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Abstract
High elevation alpine ecosystems—the ‘water towers of theworld’—providewater for human
populations around the globe. Active geomorphic features such as glaciers andpermafrost leave alpine
ecosystems susceptible to changes in climatewhich could also lead to changingbiogeochemistry and
water quality.Here,we synthesize recent changes inhigh-elevation streamchemistry frommultiple sites
that demonstrate a consistent andwidespreadpattern of increasing sulfate andbase cation concentrations
orfluxes. This trendhas occurred over the past 30 years and is consistent acrossmultiple sites in theRocky
Mountains of theUnited States,westernCanada, the EuropeanAlps, the Icelandic Shield, and the
Himalayas inAsia. Tobetter understand these recent changes and to examine thepotential causes of
increased sulfur andbase cation concentrations in surfacewaters,we present a synthesis of global records
aswell as a high resolution 33 year record of atmospheric deposition and river export data froma long-
termecological research site inColorado,USA.We evaluatewhich factorsmaybedriving global shifts in
streamchemistry including atmospheric deposition trends andbroad climatic patterns.Our analysis
suggests that recent changes in climatemaybe stimulating changes to hydrology and/or geomorphic
processes,which in turn lead to acceleratedweathering of bedrock. This cascade of effects has broad
implications for the chemistry andquality of important surfacewater resources.

Introduction

Mountain snow and ice supply approximately one third
of global discharge to the ocean (Meybeck et al 2001),
and provide freshwater to a large portion of the world’s
population (Viviroli et al 2007, 2011), especially in arid
and semi-arid regions. The importance of mountains as
water resources comes from the high-quality nature of
water generated in alpine basins and because of the role
of mountains as ‘water towers’ that supply domestic and
agricultural use during dry seasons at lower elevations.
Physical processes that occur in mountains are also
important controls on river chemistry and sediment
fluxes. High elevation regions dominate the global
processes of sediment erosion and mineral weathering
(Bluth and Kump 1994, Kirchner et al 2001). The
chemical weathering of mountainous regions is a key
control on river chemistry and alkalinity and therefore a

vital contemporary control on the baseline water chem-
istry of downstream river networks (Meybeck 1987,
Drever 1997).

Over the past two decades, a number of studies
have noted increasing sulfate ( )-SO4

2 and/or base
cation (Ca2+, Mg2+) concentrations in high elevation
lakes and streams on several continents (Sommaruga-
Wögrath et al 1997, Thies et al 2007, Gislason et al
2009, Todd et al 2012). These studies often include a
limited number of measurements made at particular
points in time, but taken as a whole, this body of litera-
ture indicates that increased base cation and -SO4

2

concentrations are relatively common. We identify
that such patterns have been observed in the literature
in at least 94 different alpine streams and lakes around
the globe (figure 1; also see table S1 which is available
online at stacks.iop.org/ERL/14/124092/mmedia).
Trends in stream/lake concentrations were between
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0.87 and 222 μeq l−1 yr−1 for SO4
2−, and between

0.90 and 140 μeq l−1 yr−1 for base cations (Ca2+ and/or
Mg2+). Importantly, these records come from multiple
continents and mountain ranges, including the Alps,
Himalayas, Rockies, and the Icelandic Shield. Measure-
ment locations are all at high elevations and/or high
relief, containmetamorphic bedrock (excluding Iceland),
have known periglacial or glacial conditions, and have
experienced limitedhumandisturbance to catchments.

There is some additional evidence of increasing
SO4

2− and/or cation increases in other cold regions, a
phenomenon that has not been fully explored. For
example, increasing cation and SO4

2−
flux has been

observed for small and very large watersheds with
varying levels of permafrost in Alaska’s Yukon River
Basin (Petrone et al 2006, Toohey et al 2016). These
increasing trends have been attributed to changes in
hydrology and increases in mineral weathering and
sulfide oxidation (Toohey et al 2016). We also found
trends of increasing -SO4

2 fluxes in a set of glaciated
mountain catchments in British Columbia, Canada
that are representative of the Canadian Rockies and
the Coast Mountains (figures S2–S4). While these lar-
ger, soil-mantled catchments do not exclusively repre-
sent conditions in alpine environments, the increasing

mass flux is clearly in line with the broader global
patterns.

