abelian direct factors and (k, r)-WL fails to distinguish GiZ(G) from

HiZ(H).
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Proof. Without loss of generality, we may assume that H is non-Abelian as well. Let f : G→ H be

the bijection that Duplicator selects. By Corollary 3.5.36, we may assume that Duplicator preserves

the full elements (or Spoiler wins with 4 pebbles and O(log n) rounds); that is, f(FG) = FH . It

follows that H must admit a decomposition H = H1 × . . .×Hℓ, where the Hj factors are directly

indecomposable and FH =
⋃

j HjZ(H) ⊆ H, which we again note is indistinguishable from FG.

Let XG be the non-commmuting graph of G, and let XH be the non-commuting graph of H. Recall

from [1, Proposition 2.1] that as G,H are non-Abelian, XG and XH are connected.

As different direct factors centralize each other, we obtain that for each non-singleton con-

nected component in K of XG[FG] that there exists a unique indecomposable direct factor Gi such

thatK = GiZ(G)\Z(G). Thus, GiZ(G) = ⟨K⟩. Again by [1, Proposition 2.1], all such non-Abelian

direct factors appear in this way.

We note that the claims in the preceeding paragraph applies to H as well. So if (k, r)-WL

Version II does not distinguish G and H, there must exist a bijection between the connected com-

ponents of XG[FG] and XH [FH ]. Namely, we may assume that G and H admit a decomposition

into ℓ = d directly indecomposable factors, and that these subgroups are indistinguishable by

(k, r)-WL. In particular, we have a correspondence (after an appropriate reordering of the factors)

between GiZ(H) and HiZ(H), where GiZ(H) and HiZ(H) are not distinguished by (k, r)-WL.

By Lemma 3.5.23, we have that (k, r)-WL Version II does not distinguish Gi from Hi. By Theo-

rem 3.5.20, G and H must have isomorphic maximal Abelian direct factors. So when Gi, Hi are

Abelian, we even have Gi
∼= Hi.

3.6 Weisfeiler–Leman for Semisimple Groups

In this section, we show that Weisfeiler–Leman can be fruitfully used as a tool to improve

the parallel complexity of isomorphism testing of groups with no Abelian normal subgroups, also

known as semisimple or Fitting-free groups. The main result of this section is:

Theorem 3.6.1. Let G be a semisimple group, and let H be arbitrary. We can test isomorphism
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between G and H using an SAC circuit of depth O(log n) and size nΘ(log logn). Furthermore, all

such isomorphisms can be listed in this bound.

The previous best complexity upper bounds were P for testing isomorphism [30], and

DTIME(nO(log logn)) for listing isomorphisms [29].

We start with what we can observe from known results about direct products of simple

groups. Brachter & Schweitzer previously showed that 3-WL Version II identifies direct products

of finite simple groups. A closer analysis of their proofs [49, Lemmas 5.20 & 5.21] show that only

O(1) rounds are required. Thus, we obtain the following.

Corollary 3.6.2 (cf. Brachter & Schweitzer [49, Lemmas 5.20 & 5.21]). Isomorphism between a

direct product of non-Abelian simple groups and an arbitrary group can be decided in L.

Our parallel machinery also immediately lets us extend a similar result to direct products of

almost simple groups (a group G is almost simple if there is a non-Abelian simple group S such

that Inn(S) ≤ G ≤ Aut(S); equivalently, if Soc(G) is non-Abelian simple).

Corollary 3.6.3. Isomorphism between a direct product of almost simple groups and an arbitrary

group can be decided in TC1.

Proof. Because almost simple groups are 3-generated [70], they are identified by (O(1), O(1))-WL.

By Theorem 3.5.1, direct products of almost simple groups are thus identified by (O(1), O(log n))-

WL.

3.6.1 Preliminaries

We recall some facts about semisimple groups from [29]. As a semisimple group G has no

Abelian normal subgroups, we have that Soc(G) is the direct product of non-Abelian simple groups.

The conjugation action of G on Soc(G) permutes the direct factors of Soc(G). So there exists a

faithful permutation representation α : G → G∗ ≤ Aut(Soc(G)). G is determined by Soc(G) and

the action α. Let H be a semisimple group with the associated action β : H → Aut(Soc(H)). We

have that G ∼= H precisely if Soc(G) ∼= Soc(H) via an isomorphism that makes α equivalent to β.
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We now introduce the notion of permutational isomorphism, which is our notion of equiva-

lence for α and β. Let A and B be finite sets, and let π : A→ B be a bijection. For σ ∈ Sym(A), let

σπ ∈ Sym(B) be defined by σπ := π−1σπ. For a set Σ ⊆ Sym(A), denote Σπ := {σπ : σ ∈ Σ}. Let

K ≤ Sym(A) and L ≤ Sym(B) be permutation groups. A bijection π : A → B is a permutational

isomorphism K → L if Kπ = L.

The following lemma, applied with R = Soc(G) and S = Soc(H), precisely characterizes

semisimple groups [29].

Lemma 3.6.4 ([29, Lemma 3.1]). Let G and H be groups, with R ◁ G and S ◁ H groups with

trivial centralizers. Let α : G → G∗ ≤ Aut(R) and β : H → H∗ ≤ Aut(S) be faithful permutation

representations of G and H via the conjugation action on R and S, respectively. Let f : R→ S be

an isomorphism. Then f extends to an isomorphism f̂ : G→ H if and only if f is a permutational

isomorphism between G∗ and H∗; and if so, f̂ = αf∗β−1, where f∗ : G∗ → H∗ is the isomorphism

induced by f .

We also need the following standard group-theoretic lemmas. The first provides a key condi-

tion for identifying whether a non-Abelian simple group belongs in the socle. Namely, if S1 ∼= S2

are non-Abelian simple groups where S1 is in the socle and S2 is not in the socle, then the normal

closures of S1 and S2 are non-isomorphic. In particular, the normal closure of S1 is a direct product

of non-Abelian simple groups, while the normal closure of S2 is not a direct product of non-Abelian

simple groups. We will apply this condition later when S1 is a simple direct factor of Soc(G); in

which case, the normal closure of S1 is of the form Sk
1 . We include the proofs of these two lemmas

for completeness.

Lemma 3.6.5. Let G be a finite semisimple group. A subgroup S ≤ G is contained in Soc(G) if

and only if the normal closure of S is a direct product of nonabelian simple groups.

Proof. Let N be the normal closure of S. Since the socle is normal in G and N is the smallest

normal subgroup containing S, we have that S is contained in Soc(G) if and only if N is.
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Suppose first that S is contained in the socle. Since Soc(G) is normal and contains S, by

the definition of N we have that N ≤ Soc(G). As N is a normal subgroup of G, contained in

Soc(G), it is a direct product of minimal normal subgroups of G, each of which is a direct product

of non-Abelian simple groups.

Conversely, suppose N is a direct product of nonabelian simple groups. We proceed by

induction on the size of N . If N is minimal normal in G, then N is contained in the socle by

definition. If N is not minimal normal, then it contains a proper subgroup M ⪇ N such that

M is normal in G, hence also M ⊴ N . However, as N is a direct product of nonabelian simple

groups T1, . . . , Tk, the only subgroups of N that are normal in N are direct products of subsets

of {T1, . . . , Tk}, and all such normal subgroups have direct complements. Thus we may write

N = L×M where both L,M are nontrivial, hence strictly smaller than N , and both L and M are

direct product of nonabelian simple groups.

We now argue that L must also be normal in G. Since conjugating N by g ∈ G is an

automorphism of N , we have that N = gLg−1×gMg−1. SinceM is normal in G, the second factor

here is just M , so we have N = gLg−1 ×M . But since the direct complement of M in N is unique

(since N is a direct product of non-Abelian simple groups), we must have gLg−1 = L. Thus L is

normal in G.

By induction, both L and M are contained in Soc(G), and thus so is N . We conclude since

S ≤ N .

Corollary 3.6.6. Let G be a finite semisimple group. A nonabelian simple subgroup S ≤ G is a

direct factor of Soc(G) if and only if its normal closure N = nclG(S) is isomorphic to Sk for some

k ≥ 1 and S ⊴N .

Proof. Let S be a nonabelian simple subgroup of G. If S is a direct factor of Soc(G), then Soc(G) =

Sk × T for some k ≥ 1 and some T ; choose T such that k is maximal. Then the normal closure

of S is a minimal normal subgroup of Soc(G) which contains S as a normal subgroup. Since the

normal subgroups of a direct product of nonabelian simple groups are precisely direct products of
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subsets of the factors, the normal closure of S is some Sk′ for 1 ≤ k′ ≤ k.

Conversely, suppose the normal closure N of S is isomorphic to Sk for some k ≥ 1 and S⊴N .

By Lemma 3.6.5, S is in Soc(G), and thus so is N (being the normal closure of a subgroup of the

socle). Furthermore, as a normal subgroup of G contained in Soc(G), N is a direct product of

minimal normal subgroups and a direct factor of Soc(G) (in fact it is minimal normal itself, but we

haven’t established that yet, nor will we need to). Since S is a normal subgroup of N , and N is a

direct product of non-Abelian simple groups, S is a direct factor of N . Since N is a direct factor of

Soc(G), and S is a direct factor of N , S is a direct factor of Soc(G). This completes the proof.

Lemma 3.6.7. Let S1, . . . , Sk ≤ G be nonabelian simple subgroups such that for all distinct i, j ∈ [k]

we have [Si, Sj ] = 1. Then ⟨S1, . . . , Sk⟩ = S1S2 · · ·Sk = S1 × · · · × Sk.

Proof. By induction on k. The base case k = 1 is vacuously true. Suppose k ≥ 2 and that the

result holds for k − 1. Then T := S1S2 · · ·Sk−1 = S1 × · · · × Sk−1. Now, since Sk commutes with

each Si, and they generate T , we have that [Sk, T ] = 1. Hence T is contained in the normalizer (or

even the centralizer) of Sk, so TSk = SkT = ⟨T, Sk⟩, and Sk and T are normal subgroups of TSk.

As TSk = ⟨T, Sk⟩ and T, Sk are both normal subgroups of TSk with [T, Sk] = 1, we have that TSk

is a central product of T and Sk. As Z(T ) = Z(Sk) = 1, it is their direct product.

3.6.2 Groups without Abelian Normal Subgroups in Parallel

Here we establish Theorem 3.6.1. We begin with the following.

Proposition 3.6.8. Let G be a semisimple group of order n, and let H be an arbitrary group of

order n. If H is not semisimple, then 3-WL will distinguish G and H in at most 4 rounds.

Proof. Recall that a group is semisimple if and only if it contains no Abelian normal subgroups.

As H is not semisimple, Soc(H) = A× T , where A is the non-trivial direct product of elementary

Abelian groups and T is a direct product of non-Abelian simple groups. We show that Spoiler can

win using at most 3 pebbles on the board and at most 4 rounds. Let f : G → H be the bijection

that Duplicator selects. Let a ∈ A such that a ̸= 1. So nclH(a) ≤ A. Let b := f−1(a) ∈ G (note
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that as a ̸= 1, we have that b ̸= 1; otherwise, Spoiler immediately wins by pebbling b 7→ a), and

let B := nclG(b). As G is semisimple, we have that B is not Abelian. Spoiler begins by pebbling

b 7→ a.

So there exist g1, g2 ∈ G such that g1bg
−1
1 and g2bg

−1
2 do not commute (for B is generated

by {gbg−1 : g ∈ G}, and if they all commuted then B would be Abelian). Let f ′, f ′′ : G → H

be the bijections that Duplicator selects at the next two rounds. Spoiler pebbles g1 7→ f ′(g1)

and g2 7→ f ′′(g2) at the next two rounds. As ncl(a) ≤ A is Abelian, f ′(g1)f(b)f
′(g1)

−1 and

f ′′(g2)f(b)f
′′(g2)

−1 commute. Spoiler now wins.

We now apply Lemma 3.6.5 to show that Duplicator must map the direct factors of Soc(G)

to isomorphic direct factors of Soc(H).

Lemma 3.6.9. Let G,H be finite semisimple groups of order n. Let Fac(Soc(G)) denote the set

of simple direct factors of Soc(G). Let S ∈ Fac(Soc(G)) be a non-Abelian simple group. Let a ∈ S,

and let f : G→ H be the bijection that Duplicator selects.

(a) If f(a) does not belong to some element of Fac(Soc(H)), or

(b) If there exists some T ∈ Fac(Soc(H)) such that f(a) ∈ T , but S ̸∼= T ,

then Spoiler wins with at most 4 pebbles and 5 rounds.

Proof. Spoiler begins by pebbling a 7→ f(a). At the next two rounds, Spoiler pebbles generators

x, y for S. Let f ′ : G → H be the bijection Duplicator selects at the next round. Denote T :=

⟨f ′(x), f ′(y)⟩. We note that if T ̸∼= S or f(a) ̸∈ T , then Spoiler wins.

So suppose that f(a) ∈ T and T ∼= S. We have two cases.

� Case 1: Suppose first that T does not belong to Soc(H). As S◁Soc(G), the normal closure

ncl(S) is minimal normal in G [124, Exercise 2.A.7]. As T is not even contained in Soc(H),

we have by Lemma 3.6.5 that ncl(T ) is not a direct product of non-Abelian simple groups,

so ncl(S) ̸∼= ncl(T ). We note that ncl(S) = ⟨{gSg−1 : g ∈ G}⟩.
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As ncl(T ) is not isomorphic to a direct power of S, there is some conjugate gSg−1 ̸= S

such that f ′(g)Tf ′(g)−1 does not commute with T , by Lemma 3.6.7. Yet since S⊴Soc(G),

gSg−1 and S do commute. Spoiler moves the pebble pair from a 7→ f(a) and pebbles g with

f ′(g). Since Spoiler has now pebbled x, y, g which generate ⟨S, gSg−1⟩ = S×gSg−1 ∼= S×S

but the image is not isomorphic to S × S, the map (x, y, g) 7→ (f ′(x), f ′(y), f ′(g)) does not

extend to an isomorphism of S×T . Spoiler now wins. In total, Spoiler used 3 pebbles and

4 rounds.

� Case 2: Suppose instead that T ≤ Soc(H), but that T is not normal in Soc(H). As T is not

normal in Soc(H), there exists Q = ⟨q1, q2⟩ ∈ Fac(Soc(H)) such that Q does not normalize

T . At the next two rounds, Spoiler pebbles q1, q2, and their respective preimages, which

we label r1, r2. When pebbling r1 7→ q1, we may assume that Spoiler moves the pebble

placed on a 7→ f(a). By Case 1, we may assume that r1, r2 ∈ Soc(G), or Spoiler wins with

an additional 1 pebble and 1 round. Now as S ⊴ Soc(G), ⟨r1, r2⟩ normalizes S. However,

Q does not normalize T . So the pebbled map (x, y, r1, r2) 7→ (f ′(x), f ′(y), q1, q2) does not

extend to an isomorphism. Thus, Spoiler used 4 pebbles and 5 rounds.

Lemma 3.6.10. Let G be a semisimple group. There is a logspace algorithm that decides, given

g1, g2 ∈ G, whether ⟨g1, g2⟩ ∈ Fac(Soc(G)).

Proof. Using a membership test [39, 185], we may enumerate the elements of S := ⟨g1, g2⟩ by

a logspace transducer. We first check whether S is simple. For each g ∈ S, we check whether

nclS(g) = S. This check is L-computable [192, Thm. 7.3.3].

It remains to check whether S ∈ Fac(Soc(G)). By Corollary 3.6.6, S ∈ Fac(Soc(G)) if and

only if N := nclG(S) = Sk for some k and S ⊴ N . As S is simple, it suffices to check that each

conjugate of S is either (1) equal to S or (2) intersects trivially with S and commutes with S. For a

given g ∈ G and each h ∈ S, we may check whether h ∈ gSg−1. If there exist non-trivial h1, h2 ∈ S
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such that h1 ∈ gSg−1 and h2 ̸∈ gSg−1, we return that S ̸∈ Fac(Soc(G)). Otherwise, we know

that all conjugates of S are either equal to S or intersect S trivially. Next we check that those

conjugates that intersect S trivially commute with S. For each g ∈ G, h1, h2 ∈ S we check whether

gh1g
−1 ∈ S; if not, we check that [gh1g

−1, h2] = 1. If not, then we return that S ̸∈ Fac(Soc(G)).

If all these tests pass, then S is a direct factor of the socle. For both of these procedures, we only

need to iterate over 3- and 4-tuples of elements of G or S, so this entire procedure is L-computable.

The result follows.

Lemma 3.6.11. Let G be a semisimple group. We can compute the direct factors of Soc(G) using

a logspace transducer.

Proof. Using Lemma 3.6.10, we may identify in L the ordered pairs that generate direct factors

of Soc(G). Now for x ∈ G and a pair (g1, g2) that generates a direct factor of Soc(G), define an

indicator Y (x, g1, g2) = 1 if and only if x ∈ ⟨g1, g2⟩. We may use a membership test [39, 185] to

decide in L whether x ∈ ⟨g1, g2⟩. Thus, we are able to write down the direct factors of Soc(G) and

their elements in L.

We now prove Theorem 3.6.1

Proof of Theorem 3.6.1 . We first note that, by Lemma 3.6.9, if Soc(G) ̸∼= Soc(H), then (4, O(1))-

WL Version II will distinguish G from H. For in this case, there is some simple normal factor

S ∈ Fac(Soc(G)) such that there are more copies of S in Fac(Soc(G)) than in Fac(Soc(H)). Thus

under any bijection Duplicator selects, some element of S must get mapped into a simple direct

factor of Soc(H) that is not isomorphic to S, and thus by Lemma 3.6.9, Spoiler can win with 4

pebbles and 5 rounds.

So suppose Soc(G) ∼= Soc(H). By Lemma 3.6.11, in L we may enumerate the non-Abelian

simple direct factors of Soc(G) and Soc(H). Furthermore, we may decide in L—and therefore,

SAC1—with a membership test [39, 185] whether two non-Abelian simple direct factors of the socle

are conjugate. Thus, in SAC1, we may compute a decomposition Soc(G) and Soc(H) of the form
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T t1
1 × · · · × T tk

k , where each Ti is non-Abelian simple and each T ti
i is minimal normal.

There are O(|S|2) automorphisms of each simple factor |S|, and so there are at most

n2k!
k∏

i=1

ti!

isomorphisms between Soc(G) and Soc(H). From [29], we note that this quantity is bounded

by nO(log logn). (This is bound is tight, as in the case of the groups Ak
5.) Given a bijection ψ :

Fac(Soc(G)) → Fac(Soc(H)), we may in L enumerate the O(n2) isomorphisms between Soc(G) and

Soc(H) respecting ψ by fixing generators of each element S ∈ Fac(Soc(G)) and enumerating their

possible images in ψ(S).

We now turn to testing isomorphism of G andH. To do so, we use the individualize and refine

strategy. We individualize in G arbitrary generators for each element of Fac(Soc(G)) (2 for each

factor). Then for each configuration of generators for the elements of Fac(Soc(H)), we individualize

those in such a way that respects ψ. Precisely, if ψ(S) = T and (g1, g2) are individualized in S,

then for the desired generators (h1, h2) of T , we individualize hi to receive the same color as gi.

Observe that in two more rounds, no two elements of Soc(G) have the same color. Similarly, in two

more rounds, no two elements of Soc(H) have the same color. However, an element of Soc(G) and

an element of Soc(H) may share the same color.

Suppose now that G ̸∼= H. Let f : G → H be the bijection that Duplicator selects. As

G ̸∼= H, there exists g ∈ G and s ∈ Soc(G) such that f(gsg−1) ̸= f(g)f(s)f(g−1). Spoiler pebbles

g. Let f ′ : G → H be the bijection Duplicator selects at the next round. As no two elements

of Soc(G) have the same color and no two elements of Soc(H) have the same color, we have that

f ′(s) = f(s). Spoiler pebbles s and wins. So after the individualization step, (2, 4)-WL Version II

will decide whether the given map extends to an isomorphism of G ∼= H. Now (2, 4)-WL Version

II is L-computable, and so SAC1 computable. As we have to test at most nO(log logn) isomorphisms

of Soc(G) ∼= Soc(H), our circuit has size nO(log logn). The result now follows.

Remark 3.6.12. Here, we use Weisfeiler–Leman to decide in L whether a given isomorphism

of Soc(G) ∼= Soc(H) extends to an isomorphism of G ∼= H. This procedure was known to be
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polynomial-time computable via membership checking in the setting of permutation groups (given

by their generators); the proof of [29, Proposition 3.1] cites [83]. Furthermore, membership check-

ing in the setting of permutation groups is known to be NC-computable [22]. The proof from [22]

is quite involved; it effectively computes Schreier generators using O(log n) iterations. Further-

more, multiplying a product of permutations is FL-complete [68]. Thus, it does not appear that

membership testing in the permutation group is known to be even AC1-computable. So already,

our quasiSAC1 bound is new. Furthermore, Weisfeiler–Leman provides a much simpler algorithm.

We note, however, that Weisfeiler–Leman requires access to the multiplication table for the un-

derlying group. Thus, this technique cannot be leveraged for more general membership testing in

permutation groups.

We also obtain the following corollary, which improves upon [29, Corollary 4.4] in the direction

of parallel complexity.

Corollary 3.6.13. Let G and H be semisimple with Soc(G) ∼= Soc(H). If Soc(G) ∼= Soc(H) have

O(log n/ log logn) non-Abelian simple direct factors, then we can decide isomorphism between G

and H, and list all the isomorphisms between G and H in L.

3.7 Count-Free Weisfeiler–Leman

In this section, we examine the consequences for parallel complexity of the count-free WL

algorithm. Our first main result here is to show a Ω(log |G|) lower bound (optimal and maximal, up

to the constant factor) on count-free WL-dimension for identifying Abelian groups (Theorem 3.7.9).

Despite this result showing that count-free WL on its own is not useful for testing isomorphism

of Abelian groups, we nonetheless use count-free WL for Abelian groups, in combination with a

few other ideas, to get improved upper bounds on the parallel complexity of testing isomorphism

(Theorem 3.7.15) of Abelian groups.

We begin by defining analogous pebble games and logics for the three count-free WL versions.

Furthermore, we establish the equivalence of the three count-free WL versions up toO(log n) rounds.
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These results extend [48, Section 3] to the count-free setting.

3.7.1 Equivalence Between Count-Free WL, Pebble Games, and Logics

We define analogous pebble games for count-free WL Versions I-III. The count-free (k + 1)-

pebble game consists of two players: Spoiler and Duplicator, as well as (k+ 1) pebble pairs (p, p′).

In Versions I and II, Spoiler wishes to show that the two groups G and H are not isomorphic; and

in Version III, Spoiler wishes to show that the corresponding graphs ΓG,ΓH are not isomorphic.

Duplicator wishes to show that the two groups (Versions I and II) or two graphs (Version III) are

isomorphic. Each round of the game proceeds as follows.

(1) Spoiler picks up a pebble pair (pi, p
′
i).

(2) The winning condition is checked. This will be formalized later.

(3) In Versions I and II, Spoiler places one of the pebbles on some group element (either pi on

some element of G or p′i on some element of H). In Version III, Spoiler places one of the

pebbles on some vertex of one of the graphs (either pi on some vertex of ΓG or p′i on some

element of ΓH).

(4) Duplicator places the other pebble on some element of the other group (Versions I and II)

or some vertex of the other graph (Version III).

Let v1, . . . , vm be the pebbled elements of G (resp., ΓG) at the end of step 1, and let v′1, . . . , v
′
m

be the corresponding pebbled vertices of H (resp., ΓH). Spoiler wins precisely if the map vℓ 7→

v′ℓ does not extend to a marked equivalence in the appropriate version of WL. Duplicator wins

otherwise. Spoiler wins, by definition, at round 0 if G and H do not have the same number of

elements. We note that G and H (resp., ΓG,ΓH) are not distinguished by the first r rounds of

k-WL if and only if Duplicator wins the first r rounds of the (k + 1)-pebble game.

The count-free r-round, k-WL algorithm for graphs is equivalent to the r-round, (k + 1)-

pebble count-free pebble game [55]. Thus, the count-free r-round, k-WL Version III algorithm
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for groups introduced in Brachter & Schweitzer [48] is equivalent to the r-round, (k + 1)-pebble

count-free pebble game on the graphs ΓG,ΓH associated to the groups G,H. We establish the same

equivalence for the count-free WL Versions I and II.

Lemma 3.7.1. Let g := (g1, . . . , gk) ∈ Gk and h := (h1, . . . , hk) ∈ Hk. If the count-free (k, r)-WL

distinguishes g and h, then Spoiler can win in the count-free (k + 1)-pebble game within r moves

on the initial configuration (g, h). (We use the same version of WL and the pebble game).

Proof.

� Version I: For r = 0, then g and h differ with respect to the Version I marked equivalence

type. Fix r > 0. Suppose that χr(g) ̸= χr(h). We have two cases. Suppose first that

χr−1(g) ̸= χr−1(h). Then by the inductive hypothesis, Spoiler can win in the (k + 1)-

pebble game using at most r − 1 moves.

Suppose instead that χr−1(g) = χr−1(h). So without loss of generality, there exists an

x ∈ G such that the color configuration (χr−1(g(g1/x)), . . . , χr−1(g(gk/x)) does not appear

amongst the colored k-tuples of H. Thus, for some j ∈ [k] and all y ∈ H, χr−1(g(gj/x)) ̸=

χr−1(h(hj/y)). Spoiler moves pebble pj to x. By the inductive hypothesis, Spoiler wins

with r − 1 additional moves.

� Version II: We modify the Version I argument above to use the Version II marked equiv-

alence type. Otherwise, the argument is identical.

We now prove the converse.

Lemma 3.7.2. Let g := (g1, . . . , gk) ∈ Gk and h := (h1, . . . , hk) ∈ Hk. Suppose that Spoiler can

win in the count-free (k + 1)-pebble game within r moves on the initial configuration (g, h). Then

the count-free (k, r)-WL distinguishes g and h. (We use the same version of WL and the pebble

game).
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Proof.

� Version I: If r = 0, then the initial configuration is already a winning one for Spoiler.

By definition, g, h receive different colorings at the initial round of WL. Let r > 0, and

suppose that Spoiler wins at round r > 1 of the pebble game. Suppose that at round

r, Spoiler moved the jth pebble from gj to x. Suppose Duplicator responded by moving

the corresponding pebble from hj to y. Then the map (g1, . . . , gj−1, x, gj+1, . . . , gk) 7→

(h1, . . . , hj−1, y, hj+1, . . . , hk) is not a marked equivalence. By the inductive hypothesis,

g(gj/x) and h(hj/x) receive different colors at round r − 1 of k-WL. As Spoiler had a

winning strategy by moving the jth pebble from gj 7→ x, we have that for any y ∈ H,

χr−1(g(gj/x)) ̸= χr−1(h(hj/)). By the definition of the WL refinement, it follows that

χr(g) ̸= χr(h). The result follows.

� Version II: We modify the Version I argument above to use the Version II marked equiv-

alence type. Otherwise, the argument is identical.