The consistency of these patterns suggests the pos-
sibility of a broad global scale change inmountain sys-
tems. At present, only a few global phenomenon are
plausible. They include: increasing atmospheric
deposition of -SO4

2 and cations (direct mechanisms),
or elevated carbon dioxide in the atmosphere, or glo-
bal temperature increases and or changes in temper-
ature patterns at high elevations (both being potential
indirect mechanisms). In most cases, atmospheric
deposition of SO4

2− is declining in these systems and
base cation deposition shows relatively little direc-
tional change in many locations (Tessier et al 2002,
Lehmann et al 2005, Tørseth et al 2012); and we revisit
this hypothesis later in the text. Elevated carbon diox-
ide is likely to enhance mineral weathering due to the
‘acid attack’ of carbonic acid uponminerals. However,
carbon dioxide is not involved in the reactions likely
responsible for -SO4

2 production (equation (1)). Fur-
ther, the timescale for a weathering response to
increasing CO2 in the atmosphere is on the order of
hundreds of years (Colbourn et al 2015). Climate
change is left as the most likely global driver that
could lead to a synchronous increase in cations and

-SO4
2 in alpine environments, as has been suggested

Figure 1.Global alpine streams and lakes experiencing elevated cation and -SO4
2 concentrations including air temperature patterns

(the extracted pattern from each time-series) from available nearbymeteorological stations; insetmap shows the locations of panels
(green triangles represent all literature locations plus additionalmodeling in this work); note variation in the x- and y-axes. (A) and
(B): ColoradoRockyMountains, (C) and (D): EuropeanAlps, (E): Himalaya; Icelandic Shield andCanadian Rockies are unlabeled.
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throughout the literature. The climate effect might
work via more rapid weathering rates (kinetics), expo-
sure of highly weatherable materials (thawing of ice
and permafrost), or perhaps through both mechan-
isms

( )
( )

+ + = +15O 14H O 15FeS 8H SO 4Fe OH .
1

2 2 2 2 4 3

At a global scale, many high altitude regions are
warming much faster than adjacent low-lying areas
(Wang et al 2014). And there is evidence that climate
has changed across these geographically diverse alpine
sites; we show sites with a combination of rising SO4

2,
base cations, and rising air temperature in figure 1
(also see table S1). In the Alps, for example, the mean
annual air temperature increased by more than 1 °C
since 1980 up to the publication date (Thies et al 2007).
Warming trends were also documented in the Rockies
where mean annual and mean summer air tempera-
tures have increased by 0.2 °C−1.2 °C per decade
beginning in the 1980s (Todd et al 2012). In other
regions such as the Himalaya (Salerno et al 2016), and
in our study site in Colorado, the loss of glaciers and
permafrost (Leopold et al 2015) are indirect evidence
of a changing climate. However, alpine air tempera-
tures can also show more complex patterns relative to
the steady increases documented in the literature. In
the high alpine of the Rocky Mountains for example,
dampened diurnal air temperature ranges and tele-
connections to atmospheric circulation patterns
represented by the North Pacific Index and the El
Niño-Southern Oscillation can lead to more complex
temperature signals that are non-monotonic (Kittel
et al 2009). Although there are well understood geolo-
gic time scale feedbacks between climate, mountain
uplift, and mineral weathering (Gaillardet et al 1999,
West et al 2005, Gislason et al 2009,Maher and Cham-
berlain 2014), relatively little is known about how cli-
matemight alter contemporary weathering or element
release. However, it is clear that alpine and other high
elevation/high latitude ecosystems are rapidly losing
glacial and periglacial features and permafrost is thaw-
ing (Haeberli et al 1993, Paul et al 2004, Gruber and
Haeberli 2007, Jones et al 2019), which has significant
implications for changing both the hydrologic regime
and biogeochemical cycling in these systems.

To investigate the emerging global pattern of ele-
vated base cation and -SO4

2 concentrations in high
elevation freshwater systems, we examined a long-
term dataset from the Niwot Ridge Long Term Ecolo-
gical Research Site located in Colorado, USA. This
location was selected because of its high-resolution
chemical and hydrologic sampling that extends back
to 1984. We used a combination of mass balance and
isotopic data, as well as findings from previous investi-
gations, to determine the likely cause of elevated

-SO4
2 and base cation flux from this alpine ecosystem.

Methods

We calculated mass balance budgets for -SO ,4
2 Ca2+,

Mg2+, and other constituents for the Green Lakes
Valley catchment in Colorado, USA using long-term
records of atmospheric deposition, water chemistry,
and stream flow. The outlet of the Green Lakes Valley
corresponds to the Albion site described in the
supplementary material (watershed area=7.1 km2).
Water chemistry (Caine 2018) and stream flow data
(Caine 1993), as well as climatological data were
retrieved from the Niwot Ridge Long Term Ecological
Research site data page (http://niwot.colorado.edu/
data). Climate data are presented from an alpine
monitoring location (D1) and a sub-alpine sta-
tion (C1).

To estimate monthly flux of chemical constituents
from the watershed, we used the Weighted Regres-
sions on Time, Discharge, and Season (WRTDS)
model (Hirsch et al 2010) contained within the
EGRET package for the statistical programming lan-
guage R (R Core Team 2018). WRTDS was chosen for
stream flux modeling specifically because of its cap-
abilities for decadal water quality data, which include:
an ability to detect changes in concentration and flux;
relationships between concentration, discharge, and
season are allowed to change over time; the model
produces a time-series of both actual fluxes and fluxes
where the effect of inter-annual flow variability has
been removed, known as the flow-normalized flux.
The flow-normalized flux can be used to infer changes
in the watershed that have an impact on stream chem-
istry that are independent of the variability in stream
flow. The flow-normalized flux does not include the
random variability driven by the random variability in
discharge (see supplementary material ‘Flow Normal-
ized Trends in Chemical Flux’). Confidence intervals
for the change in flow-normalized flux, as well as like-
lihood estimates of flux trends were calculated using
the block bootstrap procedures (Hirsch et al 2015)
built forWRTDS in theR package EGRETci.

Rates of wet atmospheric deposition of -SO ,4
2

Ca2+, Mg2+, and H+were retrieved from the National
Atmospheric Deposition Program (NADP) monitor-
ing site to the north of the stream outlet (NTN Site
C002). Dry deposition was not measured at the NADP
site, therefore we applied a constant dry deposition
rate to all years using recent estimates made near the
NADP sample collector (Oldani et al 2017).

We analyzed average daily air temperatures, and
calculated degree days (sum of average daily tempera-
tures) at a monthly time step for all months using a
long-term climate record from the alpine meteor-
ological station in the watershed (D1 site, 3743 m.a.s.
l.). We also present de-trendedmean air temperatures
for D1 and a nearby sub-alpine climate station
(C1, 3018 m.a.s.l.). We assessed the relationship
betweenmonthly degree days at D1 and flow-normal-
ized flux from the Green Lakes Valley in seasonal
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bins (April–June, July–September, October–December,
January–March) with linear regression using the statis-
tical programming languageR.

A survey of δ34 S of dissolved -SO4
2 at Green Lakes

Valley was completed during summer 2018. Water
samples of δ34 S were taken from seeps, snowmelt and
groundwaters flowing below and around the rock gla-
cier adjacent to Green Lake 5 (n=10). BaCl2·2H2O
was added to 100 ml solution to induce -SO4

2 pre-
cipitation from these low-concentration waters. The
34S analyses were done by isotope ratio mass spectro-
metry at the University of California, Santa Cruz (see
supplementarymaterial ‘Water Chemistry Sampling’).

Results

Modeling of -SO4
2 and cation flux using water chem-

istry and stream flow data from the Green Lakes Valley
catchment, a remote and undisturbed alpine watershed
within the Niwot Ridge study area, revealed robust
changes in the mass of elements leaving the watershed
over a 33 year period (figure 2). The increases in stream
export were the result of increased concentrations at all
water flows and over all seasons after controlling for
variation in stream flow (figures S7–S9). In this
watershed, -SO4

2 fluxes increased by over 200%
between 1984 and 2015 while Mg2+ and Ca2+ fluxes
approximately doubled over the same timeperiod. These
large increases were not simply due to chance, as the
likelihood that flow-normalized -SO ,4

2 Ca2+, and

Mg2+ flux was upward trending equaled 0.988 for all
constituents. Silica fluxes (figure S10) also showed an
upward trend (likelihood=0.762), but the magnitude
of the increase (34%) was lower than other weathering
products such as Ca2+. The lower silica fluxes are
consistent with precipitation of secondary Si minerals as
proposedbyWilliams et al (2006).