Lemma 3.7.3. Let G and H be groups of order n. Consider the count-free k-pebble game on the

graphs ΓG and ΓH . If k ≥ 6 and one of the following happens:

(a) Spoiler places a pebble p on a vertex corresponding to a group element g ∈ G and Duplicator

places the corresponding pebble p′ on a vertex v that does not correspond to a group element

of H, then Spoiler can win with at most 4 additional pebbles and 4 additional rounds.

(b) Suppose that there is a pebble pair (p, p′) for which pebble p is on some vertex of M(g1, g2)

that is not a group element and p′ is on some vertex of M(h1, h2) that is not a group

element. Write g3 := g1g2 and h3 := h1h2. If Spoiler places a pebble on gi (i = 1, 2, 3)

and Duplicator does not respond by pebbling hi (or vice-versa), then Spoiler can win with 4

pebbles and O(1) additional rounds.
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(c) the map induced by the group elements pebbled or implicitly pebbled by k − 2 pebbles does

not extend to an isomorphism between the corresponding generated subgroups, then Spoiler

can win with 2 additional pebbles and O(log n) additional rounds.

Proof. We have the following.

(a) The vertices that do not correspond to group elements have degree at most 3. So Spoiler

can win with 4 additional pebbles by pebbling the neighbors of the vertex corresponding

to the group element.

(b) We note that if pebble p is not on the same type of vertex (i.e., type a, b, c, or d, as in Figure

2.1) as pebble p′, then Spoiler wins in O(1) more rounds with at most 4 more pebbles and

4 more rounds, as either the vertices or their neighbors have different degrees.

So suppose now that p and p′ are on the same type of vertex. Now without loss of generality,

suppose that pebble q is placed on gi for some i = 1, 2, 3 and the corresponding pebble q′

is not placed on hi. Observe that for each non-group-element vertex in a gadget M(g1, g2),

the distances to the three group-element vertices of that gadget are all distinct, and any

path from a vertex not in M(g1, g2) to a non-group-element vertex in M(g1, g2) must go

through one of the group element vertices g1, g2, g1g2. Thus, there is some k such that the

vertex pebbled by p is connected to gi by a path made up of exactly k non-group element

vertices, but the same is not true for any path from the vertex pebbled by p′ to that pebbled

by q′. Using a third pebble pair, Spoiler can explore the path from p to gi and win, using

at most 7 additional rounds (as a multiplication gadget has 7 vertices).

(c) Suppose that the map f : gi 7→ hi for all i ∈ [k − 2] does not extend to an isomorphism of

⟨g1, . . . , gk−2⟩ and ⟨h1, . . . , hk−2⟩. Let f̂ : ⟨g1, . . . , gk−2⟩ → ⟨h1, . . . , hk−2⟩ be an extension of

f . As f̂ is not an isomorphism, there exists a smallest word ω = gi1 · · · gij over g1, . . . , gk−2

such that f̂(ω) ̸= f̂(gi1) · · · f̂(gij ). By minimality, we have that

f̂(gi1) · · · f̂(gij ) = f̂(gi1)f̂(gi2 · · · gij ) ̸= f̂(ω).
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Spoiler pebbles ω in ΓG, and Duplicator responds by pebbling ω′ in ΓH . Denote ω[x, . . . , y] :=

gix · · · giy . At the next round, Spoiler implicitly pebbles (ω[1, . . . , ⌊j/2⌋], ω[⌊j/2⌋+1, . . . , j]).

Duplicator responds by pebbling a pair (c, d). By part (b), we may assume that cd = ω′;

otherwise, Spoiler can win by reusing the pebble pair on ω, ω′ and exploring the multipli-

cation gadget M(ω[1, . . . , ⌊j/2⌋], ω[⌊j/2⌋+ 1, . . . , j]). So now either:

c ̸= hi1 · · ·hi⌊j/2⌋ , or

d ̸= hi⌊j/2⌋+1
· · ·hij .

Without loss of generality, suppose that:

c ̸= hi1 · · ·hi⌊j/2⌋ .

Spoiler iterates on the above strategy, starting from c rather than ω. We eventually reach

the case of part (b), for a total of log2 j + O(1) ≤ log2 n + O(1) rounds. To see that two

additional pebbles are required, after implicitly pebbling the multiplication gadget, Spoiler

may move reuse the pebble from the previous round. The result now follows.

3.7.2 Logics

Brachter & Schweitzer [48, Lemma 3.6] showed that for J ∈ {I, II} two k-tuples g, h receive

a different initial color under k-WL Version J if and only if there is a quantifier-free formula in CJ

that distinguishes g, h. As such formulas do not use any quantifiers, g, h receive a different initial

color under k-WL Version J if and only if there is a quantifier-free formula in LJ that distinguishes

g, h. Now the equivalence between the (k + 1)-pebble, r-round Version J count-free pebble game

and the (k+1)-varible, quantifier-depth r fragment of LJ follows identically from the argument as

in the case of graphs [55]. We record this with the following theorem.

Theorem 3.7.4. Let G and H be groups of order n, and let J ∈ {I, II}. We have that the count-

free (k, r)-WL Version J distinguishes G from H if and only if there exists a sentence φ ∈ LJ that
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uses at most k + 1 variables and quantifier depth r, such that φ holds on one group but not the

other.

3.7.3 Equivalence of Count-Free WL Versions

We show that the three count-free WL Versions are equivalent, up to a factor of 2 in the

dimension and up to a tradeoff of O(log n) additional rounds.

Definition 3.7.5. Let k, k′ ≥ 2, r, r′ ≥ 1, and J, J ′ ∈ {I, II, III}. We say that (k, r)-WL Version

J ⪯ (k′, r′)-WL Version J ′ if whenever (k, r)-WL Version J distinguishes groups G and H, then

(k′, r′)-WL Version J ′ also distinguishes G and H.

Theorem 3.7.6. Fix k ≥ 2 and r ≥ 1. In the count-free setting, we have the following:

(a) (k, r)-WL Version I ⪯ (k, r)-WL Version II,

(b) (k, r)-WL Version II ⪯ (⌈k/2⌉+ 2, 3r +O(log n))-WL Version III,

(c) (⌈k/2⌉+ 2, 3r +O(log n))-WL Version III ⪯ (k + 5, 6r +O(log n))-WL Version I.

We first note that count-free (k, r)-WL Version II can simulate each step of (k, r)-WL Version I.

Thus, it remains to prove Theorem 3.7.6 (b)-(c). We do so with a series of lemmas.

Lemma 3.7.7. Let G and H be groups of order n. Suppose that the count-free (k, r)-WL Version

II distinguishes G and H. Then the count-free (⌈k/2⌉+2, 3r+O(log n))-WL Version III algorithm

distinguishes G and H.

Proof. We adapt the strategy of [48, Lemma 3.11] to the count-free setting and control for rounds.

Suppose that Spoiler has a winning strategy in the r-round Version II (k + 1)-pebble game. Let

g1, . . . , gr be the sequence of group elements that Spoiler pebbles. Suppose that at round 1 ≤ i ≤ r

of the Version II game that Spoiler introduces a new pebble. In the Version III game: if there

are an even number of group elements pebbled, then Spoiler pebbles the group element vertex
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gi; if instead there are an odd number of group elements pebbled, then Spoiler implicitly pebbles

(gi, gi+1) and reuses the pebble on gi at the next round.

Suppose that Spoiler instead moves a pebble at round i of the Version II game. If the

corresponding pebble in the Version III game is on a group element vertex, then this is treated

identically as in the case when a new pebble is introduced. Suppose instead the corresponding

pebble in the Version III game is on a multiplication gadget vertex M(a, b) and in the Version II

game, Spoiler moves the pebble from b. In this case in the Version III game, Spoiler introduces

a new pebble onto gi, and then moves the pebble from M(a, b) to a non-group element vertex of

M(a, gi). At the next round, Spoiler reuses the pebble on gi.

We now argue that, without loss of generality, we may assume that the configuration of

pebbled group elements at the end of at most 3r rounds in the Version III game is the same

configuration at the end of round r of the Version II game. Suppose at the end of round r of the

Version II game that Duplicator has pebbled (h1, . . . , hk), and suppose that at the end of round 3r of

the count-free pebble game that Duplicator has (implicitly) pebbled (h′1, . . . , h
′
k). By Lemma 3.7.3

(a), if a pebble pi belongs to a group element (respectively, multiplication gadget) vertex and p′i

does not belong to a group element (respectively, multiplication gadget) vertex, then Spoiler can

win with 2 pebbles and O(1) rounds. So we may assume at the end of round 3r of the Version III

game that Duplicator has (implicitly) pebbled k group elements.

Now suppose for a contradiction that Duplicator wins with this strategy in the Version III

game, even with 2 additional pebbles and O(log n) additional rounds. Then by Lemma 2.8.2 (c),

the map (g1, . . . , gk) 7→ (h′1, . . . , h
′
k) extends to an isomorphism of the subgroups ⟨g1, . . . , gk⟩ and

⟨h′1, . . . , h′k⟩. So in the Version II game, Duplicator could have won by pebbling (h′1, . . . , h
′
k) rather

than (h1, . . . , hk), contradicting the assumption that Spoiler wins at round r of the Version II pebble

game. Thus, we may assume at the end of round r of the Version III game that (h1, . . . , hk) =

(h′1, . . . , h
′
k).

As Spoiler wins at the end of round r at the Version II game, we have that the induced map

on the configurations does not extend to an isomorphism. So by Lemma 3.7.3 (c), Spoiler wins in
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the Version III game with 2 additional pebbles and O(log n) additional rounds, as desired.

Lemma 3.7.8. Let G and H be groups of order n. Suppose that the count-free (k, r)-WL Version

III distinguishes G and H. Then the count-free 2k+1-WL Version I algorithm distinguishes G and

H in at most 2r rounds.

Proof. We adapt the strategy of [48, Lemma 3.12] to the count-free setting and control for rounds.

Suppose that at round 0 ≤ i ≤ r of the Version III pebble game, that Spoiler pebbles the group

element vertex gi. Then in the Version I game, Spoiler may pebble gi. Suppose instead in the

Version III game that Spoiler implicitly pebbles M(x1, x2), and Duplicator responds by implicitly

pebbling M(y1, y2). We simulate this step in two rounds of the Version I game. At the first stage,

Spoiler pebbles x1. Duplicator responds by pebbling some group element y′1. At the next stage,

Spoiler pebbles x2, and Duplicator responds by pebbling y′2. Observe that at most 2 rounds of the

Version I game are required to simulate 1 round of the Version III game.

Now suppose at round r of the Version III game that Duplicator has pebbled (h1, . . . , hd),

where due to implicit pebbling, d ≤ 2k. Suppose that at round 2r of the Version I game that

Duplicator has pebbled (h′1, . . . , h
′
d). Now suppose for a contradiction that Duplicator wins at

round 2r of the Version I game. Let Γ′G be the induced subgraph ΓG[{g1, . . . , gd}] together with the

multiplication gadgets M(gi, gj) for all i, j ∈ [d] where gigj ∈ {g1, . . . , gd}. Define Γ′H analogously

for {h′1, . . . , h′d}. Consider the map φ : V (Γ′G) → V (Γ′H) induced by (g1, . . . , gd) 7→ (h′1, . . . , h
′
d). By

the definition of the Version I winning condition, the map (g1, . . . , gd) 7→ (h′1, . . . , h
′
d) respects mul-

tiplication. Thus, φ will be a graph isomorphism, as multiplicativity can be expressed equivalently

in terms of mapping the multiplication gadgets accordingly. It follows that Duplicator could have

won in the Version III pebble game by (implicitly) pebbling (h′1, . . . , h
′
d) instead of (h1, . . . , hd),

contradicting the assumption that Spoiler wins in the count-free (k + 1)-pebble, r-round Version

III game. The result now follows.
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3.7.4 Count-Free WL and Abelian Groups

We now turn to showing that the count-free WL Version II algorithm fails to yield a polynomial-

time isomorphism test for even Abelian groups.

Theorem 3.7.9. For n ≥ 5, let Gn := (Z/2Z)n × (Z/4Z)n and Hn := (Z/2Z)n−2 × (Z/4Z)n+1.

The ⌊n/4⌋-dimensional count-free WL Version II algorithm does not distinguish Gn from Hn.

Proof. The proof is by induction on the number of pebbles. For our first pebble, Spoiler may pebble

one element in Gn, which generate one of the following subgroups: {1},Z/2Z, or Z/4Z. For each

of these options, Duplicator may respond in kind.

Now fix 1 ≤ k ≤ n/4. Suppose that Duplicator has a winning strategy with k pebbles. In

particular, we suppose that pebble pairs (p1, p
′
1), . . . , (pk, p

′
k) have been placed on the board, and

that the map pi 7→ p′i for all i ∈ [k] extends to a marked isomorphism on a subgroup of the form

(Z/2Z)a×(Z/4Z)b. Furthermore, suppose that 0 ≤ a1 ≤ a of the Z/2Z direct factors of ⟨p1, . . . , pk⟩

are contained in copies of Z/4Z in Gn. Duplicator will maintain the invariant that the same number

of copies of the Z/2Z direct factors of ⟨p′1, . . . , p′k⟩ are contained in copies of Z/4Z in Hn.

As Duplicator had a winning strategy in the k-pebble game, it is not to Spoiler’s advantage

to move pebbles p1, . . . , pk. Thus, Spoiler picks up a new pebble pk+1. Spoiler may pebble one

additional element Gn. Now if the element Spoiler pebbles belongs to ⟨p1, . . . , pk⟩; then as the map

pi 7→ p′i for all i ∈ [k] extends to a marked isomorphism, Duplicator may respond by pebbling the

corresponding element in ⟨p′1, . . . , p′k⟩.

We may now assume that Spoiler does not pebble any element in ⟨p1, . . . , pk⟩. Spoiler may

pebble one additional element. We have the following cases.

� Case 1: As k ≤ n/4, if Spoiler pebbles an element gi generating Z/2Z, then Duplicator

may respond in kind. We note that any copy of Z/2Z that is pebbled and does not belong

to ⟨p1, . . . , pk⟩ is a direct complement to ⟨p1, . . . , pk⟩ (in the sense that they commute and

intersect trivially—they will not generate the whole group). Similarly, any copy of Z/2Z

that is pebbled and does not belong to ⟨p′1, . . . , p′k⟩ is a direct complement to ⟨p′1, . . . , p′k⟩.
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Furthermore, as k ≤ n/4, we may assume that Duplicator pebbles a copy of Z/2Z that is

contained within a copy of Z/4Z in Hn if and only if Spoiler pebbles a copy of Z/2Z that

is contained within a copy of Z/4Z in Gn.

� Case 2: We now consider the case in which Spoiler pebbles an element g1 generating a

copy of Z/4Z. We consider the following subcases.

* Subcase 2(a): As k ≤ n/4, there exist copies of Z/4Z in Gn that intersect trivially

(and thus, are direct complements) with ⟨p1, . . . , pk⟩; and similarly, there exist copies

of Z/4Z that intersect trivially (and thus, are direct complements) with ⟨p′1, . . . , p′k⟩.

So if ⟨g1⟩ forms a direct complement with ⟨p1, . . . , pk⟩, then Duplicator may respond

by pebbling an element h1 that generates a copy of Z/4Z which is a direct complement

with ⟨p′1, . . . , p′k⟩.

* Subcase 2(b): Suppose instead that ⟨g1⟩ ∼= Z/4Z intersects properly and non-

trivially with ⟨p1, . . . , pk⟩. In this case, ⟨g1⟩ shares a copy of Z/2Z with ⟨p1, . . . , pk⟩.

This yields two additional subcases.

– Subcase 2(b).i: Suppose first that this copy of Z/2Z is contained within a

copy of Z/4Z ≤ ⟨p1, . . . , pk⟩. By the inductive hypothesis, both ⟨p1, . . . , pk⟩ and

⟨p′1, . . . , p′k⟩ have a1 copies of Z/2Z that are contained in copies of Z/4Z within

Gn and Hn respectively. Using this fact, together with the fact that k ≤ n/4, we

have that Duplicator may respond by pebbling an element h1 generating a copy

of Z/4Z, where ⟨h1⟩ ∩ ⟨p′1, . . . , p′k⟩ is a copy of Z/2Z that is contained within a

copy of Z/4Z ≤ ⟨p′1, . . . , p′k⟩.

– Subcase 2(b).ii: Suppose instead that this copy of Z/2Z is contained within a

copy of Z/4Z ̸≤ ⟨p1, . . . , pk⟩. By the inductive hypothesis, both ⟨p1, . . . , pk⟩ and

⟨p′1, . . . , p′k⟩ have a1 copies of Z/2Z that are contained in copies of Z/4Z within

Gn and Hn respectively. Using this fact, together with the fact that k ≤ n/4, we

have that Duplicator may respond by pebbling an element h1 generating a copy
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of Z/4Z, where ⟨h1⟩ ∩ ⟨p′1, . . . , p′k⟩ is a copy of Z/2Z that is not contained within

a copy of Z/4Z ≤ ⟨p′1, . . . , p′k⟩.

Thus, in all cases, Duplicator has a winning strategy at round k + 1. The result now follows

by induction.

Remark 3.7.10. As the count-free k-WL runs in time O(nk+1 log n), Theorem 3.7.9 shows that

count-free WL fails to serve as a polynomial-time (or even |G|o(log |G|)) isomorphism test for Abelian

groups. In particular, by Theorem 3.7.6, our lower-bound holds (up to a constant factor in the

number of pebbles) for all three versions of WL. As the n/4-dimensional count-free WL algorithm

fails to distinguish Gn and Hn, we also obtain an Ω(log(|Gn|)) lower bound on the quantifier rank

of any FO formula identifying Gn. In particular, this suggests that GpI is not in FO(poly log log n),

even for Abelian groups. As FO(poly log log n) cannot compute Parity [183], this suggests that

counting is necessary to solve GpI. This is particularly interesting, as Parity is not AC0-reducible

to GpI [57].

Remark 3.7.11. In subsequent work with N. Collins, we considered a higher arity version of the

count-free pebble game, where Spoiler is able to place at most q pebbles in a single round. When

q is fixed, we showed [65, Theorem 7.1] that Spoiler still requires Ω(logn) pebbles to distinguish

even Abelian groups.

While count-free WL is unable to distinguish Abelian groups, the multiset of colors computed

actually provides enough information to do so. Barrington, Kadau, Lange, & McKenzie [38] pre-

viously showed that order-finding is FOLL-computable. Our next result (Proposition 3.7.13) shows

that the count-free Weisfeiler–Leman effectively implements this strategy.

Lemma 3.7.12. Let G,H be groups of order n. Suppose in the count-free WL-III game, pebbles

have already been placed on g 7→ h and gi 7→ x with x ̸= hi. Then Spoiler can win with O(1)

additional pebbles in O(log log i) rounds.
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Proof. By induction on i. If i = 0 the result follows from the fact that the identity is the unique

element such that the gadget M(1, 1) has all three of its group element vertices the same and

Lemma 3.7.3 (b). If i = 1, the result follows immediately from the winning condition of the game.

So we now suppose i > 1, and that the result is true for all smaller exponents, say in ≤ c log log i′

rounds for all i′ < i.

The structure of the argument is as follows. If i is not a power of 2, we show how to cut the

number of 1s in the binary expansion of i by half using O(1) rounds and only O(1) pebbles that

may be reused. Since the number of 1s in the binary expansion of i is at most log2 i, and we cut

this number in half each time, this takes only O(log log i) rounds (and O(1) pebbles) before i has

just one 1 in its binary expansion, that is, i is a power of 2. Once i is a power of 2, we will show

how to cut log2 i in half using O(1) rounds and O(1) pebbles that may be reused. This takes only

O(log log i) rounds (and O(1) pebbles) before getting down to the base case above. Concatenating

these two strategies uses only O(1) pebbles and O(log log i) rounds. Now to the details.

If i is not a power of 2, we will show how cut the number of 1s in the binary expansion of i

in half. Write i = j + k where j, k each have at most half as many 1s in their binary expansion as

i does (rounded up). (Examine the binary expansion iℓiℓ−1 · · · i0 and finding an index z such that

half the ones are on either side of z. Then let j have binary expansion iℓiℓ−1 · · · iz00 . . . 0 and let k

have binary expansion iz−1iz−2 · · · i0.) Spoiler implicitly pebbles (gj , gk). Duplicator responds by

implicitly pebbling a pair (a, b). If ab ̸= x, then we have a pebble on a non-group-element vertex

of M(gj , gk) as well as on its group element vertex gj+k = gi. But the corresponding pebbles are

on M(a, b) and x which differs from ab, so Spoiler wins by Lemma 3.7.3 (b). Thus we may now

assume ab = x.

Since x ̸= hi, we necessarily have {a, b} ≠ {hj , hk}. Without loss of generality, suppose

a /∈ {hj , hk}. Spoiler now picks up the pebble on gi and places it on gj instead. Because of the

implicit pebble mapping M(gj , gk) 7→ M(a, b), Duplicator must respond by placing the pebble on

a or Spoiler can win by Lemma 3.7.3 (b). At this point, Spoiler can reuse the implicit pebble on

M(gj , gk) and the pebble on gi, and we are now in a situation where g 7→ h and gj 7→ a ̸= hj are
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pebbled, and j has at most half as many 1s in its binary expansion as i did. (So there are only

two pebbles that can’t be re-used, which is precisely the number we started with.) The cost to get

here was O(1) rounds and no non-reusable pebbles.

After that has been iterated log log i times, we come to the case where i is a power of 2.

We will show how to reduce to a case where log2 i has been cut in half. Write i = jk with jk

powers of 2 such that log2 j, log2 k ≤ ⌈ log2 i2 ⌉ (if i = 2z, let j = 2⌈z/2⌉, k = 2z−⌈z/2⌉). Note that

we have gi = (gj)k. Spoiler now pebbles gj , and Duplicator responds by pebbling some a. If

a ̸= hj , then Spoiler can re-use the pebble from gi, and we now have g 7→ h, gj 7→ a ̸= hj pebbled

with log2 j ≤ ⌈(1/2) log2 i⌉. This took O(1) rounds and no non-reusable pebbles. On the other

hand, if a = hj , then we have ak = hjk = hi ̸= x. Spoiler may now reuse the pebble on g 7→ h,

and we are now in a situation where gj 7→ a and (gj)k 7→ x ̸= ak, just as we started, and with

log2 k ≤ ⌈(1/2) log2 i⌉. As in the other case, this took O(1) rounds and no non-reusable pebbles.

This completes the proof.

Proposition 3.7.13 (Order finding in WL-III). Let G be a group. Let g, h ∈ G such that |g| ≠ |h|.

The count-free (O(1), O(log log n))-WL Version III distinguishes g and h.

Proof. We use the pebble game characterization, starting from the initial configuration ((g), (h)).

We first note that if g = 1 and h ̸= 1, that Spoiler implicitly pebbles the multiplication gadget

M(1, 1). This is the unique multiplication gadget where all three group element vertices are the

same. Regardless of what Duplicator pebbles, we have by Lemma 3.7.3 that Spoiler can win with

O(1) additional pebbles and O(1) additional rounds.So now suppose that g ̸= 1 and h ̸= 1.

Without loss of generality suppose |g| < |h|. Note that g 7→ h has already been pebbled by

assumption. Spoiler now pebbles 1. By the same argument as above, Duplicator must respond by

pebbling 1. But we have gi = 1 and by assumption hi ̸= 1. Thus, by Lemma 3.7.12, Spoiler can

now win with O(1) pebbles in O(log log |g|) ≤ O(log log n) rounds.

As finite simple groups are uniquely identified amongst all groups by their order and the set

of orders of their elements [191], we obtain the following immediate corollary.
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Corollary 3.7.14. If G is a finite simple group, then G is identified by the count-free (O(1), O(log log n))-

WL. Consequently, isomorphism testing between a finite simple group G and an arbitrary group H

is in FOLL.

We also obtain an improved upper bound on the parallel complexity of Abelian Group Iso-

morphism:

Theorem 3.7.15. GpI for Abelian groups is in β1MAC0(FOLL).

Here, β1MAC0(FOLL) denotes the class of languages decidable by a (uniform) family of circuits

that have O(log n) nondeterministic input bits, are of depth O(log log n), have gates of unbounded

fan-in, and the only gate that is not an AND, OR, or NOT gate is the output gate, which is

a Majority gate of unbounded fan-in. Note that, by simulating the poly(n) possibilities for the

nondeterministic bits, β1MAC0(FOLL) is contained in TC0(FOLL), at the expense of using poly(n)

Majority gates. Thus, our result improves on the prior upper bound of TC0(FOLL) [57].

Theorem 3.7.15 is an example of the strategy of using count-free WL, followed by a limited

amount of counting afterwards. (We contrast this with the parallel implementation of the classical

(counting) WL algorithm, which—for fixed k—uses a polynomial number of Majority gates at

each iteration [104].) After the fact, we realized this same bound could be achieved by existing

techniques; we include both proofs to highlight an example of how WL was used in the discovery

process.

Proof using Weisfeiler–Leman. Let G be Abelian, and let H be an arbitrary group such that G ̸∼=

H. Suppose first that H is not Abelian. We show that count-free (O(1), O(1))-WL can distinguish

G from H. Suppose first that H is not Abelian. Spoiler implicitly pebbles a pair of elements

(x, y) in H that do not commute. H responds by pebbling (u, v) ∈ G. At the next round, Spoiler

implicitly pebbles (v, u). Regardless of what Duplicator pebbles, we have by Lemma 3.7.3 (b) that

Spoiler wins with O(1) additional pebbles and O(1) additional rounds.

Suppose now that H is Abelian. We run the count-free (O(1), O(log log n))-WL using the

parallel WL implementation due to Grohe & Verbitsky. As G and H are non-isomorphic Abelian
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groups, they have different order multisets. In particular, there exists a color class of greater

multiplicity in G than in H. By Proposition 3.7.13, two elements with different orders receive

different colors. We use a β1MAC0 circuit to distinguishG fromH. UsingO(log n) non-deterministic

bits, we guess the color class C where the multiplicity differs. At each iteration, the parallel WL

implementation due to Grohe & Verbitsky records indicators as to whether two k-tuples receive the

same color. As we have already run the count-free WL algorithm, we may in AC0 decide whether

two k-tuples have the same color. For each k-tuple of V (ΓG)
k having color class C, we feed a 1

to the Majority gate. For each k-tuple of V (ΓH)k having color class C, we feed a 0 to the Majority

gate. The Majority gate outputs a 1 if and only if there are strictly more 1’s than 0’s. The result

now follows.

Alternative proof using prior techniques, that we only realized after discovering the WL proof. This

proof follows the strategy of Chattopadhyay, Torán, & Wagner [57], realizing that their use of many

threshold gates can be replaced by O(log n) nondeterministic bits and a single threshold gate.

Compute the multiset of orders in FOLL [38, Prop. 3.1], guess the order k such that G has

more elements of order k than H does. Use a single Majority gate to compare those counts.

3.8 Canonizing Groups in Parallel via Weisfeiler–Leman

One approach to isomorphism testing is to canonize the input structures. Precisely, the goal is

to compute a standard representation of the input structure that depends only on the isomorphism

type and not on the representation of the object. In the setting of graphs, we may define a canonical

form as follows.

Definition 3.8.1. A graph canonization for a graph class C is a function κ : C → C such that:

(a) κ(G) ∼= G for all G ∈ C, and

(b) κ(G) = κ(H) whenever G ∼= H.

A group canonization may be defined similarly. The isomorphism problem for a class C of

either graphs or groups reduces to computing a corresponding canonization. It is open both in the
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settings of graphs and groups, as to whether a reduction exists from canonization to isomorphism

testing. However, combinatorial approaches to isomorphism testing, such as Weisfeiler–Leman,

can easily be adapted to canonization procedures. We refer to Fortnow & Grochow [82] for a

general study on the power of canonization, complete invariants, and polynomial-time algorithms

for equivalence relations.

Theorem 3.8.2 (Folklore). Let C be a class of graphs, and suppose that k-WL identifies all col-

ored graphs in C. Then there exists a graph canonization for C that can be computed in time

O(nk+3 log n).

Remark 3.8.3. While Theorem 3.8.2 is well-known to those who work on Weisfeiler–Leman,

an originating reference appears to be unknown. We defer to Grohe & Neuen for a proof of

Theorem 3.8.2 [102, Appendix A].

3.8.1 Canonizing in Parallel via Weisfeiler–Leman

In this section, we show how to use Weisfeiler–Leman to obtain a parallel canonization pro-

cedure for groups. The key idea in establishing Theorem 3.8.2 is to individualize a vertex and then

invoke WL on the colored graph. We iterate for each vertex, making n calls to k-WL. Thus, in the

setting of graphs, the parallel WL implementation due to Grohe & Verbitsky [104] is necessary but

not sufficient for canonization. However, groups have more structure. The key observation behind

the generator-enumeration idea is that for g1, . . . , gk ∈ G and gk+1 ̸∈ ⟨g1, . . . , gk⟩, ⟨g1, . . . , gk+1⟩ has

at least twice as many elements as ⟨g1, . . . , gk⟩.

This suggests the following strategy to compute canonical forms for groups via WL. Suppose

that (k, r)-WL identifies a group G. We first run (k + 1, r)-WL and select a group element g that

corresponds to the lexicographically least color label. We individualize g1, and then run (k+ 1, r)-

WL on this colored graph. Now as g1 has been individualized and (k, r)-WL identifies G, we have

that (k + 1, r)-WL assigns a unique color to each element in ⟨g1⟩. More generally, suppose that at

iteration i ≥ 1 that we individualize the group element gi in WL Versions I and II, or the vertex
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corresponding to the group element gi in WL Version III. At the next iteration when (k, r)-WL is

applied, it assigns a unique color ⟨g1, . . . , gn⟩. We invoke WL a total of O(log n) times.

The complexity of each iteration depends on the version of WL for groups that we use.

For WL Versions I and III, each iteration of our canonization procedure can be computed with

a logspace uniform TC circuit of depth r. Thus, if G is identified by (k, r)-WL, then a canonical

form for G can be computed using a uniform TC circuit of depth O(r log n). For WL Version II, we

consider separately the cases of r ∈ O(1) and r ∈ ω(1). If r ∈ O(1), then (k + 1, r)-WL Version II

can be implemented in L. As canonization requires O(log n) calls to (k + 1, r)-WL Version II and

L ⊆ SAC1, this yields an upper bound of SAC2 for canonization. Now if r ∈ ω(1), then (k+1, r)-WL

Version II can be implemented using a TC-circuit of depth O(log n+r(n)). As canonization requires

O(log n) calls to (k + 1, r)-WL Version II, we may compute canonical forms using a TC circuit of

depth O(log2 n+ r(n) log n).

We first recall the notion of determining orbits. We say that (k, r)-WL determines the orbits

of group (or graph G) if for every group (resp., graph) H, every element g ∈ G, and every w ∈ H

such that χG
(k,r)((v, . . . , v)) = χH

(k,r)((w, . . . , w)), there is an isomorphism φ : G ∼= H such that

φ(v) = w.

We formalize this procedure with Algorithm 1.

We observe that once g1, . . . , gi have been individualized, WL will assign a unique color to

each g ∈ ⟨g1, . . . , gi⟩. For WL Version II, this happens at the first round, while in WL Version I, we

require r ∈ Ω(log n) rounds. At Line 11, we record the elements that receive a unique color. Thus,

at Line 12, considering color classes of size greater than 1 ensures that we are considering elements

outside of ⟨Gens⟩. So argmin picks an arbitrary element that minimizes χG,i(g).

Before establishing the correctness of Algorithm 1, we recall the following theorem from

Grohe & Neuen [102].

Theorem 3.8.4 ([102, Theorem A.1]). Let C be a class of graphs such that k-WL identifies all

(colored) graphs G ∈ C. Then (k + 1)-WL determines orbits for all graphs G ∈ C.
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Algorithm 1 Canonization Algorithm for group class C
Require: G ∈ C is identified by (k, r)-WL
Ensure: κ(G)
1: n := |G|
2: G0 = G
3: Gens := ∅
4: ψ := ∅
5: i := 0
6:

7: while ⟨Gens⟩ ≠ G do
8: Let χi be the coloring computed by (k + 1, r)-WL applied to Gi

9: Define χG,i+1(v) = χGi,k+1
i (v, . . . , v) for all v ∈ G

10: For each g ∈ G belonging to a color class of size 1, set ψ(g) = χG,i+1(g).
11: Let gi+1 ∈ argmin{χG,i+1(g) : g ∈ G\⟨Gens⟩,The color class χ(g) has more than one element}
12: Gens := Gens ∪ {gi+1}.
13: ψ(gi+1) = χG,i+1(gi+1).
14:

15: Set Gi+1 to be the colored group arising from G, where the group elements are individualized
according to ψ.

16: Set i := i+ 1
17: end while
18:

19: return κ(G) := ([n], {(g, h, gh) : g, h ∈ G}, g 7→ ψ(g)).
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Remark 3.8.5. The original statement of [102, Theorem A.1] did not control for rounds, but the

proof holds when we consider rounds. The proof also holds when we consider the count-free WL

algorithm, as well as when we consider colored groups rather than graphs. For completeness, we

provide a proof below.

Theorem 3.8.6. We have the following.

(a) Let J ∈ {I, II}, and suppose that C be a class of groups such that (k, r)-WL Version J

identifies all colored groups G ∈ C. Then (k+1, r) WL Version J determines orbits for all

groups G ∈ C.

(b) Let J ∈ {I, II}, and suppose that C be a class of groups such that the count-free (k, r)-WL

Version J identifies all colored groups G ∈ C. Then (k + 1, r) WL Version J determines

orbits for all groups G ∈ C.

(c) Let C be a class of (colored) graphs such that the classical counting (k, r)-WL algorithm for

graphs identifies all colored graphs G ∈ C. Then (k + 1, r)-WL determines orbits for all

graphs G ∈ C.

(d) Let C be a class of (colored) graphs such that the count-free (k, r)-WL algorithm for graphs

identifies all (colored) graphs G ∈ C. Then count-free (k + 1, r)-WL determines orbits for

all graphs G ∈ C.

Proof. We proceed as follows.

(a) Let G ∈ G, and let v, w ∈ G such that the coloring χG,k+1
r (v, . . . , v) = χG,k+1

r (w, . . . , w).

Then (k, r)-WL fails to distinguish the colored group (G,χ
(v)
r ) from (G,χ

(w)
r ), where (G,χ

(v)
r )

is the colored group where we have individualized v to receive the color χG,k+1
r (v, . . . , v).

As (k, r)-WL identifies all groups in G, we have that (G,χ
(v)
r ) ∼= (G,χ(w)). So there is an

automorphism φ ∈ Aut(G) such that φ(v) = w.

(b) We modify the proof of (a) to use count-free (k, r)-WL Version J rather than the standard

counting (k, r)-WL. The proof now goes through mutatis mutandis.
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(c) Let G ∈ G, and let v, w ∈ V (G) such that the coloring χG,k+1
r (v, . . . , v) = χG,k+1

r (w, . . . , w).

Then (k, r)-WL fails to distinguish the colored graph (G,χ
(v)
r ) from (G,χ

(w)
r ), where (G,χ

(v)
r )

is the colored graph where we have individualized v to receive the color χG,k+1
r (v, . . . , v).

As (k, r)-WL identifies all graphs in G, we have that (G,χ
(v)
r ) ∼= (G,χ(w)). So there is an

automorphism φ ∈ Aut(G) such that φ(v) = w.

(d) We modify the proof of (c) to use count-free (k, r)-WL rather than the standard counting

(k, r)-WL. The proof now goes through mutatis mutandis.

We now establish the correctness of Algorithm 1.

Theorem 3.8.7. Let k ≥ 2 be a constant, and let r := r(n) be a function, where n denotes the

order of the input groups. Let J ∈ {I, II}. Let C be a class of groups such that (k, r)-WL Version

J identifies all colored groups in C. For any G ∈ C, Algorithm 1 correctly returns a canonical form

for G.

Proof. Let G ∈ C be our input group, and let κ(G) be the result of Algorithm 1. We show that κ

canonizes C. By construction, the map i 7→ ψ(i) is an isomorphism of G ∼= κ(G).

Now let H ∈ C be a second group such that G ∼= H. Let g1, . . . , gk ∈ G be the sequence of

group elements added to Gens by Algorithm 1, and let h1, . . . , hk be the corresponding sequence

for H. We show by induction on 0 ≤ i ≤ k that there is an isomorphism φ : G ∼= H that restricts to

an isomorphism of ⟨g1, . . . , gi⟩ ∼= ⟨h1, . . . , hi⟩. The base case when i = 0 is precisely the assumption

that G ∼= H. Now fix i ≥ 0 and let φ : G ∼= H such that φ(gj) = hj for all j ≤ i − 1. As φ is an

isomorphism mapping φ(gj) = hj for all j ≤ i − 1, it follows that φ restricts to the isomorphism

of ⟨g1, . . . , gi−1⟩ ∼= ⟨h1, . . . , hi−1⟩ induced by the map φ(gj) = hj for all j ≤ i− 1. So we have that

(G,χG,i) ∼= (H,χH,i).

As gi, hi were selected by the algorithm at line 12, we have that χG,i(g) = χH,i(φ(g)). As

(k + 1, r)-WL determines orbits for all colored groups G ∈ C, it follows that there is a color-
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preserving isomorphism φ : (G,χG,i) → (H,χH,i). As gj , hj belong to their own color class for

j ≤ i, φ also has to map φ(gj) = hj . Necessarily, φ must also restrict to the isomorphism of

⟨g1, . . . , gi⟩ ∼= ⟨h1, . . . , hi⟩ induced by the map gj 7→ hj for 1 ≤ j ≤ i. The result now follows by

induction.

Theorem 3.8.8. Let k ≥ 2 be a constant, and let r := r(n) be a function, where n denotes the

order of the input groups.

(a) Let C be a family of groups. Suppose that r ≥ 2 is a constant. If (k, r)-WL Version II

(counting or count-free) identifies all colored groups belonging to C, then we may compute

canonical forms using a logspace uniform family of SAC circuits of depth O(log2 n) and size

O(r · nO(k)).

(b) Let C be a family of groups, and suppose that r(n) ∈ ω(1). If (k, r(n))-WL Version II

identifies all colored groups belonging to C, then we may compute canonical forms using a

logspace uniform family of TC circuits of depth O((r(n)+ log n) log n) and size O(r ·nO(k)).

(c) Let C be a family of groups, and suppose that r(n) ∈ ω(1). If the count-free (k, r(n))-

WL Version II identifies all colored groups belonging to C, then we may compute canonical

forms using a logspace uniform family of AC circuits of depth O((r(n) + log n) log n) and

size O(r · nO(k)).

Proof. By Theorem 3.8.7, we have that Algorithm 1 correctly computes a canonical form for any

group G ∈ C. It remains to establish the complexity bounds. The key work lies in the while

loop. At line 9, we compute (k + 1, r)-WL using the parallel WL implementation due to Grohe &

Verbitsky [104], adapted for WL Version II. We first observe that the initial coloring of WL Version

II is L-computable. Deciding whether two k-tuples of group elements are marked isomorphic is

L-computable [185]. Using a logspace transducer, we can write down for all
(
2nk

2

)
pairs {u, v} of

k-tuples whether u, v are marked isomorphic.
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Each refinement step in the counting WL Version II is TC0-computable, and each refinement

step in the count-free WL Version II is AC0-computable. We thus have the following.

� For (a), both the counting and count-free variants of (k + 1, O(1))-WL Version II are L-

computable.

� For (b), (k + 1, r)-WL Version II can be implemented with a logspace uniform TC circuit

of depth O((r(n) + log(n)) log n) and size O(r · nO(k)).

� For (c), the count-free (k+1, r)-WL Version II can be implemented with a logspace uniform

AC circuit of depth O((r(n) + log(n)) log n) and size O(r · nO(k)).

We now observe that the remaining steps of the while loop are AC0-computable. To see that

Line 12 is AC0-computable, we appeal to the characterization that AC0 = FO [161]. We may write

down a first-order formula for the minimum element, and so finding the minimum color class is

AC0-computable. Furthermore, identifying the members of a given color class is AC0-computable.

Thus, computing the argmin is AC0-computable.

Finally, we note that at line 12, we select gi ∈ G \ ⟨Gens⟩. Thus, the size of ⟨Gens⟩ is at

least doubled at each iteration. At the start of line 9 of the iteration of the while loop after gi+1 is

added to Gens, each element g ∈ ⟨Gens⟩ has a unique color class under (k+1, r)-WL (in particular,

this is handled by a single refinement step of WL Version II). So the number of iterations k of the

while loop is at most log n+ 1. Thus, we have the following.

� For (a), we have a logspace uniform family of SAC circuits with depth O(log2 n) and size

O(r · nO(k)).

� For (b), we have a logspace uniform family of TC circuits with depth O((r(n)+log(n)) log n)

and size O(r · nO(k)).

� For (c), we have a logspace uniform family of AC circuits with depth O((r(n)+log(n)) log n)

and size O(r · nO(k)).
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The result follows.

For groups that are O(1)-generated, using a different strategy, it is possible to canonize such

groups using only one call to Weisfeiler–Leman.

Proposition 3.8.9. For groups that are O(1)-generated, we may compute canonical forms in L.

Proof. Let d := d(G). We run the count-free (d, 1)-WL Version II. Now for each color class K ∈

Im(χ) where there exists a d-tuple (g1, . . . , gd) such that g1, . . . , gd are all distinct (and in such

case, the elements of any d-tuple in K are all distinct), we may use Tang’s marked isomorphism

procedure [185] to test whether the given k-tuple generates the group. To obtain a canonical form,

we take the coloring χ(g1,...,gd) obtained by individualizing (g1, . . . , gd) from the smallest color class

under χ, where G = ⟨g1, . . . , gd⟩.

Remark 3.8.10. The strategy here is different, in that we don’t need all colored d-generated

groups to be identified by WL. A d-generated subgroup using more than d colors may be harder to

identify.

The complexity results in Theorem 3.8.8 also hold if we use WL Version I for canonization.

However, the analysis is slightly different. The key idea is that the logspace computations get

pushed to computing ⟨Gens⟩ at line 11, rather than at the initial coloring as in WL Version II.

Theorem 3.8.11. Let k ≥ 2 be a constant, and let r := r(n) be a function, where n denotes the

order of the input groups.

(a) Let C be a family of groups. Suppose that r ≥ 2 is a constant. If (k, r)-WL Version I

(counting or count-free) identifies all colored groups belonging to C, then we may compute

canonical forms using a logspace uniform family of SAC circuits of depth O(log2 n) and size

O(r · nO(k)).

(b) Let C be a family of groups, and suppose that r(n) ∈ ω(1). If (k, r(n))-WL Version I

identifies all colored groups belonging to C, then we may compute canonical forms using a

logspace uniform family of TC circuits of depth O((r(n)+ log n) log n) and size O(r ·nO(k)).
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(c) Let C be a family of groups, and suppose that r(n) ∈ ω(1). If the count-free (k, r(n))-WL

Version I identifies all colored groups belonging to C, then we may compute canonical forms

using a logspace uniform family of AC circuits of depth O((r(n) + log n) log n) and size

O(r · nO(k)).

Proof. By Theorem 3.8.7, we have that Algorithm 1 correctly computes a canonical form for any

group G ∈ C. It remains to establish the complexity bounds. The key work lies in the while

loop. At line 9, we compute (k + 1, r)-WL using the parallel WL implementation due to Grohe &

Verbitsky [104] (which immediately applies to WL Version I; see [104, Remark 3.4]). In the case of

the standard counting variant of WL Version I, each iteration can be implemented using a logspace

uniform TC0 circuit. In the case of count-free WL Version I, each iteration can be implemented

using a logspace uniform AC0 circuit. The remaining steps of the while loop, except for Line 11,

are all AC0-computable.

At line 11, we compute ⟨Gens⟩, which is L-computable using a membership test [38, 81] or

constructive generation procedure [185]. From the proof of Theorem 3.8.8, selecting the minimum

color class is AC0-computable.

We thus have the following.

(1) Let C be a family of groups. If (k,O(1))-WL Version I (counting or count-free) identifies

all colored groups belonging to C, then we may compute canonical forms using a logspace

uniform family of SAC circuits of depth O(log2 n) and size O(r · nO(k)).

(2) Let C be a family of groups, and suppose that r(n) ∈ ω(1). If (k, r(n))-WL Version I

identifies all colored groups belonging to C, then we may compute canonical forms using a

logspace uniform family of TC circuits of depth O((r(n)+ log n) log n) and size O(r ·nO(k)).

(3) Let C be a family of groups, and suppose that r(n) ∈ ω(1). If the count-free (k, r(n))-

WL Version I identifies all colored groups belonging to C, then we may compute canonical

forms using a logspace uniform family of AC circuits of depth O((r(n) + log n) log n) and

size O(r · nO(k)).



111

We now modify Algorithm 1 to use WL Version III- see Algorithm 2, as well as establish its

correctness.

Theorem 3.8.12. Let k ≥ 2 be a constant, and let r := r(n) be a function, where n denotes the

order of the input groups. Let C be a class of groups such that (k, r)-WL Version III identifies all

colored groups in C. For any G ∈ C, Algorithm 2 correctly returns a canonical form for G.

Proof. Let G ∈ C be our input group, and let κ(G) be the result of Algorithm 1. We show that κ

canonizes C. By construction, the map i 7→ ψ(i) is an isomorphism of G ∼= κ(G).

Now let H ∈ C be a second group such that G ∼= H. Let g1, . . . , gk ∈ G be the sequence of

vertices added to Gens by Algorithm 1, and let h1, . . . , hk be the corresponding sequence for H (we

will show later that k ≤ log n+1). We show by induction on 0 ≤ i ≤ k that there is an isomorphism

φ : G ∼= H that restricts to an isomorphism of ⟨g1, . . . , gi⟩ ∼= ⟨h1, . . . , hi⟩. The base case when i = 0

is precisely the assumption that G ∼= H. Now fix i ≥ 0 and let φ : G ∼= H such that φ(gj) = hj

for all j ≤ i − 1. As φ is an isomorphism mapping φ(gj) = hj for all j ≤ i − 1, it follows that φ

restricts to the isomorphism of ⟨g1, . . . , gi−1⟩ ∼= ⟨h1, . . . , hi−1⟩ induced by the map φ(gj) = hj for

all j ≤ i− 1. Then, using the fact that the map G 7→ ΓG is a many-one reduction from GpI to GI,

we have that (ΓG, χG,i) ∼= (ΓH , χH,i). As gi, hi were selected by the algorithm at line 12, we have

that χG,i(g) = χH,i(φ(g)). As (k+1, r)-WL determines orbits for all graphs ΓG arising from groups

G ∈ C, it follows that there is a color-preserving isomorphism φ : (ΓG, χG,i) ∼= (ΓH , χH,i) such that

φ(gi) = hi. As gj , hj belong to their own color class for j ≤ i, φ also has to map φ(gj) = hj .

Necessarily, φ must also restrict to the isomorphism of ⟨g1, . . . , gi⟩ ∼= ⟨h1, . . . , hi⟩ induced by the

map gj 7→ hj for 1 ≤ j ≤ i. The result now follows by induction.

Theorem 3.8.13. Let k ≥ 2 be a constant, and let r := r(n) be a function, where n denotes the

order of the input groups.

(a) Let C be a family of groups. If (k,O(1))-WL Version III (counting or count-free) identifies
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Algorithm 2 Canonization Algorithm for group class C
Require: G ∈ C is identified by (k, r)-WL III
Ensure: κ(G)
1: n := |G|
2: ΓG := G(V,E) ▷ Graph created by WL III
3: Γ0 := ΓG

4: Gens := ∅
5: ψ := ∅
6: i := 0
7:

8: while ⟨Gens⟩ ≠ G do
9: Let χi be the coloring computed by (k + 1, r)-WL III applied to Γi

10: Define χG,i+1(v) = χΓi,k+1
i (v, . . . , v) for all v ∈ G

11: For each g ∈ G belonging to a color class of size 1, set ψ(g) = χG,i+1(g).
12: Let gi+1 ∈ argmin{χG,i+1(g) : g ∈ G\⟨Gens⟩,The color class χ(g) has more than one element}
13: Gens := Gens ∪ {gi+1}.
14: ψ(gi+1) = χG,i+1(gi+1).
15:

16: Set Γi+1 to be the graph ΓG, where the vertices are individualized according to ψ.
17: Set i := i+ 1
18: end while
19:

20: return κ(G) := ([n], {(g, h, gh) : g, h ∈ G}, g 7→ ψ(g)).
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all colored groups belonging to C, then we may compute canonical forms using a logspace

uniform family of SAC circuits of depth O(log2 n) and size O(r · nO(k)).

(b) Let C be a family of groups, and suppose that r(n) ∈ ω(1). If (k, r(n))-WL Version III

identifies all colored groups belonging to C, then we may compute canonical forms using a

logspace uniform family of TC circuits of depth O((r(n)+ log n) log n) and size O(r ·nO(k)).

(c) Let C be a family of groups, and suppose that r(n) ∈ ω(1). If the count-free (k, r(n))-WL

Version III identifies all colored groups belonging to C, then we may compute canonical

forms using a logspace uniform family of AC circuits of depth O((r(n) + log n) log n) and

size O(r · nO(k)).

Proof. The proof is identical to Theorem 3.8.11, replacing WL Version I with WL Version III. We

also note that constructing the graph ΓG at line 3 is AC0-computable; see- Remark 2.7.2.

As only log n + 1 calls to (k + 1)-WL are required in the setting of groups, we obtain the

following improvement to the serial runtime, compared to Theorem 3.8.2.

Corollary 3.8.14. Let C be a class of groups.

(a) If k-WL Versions I or II identify all colored groups in C, then there exists a group canon-

ization for C that can be computed in time O(nk+2 log2 n).

(b) If k-WL Version III identifies all colored graphs in ΓC = {ΓG : G ∈ C}, then there exists a

group canonization for C that can be computed in time O(|G|2k+3 log2 |G|).

Remark 3.8.15. We note that for WL Version III, Theorem 3.8.2 yields a runtime ofO(n2k+4 log n).



Chapter 4

Descriptive Complexity of Groups without Abelian Normal Subgroups

The work in this chapter is joint with Joshua A. Grochow, resulting in [91].

In this chapter, we investigate the descriptive complexity theory of groups without Abelian

normal subgroups, which are a rather large and non-trivial class of groups. Motivation for groups

without Abelian normal subgroups arises as follows. Every group G can be written as an extension

of its solvable radical Rad(G) by the quotient G/Rad(G), which does not have Abelian normal

subgroups. As such, the latter class of groups is quite natural, both group-theoretically and com-

putationally. Computationally, it has been used in algorithms for general finite groups both in

theory (e.g., [27, 28]) and in practice (e.g., [56]). Isomorphism testing in this family of groups can

be solved efficiently in practice [56], and is known to be in P through a series of two papers [29, 30].

The extension structure is captured by the following characteristic filtration:

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G,

which arises in the computational complexity community where it is known as the Babai–Beals

filtration [27], as well as in the development of practical algorithms for computer algebra systems

(c.f., [56]). We now explain the terms of this chain. Here, Rad(G) is the solvable radical, which

is the unique maximal solvable normal subgroup of G. The socle of a group, denoted Soc(G), is

the subgroup generated by all the minimal normal subgroups of G. Soc∗(G) is the preimage of the

socle Soc(G/Rad(G)) under the natural projection map π : G → G/Rad(G). To define PKer, we
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start by examining the action on Soc(G/Rad(G)) ∼= Soc∗(G)/Rad(G) that is induced by the action

of G on Soc∗(G) by conjugation. As Soc∗(G)/Rad(G) ∼= Soc(G/Rad(G)) is the direct product of

finite, non-Abelian simple groups T1, . . . , Tk, this action permutes the k simple factors, yielding a

homomorphism φ : G→ Sk. The kernel of this action is denoted PKer(G).

While the family of groups without Abelian normal subgroups is known to admit a polynomial-

time isomorphism test, we have been unable to establish that even the classical o(log n)-WL al-

gorithm identifies this family. This, combined with the notion of implicit pebbling in WL Version

III, led us to explore the power of the second Ehrenfeucht–Fräıssé bijective pebble game in Hella’s

[109] heirarchy. This is a Spoiler–Duplicator game in which Spoiler can place up to two pebbles

each round. While it trivially solves graph isomorphism, it may be nontrivial for finite groups, and

other ternary relational structures.

We note that in the pebble game corresponding to WL Version III, Spoiler may pebble two

group elements at a time by placing a pebble on a multiplication gadget. However, while Duplicator

must select bijections respecting the group elements, these bijections need not map group element

vertices and non-group element vertices on the multiplication gadgets consistently. We contrast this

with the second Ehrenfeucht–Fräıssé bijective pebble game in Hella’s heirarchy, where Duplicator

selects bijections on the group elements and Spoiler then pebbles at most 2 group elements in the

given round. We do not have to worry about the inconsistencies that Duplicator can create in the

pebble game corresponding to WL Version III.

We first provide a novel generalization of Weisfeiler–Leman (WL) coloring, which we call 2-

ary WL. We then show that the 2-ary WL is equivalent to the second Ehrenfeucht–Fräıssé bijective

pebble game in Hella’s heirarchy. Our main result is that, in the pebble game characterization, O(1)

pebbles and O(1) rounds are sufficient to identify all groups without Abelian normal subgroups.

In particular, we show that within the first few rounds, Spoiler can force Duplicator to select an

isomorphism between two such groups at each subsequent round. By Hella’s results [109, 110],

this is equivalent to saying that these groups are identified by formulas in first-order logic with

generalized 2-ary quantifiers, using only O(1) variables and O(1) quantifier depth.
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For preliminaries on groups without Abelian normal subgroups, we refer the reader to Sec-

tion 3.6.1.

4.1 Main Results

We initiate the study of Hella’s 2-ary Ehrenfeucht–Fräıssé-style pebble game, in the setting of

groups. Our main result is that this pebble game efficiently characterizes isomorphism in a class of

groups for which isomorphism testing is known to be in P, but only by quite a nontrivial algorithm

[30].