Warm periods were evident at Niwot Ridge for
both the alpine climate station (D1) and the sub-alpine
climate station (C1) records (figure 3). At the sub-
alpine climate station, a warm period began in
approximately 1984, increasing nearly 3 °C by 2009,
and then slightly decreasing by 2017. Mean annual
temperatures at the sub-alpine site have consistently
been above the 0 °C threshold for the study period.
Mean annual temperatures at the highest elevations
were still below 0 °C for the period of record, but
warming of nearly 5 °C occurred between 1984 and
2010. Air temperatures at D1 decreased from 2010
onward. When aggregated at a monthly time step,
average temperatures have increased over time in spe-
cific months. For example, July and September trends
at the alpine station were significant as assessed with
the Mann-Kendall test (p-values of 0.01 and 0.05,
respectively).

Watershed -SO4
2 and cation export increased

(figure 2) during a period of increased air temperatures
in the Green Lakes Valley (figure 3). The long-term
extent of theGreen Lakes Valley streammeasurements
combined with nearby, high-quality meteorological
data allow us to further explore the link between

Figure 2.Time series of -SO ,4
2 Mg2+, Ca2+, and hydrogen export (gray triangles) and atmospheric deposition (orange circles) from

theGreen Lakes Valley catchment of Colorado, USA; lines are the loess-smoothed trend and shaded region represents the standard
error of the data.
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air temperature, -SO ,4
2 and base cation fluxes. An

analysis of the monthly sum of average daily air temp-
erature (degree days) versus flow-normalized -SO4

2

flux shows a very strong relationship for Spring,
Summer, and Fall seasons, but not for the winter
season (figure 4). This pattern of increased fluxes with
increasing air temperatures is also the case for
base cation flux (figures S11, S12). Importantly, the

flow-normalized flux removes inter-annual variation
in discharge. The air temperature and flux trends at
Niwot are both non-monotonic (figure 3). For exam-
ple, during the recent cooling phase after 2010, the ion
fluxes also decreased, which suggests that ionic flux
may respond to both increasing and decreasing air
temperatures. Meanwhile, CO2 in the atmosphere has
risen unabated (see http://scrippsco2.ucsd.edu/).

Figure 3.Time-series of seasonally de-trended air temperature from two stations onNiwot Ridge (sub-alpine station is known asC1,
alpine station is known asD1).

Figure 4. Scatterplots showing the relationships between degree days summarized bymonth at the alpine climate station (D1, x-axis)
andflow-normalized -SO4

2 flux summarized bymonth (y-axis); April,May, June (AMJ), July, August, September (JAS), January,
February,March (JFM), October, November, December (OND).
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Discussion

Potentialmechanisms for increased -SO4
2 and base

cationfluxes
The strong relationship between degree days and
stream chemistry fluxes at Green Lakes Valley (and
similar types of relationships elsewhere) suggests that
elevated air temperatures are related to increases in
stream chemical export but shed little light on the
reasons why. There are several proximal mechanisms
that could be responsible for elevated -SO4

2 as well as
base cation flux in response to the distal cause
(warming) at Niwot Ridge. These include: (1)
increased decomposition of organic matter, (2) deso-
rption of ions from soils and mineral sites, (3) ion
release from glacier and ice storage, and (4) increased
weathering of silicate and sulfide minerals. Addition-
ally, there are also two direct mechanisms that could
lead to elevated ion flux as presented earlier: increased
atmospheric deposition of -SO4

2 and base cations, or
CO2 induced weathering increases of silicate minerals.
All of these mechanisms will operate on different
timescales.