Theorem 4.1.1. Let G be a group with no Abelian normal subgroups (a.k.a. Fitting-free or

semisimple), and let H be arbitrary. If G ̸∼= H, then Spoiler has a winning strategy the Ehrenfeucht–

Fräıssé game at the second level of Hella’s hierarchy, using 9 pebbles and O(1) rounds.

In proving Theorem 4.1.1, we show that with the use of only a few pebbles, Spoiler can

effectively force Duplicator to select an isomorphism of G and H.

In Section 4.3 we also complete the picture by giving a Weisfeiler–Leman-style coloring proce-

dure and showing that it corresponds precisely to Hella’s q-ary pebble games and q-ary generalized

Lindstrom quantifiers [148].

4.2 Pebbling Game

Hella [109, 110] exhibited a heirarchy of pebble games where, for q ≥ 1, Spoiler could pebble

a sequence of 1 ≤ j ≤ q elements (v1, . . . , vj) 7→ (f(v1), . . . , f(vj)) in a single round. The case of

q = 1 corresponds to the case of Weisfeiler–Leman. As remarked by Hella [110, p. 6, just before

§4], the q-ary game immediately identifies all relational structures of arity ≤ q. For example,

the q = 2 game on graphs solves GI: for if two graphs X and Y are non-isomorphic, then any

bijection f : V (X) → V (Y ) that Duplicator selects must map an adjacent pair of vertices u, v

in X to a non-adjacent pair f(u), f(v) in Y or vice-versa. Spoiler immediately wins by pebbling

(u, v) 7→ (f(u), f(v)). However, as groups are ternary relational structures (the relation being
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{(a, b, c) : a, b, c ∈ G, ab = c}), the q = 2 case can, at least in principle, be non-trivial on groups.

Brachter & Schweitzer [48] adapted Hella’s [109, 110] pebble games in the q = 1 case to the

setting of groups, obtaining three different versions. Their Version III involves reducing to graphs

and playing the pebble game on graphs, so we don’t consider it further here. Versions I and II

are both played on the groups G and H directly. Both Versions I and II may be generalized to

allow Spoiler to pebble up to q group elements at a single round, for some q ≥ 1. Mimicking the

proof above for q = 2 for graphs, we have that q = 3 is sufficient to solve GpI in a single round.

The distinguishing power, however, of the q = 2 game for groups remains unclear, and is the main

subject of this chapter. As we are interested in the round complexity, we introduce the following

notation.

Definition 4.2.1 (Notation for pebbles, rounds, arity, and WL version). Let k ≥ 2, r ≥ 1, q ∈ [3],

and J ∈ {I, II}. Denote (k, r)-WLq
J to be the k-pebble, r-round, q-ary Version J pebble game.

We refer to q as the arity of the pebble game, as it corresponds to the arity of generalized

quantifiers in a logic whose distinguishing power is equivalent to that of the game:

Remark 4.2.2 (Equivalence with logics with generalized 2-ary quantifiers). Hella [109] describes

the game (essentially the same as our description, but with no restriction on number of pebbles,

and a transfinite number of rounds) for general q at the bottom of p. 245, for arbitrary relational

structures. We restrict to the case of q = 2, a finite number of pebbles and rounds, and the

(relational) language of groups. Hella proves that this game is equivalent to first-order logic with

arbitrary q-ary equantifiers in [109, Theorem 2.5].

We frequently use this observation without mention.

Observation 4.2.3. In the 2-ary pebble game, we may assume that Duplicator selects bijections

that preserve inverses.

Proof. For suppose not. First, it is clear that Duplicator must select bijections that preserve the

identity. Let f : G → H be a bijection such that f(g−1) ̸= f(g)−1. Spoiler pebbles (g, g−1) 7→

(f(g), f(g−1)). Now gg−1 = 1, while f(g)f(g−1) ̸= 1. So Spoiler wins.
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4.3 Higher-arity Weisfeiler-Leman-style coloring corresponding to higher

arity pebble games

Given a k-tuple x = (x1, . . . , xk) ∈ Gk, a pair of distinct indices i, j ∈ [k], and a pair of group

elements y, z, we define x(i,j)←(y,z) to be the k-tuple x′ that agrees with x on all indices besides i, j,

and with x′i = y, x′j = z. If i = j, we require y = z, and we denote this xi←y.

Two graphs Γ1,Γ2, with edge-colorings ci : E(Γi) → C to some color set C (for i = 1, 2) are

color isomorphic if there is a graph isomorphism φ : V (Γ1) → V (Γ2) that also preserves colors, in

the sense that c1((u, v)) = c2((φ(u), φ(v)) for all edges (u, v) ∈ E(Γ1).

Definition 4.3.1 (2-ary k-dimensional Weisfeiler-Leman coloring). Let G,H be two groups of the

same order, let k ≥ 1. For all k-tuples x, y ∈ Gk ∪Hk:

� (Initial coloring, Version I) χ2,I
0 (x) = χ2,I

0 (y) iff x, y are partially isomorphic.

� (Initial coloring, Version II) χ2,II
0 (x) = χ2,II

0 (y) iff x, y have the same marked isomorphism

type.

� (Color refinement) Given a coloring χ : Gk ∪ Hk → C, the color refinement operator R

defines a new coloring R(χ) as follows. For each k-tuple x ∈ Gk (resp., Hk), we define an

edge-colored graph Γx,χ,i,j . If i = j, it is the graph on vertex set V (Γx,χ,i,i) = G (resp., H)

with all self-loops and no other edges, where the color of each self-loop (g, g) is χ(xi←g). If

i ̸= j, it is the complete directed graph with self-loops on vertex set G (resp., H), where

the color of each edge (y, z) is χ(x(i,j)←(y,z)). For an edge-colored graph Γ, we use [Γ] to

denote its edge-colored isomorphism class. We then define

R(χ)(x) = (χ(x); [Γx,χ,1,1], [Γx,χ,1,2], . . . , [Γx,χ,k,k−1], [Γx,χ,k,k]) .

That is, the new color consists of the old color, as well as the tuple of
(
k+1
2

)
edge-colored

isomorphism types of the graphs Γx,χ,i,j .

The refinement operator may be iterated: Rt(χ) := R(Rt−1(χ)), and we define the stable refinement
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of χ as Rt(χ) where the partition induced by Rt(χ) on Gk ∪ Hk is the same as that induced by

Rt+1(χ). We denote the stable refinement by R∞(χ).

Finally, for J ∈ {I, II} and all r ≥ 0, we define χ2,J
r+1 = R(χ2,J

r ), and χ2,J
∞ := R∞(χ2,J

0 ).

Remark 4.3.2. Since it was one of our stumbling blocks in coming up with this generalized

coloring, we clarify here how this indeed generalizes the usual 1-ary WL coloring procedure. In the

1-ary “oblivious” k-WL procedure (see [98, §5], equivalent to ordinary WL), the color of a k-tuple

x is refined using its old color, together with a k-tuple of multisets

({{χ(x1←y) : y ∈ G}}, {{χ(x2←y) : y ∈ G}}, . . . , {{χ(xk←y) : y ∈ G}}).

For each i, note that two multisets {{χ(xi←y) : y ∈ G}} and {{χ(x′i←y) : y ∈ G}} are equal iff

the graphs Γx,χ,i,i and Γx′,χ,i,i are color-isomorphic. That is, edge-colored graphs with only self-

loops and no other edges are essentially the same, up to isomorphism, as multisets. Our procedure

generalizes this by also considering graphs with other edges, which (as we’ll see in the proof of

equivalence below) are used to encode the choice of 2 simultaneous pebbles by Spoiler in each

round of the game.

Theorem 4.3.3. Let G,H be two groups of order n, with x ∈ Gk, y ∈ Hk. Starting from the initial

pebbling xi 7→ yi for all i = 1, . . . , k, Spoiler has a winning strategy in the k-pebble, r-round, 2-ary

Version J pebble game (for J ∈ {I, II}) iff χ2,J
r (x) ̸= χ2,J

r (y).

Proof. By induction on r. The base case, r = 0, is built into the definition: the initial colors of x, y

agree iff xi = xj ⇔ yi = yj and in Version I, xixj = xℓ ⇔ yiyj = yℓ, or in Version II the pebbled

map is a marked isomorphism. But these are precisely the conditions for Spoiler to lose without

making a move, so both directions are established for r = 0.

Now suppose r > 0, and the equivalence is established for r − 1. For ease of notation,

throughout the proof we denote colorings χ2,J by χJ instead, and we denote the graphs Γx,χJ
r ,i,j

by

Γx,r,i,j instead (q = 2 and the dependence on J still being implied).

(⇐) Suppose χJ
r (x) ̸= χJ

r (y). If χJ
r−1(x) ̸= χJ

r−1(y), then Spoiler has a winning strategy in

r − 1 rounds by the inductive hypothesis. Otherwise, we have χJ
r−1(x) = χJ

r−1(y). But since their
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colors differ at the r-th round, there must exist i, j ∈ [k] such that Γx,r−1,i,j is not color-isomorphic

to Γy,r−1,i,j . Spoiler picks up the pebbles i and j. Now, no matter what bijection φ Duplicator

chooses, φ is not a color isomorphism on these graphs, so there exists an edge (x′i, x
′
j) ∈ E(Γx,r−1,i,j)

whose color differs from that of the edge (φ(x′i), φ(x
′
j)) ∈ E(Γy,r−1,i,j). (Note: there is no concern

that the latter is not an edge of Γy,r−1,i,j , for φ is automatically an uncolored graph isomorphism:

when i ̸= j the graphs are complete, and when i = j the graphs consist of n isolated vertices with

self-loops, so any bijection works.) Spoiler places the i-th pebble on x′i 7→ φ(x′i) =: y′i and the j-th

pebble on x′j 7→ φ(x′j) =: y′j .

By the definition of the edge coloring, the fact that the edges (x′i, x
′
j) and (y′i, y

′
j) receive

different colors in the Γ•,r−1,i,j graphs means that χJ
r−1(x(i,j)←(x′

i,x
′
j)
) ̸= χJ

r−1(y(i,j)←(y′i,y
′
j)
). Now,

by the inductive hypothesis applied to x(i,j)←(x′
i,x

′
j)

and y(i,j)←(y′i,y
′
j)
, Spoiler can win in at most

r − 1 additional rounds.

(⇒) Suppose χJ
r (x) = χJ

r (y). We show that Duplicator has a strategy that does not lose

through round r. On the first round, Spoiler picks up pebbles i and j (not necessarily distinct).

Since χJ
r (x) = χJ

r (y), we have that Γx,r−1,i,j is color-isomorphic to Γy,r−1,i,j , say by the isomorphism

φ : G = V (Γx,r−1,i,j) → V (Γy,r−1,i,j) = H. Duplicator uses the isomorphism φ as their chosen

bijection. Suppose Spoiler places the pebbles on x′i 7→ φ(x′i) =: y′i and x′j 7→ φ(x′j) =: y′j . First,

we claim that Duplicator has not yet lost. For the fact that φ is a color isomorphism means that

the colors of the edge (x′i, x
′
j) ∈ E(Γx,r−1,i,j) and (y′i, y

′
j) ∈ E(Γy,r−1,i,j) are the same. But these

colors are precisely χJ
r−1(x(i,j)←(x′

i,x
′
j)
) and χJ

r−1(y(i,j)←(y′i,y
′
j)
). Since χJ

r−1 refines χJ
0 , we also have

χJ
0 (x(i,j)←(x′

i,x
′
j)
) = χJ

0 (y(i,j)←(y′i,y
′
j)
); since the 0-th coloring precisely matches the condition for

Duplicator not to lose, Duplicator has not yet lost.

It remains to show that Duplicator can continue not to lose for an additional r − 1 rounds.

But this now follows from the inductive hypothesis applied to x(i,j)←(x′
i,x

′
j)

and y(i,j)←(y′i,y
′
j)
, for we

have already established that they receive the same color under χJ
r−1.

Corollary 4.3.4. For two groups G,H of the same order and any k ≥ 1, the following are equiv-
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alent:

(1) The 2-ary k-pebble game does not distinguish two groups G,H

(2) The multisets of stable colors on Gk and Hk are the same, that is, {{χ2,J
∞ (x) : x ∈ Gk}} =

{{χ2,J
∞ (y) : y ∈ Hk}}

(3) χ2,J
∞ ((1G, 1G, . . . , 1G)) = χ2,J

∞ ((1H , . . . , 1H)).

The analogous result holds in the q = 1 case, going back to [48].

Proof. (2 ⇒ 3) Note that the identity tuples (1, . . . , 1) are the unique tuples of their color, since

they are the only tuples (x1, . . . , xk) such that x2i = xi for all i (Version I), and the only tuples for

which ⟨x1, . . . , xk⟩ = 1 (Version II). Thus, if the multisets of stable colors are equal, the colors of

(1G, . . . , 1G) and (1H , . . . , 1H) must be equal.

(3 ⇒ 2) Suppose χ2,J
∞ ((1G, . . . , 1G)) = χ2,J

∞ ((1H , . . . , 1H)). Claim: for all 0 ≤ ℓ ≤ k,

{{χ2,J
∞ (x1, . . . , xℓ, 1G, . . . , 1G) : x1, . . . , xℓ ∈ G}} = {{χ2,J

∞ (x1, . . . , xℓ, 1H , . . . , 1H) : x1, . . . , xℓ ∈ H}}.

(∗)

For notational simplicity, for x ∈ Gℓ, define x+ as the k-tuple (x1, . . . , xℓ, 1G, . . . , 1G), and similarly

mutatis mutandis for y ∈ Hℓ.

For ℓ = 0, (∗) is precisely our assumption (3).

Suppose (∗) is true for some 0 ≤ ℓ < k. We show that it remains true for min{ℓ+ 2, k}. For

notational simplicity, we assume ℓ+ 2 ≤ k; the proof in the case k = ℓ+ 1 is similar.

By the inductive hypothesis, there is a bijection φℓ : G
ℓ → Hℓ such that for all x ∈ Gℓ,

χ2,J
∞ (x+) = χ2,J

∞ (φℓ(x)
+)

For each x ∈ Gℓ, by the definition of the coloring, there is a color-isomorphism ψ = ψx : Γx+,∞,ℓ+1,ℓ+2 →

Γφ(x)+,∞,ℓ+1,ℓ+2 (technically the subscripts here should be “∞−1,” but because it is the stable color-

ing, the colored graphs are the same as what we have written). By the definition of the colors on the

edges, this means that for all xℓ+1, xℓ+2 ∈ G, we have that χJ
∞(x1, . . . , xℓ, xℓ+1, xℓ+2, 1G, . . . , 1G) =
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χJ
∞(φℓ(x), ψ(xℓ+1), ψ(xℓ+2)) (where here we have slightly abused our parentheses, but in a way

that should be clear). Thus, we may extend φℓ to a color-preserving bijection φℓ+2 by defining

φℓ+2(x, xℓ+1, xℓ+2) = (φℓ(x), ψx(xℓ+1), ψx(xℓ+2)) ∀x ∈ Gℓ∀xℓ+1, xℓ+2 ∈ G.

Thus establishing (∗) for ℓ+ 2 (assuming ℓ+ 2 ≤ k). This establishes the claim for all ℓ ≤ k, and

thus that (3) implies (2).

(3 ⇔ 1) The 2-ary k-pebble game starting from empty initial configurations is equivalent,

move-for-move, with the 2-ary k-pebble game starting from the configuration (1G, 1G, . . . , 1G) 7→

(1H , 1H , . . . , 1H). By Theorem 4.3.3, the 2-ary k-pebble game thus does not distinguish G from H

iff χ2,J
∞ ((1G, . . . , 1G)) = χ2,J

∞ ((1H , . . . , 1H)).

Remark 4.3.5. For arbitrary relational structures with relations of arity a+1, the a-order pebble

game may still be nontrivial, as pointed out in Hella [110, p. 6, just before §4]. Our coloring proce-

dure generalizes in the following way to this more general setting, and the proof of the equivalence

between the coloring procedure and Hella’s pebble game is the same as the above, mutatis mutan-

dis. The main change is that for an a-th order pebble game, instead of just considering a graph

on edges of size 1 (when i = j) or 2 (when i ̸= j), we consider an a′-uniform directed hypergraph,

where each hyperedge consists of a list of a′ vertices, for all 1 ≤ a′ ≤ a. This gives a coloring

equivalent of the logical and game characterizations provided by Hella; this trifecta is partly why

we feel it is justified to call this a “higher-arity Weisfeiler–Leman” coloring procedure. It would be

interesting if there were also an algebraic equivalent, similar to the cellular algebras of Weisfeiler

and Leman [196] (see also Higman’s coherent algebras [111]) in the case of (ordinary) WL, but we

leave that open for future development.

4.4 Equivalence between 2-ary (k, r)-WL Versions I and II

In this section we show that, up to additive constants in the number of pebbles and rounds,

2-ary WL Versions I and II are equivalent in their distinguishing power. For two different WL
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versions W,W ′, we write W ⪯ W ′ to mean that if W distinguishes two groups G and H, then so

does W ′.

Theorem 4.4.1. Let k ≥ 2, r ≥ 1. We have that:

(k, r)-WL2
I ⪯ (k, r)-WL2

II ⪯ (k + 2, r + 1)-WL2
I .

Remark 4.4.2. This is a tighter connection in terms of rounds than that known for ordinary

(1-ary) WL. In the case of q = 1, the best known round-tradeoff between Versions I and II of the

pebble game is one pebble [48] and an additive O(log n) rounds (see Theorem 2.8.4). While it is

possible that this O(log n) tradeoff can be improved, we believe it is unlikely that only an extra

round suffices in the 1-ary case.

Proof. For the first statement, note that if x 7→ y is a marked isomorphism, then it is a partial

isomorphism as well. After that, each color refinement step in the two versions are the same, so

at whatever round Version I distinguishes G from H, Version II will distinguish G from H at that

round (or possibly sooner).

For the second statement, suppose that (k, r)-WL2
II distinguishes G from H. Let r0 be the

minimum number of rounds after which Spoiler has a winning strategy in this game. We show how

Spoiler can win in the (k+2, r0 +1)-WL2
I game. For the first r0 rounds, Spoiler makes exactly the

same moves it would make in response to Duplicator’s bijections in the Version II game. At the end

of the r0 round, Spoiler has pebbled a map x 7→ y of k-tuples that is not a marked isomorphism, but

may still be a partial isomorphism. On the next round, Spoiler picks up the two pebbles k+1, k+2.

Let φ be the bijection Duplicator chooses. Since the pebbled map is not a marked isomorphism,

there is a word w such that w(φ(x1), . . . , φ(xk)) ̸= φ(w(x)). Let w be such a word of minimal

length ℓ, and write w(x) = x±1i1
w′(x), where w′ has length ℓ− 1. Spoiler places the two pebbles on

w′(x) 7→ φ(w′(x)) and w(x) 7→ φ(w(x)). Now, since pebbles i1, k + 1, k + 2 are on xi1 , w
′(x), w(x),

resp., and x±1i1
w′(x) = w(x) but φ(xi)

±1φ(w′(x)) = w(φ(x)) ̸= φ(w(x), Spoiler wins the Version I

game.
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4.5 Descriptive Complexity of Semisimple Groups

In this section, we show that the (O(1), O(1))-WL2
II pebble game can identify groups with

no Abelian normal subgroups, also known as semisimple groups.

We show that the second Ehrenfeucht–Fräıssé in Hella’s hierarchy can identify both Soc(G)

and the conjugation action when G is semisimple. We first show that this pebble game can identify

whether a group is semisimple. Namely, if G is semisimple and H is not semisimple, then Spoiler

can distinguish G from H. This is essentially the same proof as Proposition 3.6.8 in the setting of

1-ary (classical) WL, but with a tighter control on rounds in the 2-ary case.

Proposition 4.5.1. Let G be a semisimple group of order n, and let H be an arbitrary group of

order n. If H is not semisimple, then Spoiler can win in the (4, 2)-WL2
II game.

Proof. Recall that a group is semisimple if and only if it contains no Abelian normal subgroups.

As H is not semisimple, Soc(H) = A× T , where A is the non-trivial direct product of elementary

Abelian groups and T is a direct product of non-Abelian simple groups. We show that Spoiler can

win using at most 3 pebbles on the board and 2 rounds. Let f : G → H be the bijection that

Duplicator selects. Let a ∈ A. So nclH(a) ≤ A. Let b := f−1(a) ∈ G, and let B := nclG(b). As G

is semisimple, we have that B is not Abelian. Spoiler first pebbles b 7→ f(b) = a.

So there exist g1, g2 ∈ G such that g1bg
−1
1 and g2bg

−1
2 do not commute (for B is generated

by {gbg−1 : g ∈ G}, and if they all commuted then B would be Abelian). Let f ′ : G → H be

the bijection that Duplicator selects at the next round. Spoiler pebbles (g1, g2) and (f ′(g1), f
′(g2)).

As ncl(f(b)) ≤ A is Abelian, f ′(g1)f(b)f
′(g1)

−1 and f ′(g2)f(b)f
′(g2)

−1 commute. Spoiler now

wins.

We now apply Lemma 3.6.5 to show that Duplicator must map the direct factors of Soc(G)

to isomorphic direct factors of Soc(H).

Lemma 4.5.2. Let G,H be finite groups of order n. Let Fac(Soc(G)) denote the set of simple

direct factors of Soc(G). Let S ∈ Fac(Soc(G)) be a non-Abelian simple group, with S = ⟨x, y⟩. If
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Duplicator selects a bijection f : G→ H such that:

(a) f(S) ̸∼= ⟨f(x), f(y)⟩, then Spoiler can win in the (2, 1)-WL2
II game; or

(b) f(S) ̸= ⟨f(x), f(y)⟩, then Spoiler can win in the (4, 2)-WL2
II pebble game.

Note that the lemma does not require f |S : S → f(S) to actually be an isomorphism, only that

S and f(S) are isomorphic. We also note that Lemma 3.6.9 only allows us to show that in the

1-ary case, the set of elements belonging to non-Abelian simple direct factors of Soc(G) must map

to the corresponding set in H. Lemma 4.5.2 establishes that in the 2-ary case, each such factor is

preserved setwise.

Proof.

(a) If S ̸∼= ⟨f(x), f(y)⟩, then Spoiler pebbles (x, y) 7→ (f(x), f(y)) and immediately wins.

(b) Suppose that S ∼= ⟨f(x), f(y)⟩. By part (a), we may assume that the map (x, y) 7→

(f(x), f(y)) extends to an isomorphism; otherwise Spoiler immediately wins. So suppose

that f(S) ̸= ⟨f(x), f(y)⟩. Note that as S ∼= ⟨f(x), f(y)⟩, we have that |S| = |⟨f(x), f(y)⟩|.

So f(S) ⊆ ⟨f(x), f(y)⟩ if and only if f(S) = ⟨f(x), f(y)⟩.

Now by the assumption that f(S) ̸= ⟨f(x), f(y)⟩, there exists an element b ∈ S such that

f(b) ̸∈ ⟨f(x), f(y)⟩. Let a ∈ S such that a ̸= 1 and f(a) ∈ ⟨f(x), f(y)⟩. Spoiler pebbles

(a, b) 7→ (f(a), f(b)). Let f ′ : G → H be the bijection that Duplicator chooses on the

next round. Let g, h ∈ G such that f ′(g) = f(x) and f ′(h) = f(y). Spoiler now pebbles

(g, h) and (f(x), f(y)). As S ∼= ⟨f(x), f(y)⟩ by assumption, we have that T := ⟨g, h⟩ is

isomorphic to S. Furthermore, as f(a) ∈ ⟨f(x), f(y)⟩, we may assume that a ∈ ⟨g, h⟩;

otherwise, Spoiler immediately wins.

We now claim that T ≤ Soc(G). As Soc(G) is normal in G, we have that T ∩ Soc(G)

is normal in T . As T is simple and intersects with Soc(G) non-trivially (namely, a ∈
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T ∩ Soc(G)), it follows that that T ≤ Soc(G). Now as S ⊴ Soc(G) and T ≤ Soc(G), we

have by similar argument (using the fact that a ∈ S) that T = S. So S = ⟨g, h⟩. Now

a, b ∈ S = ⟨g, h⟩; however, f(b) ̸∈ ⟨f(x), f(y)⟩. So Spoiler wins.

Proposition 4.5.3. Let G be a semisimple group of order n, and let H be an arbitrary group of

order n. Let f : G → H be the bijection Duplicator selects. If there exists S ∈ Fac(Soc(G)) such

that f(S) /∈ Fac(Soc(H)) or f(S) ̸∼= S, then Spoiler may win in the (4, 2)-WL2
II pebble game.

Proof. As G is semisimple, we have that S = ⟨x, y⟩ is non-Abelian. Let f : G→ H be the bijection

Duplicator selects. By Lemma 4.5.2, we may assume that f(S) ∼= S (though f |S need not be

an isomorphism); otherwise, Spoiler can win with 2 pebbles and 1 round. Furthermore, we may

assume that f(S) = ⟨f(x), f(y)⟩ setwise; otherwise, Spoiler can win with 4 pebbles and 2 rounds.

Suppose that f(S) is not a direct factor of Soc(H). Spoiler pebbles (x, y) 7→ (f(x), f(y)).

We now have the following cases.

� Case 1: Suppose that f(S) is not contained in Soc(H). Let f ′ : G → H be the bijection

that Duplicator selects at the next round. If f ′|S is not an isomorphism, Spoiler immediately

wins. As S◁Soc(G), the normal closure ncl(S) is minimal normal in G [124, Exercise 2.A.7].

As f ′(S) is not even contained in Soc(H), we have by Lemma 3.6.5 that ncl(f ′(S)) is not

a direct product of non-Abelian simple groups, so ncl(S) ̸∼= ncl(f ′(S)). We note that

ncl(S) = ⟨{gSg−1 : g ∈ G}⟩.

As ncl(f ′(S)) is not isomorphic to a direct power of S, there is some conjugate T = gSg−1 ̸=

S such that f ′(T ) does not commute with f ′(S), by Lemma 3.6.7. Yet since S ⊴ Soc(G),

T and S do commute. Spoiler pebbles g 7→ f ′(g). Since Spoiler has now pebbled x, y, g

which generate ⟨S, T ⟩ = S × T ∼= S ×S but the image is not isomorphic to S ×S, the map

(x, y, g) 7→ (f(x), f(y), f ′(g)) does not extend to an isomorphism of S × T . So Spoiler now

wins, with a total of 3 pebbles and 2 rounds.
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� Case 2: Suppose now that f(S) ≤ Soc(H), but that f(S) is not normal in Soc(H). By

Lemma 4.5.2, we may assume without loss of generality that for each T ∈ Fac(Soc(G)),

f(T ) ∼= T (though f |T need not be an isomorphism) and, by the previous case, that

f(T ) ≤ Soc(H). As f(S) is not normal in Soc(H), there exists T = ⟨a, b⟩ ∈ Fac(Soc(H))

such that T does not normalize f(S). Let f ′ : G → H be the bijection that Duplicator

selects at the next round. Again, we may assume f ′|S is an isomorphism, or Spoiler

wins with 2 additional pebbles and 1 additional round. Let g = (f ′)−1(a) ∈ Soc(G) and

h = (f ′)−1(b) ∈ Soc(G). As S is normal in Soc(G), we note that gSg−1 = S and hSh−1 = S.

Spoiler pebbles (g, h) 7→ (a, b). The map (x, y, g, h) 7→ (f(x), f(y), a, b) does not extend to

an isomorphism of ⟨x, y, g, h⟩ and ⟨f(x), f(y), a, b⟩, since g, h normalize S = ⟨x, y⟩ but a, b

cannot both normalize f(S) = ⟨f(x), f(y)⟩ (since T does not). Spoiler now wins.

The result follows.

Lemma 4.5.4. Let G,H be groups of order n, let S be a nonabelian simple group in Fac(Soc(G)).

Let f, f ′ : G→ H be two bijections selected by Duplicator at two different rounds. If f(S)∩f ′(S) ̸= 1,

then f(S) = f ′(S), or Spoiler can win in the (4, 2)-WL2
II pebble game.

Proof. By Proposition 4.5.3, both f(S) and f ′(S) must be simple normal subgroups of Soc(H) (or

Spoiler wins with 4 pebbles and 2 rounds). Since they intersect nontrivially, but distinct simple

normal subgroups of Soc(H) intersect trivially, the two must be equal.

We next introduce the notion of weight.

Definition 4.5.5. Let Soc(G) = S1×· · ·×Sk where each Si is a simple normal subgroup of Soc(G).

For any s ∈ Soc(G), write s = s1s2 · · · sk where each si ∈ Si, and define the weight of s, denoted

wt(s), as the number of i such that si ̸= 1.

Note that the definition of weight is well-defined since the Si are the unique subsets of Soc(G)

that are simple normal subgroups of Soc(G), so the decomposition s = s1s2 . . . sk is unique up to

the order of the factors. (The following is essentially a particular instance of the “rank lemma”
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Lemma 3.4.4, but as we are now in the setting of 2-ary WL we give the full proof, which also has

tighter bounds.)

Lemma 4.5.6 (Weight Lemma). Let G,H be semisimple groups of order n. If Duplicator selects

a bijection f : G → H that does not map Soc(G) bijectively to Soc(H), or does not preserve the

weight of every element in Soc(G), then Spoiler can win in the (4, 3)-WL2
II game.

Proof. First, we show that f must send Soc(G) into Soc(H). For if not, then there is some

s ∈ Soc(G) with f(s) /∈ Soc(H). Among such s, choose one of minimal weight w; note that

w ≥ 2 since the weight-1 elements must get mapped into Soc(H) by Proposition 4.5.3. Write

Soc(G) = S1 × · · · × Sk where the Si are the simple normal subgroups of Soc(G) and the first

w of them are the support of s, that is, s ∈ S1 × · · · × Sw. Write s = s1s2 · · · sw with si ∈ Si

and all si ̸= 1. Since s was a minimum-weight element that gets mapped outside of Soc(H),

we have that f(s1) and f(s2 · · · sw) are both in Soc(H), so their product is as well, and thus we

have f(s) = f(s1s2 · · · sw) ̸= f(s1)f(s2 · · · sw). Let s′ = s2s3 · · · sw. Spoiler now pebbles the pair

(s, s′) 7→ (f(s), f(s′)).

On the next round, Duplicator picks a new bijection f ′ with f ′(s) = f(s) /∈ Soc(H),

f ′(s′) = f(s′) ∈ Soc(H), and, by Proposition 4.5.3, f ′(s1) ∈ Soc(H) as well. Thus the prod-

uct f ′(s1)f
′(s′) = f ′(s1)f

′(s2s3 · · · sw) is also in Soc(H), so we again have f ′(s) = f ′(s1s2 · · · sw) ̸=

f ′(s1)f
′(s2s3 · · · sw). Spoiler now pebbles s1 and wins, in a total of 3 pebbles and 2 rounds.

Now we show that f must preserve weight. The identity is the unique element of weight 0,

which must be sent to the identity because it is the unique element satisfying e2 = e. The case of

weight 1 is precisely Proposition 4.5.3.

Now, suppose that f does not preserve weight. Among the elements s ∈ Soc(G) such that

wt(f(s)) ̸= wt(s), choose one of minimal weight w (which must be ≥ 2, since we have already

shown the weight-1 case). Without loss of generality, write Soc(G) = S1 × · · · × Sk where the Si

are the simple normal subgroups of Soc(G) and s ∈ S1 × S2 × · · · × Sw. Write s = s1s2 · · · sw with

all si ̸= 1. Since s is a smallest-weight element whose weight is not preserved, f(s2s3 · · · sw) must
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have weight precisely w−1. Now f(s1) has weight 1, so f(s1)f(s2s3 · · · sw) has weight either w−2,

w − 1 or w. Since f is a bijection from the elements of weight < w in Soc(G) to the elements of

weight < w in Soc(H), and wt(f(s)) ̸= w, we must have wt(f(s)) > w since f is a bijection. Thus

f(s1s2 · · · sw) = f(s) ̸= f(s1)f(s2s3 · · · sw), since the two elements have different weights. Now

Spoiler pebbles the pair (s, s2s3 · · · sw) 7→ (f(s), f(s2 · · · sw)).

At the next round, Duplicator selects another bijection f ′. We still have wt(f ′(s)) =

wt(f(s)) > w, wt(f ′(s2 · · · sw)) = wt(f(s2 · · · sw)) = w−1, and (by Proposition 4.5.3) wt(f ′(s1)) =

1. Thus, again, we have wt(f ′(s1)f
′(s2s3 · · · sw)) ∈ {w,w−1, w−2}, so we must have f ′(s1s2 · · · sw) =

f ′(s) ̸= f ′(s1)f
′(s2 · · · sw). Spoiler now pebbles s1 and wins with 4 pebbles and 3 rounds.

Lemma 4.5.7. Let G and H be semisimple groups with isomorphic socles. Let S1, S2 ∈ Fac(Soc(G))

be distinct. Let f : G → H be the bijection that Duplicator selects. If there exist xi ∈ Si such that

f(x1x2) ̸= f(x1)f(x2), then Spoiler can win in the (4, 3)-WL2
II pebble game.

Proof. By Lemma 4.5.6, we may assume that wt(s) = wt(f(s)) for all s ∈ Soc(G); otherwise, Spoiler

wins with at most 4 pebbles and 3 rounds. As f(x1x2) has weight 2, f(x1x2) belongs to the direct

product of two simple factors in Fac(Soc(H)), so it can be written f(x1x2) = y1y2 with each yi in

distinct simple factors in Fac(Soc(H)). Without loss of generality suppose that y1 ̸= f(x1). Spoiler

pebbles (x1, x1x2) 7→ (f(x1), f(x1x2)). Now wt(x−11 · x1x2) = 1, while wt(f(x1)
−1 · f(x1x2)) ≥ 2.

(Note that we cannot quite yet directly apply Lemma 4.5.6, because we have not yet identified a

single element x such that wt(x) ̸= wt(f(x)).)

On the next round, Duplicator selects another bijection f ′. Spoiler now pebbles x2 7→

f ′(x2). Because wt(x−11 · x1x2) = 1 but wt(f(x1)
−1f(x1x2)) ≥ 2, and f ′ preserves weight by

Lemma 4.5.6, we have f ′(x2) ̸= f ′(x1)
−1f ′(x1x2). Thus, the pebbled map (x1, x2, x1x2) 7→

(f ′(x1), f(x2), f(x1x2)) does not extend to an isomorphism, and so Spoiler wins with 3 pebbles

on the board and 2 rounds.

Recall from Section 3.6.1 that if G is semisimple, then G ≤ Aut(Soc(G)). Now each minimal

normal subgroup N ⊴ G is of the form N = Sk, where S is a non-Abelian simple group. So
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Aut(N) = Aut(S) ≀ Sym(k). In particular,

G ≤
∏
N⊴G

N is minimal normal

Aut(N).

So if g ∈ G, then the conjugation action of g on Soc(G) acts by (i) automorphism on each sim-

ple direct factor of Soc(G), and (ii) by permuting the direct factors of Soc(G). Provided generators

of the direct factors of the socle are pebbled, Spoiler can detect inconsistencies of the automorphism

action. However, doing so directly would be too expensive as there could be Θ(log |G|) generators,

so we employ a more subtle approach with a similar outcome. By Lemma 4.5.6, Duplicator must

select bijections f : G→ H that preserve weight. That is, if s ∈ Soc(G), then wt(s) = wt(f(s)). We

use Lemma 4.5.6 in tandem with the fact that the direct factors of the socle commute to effectively

pebble the set of all the generators at once. Namely, suppose that Fac(Soc(G)) = {S1, . . . , Sk},

where Si = ⟨xi, yi⟩. Let x := x1 · · ·xk and y := y1 · · · yk. We will show that it suffices for Spoiler

to pebble (x, y) rather than individually pebbling generators for each Si (this will still allow the

factors to be permuted, but that is all).

Lemma 4.5.8. Let G and H be semisimple groups with isomorphic socles, with Fac(Soc(G)) =

{S1, . . . , Sm}, with Si = ⟨xi, yi⟩. Let f : G→ H be the bijection that Duplicator selects, and suppose

that (i) for all i, f(Si) ∼= Si (though f |Si need not be an isomorphism) and f(Si) ∈ Fac(Soc(H)),

(ii) for every s ∈ Soc(G), wt(s) = wt(f(s)), and (iii) for all i, f(Si) = ⟨f(x), f(y)⟩.

Now suppose that Spoiler pebbles (x1 · · ·xm, y1 · · · ym) 7→ (f(x1 · · ·xm), f(y1 · · · ym)). As f

preserves weight, we may write f(x1 · · ·xm) = h1 · · ·hm and f(y1 · · · ym) = z1 · · · zm with hi, zi ∈

f(Si) for all i.

Let f ′ : G→ H be the bijection that Duplicator selects at any subsequent round in which the

pebble used above has not moved. If any of the following hold, then Spoiler can win in the WL2
II

pebble game with 5 additional pebbles and 5 additional rounds:

(a) f ′ does not satisfy conditions (i)–(iii),

(b) there exists an i ∈ [m] such that f ′(xi) /∈ {h1, . . . , hm} or f ′(yi) /∈ {z1, . . . , zm}
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(c) f ′|Si is not an isomorphism

(d) there exists g ∈ G and i ∈ [m] such that gSig
−1 = Si and for some x ∈ Si, f

′(gxg−1) ̸=

f ′(g)f ′(x)f ′(g)−1

Proof. We prove each part in turn:

(a) If f ′ does not satisfy (i)–(iii) then Spoiler can win with 4 additional pebbles and 3 additional

rounds by, respectively, Proposition 4.5.3, Lemma 4.5.6, and Lemma 4.5.2.

(b) Suppose there exists an i ∈ [m] such that for all j ∈ [m], f ′(xi) ̸= hj . Spoiler pebbles

(xi, x1 · · ·xmx−1i ) 7→ (f ′(xi), f
′(x1 · · ·xmx−1i )). Now wt(x1 · · ·xm · x−1i ) = m − 1, while

wt(f(x1 · · ·xm)·f ′(xi)−1) = m, since f ′(xi) /∈ {h1, . . . , hm} and wt(f ′(xi)) = 1 by (ii). Since

f ′ preserves weight, f ′(x1 · · ·xm)f ′(xi)
−1 ̸= f ′(x1 · · ·xmx−1i ). As all three of these elements

have been pebbled, Spoiler wins. Similarly if instead some yi has f
′(yi) /∈ {z1, . . . , zm}. In

total, Spoiler used at most 4 additional pebbles and 3 additional rounds.

(c) Suppose that for some i ∈ [k], f ′|Si is not an isomorphism. Then there is some word

w(x, y) such that f ′(w(xi, yi)) ̸= w(f ′(xi), f
′(yi)). Spoiler pebbles g = w(xi, yi). Since

we may assume f ′(1) = 1, we have that g ̸= 1. Let f ′′ : G → H be the bijection that

Duplicator selects at the next round. Since f ′(Si) and f ′′(Si) intersect at f ′′(g) ̸= 1, by

Lemma 4.5.4, we have f ′(Si) = f ′′(Si) (otherwise, Spoiler wins with 4 additional pebbles

and 3 additional rounds).

By (b), we have that f ′(xi) = hj for some j (otherwise, Spoiler wins with 4 additional

pebbles and 3 additional rounds). Since f ′′(xi) ∈ f ′′(Si) = f ′(Si), and by (b) we must

have f ′′(xi) ∈ {h1, . . . , hm}, only one of which is in f ′(Si), we must have f ′′(xi) = hj as

well. Similarly, f ′′(yi) = f ′(yi) = zj . Spoiler now pebbles (xi, yi) 7→ (hj , zj). The pebbled

map (xi, yi, g) 7→ (f ′(xi), f
′(yi), f

′(g)) does not extend to an isomorphism, and so Spoiler

wins with at most 3 additional pebbles and 3 additional rounds (for a total of 4 additional

pebbles and 4 rounds).
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(d) By (c), we may assume that f ′|Si is an isomorphism. In this case, Spoiler pebbles (g, gxg−1) 7→

(f ′(g), f ′(gxg−1)). Let f ′′ : G → H be the bijection that Duplicator selects on the next

round. As we pebbled gxg−1 ̸= 1, we have that f ′′(Si) and f
′(Si) overlap at f ′(gxg−1), so

we have f ′′(Si) = f ′(Si) by Lemma 4.5.4 (otherwise, Spoiler wins with 4 additional pebbles

and 3 additional rounds).

As in the previous part, by (b), we have that f ′′(xi) = f ′(xi) = hj and f
′′(yi) = f ′(yi) = zj

(or Spoiler wins with 4 additional pebbles and 4 additional rounds). Spoiler now pebbles

(xi, yi) 7→ (hj , zj). Now, as x ∈ ⟨xi, yi⟩ there is a word w such that x = w(xi, yi). Any

isomorphism f extending our pebbled map (xi, yi, g, gxg
−1) 7→ (hj , zj , f

′(g), f ′(gxg−1))

must thus have f(x) = w(hj , zj) = f ′(x), and thus the pebbled map does not extend to

an isomorphism. Thus, Spoiler wins with at most 4 additional pebbles and 4 additional

rounds (for a total of 5 additional pebbles and 5 additional rounds).

Lemma 4.5.8 provides enough to establish that Spoiler can force Duplicator to select at each

round a bijection that restricts to an isomorphism on the socles.

Proposition 4.5.9. (Same assumptions as Lemma 4.5.8.) Let G and H be semisimple groups

with isomorphic socles, with Fac(Soc(G)) = {S1, . . . , Sm}, with Si = ⟨xi, yi⟩. Let f0 : G → H be

the bijection that Duplicator selects, and suppose that (i) for all i, f0(Si) ∼= Si (though f0|Si need

not be an isomorphism) and f0(Si) ∈ Fac(Soc(H)), (ii) for every s ∈ Soc(G), wt(s) = wt(f0(s)),

and (iii) for all i, f0(Si) = ⟨f0(x), f0(y)⟩. Now suppose that Spoiler pebbles (x1 · · ·xm, y1 · · · ym) 7→

(f0(x1 · · ·xm), f0(y1 · · · ym)).

Let f ′ : G → H be the bijection that Duplicator selects at any subsequent round in which the

pebble used above has not moved. Then f ′|Soc(G) : Soc(G) → Soc(H) must be an isomorphism, or

Spoiler can win in 4 more rounds using at most 6 more pebbles (for a total of 7 pebbles and 5

rounds) in the WL2
II pebble game.
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Proof. By Lemma 4.5.6 f must map Soc(G) bijectively to Soc(H) and must preserve weights

(otherwise, Spoiler wins with 4 pebbles and 3 rounds). Suppose that f |Soc(G) : Soc(G) → Soc(H) is

not an isomorphism. The only way this is possible is if f |Soc(G) is not a homomorphism. So there

exist s = s1s2 · · · sk ∈ Soc(G) and s′ = s′1s
′
2 · · · s′k ∈ Soc(G) such that

f(s1s2 · · · sk)f(s′1s′2 · · · s′k) ̸= f(s1s
′
1s2s

′
2 · · · sks′k).

We claim that this implies that there are ti ∈ Si for all i = 1, . . . , k such that f(t1t2 · · · tk) ̸=

f(t1)f(t2) · · · f(tk). For suppose otherwise. Then the LHS of the preceding displayed equation

is f(s1)f(s2) · · · f(sk)f(s′1)f(s′2) · · · f(s′k), while the RHS is f(s1s
′
1)f(s2s

′
2) · · · f(sks′k). But, by

Lemma 4.5.8, f is an isomorphism on each simple normal subgroup of Soc(G) (otherwise, Spoiler

wins with 4 additional pebbles and 5 additional rounds), so the latter is f(s1)f(s
′
1)f(s2)f(s

′
2) · · · f(sk)f(s′k).

Furthermore, since the simple normal subgroups of Soc(G) commute with one another, their images

must commute in Soc(H) (otherwise Spoiler can pebble two elements that commute in Soc(G) but

whose images don’t commute in Soc(H) and win), the LHS is equal to the same, a contradiction.

Thus we have some ti ∈ Si for i = 1, . . . , k such that f(t1t2 · · · tk) ̸= f(t1)f(t2) · · · f(tk).

Suppose t = t1 · · · tk has weight w, and without loss of generality, re-index the Si and ti so

that t ∈ S1 × · · · × Sw with t = t1t2 · · · tw. We still have f(t1 · · · tw) ̸= f(t1) · · · f(tw). If f(t) is not

in f(S1)× f(Si2)× · · · × f(Siw) for any (w − 1) tuple of distinct indices i2, i3, . . . , iw, then Spoiler

pebbles t and t1. On the next round, Duplicator picks another f ′ with f ′(t1) = f(t1) ∈ S1 and

f ′(t) = f(t) /∈ f(S1) × f(Si2) × · · · × f(Siw) for any (w − 1) tuple of distinct indices. So f ′(t) is

not the product of something in f(S1) with any element of weight w − 1. But by Lemma 4.5.6,

f(t2t3 · · · tw) must have weight w − 1 (or Spoiler wins with 4 additional pebbles and 3 additional

rounds), so we have f ′(t) ̸= f ′(t1)f
′(t2t3 · · · tw). Spoiler may now pebble t2t3 · · · tw and win. Thus,

f(t) must be the product of something in f(S1) with some element of weight w − 1. So there is

some w − 1-tuple of distinct indices i2, . . . , iw such that f(t) ∈ f(S1)× f(Si2)× · · · × f(Siw).

Now repeat the same argument for any j ∈ {1, . . . , w} taking the place of 1. We thus find

that for any such j, f(t) must be in the direct product of f(Sj) and w − 1-many other f(Si)’s.
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Thus f(t) must be in f(S1) × f(S2) × · · · × f(Sw), since it has weight exactly w. So we have

f(t) = f(t′1)f(t
′
2) · · · f(t′w) for some t′i ∈ Si. But we also have f(t) ̸= f(t1)f(t2) · · · f(tw). Since

these decompositions are both unique, there must be some i such that ti ̸= t′i. Without loss

of generality (by re-indexing if needed), for simplicity of notation we may suppose that i = 1.

Spoiler pebbles (t, t1) 7→ (f(t), f(t1)). On the next round, Duplicator selects a new bijection f ′

with f ′(t) = f(t) and f ′(t1) = f(t1). Since S1 is the unique simple normal subgroup of Soc(G)

containing t1, and similarly f(S1) is the unique simple normal subgroup of Soc(H) containing f(t1),

by Lemma 4.5.4 we have f ′(S1) = f(S1) (or Spoiler wins with 4 additional pebble and 2 additional

round).

Finally, we claim that f ′(t1t2 · · · tw) ̸= f ′(t1)f
′(t2t3 · · · tw). Suppose otherwise. Then by

Lemma 4.5.6, wt(f ′(t)) = wt(f(t)) = w, and wt(f ′(t2t3 · · · tw)) = w − 1 (or Spoiler wins with 4

additional pebbles and 3 additional rounds). Now, if f ′(t2t3 · · · tw) has a non-identity component in

the f(S1) factor of Soc(H), then there must be some other i ∈ {2, . . . , w} such that f ′(t2t3 · · · tw)

has trivial projection onto f(Si). Note that f ′(t1) = f(t1) ∈ f(S1) also has trivial projection onto

f(Si). But then this would contradict the fact that wt(f ′(t)) = w. So the projection of f ′(t2t3 · · · tw)

onto f(S1) (as a quotient of Soc(H)) must be trivial. Thus, the component of f ′(t) = f(t) in f(S1)

is f(t′1), but the component of f ′(t1)f
′(t2 · · · tw) in f(S1) is precisely f ′(t1) = f(t1) ̸= f(t′1). Thus

f ′(t) ̸= f ′(t1)f
′(t2 · · · tw) as claimed. As t, t1 are already pebbled, Spoiler now pebbles t2t3 · · · tw,

and wins. In total, Spoiler used at most 6 additional pebbles and 4 additional rounds.

Remark 4.5.10. Brachter & Schweitzer [49, Lemma 5.22] previously showed that (1-ary) Weisfeiler–

Leman can decide whether two groups have isomorphic socles. However, their results did not solve

the search problem; that is, they did not show Duplicator must select bijections that restrict to an

isomorphism on the socle even in the case for semisimple groups. This contrasts with Lemma 4.5.9,

where we show that 2-ary WL effectively solves the search problem. This is an important ingredient

in our proof that the (7, O(1))-WL2
II pebble game solves isomorphism for semisimple groups.

We obtain as a corollary of Lemma 4.5.8 and Lemma 4.5.9 that if G and H are semisimple,
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then Duplicator must select bijections that restrict to isomorphisms of PKer(G) and PKer(H).

Corollary 4.5.11. Let G and H be semisimple groups of order n. Let Fac(Soc(G)) := {S1, . . . , Sm},

and suppose that Si = ⟨xi, yi⟩. Let x := x1 · · ·xm and y := y1 · · · ym. and Let f : G → H be the

bijection that Duplicator selects. Spoiler begins by pebbling (x, y) 7→ (f(x), f(y)). Let f ′ : G → H

be the bijection that Duplicator selects at the next round. If f ′|PKer(G) : PKer(G) → PKer(H) is

not an isomorphism, then Spoiler can win with 5 additional pebbles and 5 additional rounds in the

WL2
II pebble game.

Proof. We have the following cases.

� Case 1: Suppose that f ′(PKer(G)) ̸= PKer(H). Then without loss of generality, there

exists g ∈ PKer(G) such that f ′(g) ̸∈ PKer(H). Let i ∈ [m] such that f ′(g) · f ′(Si) ·

f ′(g)−1 ̸= f ′(Si). Spoiler pebbles (g, xi) 7→ (f ′(g), f ′(xi)). Let f ′′ : G → H be the

bijection that Duplicator selects at the next round. As xi 7→ f ′(xi) is pebbled, we have

that f ′′(Si) = f ′(Si). Spoiler now pebbles yi 7→ f ′′(yi) = f(yi). As g ∈ PKer(G), we have

that g · Si · g−1 = Si, while f
′(g) · f ′(Si) · f ′(g)−1 ̸= f ′(Si). So Spoiler wins in this case,

with a total of 3 pebbles and 2 rounds.

� Case 2: Suppose now that f ′(PKer(G)) = PKer(H), but that f ′|PKer(G) is not an isomor-

phism. As G and H are semisimple, so are PKer(G) and PKer(H). Thus, if f ′|PKer(G) fails

to be an isomorphism, then by Lemma 3.6.4, there exists g ∈ PKer(G) and s ∈ Soc(G)

such that f ′(gsg−1) ̸= f ′(g)f ′(s)f ′(g)−1. By Prop. 4.5.9, f ′ must be an isomorphism on

the socle, so if we write s = s1s2 . . . sm with each si ∈ Si, then we must have some i ∈ [m]

such that f ′(gsig
−1) ̸= f ′(g)f ′(si)f

′(g)−1. Since g ∈ PKer(G), we have gSig
−1 = Si as

well. This case is handled precisely by Lemma 4.5.8 (d), in which only 5 additional pebbles

and 5 additional rounds are required for Spoiler to win.

We now show that if G and H are not permutationally equivalent, then Spoiler can win.
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Lemma 4.5.12. (Same assumptions as Lemma 4.5.8.) Let G and H be semisimple groups with

isomorphic socles, with Fac(Soc(G)) = {S1, . . . , Sm}, with Si = ⟨xi, yi⟩. Let f0 : G → H be the

bijection that Duplicator selects, and suppose that (i) for all i, f0(Si) ∼= Si (though f0|Si need not

be an isomorphism) and f0(Si) ∈ Fac(Soc(H)), (ii) for every s ∈ Soc(G), wt(s) = wt(f0(s)), and

(iii) for all i, f0(Si) = ⟨f0(x), f0(y)⟩. Now suppose that Spoiler pebbles (x1 · · ·xm, y1 · · · ym) 7→

(f0(x1 · · ·xm), f0(y1 · · · ym)).

Let f ′ : G→ H be the bijection that Duplicator selects at the next round. Suppose that there

exist g ∈ G and i ∈ [m] such that f ′(gSig
−1) = f ′(Sj), but f

′(g)f ′(Si)f
′(g)−1 = f ′(Sk) for some

k ̸= j. Then Spoiler can win with 4 additional pebbles and 4 additional rounds in the WL2
II pebble

game.

Proof. We consider the following cases.

� Case 1: Suppose first that i = j. In this case, Spoiler pebbles (g, xi) 7→ (f ′(g), f ′(xi)). Let

f ′′ : G → H be the bijection that Duplicator selects at the next round. As xi 7→ f ′(xi) is

pebbled, we have that f ′′(Si) = f ′(Si) by Lemma 4.5.4 (or Spoiler wins with 4 additional

pebbles and 2 additional rounds). Spoiler now pebbles yi 7→ f ′′(yi). The map (g, xi, yi) 7→

(f ′(g), f ′(xi), f
′′(yi)) does not extend to a marked isomorphism, as conjugation by g sends

Si to itself, but conjugation by f ′(g) does not send f ′(Si) to itself. Thus, in this case,

Spoiler wins with at most 4 additional pebbles and 2 additional rounds.

� Case 2: Suppose i ̸= j but i = k. This is symmetric to the preceding case, by swapping

the roles of G and H.

� Case 3: Suppose now that i, j, k are all distinct. By Lemma 4.5.7, we have that f ′(xixj) =

f ′(xi)f
′(xj) (or Spoiler wins with 4 additional pebbles and 3 additional rounds). Spoiler

begins by pebbling (g, xixj) 7→ (f ′(g), f ′(xixj)). Let f ′′ : G → H be the bijection that

Duplicator selects at the next round. We have the following cases.

* Case 3(a): Suppose that f ′′(Si) = f ′(Si). As xixj 7→ f ′(xi)f
′(xj) is pebbled, we have
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necessarily that f ′′(xj) ∈ f ′(Sj), and hence that f ′′(Sj) = f ′(Sj) by Lemma 4.5.4. In

this case, Spoiler pebbles (xi, yi) 7→ (f ′′(xi), f
′′(yi)). As gSig

−1 = Sj , but f
′(g)f ′′(Si)f

′(g)−1 ̸=

f ′′(Sj), the map (g, xi, yi, xixj) 7→ (f ′(g), f ′′(xi), f
′′(yi), f

′(xixj)) does not extend to

an isomorphism. So Spoiler wins with at most 4 pebbles and 2 rounds.