At Green Lakes Valley, there is evidence available
to refute some of these alternative hypotheses and
there is growing support for a weathering source of
ions. In principle, atmospheric deposition of -SO4

2

and cations could increase the watershed flux from
both wet (precipitation) and dry deposition (e.g. dust)
sources. However, watershed mass balance calcula-
tions of -SO ,4

2 Mg2+, Ca2+, and hydrogen ions indi-
cate that atmospheric deposition (wet plus dry
sources) cannot account for the increases in flux from
Green Lakes Valley (figure 2). The same result has been
found for some of the other global sites (Thies et al
2007, Mast et al 2011), and is aligned with patterns
observed in much of the temperate Eastern US and
Europe where atmospheric nutrient and ion deposi-
tion has strongly decreased as a result of emissions
controls (Dillon et al 2003,Mitchell et al 2011). To bal-
ance the riverine flux of -SO4

2 from the Green Lakes
Valley would require approximately six years of
cumulative atmospheric deposition at current rates, or
approximately 10 years of pre-industrial emissions
(assuming a 1 kg S/ha/yr deposition flux).

Rising temperatures should increase rates of
organic matter decomposition in alpine watersheds,
which could lead to increased -SO4

2 and base cation
concentrations in streams if these elements (S, Ca,Mg)
are bound to organic matter. If this were the case at
Niwot Ridge, we would expect a cascade of changes in
the system including the release of dissolved organic
carbon (DOC) and higher ecosystem respiration rates
from terrestrial sites. At Green Lakes Valley, we do not
see broad scale evidence for increased decomposition.
Over the 33 year period of record at Green Lakes Val-
ley, DOC flux has actually decreased (figure S19), but
other recent work suggests some increases in alpine

decomposition (Knowles et al 2019), showing mixed
evidence of changing decomposition.

Desorption of -SO4
2 stored on mineral and soil

exchange sites could result in hydrologic flux from the
catchment (e.g. Sharpley 1990). Sulfate desorption
would be most likely caused (on these timescales) by
the displacement of -SO4

2 on ion exchange sites by
another ion withmore favorable adsorptive character-
istics and/or higher concentrations. There is no evi-
dence for anion concentration increase in deposition
to Green Lakes Valley, where precipitation -SO4

2 and
NO3

− concentrations are actually decreasing over this
time period. Melting ice has also been suggested as a
source of increasing ion flux (Caine 2010), but infor-
mation on the mass of ice reservoirs, and their poten-
tial concentrations of ions are essentially unknown.
Finally, the chemical reactions likely responsible for
elevated -SO4

2 flux (equation (1)) do not involve CO2,
and a mechanism linking both cation and -SO4

2

increases has not been elaborated. Furthermore, pre-
cipitation pH, surface water pH and alkalinity have all
increased in the Green Lakes Valley, which does not
support increasing acidity as a result of rising atmo-
spheric CO2.

Sulfideweathering
Enhanced mineral weathering has been noted as a
potential cause of increased -SO4

2 and base cation
concentrations in other alpine sites (Gislason et al
2009, Todd et al 2012). Sulfide minerals are present in
many alpine catchments and these minerals also have
high reactivity relative to silicates (Torres et al 2017).
Sulfide minerals are known to occur in the Green
Lakes Valley (see supplementary material ‘Evidence of
Sulfide Minerals’), and in many of the sites shown in
figure 1. Our review of the literature indicates that
sulfideweathering occurs inmany other alpine regions
across the globe (see Darmody et al 2007, Szynkiewicz
et al 2013, Salerno et al 2016). These general patterns of
sulfide reactivity in alpine systems, combined with
widespread occurrence of sulfide minerals (Craig and
Vokes 1993, Vaughn 2013), illustrate the potential for
enhanced weathering to drive elevated -SO4

2 and
cation flux in high elevation systems. But the presence
of sulfides alone is not enough evidence to support a
weathering source of -SO .4

2

At Green Lakes Valley, we carried out a small survey
of δ34 S of dissolved -SO4

2 in stream water during sum-
mer 2018 to determine whether sulfide minerals were a
probable source of -SO4

2 to surfacewaters. The δ34 S iso-
topic signature of -SO4

2 has been widely used to discern
the contribution of sulfide oxidation to river -SO4

2 flux
(Torres et al 2016; Burke et al 2018; Calmels et al 2007) as
geologic S typically hasmuchmorenegative ratios relative
to atmospheric andbiological sources. In theGreenLakes
Valley, results show average surface water δ34 S of dis-
solved -SO4

2 values of −2.13‰ (range −4.28 to
−0.37‰), which were within the range of expected