* Case 3(b): Suppose that f ′′(Si) ̸= f ′(Si). As xixj 7→ f ′(xi)f
′(xj) is pebbled, we

have necessarily that f ′′(Si) = f ′(Sj) and f
′′(Sj) = f ′(Si). We now have the following

sub-cases.

– Case 3(b).i: Suppose first that gSjg
−1 = Si. By assumption, gSig

−1 = Sj , but

f ′(g)f ′(Si)f
′(g)−1 = f ′(Sk) (where k ̸∈ {i, j}). So the conjugation map σg : a 7→

gag−1 swaps Si and Sj , while the conjugation map σf ′(g) does not swap f
′(Si) and

f ′(Sj). It follows that the map (g, xj , yj , xixj) 7→ (f ′(g), f ′′(xj), f
′′(yj), f

′(xixj))

does not extend to an isomorphism. Spoiler now pebbles (xj , yj) 7→ (f ′′(xj), f
′′(yj)).

Thus, Spoiler wins with at most 4 additional pebbles and 2 additional rounds.

– Case 3(b).ii: Suppose now that gSjg
−1 ̸= Si. By assumption, as gSig

−1 = Sj ,

we have that g−1Sjg = Si. Now recall that g 7→ f ′(g) is pebbled. As the conju-

gation map x 7→ f ′(g)−1 · x · f ′(g) is a bijection and f ′(g)f ′(Si)f
′(g)−1 = f ′(Sk)

(where again, k ̸∈ {i, j}), we have that f ′(g)−1f ′(Sj)f
′(g) ̸= f ′(Si).

Suppose first that f ′(g)−1f ′(Sj)f
′(g) = f ′(Sj). Spoiler now pebbles (xi, yi) 7→

(f ′′(xi), f
′′(yi)). As gSig

−1 ̸= Si and f
′′(Si) = f ′(Sj), the map (g, xi, yi, xixj) 7→

(f ′(g), f ′′(xi), f
′′(yi), f

′(xixj)) does not extend to an isomorphism. So Spoiler

wins with at most 4 pebbles and 2 rounds.

Suppose now that f ′(g)−1f ′(Sj)f
′(g) ̸= f ′(Sj). By the first paragraph of Case

3(b).ii, we have that f ′(g)−1f ′(Sj)f
′(g) ̸= f ′(Si). As g

−1Sjg = Si, we have that
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f ′′(g−1xjg) ∈ f ′′(Si). So in particular, f ′′(g−1xjg) ̸= f ′(g)−1f ′′(xj)f
′(g). Spoiler

now pebbles (xj , g
−1xjg) 7→ (f ′′(xj), f

′′(g−1xjg)). So Spoiler wins with at most

4 pebbles and 2 rounds.

Theorem 4.5.13. Let G be a semisimple group and H an arbitrary group of order n, not isomorphic

to G. Then Spoiler has a winning strategy in the (9, O(1))-WL2
II pebble game.

Proof. If H is not semisimple, then by Proposition 4.5.1, Spoiler wins with 4 pebbles and 2 rounds.

So we now suppose H is semisimple.

Let Fac(Soc(G)) = {S1, . . . , Sk}, and let xi, yi be generators of Si for each i. Let f be the bijec-

tion chosen by Duplicator. Spoiler pebbles (x1x2 · · ·xk, y1y2, . . . , yk) 7→ (f(x1 · · ·xk), f(y1 · · · yk)).

On subsequent rounds, we thus have satisfied the hypotheses of Lemma 4.5.8 and Proposition 4.5.9.

Spoiler will never move this pebble, and thus all subsequent bijections chosen by Duplicator must

restrict to isomorphisms on the socle (or Spoiler wins with at most 7 pebbles and O(1) rounds).

Recall from Lemma 3.6.4 that G ∼= H iff there is an isomorphism µ : Soc(G) → Soc(H) that

induces a permutational isomorphism µ∗ : G∗ → H∗. Thus, since G ̸∼= H, there must be some g ∈ G

and s ∈ Soc(G) such that f(gsg−1) ̸= f(g)f(s)f(g)−1. Write s = s1 · · · sk with each si ∈ Si (not

necessarily nontrivial). We claim that there exists some i such that f(gsig
−1) ̸= f(g)f(si)f(g)

−1.

For suppose not, then we have

f(gsg−1) = f(gs1g
−1gs2g

−1 · · · gskg−1)

= f(gs1g
−1)f(gs2g

−1) · · · f(gskg−1)

= f(g)f(s1)f(g)
−1f(g)f(s2)f(g)

−1 · · · f(g)f(sk)f(g)−1

= f(g)f(s1 · · · sk)f(g)−1 = f(g)f(s)f(g)−1,

a contradiction. For simplicity of notation, without loss of generality we may assume i = 1, so we

now have f(gs1g)
−1 ̸= f(g)f(s1)f(g)

−1.

We break the argument into cases:
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(1) If gs1g
−1 ∈ S1, then we have gS1g

−1 = S1 (any two distinct simple normal factors of the

socle intersect trivially), we have by Lemma 4.5.8 (d) that Spoiler can win with at most

5 additional pebbles (for a total of 7 pebbles) and 5 additional rounds (for a total of 6

rounds).

(2) If gs1g
−1 ∈ Sj for j ̸= 1 and f(g)f(s1)f(g)

−1 /∈ f(Sj), we have by Lemma 4.5.12 that

Spoiler can win with at most 4 additional pebbles (for a total of 6 pebbles) and 4 additional

rounds (for a total of 5 rounds).

(3) Suppose now that gs1g
−1 ∈ Sj for some j ̸= 1 and f(g)f(s1)f(g)

−1 ∈ f(Sj). Spoiler

begins by pebbling (g, gs1g
−1) 7→ (f(g), f(gs1g

−1)). Let f ′ : G → H be the bijection

that Duplicator selects at the next round. As gs1g
−1 ∈ Sj is pebbled, we have that

f ′(Sj) = f(Sj) by Lemma 4.5.4 (or Spoiler wins with 4 additional pebbles and 2 additional

rounds). Now by assumption, gS1g
−1 = Sj and f(g)f(S1)f(g)

−1 = f(Sj). So as g 7→ f(g)

is pebbled, we claim that we may assume f ′(S1) = f(S1). For suppose not; then we

have g−1Sjg = S1 but f ′(g)−1f ′(Sj)f
′(g) = f(g)−1f(Sj)f(g) = f(S1) ̸= f ′(S1). But then

Spoiler can with win with 4 additional pebbles (for a total of 8 pebbles) and 4 additional

rounds (for a total of 7 rounds) by Lemma 4.5.12. Thus we have f ′(S1) = f(S1).

In particular, we have that f ′(x1) = f(x1) and f ′(y1) = f(y1), by the same argument as

in the proof of Lemma 4.5.8 (c). As S1 = ⟨x1, y1⟩, we have that f ′(s1) = f(s1), since they

are both isomorphisms on the socle by Proposition 4.5.9. Spoiler now pebbles (x1, y1) 7→

(f ′(x1), f
′(y1)). As the pebbled map (g, x1, y1, gs1g

−1) 7→ (f(g), f ′(x1), f
′(y1), f

′(gs1g
−1))

does not extend to an isomorphism, Spoiler wins. In this case, Spoiler used at most 8

pebbles and 7 rounds.

Note that the ninth pebble is the one we pick up prior to checking the winning condition.



Chapter 5

Isomorphism Testing of Strongly Regular Graphs

The work in this chapter resulted in [143].

In this chapter, we investigate the parallel complexity of several isomorphism problems arising

from quasigroups and certain families of combinatorial designs. We show (in particular) that (a)

Latin square graphs, and (b) block-incidence graphs arising from special cases of Steiner 2-designs

are not GI-hard under AC0-computable many-one reductions. As a consequence of this work and

prior work of Chattopadhyay, Torán, and Wagner [57], we have that the parallel complexity of these

isomorphism problems is strictly easier than GI. Furthermore, in light of the fact that AC0 = FO

[161], the results in this chapter suggest that in logics extending FO, certain families of strongly

regular graphs may be definable using more succinct sentences than in the case of general graphs.

As with the work of Chattopadhyay, Torán, & Wagner [57], we show this by improving the

parallel complexity of isomorphism testing in these classes of graphs to β2FOLL, which does not

compute Parity. As Parity is AC0-reducible to GI [189], this rules out AC0-reductions (and more

strongly, for any i, c ≥ 0, we rule out βiFO((log log n)
c)-reductions).

Prior to our work, there was little complexity-theoretic evidence to suggest that strongly-

regular graphs are not GI-complete. Babai showed that there is no functorial reduction from GI to

the isomorphism testing of strongly-regular graphs [25]. We note that almost all known reductions

between isomorphism problems are functorial (c.f. [25]). An example where this is not the case

is the reduction from 1-Block Conjugacy of shifts of finite type to k-Block Conjugacy [177,
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Theorem 18]. In the case of Quasigroup Isomorphism, Chattopadhyay, Torán, and Wagner

improved the upper bound to β2L ∩ β2FOLL. In particular, they showed that for any i, c ≥ 0, GI

is not βiFO((log logn)
c)-reducible to Quasigroup Isomorphism [57]. We begin by summarizing

the main results of this chapter.

Theorem 5.0.1. Latin Square Isotopy is in β2L ∩ β2FOLL.

Remark 5.0.2. This improves the previous bound of β2NC
2 due to Wolf [200].

To prove Theorem 5.0.1, we leverage cube generating sequences, in a similar manner as

Chattopadhyay, Torán, & Wagner [57, Theorem 3.4]. After non-deterministically guessing cube

generating sequences, we can check in L∩ FOLL whether the induced map extends to an isotopy of

the Latin squares.

Now for any i, c ≥ 0, we have that βiFO((log log n)
c) cannot compute Parity [57]. Thus, we

obtain the following corollary.

Corollary 5.0.3. For any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to Latin Square Iso-

topy.

Latin squares yield a corresponding family of strongly regular graphs, known as Latin square

graphs, where two Latin square graphs G1 and G2 are isomorphic if and only if their correspond-

ing Latin squares L(G1) and L(G2) are main class isotopic [160, Lemma 3]. Miller previously

showed that it is possible to recover the corresponding Latin square from a Latin square graph in

polynomial-time [160], and Wolf strengthened the analysis to show that this reduction is in fact

NC1-computable [200]. A closer analysis yields that this reduction is actually AC0-computable (see

Lemma 5.1.8). Thus, we obtain the following corollary.

Corollary 5.0.4. Deciding whether two Latin square graphs are isomorphic is in β2L ∩ β2FOLL.

Consequently, for any i, c ≥ 0, GI is not βiFO((log logn)
c)-reducible to isomorphism testing of

Latin square graphs.
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Remark 5.0.5. It is also possible to construct a Latin square graph from a Latin square using an

AC0-circuit. Thus, Latin Square Isotopy and isomorphism-testing of Latin square graphs are

equivalent under AC0-reductions.

Remark 5.0.6. We sketch an alternative proof of Theorem 5.0.1 and Corollary 5.0.4. In Miller’s

[160] first proof that Latin Square Isotopy is solvable in time nlog(n)+O(1), Miller takes one

Latin square L′ and places it in a normal form. Miller shows that this step is polynomial-time

computable. A closer analysis shows that it is in fact AC0-computable: we may label the first

row and first column as 1, 2, . . . , n. We then in AC0 fill in the remaining cells of the normal

form. For the second Latin square L, Miller places L in n2 possible normal forms by guessing

the element to label as 1. We may consider all such guesses in parallel, and so this step is also

AC0-computable. Miller then checks whether the normal form of L′ and the normal form of L

are isomorphic as quasigroups. This step is β2L ∩ β2FOLL-computable [57]. Thus, we have an

AC0-computable disjunctive truth table reduction from Latin Square Isotopy to Quasigroup

Isomorphism, which places Latin Square Isotopy into β2L∩β2FOLL. We note that Wolf’s [200]

proof that Latin Square Isotopy ∈ β2NC
2 followed a similar strategy as Miller’s [160] proof that

Quasigroup Isomorphism can be solved in time nlog(n)+O(1).

As we can recover a Latin square from a Latin square graph in AC0 (see Lemma 5.1.8), we

also have an AC0-computable disjunctive truth table reduction from isomorphism testing of Latin

square graphs to Quasigroup Isomorphism. So isomorphism testing of Latin square graphs

belongs to β2L ∩ β2FOLL.

Instead, the proof we give of Theorem 5.0.1 (see Section 5.1) exhibits how the technique of

cube generating sequences [57] can be fruitfully applied directly to isotopy (rather than isomor-

phism) of algebraic structures, which we do by combining cube generating sequences with Miller’s

[160] second proof that Latin Square Isotopy can be solved in time nlog(n)+O(1).

We now turn our attention to isomorphism testing of Steiner designs.

Theorem 5.0.7. For any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to isomorphism testing of
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Steiner (t, t+ 1)-designs.

We prove Theorem 5.0.7 in two steps. First, we establish the case of t = 2, which is the case

of Steiner triple systems. It is well-known that Steiner triple systems correspond to quasigroups,

and that this reduction is polynomial-time computable [160]. A careful analysis shows that this re-

duction is in fact AC0-computable. Furthermore, we observe that the reduction in [36, Theorem 33]

from isomorphism testing of Steiner t-designs to isomorphism testing of Steiner 2-designs is β2AC
0-

computable. As a corollary, isomorphism testing of Steiner (t, t+ 1)-designs is β2AC
0-reducible to

isomorphism testing of Steiner triple systems, and hence Quasigroup Isomorphism.

Steiner designs yield a family of graphs known as block intersection graphs. In the case of

Steiner 2-designs, these graphs are strongly regular. When the block size is bounded, we observe

that we may recover a Steiner 2-design from its block-incidence graph in AC0. If the block size is

not bounded, this reduction is TC0-computable. In the case of Steiner triple systems, this yields

the following corollary.

Corollary 5.0.8. Let G1, G2 be block-incidence graphs arising from Steiner triple systems. We can

decide whether G1
∼= G2 in β2L∩β2FOLL. Consequently, for any i, c ≥ 0, GI is not βiFO((log log n)

c)-

reducible to isomorphism testing of block-incidence graphs arising from Steiner triple systems.

5.1 Latin Square Isotopy

In this section, we show that the Latin Square Isotopy problem is in β2L∩ β2FOLL. The

key technique is to guess cube generating sequences A and B for the Latin square L1, and cube

generating sequences A′, B′ for the Latin square L2. We then (attempt to) construct appropriate

bijections α, β : L1 → L2, where α extends the map from A → A′ and β extends the map from

B → B′. We can construct such bijections in FOLL ∩ L using the techniques from Chattopadhyay,

Torán, and Wagner [57].

The key step remains in checking whether the map sending the product of each pair (x, y) ∈

L1×L1, xy 7→ α(x)β(y) a bijection. Wolf approaches this in the following manner. First, construct
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sets C = {aibi : ai ∈ A, bi ∈ B} and C ′ = {a′ib′i : a′i ∈ A′, b′i ∈ B′}. Then check whether the map

aibi 7→ a′ib
′
i extends to a bijection γ : L1 → L2. Finally, check whether α(x)β(y) = γ(xy) for all

x, y ∈ L1. We note that Wolf is able to do this in NC1 [200]. If C and C ′ are cube generating

sequences, then we would be able to apply the technique of Chattophadyay, Torán, and Wagner [57]

to compute the bijection γ in FOLL∩L. However, C and C ′ need not be cube generating sequences.

As an example in the case of groups, suppose that B = A−1. Then B is a cube generating sequence.

Furthermore, aibi = 1 for each i, and so C has only the identity element. In general, we do not

expect C and C ′ to be cube generating sequences, even if they do generate L1 and L2 respectively.

Instead of extending Wolf’s technique, we extend Miller’s technique in his second proof that

Latin Square Isotopy is decidable in time nlog(n)+O(1). Miller constructs the relation R =

{(xy, α(x)β(y)) : x, y ∈ L1} and checks whether R is a bijection. If R is a bijection; then by

construction, the triple (α, β,R) is an isotopy [160, Theorem 2, Proof 2]. Using the fact that A and

B are cube generating sequences, we can compute x and y in L∩FOLL. In the process of computing

α and β, we obtain a data structure which allows us to compute α(x) and β(y) in L ∩ FOLL.

Theorem 5.1.1. Latin Square Isotopy is in β2L ∩ β2FOLL.

We begin with the following lemmas.

Lemma 5.1.2. Let A,B be finite sets of the same size, and let R ⊆ A × B be a relation. We

can decide whether R is a well-defined surjection (and as |A| = |B|, consequently whether R is a

well-defined bijection) in AC0.

Proof. For each b ∈ B, define the relation:

Y (b) =
∨
a∈A

1(a,b)∈R.

Observe that Y (b) is AC0-computable. Now R is surjective if and only if Y (b) = 1 for all b ∈ B,

which is defined by the following condition:

φ :=
∧
b∈B

Y (b).

Observe that φ is AC0 computable.
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Lemma 5.1.3. Let L1 and L2 be Latin squares of order n, and let k = 4⌈log(n)⌉. Suppose

that (g0, g1, . . . , gk) and (h0, . . . , hk) are cube generating sequences for L1 and L2 respectively, with

balanced parenthesization P . Deciding whether the map gi 7→ hi for all i ∈ {0, . . . , k} extends to a

bijection is in L ∩ FOLL.

Proof. For each (g, h) ∈ L1 ×L2, define X(g, h) = 1 if and only if there exists (ϵ1, . . . , ϵk) ∈ {0, 1}k

such that:

g := g0g
ϵ1
1 · · · gϵkk ,

h := h0h
ϵ1
1 · · ·hϵkk .

Chattophadyay, Torán, and Wagner showed that the cube words for g and h can be computed

in L ∩ FOLL [57], so X(g, h) is computable in L ∩ FOLL. We note that the FOLL bound follows

from the fact that P is a balanced parenthesization. As the two quasigroups are the same size, the

map on the quasigroups induced by (g0, g1, . . . , gk) 7→ (h0, . . . , hk) is a well-defined bijection iff the

induced map is injective iff the induced map is surjective. So it now suffices to check whether the

induced map is surjective. By Lemma 5.1.2, we may check whether the induced map is surjective

in AC0.

Proof of Theorem 5.1.1. Let k = 4⌈log2(n)⌉. We use 4k2 non-deterministic bits to guess cube

generating sequences A,B ⊆ L and A′, B′ ⊆ L′, where A = {a0, a1, . . . , ak}, B = {b0, b1, . . . , bk},

A′ = {a′0, a′1, . . . , a′k}, and B′ = {b′0, b′1, . . . , b′k}. We may then in L ∩ FOLL check the following.

� We first check that the map ai 7→ a′i extends to a bijection of ⟨A⟩ and ⟨A′⟩. In particular, we

may check in L ∩ FOLL whether L1 = Cube(A) and L2 = Cube(A′) (see [57, Theorem 5]).

The procedure in Lemma 5.1.3 that decides whether the map ai 7→ a′i for all i ∈ {0, . . . , k}

extends to a bijection L1 → L2, also explicitly computes a bijection φA : L1 → L2 if one

exists.

� We proceed analogously for the map bi 7→ b′i for all i ∈ {0, . . . , k}. In the case that

L1 = Cube(B) and L2 = Cube(B′), let φB : L1 → L2 be the bijection computed by Lemma
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5.1.3.

Suppose now that the bijections φA, φB : L1 → L2 have been constructed. We now attempt

to construct a relation φC : L1 → L2 in such a way that φC is a bijection if and only if (φA, φB, φC)

is an isotopism. For each pair (ℓ,m) ∈ L1 × L2, define X(ℓ,m) = 1 if and only if we define φC to

map ℓ 7→ m. For each (ϵ1, . . . , ϵk), (ν1, . . . , νk) ∈ {0, 1}k, we do the following:

(a) Compute:

g := a0a
ϵ1
1 · · · aϵkk ,

h := b0b
ν1
1 · · · bνkk .

We note that computing g and h can be done in L∩FOLL (see Chattopadhyay, Toràn, and

Wagner [57]).

(b) Compute ℓ := gh, φA(g), φB(h), and m := φA(g)φB(h). We set φC(ℓ) = m, which we

indicate by defining X(ℓ,m) = 1. The computations at this stage are computable using an

AC0 circuit.

(c) It remains to check whether φC is a bijection. By Lemma 5.1.2, we may test whether φC

is a bijection in AC0.

Now φC was constructed so that (φA, φB, φC) satisfies the homotopy condition, so, as they

are also bijective, they are an isotopy. Thus, checking whether L1 and L2 are isotopic is in β2L ∩

β2FOLL.

Corollary 5.1.4. For any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to Latin Square Iso-

topy.

Miller [160] showed that isomorphism testing of Latin square graphs is polynomial-time re-

ducible to the Latin square isotopy problem. Wolf [200] improved this bound, showing that iso-

morphism testing of Latin square graphs is NC1 reducible to testing for Latin square isotopy. We

recall Wolf’s result below.
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Lemma 5.1.5 (Wolf [200, Lemma 4.11]). Let G be a Latin square graph derived from a Latin

square of size n. We can retrieve a Latin square from G with a polynomial-sized NC circuit with

O(log(n)) depth.

Remark 5.1.6. The statement of Lemma 4.11 in Wolf actually claims a depth of O(log2(n)).

However, in the proof of Lemma 4.11, Wolf shows that only O(log(n)) depth is needed [200].

In light of Wolf’s result, Theorem 5.1.1, and Bruck’s result that for n > 23, a pseudo-Latin

square graph is a Latin square graph [52], we obtain the following corollary.

Corollary 5.1.7. Isomorphism of pseudo-Latin square graphs can be decided in β2L.

We next show that the reduction from [200, Lemma 4.11], which effectively parallelizes the

reduction found in [160], can be implemented in AC0. It follows that Latin Square Graph

Isomorphism is also in β2FOLL. As for any i, c ≥ 0, βiFO((log log n)
c) cannot compute Parity,

we obtain that for any i′, c′ ≥ 0, GI is not βi′FO((log logn)
c′)-reducible to Latin Square Graph

Isomorphism.

Lemma 5.1.8. Let G be a Latin square graph obtained from a Latin square of order n. We can

recover a Latin square from G using an AC0 circuit.

Proof. By construction, two vertices u and v in G are adjacent precisely if u and v correspond to

elements in the Latin square that are either in the same row, the same column, or have the same

value. As a result, each row, each column, and the nodes corresponding to a fixed given value all

induce cliques of size n. The algorithm effectively identifies these cliques and their relations to the

other cliques in order to recover a Latin square.

Let L = (ℓij)1≤i,j≤n to be an n×n matrix, which our algorithm will populate with values for

the Latin square. We proceed as follows.

(1) We begin by selecting two adjacent vertices x1 and x2. Without loss of generality, we may

assume x1 and x2 belong to the same row of the Latin square. We next find the n vertices
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v1, . . . , vn adjacent to both x1 and x2. Precisely, for a vertex v, we have the indicator

X(v) = E(x1, v) ∧ E(x2, v),

where E(u, v) = 1 precisely if u and v are adjacent. Exactly n indicators will evaluate to

1. All but two of these nodes form a clique of size n with x1 and x2. As v1, . . . , vn are

adjacent to x1 and x2, it suffices to check which n − 2 vertices of v1, . . . , vn form a clique

of size (n− 2). For a given set S ∈
(

[n]
n−2
)
, it suffices to check:

∧
i,j∈S
i ̸=j

E(vi, vj),

which is AC0-computable. There are
(

n
n−2
)
∈ Θ(n2) such sets to check. Thus, identifying

the clique is AC0-computable.

In parallel, we label the vertices of the clique as x3, . . . , xn. One node not adjacent to any

of x3, . . . , xn is labeled y2.

(2) We associate ℓ1j with xj . Precisely, we set (in parallel) ℓ1j = j for each j ∈ [n]. This step

is AC0-computable.

(3) We next find the n-clique associated with x1 and y2, and label the additional vertices as

y3, . . . , yn. By similar argument as in Step 1, this step is AC0-computable. Here, we view

x1, y2, y3, . . . , yn as the first column of the Latin square.

(4) For each 3 ≤ i ≤ n, there exists a 3 ≤ j ≤ n such that xi and yj are adjacent. In particular,

as xi and yj are neither in the same row nor the same column, it must be the case that xi

and yj correspond to elements in the Latin square with the same value. It follows that our

choice of j is in fact unique. We reorder y3, . . . , yn so that xi is adjacent to yi. This step

is AC0-computable.

(5) For 2 ≤ j ≤ n, we associate ℓj1 with yj . Precisely, we set (in parallel), ℓj1 = j for each

2 ≤ j ≤ n. This step is AC0-computable.
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(6) For each of the remaining (n− 1)2 nodes z, we do the following in parallel:

(a) If z is adjacent to x1, then the edge {x1, z} is a value edge (as z is not in the same

row or column as x1). So there exist unique i, j > 1 such that z is adjacent to xj and

yi. In this case, we set ℓij = 1. This case is AC0-computable.

(b) Suppose that z is not adjacent to x1. As each row, each column, and each value induce

an n-clique, there exist unique i, j, k ∈ [n] such that z is adjacent to xj , yi, xk, and yk.

Unless i = j = k, we set ℓij = k. If i = j = k, we do nothing at this step and defer to

step 7. This case is AC0-computable.

(7) We note that step 6b does not account for diagonal entries where ℓii = i. To this end,

we do the following. For each i ≥ 2, we (in parallel) set ℓii to be the value that does not

appear in row i. This step is AC0-computable.

As we have a finite number of steps, each of which are AC0-computable, it follows that we

may recover a Latin square from G using an AC0 circuit.

Proposition 5.1.9. Isomorphism testing of pseudo-Latin square graphs is in β2FOLL. In particu-

lar, for any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to isomorphism testing of pseudo-Latin

square graphs.

Proof. We may handle the cases when n ≤ 23 in AC0. So suppose n ≥ 23, and let G and H be

pseudo-Latin square graphs. As n ≥ 23, we have by Bruck that G and H are Latin square graphs

[52]. By Lemma 5.1.8, we may in AC0 recover canonical Latin squares LG and LH corresponding

to G and H. Now by [160, Lemma 3], G ∼= H if and only if LG and LH are main class isotopic. By

Remark 5.0.6, we may place LG (respectively, LH) into a normal form corresponding to its main

isotopy class in AC0. By Theorem 5.1.1, we can test whether LG and LH are isotopic in β2FOLL.

Chattopadhyay, Torán, and Wagner showed that β2FOLL cannot compute Parity [57]. The result

now follows.



150

5.2 Isomorphism Testing of Steiner Designs

In this section, we show that for any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to

isomorphism testing of several families of Steiner designs.

5.2.1 Nets

In this section, we show that for any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to

isomorphism testing of nets or the corresponding strongly regular graphs. We note that projective

and affine planes are special cases of nets.

Theorem 5.2.1. Deciding whether two k-nets are isomorphic is in β2L ∩ β2FOLL.

Proof. For k = 0, 1, 2, the pair (k, n) determines the net uniquely, and so deciding isomorphism is

trivial in these cases. So assume that n+ 1 ≥ k ≥ 3. Let N1(n, k),N2(n, k) be nets. We now start

by guessing three non-parallel lines ℓa, ℓb, ℓc ∈ L(N1) and three non-parallel lines ℓ′a, ℓ
′
b, ℓ
′
c ∈ L(N2).

By definition, no two lines in the same parallel class share any points in common, and two lines in

different classes share exactly one point in common. As there are kn lines in Ni, we only require

O(log(kn)) bits to identify a given line. As k ≤ n+ 1, in fact only O(log(n)) bits are required.

We may identify whether two lines are disjoint in AC0. In particular, we may check in AC0

whether ℓa, ℓb, and ℓc (respectively, ℓ
′
a, ℓ
′
b, and ℓ

′
c) belong to different parallel classes. Suppose now

that ℓa, ℓb, and ℓc (respectively, ℓ
′
a, ℓ
′
b, and ℓ

′
c) belong to different parallel classes. As there are

(
kn
2

)
such pairs to check in a given Ni, we may identify in AC0 the lines belonging to the three parallel

classes a, b, c in each Ni.

Now our three parallel classes determine a net X1(n, 3) in N1 and a net X2(n, 3) in N2.

We note that a net of degree 3 identifies a quasigroup (Latin square) up to isomorphism. As

Quasigroup Isomorphism is in β2L ∩ β2FOLL [57, Theorem 3.4], we may now in β2L ∩ β2FOLL

decide whether X1
∼= X2. We note that [57, Theorem 3.4] actually yields an isomorphism φ : X1 →

X2. We may now in L ∩ FOLL check whether φ extends to an isomorphism of N1 and N2. The

result follows.
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Corollary 5.2.2. For any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to isomorphism testing

of two k-nets.

Miller previously showed that isomorphism testing of nets and the corresponding net graphs

are equivalent under polynomial-time reductions when n > (k − 1)2 [160, Theorem 8]. A closer

analysis shows that this equivalence holds under TC0-reductions in general; and that when k is

bounded, the equivalence holds under AC0-reductions.

Lemma 5.2.3. Suppose that G(V,E) is a k-net graph of order n and n > (k − 1)2. We can

reconstruct the net N (n, k) associated with G in TC0. If k is bounded, we reconstruct the net

N (n, k) associated with G in AC0.

Proof. Suppose that x1, x2 ∈ V (G) are adjacent. As there are kn lines, it suffices to show that in

AC0, we can identify the remaining vertices of V (G) that are on the same line as x1, x2. We first

note that we can, in AC0, identify the vertices adjacent to both x1 and x2.

Let H be the subgraph induced by these vertices together with x1 and x2. We note that H

contains the maximum clique (of n vertices) containing both x1 and x2. The vertices of this clique

have degree ≥ n− 1. As two adjacent vertices have (n− 2) + (k − 1)(k − 2) neighbors in common,

there are (k − 1)(k − 2) vertices of H that do not belong to this clique. Recall that a net has k

parallel classes, and any two lines in a given parallel class have empty intersection. Furthermore,

two lines from different parallel classes share exactly one point in common. Thus, each nonclique

vertex of H is adjacent to exactly (k− 1) elements of the clique. Thus, each nonclique vertex of H

has degree at most:

(k − 1) + (k − 1)(k − 2)− 1 = (k − 1)2 − 1.

In general, using the difference in degrees, we may identify the clique and nonclique vertices

in TC0. If k is bounded, then we may identify the clique and nonclique vertices in AC0. The result

follows.

We combine Lemma 5.2.3 with Bruck’s result that for fixed k, pseudo-net graphs with suffi-

ciently many vertices vertices are Net graphs to obtain the following.
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Corollary 5.2.4. For fixed k, isomorphism testing of pseudo-net graphs of order n and degree

k is in β2L ∩ β2FOLL. In particular, for any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to

isomorphism testing of pseudo-net graphs of order n and degree k.

5.2.2 Steiner Triple Systems

Theorem 5.2.5. Deciding whether two Steiner triple systems are isomorphic is in β2L ∩ β2FOLL.

Proof. Let S be a Steiner triple system of order n. We define a quasigroup Q on the set [n], with

the multiplication operation satisfying the following: (i) for each x ∈ [n], define x2 = x, and (ii)

for each block {a, b, c}, define ab = c (note that as the blocks are unordered, all such products

ba = c, ac = ca = b, bc = cb = a are required). The Steiner triple system determines Q up to

isomorphism. In particular, this construction is AC0-computable. As Quasigroup Isomorphism

belongs to β2L ∩ β2FOLL [57], it follows that deciding whether two Steiner triple systems are

isomorphic is in β2L ∩ β2FOLL.

Proposition 5.2.6. Let G be a Steiner graph on n vertices derived from a Steiner 2-design, in

which each block has k points and
√
n − 2 > (k − 1)2. We can reconstruct the Steiner 2-design in

TC0. Furthermore, if k is bounded, then we may reconstruct the Steiner 2-design in AC0.

Proof. We closely analyze the proof of [184, Proposition 10]. We note that n is the number of blocks

in the Steiner design. Let v be the number of points in the Steiner design, and let R = (v−1)/(k−1)

be the number of blocks containing a given point. Let B1, B2 be two blocks that intersect uniquely

at the point p. There are h− 2+(s− 1)2 blocks that intersect both B1 and B2. We note that h− 2

of these blocks also go through p, and the remaining (s− 1)2 blocks go through points other than

p.

We note that p corresponds to the edge {B1, B2} ∈ E(G). The h blocks that intersect p

(including B1, B2) form a clique. Furthermore, these h − 2 blocks intersecting B1, B2 at p do not

intersect with the remaining (s−1)2 blocks that intersect with B1, B2 in points other than p. Let N

be the set of mutual neighbors for B1, B2. Now if h−2 > (s−1)2, the h-clique is distinguished from
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the remaining (s− 1)2 blocks that don’t contain p by their degrees in the induced subgraph G[N ].

We may distinguish these vertices in TC0 in general. If k is bounded, then we may distinguish

these vertices in AC0.

The fact that h >
√
n was established in [184, Proposition 10].

We combine Proposition 5.2.6 with Bose’s result that pseudo-STS graphs with strictly more

than 67 vertices are STS graphs [46] to obtain the following.

Corollary 5.2.7. Deciding whether two pseudo-STS graphs are isomorphic is in β2L ∩ β2FOLL.

In particular, for any i, c ≥ 0, GI is not βiFO((log logn)
c)-reducible to isomorphism testing of

pseudo-STS graphs.

5.2.3 Reduction to Steiner 2-Designs

Babai & Wilmes [36] previously exhibited a reduction from isomorphism testing of Steiner

t-designs to the case of Steiner 2-designs. A careful analysis shows that their reduction is β2AC
0-

computable. As a corollary, we obtain that GI is not AC0-reducible to isomorphism testing of

Steiner (t, t+ 1)-designs.

Observation 5.2.8 (c.f. [36]). If isomorphism testing of Steiner 2-designs belongs to β2L∩β2FOLL,

then testing isomorphism of Steiner t-designs also belongs to β2L ∩ β2FOLL.

Proof. Let D1 = (X1,B1, I1) and D2 = (X2,B2, I2) be Steiner (t, k, v)-designs. We begin by guess-

ing subsequences a1, . . . , at−2 ∈ X1 and b1, . . . , bt−2 ∈ X2. While we think of a1, . . . , at−2 and

b1, . . . , bt−2 as determining subsets A = {a1, . . . , at−2} ⊆ X1 and B = {b1, . . . , bt−2} ⊆ X2, we

stress that we guess both the elements and an ordering. As t ∈ O(log n) (see the proof of [36,

Theorem 30], in which Babai & Wilmes cite [170]), guessing A and B requires O(log2 n) bits. We

may write down the derived designs D1(A) and D2(B) in AC0 (see Section 2.4 for the definition of

a derived design).

Suppose first that D1
∼= D2. Let φ : X1 → X2 be an isomorphism. Then for any A ⊆ X1 of

size t− 2, the derived designs D1(A) and D2(φ(A)) are isomorphic.
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Conversely, let ψ : X1\A→ X2\B be an isomorphism of the derived designs D1(A) ∼= D2(B).

Define:

ψ̂(x) =


ψ(x) : x ̸∈ A,

bi : x = ai ∈ A.

We may easily check in AC0 whether ψ̂ is an isomorphism of D1 and D2. In particular, if

isomorphism testing of Steiner 2-designs belongs to β2L ∩ β2FOLL, we may use the added non-

determinism to guess an isomorphism of D1(A) ∼= D1(B) that lifts to an isomorphism of D1
∼= D2.

In total, we are still using at most O(log2 n) non-deterministic bits.

We obtain the following corollaries.

Corollary 5.2.9. The problem of deciding whether two Steiner (t, t+1)-designs are isomorphic is

β2AC
0-reducible to the problem of finding an isomorphism of two Steiner triple systems.

Now deciding isomorphism testing of Steiner triple systems is AC0-reducible to Quasigroup

Isomorphism (see Theorem 5.2.5). Furthermore, Chattopadhyay, Torán, and Wagner solved the

search version of Quasigroup Isomorphism; that is, their β2L ∩ β2FOLL procedure for Quasi-

group Isomorphism returns an isomorphism of the two quasigroups whenever an isomorphism

exists. So in particular GI is not AC0-reducible to the search version of Quasigroup Isomor-

phism [57]. We may use the isomorphism for the quasigroups to construct an isomorphism of the

Steiner triple systems, which may in turn be used to construct an isomorphism of the two Steiner

(t, t+ 1)-designs. We summarize this observation with the following corollaries.

Corollary 5.2.10. The problem of deciding whether two Steiner (t, t+ 1)-designs are isomorphic

is β2AC
0-reducible to the problem of finding an isomorphism of two quasigroups.

Corollary 5.2.11. For any i, c ≥ 0, GI is not βiFO((log logn)
c)-reducible to the problem of deciding

whether two Steiner (t, t+ 1)-designs are isomorphic.
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5.3 Conference Graphs

In this section, we consider the complexity of identifying conference graphs. A conference

graph is a strongly regular graph with parameters (n, (n−1)/2, (n−5)/4, (n−1)/4). For a graph G,

a distinguishing set S is a subset of V (G) such that for every u, v ∈ V (G), we have that u ∈ S, v ∈ S,

or N(u) ∩ S ̸= N(v) ∩ S. We have the following observation.

Observation 5.3.1. Let G be a graph, and let S be a distinguishing set. After individualizing

each vertex in S, we have that 2 rounds of the count-free Color Refinement algorithm (the initial

coloring and a single refinement step) will assign each vertex in G a unique color.

Babai [37, Lemma 3.2] (take k = (n − 5)/4) showed that conference graphs admit distin-

guishing sets of size O(log n) (in fact, almost all such subsets of this size are distinguishing). As a

consequence of this and Observation 5.3.1, we obtain the following.

Theorem 5.3.2. Let G be a conference graph, and let H be arbitrary. We can decide isomorphism

between G and H in β2AC
0.

Proof. We use m := O(log2 n) non-deterministic bits to guess a sequence S = (s1, . . . , sm) for

G– while it would suffice for {s1, . . . , sm} to be a distinguishing set for G, we only need that

after individualizing the elements of S, two rounds of count-free Color Refinement will assign each

vertex in G a unique color. There may be non-distinguishing sets that acccomplish this. Let

S′ = (s′1, . . . , s
′
m) be the vertices of H that were guessed. We now individualize S and S′ so that

si 7→ s′i get the same color, and si, sj get different colors whenever i ̸= j. The individualization

step is AC0-computable. We now run two rounds of count-free Color Refinement, which is AC0-

computable (c.f., [104] and the discussion in Section 2.7). Lastly, we check that each vertex in G,H

has a unique color, and whether the map induced by the colors is an isomorphism. This last step

is AC0-computable. The result now follows.

In light of the previous work of Chattopadhyay, Torán, & Wagner [57], we obtain the following

corollary.
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Corollary 5.3.3. For any i, c ≥ 0, there is no βiFO((log logn)
c)-computable reduction from GI to

isomorphism testing of conference graphs.



Chapter 6

Relation Algebras

This work resulted in two papers: [8] is joint with Jeremy F. Alm, Saeed Moazami, Jorge

Montero-Vallejo, Linda Pham, Dave Sexton, and Xioanan Xu; and [13], which is joint with Jeremy

F. Alm.

In this chapter, we investigate the combinatorial complexity of the relation algebra we call

An, which is obtained by splitting the non-flexible diversity atom of 67 (see [153] for the numbering)

into n symmetric atoms. Let An denote the integral symmetric relation algebra with the atom 1′

and diversity atoms r, b1, . . . , bn, where a diversity cycle is mandatory if and only if it involves the

atom r (see Section 2.11). Let

f(n) = min(Spec(An)).

It was shown in [7] that f(n) is finite for all n. Because representing finite integral relation algebras

amounts to edge-coloring complete graphs with the diversity atoms, we will use the language of

graph theory. We will refer to the flexible atom r as red, and b1, . . . , bn as our shades of blue.

In this chapter, we will show that f(n) ≤ 2n6+o(1), which is the first polynomial bound and

improves upon the previous bound due to Dodd & Hirsch [75]. In the process, we obtain stronger

results regarding Spec(A2) = Spec(3265). Namely, we show that 1024 is in the spectrum. We also

obtain improvements to the lower bound. The trivial lower bound is f(n) ≥ n2 +2n+3. We show

that f(n) ≥ 2n2 + Ω(n
√
lnn), which holds for all n ≥ 2. For smaller values of n, we obtain a

slightly better lower bound of f(n) ≥ 2n2 + 6n+ 6.
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6.1 An upper bound on f(n)

In this section, we give a representation of 3265 over 1024 points, and then generalize to give

representations of An for all n. Consider G = (Z/2Z)10, and consider the elements as bitstrings.

Define:

R = {x ∈ G : x has between one and six 1s}, and

B = {x ∈ G : x has at least seven 1s}.

This defines a group representation of 67, which is a subalgebra of 3265. There exists a way of

splitting B into B1 and B2 so that:

� R+Bi = G∖ {0}, i = 1, 2;

� Bi +Bi = R ∪ {0}, i = 1, 2;

� B1 +B2 = R.

This yields a group representation of 3265 over 210 = 1024 points, improving the previous smallest-

known representation over
(
14
7

)
= 3432 points [11]. We note that while the representation given

here is smaller, the representation over 3432 points in [11] has a nice, compact description.

J.F. Alm found the split with the aid of a computer search. He checked several million random

splits. None of them worked, but some got “close”. He took one of the close ones and tinkered with

it for about three hours until it worked. The curious can view the process in the Jupyter notebook

32 65 splitting.ipynb at https://github.com/algorithmachine/RA-32-of-65. The following

Python 3 code can be used to verify that the given split yields a representation. (Bitstrings are

encoded as integers between 0 and 1023.)

def s(X,Y): return {x^y for x in X for y in Y}

G = set(range(1024)); id = {0}; di = G-id

b = {127, 223, 239, 251, 253, 255, 367,

375, 381, 382, 431, 443, 446, 471, 475,
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477, 478, 487, 491, 494, 499, 505, 509,

607, 635, 637, 639, 701, 702, 703, 719,

727, 733, 734, 743, 750, 751, 758, 763,

766, 815, 823, 827, 829, 847, 859, 862,

863, 877, 879, 883, 886, 887, 890, 893,

894, 919, 923, 925, 927, 935, 941, 943,

949, 950, 953, 954, 958, 979, 981, 982,

990, 991, 995, 1001, 1002, 1003, 1005,

1011, 1012, 1013, 1014, 1015, 1016,

1017, 1019, 1021, 1022}

a = s(b,b)-id; c = di-a-b

print ( s(a,a)==G, s(a,b)==s(a,c)==di,

s(b,b)==s(c,c)==a|id, s(b,c)==a )

We generalize this argument as follows:

Theorem 6.1.1. For all n ≥ 2, An is representable over (Z/2Z)3k+1 for sufficiently large k ∈ N.

In particular, for n ≥ 14, it suffices to take k = n.

Remark 6.1.2. Theorem 6.1.1 tells us that f(n) is at most exponential in n. In contrast, the most

one could obtain from [7] was that f(n) was bounded above by (roughly)
(
15n2

n

)
. See Figure 6.1.

Proof. We have already shown that for k = 3, A2 can be realized over (Z/2Z)3k+1. We now argue

that for n ≥ 3, An can be realized over (Z/2Z)3k+1 for sufficiently large k ∈ N. Our approach is

to use the probabilistic method to show that, given a large enough representation of the relation

algebra 67 over (Z/2Z)3k+1, the atom b can be partitioned into n parts, as An is obtained from 67

by splitting, as in [15].

Consider G = (Z/2Z)3k+1. For x ∈ G, let x(i) denote the ith coordinate of x. Let |x| denote

|{i : x(i) = 1}|. Denote supp(x) = {i : x(i) = 1} to be the support of x. The key idea is the

following partition of G∖ {0} into two sets R and B.
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Let:

R = {x ∈ G : 1 ≤ |x| ≤ 2k} and

B = {x ∈ G : 2k + 1 ≤ |x| ≤ 3k + 1}.

Then R+R = G, R+B = G∖ {0}, and B +B = R ∪ {0}. As we will see below, B is a sum-free

set with high additive energy.

We now split both the “red” and “blue” atoms of 67 into n atoms and find a representation

over a finite set. Namely, we split R and B into n parts R1, . . . , Rn and B1, . . . , Bn uniformly at

random. We need to count the “witnesses” to the “needs” of each element. We will show that each

need is witnessed at least 2k times. Consider the following cases.

� Case 1: We count witnesses for R ⊆ B +B. Let z ∈ R, and denote ℓ := |z|. We consider

two sub-cases: whether 1 ≤ ℓ ≤ k, and whether k + 1 ≤ ℓ ≤ 2k.

* Case 1.1: Suppose first that 1 ≤ ℓ ≤ k. We construct x, y randomly so that z = x+y.

For each i ∈ supp(z), we choose uniformly at random whether:

x(i) = 1 and y(i) = 0

OR

x(i) = 0 and y(i) = 1.

As |z| = ℓ, this yields 2ℓ possible selections. For the k−ℓ left-most indices j /∈ supp(z),

we choose uniformly at random whether:

x(j) = 1 = y(j)

OR

x(j) = 0 = y(j).

As there are k − ℓ positions, there are 2k−ℓ possible selections. For the remaining

2k+1 positions i, we let x(i) = 1 = y(i). Thus, we have that x, y ∈ B. By the rule of
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product, we obtain 2ℓ · 2k−ℓ = 2k possible selections. It follows that there are at least

2k witnesses for z.

* Case 1.2: Suppose now that k + 1 ≤ ℓ ≤ 2k. For the k least indices i ∈ supp(z), we

choose uniformly at random whether:

x(i) = 1 and y(i) = 0

OR

x(i) = 0 and y(i) = 1

For the remaining ℓ − k indices i ∈ supp(z), let x(i) = 1 and y(i) = 0, or x(i) = 0

and y(i) = 1 in such a way that ensures that both x and y have at least ℓ − k 1’s in

coordinates in supp(z). Then for all indices j /∈ supp(z), let x(j) = 1 = y(j). As there

are 2k possible selections for the first k coordinates, there are at least 2k witnesses.

It follows that if z ∈ R, there are at least 2k ways to witness z as the sum x + y, where

x, y ∈ B.

� Case 2: Now let us consider witnesses to B ⊆ B +R. Let z ∈ B, and denote ℓ := |z|. By

the definition of B, we have that 2k+1 ≤ ℓ ≤ 3k. We randomly construct x ∈ B, y ∈ R so

that z = x+ y.

For the 2k + 1 indices i ∈ supp(z) of least index, set x(i) = 1 and y(i) = 0. For the

remaining ℓ− (2k + 1) indices i ∈ supp(z), we choose uniformly at random whether:

x(i) = 1 and y(i) = 0

OR

x(i) = 0 and y(i) = 1.
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For each index j /∈ supp(z), we choose uniformly at random whether:

x(j) = 1 = y(j)

OR

x(j) = 0 = y(j).

Again, there were k random selections, so we have at least 2k witnesses.

� Case 3: Next, let us consider witnesses to B ⊆ R+R. Let z ∈ B. We construct x, y ∈ R

so that z = x + y. For every j ̸∈ supp(z), set x(j) = 0 = y(j). This is to ensure that

x, y ∈ R. For the smallest k indices i ∈ supp(z), we choose uniformly at random whether:

x(i) = 1 and y(i) = 0

OR

x(i) = 0 and y(i) = 1.

For the remaining indices i ∈ supp(z), we choose uniformly at random whether:

x(i) = 1 and y(i) = 0

OR

x(i) = 0 and y(i) = 1

in such a way that ensures that neither x nor y receives more than 2k 1’s. Clearly, there

are at least 2k witnesses.

� Case 4: Now we consider witnesses for R ⊆ B +R.

Let z ∈ R, and denote ℓ := |z|. We build x ∈ B, y ∈ R so that z = x+ y. We consider the

following sub-cases, namely whether 1 ≤ ℓ ≤ k, and whether k + 1 ≤ ℓ ≤ 2k.

* Case 4.1: First, consider the case where 1 ≤ ℓ ≤ k. For i ∈ supp(z), set x(i) = 1

and y(i) = 0. For j /∈ supp(z), choose 2k + 1 − ℓ of the 3k + 1 − ℓ indices, and set
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x(j) = 1 = y(j). Set all others to x(j) = 0 = y(j). Since
(
3k+1−ℓ
2k+1−ℓ

)
≥
(
2k
k

)
> 2k, we

have at least 2k witnesses.

* Case 4.2: Now consider the case where k + 1 ≤ n ≤ 2k. For the smallest k indices

i ∈ supp(z), set x(i) = 1 and y(i) = 0. For the remaining ℓ − k indices i ∈ supp(z),

we choose uniformly at random whether:

x(i) = 1 and y(j) = 0

OR

x(i) = 0 and y(j) = 1.

Now we choose k + 1 of the remaining 3k + 1 − ℓ indices j /∈ supp(z). There are(
3k+1−ℓ
k+1

)
choices, which ranges between

(
k+1
k+1

)
and

(
2k+1
k+1

)
. Therefore there are at least

2ℓ−k ·
(
3k+1−ℓ
k+1

)
witnesses. It is not hard to check that for 0 ≤ N ≤ k,

(
k+1+N
k+1

)
> 2N ,

and therefore 2ℓ−k ·
(
3k+1−ℓ
k+1

)
> 2ℓ−k · 22k−ℓ = 2k.

� Case 5: Finally, we consider witnesses for R ⊆ R+R. Let z ∈ R, and denote ℓ := |z|. We

construct x, y ∈ R so that z = x+ y. We consider the following cases: whether 1 ≤ ℓ ≤ k,

and whether k + 1 ≤ ℓ ≤ 2k.

* Case 5.1: First, consider the case where 1 ≤ ℓ ≤ k. For each i ∈ supp(z), set x(i) = 1

and y(i) = 0. Then for the smallest 2k indices outside of supp(z), choose k of then.

For each such selected j, set x(j) = 1 = y(j), and x(j) = 0 = y(j) otherwise. This

gives at least
(
2k
k

)
> 2k witnesses.

* Case 5.2: We next consider the case where k+1 ≤ ℓ ≤ 2k. For each i ∈ supp(z), we

choose uniformly at random whether:

x(i) = 1 and y(i) = 0

OR

x(i) = 0 and y(i) = 1.
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This gives 2ℓ > 2k witnesses.

Now we are ready to compute the probability that our random partition R1, . . . , Rn and B1, . . . , Bn

fails to be a representation. Let z ∈ (Z/2Z)3k+1 ∖ {0}. If z ∈ Ri, then z has 3n2 “needs”:

� ∀i, j z ∈ Ri +Rj

� ∀i, j z ∈ Ri +Bj

� ∀i, j z ∈ Bi +Bj .

If z ∈ Bj , then z has 2n2 “needs”:

� ∀i, j z ∈ Ri +Rj

� ∀i, j z ∈ Ri +Bj .

So 3n2 is a bound on the number of “needs”. Fix z, and let x, y ∈ G such that x + y = z. The

probability that the edge xy witnesses a fixed need is 1/n2. So the probability that the edge xy

does not witness a fixed need is (1− 1/n2). For a particular need, there are at least 2k witnesses.

As we color the edges uniformly at random, the probability that a fixed need of z is unsatisfied is

at most: (
1− 1

n2

)2k

.

As z has at most 3n2 needs, we have that

Pr[z has an unsatisfied need] ≤ 3n2
(
1− 1

n2

)2k

.

Thus

Pr[∃z with an unsatisfied need] ≤
∑
z

3n2
(
1− 1

n2

)2k

(6.1)

= 23k+1 · 3n2
(
1− 1

n2

)2k

(6.2)

≤ 23(k+1) · n2
(
1− 1

n2

)2k

. (6.3)
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We want (6.3) to be less than 1, which is equivalent to its logarithm being less than zero:

log

(
23(k+1) · n2 ·

(
1− 1

n2

)2k
)
< 0 ⇐⇒ 3(k + 1) log 2 + 2 log n+ 2k log

(
n2 − 1

n2

)
< 0

⇐⇒ 3(k + 1) log 2 + 2 log n < 2k log

(
n2

n2 − 1

)
Now assuming 3 ≤ n ≤ k, we have that

3(k + 1) log 2 + 2 log n < 3(k + 1) + k

≤ 5k.

Thus

2k · log
(

n2

n2 − 1

)
= 2k[log(n2)− log(n2 − 1)]

> 2k · 1

n2
,

where the last inequality is due to the fact that log(t + 1) − log(t) < 1/t, which follow by the

concavity of log. So we need 5k < 2k

n2 . Setting k = n, we have 5n3 < 2n, which holds for all n ≥ 14.

Hence taking k = n gives a non-zero probability that a random partition yields a representation.

The construction in the proof of Theorem 6.1.1 provides the bound f(n) ≤ 23n+1 for n ≥ 14. By

fine-tuning our choice of k, we obtain polynomial bounds on f(n). Let k = (2 + o(1)) log(n). We

have by (6.2) that

Pr[∃z with an unsatisfied need] ≤ 23k+1 · 3n2
(
1− 1

n2

)2k

= 23(2+o(1)) log(n)+1 · 3n2 ·
(
1− 1

n2

)2(2+o(1)) log(n)

= 2n6+o(1) · 3n2 ·
(
1− 1

n2

)2(2+o(1)) log(n)

= 6n8+o(1) ·
(
1− 1

n2

)2(2+o(1)) log(n)

.

Now we have that

lim
n→∞

6n8+o(1) ·
(
1− 1

n2

)2(2+o(1)) log(n)

= 0. (6.4)

So choosing k = (2 + o(1)) log(n) yields the following:
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Theorem 6.1.3. For n sufficiently large, we have that f(n) ≤ 2n6+o(1).