6

Environ. Res. Lett. 14 (2019) 124092



geologic sulfide values in Colorado (−1.7 to −5.0‰;
Mast et al 2011), and much more depleted relative to
atmospheric sources measured in alpine snowpacks
throughout the mountain range (+4.0 to +8.2‰; Mast
et al 2001). Additionally, inverse geochemical modeling
—which offers a window into the reactions occurring in
the subsurface—of water discharging from a rock glacier
in the Green Lakes Valley suggested weathering of pyrite
and potential release of base cations from associated
weathering of silicate minerals (Williams et al 2006).
Thus, the combination of mass balance calculations, iso-
topic tracing, and chemical modeling all point to sulfide
weathering as a likely source of -SO4

2 to surface waters.
But what might connect air temperatures to enhanced
sulfideweathering?

Weathering of pyrite (a common sulfide) is thought
to be limited, in part, by temperature. However, the
temperature dependency at near-freezing conditionsmay
be fairly small (see Todd et al 2012). Additional rate limit-
ing mechanisms include exposure of fresh mineral sur-
faces (Das et al 2012, Ross et al 2018), the availability of
water and oxygen, as well as a number of complexmicro-
scopic processes (Chandra and Gerson 2010). High ero-
sion rates in glacial and periglacial environments have
been shown to enhance pyrite oxidation rates (Calmels
et al 2007,Darmody et al 2007), likely due to the exposure
of fresh pyrite surfaces to oxygen and water. In other
alpine catchments, rock glaciers appear to be important
loci of enhanced -SO4

2 and cation flux (Williams et al
2006,Thies et al2007,Caine 2010). The spatial patterns of
chemical time-series in the Green Lakes Valley (figures
S13–S15) only showed -SO4

2 increases below the rock
glacier nearGreen Lake 5, but no changes inwater down-
stream of the Arikaree Glacier at the head of the water-
shed, which suggests that the rock glacier may be an
important local sourceof changingwater chemistry.

Our decision to assess the relationship between air
temperatures and fluxes follows the recognition that
heating (and potential thaw/melt) of rock glaciers, talus,
and other high porosity periglacial features can be driven
by sensible heat exchange (Grueber and Haeberli 2007;
Pruessner et al 2018; Mühll and Haeberli 1990), in addi-
tion to conductive heat flux. Thus, the accumulation of
degree days represents a reasonable metric of potential
thawing of the subsurface, as is the likely case for glaciers
in the region (Hoffman et al2007).We suggest that thaw-
ing of previously ice-filledflowpaths allows for increased
weathering at freshmineral surfaces and that the connec-
tion to rapidly warming air temperatures is not simply a
result of the kinetic limitations of sulfide oxidation. It is
also possible that sulfides such as pyrite release protons
that subsequently weather silicate minerals, but the con-
nection to elevated cationfluxes is not yet understood.

Conclusion

The results synthesized for high elevation systems across
the globe, including additional lines of evidence from the

Green Lakes Valley, and larger permafrost regions of
Alaska and the Canadian Rockies, suggest that alpine
stream chemistry is changing as a result of recent
warming-induced changes to bedrock weathering. These
patterns suggest broad scale shifts in the geomorphology
and biogeochemistry of high elevation watersheds that
will lead tochanges in streamchemistry.Preliminarywork
in British Columbia suggests the trends indicated here
may also be present in lower elevation watersheds that
supply large urban regions. The release of -SO4

2 and
acidity from weathering of S-bearing minerals or from
other physical reservoirs could have adverse effects on
water supplies if the resulting decrease in pH is not
countered by increasing alkalinity from other sources
(suchas risingbase cationconcentrations). Elevatedcation
concentrations could increase the potential for infrastruc-
ture corrosivity (e.g. Stets et al 2018), and increased water
hardness with impacts on water usability.More generally,
these changes are unlikely to be limited to just these
dissolved constituents. Weathering reactions release a
range of dissolved elements including metals. Although
these elements are often not measured, increased metal
discharge could lead to toxic loading to aquatic systems, as
has been found inColorado and theAlps (Thies et al2007,
Todd et al 2012), with potential negative consequences for
biota and downstream water users. Such changes will be
increasingly important to understand as the climate of
alpine systemscontinues to change.
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