We note that the threshold n0 for which Theorem 6.1.3 applies is quite large. For instance,

choosing k = 3 log(n) yields that f(n) ≤ 2n9, which holds for all n ≥ 91. So in choosing k =

(2 + o(1)) log(n), the bound of f(n) ≤ 2n6+o(1) holds for all n ≥ n0 ≥ 91, where n0 depends on

o(1). This contrasts with the bound in Theorem 6.1.1, which holds for all n ≥ 14. Furthermore,

calibrating our choice of k = c log(n) failed to yield improvements on f(3) ≤ 216 and f(4) ≤ 219.

It is natural to ask whether modifying our choice of k in this construction will yield additional

improvements in the upper bound for f(n). If we take k = 2 log(n) rather than k = (2+o(1)) log(n),

we have that

lim
n→∞

6n8 ·
(
1− 1

n2

)22 log(n)

= ∞.

The key reason behind this is that

lim
n→∞

(
1− 1

n2

)22 log(n)

= lim
n→∞

(
1− 1

n2

)n2

=
1

e
.

This suggests that further analyzing the Boolean cube is unlikely to yield additional improvements

on the upper bound for f(n).

We also note that (6.4) yields that as n→ ∞, the probability that there exists z ∈ (Z/2Z)3k+1

with an unsatisfied need goes to 0. So with high probability, a random partition yields a represen-

tation of An. We record this observation with the following corollary.

Corollary 6.1.4. Suppose that we split both the “red” and “blue” atoms of 67 into n atoms, as

in the proof of Theorem 6.1.1. Namely, we split R and B into n parts R1, . . . , Rn and B1, . . . , Bn

uniformly at random. With high probability, we have that such a random split is a representation

of a relation algebra containing a subalgebra isomorphic to An.

6.2 A lower bound for An

In this section, we consider representations of 3265 as edge-colorings ofKn with all mandatory

triangles present and no all-blue triangles. Note that blue triangles are forbidden even if they contain
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edges of differing shades of blue. In other words, every triangle must contain a red edge.

We now make our representation precise. Let ρ : 3265 → Powerset(U × U), where U =

{x0, . . . , xn−1}, be a representation. Then label the vertices of Kn with {x0, . . . , xn−1}, and let

the color of edge xixj be the atom z such that (xi, xj) ∈ ρ(z). We begin with some preliminary

lemmas, that illustrate our counting strategy, including how we incorporate the classical Ramsey

number R(3, k) to obtain improvements. Ultimately, we will generalize this technique to obtain

Lemma 6.2.8 and Proposition 6.2.14.

Lemma 6.2.1. Spec(3265) ⊆ {11, . . .} ∪ {ω}.

Proof. There must be some red edge x0x1. Any red edge has nine “needs”. There must be nine

points that witness these needs, which together with x0 and x1 make a total of 11 points. (See

Figure 6.2.)

We can easily obtain a slight improvement using the classical Ramsey number R(4, 3).

Lemma 6.2.2. min Spec(3265) ≥ 12.

Proof. We know that at least 11 points are required. Since R(4, 3) = 9, and there are no all-blue

triangles, there must be a red K4. Let x0x1 be an edge in this red K4. Then x0x1 must have its

red-red need met twice, hence there must be ten points besides x0 and x1.

Lemma 6.2.3. In any representation of 3265, for every red edge there is a red K4 that is vertex-

disjoint from it. In particular, off of every red edge x0x1 one can find the configuration depicted in

Figure 6.3.

Proof. Let x0x1 be red, with witnesses to all needs as in Figure 6.2. Then {x2, x3, x4, x5} induce a

red K4, since any blue edge among them would create an all-blue triangle with x0 (and also with

x1). Furthermore, any edge running from any of x2, x3, x4, x5 to any of x6, x7, x8, x9 must be red,

since any such blue edge would create an all-blue triangle with either x0 (for x7 and x9) or x1 (for

x6 and x8). Thus we have the configuration depicted in Figure 6.3.
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Lemma 6.2.4. 12, 13, 14, 15, 16 ̸∈ Spec(3265).

Proof. Consider the configuration depicted in Figure 6.3. The edge x2x5 is red. Then x0 and x1

both witness the light-blue-dark-blue need, while x3, x4, x6, x7, x8 and x9 all witness the red-red

need. There are seven needs yet unsatisfied. The remaining vertex x10 could witness some need,

but vertices x11 through x16 will have to be added. Thus there are at least 17 points. See Figure

6.4.

Lemma 6.2.4 generalizes nicely as follows.

Theorem 6.2.5. For all n, f(n) ≥ 2n2 + 4n+ 1.

Note that the trivial bound is n2 + 2n+ 3, roughly half the bound in Theorem 6.2.5.

Proof. Call the shades of blue b1 through bn. Fix a red edge x0x1. Let BB denote the set of vertices

that witness a blue-blue need for x0x1, and let RB denote the set of vertices that witness either a

red-blue need or a blue-red need for x0x1. BB induces a red clique, and all edges from BB to RB

are red. Note that |BB| = n2 Note that |BB| = n2 and similarly |RB| = 2n. This gives the trivial

lower bound of n2 + 2n+ 3.

Let u ∈ BB witness b1-b1 for x0x1 and let v ∈ BB witness b2-b2 for x0x1. The edge uv is red,

hence has (n + 1)2 needs. Both x0 and x1 witness the same b1-b2 need, and all points in BB and

RB (besides u and v) witness the red-red need. Hence there must be at least (n + 1)2 − 2 points

outside of {x0, x1} ∪BB ∪RB. Hence there are at least 2 + n2 + 2n+ (n+ 1)2 − 2 = 2n2 + 4n+ 1

points.

Remark 6.2.6. Note that if two points u, v satisfy a red-blue need for x0x1, then uv is necessarily

red. Otherwise, uvx1 would form a blue triangle. There are n points that satisfy the red-blue need

for x0x1. As the points in BB form a red clique of size n2, we obtain the following.

Corollary 6.2.7. In any representation of An, the clique number of the red subgraph of the under-

lying graph of the representation is at least n2 + n.
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We can further improve the lower bound on f(n) using the Ramsey number R(3, k) to analyze

the size of the red clique containing x0x1.

Lemma 6.2.8. f(n) ≥ 2n2 +Ω(n
√
ln(n)).

Proof. We first recall the trivial lower bound from Theorem 6.2.5, as we will need to build on this

initial structure. Call the shades of blue b1 through bn. Fix a red edge x0x1. Let BB denote the

set of vertices that witness a blue-blue need for x0x1, and let RB denote the set of vertices that

witness either a red-blue need or a blue-red need for x0x1. BB induces a red clique, and all edges

from BB to RB are red. Note that |BB| = n2 and |RB| = 2n. This gives the trivial lower bound

of n2 + 2n+ 3.

Let u ∈ BB witness b1-b1 for x0x1 and let v ∈ BB witness b2-b2 for x0x1. The edge uv is red,

hence has (n + 1)2 needs. Both x0 and x1 witness the same b1-b2 need, and all points in BB and

RB (besides u and v) witness the red-red need. Hence there must be at least (n + 1)2 − 2 points

outside of {x0, x1} ∪BB ∪RB. Hence there are at least 2 + n2 + 2n+ (n+ 1)2 − 2 = 2n2 + 4n+ 1

points.

Up to this point, the proof has been identical to Theorem 6.2.5. We now use Ramsey theory

to strengthen the lower bound. Griggs showed that R(3,m) < 2.4 ·m2/ ln(m) [89]. So we have that

for every n sufficiently large, there exists a k > 0 such that:

f(n) ≥ 2n2 + 4n+ 1 > 2n2 ≥ 2.4 · (kn)2/ ln(kn) ≥ R(3, kn). (6.5)

Our goal is to find the largest possible k. As f(n) ≥ R(3, kn) and there are no blue triangles, we

have by Ramsey’s theorem that there exists a red clique of size kn. Considering

2n2 ≥ 2.4 · (kn)2/ ln(kn),

we obtain that

(5/6) ln(kn) ≥ k2.

Taking k =
√
(5/6) ln(n) works for n ≥ 4. Observe that for n ≥ 2, we may take

k =
√
(5/6) ln(n) + (5/12) ln(ln(n))− ((5/12) ln(6/5)− ϵ),
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where ϵ > 0 (one may check this, such as with a computer algebra system). So there exists a red

clique of size Ω(n
√
ln(n)). We may iterate on the argument outlined in the first two paragraphs,

taking x0x1 to be on this red clique. As all the points in this red clique witness a red-red need

for x0x1, the sets BB and RB must be disjoint from the red clique. Thus, by iterating on the

argument in the first two paragraphs, we obtain

f(n) ≥ 2n2 + n ·
√
(5/6) ln(n) + (5/12) ln(ln(n))− ((5/12) ln(6/5)− ϵ) + 4n+ 1.

The result now follows.

Remark 6.2.9. We note that the red clique of size Ω(n
√
ln(n)) containing x0x1 is disjoint from

the red clique of size n2 + n prescribed by [8, Corollary 18].

We also obtain a second lower bound, which works better in the case of small n.

Lemma 6.2.10. For n ≥ 2, we have that f(n) ≥ 2n2 + 6n.

Proof. We have by Theorem 6.2.5 that f(n) ≥ 2n2 + 4n+ 1. Now observe that:

2n2 + 4n+ 1 ≥
(
3 + 2n+ 1− 2

3− 1

)
=

(
2n+ 2

2

)
≥ R(3, 2n+ 1).

As there are no blue triangles, any representation of An has a red clique of size 2n+ 1. Take x0x1

to be a red edge on this clique. Iterating on the argument in the first two paragraphs yields an

additional 2n− 1 points. Thus, f(n) ≥ 2n2 + 6n.

Remark 6.2.11. It follows that if k < 21, then k ̸∈ Spec(3265). This provides a combinatorial

proof of a fact that was previously verified using a SAT solver in [8].

It is possible to further strengthen Lemma 6.2.10. For n ≥ 3, we have that 2n2 + 6n ≥(
2n+3

2

)
≥ R(3, 2n+ 2). So we may add an additional point to our red clique containing x0x1.

Proposition 6.2.12. For n ≥ 3, f(n) ≥ 2n2 + 6n+ 1.
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In the case when n = 3, we have that f(3) ≥ 37. As R(3, 9) = 36, we have that there is a red

clique on 10 vertices. So we in fact get 1 additional point on the red clique containing x0x1. Thus,

we obtain that f(3) ≥ 38. Furthermore, as f(n) is monotone, this analysis holds for all n ≥ 3. So

we obtain the following improvement to the above proposition.

Proposition 6.2.13. For n ≥ 3, f(n) ≥ 2n2 + 6n+ 2.

Now we note that 2 · 22 + 6(2) + 1 = 21. It was previously shown that if k < 26, then

k ̸∈ Spec(A2) = Spec(3265) [8]. Thus, we have the following.

Proposition 6.2.14. For all n ≥ 2, f(n) ≥ 2n2 + 6n+ 2.
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Chapter 7

Conclusion and Open Problems

In this thesis, we investigated the combinatorial and logical complexities of several algebraic

structures, including those arising from Latin squares and relation algebras. In Chapter 3, we

investigated both the Weisfeiler–Leman dimension and iteration number [48] for several families of

groups, including (i) coprime extensions H ⋉N , where H is O(1)-generated and N is Abelian, and

(ii) direct product decompositions. As a consequence, we showed that Weisfeiler–Leman serves as an

L-isomorphism test for this family of coprime extensions, and that Weisfeiler–Leman can implicitly

compute direct product decompositions in O(log n) rounds. Using the individualize-and-refine

paradigm, we also showed that quasiSAC1 circuits with size nO(log logn) suffice to identify groups

without Abelian normal subgroups. We showed that if furthermore the socle has O(log n/ log log n)

non-Abelian simple direct factors, then all isomorphisms can be listed in FL. This improves upon

the previous bound of FP [29].

We also considered the weaker count-free variant of Weisfeiler–Leman, where we showed that

Ω(log n)-WL is required to identify even Abelian groups. As a consequence, we obtain that FO

does not capture all polynomial-time computable queries on even Abelian groups. Nonetheless, we

successfully leveraged O(log log n) rounds of the count-free WL Version I algorithm in tandem with

bounded non-determinisim and a single Majority gate to obtain a β1MAC0(FOLL) upper bound for

isomorphism testing of Abelian groups. This improves the previous bound of TC0(FOLL) [57].

Our work in Chapter 3 leaves open the question as to whether groups without Abelian

normal subgroups have bounded (or even o(log n)) WL-dimension. We note that Weisfeiler–Leman
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corresponds to the first Ehrenfeucht–Fräıssé game in Hella’s hierarchy [109, 110, 48]. We thus

investigated the second Ehrenfeucht–Fräıssé game in Hella’s hierarchy, which we refer to as the 2-

ary game. While this game trivially handlesGraph Isomorphism, it is not clear as to whether this

game suffices to handle Group Isomorphism. Nonetheless, we showed that if G has no Abelian

normal subgroups and H ̸∼= G is arbitrary, then Spoiler has a winning strategy in the 2-ary game

with O(1) pebbles and O(1) rounds. Hella [109, 110] previously established that the 2-ary game is

equivalent to the logic FO(Q), where Q is the set of all binary quantifiers. Thus, all groups without

Abelian normal subgroups are identified by an FO(Q) formula with O(1) variables and quantifier

depth O(1). Finally, we exhibited a novel Weisfeiler–Leman characterization of the 2-ary game,

which we refer to as the 2-ary WL.

In Chapter 5, we showed that for any i, c ≥ 0, GI is not βiFO((log log n)
c)-reducible to

several isomorphism problems characterized by the generator enumeration technique, including

Latin Square Isotopy, isomorphism testing of nets (which includes affine and projective planes),

and isomorphism testing of Steiner (t, t + 1)-designs. As a corollary, we obtained that GI is not

βiFO((log log n)
c)-reducible to isomorphism testing of Latin square graphs, k-net graphs (for fixed

k), and the block-intersection graphs arising from Steiner triple systems.

Finally, in Chapter 6, we investigated the minimum-sized representation of the relation alge-

bra An (denoted f(n)), obtained by splitting the non-flexible diversity atom of 67 into n symmetric

atoms. We showed that 2n2 +Ω(n
√
log n) ≤ f(n) ≤ 2n6+o(1). In the special case of A2 = 3265, we

showed that 26 ≤ f(2) ≤ 1024.

We conclude with some open problems.

7.1 Group Isomorphism

Question 7.1.1. What is the (1-ary) Weisfeiler–Leman dimension of groups without Abelian nor-

mal subgroups?

It would be of interest to address this question even in the non-permuting case when G =
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PKer(G). Alternatively, establish an upper bound of O(log log n) for the WL dimension of semisim-

ple groups. These questions would form the basis of a WL analogue of [29], without needing

individualize-and-refine.

In general, if an uncolored class of graphs is identified by WL, then so is the corresponding

class of colored graphs. So if constant-dimensional WL identifies a class of graphs, it may readily

be extended to an efficient canonization procedure (c.f., [102]). In the case of groups, it is not clear

whether WL easily identifies colored variants. To this end, we ask the following.

Question 7.1.2. Does constant-dimensional (1-ary) Weisfeiler–Leman identify every colored Abelian

group?

Our work on the 2-ary game also leaves open some interesting questions.

Question 7.1.3. Can the constant-dimensional 2-ary Wesifeiler–Leman algorithm be implemented

in time no(logn)?

Question 7.1.4. Show that the second Ehrenfeucht–Fräıssé game in Hella’s hierarchy can identify

coprime extensions of the form H ⋉ N with both H,N Abelian (the analogue of [167]). More

generally, an analogue of Babai–Qiao [34] would be to show that when |H|, |N | are coprime and N

is Abelian, that Spoiler can distinguish H ⋉ N from any non-isomorphic group using a constant

number of pebbles that is no more than that which is required to identify H (or the maximum of

that of H and a constant independent of N,H).

Question 7.1.5. Let p > 2 be prime, and let G be a p-group with bounded genus. Show that in

the second Ehrenfeucht–Fräıssé game in Hella’s hierarchy, Spoiler has a winning strategy using a

constant number of pebbles. This is a descriptive complexity analogue of [51, 125]. It would even

be of interest to start with the case where G has bounded genus over a field extension K/Fp of

bounded degree.

In the setting of groups, Hella’s hierarchy collapses to some q ≤ 3, since 3-ary WL can

identify all ternary relational structures, including groups. It remains open to determine whether



178

this hierarchy collapses further to either q = 1 or q = 2. Even if it does not collapse, it would also

be of interest to determine whether the 1-ary and 2-ary games are equivalent. Algorithmically, this

is equivalent to determining whether 1-ary and 2-ary WL are have the same distinguishing power.

Question 7.1.6. Does there exist an infinite family of non-isomorphic pairs of groups {(Gn, Hn)}

for which Spoiler requires ω(1) pebbles to distinguish Gn from Hn? We ask this question for the

Ehrenfeucht–Fräıssé games at both the first and second levels of Hella’s hierarchy.

Recall that the game at the first level of Hella’s hierarchy is equivalent to Weisfeiler–Leman

[55, 109, 110], and so a lower bound against either of these games provides a lower bound against

Weisfeiler–Leman.

More generally, it would also be of interest to investigate Hella’s hierarchy on higher arity

structures. For a q-ary relational structure, the q-ary pebble game suffices to decide isomorphism.

Are there interesting, natural classes of higher arity structures for which Hella’s hierarchy collapses

further to some level q′ < q?

Finally, we wish to highlight a question that essentially goes back to [57], who showed that

GpI cannot be hard under AC0 reductions for any class containing Parity. In Theorem 3.7.9, we

showed that count-free WL requires dimension ≥ Ω(log(n)) to identify even Abelian groups. This

shows that this particular, natural method does not put GpI into FO(poly log log n), though it does

not actually prove GpI /∈ FO(poly log log n), since we cannot rule out clever bit manipulations of

the Cayley (multiplication) tables. While we think the latter lower bound would be of significant

interest, we think even the following question is interesting:

Question 7.1.7. Show that GpI does not belong to (uniform) AC0.

7.2 Strongly Regular Graphs

In Proposition 5.2.6, we showed that a Steiner 2-design can be recovered from its block-

incidence graph in AC0 when the block size is bounded. Otherwise, the procedure is TC0-computable,

as we need to distinguish vertices by their degrees. As a step towards ruling out βiFO((log logn)
c)
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reductions from GI, it would be of interest to show that we can recover a Steiner 2-design from its

block-incidence graph in a complexity class that cannot compute Parity. To this end, we ask the

following.

Question 7.2.1. Can Steiner 2-designs of unbounded block size be recovered from their block-

incidence graphs in AC0?

It would also be of interest to find additional families of Steiner 2-designs where the isomor-

phism problem belongs to βiFO((log logn)
c). As a starting point, we ask the following.

Question 7.2.2. For Steiner 2-designs with bounded block size, can we decide isomorphism in

β2FOLL?

While a Steiner 2-design D admits generating set S of O(log v) points [33], we have that

AutS(D) may in general be non-trivial. This is the key barrier for the techniques here.

Babai & Wilmes [36] and Chen, Sun, & Teng [58] independently showed that Steiner 2-designs

admit a set of O(log v) points where, once individualized, the color-refinement algorithm assigns

a unique color to each point. A priori, it seems plausible that only poly log log v iterations are

required. However, color-refinement takes into account the multiset of colors, and so each round

can be implemented with a TC0-circuit. In particular, Babai & Wilmes rely crucially on counting

[36, Target 2]. So we ask the following.

Question 7.2.3. Does there exist an absolute constant c, such that Steiner 2-designs admit a

set S of O(logc v) points where, after individuaizing S, the coloring from poly log log n rounds of

count-free color-refinement assigns each point a unique color?

In the remark following the proof of [37, Lemma 3.2], Babai outines a deterministic proof that

leverages the greedy set cover algorithm (see [150]) to obtain a distinguishing set of the prescribed

size. Now suppose that G and H are isomorphic, and the greedy set cover algorithm returns

distinguishing sequences S and S′ of the same size for G,H respectively. A priori, S and S′ need

not be canonical in the sense that there need not be an isomorphism φ : V (G) → V (H) mapping

φ(S) = S′. Thus, we ask the following.
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Question 7.2.4. Is it possible to deterministically construct a canonical distinguishing set of the

size prescribed by [37, Lemma 3.2] for a graph in polynomial time?

An answer of yes to Question 7.2.4 in tandem with the work in Section 5.3 would immediately

yield a polynomial-time isomorphism test for conference graphs. Babai’s work [37] implies an

nO(logn)-time algorithm, and to the best of my knowledge, no further improvements have been

made to the runtime.

Alternatively, we ask the following.

Question 7.2.5. Let G be a conference graph. Does there exists a set of vertices S of size O(1)

such that, after individualizing S and running Color Refinement, each vertex of G would receive a

unique color?

An answer of yes to Question 7.2.5 would also yield a polynomial-time isomorphism test for

conference graphs, using the individualize-and-refine paradigm. Even finding a such a set S of size

o(log n) would be a major advance, as it would yield an no(logn)-time isomorphism test.

7.3 Relation Algebras

Question 7.3.1. Is f(2) < 1000?

Question 7.3.2. Is 3265 representable over (Z/2Z)m for m < 10? The natural thing to try – using

the construction from the proof of Theorem 6.1.1, with k = 2 (hence m = 7) – doesn’t work; we

checked all partitions. But there may some other representation.

Finally, we note that there is a considerable gap in the bounds 2n2 + Ω(n
√
log n) ≤ f(n) ≤

2n6+o(1). It would be of interest to close this gap. In light of the discussion following Theorem 6.1.3,

it is unlikely that the upper bound can be further improved by analyzing the Boolean cube. It

appears that new ideas are required to improve either the upper or the lower bounds.
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[188] Jacquez Theévenaz. Representations of finite groups in characteristic pr. J. Algebra, 72:478–
500, 1981. doi:10.1016/0021-8693(81)90305-7.

[189] Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–1108,
2004. doi:10.1137/S009753970241096X.

[190] Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In
Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber,
editors, Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May
5-7, 1982, San Francisco, California, USA, pages 137–146. ACM, 1982. doi:10.1145/800070.
802186.

[191] Valery Vasil’ev, Maria Grechkoseeva, and V. Mazurov. Characterization of the finite simple
groups by spectrum and order. Algebra and Logic, 48:385–409, 12 2009. doi:10.1007/

s10469-009-9074-9.

[192] T.C. Vijayaraghavan. Classifying certain algebraic problems using Logspace counting classes.
PhD thesis, HBNI, 2008. URL: https://www.imsc.res.in/xmlui/handle/123456789/118.

[193] Narayan Vikas. An O(n) algorithm for abelian p-group isomorphism and an O(n log n) algo-
rithm for abelian group isomorphism. Journal of Computer and System Sciences, 53(1):1–9,
1996. doi:10.1006/jcss.1996.0045.

[194] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/

978-3-662-03927-4.

[195] F. Wagner. On the complexity of isomorphism testing for restricted classes of graphs.
PhD thesis, Universität Ulm, 2010. URL: https://oparu.uni-ulm.de/xmlui/bitstream/
handle/123456789/3923/vts_7264_10267.pdf.

[196] B. Yu. Weisfeiler and A. A. Leman. Reduction of a graph to a canonical form and an algebra
arising during this reduction, 1968. English translation available at https://www.iti.zcu.
cz/wl2018/pdf/wl_paper_translation.pdf.

https://doi.org/10.1145/237814.238006
https://doi.org/10.1145/237814.238006
http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf
http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf
https://doi.org/10.1017/S030500410002987X
https://doi.org/10.1016/0021-8693(81)90305-7
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186
https://doi.org/10.1007/s10469-009-9074-9
https://doi.org/10.1007/s10469-009-9074-9
https://www.imsc.res.in/xmlui/handle/123456789/118
https://doi.org/10.1006/jcss.1996.0045
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-03927-4
https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/3923/vts_7264_10267.pdf
https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/3923/vts_7264_10267.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf


195

[197] Boris Weisfeiler. On construction and identification of graphs. 1976. doi:10.1007/

BFb0089374.

[198] James B. Wilson. Existence, algorithms, and asymptotics of direct product decompositions,
I. Groups - Complexity - Cryptology, 4(1), Jan 2012. doi:10.1515/gcc-2012-0007.

[199] James B. Wilson. The threshold for subgroup profiles to agree is logarithmic. Theory of
Computing, 15(19):1–25, 2019. doi:10.4086/toc.2019.v015a019.

[200] Marty J. Wolf. Nondeterministic circuits, space complexity and quasigroups. Theoretical
Computer Science, 125(2):295–313, 1994. doi:10.1016/0304-3975(92)00014-I.

[201] V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph isomorphism problem.
Journal of Soviet Mathematics, 29:1426–1481, 1985. doi:10.1007/BF02104746.

[202] Complexity zoo. URL: https://complexityzoo.net.

https://doi.org/10.1007/BFb0089374
https://doi.org/10.1007/BFb0089374
https://doi.org/10.1515/gcc-2012-0007
https://doi.org/10.4086/toc.2019.v015a019
https://doi.org/10.1016/0304-3975(92)00014-I
https://doi.org/10.1007/BF02104746
https://complexityzoo.net

	Introduction
	Graph Isomorphism
	Weisfeiler–Leman
	Group Isomorphism
	Strongly Regular Graphs

	Relation Algebras

	Preliminaries
	Graph Theory
	Group Theory
	Quasigroups
	Combinatorial Designs
	Computational Complexity
	Colored Graphs
	Weisfeiler–Leman
	Pebbling Game
	Logics
	Weisfeiler–Leman as a Parallel Algorithm
	Relation Algebras

	Parallel Complexity of Group Isomorphism and Canonization via Weisfeiler–Leman
	Overview
	Parallel Equivalence Between WL Versions
	Weisfeiler–Leman for Coprime Extensions
	Additional preliminaries for groups with Abelian normal Hall subgroup
	Coprime Extensions with an O(1)-Generated Complement

	A ``rank'' lemma
	Direct Products
	Preliminaries
	Abelian and Semi-Abelian Case
	General Case

	Weisfeiler–Leman for Semisimple Groups
	Preliminaries
	Groups without Abelian Normal Subgroups in Parallel

	Count-Free Weisfeiler–Leman
	Equivalence Between Count-Free WL, Pebble Games, and Logics
	Logics
	Equivalence of Count-Free WL Versions
	Count-Free WL and Abelian Groups

	Canonizing Groups in Parallel via Weisfeiler–Leman
	Canonizing in Parallel via Weisfeiler–Leman


	Descriptive Complexity of Groups without Abelian Normal Subgroups
	Main Results
	Pebbling Game
	Higher-arity Weisfeiler-Leman-style coloring corresponding to higher arity pebble games
	Equivalence between 2-ary (k,r)-WL Versions I and II
	Descriptive Complexity of Semisimple Groups

	Isomorphism Testing of Strongly Regular Graphs
	Latin Square Isotopy
	Isomorphism Testing of Steiner Designs
	Nets
	Steiner Triple Systems
	Reduction to Steiner 2-Designs

	Conference Graphs

	Relation Algebras
	An upper bound on f(n)
	A lower bound for An

	Conclusion and Open Problems
	Group Isomorphism
	Strongly Regular Graphs
	Relation Algebras

	 Bibliography

